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Problem Description

The pressure sensor as a depth measuring device is important for underwater vehicles. A good

model of the sensor’s performance is a vital tool for optimally utilizing the sensor readings in a

full navigation system. The assignment will focus on improving the sensor model, testing and

verifying the benefits of using the improved model by simulations and on real data.
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Sammendrag

Undervannsfarkoster benytter trykksensorer til å måle fartøyets dybde. Disse målingene er ut-

satt for støy fra bølger. En estimatoralgoritme blir benyttet på målingene for å redusere virkn-

ing av den bølgeinduserte støyen. Denne algoritmen avhenger av matematiske modeller som

beskriver støydynamikken. Siden bølger er osillatoriske er det naturlig at også bølgestøymod-

ellen er det. Denne osillatoriske prosessen krever et estimat av bølgefrekvensen. En modell som

estimererte bølgefrekvens i tillegg til bølgestøy ble utviklet. Modellen fikk data fra simulerte

og ekte målinger. Estimatene av målingene ble sammenlignet med estimater fra en etablert

estimatormodell. Den osillatoriske modellen ga noe mer nøyaktige dybdeestimater enn den

etablerte modellen før parameterjustering. Dette til tross for at den hadde problemer med å

finne frekvensen. Etter parameterjustering ble frekvensestimatene mer nøyaktige. Dette førte

igjen til mer nøyaktige dybdemålinger.
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Abstract

Underwater vehicles use pressure sensors to measure depth. These measurements are sub-

jected to noise from ocean waves. To reduce the impact of the wave induced noise, an estimator

algorithm is applied to the measurements. This algorithm relies on mathematical models that

describe the noise dynamics. Since waves are oscillatory, the modeled wave noise is as well. The

wave frequency must be estimated for this process. A model was developed that estimated the

wave frequency in addition to the wave noise. The model was inputted data from simulated and

real measurements. The estimates were compared to those of an established estimator model.

Before parameter tuning, the oscillatory model provided slightly more accurate depth estimates

than the field tested model, but struggled with estimating the frequency. With some tuning,

the model was able to estimate the wave frequency accurately and as a consequence the depth

estimates were more accurate.
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Chapter 1

Introduction

The ocean floor is a vast and relative uncharted area. Per 2014 the most accurate Global Posi-

tioning System (GPS) based mapping had a resolution of 5 kilometers (Copley (2014)). As a con-

trast, 98% of the planet Venus has been mapped with a resolution of only 100 meters (Dunbar

(2007)). Water is much more compact than gases and acts as a veil, hiding the seabed from high

resolution satellite imagery (Copley (2014)). Some actors, e.g. the offshore industry, depend

on high resolution mapping of the seabed. Luckily for them there are alternatives to satellites,

when it comes to mapping. One such solution is to let an underwater vehicle (UV) perform the

mapping of the desired seabed area.

Using sound waves the UVs scan the seabed to gather data that can be used to produce maps.

However, the scanned data only give information of the scanned area relative to the position of

the UV. It is therefore important that the UVs position can be accurately estimated.

The vertical position, depth, is determined with the use of pressure sensors combined with

an Inertial Navigation System (INS). The INS consists of gyros and accelerometers. These de-

vices exploit the moment of inertia to determine the acceleration of the UV. However since ac-

celeration must be integrated twice to get position, any error will grow exponentially and cause

drift in the depth measurement. The pressure sensor measurement, on the other hand, does

not drift, but is subjected to noise from the environment.

To improve the accuracy of the measurements, an estimator algorithm, the Kalman Filter

(KF) is employed. The KF combines the noise subjected measurement with a predefined math-

ematical model of the system and outputs an estimate of the depth. A more accurate system

2
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model results in more accurate estimates.

The measured pressure is the sum of hydrostatic and dynamic pressure. The hydrostatic

pressure is affected by parameters such as salinity, temperature, density and tidal waves. How-

ever these factors are slow varying and Willumsen et al. (2007) make some simple suggestions

on how to identify them. Much more troublesome is the dynamic pressure.

Surface waves causes changes in the pressure in the water column. This is the main source

of noise attributed to dynamic pressure (Willumsen et al. (2007)). Figure 1.1a shows what effect

the waves can have on the pressure sensor when mapping the seabed. In figure 1.1b the KF

has been used to produce a better estimate, however wave induced noise is still apparent. One

solution, as demonstrated in figure 1.1c is called smoothing.

The smoothing algorithm optimizes the estimates based on previous and future data, i.e. the

entire dataset (Willumsen and Hegernæs (2009)). The resulting estimate is much more accurate

up until the last data points, where it lacks the future data points. For that reason, smoothing

can not replace real-time estimates for navigation purposes, and correct navigation is important

when mapping.

(a) Pressure sensor (b) Real-time filtered (c) Smoothed

Figure 1.1: Mapping of the seabed (Willumsen et al. (2007))

Another method of removing the pressure induced noise is by exploiting other means of

depth measurement. Thomson and Emery (2014) mentions echo sounding as an alternative.

However the sound waves must be reflected by the surface of the ocean, and are therefore just

as vulnerable to surface waves. Other concepts are discussed in Olsen (2015), but these are not

practical to implement in the ROV environment.
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The wave induced noise creates a bias in the measurements. However, unlike most types

of bias, the wave induced bias is oscillatory. The standard industry approach does not model

for oscillations. Haaland (2016) demonstrated that by modeling the wave bias as an oscillatory

process the KF depth estimates became more accurate. However, this system model required

that the wave frequency was known, which is often not the case in real time estimation.

This thesis describes how it is possible to modifying the oscillatory model from Haaland

(2016) so that it can be used without prior knowledge of any wave parameters. The model should

also perform better than the ones being used in the industry. These were the two primary ob-

jectives of this thesis.

Chapters 2 describes concepts that are important for understanding the estimation proce-

dures in later chapters. In chapter 3, properties of waves are examined and modeled. A wave

simulation model is developed in chapter 4. The purpose of this model is to supply test data for

the development of the estimators. To create a benchmark on performance, chapter 5 describes

how a field tested industry estimator model is studied and tested on the simulated wave data.

The model developed in Haaland (2016) is also studied and tested on the simulation model.

This is described in chapter 6. The extensions to the oscillatory model is developed in chapter 7.

A summary, conclusion and final notes are presented in chapter 9. Acronyms and symbols are

listed in appendix A.



Chapter 2

Important mathematical and estimation

concepts

The reader might not be familiar with some of the terms and methods presented in chapters

4-9. Some of these are explained here. The chapter is based on Haaland (2016).

2.1 Estimation

Some times the observations of states can be of quite uncertain. A noisy depth measurement of

an UV is an example of this. By supplementing the observation with a mathematical description

(a model) of the state dynamics, an estimate is produced. Given a that the state model was

well defined, the estimate is statistically closer to the true value than the observation. Often

it can be practical to let the system being estimated be presented on State Space form. In this

way the system can be described by a set of first order differential equations and measurement

equations. In this thesis, the models of the systems will be described by the following equations:

ẋ = F x +w (2.1a)

y = H x + v (2.1b)

Equation 2.1a is the process equation and describes the dynamics of the parameters to be mea-

sured. The F matrix give the interdependencies of the states, x, while w is noise on the process.
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The measurement is given by 2.1b. The H matrix give the relationship between the states and

the measurement. v is noise on the measurement. The system is time invariant, meaning F and

H do not change with time. If all equations contain only linear terms, the system is Linear.

As will be discussed in 2.4 a system can either be continuous or discrete. The latter being a

system where variables only change value at certain time instances. The given time instance is

denoted by (k). In a continuous system the variables may change value with incremental time

steps. The time instances are denoted by (t).

There are different methods of discretization. One such method is Euler’s method. It is sim-

ple, but not exact. An exact method is when the discrete representation is equal the continuous

at k. This is the case for Van Loans method. However the Van Loan method is only exact for

linear time invariant systems. The Euler method can be used on close to all systems on state

space form.

The state-space equations in 2.1 is said to be observable if for any unknown initial state x(0),

there exists a finite t1 > 0 such that knowledge of the input u and the output y over [0, t1] suffices

to determine uniquely the initial state x(0). Otherwise, the equation is said to be unobservable

(Chen, 2013).

The observability matrix (O ) can be used to check for observability.

O =



H

HF

HF 2

...

HF n−1


(2.2)

n is the size of the dimensions of the square matrix A. If O has full column rank, the system

can be shown to be observable (Chen, 2013). Full column rank is achieved if no column can be

described by a combination of the others.

Another property that can be investigated is the pole values. This value determines the be-

havior of the system. For the process in equation 2.1 the poles are given by F.
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2.2 Statistical Concepts

A good estimate of a variable is one which is probable. For that reason, statistics is an important

part of estimation.

The autocorrelation function describes how well a random process, X(t), is correlated with

itself. The function can be expressed this way:

RX (τ) = E [X (t )X (t +τ)] (2.3)

Closely related to the autocorrelation function is the Power Spectral Density function (PSD). It is

the fourier transform of the autocorrelation function. The PSD present the intensity of different

frequencies in the random process (Brown and Hwang, 2012).

As implied, the the probability density function (PDF) describes the probability of different

outcomes in a random process. The Gaussian distribution is an important PDF and is defined

by mean (µ) and standard deviation (σ). The standard deviation describes the dispersion of the

data.

Variance is the square of the standard deviation and also describe the dispersion of data. The

covariance describes how a change in one parameter effects another. The covariance matrix is a

matrix where the off diagonal values show the covariance and the diagonal values the variance

of parameters.

A Gaussian process is a non-parametric model for functions where each point in the func-

tion space is treated as a random variable. The covariance function specifies how the values of

different points influences the likelihood of values for other points to take. Every point in the

input space is associated with Gaussian distributed random variable. If µ and σ do not change

as a function of time, the Gaussian process is said to be stationary.

2.3 Noise Estimators

The statistical descriptors discussed so far are used to characterize two models for noise estima-

tion: white noise and Gauss-Markov Process.

Both models are stationary Gaussian processes. The white noise has an impulse as an au-
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tocorrelation function and is equally spread out in the PSD. The Gauss-Markov process, on

the other hand, has an exponential autocorrelation function.The Gauss-Markov process results

when a first-order LTI system is given white Gaussian input.

2.4 The Kalman Filter

The Kalman filter is an established method for state estimation in linear stochastic systems.

Named after its inventor, Rudolf Emil Kàlmàn, it was first published in 1960. The Kalman filter

is not to be confused with frequency based filters, e.g. a low-pass filter. This section will:

1. Explain the basic principles and benefits of the Kalman filter

2. Describe the discrete Kalman filter

3. Describe the Extended Kalmanfilter (EKF)

The assumptions and equations in section 2.4 are heavily based on Vik (2014) and on Brown and

Hwang (2012).

