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Problem formulation

There has been an increased focus on development and research of autonomous sur-
face vessels (ASVs) in the recent years. A reliable ASV has several advantages over
manually operated vessels. There exist, for instance, a big potential of reducing hu-
man caused accidents at the sea. Also, the reduction of crew and crew facilities free
extra cargo space, saving money and reducing emissions. A robust collision avoidance
(COLAV) system is imperative for the public success and acceptance of ASVs. The
constant velocity model (CVM) is the prevailing method in today’s COLAV systems
for predicting nearby vessels’ future trajectories. Reduced frequency of close to colli-
sion situations and more optimal path planning in COLAV algorithms can be achieved
if better predictions are obtained.

The main purpose of this thesis is to investigate to what extent historical automatic
identification system (AIS) data can be utilized to predict future vessel trajectories.
Real-world AIS data from the Trondheimsfjord is provided by DNV GL. The AIS
based predictions are intended to work proactively to avoid collision situations. In a
preliminary specialization project [1], a novel trajectory prediction method named the
single point neighbor search (SPNS) method has been developed and briefly tested.
The following tasks are proposed for this thesis:

1. Investigate and resolve several unexpected biases in the SPNS algorithm as de-
veloped in the specialization project [1].

2. More extensive testing of the SPNS algorithm:

(a) Test the algorithm on a wider spectrum of scenarios in order to reveal
shortcomings.

(b) Test the performance on curved trajectories and compare it with the CVM
method.

(c) Test the performance on straight line trajectories and compare it with the
CVM method.

3. Evaluate the potential of better AIS based speed predictions.

4. Generalize the method to handle branching of sea lanes. Also introduce uncer-
tainty measures of the predictions.

5. Do a brief computational time analysis.
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Abstract

The automotive industry has already taken a big step towards fully autonomous ve-
hicles. This trend is now spreading to the maritime industry with development of
autonomous surface vessels (ASVs). A reliable collision avoidance (COLAV) system
is essential in this context. In order to avoid collision with other vessels, one must
predict the future trajectories of nearby vessels. The constant velocity model (CVM)
is the prevailing approach for trajectory prediction in today’s COLAV systems. The
main purpose of this thesis is to investigate to what extent it is possible to predict fu-
ture vessel trajectories based on historical automatic identification system (AIS) data
for prediction horizons up to about 15 minutes. A survey of other relevant prediction
methods are also presented.

Two new, AIS based methods for vessel trajectory prediction are developed and
tested: the single point neighbor search (SPNS) method and the neighbor course
distribution method (NCDM). Three speed prediction methods are also tested: the
straightforward constant speed method, a method using the median speed of the pre-
dicted state’s close neighbors (CNs) and lastly a linear transition in predicted time
between the two former methods.

The SPNS method is compared to a CVM approach and yields significantly bet-
ter results on curved trajectories, in terms of lower average and median path and
trajectory errors. However, a major part of vessels’ transit time is spent on straight
line trajectories. The SPNS algorithm shows also good path predicting capabilities on
close to straight line trajectories, although the CVM method yields the lowest errors in
such environments. The SPNS algorithm outputs a single predicted trajectory which
tends to follow the most AIS-dense sea lane ahead. Hence, it does neither facilitate
any uncertainty measure nor the possibility to suggest multiple possible route choices.
The more computational demanding NCDM algorithm, which outputs multiple pre-
dicted trajectories, does better facilitate prediction uncertainty and it is also capable
of dividing the predicted trajectories into multiple branching sea lanes. Its predicted
positions at certain time instants are clustered with the density-based spatial clus-
tering of applications with noise (DBSCAN) algorithm. The predictions are further
statistically evaluated with respect to the distances to the nearest cluster centers.

Lastly, a computation time analysis is presented. The computational time is re-
duced from an earlier version of the algorithm by storing data in a k-d tree. However,
the NCDM algorithm with the tested decision parameters is not practically feasible in
real-time. Several suggestions to reduce the computation time are given.
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Sammendrag

Bilindustrien har allerede kommet et godt stykke p̊a vei mot fullt autonome kjøretøyer.
Denne trenden spres seg n̊a over til den maritime industrien med utviklingen av au-
tonome overflate fartøyer (ASVer). Et p̊alitelig kollisjonsung̊aelsessystem (COLAV)
er essensielt i denne sammenheng. For å unng̊a kollisjon med andre fartøyer må
man predikere de fremtidige trajektorene til fartøyer i nærheten. Den konstante
hastighetsmodellen (CVM) er den r̊adende fremgangsmåten for trajektor-prediksjon
i dagens COLAV systemer. Hovedhypotesen som er undesrsøkt i denne masteropp-
gaven, er i hvilken grad det er mulig å predikere fremtidige fartøy-trajektorer basert p̊a
historiske automatisk identifikasjonssystem (AIS) data for prediksjonshorisonter opp
til omtrent 15 minutter. En undersøkelse av andre relevante prediksjonsmetoder er
ogs̊a presentert.

To nye, AIS-baserte metoder for prediksjon av fartøy-trajektorer har blitt utviklet
og testet: en metode kalt ”single point neighbor search” (SPNS) og en metode kalt
”neighbor course distribution method” (NCDM). Tre hastighetsprediksjonsmetoder er
ogs̊a testet: den trivielle konstante hastighetsprediksjonen, en metode som benytter
median hastigheten til den predikerte tilstanden’s nærmeste naboer (CNs) og til slutt
en linear transisjon i predikert tid melom de to førstnevnte metodene.

SPNS metoden er sammenlignet med en CVM metode og gir signifikant bedre
resultater p̊a krumme trajektorer i form av lavere gjennomsnittlig og median bane-
og trajektorfeil. N̊ar det er sagt blir en stor andel av fartøyer’s reisetid brukt i ret-
tlinjede trajektorer. SPNS algoritmen viser ogs̊a gode bane-følgende egenskaper p̊a
rettlinjede trajektorer, selv om CVM metoden gir de laveste feilene i slike omgivelser.
SPNS algoritmen produserer en enkelt predikert trajektor som har en tendens til å
følge de mest AIS-tette sjøleiene. SPNS algoritmen legger derfor hverken til rette for
estimering av usikkerhet i prediksjonene eller for muligheten til å foresl̊a flere ulike
rutealternativer. Den mer regnekraftskrevende NCDM algoritmen, som produserer
mange predikerte trajektorer, legger bedre til rette for prediksjonsusikkerhet i tillegg
til at den har egenskapen til å fordele de predikerte trajektorene i flere forgreinede
sjøleier. Dens predikerte posisjoner ved gitte tidspunkter blir automatisk gruppert
ved hjelp av ”density-based spatial clustering of applications with noise” (DBSCAN)
algoritmen. Prediksjonene er videre statistisk evaluert med tanke p̊a avstandene til de
nærmeste kluster-sentrene.

En kjøretidsanalyse er presentert avslutnignsvis. Kjøretiden har blitt redusert med
en faktor p̊a 186 i forhold til en tidligere versjon av algoritmen ved å lagre dataene i et
k-d tre. Dette til tross er NCDM algoritmen, med de testede beslutningsparameterne,
ikke praktisk gjennomførbar i sanntid. Flere forslag til reduksjon av kjøretiden er gitt.
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Chapter 1

Introduction

1.1 Motivation

The automotive industry have already come a long way in autonomy, with companies
such as Google, Uber and Tesla in the very front of the fast development. This trend
is spreading to the maritime industry with the development of autonomous surface
vessels (ASVs). Reliable ASVs have potential for large economical and safety related
benefits by eliminating errors caused by human operators, increasing cargo space as
a result of eliminating crew facilities and by facilitating more optimal navigation and
cooperation between vessels.

Safety and reliability are very important aspects for the public’s and govern-
ments’ acceptance of fully or partly autonomous vessels. A robust collision avoidance
(COLAV) system is essential in this context. In order to avoid collision with other
vessels, one must predict the future trajectories of nearby vessels. A commonly used
approach today is to assume constant speed and course (e.g. [2]). By utilizing his-
torical positional, course and speed information from automatic identification system
(AIS) data, it may be possible to obtain more refined predictions. However, since
patterns from historical AIS data best reflect normal vessel behavior, as opposed to
behavior in close-to-collision situations, AIS based predictions may be mostly used for
proactive maneuvers in order to prevent potential collision situations. Faster and more
reliable data sources, such as radars, may be better choices if the situation is already
critical. Better estimates of surrounding vessels’ future trajectories can also be used
to improve situational awareness systems.

At sea, the autonomy challenges differ from the ones on the roads. As opposed to
cars on the roads, vessels can move in all directions. Additionally, the International
Regulations for Preventing Collisions at Sea (COLREGS) is less quantifiable and more
dependent on common sense than standard car traffic rules, making it even harder to
predict future vessel behavior. On the other hand, vessel movement patterns revealed
by historical AIS data, as illustrated in Figure 2.3, are likely to contain implicit infor-
mation about where it is possible, safe and smart to maneuver, as a majority of vessels
navigate in map-advised sea lanes and areas.

The main purpose of this thesis is to investigate to what extent it is possible to
predict future vessel trajectories based on historical automatic identification system
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(AIS) data.

1.2 Outline
The outline of this thesis is as follows:

Chapter 2 introduces the AIS dataset, including notations and some key findings
from the dataset. Chapter 3 contains a survey of related trajectory prediction tech-
niques. Further, Chapter 4 and Chapter 5 present the single point neighbor search
(SPNS) method and the neighbor course distribution method (NCDM), respectively,
before the methods’ prediction performances are tested and evaluated in Chapter 6.
Some concluding remarks and suggestions for further work is given in Chapter 7 and
Chapter 8.
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Chapter 2

AIS data

This chapter gives a brief introduction to automatic identification system (AIS) data
in general in addition to an overview of the real-world AIS dataset given by DNV
GL. Most of this chapter can also be found in [1], but is included here as well for
completeness.

2.1 Automatic identification system data (AIS)

The automatic identification system (AIS) is an automatic tracking system used on
ships and by vessel traffic services for identifying and locating vessels by electronically
exchanging data with other nearby ships, AIS base stations and satellites. An AIS
system is required installed on international voyaging ships with gross tonnage (GT)
of 300 or more and on all passenger ships regardless of size according to the safety
of life at sea (SOLAS) convention given by the International Maritime Organization
(IMO) [3].

Vessels equipped with AIS transceivers (a device capable of both transmitting and
receiving AIS signals) can exchange AIS data with other nearby vessels. The range is
about 10-20 nautical miles which is limited by the range of VHF (very high frequency)
signals at sea. However, the later years AIS transceivers have been installed on several
satellites, yielding global AIS coverage. There are two classes of AIS messages: Class
A and class B. Class A transceivers usually transmit at a higher rate than class B
transceivers, ranging from 30 times per minute for high velocity vessels to every third
minute for anchored or moored vessels.

A typical AIS message includes information such as vessel identification (MMSI/IMO
number), positional coordinates, course over ground (COG) and speed over ground
(SOG). Depending on the on-board systems and what is manually typed in by the
crew, other information such as heading, ship type, ship status and ship dimensions
may be available.

2.2 AIS dataset
DNV GL have provided real AIS data from the Trondheimsfjord. The dataset contain
a total of 3 million AIS messages, gathered during the one year period from January

3
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1st 2015 to December 31st 2015. A brief explanation of the parameters provided in
the AIS message is shown in Table 2.1.

AIS
parameter Explanation

IMO 7 digit vessel identification number that remains unchanged upon
transfer of the vessel’s registration to another country [3].

MMSI The maritime mobile service identity is a 9 digit, unique vessel
identification number.

Long Degrees longitude. Range: [−180°W, 180°E]

Lat Degrees latitude. Range: [90°S, 90°N ]

COG The course over ground is the clockwise course of the vessel’s
velocity vector relative to true north.

SOG The speed over ground is the absolute value of the vessel’s
velocity vector.

Heading The direction of the vessel’s nose or bow relative to true north.
It is not necessarily equal to COG.

Timestamp A number representing the number of days elapsed since
1.jan 1900, 00:00.1

Shiptype Chosen from a set of predefined ship types from level 5 in Lloyds
database. 70 different ship types are detected in the dataset.

Status Navigational status message manually set by the crew. A total of
16 different statuses can be chosen, e.g. ”under way using engine”.

Table 2.1: Explanation of the AIS parameters in the dataset.

Although the IMO number is described in Table 2.1 as unique, it is not reliable to
use as vessel identification. After removing NaN values from the dataset, only 1323
“unique” IMO values are left compared to 1555 unique MMSI values. Therefore, the
9 digit MMSI number will be used to identify vessels, although some literature (e.g.
[4]) state that the same MMSI number may be incorrectly assigned to two or more
vessels. Despite that, the MMSI numbers are assumed unique in this thesis.

The elapsed time between subsequent received AIS messages for each unique vessel
is displayed in Figure 2.1 in order to show the data resolution. Subsequent messages
with more than 15 minutes gap are not displayed as these messages are likely the
result of vessels docking at a port and continuing at a later time. The time between
messages is clearly varying but with a large peak around 6 minutes. AIS datasets with
higher message update frequency exist, and it would have been preferable, but is not
considered in this thesis.

The unsorted dataset in its original format is shown in Figure 2.2 while Figure 2.3
show 8% of the dataset’s positions on top of a map of the Trondheimsfjord.

It appears from testing that a small amount of the AIS messages have an incorrect
timestamp. This is discovered when subsequent AIS messages with respect to the

4
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Figure 2.1: Elapsed time between subsequent AIS messages of same MMSI.

timestamp do not appear in a subsequent positional order although their courses are
consistently indicating a movement in a given direction. Such incorrect AIS messages
are removed from the dataset.

5



AIS data

Figure 2.2: The AIS dataset in its original format

Figure 2.3: A total of 8% of the AIS data positions plotted on top of a map of the
Trondheimsfjord. Note that the plotted AIS coordinates do not fully coincide with
the map coordinates.

