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Problem Description

The candidate will study ”Adaptive Tuning of Acoustic Positioning Sensor”.

The work includes:

1. Comparison of different methods for tuning the measurement noise covariance.

2. Investigating the possibilities of tuning additional parameters such as process noise

covariance.

3. Quantify estimability, observability and performance in general.





Abstract

This thesis compare methods of noise covariance estimation with the aim to improve

the percision of Extended Kalman Filter (EKF) estimates of acoustic distance mea-

surements. Because computational load is a priority, only suboptimal estimators have

been considered; four relying on innovation covarianse matching and one sequential

Maximum Likelihood Estimator. The methods will mainly be compared by the mean

positional error, the filter state estimate covariance, and the estimators ability to hit

the target covariance. A simulated HiPAP acoustic measurement signal was used as the

measurement for the adaptive filters. The methods performance and sources of errors

have been discussed. Simulations show that the process noise covariance is needed to be

known or estimated to ensure performance during noise covariance estimation. Moreover

simulations show that the proposed combination estimator outperforms the established

methods, if trained on measurements under static noise conditions.





Sammendrag

I denne diplomoppgaven sammenlignes forskjellige metoder for å estimere kovarianser

for støy, med m̊al å øke treffsikkerheten til Utvidet Kalman Filters (EKF) estimat av

akustiske avstandsm̊alinger. Ettersom lav kjøretid er viktig faktor blir bare subopti-

male metoder undersøkt; fire basert p̊a innovasjons-kovarians ekvivalens, og en basert

p̊a sannsynlighets maksimering. Hovedsakelig sammenlignes metodenes estimerte po-

sisjonsfeil, filterets estimat-kovarianse, og treffsikkerheten til støy-kovarianse estimatet.

Simulerte HiPAP akustisk m̊alesignal har blitt brukt som m̊alinger for filterene. Filtrenes

ytelse og feilkilder har blitt diskutert. Simuleringene viser at prosesstøy kovariansen m̊a

være kjent eller estimeres for å sikre ytelsen til for et filter med m̊alestøy kovarianse

estimaring.
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CHAPTER 1

MOTIVATION

Filtering is required to remove measurement errors thereby improving the performance of

acoustic sensors. Kalman Filter (KF) (and variations) are commonly used, which rely on

knowledge of the noise statistical properties to produce estimates of the measurement

free of noise. In cases with unknown noise covariance, KF cannot be garanteed to

consistently give more accurate or percise results than the measurements themselves.

A method of estimating the noise covariance must then be used in conjunction with KF

to ensure consistent performance in light of changing noise characteristics. The field of

estimation is wide, and has been divided into four categories[1]; bayesian estimation and

maximum likelihood methods finds the most likely estimates given the measurements;

correlation matching methods find estimates which correlates the measurements; and

covariance matching find covariance estimates that match observed covariance from the

measurements. Filters that are extended with estimation of design parameters are called

adaptive filters.

The estimators will be added to a EKF to form various adaptive filters. They will be

tested on a simulated HiPAP[2] measurement. The HiPAP sensor is a part of the sensor

package HAIN [3], produced by Kongsberg Maritim.

1



Chapter 1 Motivation 2

1.1 Objective

1. Do a litterary search for low-resource system non-specific methods for on-line co-

variance estimation.

2. Investigate problems related to the methods found.

3. Evaluate the methods performance using simulated HiPAP measurements.

4. Propose a method that can increase the accuracy of HiPAP measurements.

1.2 Outline

Chapter 2 provides a theoretical background. Chapter 3 present the different relevant

methods tested. Chapter 4 contains plots of cost functions, which are used to evaluate

the adaptive filters. costs for filters with and without estimation will be shown. Chapter

5 compares the methods based on their performance on simulated measurements. Lastly

concluding remarks and suggestions for further work is found in chapter 6.



CHAPTER 2

THEORY

2.1 Test Signal

Later a signal that imitate HiPAP[2] measurements will be generated. The measure-

ments give the position of a vessel, with some added noise.

The change in position is given by the target vessels dynamics f(p, u), where p is the

position and u is the vessels input. Since the noise covariance is of interest here, it is

assumed the position is contant. Furthermore it cannot be assumed that the modeling

is perfect, so the accumulated error is included as a zero mean white noise vx.

The change in position is then given as

ṗ = f(p, u) + vp (2.1)

Over time the measurements will be corrupted by a increasing bias. It is modeled as a

first order Gauss-Markov process.

ḃ = − 1

T
b+ vb (2.2)

T is a time constant, determining how fast the bias is change. vb is white noise with

zero mean.

3
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The resulting measurements are then the sum of the position p, bias b and measurement

noise w. Collected this becomes

[
ṗ

ḃ

]
=

[
f(p)

− 1
T b

]
+

[
vx

vb

]
(2.3)

y =
[
1 1

]
x+ w (2.4)

HiPAP determines the vessel position from the measured distance from its different

sensors. Since this is not continous, the above equations needs to be discretized.

∆t denote the time step length.

[
pk

bk

]
=

[
1 + ∂f(p,u)

∂p ∆t 0

0 1− ∆t
T

]
xk−1 +

[
∂f(p,u)
∂u ∆t

0

]
u+

[
vx

vb

]
(2.5)

yk =
[
1 1

]
xk + w (2.6)

Because the target is stationary f(p, u) = C → ∂f(p,u)
∂p = 0. This means that there is no

input u = 0.

2.2 Kalman Filter

The Kalman Filter (KF) is a true and tested estimation algorithm that finds estimates

which minimize the state quadratic error from measurements corrupted by noise [4].

It can be used for smoothing, filtering out noise, or predicting, both for discrete and

continous signals.

KF can be designed to work on continous or discreete signals. In this thesis filters for a

discreete system has been concidered.

The algorithm consist of two main steps. In the prediction step the previous estimate

and a model of the system dynamics is used to predict what the estimated variables are

that iteration.

Next, in the Update step, the prediction is compared to the incomming measurement.

The estimate is then updated using the difference modified by a gain K. The KF gain

K is determined by the uncertainty of the measurement and the filter model.
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KF was developed to work with linear systems. But HiPAP measure the position of

some vessel, which dynamics are non-linear. Several modifications to KF has been made

to accomidate non-linear systems. The most commonly used is the Extended Kalman

Filter (EKF). EKF linerizes the dynamic equations around the current state estimates.

KF is optimal in the sense that it minimize the mean square error of the produced

estimates. It is optimal when the system is modeled perfectly, the noise is uncorrelated,

and the covariance of the noise is known. Since the linearization is a simplification, the

EKF will be sub-optimal.

2.2.1 Equations

EKF has some assumtions.

• Initial values P0, x̂0 are known.

• Measurement R and process noise Q covariances are known.

• The system dynamics can be linearlized.

• The noises are uncorrelated with each other and in time.

EKF has the following procedure.

Linerization

Calculate the state transition φk and output Hk matrix by taking the Jakobian of the

model equations (2.3), (2.4).

Since the position of a stationary target is measured the matrices are quite simple and

time invariant.

φ =
∂ẋ

∂x

∣∣∣∣
x=x̂k−1

=

[
1 0

0 1− 1
T ∆t

]
(2.7)

H =
∂C

∂x

∣∣∣∣
x=x̂k−1

=
[
1 1

]
(2.8)
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Prediction

Predict the state in this step.

x̂−k = φx̂k−1 (2.9)

Predict the state covariance.

P−k = φPk−1φ
T +Q (2.10)

Update

Calculate the innovation from the measurement and the state prediction.

νk = yk −Hx̂−k (2.11)

Calculate the innovation covariance.

Cν,k = HP−k H
T +R (2.12)

Calculate the KF gain.

Kk = P−k H
TC−1

ν,k (2.13)

Calculate the estimate from the predicted states and innovation.

x̂k = x̂−k +Kkνk (2.14)

Update the estimate covariance.

Pk = (I −KkH)P−k (2.15)

As usual, Q and R are the covariance matrices for process and measurement noise

respectivly.

2.2.2 Consistency

EKF is designed to work for given noise characteristics. If it changes the initial assuptions

are no longer valid, and the filter does not neccessarily produce good state estimates.

The filter has then become inconsistent.
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Figure 2.1: χ2 PDF for 5 DOF. Significance region 5% − 95% for different DOFs
projected onto the χ2(5) distribution.

A consistent filter is able to produce results with the same accuracy over time. There

are several measures of consistency, but only two can be used on-line. One which is of

particular interest of the thesis is the Time-Averaged Normalized Innovation Squared

(TANIS).

The measurement innovation ν is the differene between the expected and the real mea-

surement. Its theoretical covariance Cν is defined as

Cν = E[νkν
T
k ] = HP−k H

T +R (2.16)

If ν is white with a zero-mean, νTC−1
ν ν has a χ2 distribution with DOF equal to the

number of states in the system. As the sum of χ2 distributed variables also is χ2

distributed, the following test variable can be used for consistency testing.

The TANIS[5] test statistic is defined as

ξ(ν, S) =
1

N
ΣνTi C

−1
ν νi,ν = [ν1ν2 . . . νN ] (2.17)

Which has a χ2 distribution with DOF = number of states * sample size N. This is a

Goodness-to-Fit test which indicates how well the filter parameters fit the statistic ν.

The test sees if the test statistic ξ(ν, S) lies within a confidence region determined by

upper and lower probabilites given by the χ2 PDF. The condidence region shrinks for

larger DOF, as is shown in fig. 2.1. In this work the confidence region has limits set at

5% and 95%. Meaning that if ξ(ν, S) lies outside the confidence region, there is a 90%

chance the filter parameters are wrong.
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2.3 Cost functions

As a measure of filter performance various cost functions can be employed. Most of

these cost functions are derived from probability density functions (PDF) related to the

KF. [6]

By taking the negative log of a PDF, and multiply it by a constant if neccesary creates

a cost function which has a lower cost for higher probabilities.

2.3.1 Absolute State Error

The most simplistic cost function is the Absolute State Error. It looks only on how

far the estimates are from the true states. As the covariance is not considered, this is

usually not a good measure for a filter.