2.4.1 Basic Features of the Kalman Filter

The Kalman filter is an optimal recursive data processing algorithm. Data processing is done by

combining predictions with observations. The predictions are based on how we believe the sys-

tem dynamics behave. The observations are measurements. By processing the measurements

with a Kalman filter a more accurate estimate is produced. Some benefits of the filter is that it is

optimal in the minimum variance sense, that it is unbiased and that it is asymptotically stable.

However, the filter requires that:

1. The process noise and the measurement noise are Gaussian and white

2. The initial state is Gaussian

3. The system is linear

4. The system is observable
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Discrete Kalman filter

The Kalman filter published by Kàlmàn was the Discrete Kalman filter. Like the name implies,

the discrete KF operates in discrete time. The algorithm can therefore be computed in a series

of steps in an iterative manner. The system is modeled by linear difference equations with the

process described by

x(k +1) =Φ(k)x(k)+∆(k)u(k)+Γw(k) (2.4)

and the measurement given by

y(k) = H(k)x(k)+ v(k) (2.5)

and the covariance matrices Qd and Rd relating to the noise v and w by

E [w(k)w T ( j )] =


Qd (k) if j = k

0 if j 6= k
(2.6a)

E [v(k)vT ( j )] =


Rd (k) if j = k

0 if j 6= k
(2.6b)

E [w(k)vT ( j )] = 0 (2.6c)

After identifying the model for the system, an algorithm is used to project ahead states (x̄(k)) and

the error covariance matrix (P̄ (k)). These are called a priori estimates. The a priori estimates are

combined to produce the optimal estimates, the a posteriori estimates x̂(k) and P̂ (k). The steps

of the DKF algorithm is explained below.

Step 0: Identify initial conditions. This is only done once in the algorithm. The initial values

of the states (x̄(0))are in some way estimated. The initial values of the covariance matrix (P̄ (0))

are given by the equation:

P̄ (0) = [(x(0)− x̂)(x(0)− x̂(0))T ] (2.7)

Step 1: Update the Kalman gain. The Kalman gain (K) is a blending factor, meaning that the

gain determines how much weight is given to the measurement versus the priori estimate.The
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Kalman gain is by definition the gain that minimizes the mean square estimation error. The

Kalman gain equation is

K (k) = P̄ (k)H T (k)[H(k)P̂ (k)H T (k)+Rd (k)]−1 (2.8)

Step 2: Update the a posteriori estimates. With the current a priori estimates and Kalman

gain, the a posteriori estimates are updated. This is done in equation 2.9 and 2.10.

x̂(k) = x̄(k)+K (k)[y(k)−H(k)x̄(k)] (2.9)

P̂ (k) = [I −K (k)H(k)]P̄ (k)[I −K (k)H(k)]T +K (k)Rd (k)K T (k) (2.10)

Step 3: Update the a priori estimates. The a priori estimates of the states and error covariance

matrix are based on our model of the system and the a posteriori estimates. See equation 2.11

and 2.12.

x̄(k +1) =Φ(k)x̂(k)+∆(k)u(k) (2.11)

P̄ (k +1) =Φ(k)P̂ (k)ΦT (k)+Γ(k)Qd (k)ΓT (k) (2.12)

As shown in figure 2.1 the algorithm is an iterative process that repeat steps 1-3.

2.4.2 Extended Kalmanfilter

As mentioned in section 2.4.1, one of the assumptions that are made when using the Kalman

filter is that the system is linear. In real systems, this is often not the case. There are, however,

methods of coping with nonlinear systems. The method being used by Navlab is the Extended

Kalman Filter (EKF).

The nonlinear system is in the continuous case described by the equation

ẋ(t ) = f (x(t ),u(t ), t )+Γw(t ) (2.13)
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Figure 2.1: The iterative process of a Discrete Kalman filter

and the measurement is given by the equation

y(t ) = h(x(t ), t )+ v(t ) (2.14)

The process noise w(t) and the measurement noise v(t) are assumed Gaussian distributed:

w(t ) ∼ N (0,Q(t )) (2.15a)

v(t ) ∼ N (0,R(t )) (2.15b)

As shown in figure 2.2 the EKF linearize the system about the computed estimated trajectory at

different time instances. The linearization of the process, F (x̂(t ),u(t ), t ), is element wise given

by

fi j (x̃(t ),u(t ), t ) = δ fi (x(t ),u(t ), t )

δx j (t ))

∣∣∣∣
x=x̃

(2.16)
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and the linearizion of the measurement ,H(x̃(t ), t ), is given by

[hi j ] = δ fi (x(t ),u(t ), t )

δx j (t ))

∣∣∣∣
x=x̃

(2.17)

x̃(t ) is an approximate of E[x(t)]

The actual trajectory x(t) and estimated trajectory x̃ are shown in figure 2.2. The difference

given by δx = x(t )− x̃ is the what the EKF actually models in the process and measurement. The

process equation given by 2.18 and measurement by 2.19

δẋ = F (x̃(t ),u(t ), t )δx(t )+w(t ) (2.18)

δy(t ) = H(x̃(t ), t )δx(t )+ v(t ) (2.19)

In the Navlab interface it is the continuous system that is given. However, Navlab makes the

system discrete before running the algorithm, which is similar to the discrete Kalman Filter in

section 2.4.1.

Figure 2.2: The EKF linearization (Brown and Hwang, 2012)
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Initiation of the EKF

Unlike the linear case, the EKF is not necessarily asymptotically stable. If x̄(0) has a large error,

the linearizion will be off which in turn can cause further divergence.

Another problem occur when a large P̄ (0) is combined with a low-noise measurement. This

can cause numerical problems. The P matrix might become non-positive definite, and this can

cause the estimate to diverge. Without going into detail, there are simple methods that can

prevent this.



Chapter 3

Waves

In physics a wave is a transfer of energy through a medium that takes shape as an oscillation.

This is also true for ocean waves. For simplicity, ocean waves will be referred to as waves from

this point on. This chapter is dedicated to build an understanding of waves and how to model

them. The development of the depth estimator model described in chapter 7 is dependent on

good wave simulations. Modeling waves is therefore an important step towards developing the

estimator model.

3.1 System of Reference

The system considered in this thesis is in one dimension only, depth. Empirical data justify this

simplification (Haaland, 2016). The coordinate system has its origin in the sea surface and pos-

itive direction pointing downwards in a direction orthogonal to the horizontal plane. The sea

surface is a fixed point. How this point is arrived at is not important for the thesis. It could for

instance be the mean sea level (MSL), which is the average sea level of a specific place, consid-

ering waves and tides.

3.2 Waves and Pressure

As explained in chapter 1, waves have an undesired effect on pressure sensors. The upwards

and downwards motion of the water column displaces the UV as illustrated in figure 3.1. The
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pressure sensor does not register this change in depth since the pressure is the same. The ac-

celerometer, however, does and the UV stairs itself to the desired depth. This causes the pres-

sure to increase which in turn impacts the depth measurements of the pressure sensor. The

closer the UV is to the surface, the greater the wave induced vertical displacement. With high

frequency waves, the pressure attenuation is greater. This is due to more waves being present,

which increases the interference. In this sense, the water column acts as a low pass filter.

(a) UV being near surface with low frequency wave

(b) UV being deep with low frequency wave

Figure 3.1: This figure illustrates an UV at different time instances being subjected to a low fre-
quency wave. The wave pulls the UV from depth z1 to z2. The pressure p1 and p2 is the same. To
get back to the intended depth the UV steers itself to z3=z1. However the pressure z3 is higher
than both z1 and z2. The effect of the waves on the UV is less at deeper waters.

3.3 Wave Nomenclature

Before detailing how to model waves in the following sections, some wave parameters will be

explained. Some of these explanations are related to figure 3.2, which show a simple sinusoidal

wave.
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3.3.1 Single Wave Nomenclature

The expressions described here relate to a single wave.

Crest and through The crest is the top of the wave, while the through is the bottom. See figure

3.2.

Amplitude Denoted by A, this length is half the vertical difference between the crest and through.

See figure 3.2. Most waves have crests and throughs that vary in height and depth. Amplitude is

therefore more of use in modeling waves than in describing them. The unit of A is [m].

Significant wave height Denoted Hs , the significant height is a more reliable descriptor than

amplitude. Hs is approximately the average of the third of waves with the largest height, mea-

sured from through to crest. The unit of Hs is [m].

Wave frequency The wave frequency can be used to describe the occurrence of a wave as both

as a function of time and as a function of space. As explained in section 3.1, the system is only

modeled for one spatial dimension, depth, spatial frequency is irrelevant. All references to wave

frequency are therefore regarding time.

The unit for wave frequency in this thesis is given as both [Hz] and [rad/s]. The relation-

ship between these units is purely scalar with [rad/s]=2π[Hz]. The wave frequency parameter

ω will be given as ω = fH z2π[rad/s], where fH z is the frequency in [Hz]. This is due to ω being

implemented in [rad/s] but [Hz] being a more intuitive unit.

3.3.2 Sea State Nomenclature

The sea state is a description of the waves in an area. It is specified by a Wave Frequency Spectrum

(WFS) with a given significant wave height and a Mean Propagation Direction (MPD). To address

unidirectionality, a spreading function is applied to the WFS Techet (2005). These expressions,

and others related to sea state, are explained here.

Wave frequency spectrum The wave frequency spectrum (WFS) is a PSD function for the fre-

quencies of a given sea state.
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Spectral peak frequency The spectral peak frequency ωp is the wave frequency at which the

WFS has the most energy.

Spectral peak period The spectral peak period Tp is the inverse of the spectral peak frequency.

Wave phase Denoted θ, it is a scalar from 0 to 2π that relates the phases of different waves. See

figure 3.2.

Mean propagation direction Waves propagate in different direction along the horizontal plane.

The mean propagation direction β is the mean of these directions. The unit of β is [rad], and it

is given relative to a coordinate axis of the horizontal plane, counter clockwise.

Unidirectional An unidirectional sea state contains waves that all propagate in the same di-

rection.

Fetch Due to frictional forces, wind blowing over a body of water over a given time will gener-

ate ocean waves. The length of water over which the wind blows is important for the develop-

ment of the sea state. This length is called fetch.

Swell Not all waves are caused by the local winds. Swells are waves created by distant storms

that have traveled a long distance.
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Figure 3.2: This figure illustrates how some wave parameters relates to waves.
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3.4 Modeling the Sea State

Since the sea state describes the behavior of waves in an area, an accurate sea state model is a

useful tool for modeling waves. Random wave models (RWM) can be used for this purpose. A

linear random wave model (LRWM) is the sum of several waves, each with different amplitude,

frequency, direction and phase. A non-linear random wave model (NRWM) will in addition take

account of parameter value changes caused by non-linear interaction between the wave com-

ponents. However, NRWM are more complicated than the LRWM. For that reason a LRWM was

used instead.