6



Chapter 3

A survey of vessel movement
prediction techniques

This chapter summarizes a survey on maritime vessel prediction techniques given in
[1]. See [1] for more detailed descriptions of the methods.

Little research have been done in terms of utilizing AIS data with the aim of ves-
sel movement predictions for time horizons in the level of a few minutes. However,
there exist AIS-based methods aiming for relatively long prediction horizons and some
methods developed for animal and weather movement prediction which may facilitate
shorter prediction horizons. This section summarizes a few of the most prevailing ap-
proaches which may be adapted to COLAV applications.

3.1 Typical prediction approach
Prediction methods for movement of objects are often based on path clustering and
can typically be divided in four main steps in an AIS data context:

1. Cluster paths in the historical data to yield sets of similar route patterns.

2. Classify sequences of new, incoming AIS data points to assign vessels to the
route patterns found in step 1.

3. Create representative paths of the common behavior in every route pattern.

4. Predict the vessels’ future trajectories, for instance along their representative
paths or by using a particle filter.

Various methods are used in all four steps across the literature. The path clus-
tering in step 1 can be further divided into clustering of whole paths and sub-paths.
Clustering of whole paths can be useful to predict destination and estimate time of
arrival, while clustering of shorter sub-paths has better potential in the context of
COLAV.

7



A survey of vessel movement prediction techniques

3.2 Clustering-based methods

The trajectory clustering (TRACLUS)1 algorithm [5] is a sub-path clustering algo-
rithm tested on hurricane data and animal movement data. The algorithm can be
separated in two main parts; path partitioning and sub-path clustering. Paths, which
originally consist of straight lines connecting subsequent positional points, are divided
into even coarser line segments. The line segments are connected between so called
characteristic points at which the directional change is to a certain extent. Hence, the
length of line segments dynamically adapt with respect to the curvature of the path.
The threshold of directional change before a characteristic point occur, is a trade-off
between minimizing preciseness and conciseness. The former is the subsequent sub-
paths’ deviation from the original path and the latter is the number of partitions, i.e.,
the number of line segments between characteristic points. An optimal trade-off can be
found e.g. by using the minimum description length (MDL) principle [6]. Similar line
segments are clustered with an adapted version of the density-based spatial clustering
of applications with noise (DBSCAN) algorithm [7]. A distance metric accounts for
both the distance and the angular deviation between line segments, facilitating differ-
entiation between perfectly aligned, but opposite moving objects, which is a necessary
property in vessel movement prediction. Representative line segments are calculated
after clusters are obtained.

Some studies (e.g. [8] and [9]) raise concern about TRACLUS’ high sensitivity
to its two clustering decision parameters which relates to the area density: A neigh-
borhood radius and a lower limit for the number of line segments needed to form a
cluster. In [10], the algorithm is improved with respect to this specific issue, yielding
an algorithm that outputs much of the same clusters, but for a wider range of decision
parameters which reduces the need of domain knowledge when applying the algorithm
on a given dataset. Further, the method may experience problems in datasets with
circular motion and frequently crossing paths. This is addressed in [11], which adjust
the algorithm to better handle such behavior. Another drawback, in vessel prediction
context, is that spatial connection between subsequent representative line segments
cannot be guaranteed. In other words, a predicted path consisting of subsequent rep-
resentative line segments is not necessarily continuous.

The traffic route extraction for anomaly detection (TREAD) ([12] and [13]) is a
route pattern clustering method used in several papers dealing with AIS data. The
area of interest is limited by a rectangular bounding box. TREAD clusters neither
whole paths nor sub-paths, but certain waypoints: (1) entry points, (2) exit points and
(3) stationary points. An entry point is marked when a vessel enters the bounding box
and an exit point is marked when a vessel leaves the boundary box. The stationary
points are detected when a vessel’s speed is kept under a certain limit for a certain
period of time and are included to account for areas where the vessels are docking
or anchoring up. As waypoints are discovered from new incoming AIS data, they are
clustered with the DBSCAN algorithm. The clusters are then used to classify routes
inside the bounding box as paths are assigned to a start and an end cluster. A start
cluster can either be an entry point or a stationary point while an end cluster can

1The use of trajectory can be misleading as temporal information is not considered in the clustering.
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Clustering-based methods

either be an exit point or a stationary point. All paths that belong to the same set of
start and end clusters are grouped into a unique route pattern. Hence, the algorithm
is able to separate between opposite moving vessels. After creating route patterns,
representative paths are calculated and an entropy function, measuring the level of
disorder in the pattern, serves as a quality measure.

As opposed to the sub-path clustering method in TRACLUS, TREAD’s waypoint
approach can theoretically allow large deviations in the distances between paths in-
side the same pattern since the only requirement to belong to a specific pattern is to
belong to the same set of start and end clusters. A possible adaptation of the TREAD
methodology to COLAV applications is to divide the area of interest into grid cells
where each cell play the role as the bounding box. Hence, clustering of waypoints
is performed in each cell and paths between these waypoints are then grouped into
shorter patterns, better facilitating short time horizon predictions.

Mazzarella et al. propose a knowledge based velocity model (KB-VM) [14] and
a knowledge based particle filter (KB-PF) [4] for vessel movement prediction based
on AIS data. In both approaches, the TREAD method with a few adjustments is
used to cluster AIS generated paths into route patterns. Then, based on position,
course and speed, new paths are classified to one of the clustered route patterns using
the k-nearest neighbor (kNN) algorithm [15] with the Mahalanobis distance metric.
In order to fit the Mahalanobis distance metric to the specific dataset, the metric is
learned with the supervised large margin nearest neighbor (LMNN) algorithm. If a
path is assigned to a route pattern, the KB-PF method predicts future course and
speed using a modified particle filter [4] while the KB-VM method predicts course
and speed based on the current state’s nearest neighbors in the classified pattern, as
follows: The course is set to be the median course of all identified neighbors while the
speed is set to be the last received speed from the AIS message. Both methods are
compared, and the more complex and computational demanding particle filter yields
more accurate predictions, but mainly for time horizons exceeding 4-5 hours.

Another approach based on particle filter is suggested in [16]. Implicitly, the parti-
cles yield a probability measure of future positions and are distributed over branching
sea lanes, an important property for COLAV applications.
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Chapter 4

Single Point Neighbor Search
Method

The single point neighbor search (SPNS) method for AIS-based vessel trajectory pre-
dictions was first proposed in the 5th year specialization project [1] which lead to a
paper accepted to the 20th International Conference on Information Fusion [17]. In-
stead of relying on path clustering methods, this approach estimates future course and
speed at every prediction time based directly on historical AIS data.

The following updates of the algorithm have been made during this thesis:

1. Several confusing prediction error biases have been investigated and resolved.

2. Some minor notational changes have been made to improve readability.

3. An extra decision parameter minCn is added in Algorithm 1 to require a min-
imum number of CNs when calculating the CNs median course or speed as the
median is not very suitable for extremely small sets of data. This is accomplished
by expanding the search radius if the number of CNs is less than minCn.

4. The computational time of the CN search is reduced by utilizing a k-d tree for
data storage.

4.1 Notation and definitions
Let us define X to be a matrix of historical AIS data according to

X =
[
X1 X2 ... Xn

]T
(4.1)

where n is the total number of AIS messages and

Xi =
[
MMSIi ti pT

i χi vi

]
, (4.2)

for i ∈ {1, 2, ...,M} is a vector where MMSIi, ti, pi, χi and vi are a vessel’s mar-
itime mobile service identity (MMSI) number, timestamp, position vector, course over
ground (COG) and speed over ground (SOG), respectively. The position vector can
further be written as pi =

[
λi φi

]T
, where λi and φi is the WGS84 longitude and

latitude, respectively. The matrix X is sorted such that AIS messages with equal

11
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MMSI number are grouped together and messages within every such group are sorted
with respect to ascending timestamp.

A predicted trajectory consists of K predicted positions at certain instants of time,
including the initial true state. At every iteration k ∈ {1, ..., K − 1}, the predicted
state is separated into one a priori state, denoted X̂−

k , and one a posteriori state,
denoted X̂+

k . These two states are written

X̂−
k =

[
MMSIi t̂k p̂T

k χ̂−
k v̂−

k

]
(4.3)

and

X̂+
k =

[
MMSIi t̂k p̂T

k χ̂+
k v̂+

k

]
. (4.4)

Notice that the MMSI number, the position vector and the timestamp are the same
for both the a priori and the a posteriori state. The only difference is the predicted
course and predicted speed. The a priori predicted course and speed at iteration k, χ̂−

k

and v̂−
k , represent the predicted course and speed between the previous position p̂k−1

and the current position p̂k. Similarly, the a posteriori predicted course and speed at
iteration k, χ̂+

k and v̂+
k , represent the predicted course and speed between the current

position p̂k and the next position p̂k+1. Also notice that the subscript ·i is only present
on the MMSI number because the MMSI number is the only value that exists in the
dataset X. The remaining values are predicted values and can not be found in the
dataset.

All states Xi that are close to an a priori predicted state X̂−
k with respect to a

distance metric, are defined as close neighbors (CNs) of that predicted state. The set
of CNs at a given prediction step k is defined as

Ck = {Xi | d(p̂k,pi) ≤ rc, χi ∈ S,Xi ∈X} (4.5)
where

d(p̂k,pi) = 2R sin−1

( sin2
(
φ̂k − φi

2

)
+ cos(φi) cos(φ̂k) sin2

(
λ̂k − λi

2

)) 1
2
 (4.6)

is defined as the distance between the current predicted position and any position
in the AIS dataset given by the Haversine rule1[18], R is earth’s radius, rc is the search
radius and S is an interval of course angles defined by

S =
[
χ̂−

k −∆χ, χ̂−
k + ∆χ

]
, (4.7)

where ∆χ > 0 is the maximum course angle deviation. Hence, the distance metric
restricts all CNs to be within a given radius of the predicted position, as well as having
a course within a maximum deviation from the a priori predicted course. After the
set of CNs is found around X̂−

k , the CNs’ mean or median course and speed are used
to predict the vessel’s course and speed between the current and next position, i.e.,

1The Haversine formula assumes the earth to be spherical, which differs from the more precise
WGS84 model in which the AIS coordinates are represented in. At the latitude of our AIS data, the
spherical model introduces an innaccuracy of about 0.5% for distances up to a few hundred meters.
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they are used to calculate the a posteriori state X̂+
k . To simplify the notation in the

following, we denote every state that belongs to the set of CNs at prediction step k,
i.e., all Xi ∈ Ck, by Xc

k =
[
MMSIc

i tck pc
k χc

k vc
k

]
for c ∈ {1, ..., Ck}, where Ck is

the number of CNs at the given k.

Lastly, a predicted trajectory starting from a given state Xi is defined as:

T̂i =
{[

p̂1 t̂1
]
, ...,

[
p̂K t̂K

]}
. (4.8)

Similarly, a vessel’s true trajectory, Ti, starting from a given state Xi, is defined
as

Ti =
{[

pi ti
]
, ...,

[
pi+L ti+L

]}
. (4.9)

where L is the number of measured AIS states in the trajectory. Notice that K
and L is not necessarily equal, as several prediction step can occur between two sub-
sequent AIS messages. Also notice that the first element in T̂i and Ti are always
equal, as the starting point for both trajectories are given by the same state, Xi. Be
aware that trajectories and paths are not equally defined. A trajectory consists of
time-parameterized subsequent positional points while a path consists of subsequent
positional points independent of the elapsed time since the starting position.

The key notation introduced is summarized in Table 4.1.

Symbol Explanation

Xi AIS message / state vector
X Set of all AIS messages Xi

Ck Set of CNs at prediction step k

Xc
k States belonging to the set of CNs at prediction step k

X̂−
k A priori predicted state at prediction step k

X̂+
k A posteriori predicted state at prediction step k

∆χ Maximum course angle deviation for CNs
rc Search radius [m]
∆l Step length [m]
K Number of predicted states, including the initial state
Ck Number of CNs at iteration k

Table 4.1: List of symbols for SPNS

4.2 Method
The prediction method is described step by step in Algorithm 1. The steps are de-
scribed in more detail in the continuation of this section.
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Algorithm 1 Single Point Neighbor Search prediction
1: Xi given . The known state we want to predict from
2: Set decision parameters

(a) ∆l . Step length [m]
(b) rc . Search radius [m]
(c) ∆χ . Maximum course angle deviation [deg]
(d) minCn . Minimum number of CNs
(e) K . Number of states to predict, including the initial state

3: Set X̂−
1 = Xi

4: for k = 1 to K − 1 do
5: Find all CNs Xc

k around X̂−
k

6: if Number of CNs < minCn then
7: Expand search radius until minCn is reached or until search radius ≥ 4rc

8: end if
9: Calculate X̂+

k by:
(a) Calculating χ̂+

k based on Xc
k

(b) Calculating v̂+
k based on Xc

k

10: Calculate the next predicted position at its predicted point in time by:
(a) Calculating p̂k+1 according to (4.10)
(b) Set t̂k+1 = t̂k + ∆l

v̂+
k

11: Set X̂−
k+1 =

[
MMSIi t̂k+1 p̂k+1 χ̂+

k v̂+
k

]
12: end for
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4.2.1 Decision parameters

Step length

The step length ∆l decides how far the next position should be propagated, according
to

p̂k+1 = p̂k + ∆l
[
sin(χ̂+

k )f(φ̂k), cos(χ̂+
k )g(φ̂k)

]
, (4.10)

where f(φ̂k) and g(φ̂k) are functions of the current latitude φ̂k, which transform
from meters to degrees longitude and degrees latitude, respectively. The step length
∆l should reflect the curvature of the sea lanes ahead. Short step lengths facilitate
tighter turns and smoother trajectories, but increases the computational requirements.
If the step length is set too long, some turns may not be possible to follow and a pre-
dicted state might fall into a region with no CNs. Ideally, the algorithm would adapt
the step length to the curvature ahead of the vessel, but this is not implemented in
this thesis.