Jabs =
N∑
i=1

| xi − x̂i | (2.18)

2.3.2 State Estimation Error Squared

If the true value of the states are known, the PDF for the state estimated error can

also be known. The State Estimation Error Squared shows the likelihood for the state

estimate given measurements and tuning variables.

ρ(x|z, θ) =
1√
2πP

e−(x−x̂)TP−1(x−x̂) (2.19)

Which result in the cost function

JP =

N∑
i=1

[logn(2πPi) + (xi − x̂i)P−1
i (xi − x̂i)T ] (2.20)

The first term keep P down, while the second makes it fit to the state estimate error.
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2.3.3 Measurement Prediction Error Squared (Innovation Squared)

Starting from the probability for a measurement, given estimated states and tuning

parameters. Assuming ν has a Gaussian distribution, the PDF is

ρ(z|x̂, θ) =
1√

2πCν
e−νC

−1
ν νT (2.21)

Where θ is the filters tuning variables,Cν and ν are as defined by eq. (2.11) and eq.

(2.13). Gives the cost function

JS =

N∑
i=1

[log(2πCν,i) + νTi C
−1
ν,i νi] (2.22)

Just as for JP , the first term keeps Cν from getting to large, while the second makes it

large enought to fit ν.

2.3.4 Innovation Consistency

A cost function can be derived from the χ2 PDF used in consistency testing (TANIS).

χ2(ξ(ν, Cν), k) =
1

2
k
2 Γ(k2 )

ξ(ν, Cν)
k
2
−1e−

ξ(ν,Cν )
2 (2.23)

Where ξ(ν, Cν) is the test value, k is degrees of freedom (DOF), and Γ(k2 ) is the Gamma

function.

Taking the negative log and removing constant terms results in the cost function

Jχ
2

=

N∑
i=1

[ξ(νi, Cν,i)− (k − 2)log(ξ(νi, Cν,i)) (2.24)

2.4 Estimation

Measurements are often corrupted by noise, meaning that they cannot be used directly,

and some scheme to ’see through’ the noise is needed. This is the aim of estimation.

There are many methods depending on what is to be estimated, and certain requrements

as on- or off-line use, specific computational restrictions, non-linearities, etc. In this

thesis the aim is to get better position estimates under changing noise conditions. EKF

already produce the position estimate, but as it assumes the noise covariances are known,
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which does not hold if noise covariances change. The problem is then reduced to getting

the correct noise covariances.

While covariance estimation is a difficult problem, it is also luckily well researched.

Which has given rise to several estimation strategies. Most of these are used off-line

iteration over all available data, and most cater to linear systems.

2.4.1 Covariance mathcing

One main types of covariance estimation uses covariance matching. The main idea is

tuning the filter to match an observed covariance.

An unbiased approximation of covariance C is given as

Ĉx =
1

N − 1

N∑
i=0

(xi − x̄)(xi − x̄)T (2.25)

Assuming zero mean, an biased estimate can be used in stead. The approximation then

becomes

Ĉx =
1

N

N∑
i=0

xix
T
i (2.26)

Measurement Noise Covariance

The measurement innovation ν (2.11) has the expected variance.

ν = z −Hx̂− (2.27)

= H(x− x̂−) + v (2.28)

Cν = HP−k H
T +R (2.29)

Solving wrt. R, and using the calculated Ĉν , R can be estimated by

R̂ = Ĉν −HP−k H
T (2.30)

Process Noise Covariance

Similarly looking at the estimate innovation q = x̂− x̂−
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q = x̂k − x̂−k + xk − xk (2.31)

= −(xk − x̂k) + (xk − x̂−) (2.32)

= −(xk − x̂k) + φk(xk−1 − x̂k−1) + wk (2.33)

Cq = Cov[q] = −Pk + φkPk−1φ
T
k +Qk (2.34)

Which shows that Q can be estimated as

Q̂k = Ĉq − (φkPφ
T
k − Pk) (2.35)

Some authors has used qk = Kkνkν
T
k K

T
k , which is equivilent to q as defined above.

2.4.2 Maximum Likelihood Estimation

Maximum likelihood methods seek to find the most probable states and parameters. As

it is widely used, there are several different implementations. [7] They are garanteed to

produce the most likely estimate available from the information used. However they are

computationally expensive, and are mostly used off-line, iterating over the data several

times. It is possible to use them on-line they are not as accurate then, especially for

system with quickly changing characteristics.

2.4.3 Joint Estimation

If the covariances are unknown, the problem is extended to estimate them as well as the

postition from the available information.

The most intuitive approach is finding x̂, θ̂ that maximises the likelihood

ρ(x, θ|z) (2.36)

The PDF can be further expanded using Bayes rule to

maxx,θ(ρ(x, θ|z)) = max(
ρ(z|x, θ)ρ(x, θ)

ρ(z)
) (2.37)

= max(ρ(z|x, θ)ρ(x, θ)) (2.38)

= max(ρ(z|x, θ)ρ(x|θ)ρ(θ)) (2.39)

= max(ρ(z|x, θ)ρ(x|θ)) (2.40)
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In short, Joint Maximisation (JM) methods seeks after the tuning parameters θ that

maximises the likelihood for both the measured signal and the state estimates.

2.4.4 Marginal Estimation

Estimating the variances and states from the same PDF can be difficult. JM have to

search in several dimentions using only one measure.

The PDF can be extended however

ρ(x, θ|z) = ρ(x|θ, z)ρ(θ|z) (2.41)

To maximising the two terms in the right will also maximise the term on the left. These

methods are called Marginal Likelihood Estimation in litterature.

Both ρ(x|θ, z) and ρ(θ|z) needs to be maximised to garantee optimality. Given an

estimate of the variances, a KF will maximise the former PDF.

The latter PDF can be further extended using Bayes rule

ρ(θ|z) =
ρ(z|θ)ρ(θ)

ρ(z)
(2.42)

As there is no information about θ, ρ(θ) cannot be determinined. Therefore only ρ(z|θ)
needs to be maximised.

In short Marginal Likelihood Estimation seeks to find tuning parameters that gives the

highest likelihood for the measured signal. Then it finds the most likely state values

given measurements and θ.

2.4.5 Optimisation methods

Bayesian methods seek to maximise the likelihood that the produced estimate is correct,

using the given measurements. [6]

To this end cost functions are used, derived from PDFs based on what data is available

and which parameters are to be estimated. This will be dealt with in the next section.

To get x̂k+1 closer to x than x̂k using zk+1, an update law is needed. As cost functions

J are evaluated, this can be viewed as an optimization problem.[8]

x̂k+1 = minxJ (2.43)
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This needs to be done iterativly. A common and effective method is gradient decent.

Generally it has the form

ˆxk+1 = x̂k −KJ
ε

εx
J (2.44)

Where KJ is a gain. Ideally,

ˆxk+1 − x̂k → 0, x̂→ x, ask → inf (2.45)

It is however difficult to set KJ . If set to low convergance might be too slow, set to high

x̂ might occilate around the optimum.

Newton-Ralphson Gain

The states can be described as

x = x̂+ ∆ (2.46)

If J(x) is expanded it will result in

J(x) = J(x̂) +
δ2

δ2x
J(x̂) +

δ2

δ2x
J(x̂)∆ (2.47)

The higher order terms are assumed small enough to be ignored. At optimum the cost

for the true states will equal the cost of the estimated.

0 =
δ2

δ2x
J(x̂) +

δ2

δ2x
J(x̂)∆ (2.48)

Solving for ∆ gives

∆k+1 = (
δ2

δ2x
J(x̂k+1))−1 δ

2

δ2x
J(x̂k+1) (2.49)

ˆxk + 1 = x̂k + ∆k+1 (2.50)

The gain can be defined. [7]
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KJ = (
δ2

δ2x
J(x̂k+1))−1 (2.51)

2.5 Sources of error

2.5.1 Observability

Defining the error between the states and the estimatesx̃ = x − x̂, the system can be

rewritten as

x̃k = φx̃k−1 + v (2.52)

νk = Hx̃k + w (2.53)

Basic control theory states that the oberservation matrix needs to have full rank for Q

to be fully oberservable.

Definition 1 : The system (2.5) is observable if

O =


H

Hφ

. . .Hφn−1

 (2.54)

has full rank. Systems where φ change might only be observable sometimes. In the the

model used in this thesis, Q is observable for the assumptions made.

This means that the error created by the process noise can be determined from the

measurements themselves. Which indicate that the process nosise covariance can itself

be estimated.

2.5.2 Estimability

The estimability property say if the states of a system in state-space form, can be

estimated.

The formal criteria for estimability is that the aposteriori estimate covariance Pk is lower

than the apriori estimate coariance P−k [9].

Definition 2 : The system (2.5) is estimable if

Pk < P−k , for ∀k ≥ n, P−k−1, Pk ∈ R
n (2.55)
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iff

gTPKg < gTP−k g, for ∀k ≥ n, g 6= 0 ∈ Rn (2.56)

As the HiPAP model already is in use, it is supposed that the system is estimable. In

this thesis wether or not an adaptive filter using covariance matching remains estimable.

If an estimate of the covariances R and or Q is used, the states must continue to be

estimable.

Inserting equations from the Kalman Filter to expand (2.55) results in

(I −KkH)P−k < P−k (2.57)

(I − P−k H
TC−1

ν H) < I (2.58)

(I − P−k H
T (HP−k H

T +R)−1H) < I (2.59)

(2.60)

For clarity a one dimentional system is considered with H = [1]

I −KkH = I −
P−k

P−k +R
(2.61)

Looking first at the edge case where R = 0. When

R̂→ 0 (2.62)

Kk → I (2.63)

Pk → 0 (2.64)

P−k = Q (2.65)

Here the estimable properiy still hold, although it is assumed that all the errors result

from the proccess noise.
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If R should be negative, it is seen that

R̂ < 0→
P−k

P−k +R
> I (2.66)

→ Pk < 0 (2.67)

→ P−k+1 < 0 (2.68)

→ I −Kk+1H < 0 (2.69)

→ 0 < Pk ≮ P−k+1 (2.70)

(2.71)

Meaning the difinition of estimability (2.55) no longer holds.