The linear long-crested wave model (LLWM) is a simple LRWM. It describes the sea state as

the sum of k sinusoidal functions with different parameter values. It is given by:

η(t ) =
N∑

k=1
Ak cos(ωk t +θk ) (3.1a)

E [A2
k ] = 2S(ωk )∆ωk (3.1b)

The amplitude of a given wave is in equation 3.1b described as a Rayleigh distributed function

of the frequency. S(ω) is the WFS and ∆ω = (ωk+1 −ωk−1)/2. k typically will be at least 1000 if

properties of extreme waves are to be captured. Figure 3.3 is a LLWM with k=3. It is worth noting

that the LLWM is a 2-dimensional model and does not account for sea states with several wave

directions.

A further simplification to the model can be made. In Haaland (2016), the waves are modeled

as a single frequency sinusoidal. That would reduce the LLWM equation 3.1 to:

η(t ) = cos(ωp t +θ) (3.2a)

A = Hs (3.2b)
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Figure 3.3: This figure illustrates how the sum of waves with different parameters can repre-
sent ocean waves. The simulated ocean wave consists of three sinusoidal waves with different
amplitude, frequency and phase.

3.5 Wave Frequency Spectrum

To find the peak frequency ωp and significant wave height Hs for equation 3.2, the WFS must

be approximated. This can be a difficult task, due to the effect several parameters have on the

frequency. Some of these effects are:

• Swells may be present and have a different directionality than the wind waves. The spread-

ing function cannot account for the presence of swells.
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• The fetch and limits to the fetch will set boundaries to how the waves develop.

• Whether the sea is developing or decaying is also important for the WFS.

• Strong currents can significantly impact the wave spectrum.

• Sea depth. Deep water WFS are not valid in shallow water and vice versa.

• Human interference, such as naval traffic.

Fortunately there are some models that can be used to develop the WFS. For wind seas, the

Pierson-Moskowitz Spectrum (PM) is used to describe the wave spectrum of a fully developed

sea. Figure 3.4 show WFS of a PM for certain wind speeds. The relation between peak frequency

ωp and significant wave height Hs and the wind speed is:

ωp = 0.877g /U19.5 (3.3a)

H 2
s = 2.74∗10−3 (U19.5)4

g 2
(3.3b)

where g is the gravitational constant and U19.5 is the wind speed at 19.5[m] above mean sea

level. According to data from met (2017) wind speeds of more than 17[m/s] only occur a couple

of days a year for a given location. Figure 3.5 is a plot of the significant frequency and height for

different wind speeds. PM for wind speeds where Hs>0.10[m] was plotted in figure 3.6 and table

3.1.

The Joint North Sea Wave Observation Project (JONSWAP) found that due to non-linear in-

teractions between the waves, peak frequency could get even more pronounced. The JONSWAP

model is basically the same as the PM, but with a gain that makes the peak frequencies more

pronounced.
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Figure 3.4: Pierson-Moskowitz wave frequency spectrum for a different set of wind speeds.
Source: Stewart (1997)

The PM and JONSWAP models only work on fully developed sea states, or close to fully de-

veloped in JONSWAPs case. Moderate to low sea states are often composed of both wind waves

and swells. Swells typically have a frequency of 0.04-0.10 [Hz]. A two peak wave spectrum may

be beneficial in such waters, but for simplicity will not be considered.
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Figure 3.5: Pierson-Moskowitz: Spectral peak frequencyωp (left) and significant wave height Hs

(right) as a function of wind speed.
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Figure 3.6: Same plot as in figure 3.5, but only for windspeeds that generate a Hs>0.10 [m]

Table 3.1: The minimum and maximum values of PM waves with maximum wave speed 17 [m/s]
and minimum significant wave height Hs>0.10[m]

Min Max
Hs [m] 0.10 6.11
ωp /(2π) [rad/s] 0.081 0.622
Wave speed [m/s] 2.2 16.9
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3.6 Concluding the Wave Description

Combining the frequency spectrum of wind waves from table 3.1 with the spectrum of the

swells, we have a ωp in the area of 0.04-0.62 ·2π [rad/s]. From figure 3.5 it is apparent that the

frequency development at low wind speeds is steep. An extra margin was put on the high fre-

quencies. The peak frequency spectrum (PFS) is therefore 0.04-1.00 ·2π [rad/s]. The significant

height can have any value less than 6[m]. In addition, dnv (2012) informs that it is common to

assume that the sea surface is stationary for up to 6 hours. The wave frequency will therefore be

modeled as time invariant.

Test Frequencies

Some of the figures in this thesis were computationally heavy to calculate with high resolution.

For that reason a set of frequencies were picked out for these types of simulations. The frequen-

cies should best represent the PFS and were therefore chosen as the lowest (0.04·2π [rad/s])

and highest (1.00·2π [rad/s]) end of the frequency, as well as the logarithmic middle frequency

(0.20·2π [rad/s]). These represent low, middle and high frequencies. In addition a frequency of

0.60·2π [rad/s] was added to the test frequencies. This is close to the highest frequency found in

table 3.1.



Chapter 4

Simulation Model

In this chapter, a model that simulates the true states, as well as state measurements, of an UV

is developed. Some of the parameter values will be stochastic. As a consequence each simu-

lation will generate a different set of values for states and measurements. In chapters 5-7, the

simulations are used as input in the estimation procedure. The objective of the estimators is

to accurately estimate the simulated depth. The estimation procedure will normally be done

for an ensemble of simulations. This allows for the statistical properties of the estimators to be

studied. This method of simulation is known as Monte Carlo simulation.

4.0.1 Simulated States

The states vector is as follows: 

z

v

b

Dz

ψ

ω


(4.1)

These states are explained in the following paragraphs. The system of reference is given in sec-

tion 3.1 as a one dimensional system with the positive direction pointing downwards, orthogo-

nal to the horizontal plane.

24
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State 1: Depth (z) Depth is the the vertical position of the UV relative to the sea surface. The

estimator’s main objective is to estimate depth accurately. Estimation of the other states is only

done to improve the depth estimate. The initial depth (z0) is arbitrary set to 100[m]. This value

is of no importance to the simulations. The propagation of z is given by v.

State 2: Depth velocity (v) Depth velocity is the speed of the UV in the vertical column (as-

cending/descending). The initial depth velocity (v0) is set to 0 [m/s]. This would be a natu-

ral value at the start up. The propagation, described in equation 4.2b is a sinusoidal function.

This is so the system continuously will accelerate and decelerate, making sure the velocity stays

within reasonable values as well as not having a constant value.

State 3: Accelerometer Bias (b) The accelerometer is subjected to bias in measurements. This

bias is modeled as a Gauss-Markov process. The value of the initial accelerometer bias is Gaus-

sian with a STD of σb .

State 4: Wave Bias (Dz) The pressure sensor is subjected to a bias in the depth measurements

that is caused by ocean waves. In section 3.4 the bias model was derived as a single sinusoidal

wave. All values of the wave bias is set by equation 4.2d.

State 5: Wave Bias Velocity (ψ) As the name implies, this state describes the velocity of state 4.

All values of the wave bias velocity are given by equation 4.2e.

State 6: Wave Frequency (ω) As explained in section 3.4, the waves can be treated as a time

invariant single frequency sinusoidal. The initial frequency (ω0) will have a value in the peak

frequency spectrum (0.04-1.00·2π[rad/s]). The frequency will be time invariant.

Symbols, units and initial values for the different states are summed up in table 4.1. The

equations 4.2a-4.2c and 4.2f describe the propagation of respectively z, v, b andω from the initial
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Table 4.1: Simulated states

State Symbol Initial value Unit
Depth z 100 [m]
Depth velocity v 0 [m/s]
Accelerometer bias b µ= 0,ST D =σb [m/s2]
Wave bias Dz All values given by 4.2d [m]
Wave bias velocity ψ All values given by 4.2e [m/s]
Wave frequency ω 0.04·2π to 1.00·2π [rad/s]

values. Equation 4.2d and 4.2e describe all values of Dz and ψ.

ż = v (4.2a)

v̇ = a (4.2b)

= 0.1si n(t )

ḃ =− 1

Tacc
b +wb (4.2c)

Dz = Amaxcos(ωt +θ) (4.2d)

ψ= Ḋz

=ωAmaxcos(ωt +θ) (4.2e)

ω̇= 0 (4.2f)

4.0.2 Accelerometer and Pressure Sensor Measurement

The measurements of accelerometer (aacc ) is given by equation 4.3a while the pressure sensor

measurement (zpr es) is given by 4.3b.

aacc = a −b −wacc (4.3a)

zpr es = z −Dz + vz (4.3b)
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4.0.3 Parameter Values in the Simulation Model

Wave Parameters

θ The initial wave bias will wary as the waves will be in a different phase. This parameter

ensures that this also holds true for the simulation. It will have a random value between 0 and

2π.

Amax This parameter, the maximum amplitude, is the amplitude of the simulated waves. It

is half the significant height Hs , defined in section 3.6). Amax must therefore be less than 3[m].

Unless noted otherwise the value of Amax in 1[m]. That is so that the Dz would dominate the

noise of the pressure sensor, while still not being at the top of the possible amplitude span. 1.

Accelerometer Parameters

For the simulation the accelerometer parameters were set to typical values.

σb This is the standard deviation of the accelerometer bias. A typical value for this param-

eteris σb = 25 [µ g] In SI units: σb = 245,25 [µm/s2]

Tacc This is the time constant of the accelerometer. This value depends on the quality of

the accelerometer. A typical values for this parameter is Tacc = 3600 [s].

wacc This is the GWN in the aacc . The standard deviation is given by σwacc .This value is

typically 25 [µg ]. In SI units: σwacc = 245,25 [µm/s2]

wb As explained in section 4.0.1, the bias of the accelerometer is time variant. It also drifts

randomly. wb is a GWN that represents this randomness. σwb is calculated as a function of σb

1At a depth of 100[m] this amplitude might not be realistic. However the simulated depth value has no impact
on other states and parameters.
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and Tacc :

σwb =
√

2

Tacc
·σb

= 5.78[µm/s
5
2 ]

(4.4)

Sa The accelerometer does not make continuous measurements. Instead it samples at a

certain frequency. The accelerometer sample rate was set to a typical value: 100 [Hz].

Pressure Sensor Parameters

vz Like the wacc , vz is a GWN that represent random inaccuracies in a measurement in-

strument, this being the pressure sensor. It is denoted by v since it is apart of the measurement,

not the process. σv is set to 0.1 [m].

Sp Like the accelerometer, the pressure sensor has a sample rate. This rate is set to 10 [Hz].

The reasoning for this value is discussed in section 5.2.4.

An overview of the current parameters and their values is detailed in table 4.2. The ac-

celerometer parameters,σb , Tacc ,σwacc andσwb , have the values of a more exact accelerometer.