Search radius

The search radius rc restricts CNs to be within a maximum Euclidean distance from
the current predicted position. In order for subsequent search areas not to overlap,
meaning that the same neighbor is never evaluated more than once, the relationship
between the search radius and the step length may be set according to rc = ∆l

2 .

Maximum course deviation

The maximum course deviation parameter ∆χ defines the distance metric together
with the search radius rc, as defined in (4.5). This parameter features two main
objectives:

1. Excluding neighbor vessels within the search radius which move in the opposite
direction of the vessel from which trajectory we want to predict.

2. Avoiding neighbor vessels within the search radius which come from crossing sea
lanes2.

Figure 4.1 illustrates the concept of the distance metric with rc = 400 m and ∆χ = 35°.
Figure 4.1a shows two sets of AIS states: the ones CNs that satisfy both the rc and
the ∆χ requirement are plotted in green and the ones that only are within the search
radius are plotted in red. The course distributions of the two sets of states are shown in
Figure 4.1b and Figure 4.1c. The two distributions show an average course separation
of 180.7°, meaning that the two groups’ average direction of travel is opposite of
eachother.

2A crossing sea lane is, as the name suggest, a sea lane that crosses the sea lane of interest, coming
from another area. This differ from a branching sea lane which is a sea lane that branch out from
the sea lane of interest, coming from the same area.
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Minimum number of CNs

The minimum number of CNs minCn is included to better avoid predictions based on
a very sparse sets of CNs. This can typically be an issue when the step length, and
hence also the search radius, is set short in order to capture steep turns. A maximum
expansion of 4rc is chosen and if minCn is not reached with this search radius the
algorithm continues with the current amount of CNs it has, if any.

Number of prediction steps

The number of predicted states K must be calculated from the desired prediction
horizon th, which is typically up to 15 minutes for COLAV applications. That is, K
must be chosen to satisfy

th ≤
K−1∑
k=1

∆l
v̂+

k

(4.11)

K can be calculated prior to prediction if all the predicted speeds are assumed
constant. If not, the prediction algorithm must run until (4.11) is satisfied.

4.2.2 Course prediction
A constant velocity model is used whenever Ck = ∅. When Ck 6= ∅, the a posteriori
course prediction at a given iteration, χ̂+

k , is based on the behavior of the CNs where
the CNs are defined in (4.5). Two course predictions were tested and compared in [1]:
χ̂+

k = χ̄c
k and χ̂+

k = χ̃c
k where the former is the mean course of all CNs and the latter

is the median course of all CNs. The mean course was shown to be more influenced
by course outliers than the median course. The median course yielded lower 10th and
50th percentiles3 of absolute prediction errors in a single timestep test evaluated on
2000 randomly chosen initital states [1]. By this reason, the median course of CNs is
chosen as the course prediction in this thesis. Since the course is periodic in [0°, 360°],
caution must be taken when calculating the median χ̃c

k.

4.2.3 Speed prediction
Instead of assuming constant speed throughout the whole prediction, the mean or
median speed of the CNs at iteration k, denoted v̄c

k and ṽc
k respectively, may be used.

It may also be a good idea to implement a transition from using constant speed (and
perhaps course) at k = 1 towards predictions fully based on the CNs as k increases
and the validity of the last received AIS message decreases.

3A percentile is a measure indicating the value which a given percentage of observations in a group
of observations fall below [19].
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(a)

(b) Course distribution of the
CNs with χc ∈ S

(c) Course distribution of the
CNs with χc /∈ S

Figure 4.1: Illustration of the distance metric for CNs with ∆χ = 35° and rc = 400 m.
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Chapter 5

Neighbor Course Distribution
Method

It will be illustrated in Chapter 6 that due to the SPNS method’s single predicted
trajectory, it does neither handle branching of sea lanes nor does it facilitates a prob-
ability distribution estimate of future route choices or any statistical quantification of
uncertainty. However, any information about where surrounding vessels are likely to
be in the nearest future is of interest in a COLAV context in order to proactively avoid
collision situations. As an example, assume that an ASV has three different route op-
tions to its destination where all routes are more or less equally optimal with respect
to a given set of optimality conditions. Further assume that the SPNS algorithm pre-
dicts a nearby vessel to be close to collision with the ASV if the ASV continues on
route number 1. As a result, the ASV’s COLAV algorithm will suggest to travel on
either route 2 or route 3, but none of them are preferred above the other since they
apparently are equally optimal. Based on the historical AIS data it might be that 50%
of all historical trajectories, which started in a similar state as the current state of the
nearby vessel, traveled route 1 while the remaining 50% traveled route 2. From this
new information, route 3 seems now the safest route choice for the ASV. Estimates of
the probability of route choices would clearly be valuable in such situations.

This section present an algorithm which is able to handle branching and which
better facilitates statistical quantification of uncertainty and probability estimates of
future route choices. The algorithm is based on many of the same principles as the
SPNS method. At each and every prediction step, the method randomly draws a num-
ber of courses from the current state’s CNs and then uses these courses to predict new
positions. No weighting are used between predictions or between CN states in order
to limit the number of user specified decision parameters and to keep it as simple as
possible. The method is called the neighbor course distribution method (NCDM) and
an illustration of the method is shown in Figure 5.1.

5.1 Notation and definitions
The NCDM follows the same notation and definitions as in Section 4.1 except that
all subscripts ·(k) now are replaced with the subscripts ·(k,j), where k still refers to the
iteration number (which also is the level of the prediction tree) and j refers to the
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(a) (b)

Figure 5.1: An illustrating example of the prediction expansion of the NCDM algo-
rithm is shown in Figure 5.1a and an example of a full prediction is shown in Fig-
ure 5.1b. In Figure 5.1a, the algorithm draws 2 courses randomly from each predicted
state’s CNs at each prediction step. The prediction step length ∆l is constant, but it
might appear to vary due to the range differences between the x-axis and the y-axis.

horizontal width index of the tree at a given level k (see Figure 5.2 for an illustration).
For instance, the a priori state is now denoted X̂−

k,j, the a posteriori state is denoted
X̂+

k,j and the set of CNs is written Ck,j. A list of notation very similar to Table 4.1 is
summarized in Table 5.1. A couple of the listed symbols will be defined in the next
section.

Symbol Explanation

Xi AIS message / state vector
X Set of all AIS messages Xi

Ck,j Set of all CNs at tree index (k, j)
Ck,j Number of CNs at tree index (k, j)
Xc

k,j States belonging to the set of CNs at tree index (k, j). c ∈ {1, ..., Ck,j}.
X̂−

k,j A priori predicted state at tree index (k, j)
X̂+

k,j A posteriori predicted state at tree index (k, j)
∆χ Maximum course angle deviation for CNs
rc Search radius [m]
∆l Step length [m]
K Total number of tree levels
Nk,j Number of child nodes at tree index (k, j)
Jk Number of nodes at tree level k

Table 5.1: List of symbols for NCDM
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Figure 5.2: Illustration of the prediction tree structure. The root node (top) is at
level 1 (k = 1) and it has Nk,j = N1,1 = Jmax child nodes (branches). From level
k = 2, ..., K − 1, the number of child nodes are Nk,j = 1 unless the number of CNs
is zero, then the current path terminates. The number of nodes at a given level k is
Jk = J1 = 1 at level 1 and Jk = Jmax for level k ≥ 2 unless some of the paths are
terminated. Note that each node in practice consists of both the a priori and the a
posteriori state (X̂−

k,j and X̂+
k,j) which is only represented with X̂k,j in the figure.

5.2 Method

The set of predictions for a single vessel forms a tree structure where the starting
state X̂1,1 = Xi is the root node and each node at every level k of the tree with index
(k, j) has Nk,j number of child nodes. A node corresponds to a predicted state and
the number of child nodes to a given node is the number of predictions branching out
from that node. The tree level equals the number of subsequent predictions1 meaning
that with a constant step length ∆l, the accumulated predicted distance at tree level
k is (k − 1)∆l. The number of nodes at a given level k is denoted Jk. The structure
and indexing of the prediction tree is illustrated in Figure 5.2 and the algorithm is
presented in Algorithm 2.

1The initial state is counted as first prediction, although known exact.
2(4.10) is used to calculate the next position, but the use of subscripts in the eqution does not

match the use of subscripts in this chapter.
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Algorithm 2 Neighbor Course Distribution Method
1: Xi given . The known state we want to predict from
2: Set decision parameters

(a) ∆l . Step length [m]
(b) rc . Search radius [m]
(c) ∆χ . Maximum course angle deviation [deg]
(d) Nk,j . Number of child nodes to be predicted from a given state
(e) K . Total number of tree levels

3: Set X̂−
1,1 = Xi

4: for k = 1 to K − 1 do . Runs through the levels of the tree
5: q = 0 . Indexing variable at level k
6: for j = 1 to Jk do . Runs through all nodes at given level k
7: Find all CNs Xc

k,j, where c ∈ {1, ..., Ck,j}, around X̂−
k,j

8: for Nk,j iterations do
9: Calculate X̂+

k,j:
(a) Set χ̂+

k,j to a random course from the CNs courses χc
k,j

(b) Set v̂+
k,j = vi

10: Calculate the child node’s next predicted position and time:
(a) q = q + 1
(b) Calculate p̂k+1,q according to (4.10)2

(c) Set t̂k+1,q = t̂k,j + ∆l
v̂+

k,j

11: Set X̂−
k+1,q =

[
MMSIi t̂k+1,q p̂k+1,q χ̂+

k,j v̂+
k,j

]
12: end for
13: end for
14: end for

22



Method

5.2.1 Decision parameters
The same decision parameters as in Algorithm 1 have to be chosen except for the
minimum number of CNs (minCn) which is omitted3. Additionally, we have to decide
the number of child nodes Nk,j at each predicted state, or in other words how the pre-
diction tree shall grow. The prediction tree, and hence the computational time, grows
exponentially as long as Nk,j > 1 . Therefore, the size of the tree must be limited for
practical purposes. Depending on how we choose the tree to grow, the resulting predic-
tions will have slightly different properties. For instance, if we set Nk,j = N1,1 >> 1,
i.e., we set the initial number of child nodes high, chances are better that the algorithm
will seed predicted trajectories in both sea lanes. In the opposite scenario, where N1,1
is very small and the sea lane is branching early, the algorithm may not seed enough
predicted trajectories in both sea lanes, causing one sea lane to be partially or fully
excluded.

As mentioned, there are several possible ways to grow the prediction tree. In this
thesis we will aim for a constant tree width Jmax for three main reasons:

(a) To have the same number of predictions to base the statistical evaluation on
throughout the prediction horizon.

(b) Increase the chance to seed predicted trajectories in multiple sea lanes when
branching occur close to the initial state.

(c) To get a more predictable computational time as opposed to any non-constant
tree structure.

When aiming for a constant tree width throughout the prediction horizon, the tree
structure will grow in the following way: the maximum width of the tree is set to Jmax

and the number of child nodes from the initial state is set to N1,1 = Jmax. From level
k = 2 and beyond, the number of child nodes from a given node is Nk,j = min(1, Ck,j).
This means that the tree expands to maximum width at the first prediction step and
aims to keep this width constant throughout the prediction horizon. In the scenarios
where a node does not have any CNs, i.e., Ck,j = 0, its predicted path is terminated4

and the tree width is hence reduced by one. It may often occur that C1,1 < N1,1 = Jmax

or in other words that the number of CNs in the initial state is less than the number
of wanted child nodes. In order to make sure that the initial spread of courses are
as wide as possible in these situations, the CNs’ courses are all selected equally many
times until there are left less courses to be picked than there are number of CNs.
At this point, the remaining number of child nodes are randomly selected, without
replacement, from the CNs’ course distribution. More precisely, the initial state’s
child nodes are calculated from its CNs courses according to:

1. All its CNs courses are chosen (N1,1 div C1,1) number of times where div denotes
integer division.

3The minCn was introduced in the SPNS algorithm to avoid calculating the median course and
speed from a very sparse set of data. However, we do not rely on calculations of medians in the
NCDM algorithm and therefore minCn is of less importance.

4An alternative could be to continue the prediction with constant course and speed. Termination is
chosen because the NCDM algorithm in principle is data driven and since we can afford to terminate
some predicted trajectories and still represent several future route choices, in most cases.
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Figure 5.3: An example of a CNs course distribution. There is one major direction of
travel, centered around 315°, and a smaller group of courses centered around 270°.

2. The remaining (N1,1 mod C1,1) number of child nodes are calculated based on
the courses randomly drawn, without replacement, from the CNs.

After the first prediction step, i.e., for k ≥ 2, each single child node is calculated
from a single course randomly drawn from the CNs course distribution.

An example of a CNs course distribution is shown in Figure 5.3. The more courses
that are randomly drawn from the distribution, the better the predicted courses will
represent the distribution. It might seem that letting Nk,j = 1 for k ≥ 2 is not enough
to represent the course distribution in a given state. However, there are typically many
predicted states in the same area with similar or equal distribution of CN courses. If
for instance there are 10 predicted states at the same position with identical CN course
distributions and we are randomly drawing 1 CN course from each of these equal states,
it is equivalent to having a single state with Nk,j = 10.

5.2.2 Course and speed prediction
The course and speed predictions are described in step 9(a) and 9(b) in Algorithm 2.
The course predictions at a given predicted state are simply Nk,j random courses pulled
from the CNs course distribution. The speed predictions are all set constantly equal
to the initial, last known true speed vi. Alternatively, the predicted speed can be set
to the median or mean of all the CNs speed values, as suggested in Algorithm 1, or a
linear combination of the constant speed and a CN based speed. A fourth option is to
assign to the predicted speed a randomly drawn speed from the CNs speed distribution,
in the same manner as with the course prediction.
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5.3 Suggestion for probability measure
The NCDM algorithm is intended to better support a measure of uncertainty as well
as to better reflect the probability of future route choices for a vessel in a given state.
Using Figure 5.1b as an illustrative example, the relative number of predicted trajec-
tories in each sea lane is intended to represent the probability of sea lane choice for
the initial state marked in the figure. Further, the spread of the predicted positions
at given time instants (black dots) intend to represent uncertainty of the prediction.
Further, the relative number of predicted positions in two or more clusters at a given
prediction time is intended to represent the probability distribution of the vessel’s posi-
tion at that given time. Whether or not the predictions actually reflect these suggested
probability measures is yet to be investigated and is not tested in this thesis.
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Chapter 6

Tests and results

6.1 SPNS’ potential and shortcomings
The SPNS algorithm is first run on 10 manually chosen scenarios to highlight the
algorithm’s potential and to reveal shortcomings. The decision parameters1 are given
in Table 6.1 and the predictions are illustrated in Figure 6.12. To recap some nota-
tion, the a posteriori course and speed predictions χ̂k+

k and v̂k+
k are equally set to the

median of all the CNs’ course and speed values, denoted χ̃c
k and ṽc

k, respectively.