Here it has been assumed that Q is not so big as to make P−k+1 positive. If that is the

case, P and P− will become more negative with each iteration, until the definition no

longer holds.

If Q̂ = 0, P will converge towards zero and P− converge to Q. The kalman filter gain

will go towards 1 and the measurements relied upon intierly.

Should Q̂ be nagative, P will become negative, and a similar inconsistency to (2.62) will

occur.

As covariances are positive semidifinite by definition this is hardly suprising, but this

shows that the estimated covariances must be positive semidefinite.

Further remarks can be found in [9].

2.5.3 Concurrent R and Q estimation

R and Q cannot be estimated in the same step. As it has been mentioned in [10], they

have to be estimated in alternate steps. This is because the effects of the change in R

is not completly seen before the next step. This is clear from the equations used in Q

estimation.

x̂−k (2.72)

= φ(x−k−1 +Kk−1νk−1) (2.73)

= φ(x−k−1 + (P−k−1H
T (HP−k−1H + R̂k−1)νk−1) (2.74)

x̂k = x−k + (P−k H
T (HP−k H + R̂k)νk (2.75)



Chapter 2 Theory 17

Information about Q comes from the measurements, but this assumes R is consistent.

When R̂k 6= R̂k−1, the the Q estimate will be corrputed by the change in R̂.

Do avoid this, R and Q are estimated on alternate steps.

Since both estimates are based on the measurements in some way, there is no guarantee

that they will converge to the correct value.

2.5.4 Effect of badly tuned filter

These methods assumes the other filter parameters are known and correct. If they are

not, a constant error is produced in the estimate. For instance, if the set Q is incorrect

while estimating R.

zk = Hxk + vk (2.76)

= Hφxk−1 +Hwk + vk (2.77)

This shows that Q enters into the estimation of R.

Cν = HP−k−1H
T +R = HφP−k−1φ

THT +HQHT +R (2.78)

This is well and good should Q be known. If unknown this cause some problems however.

If the set Q has an error, it can be described as Q = QT + εQ. Then

Cν = HφPk−1φ
THT +HQtrueH

T +HεQH
T +R (2.79)

Defining R̂e as the R estimate with a wrongly set Q, leads to

R̂e = Ĉν −HφPk−1φ
THT +HQtrueH

T +HεQH
T (2.80)

= R̂+HεQH
T (2.81)

It might not appear to have much of an impact, but it will affect the position error

estimate. Considering that methods using JS matches a quantity given by P, Q, and

R, to an observed one, and that a good position estimate depends on a ratio between R

and Q,
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All the covariance matching methods described will have this problem, where the es-

timated R contains an error from Q, and have no good way reduce it without also

estimating Q.

2.5.5 R/Q ratio impact on positional error

When most students first fiddle with KFs they are told that the ratio between R and Q

is more important than getting them correct. This is a simplification, but true if only

the state error is concidered.

Using the KF equations gives the state estimate error one step backwards as

|xk − x̂k| = |xk − (x−k +Kkνk)| (2.82)

= |xk − (x−k + P−k H
TS−1νk)| (2.83)

= |xk − (x−k + (φPk−1φ
T +Q)HT (HφPk−1φ

THT +HQHT +R)−1νk)| (2.84)

= | xk − (x−k + (φPk−1φ
T +QT + εQ)HT (2.85)

(HφPk−1φ
THT +H(QT + εQ)HT +RT + εR)−1νk) | (2.86)

Here Q = QT + εQ and R = RT + εR, meaning that the filters set R Q are the sum of

the true value and some error. If the filter has the correct R, εR = 0. Looking at the

KF first steps the state estimate error is

|x1 − (x−1 +
(φP0φ

T +QT + εQ,1)HT

HφP0φTHT +H(QT + εQ,1)HT +RT + εR,1
ν1)| (2.87)

Collecting the terms containing R, Q, x̂0, and P0 into x̃−, NRQ, and DRQ result in.

|x̃− −
NRQ + εQ,1H

T

DRQ +HεQ,1HT + εR,1
ν1| (2.88)

Refering to the EKF equations (2.9)-(2.15), it can be shown that the terms NRQ and

DRQ become less important for later steps. Which means that the absolute state error

can be assumed to be defined solely by the ratio between Q and R. The full equations

are lengthy and complex, and because of their tangential relevance, has been left out.



CHAPTER 3

ALGORITHMS

3.1 Adaptive Limited Memory Filter (ALMF)

The ALMF algorithm is a covariance matching scheme that uses the average of the last

N steps to produce the estimates. [11]

As outlined in subsection 2.4.1, ALMF calculate a covariance from measurements and

subtract the apropriate filter parameters to produce an estimate.

Rather than recalculating the mean each iteration, it updates according to the difference

between the incomming and outgoing values. This is attractive because it makes the

algorithm computationally light.

Algorithm

It does not assume zero-mean for the innovations, so it uses an unbiased innovation

covariance estimate.

ĈR =
1

N − 1

N∑
i=0

[(νk−i − ν̄)(νk−i − ν̄)T (3.1)

The following procedure is for estimating R. Estimating Q is done the same way, but

with the apropriate variables.

19
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It is initialised with a full LIFO stacks to handle the innovations and HP−HT , mean

innovation ν0, mean innovation covariance Ĉ0, and starting estimate R̂0. When a new

measurement is recieved, νk and HP−k H
T is pushed into their respective stacks. νk−N

and HP−k−NH
T is popped out.

The innovation mean is then updated.

ν̄k = ν̄k−1 +
1

N
(νk − νk−N ) (3.2)

The estimate is then updated

R̂k = R̂k−1 +
1

N − 1
[(νk − ν̄k)2 − (νk−N − ν̄k)2 (3.3)

+
1

N
(νk − νk−N )2 − N − 1

N
(HP−k H

T −HP−k−NH
T ) (3.4)

It is clear that this is equal to

R̂k =
1

N − 1

N∑
i=0

[(νk−i − ν̄)(νk−i − ν̄)T ]− 1

N

N∑
i=0

[HPiH
T ] (3.5)

= Ĉν −HP̄−HT (3.6)
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Algorithm 3.1: ALMF algorithm for estimating R

Parameters: ν: Innovation stack.

HP−HT : Filter parameter stack.

N : Size of stacks.

Input: νk: Innovation.

HP−k H
T : Filter parameters.

Output: R̂k: Estimate

1 νk → ν Add latest innovation to stack

2 HP−k H
T →HP−HT Add latest filter parameters to stack

3 if k > N then

4 νk−N ← ν Take out oldest innovation from stack

5 HP−k−NH
T ←HP−HT Take out oldest filter parameters from stack

6 Update ν̄ using eq. (3.2)

7 Produce R̂k from eq. (3.3)

8 else if k = N then

9 Calculate ν̄0 from stack ν

10 Calculate R̂0 with eq. (3.5)

11 else

12 R̂k = R̂0

13 end

Design Parameters

ALMF has three design parameters, the initial estimate R̂0, initial mean innovation ν̄0,

initial state estimate covariance P̄−0 , and the size N of the stacks keeping the inputs.

ν̄0 and P̄−0 needs to be set close to their correct value, as not doing so result in a

systematic error. When implementing the ALMF algorithm, they are set to the mean

of the stacks when first filled. This ensure that they adhere to the overservations.

R̂0 needs to be close to the observed value to avoid constant error. It has been set by

eq. 3.5 when the stack when first filled, and ν̄0 and P̄−0 have been calculated.

The stack or sample size N determine the ability of the estimate to react to change, and

impact the estimates variance.

With smaller N, the estimate reacts quicker, but the its variance will be higher as the

noise has a stronger impact. This can be seen in fig. 3.1.
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Figure 3.1: Left: Mean ALMF R estimate over 100 simulations for varying sample
sizes N. The correct R goes from 10 to 1 at step 250.

Right: R estimate error variance var(Rk − R̂k) for different sample sizes N. R is kept
constant at 1.

Difficulties

There are some difficulties.

ALMF is sensitive to initial values. Since the difference between incomming and outgoing

values is used, should the initial values be wrong, a constant error is introduced.

The implementation used lessened this problem by filling the stacks, and starting with

the mean value of the stacks.

Furthermore, there is not a guarantee that R̂ will be positive definite. It has been

recommend resetting the estimate by taking the absolute value of the diagonal of the

estimate each iteration [11]. This will cause different problems in turn.

The R estimate will fluctuate around the percieved correct value. So if the target R is

percieved low it is quite likely R̂k will be negative definite for some k. This will happen

more often when Q is set too high, as it lowers the estimated R without lowering the

estimation variance. This means that the estimate will be closer to zero, while it fluctuate

more. If Q is set correct, and R is close to zero, this will happen less frequently as the

estimation variance is related to the size of R.

Each time R̂ is not positive definite R̂k = |R̂−k |.

Should R̂−k be negative, an error will be introduced to mean estimate.

εR,k = R̂k − R̂−k . (3.7)
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Since the algorithm only uses the difference of the first and last values in the stack, it

has no way to compensate for this error in future steps. This causes the algorithm to

be inconsistent in some cases.

Since ALMF is included for comparison no attempt has been made to remedy this

problem.

Some solutions readily appear, such as resetting the filter, setting a minimum value and

recaulculating the mean values regularly. Or only returning the absolute value, while

keeping the negative internaly for the next iteration.

3.2 Sage-Husa (SH)

The Sage-Husa algorithm [12] is also a covariance matching scheme. Mainly used for

estimating covariances of IMUs during initialization, it assumes static conditions [10]. It

is included to compare to ALMF, and because it has desirable characteristics. Namely

quick initial convergance, high accuracy once settled, and that it does not have the same

instability problems.

Algorithm

SH averages using a forgetting factor which weights the input and the previous estimate.

It require less memory than ALMF, while also beeing slightly less computationally in-

tensive.

The forgetting factor b define the weight d which is given to the input each iteration. d

decrease each iteration, converging on a value determined from b.

d =
1− b
1− bi

(3.8)

i being the step number.

The estimates are produced from the incomming innovation νk, the current filter pa-

rameters HP−k H
T , and the previous estimate R̂k−1.