Table 4.2: Model 1: GMM parameters

Variable Value Unit Explanation Section
Wave-
parameters

θ 0-2π rad Wave phase 4.0.3
Amax 1 m Max wave amplitude 4.0.3

Accelero-
meter
parameters

σwacc 245,25 µm/s2 STD GWN accelerometer 4.0.3
σb 245,25 µm/s2 STD bias accelerometer 4.0.3

σwb 5.78 µm/s
5
2 STD GWN accelerometer bias 4.0.3

Sa 100 Hz Sample rate accelerometer 4.0.3
Tacc 3600 s Time constant accelerometer 4.0.3

P. sensor
parameters

Sp 10 Hz Sample rate pressure sensor 5.2.4
σvz 0.1 m STD GWN pressure sensor 4.0.3
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4.0.4 Verification of Implementation

Before moving on to the estimators, the simulation implementation was inspected to check for

errors in the code. Plots shown in this section are from a single simulation with ω = 0.04 · 2π.

These plots are compared to the model equations and parameter values.

Verification: Simulated True States

The acceleration and the true states, are plotted in figure 4.1. With the exception of the ac-

celerometer bias, the states and acceleration was plotted over 50 [s]. The accelerometer bias

was plotted over 600[s] due to its slow dynamics.

The acceleration is given by equation 4.2b. This is a sinusoidal function with an amplitude

0.1 and period 2π [s]. The velocity is given by the initial velocity, v0 = 0 and the integrate of the

acceleration. Similarly the depth is given as by z0 = 100[m] and the integrate of the velocity. The

equations for depth and velocity can be rewritten as:

v =v0 +
∫ t

0
0.1si n(t )d t

=0.1−0.1cos(t ) (4.5a)

z =z0 +
∫ t

0
0.1−0.1cos(t )d t

=100+0.1t −0.1si n(t ) (4.5b)

.

The plots for the simulated depth, velocity and acceleration is shown in figures 4.1a, 4.1b

and 4.1c. These plots are consistent with the equations 4.5b, 4.5a and 4.2b,

The accelerometer bias, in figure 4.1d is consistent with that of the accelerometer Gauss-

Markov process in equation 4.2c. From table 4.1 and 4.2 the following confirmations are made:

• The white noise, σwacc , is as large as σb . The − 1
Tacc

σb term is therefore less dominant over

short time spans. However over a 600[s] plot, the contribution of the time constant term

is noticeable as b goes towards zero.

• The white noise is within the σwacc
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According to equations for the wave bias, Dz, and its velocity, ψ, 4.2d and 4.2e:

• the amplitude should be 1[m] for Dz and ω[m] for ψ.

• the time period should be 2π
ω

= 25[s][s] for both Dz and ψ

• the phase difference between Dz (sinus) and ψ (cosinus) should be 2π
4ω = 6.25[s].

This checks out when compared to the simulations seen in figures 4.1e and 4.1f.

The last state, ω, is described as having a constant value in equation 4.2f. In this simulation

that would be 0.04 ·2π≈ 0.2513[rad/s]. The plot in figure 4.1g verifies that the simulated values

are correct.
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Figure 4.1: Acceleration and true states

Verification: Measurements

The values of the accelerometer bias b and white noise wacc stays low compared to the true

acceleration. This is also true in the simulation. See figure 4.2.
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The pressure sensor measurements are less accurate as the noise vpr es is a larger portion of

the signal. Figures 4.2c displays the same dynamics as equation 4.3b. This is made more clear

in figure 4.2d where the pressure sensor is plotted against z-Dz.
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Figure 4.2: Measurements



Chapter 5

Gauss Markov Model

The estimator model discussed in this chapter is based on Gade (1997) and has been used on site

in depth estimation. It therefore has some merit and can serve as a benchmark for performance

that the estimators developed in chapter 6 and 7 can be compared to. To avoid a mix up, the

model in this chapter is referred to as Gauss Markov Model (GMM). The name stems from that

the wave bias is modeled as a Gauss Markov process.

The bias is not the only state in the estimation process. The state vector for GMM is:



z

v

b

Dz


(5.1)

The equations for the process are expressed in 5.2 while the measurement is expressed by

33
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equation 5.3.

ż =v (5.2a)

v̇ =aacc +b +wacc (5.2b)

ḃ =− 1

Tacc
b +wb (5.2c)

Ḋz =− 1

TDz
Dz +wDz (5.2d)

(5.2e)

zpr es = z −Dz + vz (5.3)

The system on state space form is:

ẋ =Ax +Bu +Ew (5.4a)

y =C x + v (5.4b)



ż

v̇

ḃ

Ḋz


=



0 1 0 0

0 0 1 0

0 0 −( 1
Tacc

) 0

0 0 0 −( 1
TDz

)


︸ ︷︷ ︸

A



z

v

b

Dz


+



0

1

0

0


︸︷︷︸

B

aacc +



0 0 0

1 0 0

0 1 0

0 0 1


︸ ︷︷ ︸

E


wacc

wb

wDz

 (5.5)

zpr es =
[

1 0 0 −1
]

︸ ︷︷ ︸
H



z

v

b

Dz


+ vz (5.6)
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Q =


σ2

wacc
0 0

0 σ2
wb

0

0 0 σ2
wDz

 (5.7a)

R =σvz (5.7b)

5.0.1 Parameters in the GMM

Most of the parameters are the same as in section 4.0.3. However, there are two new param-

eters introduced in the wave bias estimation process, see equation 5.2d. The values of these

parameters are have been used for in site depth estimation.

TDz This is the time constant of the bias caused by the waves. This parameter was set to

100[s].

wDz This is the contribution of random factors in the wave bias Gauss-Markov process. It

is a GWN with standard deviation σwDz = 0.15[m].

These values are appended to table 4.2 to create a, so far, complete overview of parameter

values in table 5.1. Since this GMM has the default parameter values, it was called Default Gauss

Markov Model (DGMM).

Optimized GMM

Haaland (2016) found some other values for the GMM parameters TDz and σwDz that improved

the measurement accuracy for one set of test data. Further support is found in Hagen and Jalv-

ing (2017), where a method of optimizing the GMM parameters, regarding estimate accuracy, is

developed. With this model the time constant TDz was set to 1.28[s]. The optimizer for σwDz ,

depending on the frequency, is 0.23-5.76[m/s]. Since the GMM-parameters of this model are

optimized, it will be referred to as Optimized Gauss Markov Model (OGMM).

When comparing the GMM with the models in chapter 6 and 7, the DGMM will represent the

least accurate estimator of the GMM, while the OGMM will represent the most accurate. Since
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the DGMM is already in use, any new models will have to perform at least as well. Else there is

no reason for the industry to adopt the model. If a model performs better than the OGMM, it

would indicate that the new estimator is more accurate than GMM all together.

Table 5.1: GMM parameters

Variable Value Unit Explanation Section
Wave-
parameters

θ 0-2π rad Wave phase 4.0.3
Amax 1 m Max wave amplitude 4.0.3

Accelero-
meter
parameters

σwacc 245,25 µm/s2 STD GWN accelerometer 4.0.3
σb 245,25 µm/s2 STD bias accelerometer 4.0.3

σwb 5.78 µm/s
5
2 STD GWN accelerometer bias 4.0.3

Sa 100 Hz Sample rate accelerometer 4.0.3
Tacc 3600 s Time constant accelerometer 4.0.3

P. sensor
parameters

Sp 10 Hz Sample rate pressure sensor 5.2.4
σvz 0.1 m STD GWN pressure sensor 4.0.3

DGMM
σwDz 0.15 m STD GWN wave bias 5.0.1
TDz 100 s Time constant wave bias 5.0.1

OGMM
σwDz 0.23-5.76 m STD GWN wave bias 5.0.1
TDz 1.28 s Time constant wave bias 5.0.1

5.1 Linear Kalman Filter

The estimation algorithm of GMM is a Linear Kalman Filter. Section 2.4.1 lists some require-

ments for this algorithm. They are repeated here, for sake of convenience:

1. The process noise and the measurement noise are Gaussian and white

2. The initial state is Gaussian

3. The system is linear

4. The system is observable

1. Process noise wacc , wb , wDz and vz are all Gaussian and white. See section 4.0.3 and 5.0.1.
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2. Initial state z0, v0,b0 and Dz0 are, as detailed in section 4.0.1, Gaussian.

3. Linear system The state space form of both the GMMs are detailed in equations 5.5 and 5.6.

None of the terms presented here are nonlinear, thus the systems are linear.

4. Observable system With equation 2.2 the observability matrix of the GMMs was checked.

Observability GMM

OGM M =



1 0 0 −1

0 1 0 ( 1
TDz

)

0 0 1 −( 1
TDz

)2

0 0 − 1
Tacc

( 1
TDz

)3

 (5.8)

The time constants are positive by nature. This leaves OGM M with full rank as long as Tacc 6=
TDz . This easily be avoided.

5.2 Simulation

To assess the performance of the two methods, they were given input from the simulation de-

scribed in chapter 4.

5.2.1 Discretization

The GMM system equations as described in 5.2 and 5.3 are given in continuous time. As ex-

plained in section 2.4.1, a discrete system is better at lending itself to computational problems.

The continuous systems must therefore be discretized.

A, B, Q and R from equations 5.6-5.7 are discretized and symbolized by φ, ∆, Qd and Rd

respectively. The Euler method is used for∆ and Rd since these are related to the measurements

and are not subjected to feedback. φ and Qd , however are, and the Van Loan method is used

instead, since it is exact. The discretization is given by equation 5.9. Sacc and Spr es are the

sampling rates given in table 5.1.
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∆= 1

Sacc
B (5.9a)

Rd =Spr esR (5.9b)

[φ(k),Qd (k)] =V anLoan (5.9c)

5.2.2 Verification of the GMM Estimation

To see whether the model was implemented correctly, states and estimates were compared. The

plots shown in this section are from a single simulation with ω = 0.04 ·2π. This frequency was

chosen since the dynamics are slower and easier to observe.

Figures 5.1 and 5.2 show the estimates compared to the true states for DGMM. The same

is done for OGMM in figures 5.3 and 5.4. σz is the standard deviation in the depth estimate,

taken from the diagonal of the P-matrix. The true depth is denoted by z. zE is the estimate. The

difference, in absolute value, of the estimate and the true state is given by the depth error ez . Dz

is the true wave bias.