Decision
parameter Value Explanation

rc 50 m Search radius for CNs
∆l 2rc Prediction step length
∆χ 25° Maximum course deviation for CNs
χ̂k+

k χ̃c
k Course prediction method used at every iteration k

v̂k+
k ṽc

k Speed prediction method used at every iteration k

Table 6.1: Decision parameters for the SPNS algorithm

Figure 6.1a - Figure 6.1e yield relatively accurate trajectory predictions (in both
course and speed). Figure 6.1f shows accurate speed prediction, but the predicted
path deviates from the true path inside the wide sea lane, illustrating that although
the algorithm can potentially follow sea lanes, it can not guarantee to take the correct
path within it.

Figure 6.1g illustrates a situation where the turn was too tight for the given decision
parameters. Therefore, by reducing the step length from 50 m to 25 m, the algorithm
is able to follow the turn, as shown in Figure 6.1h. The relationship between ∆χ and
∆l is important. For a given step length, a too low value of ∆χ will limit the radius
of curvature that the algorithm can follow. On the other hand, a too large value of

1Due to the tight turns in Figure 6.1c, the plot is generated with half the step length (and
hence half search radius) and a larger accepted maximum course deviation for neighbors, meaning
rc = ∆l

2 = 25m and ∆χ = 35°.
2Be aware that the ratio between the x-axis and the y-axis are not 1:1 and that it vary among the

subfigures.
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∆χ may for instance cause a prediction to suddenly be pulled into a crossing sea lane.
However, by reducing the step length, the maximum course deviation can be reduced
without compromising the range of radii of curvatures to follow, at the same time as
crossing sea lanes are less likely to be an issue.

Figure 6.1i and Figure 6.1j demonstrate that the algorithm does not handle branch-
ing of sea lanes. It typically follows the most dense path ahead.

(a) Time horizon: 18.87 min (b) Time horizon: 30.38 min

(c) Time horizon: 26.35 min (d) Time horizon: 21.82 min

(e) Time horizon: 23.22 min (f) Time horizon: 21.32 min

(g) Time horizon: 18.33 min (h) Time horizon: 18.33 min
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SPNS on curved trajectories

(i) Time horizon: 49.17 min (j) Time horizon: 15.32 min

Figure 6.1: The SPNS algorithm tested on a set of manually chosen curved trajectories.
Explanation of the sub figures’ markers are shown in Figure 6.1a.

6.2 SPNS on curved trajectories
The scenarios in Figure 6.1 are both few and manually chosen. Hence, they are not
representable for the algorithm’s overall performance. Therefore, the algorithm is
tested in more depth.

6.2.1 Test setup
The SPNS algorithm is tested and compared with the constant velocity model on the
first 350 randomly drawn curved trajectories that fulfill the following requirements:

1. The elapsed time from the beginning to the end of the trajectory3 must be
between 15 and 25 minutes.

2. To get a minimum of true evaluation points, the trajectory must consist of at
least 4 AIS messages including the starting point.

3. To test trajectories with a minimum of curvature is the accumulated course
change between every subsequent pair of AIS messages in the trajectory required
to be at least 40°, i.e., ∑L

i=2 |χi − χi−1| ≥ 40° where L is the number of AIS
messages in the trajectory.

4. In order not to start in an empty area (where the SPNS approach makes little
sense), a minimum of 5 CNs around the starting state is required.

5. To restrict the test to moving vessels the starting speed must be minimum 3
knots.

The 350 trajectories are predicted with the SPNS algorithm. The decision param-
eters in Table 6.1 are used, but two variants of the speed prediction v̂+

k are tested:
the first variant uses the median speed of the CNs (ṽc

k) and the second uses the last
received speed from the AIS message (vi) throughout the whole prediction. These two
variations are compared to a constant velocity model (CVM) approach, i.e. a predic-
tion model that keeps the course and speed constantly equal the initial known course

3Note that the tested trajectories can be sub-trajectories of longer trajectories.
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Figure 6.2: Illustration of path errors and trajectory errors.

and speed throughout the whole prediction.

The upcoming sections will test trajectory errors and path errors. The path errors
for a given true path is calculated by subsequently finding the shortest distance from
the current true position to any position on the predicted path, as long as the predicted
path’s position is ahead (in the direction of travel) of the previous closest position.
The trajectory error at a given time t is the distance from the true position at time t
to the predicted position at time t. The difference between path and trajectory error
is illustrated in Figure 6.2.

In the plots of the average and median error values in the next subsections, the
values are calculated from the 350 trajectories at every minute starting from time
zero, i.e., it is calculated at minute 0,1,...,15. Since the AIS messages are received at
various instants of time the exact errors at the chosen time instants are typically not
available. Therefore, the average and median values at each minute are calculated from
the trajectories’ linearly interpolated error values. Note that the number of trajectories
used in the calculations decreases from 350 to 0 between 15 and 25 minutes. The x-axis
in the average and median plots are therefore limited to 15 minutes in order to have
an equal amount of error values in the calculation at each evaluation point.

6.2.2 Path errors

Graphical results of the path error tests are shown in Figure 6.3. Figure 6.3a and
Figure 6.3b show the path errors for all the test trajectories as a function of predicted
time, i.e., how well the CVM and SPNS methods perform based on predicted course
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(a) Path error CVM (b) Path error SPNS

(c) Average path errors (d) Median path errors

Figure 6.3: Path error comparison between SPNS and CVM for curved trajectories.

along the path but regardless of the predicted speed4. The test trajectories’ average
and median path errors as a function of predicted time are shown in Figure 6.3c and
Figure 6.3d. As expected, the CVM path error is heavily increasing as the predicted
time goes by. The SPNS predictions yield significantly better results than the CVM
method. At prediction time 15 [min], the SPNS’ average and median path errors are
665 m and 331 m, respectively, while the CVM’s average and median path errors are
1545 m and 1387 m, respectively.

6.2.3 Trajectory errors
Figure 6.4 shows the trajectory error for the SPNS and the CVM method. The trajec-
tory error accounts for predicted course but also for predicted speed along the path.
Hence, the trajectory error will always be larger or equal to the path error. Figure 6.4a,
Figure 6.4b and Figure 6.4c show the trajectory error for the test trajectories when
CVM, SPNS with CN based speed and SPNS with constant speed is used, respectively.
The CVM method still yields the largest errors. When comparing the two SPNS vari-
ants, the SPNS with constant speed seems to have a larger density of errors close to
zero compared to the SPNS method with CN based speed. These observations are
also supported by Figure 6.4d and Figure 6.4e where the SPNS method with constant
speed method yields both the lowest median and the lowest average error values at all

4Since a constant step length is used, the shape of any path is independent of the speed along
it. However, since the prediction horizon is constant, the length of the path is speed dependent: low
speed predictions yield short paths and vice versa. Therefore, in scenarios where the predicted path
is shorter than the true path the predicted path is prolonged in order to evaluate the path error for
the whole true path.
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(a) CVM (b) SPNS, CN speed (c) SPNS, const speed

(d) Average trajectory errors (e) Median trajectory errors

Figure 6.4: Trajectory error comparison between SPNS and CVM for curved trajec-
tories.

prediction times.

6.3 SPNS on straight line trajectories
The SPNS approach yields clearly lower path and trajectory errors than the CVM
for curved trajectories. However, vessels follow relatively straight line paths most of
their travel time. It is therefore important to evaluate how well the SPNS algorithm
perform on straight line trajectories.

6.3.1 Test setup
A similar test as in Section 6.2 is performed, but now for straight line trajectories.
That is, the same decision parameters are used in the SPNS algorithm (Table 6.1)
and the 350 predicted trajectories are randomly drawn from those fulfilling the same
requirements as in Section 6.2 except for a difference in requirement number 3:

1. The elapsed time from the beginning to the end of the trajectory must be between
15 and 25 minutes.

2. The trajectory must consist of at least 4 AIS messages including the starting
point.

3. The accumulated course change between every subsequent pair of AIS messages
in the trajectory cannot exceed 10°, i.e., ∑L

i=2 |χi − χi−1| ≤ 10° where L is the
number of AIS messages in the trajectory.

4. A minimum of 5 CNs around the starting position is required.
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(a) Path error CVM (b) Path error SPNS

(c) Average path errors (d) Median path errors

Figure 6.5: Path error comparison between SPNS and CVM for straight line trajecto-
ries.

5. The starting speed must be at least 3 knots.

6.3.2 Path errors
Path errors for all the 350 test trajectories are shown in Figure 6.5a and Figure 6.5b
while the average and median path errors are shown in Figure 6.5c and Figure 6.5d.
Not surprisingly, the CVM has relatively small path errors since we are limiting the
accumulated course change of the test trajectories to only 10°. The SPNS method
has larger path errors overall. Its average and median path errors are still relatively
low with an average and median path error after 15 minutes of 141 m and 110 m,
respectively, compared to the CVM’s 92 m and 64 m.

6.3.3 Trajectory errors
The trajectory errors are shown in Figure 6.6. When comparing the CVM trajectory
errors in Figure 6.6a with the trajectory errors from the SPNS with constant speed
in Figure 6.6c, they seem to be almost identical. This is also supported by their very
similar average and median trajectory errors, as seen in Figure 6.6d and Figure 6.6e.
The speed prediction is the same in both methods and the two methods yield almost
identical results because errors caused by wrong speed predictions are the main con-
tribution to the trajectory error on close to straight line trajectories. It is clear from
Figure 6.6d and Figure 6.6e that the CN based speed (median speed of all CNs) is
overall less accurate than the constant speed.
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(a) CVM (b) SPNS, CN speed (c) SPNS, const speed

(d) Average trajectory errors (e) Median trajectory errors

Figure 6.6: Trajectory error comparison between SPNS and CVM for straight line
trajectories.

(a) The largest path error (b) The largest trajectory error

Figure 6.7: The largest SPNS path error from Figure 6.5b after 15 minutes and the
largest SPNS trajectory error from Figure 6.6b after 15 minutes.

The size of the path and trajectory errors in Figure 6.5b and Figure 6.6b may
be misleading. The predicted trajectories in these two figures that yield the largest
SPNS path error and the largest SPNS trajectory error at 15 minutes are illustrated
in Figure 6.7. Despite Figure 6.7a being the largest path error from Figure 6.5b, the
predicted path is fairly close to the true path. As a result, we can conclude that the
SPNS algorithm have good path following capabilities for straight line trajectories.
The predicted trajectory in Figure 6.7b, which has the largest trajectory error, is
far off the true trajectory because the predicted speed is much lower than the actual
speed. It can also be mentioned that the path error in Figure 6.7b is the second largest
observed.
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6.4 Evaluation of the speed prediction potential
The results in the two previous sections (Section 6.3 and Section 6.2) suggested that
assuming constant speed throughout the prediction, i.e. v̂+

k = vi for k = 1, ..., K − 1,
is preferred over the CN-based methods v̂+

k = ṽc or v̂+
k = v̄c. It is reasonable to think

that the constant speed method is more accurate closer to the beginning of the pre-
diction. This section evaluates the potential for improvement for the speed prediction
by comparing the three methods vi, ṽc and v̄c. The notation from the SPNS algorithm
in Chapter 4 is used.

6.4.1 Test setup
The test is performed on 5000 trajectories in order to evaluate how the constant speed
method typically deviates from the initial speed as the time elapses. The trajectories
are randomly drawn from those trajectories fulfilling the following two requirements:

1. Maximum 10 minutes between any two subsequent messages.

2. The trajectory must be between 20 and 25 minutes.

No overlapping parts of any trajectory are included twice. The total number of
tested AIS messages are 39641 as each trajectory consists of several messages. A
summary of the test requirements with additional information is presented in Table 6.2.
Since all tested trajectories end between 20 and 25 minutes5 the tests in the next section
are limited to 20 minutes such that an equal amount of trajectories (5000) is used in
the evaluation at each evaluation point.

Explanation Value

Number of test trajectories 5000
Total number of predictions 39641
Maximum time between subsequent messages 10 minutes
Minimum trajectory length 20 min
Maximum trajectory length 25 min

Table 6.2: Test requirements and information for the speed prediction evaluation.

6.4.2 Test results

Comparisons as functions of elapsed trajectory time

The average speed deviation and the 50th percentile speed deviation for the three
tested methods as a function of elapsed trajectory time are shown in Figure 6.8. The

5The trajectory does not have to physically end in this time interval, but it must have at least one
AIS message in this interval so the trajectory can be cut at this point.
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percentiles are calculated from absolute deviation values. We can only evaluate the
true speed deviation at the time instants of the AIS messages in each trajectory and
since these time instants varies among the 5000 tested trajectories, linear interpola-
tions are used to obtain 5000 speed deviation values at each minute starting from t = 0
to t = 20 minutes, where t is the elapsed time of a trajectory.