R̂k = (1− d)R̂k + d(νkν
T
k −HP−k H

T ) (3.9)
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Algorithm 3.2: Sage-Husa algorithm for estimating R

Parameters: i (Step counter)
b (Forgetting factor)

Input: νk (Innovation)
HP−k H

T (Filter parameter)

Output: R̂k (Estimate)
1 d = (1− b)/(1− bi)
2 R̂k = (1− d)R̂k−1 + d(νkν

T
k −HP

−
k H

T )
3 Increment step counter i.

Design Parameters

The only design parameter is the forgetting factor b. It determine the weight that is

given the input, and therefore will affect the ability to estimate a moving target, as well

as the estimates variance. This is shown in fig. 3.2

b is reccomended to be set between 0.95 and 0.99, but must be between 0 and 1. It

has been noted that the forgetting factor might be chosen dynamicly [10]. To reduce

complexity b has been left constant at 0.99.
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Figure 3.2: Sage-Husa estimate step response (left), and estimate variance under
static conditions (right). R is estimated with different b ∈ [.95, .99]. The values shown

are the average of a Monte Carlo simulation with 500 runs.
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Difficulties

It is not given SH produce a good estimate initially, meaning the estimated covariance

might not be positive definite. To subvert this the diagonal elements can be reset to their

absolute value. Unlike in ALMF this does not cause a systematic error, as the estimate

is not derived from the change in measurements, but the measurment themselves.

SH not handle quickly changing targets well. Apart from slow convergance, a dramatic

change can introduce a error in the estimate. Because of the forgetting factor gives

exponencially lower weight to previous input, they are never discarded. Meaning that

after a change, the older estimates are still used which creates an error.

To circumvent, the user might reset the filter, thereby removing the error.

3.3 TANIS estimator (TANIS)

The TANIS estimator is a covariance matching method, that is based on filter consistency

rather than mathcing directly.

Algorithm

It uses hypothesis testing to detect filter inconsistency compared to observed measure-

ments. Two simple hypothesis are tested.

H0: ξ(ν, Cν,k) < χ2
min → Filter parameters are too high

H1: ξ(ν, Cν,k) > χ2
max → Filter parameters are too low

At first glance this might seem counterintuitive, but remembering that ξ(ν) (2.17) uses

the inverse of the filter parameters should clear misgivings.

Assuming that Q is set correctly, only R can be changed to modify the filter. (See eq.

(2.16)). To this end a parameter α is introduced to scale R to an appropriate size.

R̂k = αR0 (3.10)

R0 is the filters initial R.
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If H1 holds α needs to be increased to remedy the inconsistency. Similarly if H0 holds

α needs to be decreased. The two hypothesis are mutually exclucive. Should both fail,

the filter is deemed consistent, and α remain as is.

How α changes is of importance. If it the estimate is continuous it is suseptible to the

high estimate variance vs. high accuracy trade-off. As an estimate that follows change

quickly while keeping variance low, is wanted more than accuracy, α is multiplied and

divided by a constant when neccesary.

This will reduce the accuracy of the estimate. It was felt that addition and subtraction

were too slow for a fixed step length, and complicating the matter unneccecarily if step

length were to be chosen dynamicly.

Algorithm 3.3: TANIS algorithm for estimating R

Input: νk, HP
−
k H

T

Output: R̂k
1 νk → ν Add latest innovation to stack
2 νk−N ← ν Remove oldest innovation from stack
3 Get χ2

k from eq.(2.17)
4 if H0 then
5 αk = 1

2αk−1;
6 else if H1 then
7 αk = 2αk−1;
8 else
9 αk = αk−1;

10 end

11 R̂k = αkR0

Design Parameters

As α has the form α = αn0 , the choise of α0 determine the amount the estimate change

when deemed neccecary. This means that the estimate R̂ closer match the target for

lower values of α0. However, as the estimate is changed by in- or decrementing n, a

lower value for α0 will lessen the estimates ability to track a changing target. If set too

high on the other hand, will cause bad estimates. α0 = 2 was chosen, and has proven

sufficient.

Another tuning parameter is sample size. As the test value ξ is the average NIS of N

samples, any change will not be detected instantly. As with ALMF, larger N causes the

estimate to change slower, while reducing the probability of false positives. Which in

turn reduce the estimates variance.
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A signifigance region needs to be chosen for the consistency test. It determine how

unlikely the filter parameters, given the innovations, have to be for the hypothesis to

pass. A smaller significance region causes fewer false positives, but the estimates will

converge slower.

Problems

Defining a space that contains the target R as ΩR = [0, inf]. The estimator will only

give estimates that are in the space ΩR̂ = [(αnR0), n ∈ [nmin, nmax]]. It is clear that

ΩR is larger than ΩR̂. This means the TANIS estimator searches a partitioned space,

setteling at the partition which is closest to the target, rather than at the target itself.

The underlying assumption is that the exact value is not needed, just that the estimate

is closer to the target.

3.4 Ratio Balancer (β-MLE)

As stated in subsection 2.4.1 and later shown in section 5.1.3, R̂ will be wrong if Q is not

set correctly. This will make the ratio between Q and R wrong inturn, possibly worsen

the state estimates error (see subsec. 2.5.5).

The following method seeks to rebalance this ratio by a sequential MLE. This means

that this method sole use is finding a fitting Q while R is estimated.

Alogrithm

The filters Q must be estimated to ensure that it is closer to the true Q to get a better

etstimate.

To this end a variable β is introduced, producing the estimated Q.

Q̂k = Q0 + βI (3.11)

The estimation methods hitertoo dicussed produce the estimate R̂ by matching the filter

parameters S with observed innovation covariance Ĉν . Since S is given by R, P , and Q,

β is subtracted from R to maintain the size of S resulting from the R estimation done.
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Altogether β is introduced thusly.

Q̂k = Q0 + βkI (3.12)

R̂∗k = R̂k − βHHT (3.13)

(3.14)

Defining C∗ν as Cν using R̂∗k and Q̂k in (2.13).

C∗ν,k = HP−k H
T + R̂∗k (3.15)

= H(φPk−1φ
T + Q̂k)H

T + R̂∗k (3.16)

= HφPk−1φ
THT +HQ̂kH

T + R̂∗k (3.17)

= HφPk−1φ
THT +H(Q0 + βkI)HT + R̂k − βHHT (3.18)

= HφPk−1φ
THT +HQ0H

T +HβkIH
T + R̂k − βHHT (3.19)

= Cν,k +HβkIH
T − βHHT (3.20)

= Cν,k (3.21)

It is seen that the introduction of β does not change the innovation covariance used by

the filter in the same step. Still, as shown later (in fig. 4.6), it is still possible to estimate

Q from JS (2.22).

To get β to appear the JS equations (2.22) needs to be taken one step further back.

Which gives

ν∗k = zk −Hφ2x̂k−2 −Hφ(φPk−2φ
T + Q̂)HTC−1

k−1(zk−1 − φx̂k−2) (3.22)

and

C∗ν,k = HP−k H
T + R̂k (3.23)

= Hφ(I − (φPk−2 + Q̂)HTC−1
k−1H)(φPk−2φ

T + Q̂)φTHT +HQ0H
T + R̂ (3.24)

Figure 3.3 show the JS (first), innovation (second), innovation covariance (third), and

esimate position error (forth) for a filter using the TANIS estimator and varying values

of β. It is clear that JS has a minimum for the theoretical value of β = 0



Chapter 3 Algorithms 29

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
3.6

3.8

4

ν S ν
T

β

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
0

2

4
x 10

−3 ν

β

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
2

2.5

3
S

β

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
0.8

1

1.2
|ref − est| position

β

Figure 3.3: Cost functions ofr different values of β

Therefore it is viable to use JS to estimate β. To get an idea on how well β can be

estimated, the Cramer-Rao bound is shown in fig. 3.4. Cramer-Rao lower bound is the

lowest value the state estimate variance a filter can achieve.
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Figure 3.4: Cramer-Rao lower bound for different values of β

It has been noted that MLE can be done sequentially by viewing ∆ (2.47) as a noisy

input[6] . Where ∆ is calculated from the data in each step rather than from all available

measurements which MLE normally does.

As finding β now is a value that minimize the cost JS defined as

JS = ν∗k(C∗ν,k)
−1ν∗k

T (3.25)
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As ∆ will itself be corrupted by noise, and therefore some filtering method need to be

applied. In this implementation SH was used. While some more refined method could

be investigated, it was not as it soon becase appearant that the computational time and

resources needed were too much for this method to be viable.

Algorithm 3.4: ALMF algorithm for estimating R

Parameters: i (Step counter)

b (Forgetting factor)

Input: νk, νk−1 (Innovations)

H,Pk−2, φ, C
−1
k−1 (Filter parameter)

x̂k−2 (Previous Estimate)

Output: βk (Estimate)

1 d = (1− b)/(1− bi)
2 Calculate the gradient G of JS (3.25)

3 Calculate the Hessian H of JS (3.25)

4 βk = (1− d)βk−1 + d(H−1G)

Design Parameters

The design choise to be made here is how to smooth the incomming input to β. And

the design parameters will therefore differ. Here SH has been chosen.

Difficulties

Eventhough this is a suboptimal sequential MLE method evaluating only the last two

steps, meaning that this is not garantee to give the most likely estimate given previ-

ous data, it still rely on calculating the gradient and hessian. This is computationally

heavy, to such an extent it might prove unsuited. The speed will greatly depend on the

implementation, when implementing this method the Matlab functions gradient() and

hessian() were used.

3.5 TANIS / Sage-Husa Hybrid Estimator (hybrid)

The TANIS/Sage-Husa hybrid estimator seeks to combine the rapid convergance of the

TANIS estimator with the accuracy of Sage-Husa.
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Algorithm

To combine the estimate R̂ is defined as

R̂ = αkR0 + ∆k (3.26)

αk is the same as described in subsection 3.3. The step length α0 has again been set to

2.

SH has been modified to produce the difference between αkR0 and the observed R.

∆k = (1− d)∆k−1 + d(νkν
T
k −HP−k H − αkR0) (3.27)

d is the same as in subsection 3.2, with b = .99.

Unlike the TANIS estimator the hybrid does start before the stack of innovations ν is

filled. Before the stack is full, the estimate is given by SH and the TANIS hypothesis

testing is halted.