As expected both models are affected by the wave bias. This becomes especially clear in

figures 5.2 and 5.4.
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Figure 5.1: DGMM: Estimated and true z
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CHAPTER 5. GAUSS MARKOV MODEL 40

0 5 10 15 20 25 30
98

99

100

101

102

103

104

105

time[s]

P
os

iti
on

[m
]

 

 
z

E

z
σ

z

(a) Initiation

30 40 50 60 70 80 90 100
101

102

103

104

105

106

107

108

109

110

111

112

time[s]

P
os

iti
on

[m
]

 

 
z

E

z
σ

z

(b) After initiation (note timespan)

Figure 5.3: OGMM: Estimated and true z
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5.2.3 Evaluating GMM

From figures 5.2 and 5.4 it was apparent that the accuracy of both estimators is low during initi-

ation. Measures could be taken to improve the time of convergence. These are not discussed in

this thesis. Instead the accuracy was evaluated from a stable state. Figures 5.5-5.6 show ez and

σz over a 600[s] simulation. Values were plotted for both low frequencies, ω = 0.04·2π [rad/s],

and high frequencies, ω = 1.00·2π[rad/s].

As expected, the estimates reached steady state faster when the frequencies are larger. This

partly due to it taking less time to observe the wave bias. For low frequencies OGMM does not

reach steady state for σz until approximately 500[s] into the simulation. The DGMM converges

faster and need 200-250[s] for σz to be steady state. When addressing the accuracy of the esti-

mator models, the error will be calculated for 500[s] and onwards. Note that the σz is not the

standard deviation of ez . This is because the states are modelled differently in the estimator, see

equations 5.2, than in the simulation model, see equations 4.2.

Figure 5.7 show the accuracy of GMM, optimized and not over 600[s] long simulations. A

comparison of the µez for test frequencies is noted in table 5.2. These values are approximates.

Table 5.2: A comparison of approximate depth errors at different frequencies.

STD ez[m]
ω/2π [Hz] OGMM DGMM
0.04 0.095 0.53
0.20 0.035 0.41
0.60 0.018 0.20
1.00 0.013 0.13
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Figure 5.5: DGMM: 600[s] simulation
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Figure 5.7: GMM: Mean estimation error µez at different wave frequencies

5.2.4 Pressure Sensor Sampling Rate

The pressure sensor sampling rate, Sp , is important for the estimation process. All information

on the wave bias is taken from the pressure sensor measurements. Figure 5.8 show how the

µez relates to the frequency when Sp = 1[Hz]. A repeating pattern emerges when looking over a

greater range of frequencies, see figures 5.9 and 5.10. The same figure also show a close up of

the ez-dynamics close to the spikes.

Pattern

From figures 5.9 and 5.10 the following patterns are observed:

• Both estimation methods repeat a pattern for every N [Hz], where N is any given integer

larger than zero.

• For both DGMM and OGMM spikes occur in and around 0.5N [Hz].

• The µez gets larger close to N[Hz], but gets small again at the center of the spike.

• Of all frequencies, the estimates are most exact at 0.5 [Hz] for GMM.

The Nyquist Sampling Theorem (NST) lends an explanation to this pattern. The estimates

get more accurate until 0.5 [Hz]. At which point the Nyquist sampling rate of more than twice
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Figure 5.8: GMM: error for different frequencies. Sacc = 1[Hz]
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Figure 5.9: DGMM with Spr es = 1[H z]
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the frequency of the signal is no more. This pattern repeats itself as a result of aliasing. At a wave

frequency of 0.5 [Hz] pressure measurement might not get the right information of the system

dynamics. However in some cases that might be good for estimation, as the wave bias after all

is noise.

Figure 5.11 illustrates how the phase relation between the wave bias and sampling rate might

both increase and decrease the accuracy. These phase relations are simulated in figures 5.12 and

5.13. Due to phase, the best estimates should have an accuracy approximately the measurement

noise (0.1[m]), while the worst will have an approximate accuracy of max wave bias amplitude

(1[m]) plus/minus measurement noise. The spikes in figures 5.9 and 5.10 substantiate these

claims.

A solution to the problem is to have the pressure sensor sampling frequency Sp high enough

that the discussed phenomena do not occur, see figure 5.14. Although it needed not be that

high, Sp was set to 10[Hz].
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Figure 5.12: The figures show the dynamics in figure 5.11 at work with DGMM on the simulation
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Chapter 6

Wave Bias Model 1

The model described in this chapter is similar to the GMM with one major difference: the pro-

cess of the wave bias is modeled as an oscillatory function. Due to this it will be referred to

as the Wave Bias Model (WBM). The model was developed in Haaland (2016) and its estimates

were more accurate than those of the DGMM. However, the WBM was only tested on one set

of data with one specific wave frequency. In this chapter the WBM will be implemented on the

simulation data from chapter 4 so that it can be tested on different frequencies. In chapter 7

the model will be further developed so that it may estimate unknown frequencies accurately.

To avoid confusion, the model in this chapter is referred to as WBM1, while the one in the next

chapter is WBM2.

In order to model the wave bias Dz as an oscillatory function, the differential equation needs

to be of second order. For the state space, that means adding an extra state: wave bias velocity

ψ. The state vector of the WBM1 is: 

z

v

b

Dz

ψ


(6.1)

The process is given by 6.2. The measurement is expressed by equation 6.3, which is the

50
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same as for GMM.

ż =v (6.2a)

v̇ =aacc +b +wacc (6.2b)

ḃ =− 1

Tacc
b +wb (6.2c)

Ḋz =ψ (6.2d)

ψ̇=−ω2
ADz +wḊz (6.2e)

zpr es = z −Dz + vz (6.3)

The system presented on state space form is:

ẋ =Ax +Bu +Ew (6.4a)

y =C x + v (6.4b)



ż

v̇

ḃ

Ḋz

ψ̇


=



0 1 0 0 0

0 0 1 0 0

0 0 −( 1
Tacc

) 0 0

0 0 0 0 1

0 0 0 −ω2
A 0


︸ ︷︷ ︸

A



z

v

b

Dz

ψ


+



0

1

0

0

0


︸︷︷︸

B

aacc +



0 0 0

1 0 0

0 1 0

0 0 0

0 0 1


︸ ︷︷ ︸

E


wacc

wb

wψ

 (6.5)
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zpr es =
[

1 0 0 −1 0
]

︸ ︷︷ ︸
H



z

v

b

Dz

ψ


+ vz (6.6)

Q =


σ2

wacc
0 0

0 σ2
wb

0

0 0 σ2
wψ

 (6.7a)

R =σvz (6.7b)

6.0.1 Parameters in WBM1

Most of the parameter values are explained in section 4.0.3. The parameters introduced by

WBM1 are σwψ and ωA.

σwψ This is the contribution of random noise in the wave bias. It is GWN with a standard

deviation σwψ of 0.020[m]. This value was determined in Haaland (2016) through tuning.

ωA WBM1 is dependent on an accurate estimate of the wave frequency. The assumed fre-

quency, ωA, is equal to that of the true wave frequency ω.

An overview of the current parameters and their values is detailed in table 6.1.
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Table 6.1: WBM1 parameters

Variable Value Unit Explanation Section
Wave-
parameters

θ 0-2π rad Wave phase 4.0.3
Amax 1 m Max wave amplitude 4.0.3

Accelero-
meter
parameters

σwacc 245,25 µm/s2 STD GWN accelerometer 4.0.3
σb 245,25 µm/s2 STD bias accelerometer 4.0.3

σwb 5.78 µm/s
5
2 STD GWN accelerometer bias 4.0.3

Sa 100 Hz Sample rate accelerometer 4.0.3
Tacc 3600 s Time constant accelerometer 4.0.3

P. sensor
parameters

Sp 10 Hz Sample rate pressure sensor 5.2.4
σvz 0.1 m STD GWN pressure sensor 4.0.3

WBM1
σwψ 0.020 m STD GWN wave bias 6.0.1
ωA ω rad/s Time constant wave bias 6.0.1

6.1 Linear Kalman Filter

In the same way as for the GMM, the estimation algorithm is a Linear Kalman Filter. The same

requirements as in section 5.1 are checked for WBM1.

1. Process noise wacc , wb , wψ and vz are all Gaussian and white. See sections 4.0.3 and 6.0.1.

2. Initial state z0, v0,b0,Dz0 and ψ0 are, as detailed in section 4.0.1, Gaussian.

3. Linear system The state space form of both the WBM1 is detailed in equations 6.5 and 6.6.

Neither of the process or measurement matrices contain any states. The system is therefore

linear.

4. Observable system With equation 2.2 the observability matrix of WBM1 was checked.
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Observability WBM1

OW B M1 =



1 0 0 −1 0

0 1 0 0 −1

0 0 1 ω2
A 0

0 0 −( 1
Tacc

) 0 ω2
A

0 0 ( 1
Tacc

)2 −ω4
A 0


(6.8)

OW B M1 has full rank for ωA 6= 0. Waves with a very low frequency and accelerometers with

very high time constant could cause problems. However, with the Tacc value from section 4.0.3

and the ωA is within the peak frequency spectrum defined in section 3.6, observability is en-

sured. The systems thereby satisfy the requirements for implementing a linear Kalman Filter.

6.2 Simulation

Like with the GMM, WBM1 was given input from the simulation generated by the simulation

model presented in chapter 4. The discretization and estimation verification was conducted in

the same fashion as for GMM, described in section 5.2. Figures 6.1 and 6.2 are from a single

simulation withω= 0.04 ·2π. Compared to GMM, see figure 6.2, it is apparent that the impact of

the wave bias is much less on WBM1. This is in line with the findings of Haaland (2016).
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6.2.1 Comparing WBM and GMM

Figure 6.2 shows that the estimation error is high during initiation. As with GMM, the accuracy

of WBM1 will be considered from when the estimation error has reached a steady state. Figure

6.3 show ez andσz over a 600[s] simulation. Values are plotted for bothω = 0.04·2π [rad/s] andω

= 1.00·2π[rad/s]. As expected, the estimates reach steady state quicker when the frequencies are

larger. For low frequencies theσz is at steady state approximately 200-250[s] into the simulation.

When addressing the accuracy of the estimator models, the error will be calculated for 250[s] and

onwards.

Figure 6.4 show WBM1 for frequencies of 0.04-1.00[Hz]. A comparison of the µez for test

frequencies is noted in table 6.2. These values are approximates. It can be observed that the

benefits of WBM1 compared to GMM are more pronounced at low frequencies. At ω/(2π) =

1[Hz] the OGMM is about as accurate as WBM1.

Table 6.2: A comparison of approximate depth errors at different frequencies.

STD ez[m]
ω/2π [Hz] OGMM DGMM WBM1
0.04 0.095 0.53 0.004-0.014
0.20 0.035 0.41 0.004-0.014
0.60 0.018 0.20 0.004-0.014
1.00 0.013 0.13 0.004-0.014
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Figure 6.3: WBM for ω = ωA
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6.2.2 WBM1 for unknownω

So far WBM1 has only been evaluated for ωA = ω. As explained in chapter 1, one of the primary

objectives is to create a model that works for unknown wave frequencies. In this section, the per-

formance of WBM1 with unknown ω is explored. The performance of the model was compared

to both and OGMM.