As expected, it does not seem to be any correlation between the CN-based speed
deviations and the elapsed trajectory time t. Further, the speed deviation based on
the median of all the CNs’ speed values (ṽc) yields both lower average absolute de-
viation and lower 50th percentile deviation than the method using the mean of all
the CNs’ speed values (v̄c). Naturally, the deviation of the constant speed method vi

is zero initially. The constant speed method has the lowest average values, but only
up to 5 minutes. If we want to minimize the average absolute deviation, this result
suggests to use vi the first 5 minutes and then switch to ṽc. However, the constant
speed method’s 50th percentile after 5 minutes is quite much lower than the same
measure for ṽc, and these two curves do not intersect before 13 minutes. These re-
sults suggest that the constant speed method is best between 0 and 5 minutes, worse
than ṽc from 13 minutes and beyond and between 5 and 13 minutes the constant
speed method has the lowest 50% deviations, but also a larger amount of very large
deviations, relative to ṽc, which has caused its high average values. Which method
to use in the interval 5 - 13 minutes depends on whether we want to have as large
amount of the lowest deviations as possible, at the cost of having a smaller part of
the predictions very far off, or whether we want the majority of predictions to have a
more stable deviation with less of the best predictions and less of the worst predictions.

The average absolute value and the 50th percentiles give us some overall indication
of how well the various methods performs. What is also of interest is to know how much
the deviations of the various methods vary. The speed deviation variances as a function
of elapsed trajectory time for the three methods are illustrated in Figure 6.9a. Once
again, as expected, the variances of the CN-based methods seems to be independent of
elapsed time with close to constant values in the interval 26−28 [kn2]. The variance of
the constant speed deviation is steadily increasing and intersects with the ṽc variance
after only 3.5 minutes. Both the CN-based methods have significantly lower variances
from 3.5 minute and beyond, where the v̄c has slightly lower variance than ṽc. Fig-
ure 6.9b shows the mean speed deviation values (not absolute deviation) as a function
of elapsed time. This plot is included to make sure that non of the methods are highly
biased. A method with very low variances can be misleading if the mean deviation val-
ues are far from zero. However, all three methods have mean values relatively close to
zero. Since the deviations are calculated as deviation = true speed− predicted speed,
the CN-based methods’ positive mean deviation values imply that the predicted speeds
on average are lower than true speed, while the constant speed’s negative values (up
to 17 minutes) imply speed predictions larger than true speed, on average.

The variance results better confirms the suggestion of replacing the constant speed
method by a CN-based method somewhere between 5 and 13 minutes. A change
of method does not have to occur instantly. A weighted combination, for instance
v̂+

k = (1 − a)vi + aṽc where a ∈
[
0, ..., 1

]
can be applied. The relative weighting

parameter a can increase from 0 to 1 in the interval we want the transition to occur.
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Figure 6.8: The average speed deviation and the 50th percentile speed deviation for
the three tested methods as a function of elapsed trajectory time for 5000 trajectories.
The three different methods are: The constant speed from the initial known speed at
t = 0 (vi), the mean of all the CNs’ speed values (v̄c) and the median of all the CNs’
speed values (ṽc).

(a) (b)

Figure 6.9: Figure 6.9a show speed deviation variance for the three tested methods as
a function of elapsed trajectory time for 5000 trajectories. The average variance values
are also included, illustrated with dashed lines. Figure 6.9b show the mean values of
all the 5000 interpolated speed deviations as a function of elapsed trajectory time.
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Figure 6.10: Speed deviation distribution for the CN-based methods for the 5000
trajectories independent of elapsed trajectory time (a total of 39641 observations for
each method).

Comparison of the CN-based methods independent of time

Since the speed deviation from the two CN-based methods are independent of elapsed
trajectory time it is more interesting to compare their overall performance independent
of time (interpolated values are not longer necessary). A distribution of speed deviation
is shown in Figure 6.10. Clearly, the ṽc method has a larger amount of deviations closer
to zero. Relative to each other, the ṽc method tend to yield a too low speed while
the v̄c method tend to yield a too high speed. Although the ṽc method had a slightly
higher variance in Figure 6.9a, the ṽc method will be preferred over the v̄c method due
to its significantly higher number of small deviations.

The CN-based methods as a function of the number of CNs

Lastly, Figure 6.11 shows how the absolute speed deviation for the two CN-based
methods change with the number of CNs (Ck). Figure 6.11a shows the results for the
whole range of Ck while Figure 6.11b shows the same results but is limited to Ck = 100.
Not surprisingly, the speed deviation is largest when Ck is very low, especially when
it is less than 206. This information can be incorporated into the speed prediction
suggested above, for instance by using the constant speed whenever the number of
CNs is below a certain limit. The speed prediction may then be:

v̂+
k = (1− a)vi + aṽc (6.1)

6It is possible that the number of CNs is not the direct cause for these results. It may be, for
instance, that vessels in rarely navigated areas tend to have a less determined planned trajectory and
hence larger variability in speeds. Rarely navigated areas implies less AIS-dense areas and hence a
lower number of CNs.
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(a) Full Ck range (b) Limited Ck range from Figure 6.11a

Figure 6.11: The average speed deviation for the two CN-based methods as a function
of the number of CNs (Ck ). The average values are calculated from all predictions
within a given Ck interval in order to have enough observations at each evaluation
point. Each interval equals the range of CNs between two subsequent dots, as seen
in the figures. For instance, the average absolute speed deviation for states with
Ck = 5000 is calculated as the average deviation from all states with Ck ∈ 〈4000, 5000

]
.

with

a =


0 if t < ta or Ck < minCn
t−ta

tb−ta
if ta ≤ t ≤ tb

1 if t > tb

(6.2)

where t, ta and tb are the predicted time (running variable), start time of transition
and end time of transition, respectively. The two latter parameters were suggested
above to be set to ta = 5 minutes and tb = 13 minutes. For simplicity, the transition
between the constant speed and the CN-based method in (6.2) is linear. Based on
Figure 6.11, the number of CNs minCn is suggested to be set to approximately 20.
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6.5 NCDM test results

6.5.1 Test setup
Algorithm 2 is tested with the decision parameters in Table 6.3 from a set of random
initial states. Ten of these predictions are illustrated in Figure 6.12. The predicted
trajectories are plotted with a very weak, red color in order to better see the pre-
diction density: a stronger red color indicates a higher density. Be aware that in
Table 6.3 the search radius and the step length are set equally to ∆l = rc = 100 m,
as opposed to in in the SPNS test in Table 6.1 where ∆l = 2rc = 100 m. A short
step length is necessary to be able to follow tight turns, but a short search radius can
often result in the number of CNs (Ck,j) being very low or even zero. By reducing
the ∆l

rc
ratio from 2 to 1 we double the search radius while keeping the same step length.

Decision
parameter Value Explanation

rc 100 m Search radius for CNs
∆l 100 m Prediction step length
∆χ 35° Maximum course deviation for CNs
N1,1 500 Number of child nodes from start node
Nk,j, k ≥ 2,∀j min(1, Ck,j) Number of child nodes from any node except

for the start node
Jmax 500 Maximum width of the prediction tree
th 20 min Prediction horizon

Table 6.3: Decision parameters for the NCDM test

6.5.2 NCDM’s potential and shortcomings
Although the 10 selected plots in Figure 6.12 do not represent the overall prediction
results, they show that Algorithm 2 is capable to divide into multiple branching sea
lanes, a feature which Algorithm 1 does not possess. As the prediction time increases
the predicted areas (black dots) are typically expanding. This is reasonable since the
uncertainty of the predicted state increases with time. Figure 6.12a - Figure 6.12f
show predictions where branching occurs. In the first two cases, the true paths fall
inside the least dense sea lanes. More precisely, they fall into the sea lanes which
only hold 7% and 2% of all predicted paths (Jmax), respectively. However, these
two single results alone can neither verify nor disprove whether the distributions of
predictions are statistical reasonable. Further, Figure 6.12e and Figure 6.12f show
that with a small enough maximum course deviation parameter (∆χ = 35° in this
test), the predictions do not expand to crossing sea lanes. The crossing sea lanes in
the two previously mentioned examples are caused by passenger ferries traveling back
and forth the same route, causing very dense sea lanes where most other vessel types
do not travel. Therefore is the preferred behavior to avoid such crossing sea lanes7.

7More testing must be done investigate to what extent vessels move from one sea lane to a crossing
sea lane.
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As seen from Figure 6.12i and Figure 6.12j, Algorithm 2 is also able to follow straight
line trajectories in areas with various AIS data density.

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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(i) (j)

Figure 6.12: The NCDM algorithm tested on a set of manually chosen trajectories.
Explanation of the sub figures’ markers are only shown in Figure 6.12a and notice that
the last three markers are either stronger or larger than in the actual plot.

6.5.3 Statistical testing
There are several performance measures of interest for the NCDM predicted trajecto-
ries, such as:

1. How well are the true paths captured by the predicted paths (independent of
time)? For instance, what is the lowest path errors?

2. How close are the predicted trajectories to the true trajectories?

3. How well does the density of predicted trajectory states (positions at given times-
tamps) reflect the probability of the vessels being there at the same instant of
time?

4. How well does the distribution of predicted trajectories in branched sea lanes
reflect vessels probability of sea lane choices?

We will in the following run statistical tests on the dataset to evaluate the per-
formance of the trajectory predictions (point 2 in the list above). An evaluation of
whether the density of predicted trajectories reflect the probability of vessel movement
or not will not be covered but is important to test since such properties in a COLAV
system would be an advantage for an ASV’s path planning algorithm.

A necessity for the upcoming tests is to automatically cluster the predicted posi-
tions without knowing the number of clusters. The widely used density-based spatial
clustering of applications with noise (DBSCAN) algorithm is implemented for this
purpose. One or more clusters are obtained at every known timestamp of the tested
true trajectory. An example of clusters is shown in Figure 6.13. The DBSCAN is,
as the name suggest, a density based clustering algorithm. Given a set of points in a
space to be clustered, the algorithm differ between three classes of points: Core points,
density-reachable points or outliers. More specifically [20]:

1. A point p is a core point if at least minPts number of points (including p itself)
are within a distance ε of it. Core points are said to be directly reachable from
p.
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Figure 6.13: An example of the DBSCAN clustering algorithm on a NCDM predicted
trajectory.

2. A point q is density-reachable from p if there is a sequence of points p1, ..., pn

with p1 = p and pn = q, where each pi+1 is directly reachable from pi. That is,
all the points in the sequence, with the exception of pn, must be core points.

3. All points that are neither core points nor density-reachable points are outliers.

If p is a core point, it forms a cluster with all other points that is either directly
reachable from it (other core points) or density-reachable points. Outliers are omitted
and do not belong to any cluster. A distance metric and the two decision parameters
ε and minPts have to be chosen.

Test setup

The DBSCAN algorithm is run with an Euclidean distance metric and with ε =
100 m and minPts = 10 positions. The NCDM algorithm is used with decision
parameters listed in Table 6.3. The test is performed on the first 400 randomly drawn
trajectories that satisfy the requirements given in Table 6.4. The future true trajectory
is always removed from the dataset prior to prediction and no initial state is used
more than once. Approximately 57% of the randomly checked states did not meet the
requirements, where 35% of these were due to too few CNs initially, 33% were due to
exceeding the maximum time between subsequent AIS messages, 28% were due to too
low initial speed and the remaining 4% were due to the last trajectory message not
falling inside the required time interval. The DBSCAN decision parameters are given
in Table 6.5. Of all the predicted positions fed to the NCDM algorithm are only 0.3%
classified as cluster outliers and the rest are assigned to various clusters.
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Explanation Value

Number of test trajectories 400
Maximum time between subsequent messages 10 min
Minimum number of initial CNs (C1) 10
Minimum initial speed (vi) 5 kn
Minimum trajectory length 15 min
Maximum trajectory length 20 min

Table 6.4: Test requirements for the NCDM trajectory evaluation

Explanation Value

DBSCAN distance metric Euclidean
ε 100 m
minPts 10 positions

Table 6.5: Decision parameters for the DBSCAN clustering algorithm.

Distances to the nearest clustered positions

Figure 6.14 show the average value together with three different percentiles of the
distances to the nearest predicted positions as a function of elapsed trajectory time.
There are one or more clusters for each time instant in the true trajectory. The dis-
tance from the true position to the nearest position in any of the clusters is used as
a performance measure. Predicted positions classified as outliers by the DBSCAN
algorithm is not regarded. As before, in order to obtain estimated values from all test
trajectories at each evaluation point (each minute), all values are linearly interpolated
before the average and percentile values are calculated at each evaluation point.

As seen from Figure 6.14, all measures are increasing with elapsed trajectory time.
As before, this is expected since the deviation is zero initially and as time goes by the
range of possible vessel positions increases. The 25th and 50th percentiles stay low
for the whole prediction horizon with maximum values of 77 m and 236 m after 15
minutes. The 75th percentile reaches a maximum value of 864 m after 15 minutes.
The 25% gap from the 50th percentile to the 75th percentile is very large relative the
25%gap between the former two percentiles. Furthermore, the average distances are
typically above the 75th percentile. In other words are more than 75% of the lowest
distances less than the average distance. This is caused by the upper 25th percentile
(the 25% largest values) being very large and pulling the average values up.
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Figure 6.14: Three different percentiles and average values of the distances between
the true positions and the nearest clustered positions, plotted as a function of elapsed
trajectory time.

Distances to the nearest cluster centers

Figure 6.16 show the average value and three different percentiles of the distances to
the nearest cluster centers as a function of elapsed trajectory time. The cluster center
is calculated as the center of mass with all cluster positions regarded as point masses
with masses equal to 1. Hence, the center of any given cluster is calculated as

pclus =
[
λclus φclus

]
=
∑Nclus

j=1 λj

Nclus

∑Nclus
j=1 φj

Nclus

 (6.3)

where Nclus is the number of positions in a cluster, φj is latitude and λj is longi-
tude. See Figure 6.15 for an illustrative example on how the distances are calculated
for a single trajectory prediction. All distance values are linearly interpolated as before.

As seen in Figure 6.16, the various measures looks very similar in both shapes and
values to those in Figure 6.14. Naturally, since the distance to the nearest cluster
center always is larger or equal to the distance to the nearest clustered position, the
values in Figure 6.16 are slightly larger for all elapsed trajectory times. The 25th,
50th and 75th percentiles are increasing up to a maximum of 162 m, 368 m and 924
m, respectively. Once again, the upper 25th percentile must consist of relatively large
values since the average and the 75th percentile almost coincide.