Each iteration it adds the latest innovation νk to the sample stack, and removing the

oldest innovation νk−N . A consistency test then determine if the current α and filter

parameter fit. The same hypothesis as the TANIS estimator is used. (See sec. 3.3.)

If neither hypothesis pass, SH is used to update ∆.

H′ orH∞ passing indcate that the filter is inconsistent and the estimate must be changed.

α is then changed as described in section 3.3. And ∆R and k is reset to 0 and 15

respectivly.
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Algorithm 3.5: TANIS/Sage-Husa Hybrid algorithm for estimating R

Data: νk, Pk, H
Result: R̂
1 νk → ν Add latest innovation to stack
2 if H0 then
3 αk = 1

2αk−1;
4 ∆k = 0;
5 i = 15;

6 else if H1 then
7 αk = 2αk−1;
8 ∆k = 0;
9 i = 15;

10 else
11 αk = αk−1;

12 d = 1−b
1−bi ;

13 ∆k = (1− d)∆k−1 + d(νkν
T
k −HP

−
k H

T − αkR0);
14 Increment i;

15 end

16 R̂k = αkR0 + ∆Rk

Design Parameters

There is a number of design parameters. Like the TANIS estimator is has a significance

level, an innovation stack of size N, and a step size α0. The dicription in sec. 3.3 is valid

for the hybrid as well.

From SH a forgetting factor b is used.

Since ∆ and i is reset whenever a hypothesis pass, it needs to be reset to a value i0.

i is not reset to 1 for two reasons. αR0 is an estimate of R in itself, indicating that

R ∈ [2n−1R0, 2
n+1R0]. This mean that when R̂ is changed by the consistency test, it

is closer to the target than for any other α. Therefore if k = 0 that information is

discarded. SH also has a higher variance during the first steps, as shown in fig. 3.5.

This might push the estimate past the next α step. Resetting k to 15 were found to be

a good value in this case.
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Figure 3.5: First R SH estimates for different starting values of k.

Difficulties

The overestimation problem TANIS has will be circumvented by the addition of SH.

While the slow convergance and possible error in ∆ is no longer a problem, as the SH

part of the hybrid is reset each time the consistency test fail.

As ∆ is added to αR0, the estimate cannot be garanteed positive definite. To make sure

the estimate is set to a lower limit of 0.001



CHAPTER 4

PRELIMINARY SIMULATIONS

Following are plots of different cost functiones, as described in section 2.3. These show

the average cost for differently set tuning parameters. The costs were collected from

a single measurement signal of 5000 steps generated from the HiPAP approximation

described in section 2.1. Only one dimention was considered, meaning that R ∈ R1 and

Q ∈ R2. The Q matrix has the form

Q0 =

[
Q(1, 1) 0

0 Q(2, 2)

]
(4.1)

Q(1, 1) = Q(2, 2) (4.2)

Since the average costs have been calculated from a finite number of samples, it will not

neccecarily have to correct minimum, but will nonetheless give a good indication. The

lower plots show an average of a 10 sample section of the signal. This shows the amount

of information gained in a few steps, which indicate possibilities for estimating quickly.

It also shows how the impact of noise, as the minimum does not fall at the theoretical

optimum.

A log10-scale has been used for both axis, and give the value of each element in the

matrices.

34
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4.1 EKF performance

As getting good estimates are of the first importance, the ability of the filter needs to

be shown.
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Figure 4.1: Colourmap showing average absolute state estimation error (Jabs(2.18))
for different tuning parameters. Lower plot show average of 10 steps.

Looking only at the estimate error Jabs, it is clear from fig. 4.1 that the R/Q ratio

determine the accuracy of the estimates.

Jabs does not take the state estimate variance into consideration. Since a good filter

produces estimates that are ’trustworthy’, the covariance P also needs to be considered.

JP is therefore a better measure on how well a filter performes.

There are several things that can be seen in fig. 4.2.

It is clear that a well tuned filter performs better. But there is a region where the

difference in performance is negligible. In fig. 4.2, as well as the other colourmaps,

this is the darkest blue area. This minimum area is where the shows where covariance

estimates aim for, and in the case of JP , which filter parameters give the best result.
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In fig. 4.2 the minimum area is slightly higher than the theoretical optimum for both R

and Q. As mentioned previously, this is because the cost has not been calculated from

an infinite number of samples.
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Figure 4.2: Colourmap showing average state estimation error (JP (2.20)) for different
tuning parameters. Lower plot show average of 10 steps.

The shape and size of JP minimum region shows which parameter is more important

to improve performance. It can be seen that the filter is slightly more sensitive to Q,

in that the minimum region is smaller along the Y-axis. This means that R can be set

less accuratly than Q, while still resulting in a close to optimal filter. It should be noted

that this difference is slight.

The cost sharply increases for lower values of R and Q. Meaning that it is better that

they be set too high, than too low. If set to half below optimum has the same cost as a

100 times too high.

The lower plot of fig. 4.2 shows the same characteristics as the upper. The minimum

region is more elongated long the diagonal, again showing the importance of a correct

R/Q ratio. The contours are less defined, but that just shows that less information give

less clear indicators.
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4.2 R estimation possibility

Having established that the filter works better when using close-to-correct tuning pa-

rameters, the possibility of estimating those must be investigated. As the only source

of information is the measurements, JP and Jabs cannot be used. JS and Jχ
2

are still

viable though, and will be evaluated below.

log(R
0
)

lo
g

(Q
0
)

J
S

 

 

−2 −1 0 1 2 3
−2

−1

0

1

0.6

0.8

1

1.2

1.4

1.6
Theoretical

Observed

log(R
0
)

lo
g

(Q
0
)

J
S
 sample

 

 

−2 −1 0 1 2 3
−2

−1

0

1

1

1.5

2
Theoretical

Observed

Figure 4.3: Colourmap showing average measurement cost (JS(2.22)) for different
tuning parameters. Lower plot show average of 10 steps.

Several things can be learned from fig. 4.3. The minimum area has a center around

the target, which shows that the correct covariances can be estimated. It is however

larger along the y-axis, which means Q is harder to estimate than R using JS . Further,

if approached from above the cost decrease slower than from below the target. This

indicate that starting estimation at a value higher than the target will converge slower

than if started from below.

There is an area close to the minimum area which is shaped like a quarter circle. This

speaks to the fact that JS will be close to minimum for a given sum of Q and R. This

has been outlined in section 2.5.4. The effect of this is that the R estimate will not

converge towards the correct value if Q is set incorrectly, and vice versa. For Q(1, 1) = 1



Chapter 4 Preliminary Simulations 38

there is no distinct minimum for R for instance. This problem worsens as Q if fixed

at higher values, as the upper border for Rs minimum is pushed further away from the

optimum. Meaning that if approached from above, and stopped when the cost function

gradient becomes suffeciently small, the R estimate would still be too low.

The other way around is in some ways worse. If R0 is fixed at 10−2 we see that a Q̂ wil

settle at 1, 10 times larger than it’s true value. This is because it is the measurement

innovation covariance that the target, not the noise covariances.

Comparing fig. 4.2 and fig. 4.3 shows that just because the estimates settle on the

quarter circle, does not neccesarily result in a good filter.

The sample shows the same characteristics, but the minimum area is larger with a center

slightly off target.
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Figure 4.4: Colourmap showing average consistency cost (Jχ
2

(2.24)) for different
tuning parameters. Lower plot show average of 10 steps.

As in fig. 4.3 there is a region close to minimum in a quarter circle shape. It differs by

being more sharply defined from both directions, as well as having a minimum region

that is much larger than JS .
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The same observations made from fig. 4.6 appear in fig. 4.4 as well. Exept that

estimating from above the target should converge quicker and that the minimum streches

ffarther along the curve.

4.3 Impact of R estimation

Estimating R will obiously change the cost function. If the estimate is done correctly the

minimum region will increase, as a wrong inital value is compensated for and produce

lower cost than without estimation. The plots will also show what information remains

after estimation, and the possibility of estimating Q.

It can be seen in fig. 4.5 that with R estimation, the starting value R0 no longer have

much impact. The minimum area is a line close to the correct Q0. This is an indication

that the estimating R is beneficial, atleast when Q have been set close to correct.
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Figure 4.5: Colourmap showing average state estimation error (JP (2.20), upper) and
absolute state estimation error (Jabs(2.18), lower). Red show the theoretical minimum,

green the observed minimum for each R0.
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Figure 4.6: Colourmap showing average measurement cost(JS(2.22), upper) and con-

sistency cost (Jχ
2

(2.24), lower). Red show the theoretical minimum, green the observed
minimum for each R0.

The cost is worse if the filter is started with both R0 and Q0 higher than the target.

Comapring fig. 4.5 with fig. 4.2 it can be seen that if the filter uses the initial values of

R0 = 10 and Q0 = 1 performance is much worse with R estimation.

Unsuprisingly JS , shown in the upper plot of fig. 4.6 ,has a minimum area which is a line

along the x-axis, centered close to the target Q0. Although this shows that estimating

Q using JS certainly is possible, the cost difference is low. Wchich will result in slow

convergance. It can be seen that the starting value R0 playes makes no difference, in

that the average cost is equal along each tested value of Q0.

Lastly, Jχ
2

shown in the lower plot of fig. 4.6clearly has a large minimum area. As Jχ
2

is derived from the TANIS estimators test value, if it not suprising that the estimator

minimizes Jχ
2

to a much larger extent than the other cost functions.
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4.4 Summary

The state estimation error Jabs has been shown to be lowest for a correct balance between

R and Q. With estimation Jabs has a minimum around the correct Q. Meaning that filter

estimate percision is dependent on a well tuned Q is only R is estimated.

JP has been shown to achieve a minimum in the area a little over the noise covariances

used to generate the measurements. Meaning that when used to compare performance

the cost can be lower for filterparameters which are too high. JP is still a valuable

measure as it will spike when P → 0.

On estimation possibility, it was shown that both JS and Jχ
2

has a minimum around

the target covariances. But that any estimation using JS is more difficult when the filter

parameters are set too high.