An overall plot of WBM1 for all reasonable values of assumed and true wave frequencies

is shown in figure 6.5. Not surprisingly, the most accurate estimates are achieved when the

assumed frequency equals the true. In the logarithmic plot, figure 6.5b, this relation is apparent.

So that the models could compare to the WBM, the OGMM and were plotted in figure 6.6.

Note that these 3D-plots are actually the 2D-plots of figure 5.7 plotted for differentωA. SinceωA

is not a part of the GMMs, the mean estimation error µez is the same for all ωA.

Comparing plots are that show the difference in µez are presented in figures 6.7 and 6.8. The

difference in figure 6.7a (∆eD ) is given by:

∆eD = ezW B M −ezDGM M (6.9)

In figure 6.8a, the difference (∆eO) is defined as:

∆eO = ezW B M −ezOGM M (6.10)

A negative ∆e means that for the given combination of ω and ωA, the WBM1 is more accurate

than the compared model (OGMM or DGMM). Figures 6.7b and 6.8b is a simple representation

of∆eD and∆eO . The areas where WBM1 is more accurate is colored blue, the areas where the ac-

curacy is approximately the same (± 0.01[m]) is colored green, and the areas where WBM1 is less

accurate is colored brown. ∆eD for all values of assumed and estimated ω, are negative. WBM1

does therefore seem to be a more accurate model than DGMM, even whenωA is completely off.

This is not the case for ∆eO . The WBM is more accurate only when ωA ≈ ω. At medium

to high frequencies, the difference between the two models is little. At low frequencies, with

ωA being off, the OGMM is much more accurate. However it is also at low frequencies that

the potential benefit of WBM1 over the GMM is greatest. This, however, requires either that ω
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Figure 6.5: µez for WBM at different ω and ωA
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Figure 6.6: GMM for different ω and ωA

is known or that it can be estimated. Keeping with the objectives given in chapter 1, ω is not

known. A model that estimates ω was therefore developed. This model is detailed in chapter 7.
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Figure 6.7: Difference in µez between the OGMM estimates and the GMM (∆eD ) for different
true and assumed wave frequencies. ∆eD = ezW B M1 − ezDGM M . WBM1 is more accurate than
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Chapter 7

Wave Bias Model 2

As detailed in chapter 6, the depth estimate of WBM1 is most accurate when ωA =ω. However,

in chapter 1 it is specified that wave parameters are not known. Therefore, in this chapter, an

expanded version of WBM1 is developed where the wave frequency is included in the state vec-

tor and estimated jointly with the other states. This model is referred to as WBM2 and its state

vector is 

z

v

b

Dz

ψ

ω


(7.1)

The process model is given by equation 7.2. The measurement is equal to that og GMM and

WBM1. For the sake of convenience it is repeated in 7.3. As seen in equation 7.2f, omega is

62
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modeled as a Gauss Markov process.

ż =v (7.2a)

v̇ =aacc +b +wacc (7.2b)

ḃ =− 1

Tacc
b +wb (7.2c)

Ḋz =ψ (7.2d)

ψ̇=−ω2Dz +wψ (7.2e)

ω̇= 1

Tω
(ωM −ω)+wω (7.2f)

zpr es = z −Dz + vz (7.3)

On state space form, the system is:

ẋ =Ax +Bu +Ew (7.4a)

y =C x + v (7.4b)



ż

v̇

ḃ

Ḋz

ψ̇

ω̇


=



0 1 0 0 0 0

0 0 1 0 0 0

0 0 −( 1
Tacc

) 0 0 0

0 0 0 0 1 0

0 0 0 −ω2 0 0

0 0 0 0 0 −( 1
Tω

)


︸ ︷︷ ︸

A



z

v

b

Dz

ψ

ω


+



0 0

1 0

0 0

0 0

0 0

0 1
Tω


︸ ︷︷ ︸

B

aacc

ωM

+



0 0 0 0

1 0 0 0

0 1 0 0

0 0 0 0

0 0 1 0

0 0 0 1


︸ ︷︷ ︸

E



wacc

wb

wψ

wω



(7.5)
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zpr es =
[

1 0 0 −1 0 0
]

︸ ︷︷ ︸
H



z

v

b

Dz

ψ

ω


+ vz (7.6)

Q =



σ2
wacc

0 0 0

0 σ2
wb

0 0

0 0 σ2
wψ

0

0 0 0 σ2
wω


(7.7a)

R =σvz (7.7b)

7.0.1 Parameters in WBM2

Most of the parameters are the same as presented in section 4.0.3. The WBM2 parameters ωM ,

σwω , σwψ and Tω are detailed here.

ωM Since the wave frequency is positive, the mean wave frequency cannot be zero. A more

likely candidate, the middle wave frequency ωM , is added to make sure the Gauss Markov pro-

cess described in 7.2f goes towards a more likely, positive wave frequency. This parameter value

will also serve as the initial estimate of the wave frequency ω. ωM was set to 0.20·2π[rad/s]. The

reasoning behind this value is explained in section 7.2.2.

wω The wave frequency is modeled so that it is subjected to GWN. Since the wave fre-

quency is constant the standard deviation is given a low value: σwω = 10−3[rad/s]

wψ This parameter describes the random noise in the wave bias. This value proved to sig-

nificantly influence the accuracy of the estimator. It will be detailed in section 7.2.2.
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Tω The time constant of the wave frequency was set very high. This is due to the wave

frequency being constant. The value was set to: Tω = 104[s]. The reasoning behind a constant

wave frequency is explained in section 3.6. An overview of all the parameter values for WBM2 is

detailed in table 7.1.

Table 7.1: Model 2: WBM2 parameters

Variable Value Unit Explanation Section
Wave-
parameters

θ 0-2π rad Wave phase 4.0.3
Amax 1 m Max wave amplitude 4.0.3

Accelero-
meter
parameters

σwacc 245,25 µm/s2 STD GWN accelerometer 4.0.3
σb 245,25 µm/s2 STD bias accelerometer 4.0.3

σwb 5.78 µm/s
5
2 STD GWN accelerometer bias 4.0.3

Sa 100 Hz Sample rate accelerometer 4.0.3
Tacc 3600 s Time constant accelerometer 4.0.3

P. sensor
parameters

Sp 10 Hz Sample rate pressure sensor 5.2.4
σvz 0.1 m STD GWN pressure sensor 4.0.3

WBM2

ωM 0.20·2π rad/s Middle wave frequency 7.2.3
σwω 10−3 m STD GWN wave frequency 7.0.1
σwψ Variable m/s STD GWN wave bias velocity 7.2.3
Tω 104 s Time constant wave frequency 7.0.1

7.1 Extended Kalman Filter

The system described so far in this chapter satisfies requirement 1 and 2 from section 2.4.1.

However equation 7.2e is not linear as it contains the term ω2Dz. The Linear Kalman Filter that

was implemented on WBM1 is therefore not applicable. An Extended Kalman Filter (EKF), as

described in section 2.4.2 is used instead.

7.1.1 Linearization

The EKF requires that the process and measurements are linearized. Since the measurement

is linear, the linearization can be omitted. The process was linearized before it is discretized,

even though the reversed order has been proven to be exact (Grammont et al., 2014). This is
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done since it is simpler to discretize a linear system. The linearization of Ax +bu is denoted by

F (x̃(t ),u(t ), t ), see equation 7.8a.

δẋ = F (x̃(t ),u(t ))δx(t )+w(t ) (7.8a)

δzpr es = Hδx + vz(t ) (7.8b)

In the simulation, the linearization is done numerically. To control the numerical method, an

analytical linearizaton was done, shown in 7.9. x denotes the states, while x̃ denotes the state

values at the point of linearization.
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F (x̃(t ),u(t )) =



δ f1
δx1

δ f1
δx2

δ f1
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δ f2
δx3

δ f2
δx4

δ f2
δx5

δ f2
δx6

δ f3
δx1

δ f3
δx2

δ f3
δx3

δ f3
δx4

δ f3
δx5

δ f3
δx6

δ f4
δx1

δ f4
δx2

δ f4
δx3

δ f4
δx4

δ f4
δx5

δ f4
δx6

δ f5
δx1

δ f5
δx2

δ f5
δx3

δ f5
δx4

δ f5
δx5

δ f5
δx6

δ f6
δx1

δ f6
δx2

δ f6
δx3

δ f6
δx4

δ f6
δx5

δ f6
δx6


x=x̃

(7.9a)

F (x̃(t ),u(t ), t ) =



δv
δz

δv
δv

δv
δb

δv
δDz

δv
δḊz

δv
δω

δ(aacc+b)
δz

δ(aacc+b)
δv

δ(aacc+b)
δb

δ(aacc+b)
δDz

δ(aacc+b)
δḊz

δ(aacc+)b
δω

δ(− b
Tacc

)

δz

δ(− b
Tacc

)

δv

δ(− b
Tacc

)

δb

δ(− b
Tacc

)

δDz

δ(− b
Tacc

)

δḊz

δ(− b
Tacc

)

δω

δḊz
δz

δḊz
δv

δḊz
δb

δḊz
δDz

δḊz
δḊz

δḊz
δω

δ(−ω2Dz)
δz

δ(−ω2Dz)
δv

δ(−ω2Dz)
δb

δ(−ω2Dz)
δDz

δ(−ω2Dz)
δḊz

δ(−ω2Dz)
δω

δ(− ω
Tω

)

δz

δ(− ω
Tω

)

δv

δ(− ω
Tω

)

δb

δ(− ω
Tω

)

δDz

δ(− ω
Tω

)

δḊz

δ(− ω
Tω

)

δω


x=x̃

(7.9b)

F (x̃(t ),u(t )) =



0 1 0 0 0 0

0 0 1 0 0 0

0 0 −( 1
Tacc

) 0 0 0

0 0 0 0 1 0

0 0 0 −ω̃2 0 −2ω̃D̃z

0 0 0 0 0 −( 1
Tω

)


(7.9c)

7.1.2 Observability

Another use of the analytical linearization in equation 7.9 is that it can be used to check for

observability.



CHAPTER 7. WAVE BIAS MODEL 2 68

O =



1 0 0 −1 0 0

0 1 0 0 −1 0

0 0 1 ω̃2 0 2ω̃D̃z

0 0 −( 1
Tacc

) 0 ω̃2 −( 1
Tω

)

0 0 1
T 2

acc
−ω̃4 0 2ω̃D̃z( 1

T 2
ω
− ω̃2)

0 0 −( 1
T 3

acc
) 0 −ω̃4 2ω̃D̃z

Tω
(ω̃2 − 1

T 2
ω

)


(7.10)

The matrix 7.10 has full rank for all reasonable values of states and parameters. The system

is observable.