Further analysis

To get an idea about why some predictions yield very poor results, the predictions
yielding the 20 largest distances to cluster centers at the end of the 15 minutes tra-
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Figure 6.15: An illustration of distances from true positions to their nearest cluster
centers.

Figure 6.16: Three different percentiles and average values of the distances between
true positions and their nearest cluster density centers, plotted as a function of elapsed
trajectory time.
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jectory are plotted in Appendix A. By observing these 20 predictions we can conclude
that:

1. 10/20 of the large end point deviations are due to poor speed prediction as the
vessel has changed its speed significantly since the initial state.

2. 6/20 of the large end point deviations are a result of the predicted trajectories not
covering the true path fully (Figure A.1m, Figure A.1j, Figure A.1f, Figure A.1e,
Figure A.1b, Figure A.1a)

3. 2/20 of the large end point deviations are caused by the vessels making a too
tight turn for the chosen decision parameters (Figure A.1s, Figure A.1l).

4. 1/20 of the large end point deviations is caused by the vessel making a U-turn
which the algorithm will rarely follow (Figure A.1o).

5. 1/20 of the large end point deviations is a result of the predicted branch termi-
nating before it reaches the final prediction time. This is caused by the vessel
reaching land/port, meaning that no CNs exist and further prediction is impos-
sible (Figure A.1g).

Although not a statistical proof, these results indicate that about half of the largest
deviations are a result of incorrect speed prediction. This seems reasonable as inaccu-
rate speed prediction was discovered in Section 6.3 to be the main contribution to the
trajectory errors. Therefore, there is a potential to significantly reduce the average
distances to the nearest cluster centers in Figure 6.16 by implementing a smarter speed
prediction, for instance the one suggested in (6.1).

The second largest portion of the deviations (6/20) is a result of the predictions
not covering the true path to the end. In two of these scenarios (Figure A.1m and
Figure A.1e), the vessels choose to branch out from a very dense sea lane onto a much
less dense lane. If the NCDM algorithm’s distribution of predictions in branched sea
lanes reflect the statistical probability of vessels’ sea lane choices (which is not yet
verified), then such scenarios should not occur more often than what the historical
AIS data reflects, which is very rarely. Such rare scenarios, however, are difficult to
avoid with the highly data-driven algorithm. In the remaining 4 of these 6 scenarios,
there are not enough predictions close enough to form clusters with the chosen NCDM
decision parameters.

The last observed case, where a vessel reaches a port or land, will typically result
in poor predictions for the NCDM algorithm since the closer a vessel get to land, the
lower the speed, while the predicted speed is held constant. However, the algorithm
can be expanded to detect when land is approaching or reached. Land is typically
reached if there is a consistent, very low speed among the CNs and if also there is a
sudden change of AIS density from a typically very high number at the port/land to
zero. Zero CNs will cause the predicted trajectories to terminate. The AIS dataset in
this thesis was prior to reception already filtered to exclude AIS messages with speed
values below 0.5 kn. If these values are included in the dataset will detection of ports
and land likely be easier as the density of low speed AIS messages should be high in
such areas.
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Figure 6.17: The total number of terminated predictions at each time interpolation.

Each interpolated value in Figure 6.16 is calculated from the 400 tested predictions.
However, some predictions terminate8 before they reach the end of the prediction hori-
zon. This results in a lower number of evaluation points as the elapsed trajectory time
increases. The total number of terminated predictions as a function of interpolated
time is shown in Figure 6.17. More and more predictions terminate as the prediction
time elapse, until a total of 65 out of 400 predictions have fully terminated after 15
minutes. Clearly, we want as few predictions as possible to terminate before the end
of the prediction horizon.

Appendix B shows 20 of the 65 terminated predictions. The 20 predictions are
drawn randomly. By observing these plots it can be concluded that 20/20 of the
predictions terminate because the vessels reach land. In most of the predictions, the
vessels either turn back where they came from or move on towards other destinations
after a short stop at land. Note that the maximum possible time a vessel can be
moored or at rest is 10 minutes since the maximum time between subsequent AIS
messages is set to 10 minutes in Table 6.4 and because AIS messages with speed over
ground less than 0.5 kn are not present in the dataset. These behaviors are explained
by the fact that these vessels are passenger ferries traveling back and forth the same
route.

Comparison between the constant speed and the speed transition method

This subsection compares the NCDM algorithm with two variants of the speed pre-
diction: the constant speed (CS) method and the speed transition (ST) method. The

8A prediction terminates if there are no clusters formed at a given time instant, although cluster
outliers may exist.
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former is already tested in the previous subsections, while the latter method is the
speed prediction method given by (6.1) and (6.2) as suggested in Section 6.4.2. It is
repeated here for convenience:

v̂+
k = (1− a)vi + aṽc

with

a =


0 if t < ta or Ck < minCn
t−ta

tb−ta
if ta ≤ t ≤ tb

1 if t > tb

where t, ta and tb are predicted time (running variable), start time of transition
and end time of transition, respectively, vi is the constant speed and ṽc is the median
speed of all CNs. Recap that the decision parameters ta = 5 min, tb = 13 min and
minCn = 20 are chosen based on the statistical testing in Section 6.4.2. The NCDM
algorithm is run with the same decision parameters and on the same 400 trajectories
as in Section 6.5.3, but now with the suggested speed transition method. The perfor-
mance is compared with the constant speed method and shown in Figure 6.18.

Both Figure 6.18a and Figure 6.18b show the same trend: by replacing the CS
method with the ST method, the average error values and the 75th percentile error
values are reduced for t > ta = 5 min. At t = 15 min, the average error in Figure 6.18b
is reduced by 11.6% down from 1045 m to 924 m. At the same time, the 25th and
50th percentiles are all larger with the ST method. This means that the ST method
reduces the error in situations where the constant speed gives very poor predictions,
but it increases the errors in trajectories with close to constant speed. It is not nec-
essarily preferred to try to minimize the average prediction error in COLAV. If the
prediction error is reduced from 5000 meter to 4000 meter it can have a significant
influence on the average error, but it is not of much added value in terms of avoiding
collision. The constant speed method is therefore preferred over the speed transition
method.

A deeper look into the prediction errors suggest the following hypothesis:

1. Vessels in transit, i.e., a few minutes after departure and a few minutes prior to
arrival at land, tend to keep a close to constant speed. Hence, predicting with
constant speed is reasonable.

2. In the first few minutes after departure, and the last few minutes prior to arriving
at land, the vessels’ speed is better predicted from the historical speeds in the
area. Hence, a CN based speed prediction method is preferred.

A more accurate speed prediction can be achieved if the above hypothesis is rea-
sonable by:

1. First detecting if the vessel is approaching land or if it has just departed.

2. Decide a point on the trajectory where a switch of speed prediction will occur.
The trajectory is predicted with the constant speed method when the vessel is
in transit, while just after departure and prior to arrival at land, a CN based
speed method is applied.
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(a) Distance to the nearest clustered position

(b) Distance to the nearest cluster density center.

Figure 6.18: Comparison of the constant speed (CS) method and the speed transition
(ST) method. Three different percentiles and average values for both methods are
presented. The distance to the nearest clustered positions are shown in fig. 6.18a
while the distance to the nearest cluster density centers are shown in fig. 6.18b.
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As already mentioned above, detection of land may be discovered whenever there is
a very dense area with a consistent low speed and where the density suddenly reduces
to zero if the predictions are continued in the direction of travel onto the mainland.
As seen from the figures in Appendix B, the termination of predictions (reduction
of density to zero) seem to be a good indication of land being reached even without
checking for speed in the area. Areas of departure can be discovered in a similar way.

6.6 Computational time analysis
The computational time tests are run on an Intel(R) Core(TM) i5-3470 CPU 3.20 GHz
processor with 16 GB RAM and Windows 7 64-bit operating system.

6.6.1 The bottleneck
The NCDM algorithm spends on average 99.8% of its computational time while search-
ing for CNs. In the original SPNS implementation [1], the CNs are searched for in a n
x 4 matrix where n is the number of AIS messages, the first column is sorted longitude
values and the remaining three columns are the corresponding latitude, course and
speed values, respectively. Given the AIS dataset is already sorted with respect to
longitude values, this approach finds all the CNs around a predicted state X̂k with
position p̂k =

[
λ̂k φ̂k

]T
and course χ̂k by:

1. First finding the state Xi in the AIS matrix with longitude value λi closest to
the predicted state’s longitude value, using a binary search in O(log n) time.

2. Secondly, running a sequentially search in O(n) time through all the sorted
longitude values within the range λ̂k − (rc + d(p̂k,pi)9 and storing the states
that are within the Euclidean search radius rc of the predicted state X̂k. Notice
that the distance d(p̂k,pi) between the predicted state X̂k and the state with
the closest longitude value Xi is included to make sure that all states within the
radius rc of X̂k are covered.

3. Lastly, running a linear search in O(n) time through the states discovered in
step 1 an 2 and eliminate the states which does not satisfy the maximum course
deviation requirement ∆χ, i.e., the states with χi /∈ S =

[
χ̂−

k −∆χ, χ̂−
k + ∆χ

]
as defined in (4.5).

6.6.2 Computational time comparison between k-d tree stor-
age and longitude sorted matrix storage

In order to reduce the computational time are the longitude and latitude values stored
in k-dimensional tree structure (k-d tree for short) with k = 2 dimensions. The k-d
tree is a binary tree in which every node is a k-dimensional point and it is a useful tree
structure for range searches [21]. A range search in a k-d tree with N nodes are shown

9Assuming that λ̂k, rc and d(p̂k,pi) all are represented in the same unit, i.e., either in meters or
degrees.
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to have a worst case time of O(kN1− 1
k ) [22] which with N = 2n and k = 2 becomes

O(2
√

2n).

Figure 6.19: Comparison of the total computational time/ CN as function of search
radius for the k-d tree storage method and the longitude sorted storage method.

(a) K-d tree storage method. (b) Longitude sorted storage method.

Figure 6.20: The average computational time for the two main parts of the CN search:
the radius search and the course elimination. Figure 6.20a show the result for the K-d
tree storage method and Figure 6.20b show the results for the longitude sorted storage
method.

Figure 6.19 compares the average computational time per CN between the k-d
tree storage method and the longitude sorted storage method. Figure 6.20 show the
individual time consumptions for the two main parts of the CN search, i.e., the radius
search and the course elimination part, for both storage methods. Hence, the sum of
the two curves in Figure 6.20a equals the total computational time for the k-d tree
storage method in Figure 6.19 (green curve) and similar for the longitude sorted stor-
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age method. All computational times are represented in milliseconds (ms).

The average computational times are based on 500 randomly drawn states from
the AIS dataset10 for each of the 8 tested search radii (25 m, 50 m, 100 m, 150 m, 200
m, 250 m, 300 m and 350 m). The two methods perform the CN searches from the
same random states.

The computational times for both methods are consistently increasing for rc > 100
m and beyond, as seen from Figure 6.19. For the k-d tree storage method, this in-
crease is caused solely by the linear course elimination part of the CN search, as seen
in Figure 6.20a. The same figure reveals that radius searches in k-d trees are more
efficient, in terms of lower average computational time per CN, for growing search ra-
dius (and hence growing amount of CNs). This may indicate that the k-d tree search
burns some processing time initially. The computational time of the radius search for
the longitude sorted storage method, on the other hand, is steadily increasing as a
function of the search radius. This occur because the method first performs a binary
search, followed by a linear search which is a direct function of the search radius, as
described in the list above. Note that the course elimination part of the CN search is
the same for both methods.

At rc = 100 m, and with δχ = 35°, the average computational time for the k-d
tree storage method is approximately 0.36 ms/CN while the longitude sorted matrix
method has a computational time of 1.45 ms/CN at rc = 100 m, which is a factor of
4 times higher.

6.6.3 Estimated computational time for SPNS and NCDM
The search radius and the maximum course deviation used in the NCDM algorithm
were set to rc = 100 m and ∆χ = 35° in Table 6.3. With these decision parameters, the
average computational time per discovered CN with the k-d tree search is t̄kd = 0.36
ms. The maximum11 total computational time for a predicted trajectory with the
NCDM algorithm is then approximately:

tNCDM = (1 + Jmax(K − 2))t̄kdρ̄πr
2
c

≈ Jmax(K − 2)t̄kdρ̄πr
2
c if 1 << Jmax(K − 2) (6.4)

where Jmax is the maximum width of the prediction tree, K is the number of
levels in the prediction tree and ρ̄ is the average CN density per area. Usually, 1 <<
Jmax(K − 2) so the CN search from the initial state can be neglected. The value of K
is a function of the step length ∆l, the prediction horizon th and the predicted speed
v̂+

k according to (4.11). If a constant speed prediction is used, the value of K can be
explicitly given as

K =
⌈
th
v̂+

k

∆l + 1
⌉

(6.5)

10A small, random offset is added to the states in order to simulate the typical situations where
the predicted states do not exist in the dataset. This increases the computational time, but only for
the longitude sorted storage method.

11Assuming that no predictions are terminated.
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where the value is rounded to the nearest integer to make sure that K iterations result
in predictions of minimum th minutes.

By inserting (6.5) into (6.4) we get:

tNCDM = Jmax(K − 1)t̄kdρ̄πr
2
c

= Jmax

⌈
th

v̂+
k

∆l
− 1

⌉
t̄kdρ̄πr

2
c

(6.6)

If considering the average speed in the dataset v̄ = 10.5 kn = 5.4 m/s, the average
CN density12 ρ̄ = 0.0048 CNs/m2 and with the decision parameters from Table 6.3,
that is with Jmax = 500, th = 20 min = 1200 s and rc = ∆l = 100 m, the computational
time of predicting a trajectory with the NCDM algorithm becomes tNCDM = 28.6 min-
utes. This is slightly larger than the observed average prediction time from the 400
test trajectories in Section 6.5 which was 25.1 minutes. This deviation occur because
the tree width is not always constantly equal to Jmax at all levels k due to termination
of some predictions.