Furthermore, if one parameter is wrongly set, the minimum for the other might be wrong,

or might not exist. This is true for both JS and Jχ
2
. This indicate that estimation of

one covariance might not be possible if the other is off-target.

Lastly, when comparing JS and Jχ
2

in figure 4.6, it is clear that an estimate of Q from

Jχ
2

cannot be accuratly gotten while estimating R. And while it can be estimated from

JS , it will be difficult and the estimates Q̂ will have a high varianse.



CHAPTER 5

ESTIMATOR PERFORMANCE

This chapter compares the different adaptive filters. Using Monte-Carlo simulations of

5’000 runs, the average and variance of different statistics are used to get an idea of the

strengths and weaknesses of the different estimation methods. And give a clear idea of

their usefullness.

The adaptive filters concidered are

• The Adaptive Limited Memory Filter (ALMF) as described in subsection 3.1.

It was implemented with a stack size N of 15.

• Sage-Husa (SH) as described in subsection 3.2.

Implemented with a forgetting factor b = .95

• Time-Averaged Normalized Innovation Squared Consistency Estimator (TANIS)

as described in subsection 3.3.

It is implemented with sample size N = 5 and a signifigance region ? = 0.05. The

signifigance region means that the estimate change when it is less than 10% chance

the filter is consistent with the measurements.

• TANIS / Sage-Husa Hybrid (Hybrid) as described in subsection 3.5.

It is implemented with the same parameters as the TANIS and SH implementa-

tions. SH is reset to k = 15.

42
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5.1 R Estimation

Here ALMF, SH, TANIS, and the TANIS/SH hybrid adaptive filters are used to estimate

the measurement noise covariance R. Three cases are simulated.

R is kept constant, and the filter are using the correct process noise covariance Q.

This shows consistency of the filters.

R is a single square wave from one to four. This shows how the filters respond to

sudden change.

R is kept constant, but the filters are using Q wich is set five times too high

(Q = 0.5). This will show the effect of bad tuning on the estimates.

5.1.1 Static conditions. Correct Q

State Estimation

Looking at the estimate error it is not clear from fig. 5.1 which adaptive filter performes

best. However all produce estimates closer to the real value than the badly tuned filter

.

Looking at the estimate variance, filters with TANIS and ALMF estimators has the

higest variance. The TANIS method will have a high variance, as false positive has a

fixed impact. ALMF have a high variance because of its small sample size N = 15, but

it can also be seen that it rises steadily. This indicate that adaptive filters using ALMF

algorithm is not consistent. This is probably due to the resetting method, and has been

touched upon in subsection 3.1.

The SH filters variance consistently lies close to the optimal filter.

The TANIS/SH hybrid filter consistently has a slightly lower variance then the optimum.

Worryingly this indicate that the filter is inconsistent. There is not further indications

of harmful effects.

In turn JP shows that only SH has a value that matches the optimal. As shown in fig.

4.2 JP has a minimum for filters with Q and R slightly higher than optimum. The result

is that the filter with a too high R, has a lower JP than the optimum.

JP also shines a light on ALMF instability. Frequent spikes in the plott indicate that

P often get much too small. The EKF equations (2.9)-(2.15) show that if R is small,

Cnu (2.13) will become too small, which in turn makes the kalman filter gain K too
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Figure 5.1: Abosulte estimation error (upper), trace of filter estimate covariance
(middle), and JP (lower) for filters under static noise conditions.

large. During the update step a posteriori Pand the next a priori P− will then become

too small. If the next estimate R̂k+1 also is too low, the problem worsen. The spikes

are therefor an indication that the estimator has reset the estimate, and explain the

increasing P seen in figure 5.1.

State Estimate Variance

Getting better position estimates are all well and good, but if they vary wildly they are

not as useful. Further more well tuned filter will have the estimate covariance P match

the actual state estimates. Fig. 5.2 shows the trace of P compared to the calculated

estimate variance. The calculated P is the average of (xk − x̂k)(xk − x̂k)T at each step.

All the adaptive filter have P sufficiently close to the observed P, meaning that they are

performing well. The hybrid hit the observed covariance worst, being consistenly lower,

but not so much as to deem the method unsuitable. The TANIS and ALMF filters are

also slightly lower than the observed, but less so than the hybrid.
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Figure 5.2: The trace of average estimate covariance P used by the filters compared
with the average calcuated estimate covariance (xk − x̂k)(xk − x̂k)T .
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Comparing the methods is easier in fig.5.1, but considering what can be seen in fig.5.2

some futher observations can be made.

TANIS has the highest variance, and while the hybrid has the lowest. SH is the closest

match to the optimal, both in the observed and filter P, and matches best with its own

observed state estimate covariance. The other methods has a slightly lower P than ideal.

R Estimates

Fig. 5.3 shows the mean R̂ divided by the optimal, R = 1.

The ALMF estimate can be seen steadily rising. This is due to the increasing systematic

error resulting from the handeling of non positive definite estimates. This has been

explained in subsection 3.1, and is what caused its P to steadily rise (see fig. 5.1).

TANIS has consistenly a higher mean estimate which is as expected because when the

TANIS estimate increase, it is increased four times more (multiplied by 2) compared

to when the estimate is decreased (estimate is halved). This means that if there are

the same amount of false positives increasing and decreasing the estimate, the mean

estimated R will be higher rather than equal the true value.

This is also true for the hybrid estimator, but to a much lesser extent, indicating the

addition of SH has a positive effect on the estimates.

SH is close to the optimum. Concidering figures 5.1 and 5.2 this is not supprising given

how well the SH filter match the optimal.
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Figure 5.3: The average R̂ of MC simulation with 5000 runs (upper), and their
standart deviation (lower).
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Looking at the different estimate variances (lower plot in fig. 5.3) it is clear that: the

TANIS estimator has the highest variance, the hybrid matches the ALMF, which is

lower. and the lowest is SH.

Initial steps

To allow the filters to settle, a preliminary 150 steps are run before considering perfor-

mance. The initial steps are of some interest, particularly the initial convergance. As

the hybrid filter resets its SH frequently, the SH methods ability to match the statistic

initially is important.

It is seen in fig. 5.4 that the Hybrid and TANIS estimators settle at the same time. The

addition of SH does not make the Hybrid settle quicker than TANIS, eventhough it is

started initially, while TANIS waits for a full sample.

ALMF too settle at the same time, despite having a sample stack three times the size (N

= 15). It and SH initially underestimates, but settle just as quick as the other methods.

This might be suprising for SH, as it has been mentioned that it is the slowest of the

metods considered. However during the initial phase, the weight d is is much higher,

allowing the incomming inputs to have a greater impact.
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Figure 5.4: Noise covariance R̂ during the initial steps. FilterQmatches the generated
process noise covariance.
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5.1.2 Square wave

In the following simulation R increase from 1 to 4 at step 250, and decrease to 1 at step

750. The badly tuned filter uses R = 4 throughout, meaning it will match the optimal

from 250 to 500. All filter use the correct Q.

State Estimation

Although it is difficult to distinguish the performance of the estimators in fig. 5.5 it is

clear from the top plot that adaptive filters perform better than the badly tuned filter.

This is true both before and after the noise step.

Focusing on the filters estimate covariance P during the step, it can be seen that ALMF

and the hybrid are both below the optimal filter, indicating they are inconsistent with

the actual estimate covariances. This was also observed under static conditions in fig.

5.2.

The covariance estimates convergance speed will be dealt with shortly, but it is clear

that SH is the slowest to adapt to the changing R. So slow in fact that it can be ruled

out as a viable method for estimating a quickly changing R. Eventhough it is the closest

to the optimal filter when it settles.

ALMF has fewer spikes when R is higher, which is clear from the lower plot in fig. 5.5.

This is an indication that ALMF if performing better for higher values of R. Still, the

inconsistencies is still a problem.
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Figure 5.5: The trace of average estimate covariance P used by the filters compared
with the average calcuated estimate covariance (xk− x̂k)(xk− x̂k)T . The noise caovari-

ance R of the signal is modeled as a square wave.
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Rise and Fall times

As it is difficult to see the estimators responses from fig. 5.5, a closer look at the estimate

R̂ is shown in fig. 5.6. It shows the mean of the MC simulation divided by the optimal

R. The target is therefore 1 throughout. Because SH is slow, the figure focus on the

remaining methods.

All the estimators settle around step 25 after the step increase, and around step 30 - 35

after the step down.

ALMF has an overshoot for both the step up and down, which can cause inconsistencies

if R suddenly becomes low. Overshoot is not seen in the other methods.

The Hybrid performs best of them all, quickly setteling without overestimating as much

as the TANIS estimator.

250 260 270 280 290 300 310 320 330 340 350
0.2

0.4

0.6

0.8

1

1.2
R step increase

R̂
/
R

step [k]

745 750 755 760 765 770 775

1

2

3

4

5

step [k]

R̂
/
R

R step decrease

 

 

TANIS

ALMF

Hybrid

Sage−Husa

Optimal

Figure 5.6: The average R̂ of Monte-Carlo simulation. Sections right after step up
(upper) and step down (lower) in signal covariance. The estimates R̂ are divided by

the optimal value of R for clearity.
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Lasting effects

To investigate any lasting effects of the change on the estimators other than SH, the

first and last 100 steps of the R estimate is shown in fig. 5.7.

From the figure it can be observed that the TANIS and Hybrid estimates are unchanged,

while the ALMF has increaced slightly. This is more likely due to the aforementioned

inconsistency of the ALMF method.
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Figure 5.7: Mean noise covariance estimate R̂ divided by the true value, before
(upper) and after (lower) change in measurement noise covariance.
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5.1.3 Badly tuned filter

Q usually cannot be assumed known. In most filter is it approximated and set too high.

As previously mentioned, this affect R estimation, which can result in less accurate state

estimates (see subsection 2.5.5).

To show this, simulations have been run on the same signals, but with the diagonal Q

elements set to .25, five times larger than their theoretical value.

State Estimation

Fig. 5.8 clearly show that the adaptive filters lead to worse positional estimates than

the wrongly tuned filter. It is expected as the badly tuned filters R/Q ratio is closer to

the optimal. And it points to a systematic error in R̂ for all methods. Curiously, ALMF

produces better estimates than the others.