7.2 Simulation

In the same way as the previous model, WBM2 was given input from the simulation model de-

scribed in chapter 4. The discretization was carried out in the same way as for GMM in section

5.2.1. To see whether WBM2, estimates were inspected. Plots shown in figures 7.1 and 7.2 are

from a single simulation with ω= 0.04 ·2π.
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Figure 7.2: WBM: Error in z estimation (ez)
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7.2.1 Evaluating WBM2

As expected, figure 7.2 show that accuracy is low during initiation. Like with GMM and WBM1,

it is the stable state estimates that are of interest. Figure 7.3 show ez and σz over a 2000[s] sim-

ulation. Values are plotted for both ω = 0.04·2π [rad/s] and ω = 1.00·2π[rad/s]. The accuracy of

the estimates will be considered from 1000[s] into the simulation.

Figure 7.4 show the accuracy of WBM2, OGMM and for the entire frequency specter. Ap-

proximate accuracies at test frequencies are detailed in table 7.2. WBM2 outperforms at all fre-

quencies. OGMM however, is more accurate at high frequencies.

Table 7.2: A comparison of approximate depth errors at different frequencies.

STD ez[m]
ω/2π [Hz] OGMM DGMM WBM1 WBM2
0.04 0.095 0.53 0.004-0.014 0.02-0.03
0.20 0.035 0.41 0.004-0.014 0.015-0.045
0.60 0.018 0.20 0.004-0.014 0.01-0.08
1.00 0.013 0.13 0.004-0.014 0.02-0.11
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7.2.2 Wave Bias Velocity Noise

Most of the parameters of WBM2 were simple to estimate, see section 7.0.1. This was not the

case for the standard deviation of the wave bias velocity noise, σwψ . It seemed to be connected

to both wave frequency and amplitude.

Frequency Relation

Figures 7.5-7.8 show a relationship between the mean depth error µez and σwψ for test frequen-

cies. For each sample ofσwψ , ten simulations were conducted. The most accurate, least accurate

and the average estimates were color coded and plotted. The average does not take into account

outliers significance value of 0.05. The same plot is presented twice for each test frequency. This

is to show that there is a big gap in µez at the same time as to present the most accurate range

of σwψ values. These ranges are also shown in table 7.3. It is clear that there is a relationship be-

tween ω and σwψ . Because robustness is important, when talking of accuracy for an ensemble

of estimations, it is the Max values in the plots that is considered.

One possible explanation to how σwψ relates to ω can be found through equation 7.2e, re-

peated here for convenience:

ψ̇=−ω2Dz +wψ
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Figure 7.6: ωM /2π=ω/2π= 0.20[H z]

Table 7.3: Most accurate σwḊz
range for different ω

σwψ [m/s]
ω/2π [Hz] Min Max
0.04 0.001 0.04
0.20 0.1 4
0.60 2 60
1.00 3 200
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Figure 7.7: ωM /2π=ω/2π= 0.60[H z]
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Figure 7.8: ωM /2π=ω/2π= 1.00[H z]
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Table 7.4: Cwψ

Cwψ

ω/2π [Hz] min max
0.04 3.1 25
0.20 5 100
0.60 13.9 166.7
1.00 10 200

Here the contribution of the wave bias depends heavily on ω, while the noise is independent.

One way of changing this is by defining σwψ as a function of ω:

σwψ =ω2Cwψ (7.11)

where CwḊz
is constant for all ω.

Figures 7.5-7.8 have all ωM = ω. To test whether the relation in 7.11 can prevent deviation,

there must exist a Cwψ and ωM that for any ω within the given range, will produce an estimate

that is reasonably accurate. To see whether these parameters exist, a new set of simulations were

estimated with different values of Cwψ , ωM and ω.

The test range ofωM andω is naturally given by the peak frequency spectrum. The test range

of Cwψ is approximated by applying equation 7.11 on the accurateσwψ ranges presented in table

7.3. The result for different wave frequencies is shown in table 7.4. From these values, the range

of Cwψ was initially set to 3-200. However, seeing that the accuracy was much higher at the lower

end of that spectrum, the range was set to 0.01-40. Plots are shown in figures 7.9-7.12.

Some of the lowest values of CwḊz
gave more accurate estimates. However they were also

more prone to diverge. A quick investigation found the most accurate of the robust parameter

value combinations to beωM /(2π) = 0.20 [Hz] and CwḊz
= 4, see table 7.5. This prompted a more

thorough inspection of the accuracy atωM = 0.20 ·2π, which found Cwψ = 5 to be an even better

parameter value.
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Figure 7.9: ωM /2π= 0.04[H z]

Table 7.5: Finding the best ωa and CwḊz

ωa/2π [Hz] Best CwḊz
max ez [m]

0.04 4 0.141
0.15 7 0.081
0.20 4 0.073
0.30 4 0.088
0.40 4 0.089
0.60 1 0.084
1.00 1 0.084
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Figure 7.10: ωM /2π= 0.20[H z]
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Figure 7.11: ωM /2π= 0.60[H z]
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Figure 7.12: ωM /2π= 1.00[H z]



CHAPTER 7. WAVE BIAS MODEL 2 80

Amplitude Relation

In addition to ω the wave bias velocity white noise, and by extension the constant Cwψ , was

connected to the wave amplitude. Figure 7.13 shows this relation for a fixed frequency. Possible

dependencies to amplitude were investigated but not implemented in the model. A large Cwψ

value produced less accurate estimates for small amplitudes, while a small Cwψ value resulted

in less accurate estimates of large amplitudes.

Cwψ = 5 was found to be a good parameter value with regards to frequency. Since the best

Cwψ-value with regards to amplitude was not as clear, Cwψ = 5 was implemented in WBM2.
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Figure 7.13: Each dot is the mean of 10 MC simulations for different amplitudes and with differ-
ent values of Cwψ . All simulations were made with the same wave frequencyω. The figure shows
that there is a relation between wave amplitude and Cwψ .
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7.2.3 Test ofωM

With Cwψ = 5, the performance of WBM2 at different combinations of ω and ωM is plotted fig-

ure 7.14. Each pixel is a single simulation. In figure 7.14a µez is shown directly. To increase

readability all values above 0.1[m] was set to 0.1[m]. To see whether or not an estimate is truly

poor, see figure 7.14b. The color code is such that good estimates (µez<0.05[m]) are blue, less

good estimates (µez>0.05) are colored green and bad/divergent estimates (µez>1[m]) are col-

ored brown. These definitions of good and less good estimates are defined to highlight trends in

the estimation accuracy. They have no relation with any industry standard.

The performance of WBM2 seems to get increasingly worse with higher wave frequencies,

independent of the middle frequency ωM . In addition an ωM of less than 0.14·2π[rad/s] can

cause some poor/divergent estimates. An ωM larger than 0.60·2π[rad/s] gave some suboptimal

estimates for low frequencies. All values in between 0.14 and 0.60 [Hz] had a similar perfor-

mance. SinceωM = 0.20·2π[rad/s] gave the most accurate estimates when tuned along with Cwψ

(see table 7.5) it was implemented as thee parameter value of ωM .
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Figure 7.14: WBM2: µez for different ωM and ω



Chapter 8

WBM2 Performance on Experimental Data

The WBM2 has so far only been tested on simulated data. To verify whether the results gener-

ated in chapter 7 have practical implications, the WBM2 was given experimental data as input.

This data originated from a previous experiment with an UV. The data represents the output

generated by the pressure sensors and accelerometer as the UV was traveling and submerged.

8.1 Simulating the Experimental Data

To evaluate the validity of the simulation model, wave parameters from the experimental data

was approximated and integrated in the model. The maximum amplitude Amax and the peak

frequency ωP of the experimental data set were approximated. Figure 8.1 show the estimated

white noise from a smoothed DGMM on the experimental data. The PSD in figure 8.1b can

be considered as a wave frequency spectrum with ωP ≈ 0.075 · 2π. The relation between the

standard deviation σ and amplitude A of a sinusoidal function is given by:

A =p
2σ (8.1)

Since ωP is so dominant, most of the estimated white noise can be attributed to wave distur-

bance. Adding estimated wave disturbance Dz to this, and the amplitude is derived: Amax ≈
0.062[m]. Table 8.1 shows the performance of the different estimators from chapter 5-7. The

OGMM and WBM1 are the most accurate models. This is expected since they know the fre-
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Figure 8.1: As shown in this figure, the DGMM wrongly attributes wave induced noise as white
noise. The peak wave frequency ωP and maximum amplitude Amax can be approximated from
this data.

Table 8.1: Mean estimate error of simulations with amplitude and wave frequency approximated
from the experimental data. The values given here are the average of 10 MC simulations.

µez [m]
DGMM 0.029
OGMM 0.009
WBM1 0.006
WBM2 0.020

quency and amplitude. The WBM2 is more accurate than the DGMM, but not to the extent as in

figure 7.4. This can be explained by the wave induced noise being a less significant part of the

noise since Amax is smaller.

8.2 Estimating Experimental Data

One of the benefits of the simulated data is that the true states are known. This is not the case

with the experimental data. To evaluate the accuracy of the models, the smoothed estimates

were used. However, the smoothed estimates will also differ with each estimator. Table 8.2

illustrates this. Here the real time estimates are compared to the smoothed. Since the WBM1 es-

timates were the most accurate in the simulated model, it is natural to assume that estimates are

better the less they deviate from WBM1 in on the experimental data estimation. The smoothed
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Table 8.2: Mean error µez between real time estimates and smoothed estimates for different
estimators. The unit of µez is [m]

Smoothed
DGMM OGMM WBM1 WBM2

Real time

DGMM 0.0244 0.1411 0.1412 0.1447
OGMM 0.1375 0.0146 0.0181 0.0425
WBM1 0.1391 0.0236 0.0116 0.0440
WBM2 0.1686 0.0981 0.0988 0.0969

WBM1 values could therefore be assumed as true for the purpose of analysis. However, since

the WBM1 and WBM2 share the same method of wave bias estimation, it is possible that their

estimates will be prone to the same type of errors. In that way a DGMM with equal accuracy

as a WBM1 may appear less accurate. For this reason both the OGMM and WBM1 smoothed

estimates will be considered when evaluating the accuracy of estimates.

8.3 Results of the Estimation

Table 8.3 contains the values of interest from table 8.2. As seen in table 8.3 the real time estimates

by WBM2 are more accurate than those of the DGMM estimates. As seen when comparing table

8.1 with 8.3 the performance of the WBM2 is different when subjected to the experimental data

then that of the simulated data. It is therefore of interest to see whether the dynamics are the

same for other parameter values.

Table 8.3: Mean error µez of real time DGMM and WBM2 compared with Smoothed OGMM and
WBM1. The unit of µez is [m]

Smoothed
OGMM WBM1

Real time
DGMM 0.1411 0.1412
WBM2 0.0981 0.0988
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8.3.1 Tuning Parameters

The parameters of WBM2 as given in table 7.1 are repeated here for the sake of convenience:

1. Middle wave frequency ωM = 0.20 ·2π[rad/s]

2. STD of the white noise of wave frequency σwω = 10−4[m]

3. Wave frequency time constant Tω

4. The constant Cwψ , relating to the STD of the white noise of the wave bias velocity

The impact of parameters 1-3 can be summed up briefly:

ωM This parameter is of little influence as long as it is within the defined spectrum of 0.04-1.00

·2π [rad/s]. The same is true ω0, though the estimates were a little less accurate with higher

frequencies. This is in tune with observations on the simulation model, see figure 7.14.