Similarly, the estimated computational time for the SPNS algorithm can be calcu-
lated as

tSP NS = (K − 1)t̄kdρ̄πr
2
c

=
⌈
th

v̂+
k

∆l
− 1

⌉
t̄kdρ̄πr

2
c

(6.7)

which with the same parameter values as above gives an estimated computation
time per predicted trajectory of tSP NS = 3.52 s.

6.6.4 Suggestions to reduce the computational time
The above computational time for the NCDM algorithm is clearly not practically
feasible in real-time. Possible ways of reducing the computational time include:

1. Reduce the number of iterations K − 1 by:

(a) Reducing Jmax. The test value of 500 may be unnecessary high.
(b) Implementing a step length which adapts to the curvature of the sea lane

ahead. Straight line sea lanes can allow larger step lengths than curved sea
lanes.

(c) Limit the prediction horizon th. However, it should not be limited to more
than approximately 15 minutes in a COLAV system.

2. Reduce the average computational time per discovered CN t̄kd by:

(a) Optimize the implementation of the linear search which eliminates the
neighbors with χc /∈ S.

(b) Partitioning the dataset into grid cells to create several, but smaller k-d
trees and only search for CNs in the current or neighboring grid cell.

(c) Storing the data in a more search efficient tree structure, if possible.
12The average density is calculated around the predicted trajectories in Section 6.5 with rc = 100m

and ∆χ = 35°.

54



Computational time analysis

3. Reduce the search radius after the initial prediction, i.e., for k ≥ 2, since only
one course is drawn anyway. Alternatively implement a kNN search with a low
k value to avoid searching for unnecessary many neighbors in high density areas.

4. Only search for CNs once for identical predicted states. It will exist multiple
identical states whenever the number of CNs are less than Jmax initially. How-
ever, the likeliness of identical states decreases with predicted time.
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Chapter 7

Concluding remarks

Two highly data-driven vessel trajectory prediction methods have been developed and
tested. Little research have previously been done in terms of utilizing AIS data to
predict vessel trajectories for use in COLAV systems. The proposed methods differ
from relevant previous work in two major ways. First, the SPNS and the NCDM
algorithms aim for shorter prediction horizons than most of other AIS based methods.
The prediction horizons of interest for COLAV applications is up to about 15 min-
utes, which is beyond the reliable range of the CVM method. Secondly, the proposed
methods use the historical AIS data more directly in the predictions, compared to the
extensive use of route clustering techniques present in the literature. The proposed
algorithms are only intended to proactively assist COLAV systems to avoid possible
collision situations. If a potential collision situation is present, the ASV’s maneuvers
should not rely on the AIS based predictions as these predictions do not represent
vessel behavior in such situations.

The SPNS algorithm yields better predictions than the CVM method on curved
trajectories, in terms of both lower average and median path and trajectory error. At
the same time, it shows good path following capabilities in environments with straight
line trajectories. Hence, the SPNS algorithm provides a wider range of environments
where predictions are reasonable, as compared with the CVM. Despite that, the SPNS
algorithm lack some important features for use in COLAV systems. Each vessel is
only assigned a single predicted trajectory, making it impossible to detect multiple
branching sea lanes and difficult to provide measures of prediction uncertainty.

The NCDM algorithm is developed to cope with the SPNS’ drawbacks. The algo-
rithm shows the capability of dividing its predicted trajectories into multiple branching
sea lanes. It is not yet tested to what extent the density of predicted trajectories rep-
resents the statistical movement of vessels. It further features prediction uncertainty
in terms of the spread of the predicted positions at any given instant of time. The
method shows reasonably low 25th and 50th trajectory error percentiles in terms of the
distance to the nearest cluster density center and the distance to the nearest clustered
position, but relatively much larger 75th percentile and average values as a result of a
few, but large errors mostly caused by poor speed predictions.

Wrong predictions of speed are the main contributors to the trajectory errors for
both the SPNS and the NCDM algorithm. Improving the speed predictions should
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therefore be in focus in the further development of the algorithms. Assuming constant
speed is overall better than using a pure CN based speed prediction. However, the
constant speed method seems only to be the most accurate choice when the vessel is
in transit, while a CN based speed prediction approach seems to be the most suitable
choice in the minutes after a vessel departures and in the minutes prior to reaching its
destination at the shore.

An evaluation of the potential for better speed prediction suggests that at least
two factors influence the prediction accuracy of the constant speed method and the
CN based speed methods: elapsed prediction time and the number of CNs Ck,j. As
expected, the constant speed prediction accuracy drops as a function of elapsed predic-
tion time, while the CN based methods are independent of the elapsed time. On the
other hand, the constant speed approach is independent of Ck,j while the CN based
methods reveal larger prediction errors for Ck,j values less than around 30.

Lastly, the computational time for the NCDM is not practically feasible in real-time
with the tested decision parameters and must be reduced significantly.
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Suggestions for further work

The following further work is suggested for the NCDM algorithm:

1. Does the density of predicted trajectories represent the probability of vessels’
route choices given the initial state? If not, an alternative algorithm may be
tested: instead of randomly pulling courses from the CNs at the initial state,
the full trajectories of all CNs may be pulled out initially and predictions can
be based on these trajectories. Such a method would have a significantly lower
computational time, but it either requires higher resolution AIS data or a good
interpolation method in order to obtain predictions at any instant of time.

2. Does the spread of predicted positions at a given predicted time instant reflect
the uncertainty of vessel positions?

3. Implement detection of land/ports and test a speed prediction method which
applies the initial true speed when the vessel is in transit and a CN based speed
during the first minutes after departure and during the last minutes before arrival
at land/port. The historical AIS density is very high in areas where vessels are
mooring and the speed in these areas are low. Hence, a consistent decrease in
speed together with a consistent increase in AIS density among the CNs, followed
by zero density (all predictions terminate) is a reasonable indicator of reaching
land/port.

4. Develop a measure to indicate how reliable a prediction is. The density of his-
torical AIS data may be one such indicator.

5. It can be interesting to test the NCDM algorithm by randomly pulling speed
values from the CNs, in the same manner as already done with the courses, in
order to also include uncertainty in the speed prediction.

6. It can also be of interest to test the algorithm on trajectories where absolute
all MMSI values of the predicted vessel are removed from the dataset, with the
purpose of evaluating how well the algorithm generalizes to new vessels.

7. Significantly reduce the computational time of the NCDM algorithm, for instance
by means of some of the proposed actions at the end of Section 6.6.

8. Implement the NCDM algorithm and a CVM method in a COLAV system and
compare the COLAV performance.
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Beside further work on the NCDM algorithm it can be valuable to investigate
prediction opportunities based on electronic nautical charts, in order to predict tra-
jectories in situations where AIS data is not available.
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The 20 largest end point deviations from the test in Section 6.5.3

Appendix A

The 20 largest end point deviations
from the test in Section 6.5.3

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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The 20 largest end point deviations from the test in Section 6.5.3

(s) (t)

Figure A.1: The 20 largest cluster center devations from the test in Section 6.5.3.
The plots are sorted on their end point deviations where Figure A.1a have the largest
deviation. Plot markers are only explained in Figure A.1a.
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20 of the terminated predictions from the test in Section 6.5.3

Appendix B

20 of the terminated predictions
from the test in Section 6.5.3

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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20 of the terminated predictions from the test in Section 6.5.3

(k) (l)

Figure B.2: 20 predictions randomly chosen from the terminated predictions in Sec-
tion 6.5.3. Plot markers are only explained in Figure B.1a.
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Simen Hexeberg∗, Andreas L. Flåten†, Bjørn-Olav H. Eriksen‡ and Edmund F. Brekke§

Department of Engineering Cybernetics
Norwegian University of Science and Technology (NTNU)

∗ simenhex@stud.ntnu.no
† andreas.flaten@ntnu.no

‡ bjorn-olav.h.eriksen@ieee.org
§ edmund.brekke@itk.ntnu.no

Abstract—In order for autonomous surface vessels (ASVs)
to avoid collisions at sea it is necessary to predict the future
trajectories of surrounding vessels. This paper investigate the
use of historical automatic identification system (AIS) data to
predict such trajectories. The availability of AIS data have
steadily increased in the last years as a result of more regu-
lations, together with wider coverage through AIS integration
on satellites and more land based receivers. Several AIS-based
methods for predicting vessel trajectories already exist. However,
these prediction techniques tend to focus on time horizons in the
level of hours. The prediction time of our interest typically ranges
from a few minutes up to about 15 minutes, depending on the
maneuverability of the ASV. This paper presents a novel data-
driven approach which recursively use historical AIS data in the
neighborhood of a predicted position to predict next position and
time. Three course and speed prediction methods are compared
for one time step predictions. Lastly, the algorithm is briefly
tested for multiple time steps in curved environments and shows
good potential.

I. INTRODUCTION

The automotive industry have already come a long way in
autonomy, with companies such as Google, Uber and Tesla in
the very front of the fast development. This trend is spreading
to the maritime industry with the development of autonomous
surface vessels (ASVs). Reliable ASVs have potential for
large economical and safety related benefits by eliminating
errors caused by human operators, increasing cargo space due
to elimination of crew facilities and perhaps by more optimal
navigation and cooperation between vessels.

Safety and reliability are very important aspects for the
public’s and governments’ acceptance of fully or partly
autonomous vessels. A robust collision avoidance (COLAV)
system is essential in this context. In order to avoid collision,
one must predict the future trajectory of nearby vessels. A
commonly used approach today is to assume constant speed
and course (e.g. [1]). By utilizing positional, course and
speed data from vessel transmitted automatic identification
system (AIS) data, it may be possible to obtain more refined
predictions. However, since patterns from historical AIS data
best reflect normal vessel behavior, as opposed to behavior in
close-to-collision situations, AIS based predictions are mainly
useful for proactive maneuvers in order to prevent potential
collision situations. Faster and more reliable data sources,
such as radars, must be used if the situation is already critical.

Fig. 1. 3.3% of the available AIS dataset from the Trondheimsfjord in
Norway. Beside vessels’ positions, which are displayed, the dataset includes
information such as course and speed.

Better estimates of surrounding vessels’ future trajectories
can also be used to improve situational awareness systems.

At sea, the autonomy challenges differ from the ones on the
roads. As apposed to cars on the roads, vessels can move in
all directions. Additionally, the International Regulations for
Preventing Collisions at Sea (COLREGS) is less quantifiable
and more dependent on common sense than standard car
traffic rules, making it even more difficult to predict future
vessel behavior. On the other hand, vessel movement patterns
revealed by historical AIS data, as illustrated in Figure 1, are
likely to contain implicit information like where it is possible,
safe and smart to maneuver, as a majority of vessels navigate
in map-advised sea lanes and areas.

The outline of this paper is as follows: Section II covers
four possible approaches from previous work. Further, a new
method is described in Section III followed by an evaluation
of the new method in Section IV. Lastly, conclusions and
suggestions for further work are given in Section V and
Section VI, respectively.

II. RELATED WORK

Little research have been done in terms of utilizing AIS
data with the aim of vessel movement predictions for time



horizons in the level of a few minutes. However, there exist
AIS-based methods aiming for relatively long prediction
horizons and some methods developed for animal and
weather movement prediction which may facilitate shorter
prediction horizons. This section summarizes a few of the
most prevailing approaches which may be adapted to COLAV
applications.

A. Typical prediction approach

Prediction methods for movement of objects are often
based on path clustering and can typically be divided in four
main steps in an AIS data context:

1) Cluster paths in the historical data to yield sets of similar
route patterns.

2) Classify sequences of new, incoming AIS data points to
assign vessels to the route patterns found in step 1.

3) Create representative paths of the common behavior in
every route pattern.

4) Predict the vessels’ future trajectories, for instance along
their representative paths or by using a particle filter.

Various methods are used in all four steps across the
literature. The path clustering in step 1 can be further divided
into clustering of whole paths and sub-paths. Clustering of
whole paths can be useful to predict destination and estimate
time of arrival, while clustering of shorter sub-paths has
better potential in the context of COLAV systems.

B. A survey on clustering-based methods

The trajectory clustering (TRACLUS)1 algorithm [2] is a
sub-path clustering algorithm tested on hurricane data and
animal movement data. The algorithm can be separated in
two main parts; path partitioning and sub-path clustering.
Paths, which originally consist of straight lines connecting
subsequent positional points, are divided into even coarser
line segments. The line segments are connected between so
called characteristic points at which the directional change
is to a certain extent. Hence, the length of line segments
dynamically adapt with respect to the curvature of the path.
The threshold of directional change before a characteristic
point occur, is a trade-off between minimizing preciseness
and conciseness. The former is the subsequent sub-paths’
deviation from the original path and the latter is the number
of partitions, i.e., the number of line segments between
characteristic points. An optimal trade-off can be found e.g.
by using the minimum description length (MDL) principle [3].
Similar line segments are clustered with an adapted version
of the density-based spatial clustering of applications with
noise (DBSCAN) algorithm [4]. A distance metric accounts
for both the distance and the angular deviation between
line segments, facilitating differentiation between perfectly

1The use of trajectory can be misleading as temporal information is not
considered in the clustering.

aligned, but opposite moving objects, which is a necessary
property in vessel movement prediction. Representative line
segments are calculated after clusters are obtained.

Some studies (e.g. [5],[6]) raise concern about TRACLUS’
high sensitivity to its two clustering decision parameters
which relates to the area density: A neighborhood radius
and a lower limit for the number of line segments needed to
form a cluster. In [7], the algorithm is improved with respect
to this specific issue, yielding an algorithm that outputs
much of the same clusters, but for a wider range of decision
parameters which reduces the need of domain knowledge
when applying the algorithm on a given dataset. Further, the
method may experience problems in datasets with circular
motion and frequently crossing paths. This is addressed
in [8], which adjust the algorithm to better handle such
behavior. Another drawback, in vessel prediction context, is
that spatial connection between subsequent representative line
segments cannot be guaranteed. In other words, a predicted
path consisting of subsequent representative line segments is
not necessarily continuous.