The estimates covariance P is much higher than both the optimal and the badly tuned

filters, which shows that their performance has suffered from the bad tuning. Interest-

ingly the ALMF has a higher P than the others, even though it has less state estimate

error.

Lastly the cost function JP is as expected from the other plots in fig. 5.8, and shows

frequent singularities for the ALMF. Again, this is an indication that the ALMF filter

is reset often, and the ensuing permanent error mentioned in subsection 3.1 is apparent.
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Figure 5.8: Abosulte estimation error (upper), trace of filter estimate covariance
(middle), and JP (lower) for filters under static noise conditions. Adaptive filters use

Q = 0.5.
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State Estimate Variance

Unsuprisingly, the filters P matches badly with their respective observed state estimate

covariance. Showing again that Q must be set close to the correct value for R estimation

to be effective on its own. The filters P and calculated state estimate covariance is shown

in fig. 5.9.
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Figure 5.9: Trace of filter estimate covariance for various adaptive filters, with cor-
rectly tuned KF (bottom).
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R Estimates

Fig. 5.10 shows clearly that estimators produce R̂ which is too low. TANIS, SH, and

TANIS/SH hybrid estimators all settle at around half the R target. As indicated by eq.

2.80, this is to be expected.

The ALMF estimates are of particular interest, as they increase slowly, almost having

settled at a value close to two times the target. This will be dealt with in more detail

in the next part of this section.

Again it is seen that SH estimates has the lowest R estimate std., hybrid slightly below

TANIS, with ALMF having the highest. Compared to fig. 5.3, TANIS and Hybrid has

a lower std., which is expected as the false positives will have less of an impact when the

estimates are low. ALMF has a higher std., expected because of the clear systematic

error seen. SHs std. closely match.
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Figure 5.10: Estimated noise covariance R̂ divided by the correct R. Adaptive filter
initiated with Q = 0.5. Correct Q = 0.1.

ALMF instability

To better see why ALMF gives such different estimates than the other estimators, the

initial steps are the most informative. Fig. 5.11 show that the other estimators perform



Chapter 5 Estimator Performance 56

much as in fig. 5.4, apart from converging to a lower value. They will therefore not be

discussed further.
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Figure 5.11: Initial noise covariance estiamtes R̂ from different estimators, with Q
set incorrectly to 0.5.

In fig. 5.11 ALMF estimates can be seen starting at a value close to the TANIS and

Hybrid estimates but then steadily increase. As ALMF estimates using the same mathe-

matical basis as SH, it is expected to decrease their R̂ towards the same value. However

the ALMF estimates increase, which is explained by the fact that the estimate is reset

to its absolute value whenever the estimate becomes negative. Futhermore, it is clear

that this method is incapable to overcome this error.

5.2 Q Estimation

Estimating the process noise covariance Q is of some interest, but not directly relevant

on its own. Because it is assumed that Q is constant or slow moving, the adaptive filters

will only estimate unchanging Q. The estimation methods concidered are ALMF, SH,

and TANIS. The hybrid is not included because it is designed for estimating quickly

changing statistics, and since it is a combination of TANIS and SH, adding it here

would be surperfluous. β-MLE is not included in this section as it is designed to work

in conjunction with a R estimator.

The optimal filter had uses the value for Q which has been used to generate the simulated

measurement signal. Q = 0.1 ∗ I. The other filters have been initialized with, and the

badly tuned filter use Q = 0.25 ∗ I.

The figures data is the mean and variance calculated from a Monte-Carlo simulation

with 5000 runs.
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Figure 5.12: Abosulte estimation error (upper), trace of filter estimate covariance
(middle), and JP (lower) for filters under static noise conditions, while estimating Q.

State estimation

From figure 5.12 it is hard to judge which filter has the least absolute estimate error

(top), but it is clear that the addition of estimators does not give conciderably worse

estimates.

In the middle plot of the same figure, it is clear that the ALMF filter use a estimate

covariance P which is much too high. TANIS and SH lies close to the optimal, albeit

slightly lower and higher respectivly.

Q estimation

Figure 5.13 shows that the ALMF estimates are consistently wrong, and for Q̂ is worse

than the itital value. There is nothing to show that the method is capable to overcome

this. Because ALMF reset the diagonal elements to their absolute value whenever they

become negative, the off-diagonal element compensate by becomming increasingly lower.

This is an indiaction that ALMF is only usefull when the estimated statistic is higher
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Figure 5.13: Mean process noise estimates Q̂ of Monte-Carlo simulation of 5000 runs.

and its variance is lower than a certain level. This level is undoubtedly related to the

sample size N, so no general rule can be found.

SH can be seen to match closely, although Q̂(1,1) rises steadily (but slower towards the

end of the simulation). Closer examination of the data revealed that the off-diagonal

elements went towards zero at the same speed, so Q̂(1,1) could converge at some point,

but from figure 5.12 this cannot be definitly concluded. Q̂(2,2) closely match the target

0.1 thoughout the simulation.

TANIS can be seen occilating around the target. Because of the structure of the TANIS

estimates, which has been mentioned in section 3.3, the estimates are unable to exactly

match the target. Since TANIS scales a known structure, its Q̂ has no off-diagnal

elements.

Looking at figure 5.14 it is seen that ALMF produce estimates with the highest standard

deviation, SH estimates are lower, while TANIS estimates std. are close to zero. This

indicate that TANIS is superior to the other methods used.
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Figure 5.14: Standard deviation of Q̂ divided by the true value Q = 0.1

5.3 Concurrent R and Q Estimation

Since the process noise covariance Q has an impact on the performance of the filters,

concurrent R and Q estimation needs to be concidered. Since the effects of R̂k on P− is

not seen before the next step, Q and R cannot be estimated during the same iteration.

In these simulations two estimators have been used to create an adaptive filter which

estimate R and Q on alternate steps.

• ALMF uses the ALMF method for both R and Q estimation.

• SH uses the SH method for both R and Q estimation.

• TANIS uses the TANIS method for both R and Q estimation.

• Tanis/Sage-Husa hybrid (T-SH) uses the hybrid method for estimating R and SH

for estimating Q.

• β-MLE uses the hybrid method to estimate R and the ratio balancer to increase

Q and decrease R as described in section 3.4.
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• The optimal filter again uses the correct filter parameters throughout the simula-

tions

• The badly tuned filter (Hi R) uses the correct Q, while having R set four times

too high (R = 4).

Because of the long time it took running the β-MLE estimator, its values shows have

been calculated from a Monte-Carlo simulation with 1000 runs, rather than 5000 runs

as simulated for the other methods.

5.3.1 Static conditions

First the performance during static conditions are investigated, meaning that the mea-

surement signal was generated with constant noise covariance.

The adaptive filters have been initialised with the diagonal elements of Q = .4, and R

= 4. The signal was generated with Q(i, i) = .1 and R = 1.

State estimation

Figure 5.15 shows clearly that both the TANIS and ALMF methods are unsuited for

estimating R and Q together. ALMF has a consistently high error and has the highest

aposteriori estimate P . This does not mean that it is no longer estimable, but rather

that the estimates are less accurate than the other methods (apart from TANIS).

β-MLE can also be seen to have a high P .

TANIS on the other hand clearly performs the worst, with estimate errors that are much

larger than the rest. Interestingly trace(P )→ 0 which indicate a loss of estimability

(Definition 2, section 2.5.2)

To accuratly compare the remaining methods figure 5.16 shows a narrowed vertical

section of fig. 5.15.

We see that the AMLF filter has more estimate error and a higher cost JP than the

other methods.

β-MLE does not have less error in its positional estimates then the badly tuned filter, or

the other methods. As the method is a simplification of a full MLE method, it should

be noted the effect of noise is prononced. And it does seem give better results over time,

indicating that it either has settled at wrong estimates, or will converge very slowly.
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Figure 5.15: Absolute state estimate error, state estimate covariance, and JP during
concurrent estimation under static conditions.

The spikes the method has in JP are not inconsistencies, like those frequently seen for

the ALMF method, but rather the result of noise entering the estimates.

SH and the hybrid are those that perform best. Having less estimate errors than the

badly tuned filter, the lowest cost JP , and P closest to the optimal. However, the middle

plot in fig. 5.15 it is clear that the hybrid is unstable, increasing similar to TANIS. Not

unexpected because they both rely on a consistency hypothesis test which change the

estimate in steps up and down, but it shows that even with a method giving continuous

Q estimates creates instabilities in for R̂.
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Figure 5.16: Absolute state estimate error, state estimate covariance, and JP during
concurrent estimation under static conditions.

Estimate Covariance

Looking closer at the estimate covariance P in fig. 5.17 gives an idea of how well the

estimability property holds as well as the quality of the state estimates.

Stating what already was observed from fig. 5.15 and 5.16, the β-MLE and ALMF filters

P settle much higher than the observed estimate covariance. Showing that they perform

worse than SH, which matches its oberved value and is much closer to the optimal.

The effect of having P close to zero is shown for TANIS, the ture estimate covariance is

steadily increasing, while the filter does not follow.

The hybrid on the other hand, increase P to match the observed values. Although it is

not garanteed that it will settle, the change is slower towards the end.
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Figure 5.17: Aposterioi state estimate variance and the observed state variance

Covariance estimation

Figure 5.18 shows what already was indicated in the previous figures. The TANIS

estimates increase throughout the simulation, while the ALMF has settled at a value

higher than the initial value. β-MLE produce estimates that are slightly lower than the

optimal, which points towards an inability to get Q̂ to converge to a correct value. The

other methods are close to the optimal but the hybrid deverge downward towards the

end.