σwω The accuracy is not significantly impacted as long asσwω-values are kept below 0.1 [rad/s].

Tω For parameter values less than 0.1[s] the estimate deviates. Whether the value is 0.1 or

1020[s] have little effect on the accuracy of the estimates.

Impact of Cwψ

More could be said about the effect of the constant Cwψ than the aforementioned WBM2 param-

eters. The estimate deviate when Cwψ is less than approximately 0.1. For values larger than 0.1

the mean estimate errorµez has an almost linear relationship with Cwψ , see figure 8.2a. With the

wave parameter values extracted from the experimental data, the simulation model has similar

tendencies. See figure 8.2b.

However, this is not the case for all wave frequencies. In fact, converting figures 7.9-7.12 to

arithmetic scale shows that for most frequencies, the relationship is not linear. Figure 8.3 shows

how this can vary for different frequencies and different MC simulations.
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Figure 8.2: The plots show the mean error in estimates for different values of Cwψ in the WBM2
estimator. OGMM is used as true state for the experimental data. For the simulated data, each
line represent a single MC simulation with, estimated with different Cwψ values.
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Figure 8.3: Wave frequencies relate differently to Cwψ . These estimates are of the simulation
model with the parameters described in chapter 4. The left figure shows a linear relation to Cwψ
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8.3.2 WBM2 Performance

As explained, the only WBM2 parameter that could be tuned for a significant benefit to the ac-

curacy of the estimates was the constant Cwψ . Table 8.4 shows a comparison between WBM2

estimates for the value derived at in section 7.2.3 (Cwψ=5) and the best value of Cwψ based on

the tuning that was done on the experimental data. As the innovation of the WBM2 is in the

estimation of wave bias Dz and wave frequency ω, these state estimates were compared for the

two values of Cwψ .

In figure 8.4 a comparison is done for ω estimates. ωtr ue = 0.075 ·2π is the peak frequency

approximated from the PSD in 8.1b. With Cwψ = 0.1 the true frequency is estimated accurately.

That is not the case for Cwψ = 5. Increasing the initial uncertainty, P0, resulted in negative ω

estimates or divergence.

The estimates for Dz are shown in figure 8.5, for Cwψ = 5, and in figure 8.6, for Cwψ = 0.1.

The estimates in 8.5 do not resemble waves. From the close up it is apparent that for Cwψ = 5 the

bias is only estimated during the measurement updates. The Dz estimates in figure 8.6, however,

much more resemble waves. For that reason the Dz estimates for Cwψ = 0.1 can be compared to

those of the OGMM and WBM1.

The standard deviation of the estimated Dz is 0.0160[m] for WBM2 with Cwψ = 0.1. For

smoothed OGMM and WBM1, the STD of Dz is respectively 0.0339[m] and 0.0414[m]. This sug-

gests that there is room for improvement in the Dz estimates. However, the DGMM estimated

Dz has a STD of 0.002[m], compared to which the Dz estimates of the WBM2 is much more

accurate.

Table 8.4: Mean error µez of real time DGMM and WBM2 compared with Smoothed OGMM and
WBM1. WBM2 estimates are given for two values of Cwψ . The unit of µez is [m]

Smoothed
OGMM WBM1

Real time
DGMM 0.1411 0.1412

WBM2
Cwψ = 5 0.0981 0.0988
Cwψ = 0.1 0.0146 0.0134
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Figure 8.4: Estimation of wave frequency with different values for Cwψ . ωtr ue is an approximate
value.
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Figure 8.5: Wave bias estimate for WBM2 with Cwψ = 5. The figure to the right is a close up of the
figure to the left.
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Figure 8.6: Wave bias estimate for WBM2 with Cwψ = 5. The figure to the right is a close up of the
figure to the left.



Chapter 9

Summary and Recommendations for

Further Work

9.1 Summary and Conclusions

Accurate real time depth approximation is important for navigation of and mapping by under-

water vehicles (UV). Wave induced noise can cause a bias in the depth sensor of UVs. To im-

prove the accuracy of depth measurements an estimator algorithm called Kalman Filter (KF) is

applied. For the KF to produce accurate estimates it must have an accurate mathematical model

of the noise. Previous work has demonstrated the benefit of modeling the wave induced noise

as an oscillatory process, but came short of a model that could be implemented in real time es-

timation. The objective of this rapport was to develop such an oscillatory model that could be

used in real time.

This model should not depend on prior knowledge of wave parameters, and should be able

to estimate the noise contribution of most types of waves. A simulation model was therefore

developed in chapter 4, so that the estimator model could be tested on different waves. The

waves were simulated as single sinusoidal waves.

In chapter 5 an industry field tested model was introduced. With default parameter values, it

was called Default Gauss Markov Model (DGMM). Based on prior knowledge of the wave param-

eters, the more accurate Optimized Gauss Markov Model was developed. Both models estimated

data generated by the simulation model. This created a point of reference when it came to ac-
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curacy, the DGMM being the minimum requirement for the oscillatory real time model. The

estimations also uncovered some wave simulation difficulties regarding sinusoidal waves. The

problem was solved by increasing the sampling frequency of the pressure sensor.

An estimator model with an oscillatory wave bias model was used as a base for the develop-

ment of the oscillatory real time model. This model was dependent on prior knowledge of the

frequencies of the waves it estimated. The base model was called Wave Bias Model 1 (WBM1)

and the oscillatory real time model was called Wave Bias Model 2 (WBM2). In chapter 6 the

WBM1 was introduced and tested on the simulated data.

The WBM2 was developed in chapter 7. There were two major differences from WBM1:

1. An extra state, wave frequency, was estimated.

2. The white noise in the wave bias process was given as a function of the wave frequency.

Compared to DGMM the wave bias produced more accurate estimates for all relevant true wave

frequencies. The OGMM was more accurate for high frequencies, but less accurate for low fre-

quencies.

In chapter 8, as a final test, the WBM2 was implemented on a set of real data from an experi-

ment with an UV. Smoothed estimates of OGMM and WBM1 were treated as true state. With the

parameter values arrived at in chapter 7, the WBM2 was able to produce more accurate depth

estimates than DGMM. However, on further inspection the estimates of wave bias and wave fre-

quency were quite poor. By reducing the noise in the wave bias process much more accurate

estimates for depth, wave frequency and wave bias were obtained.

In conclusion, it seems likely that a real time oscillatory model with accurate depth estimates

could be developed. Whether the WBM2 is such a model would require further testing.

9.2 Discussion

There are some clear limitations to the wave modeling. For instance, the wave bias in the sim-

ulation model is dependent on a dominant peak frequency. In a developing or decaying sea,

several wave frequencies can be prominent. The presence of swells were also not considered.
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Little emphasis was put on finding the best possible parameter values for WBM2. Test fre-

quencies were used to describe the entire peak frequency spectrum. This simplification might

have given a false or incomplete understanding of some parameter dynamics.

One parameter dynamic that was not well covered was the process wave bias white noise.

This parameter was essential for accurate estimates. Too low values could sometimes cause the

estimate to diverge. The mechanics of this divergence were not investigated.

In section 7.2.2 it was explained that some of the most accurate estimates were done with a

small Cwψ values. However, these estimates also tended to diverge. The accurate WBM2 model

in section 8.3.2 might therefore not be robust.

Another aspect of the estimates presented in 8.3.2 is that they are performed on a low fre-

quency wave. As shown in figure 7.4 the WBM2 is more accurate on low frequencies, while the

DGMM is more accurate on high frequencies. It is possible that the DGMM would have pro-

duced more accurate estimates than WBM2 if the wave frequency was higher.

The process model of the WBM2 is linearized. However, equation 7.11 for the process of the

wave bias white noise is not linear. This conflicts with one of the requirements for an optimal

Kalman Filter estimate.

9.3 Recommendations for Further Work

As an extension to the work presented in this rapport, I suggest the following investigations:

• Develop an oscillatory process model with multiple frequencies, possibly a frequency

spectrum. Such a model might perform better for developing or decaying sea.

• The white noise of the wave bias velocity process proved crucial for the accuracy of the

WBM2 estimates. A more thorough study into the parameters of this noise could result

in a better estimator model. Among the things that should be investigated is the noise

relation to wave frequency and amplitude.

• The models presented in figure 7.4 show that the Gauss markov models were better at high

frequencies, while the wave bias models performed better at low frequencies.
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• Figure 6.8 show that for wave data generated from the simulation model, WBM1 produces

more accurate estimates than DGMM for all assumed frequencies within the peak fre-

quency spectrum. I suggest a researching whether this is true for all real waves as well.



Appendix A

Acronyms and symbols

A.1 Acronyms

AINS Aided Inertial Navigation System

AUV Autonomous Underwater Vehicle

CKF Continuous Kalman Filter

DGMM Default Gauss-Markov Model

DKF Discrete Kalman Filter

ESKF Error State Kalman Filter

EKF Extended Kalman Filter

GPS Global Positioning System

GMM Gauss-Markov Model

GWN Gaussian White Noise

IMU Inertial Measurement Unit

INS Inertial Navigation System

JONSWAP Joint North Sea Wave observation Project
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LRWM Linear Random Wave Model

LTI Linear Time Invariant

MCS Monte Carlo Simulation

MPD Mean Propagation Direction

OGMM Optimized Gauss-Markov Model

PDF Probability Density Function

PFS Peak Frequency Spectrum

PSD Power Spectral Density

ROV Remotely Operated Vehicle

SDGMM Smoothed Default Gauss-Markov Model

SOGMM Smoothed Optimized Gauss-Markov Model

STD Standard Deviation

TERT Total Error Real Time

TES Total Error Smooth

TF Test Frequencies

TME Total Measurement Error

UV Underwater Vehicle

WBM Wave Bias Model

WFS Wave Frequency Spectrum
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A.2 Latin Symbols

A Wave amplitude

Amax Amplitude of the most significant frequencies.

b Accelerometer bias [m/s2]

dz Depth error [m]

Dz Wave bias [m]

ez Depth error [m]

f Frequency [Hz]

Hs Significant wave height

T Time constant [s]

v Depth velocity [m/s]

z Depth [m]

zE Depth estimate

A.3 Greek Symbols

β Propagation Direction [rad]

µ Mean

ωM Middle wave frequency [rad/s]

ωE Estimated wave frequency [rad/s]

ω Wave frequency [rad/s]

ψ Wave bias velocity [m/s]

σz Modeled standard deviation in Depth [m]
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