It can also be seen that the standard deviation (shown in the lower fig. 5.18 plot) is

what one would expect. TANIS with its increasing step sice is the highest, and ALMF

is higher than the remaining methods.
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Figure 5.18: Mean R̂ during estimation of R and Q
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In figure 5.19 we see that β-MLE give Q̂ which do not match the optimal, abeit better

than the initial, it is still much larger than the target. This is what leads to its R

estimates to become too small, which has been shown for other methods in subsection

2.5.4. Remembering that TANIS and β-MLE uses a known structure for its estimates,

they do not estimate off-diagonal elements with the current implementation.
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Figure 5.19: Mean Q̂ during estimation of R and Q

Again what has been noted in the preceding figure are shown here as well. the TANIS

estimates are unstable, as R̂ is increasing Q̂ is decreasing, converging on zero. Even-

though it is theoreticly impossible for TANIS estimates to actualy become zero, they

clearly become close enough to cause the estimates to become unreliable. And had not

a lower limit been set at one thousandth, the estimates would have been rounded down
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Figure 5.20: Std of Q̂ during estimation of R and Q

to zero in the simulation. Therefore estimability cannot be given to TANIS estimation

of both R and Q.

ALMF underestimates Q̂ consistently, which is consistent with its overestimation of R̂.

It also has significant off-diagonal values. SH has estimates which are close to the target

optimal through the whole simulation.

Of particular interest are the hybrid estimates, which increase past the target, and that

has increasing off-digaonal elements. Again, this might mean that it is slow to stabilize,

or the presense of an instability as seen for the TANIS estimator, although supressed by

SH estimating Q.
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Figure 5.21: R̂ during initial steps while estimating R and Q.

It is seen in fig. 5.20 the standard deviation conform with what has been seen in the

previous plots.

Figures 5.21 and 5.22 are included as a verification on the comments made hithertoo in

this section. As restating the observations are felt redundant, no further comment is

made, other than the initial steps confirms with the previous statements.
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Figure 5.22: Q̂ during initial steps while estimating R and Q.

5.3.2 Jump in measurement noise

The main task of the estimation schemes are to adapt to changing circumstances, in

this case a change in measurement noise covariance. Since an increased performance is

dependent on a well tuned Q, and Q can be estimated, the following simulation try to

show how the estimation schemes perform when estimating both R and Q, but when R

no longer is kept constant.

From the observations made in the previous subsection (5.3.1) the following scheme is

proposed. Use the first initial steps to estimate R and Q with the Sage-Husa method.
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Then keep the latest Q estimate, and only estimate R using the TANIS/Sage-Husa

hybrid.

The proposed method have some underlying assumptions; Q can be approximated to

constant and is unknown but has a known structure; measurements with static noise

conditions are available for the initial estimation; and there is sufficient initial data for

the initial estimates to converge.

Because the structure of Q is assumed known, the average of the estimated elements are

distributed with the given weights. In this case we assume Q = κI2x2, for some unknown

positive constant κ. Which results in the estimated value Q̂ = 1
2 trace(Q̂∗)I2x2. Q̂∗ is

the estimate produced by SH in the initial phase. This method is marked ”Proposed”

in the figures.

Because the filters using TANIS and ALMF were unstable and did not converge towards

the target under stable noise conditions, they have been left out of the figures.

All adaptive filters have initiated with R = 4 and Q(i, i) = .5.

State estimation

Considering the mean position estimate error in fig. 5.23 it is clear that the aforemen-

tioned possible instability for the hybrid / SH combination estimator seen under static

conditions, is present here as well. It has a clear result on the positional estimates, which

have more errors than the other methods towards the end.

β-MLE is has the second highest mean error and cost JP . During the step it also has

the highest state estimate covariance P .

The most important observation is that the proposed method outperforms the other

filters. It has consistently the lowest absolute positional Error estimate, the lowest

variance P, and the lowest cost JP . It also reacts much quicker, although it is not a fair

comparison as R is estimated on every step after the initial phase. It shows that even a

Q that does not match the target exactly perform better just estimating R, than filters

which estimate both.
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Figure 5.23: Absolute state estimate error, state estimate covariance, and JP during
concurrent estimation. Changing R

State Estimate Variance

Figure 5.24 show that none the methods match P with the observed covariance, but

all are larger. This indicate, atleast during the simulation, that the adaptive filters are

consistent. Moreover the observed estimate covariance is approximatly the same, all

closely matching that of the optimal filter.

The proposed method clearly has best matching P, showing that it performs closer to its

best than the others. β-MLE, SH, and the hybrid all perform much the same considering

only P and the observed values.

The hybrid P values does not increase, which is reassuring. But the change seen in fig.

5.23 is reflected in the observed state estimate covariance, which is steadily increasing

during the step.
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Figure 5.24: Aposterioi state estimate variance and the observed state variance
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Covariance estimation

In figure 5.25 the mean R estimate has again been divided by the target value. The step

in R is clearly seen by the spikes.

The proposed method is the closest match, and converges faster than the others. No

doubt because it produces an R estimate each step, rather than every second, is the

reason for this. But also looking at figure 5.26 we see that some of the change in R has

been estimated as a change in Q. This decrease the percision of R̂, same as when Q is

fixed to a wrong value in subsection 2.5.4. This error is removed after the step up.

β-MLE and SH Q estimates are the most affected by the sudden increase.

The estimate Q̂ used by the hybrid is increasing until the step down. This would account

for the increasing state estimate error seen in 5.23; as Q increase more weight is given

the measurements. As Q̂ already is higher than the target, any further increase cause

an unwarrented ’trust’ in the incomming measurement.

It should be noted that the Q used by the propose method has been fixed at 0.2. With

R̂ and Q̂ closer than the other estimates, it shows using a preliminary training before

fixing Q at its estimated value, increase performance in terms of reducing state and

covariance R estimation error. This has been seen in all plots in this section.

For a closer inspection, the more important data is presented in table 5.1.

Method β-MLE ALMF TANIS Hybrid SH Prop. Optimal

Pos. Est. Err. 0.68 0.773 2.53 0.68 0.642 0.612 0.592

P Error 0.87 1.56 13.8 0.7 0.813 0.263 0.009

R̂ Error 1.0 4.03 15.6 1.07 0.743 0.853 0

R̂ Std. 1.06 1.7 35.1 1.17 0.86 1.25 0

Q̂ Err(diag.) 0.324 0.298 0 0.331 0.197 0.013 0

Q̂ Std(diag.) 0.103 0.007 0 0.096 0.063 0 0

Q̂ Err(off-diag.) 0 0.404 0 0.112 0.0931 0 0

Q̂ Std(off-diag.) 0 0.008 0 0.073 0.0419 0 0

Table 5.1: Average performance statistics from concurrent estimation of R and Q. R
modeled as wave step. Values has been rounded three decimals.
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5.4 Summary

The filter using the ALMF estimator is prone to accumulating a systematic error in

its estimates, even under ideal circumstances. These result from a high variance that

frequently produce negative estimates and the way it handles those events. It will

eventually settle, but as was seen during concurrent estimation, there is no garantee

that it will be better than what starting value is has for the estimates.

The SH method is reliable, abeit slow. It reacts slow to a changing target, but its

estimates are accurate and precise. These qualities has made it a favourable addition to

the TANIS estimator. SH performed best during the concurrent estimation with static

conditions.

The TANIS estimator produce discontinuous estimates, which during concurrent esti-

mation of R and Q, makes the states no longer estimable (if limits for the estimates were

not set). When just estimating one statistic, its estimates converge quickly and have

a lower variance than the ALMF estimates would have for the same sample size. But

because a step up is larger than a step down, it overestimates on average. If it cannot

scale exactly to the target it has been shown to ocillate around the target.

As a combination of TANIS and SH, the hybrid has shown improvments on the TANIS

method. Compared to the TANIS its estimates has a lower mean error and variance, it

tracks a target quicker than SH. There was indications that it might be unstable when

estimating R in conjunction with SH estimating Q.

All the aforementioned method are incapable to hit the target covariance if the other

filterparameters are incorrect. An error in Q create an error in R̂.

β-MLE seemed incapable to balance that error when tested, having a persistant large

error in its estimate. Its estimates also had a high variance. When simulated it also had

a considerable longer running-time (more than ten fold), showing that this method is

unsuided for on-line estimation.

Because the change in R affected the estimators, and because the hybrid showed unstable

tendensies, a method was proposed. Namely, first use measurements under unchanging

noise conditions to get a better estimate of R and Q. Then use the latest estimate for

Q, initialize the hybrid with the latest R̂, and let it only estimate R. This method was

favourable compared to the other methods when estimating R and Q, with a change in

R (see table 5.1).
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CONCLUSION

Much work has gone into covariance estimation. As it has been a problem for a long

time, many different schemes have been created. Most of the most reliable are to be used

with linear systems, after the data is collected. When it comes to sequentially estimating

covariances on-line for non-linear systems, the number of viable methods dwindle. In

recent years covariance mathcing schemes have been combined with neural-networks, but

as the aim of this thesis was do find something akin to ”plug-and-play”, only general

methods were considered. Only estimation of noise covariance R and process noise

covariance Q were attepted.

When considering whether the covariances are possible to estimate, it was found that

even given that the system was observable, was no garantee for estimability. For filters

with incorrectly set filter parameters, the estimates can at best converge at the wrong

target. At worst it introduce inconsisencies, making the states unestimable with the

adaptive filter in question. Given that the filter stays consistent, measurement noise

covariance estimation with a wrongly tuned process noise covariance resulted in filter

estimates that were worse than the initially badly tuned filter. This is because the

innovation covariance is used as a basis for estimation of both Q and R, meaning that

is Q is set too high, the estimate R̂ will be too low. This in turn result in an increased

error in state estimates, as it given by the ratio between R and Q, not their combined

size. With that in mind, it was clear that Q also needed to be estimated. This was

shown possible by using the cost JS , but with more uncertainty than for R.

76
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In a simulation in which both R and Q were to be estimated, the best results were

had by first estimating R and Q during unchanging noise characteristics using the Sage-

Husa method. Then haing a hybrid of TANIS and SH estimate R, while Q is kept

at the last estimate from the initial phase. From this it is concluded that concurrent

online estimation of both R and Q gives worse results, than if Q is known or estimated

beforehand.

There is alot more work that needs to be done. There is no formal proof of estimator

stability, or covariance estimability offered. Further more, the HiPAP is part of a larger

system containing different sensors, and the effect of estimation on them has not been

investigated. And when done should allow testing on real data. Also refinements in

estimation should be investigating, such as a varying step length for the TANIS and

hybrid methods.
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