The traffic route extraction for anomaly detection (TREAD)
([9],[10]) is a route pattern clustering method used in several
papers dealing with AIS data. The area of interest is limited
by a rectangular bounding box. TREAD clusters neither
whole paths nor sub-paths, but certain waypoints: (1) entry
points, (2) exit points and (3) stationary points. An entry
point is marked when a vessel enters the bounding box and
an exit point is marked when a vessel leaves the boundary
box. The stationary points are detected when a vessel’s speed
is kept under a certain limit for a certain period of time
and are included to account for areas where the vessels
are docking or anchoring up. As waypoints are discovered
from new incoming AIS data, they are clustered with the
DBSCAN algorithm. The clusters are then used to classify
routes inside the bounding box as paths are assigned to a
start and an end cluster. A start cluster can either be an
entry point or a stationary point while an end cluster can
either be an exit point or a stationary point. All paths that
belong to the same set of start and end clusters are grouped
into a unique route pattern. Hence, the algorithm is able to
separate between opposite moving vessels. After creating
route patterns, representative paths are calculated and an
entropy function, measuring the level of disorder in the
pattern, serves as a quality measure.

As opposed to the sub-path clustering method in
TRACLUS, TREAD’s waypoint approach can theoretically
allow large deviations in the distances between paths inside
the same pattern since the only requirement to belong to a
specific pattern is to belong to the same set of start and end
clusters. A possible adaptation of the TREAD methodology
to COLAV applications is to divide the area of interest into
grid cells where each cell play the role as the bounding box.
Hence, clustering of waypoints is performed in each cell and



paths between these waypoints are then grouped into shorter
patterns, better facilitating short time horizon predictions.

Mazzarella et al. propose a knowledge based velocity
model (KB-VM) [11] and a knowledge based particle filter
(KB-PF) [12] for vessel movement prediction based on AIS
data. In both approaches, the TREAD method with a few
adjustments is used to cluster AIS generated paths into route
patterns. Then, based on position, course and speed, new
paths are classified to one of the clustered route patterns
using the k-nearest neighbor (kNN) algorithm [13] with the
Mahalanobis distance metric. In order to fit the Mahalanobis
distance metric to the specific dataset, the metric is learned
with the supervised large margin nearest neighbor (LMNN)
algorithm. If a path is assigned to a route pattern, the KB-PF
method predicts future course and speed using a modified
particle filter [12] while the KB-VM method predicts course
and speed based on the current state’s nearest neighbors in
the classified pattern, as follows: The course is set to be the
median course of all identified neighbors while the speed
is set to be the last received speed from the AIS message.
Both methods are compared, and the more complex and
computational demanding particle filter yields more accurate
predictions, but mainly for time horizons exceeding 4-5 hours.

Another approach based on particle filter is suggested in
[14]. Implicitly, the particles yield a probability measure of
future positions and are distributed over branching sea lanes,
an important property for COLAV applications.

III. SINGLE POINT NEIGHBOR SEARCH METHOD

In this paper we propose a single point neighbor search
(SPNS) method for AIS-based vessel trajectory prediction.
The approach does not rely on path clustering methods, but
estimates future course and speed at every prediction time
based on historical AIS data.

A. Notation and definitions

Let us define X to be a matrix of historic AIS data
according to

X =
[
X1 X2 ... XM

]T
(1)

where M is the total number of AIS messages and

Xi =
[
MMSIi ti pTi χi vi

]
, (2)

for i ∈ {1, 2, ...,M} is a vector where MMSIi, ti, pi, χi
and vi are the Maritime Mobile Service Identity (MMSI)
number, timestamp, position vector, course over ground
(COG) and speed over ground (SOG), respectively. The
position vector can further be written as pi =

[
λi φi

]T
,

where λi and φi is the WGS84 longitude and latitude,
respectively. The MMSI is a unique2 nine digit number that

2Although supposedly unique, the same MMSI number may be incorrectly
assigned to two or more vessels as mentioned e.g. in [12]. However, this
problem is not considered in this paper.

identifies every vessel. The matrix X is sorted such that AIS
messages with equal MMSI number are grouped together and
messages within every such group are sorted with respect to
ascending timestamp.

A predicted trajectory consists of K predicted positions
at corresponding instants of time. At every iteration k ∈
{1, ...,K}, the predicted state is separated into one a priori
state, denoted X̂k−

i , and one a posteriori state, denoted X̂k+
i .

These two states are written

X̂k−
i =

[
MMSIi t̂k p̂k χ̂k− v̂k−

]
(3)

and

X̂k+
i =

[
MMSIi t̂k p̂k χ̂k+ v̂k+

]
. (4)

Notice that the MMSI, the position vector and the
timestamp are the same for the a priori and the a posteriori
state. The only difference is the predicted course and predicted
speed. The a priori predicted course and speed at iteration
k, χ̂k− and v̂k−, represent the predicted course and speed
between the previous position p̂k−1 and the current position
p̂k. Similarly, the a posteriori predicted course and speed at
iteration k, χ̂k+ and v̂k+, represent the predicted course and
speed between the current position p̂k and the next position
p̂k+1.

All states Xi that are close to an a priori predicted state
X̂k−
i with respect to a distance metric, are defined as close

neighbors (CNs) of that predicted state. The set of CNs at a
given prediction step k is defined as

Ck =
{
Xi | d(p̂k,pi) ≤ rc, χi ∈ S,Xi ∈X

}
(5)

where

d(p̂k,pi) = 2R sin−1

((
sin2

( φ̂k − φi
2

)

+ cos(φi) cos(φ̂k) sin2
( λ̂k − λi

2

)) 1
2

)
(6)

is defined as the distance between the current predicted
position and any position in the AIS dataset given by the
Haversine rule3[15], R is earth’s radius, rc is the search radius
and S is an interval of course angles defined by

S =
[
χ̂k− −∆χ, χ̂k− + ∆χ

]
, (7)

where ∆χ > 0 is the maximum course angle deviation.
Hence, the distance metric restricts all CNs to be within
a given radius of the predicted position, as well as having

3The Haversine formula assumes the earth to be spherical, which differs
from the more precise WGS84 model in which the AIS coordinates are
represented in. At the latitude of our AIS data, the spherical model introduces
an innaccuracy of about 0.5% for distances up to a few hundred meters.



a course within a maximum deviation from the a priori
predicted course. After the set of CNs is found around X̂k−

i ,
the CNs’ mean or median course and speed are used to predict
the vessel’s course and speed between the current and next
position, i.e., they are used to calculate the a posteriori state
X̂k+
i . To simplify the notation in the following, we denote

every state that belongs to the set of CNs at prediction step
k, i.e., all Xi ∈ Ck, by Xk

c =
[
MMSIkc tkc pkc χkc vkc

]

for c ∈ {1, ..., C}, where C is the number of CNs at the
given k.

Lastly, a predicted trajectory starting from a given state Xi

is defined as:

T̂i =
{[

p̂1 t̂1
]
, ...,

[
p̂K t̂K

]}
. (8)

Similarly, a vessel’s true trajectory, Ti, starting from a given
state Xi, is defined as

Ti =
{[
p1 t1

]
, ...,

[
pL tL

]}
. (9)

where L is the number of measured AIS states in the
trajectory. Notice that K and L is not necessarily equal, as
several prediction step can be made between two subsequent
AIS messages. Also notice that the first element in T̂i and Ti
are equal, as the starting point for both trajectories are given
by the same state, Xi.

The key notation introduced is summarized in Table I.

TABLE I
LIST OF SYMBOLS

Symbol Explanation

Xi AIS message / state vector
X Set of all AIS messages Xi

Ck Set of CNs at prediction step k
Xk

c States belonging to the set of CNs at prediction step k
X̂k−

i A priori predicted state at prediction step k
X̂k+

i A posteriori predicted state at prediction step k
∆χ Maximum course angle deviation for CNs
rc Search radius [m]
∆l Step length [m]
K Number of prediction steps

B. Method

The prediction method is described step by step in Al-
gorithm 1. The steps are described in more detail in the
continuation of this section.

1) Decision parameters: The step length ∆l decides how
far the next position should be propagated, according to

p̂k+1 = p̂k + ∆l
[
sin(χ̂k+)f(φ̂k), cos(χ̂k+)g(φ̂k)

]
, (10)

where f(φ̂k) and g(φ̂k) are functions of the current latitude
φ̂k, which transform from meters to degrees longitude and
degrees latitude, respectively. The step length ∆l should
reflect the curvature of the sea lanes ahead. Short step lengths
facilitate tighter turns and smoother trajectories, but increases
the computational requirements. If the step length is set
too long, some turns may not be possible to follow and a
predicted state might fall into a region with no CNs. Ideally,
the algorithm would adapt the step length to the curvature
ahead of the vessel, but this is not implemented in this paper.

The search radius rc restricts CNs to be within a maximum
Euclidean distance from the current predicted position. In
order for subsequent search areas not to overlap, meaning
that the same neighbor is never evaluated more than once,
the relationship between the search radius and the step length
may be set according to rc = ∆l

2 .

The maximum course deviation parameter ∆χ defines the
distance metric together with the search radius, as defined in
(5). This parameter is necessary in order to exclude neighbor
vessels which move in the opposite direction of the vessel we
want to predict as well as to avoid influence from crossing
sea lanes. The number of prediction steps K must be adapted
to the desired prediction horizon.

Algorithm 1 Single Point Neighbor Search prediction
1: Xi given . The state we want to predict from
2: Set decision parameters

(a) ∆l . Step length [m]
(b) rc . Search radius [m]
(c) ∆χ . Maximum course angle deviation [deg]
(d) K . Number of prediction steps

3: Set X̂1−
i = Xi

4: for k = 1 to K do
5: Find all CNs Xk

c around X̂k−
i

6: Calculate X̂k+
i by:

(a) Calculating χ̂k+ based on Xk
c

(b) Calculating v̂k+ based on Xk
c

7: Calculate the next predicted position at its predicted
point in time:

(a) Calculate p̂k+1 according to (10)
(b) Calculate t̂k+1 = t̂k + ∆l

v̂k+

8: Set X̂(k+1)−
i =

[
MMSIi t̂k+1 p̂k+1 χ̂k+ v̂k+

]

9: end for



2) Course prediction: A constant velocity model is used
whenever Ck = ∅. When Ck 6= ∅, the a posteriori course
prediction at a given iteration, χ̂k+, is based on the behavior
of the CNs, as defined in (5). Two course predictions, based
on the mean and median of neighbors, are implemented and
compared.

Since the course is periodic in [0°, 360°], caution must be
taken when calculating the mean course of all CNs. The mean
course can be calculated as [16]:

χ̄c =





tan−1
(
s̄
c̄

)
if s̄ > 0, c̄ > 0

tan−1
(
s̄
c̄

)
+ 180° if c̄ < 0

tan−1
(
s̄
c̄

)
+ 360° if s̄ < 0, c̄ > 0

(11)

where

s̄ = 1
C

∑C
c=1 sin

(
χc
)

c̄ = 1
C

∑C
c=1 cos

(
χc
) (12)

and where C is the number of CNs.

The mean value have the drawback of being influenced
by outliers. The median course of the CNs, denoted χ̃c, can
be applied in order to reduce this impact. The same care,
regarding the course as a periodic variable, must be considered
in the calculation of χ̃c.

3) Speed prediction: Instead of assuming constant speed
throughout the whole prediction, the mean or median speed
of the CNs, denoted v̄c and ṽc respectively, may be used.
Although not tested in this paper, it may be a good idea to
implement a transition from using constant speed (and perhaps
course) at k = 1 towards predictions fully based on the CNs as
k increases and the validity of the last received AIS message
decreases.

IV. TESTS AND RESULTS

The SPNS algorithm is tested with one year of historical
AIS data from the Trondheimsfjord in Norway, gathered in
2015. In order to better decide which course and speed pre-
diction methods to use in Algorithm 1, three course and speed
prediction methods are statistically tested for a single time
step in Section IV-A4. Moving on with the most promising
of these single step prediction methods, Algorithm 1 is tested
on a few scenarios for multiple time steps in situations with
curved vessel trajectories in order to get an idea about the
method’s potential and to reveal shortcomings.

A. Single time step
The decision parameters for the test are listed in Table II.

The test is performed on 2500 randomly drawn messages from
the dataset.

4A variation of these methods have also been tested by replacing the CNs’
speed and course values from the AIS messages with their average speed and
course between their current and next AIS position. Although those methods
yielded better results for speed prediction in a single time step test, their
results are not included here as the methods are less suited for multiple time
step predictions on curved paths.

TABLE II
DECISION PARAMETERS FOR THE SINGLE TIME STEP TEST OF VARIOUS

COURSE AND SPEED PREDICTION METHODS

Decision
parameter Value Description

N 2500 Number of course and speed prediction tests
∆χ 45° Maximum course deviation for CNs
rc 400 m Search radius for CNs
tmax 8 min Maximum time between two subsequent positions
∆ti ti+1 − ti State dependent prediction time step
k 1 Number of prediction steps

The time step, ∆ti, is set equal to the time between
the drawn AIS message and the vessel’s next received AIS
message. Only subsequent messages with time difference less
than tmax minutes are evaluated.

For the single time step test, predictions are compared to the
“true” course and speed which are calculated as the straight-
line values between the vessel’s state, Xi, and its next state,
Xi+1, according to:

χtrue = atan2((λi+1 − λi) 1
f(φi)

, (φi+1 − φi) 1
g(φi)

)

(13)

vtrue =
d(pi+1,pi)

ti+1 − ti
(14)

where 1
f(φi)

and 1
g(φi)

are functions of the current latitude,
φi, which transform from degrees longitude and degrees
latitude into meters and d(pi,pi+1) is given in (6).

The starting position of a prediction equals the true starting
position in a single time step prediction. The prediction error in
meters is therefore a result of the course error χ̂1+−χtrue and
the difference in length between the true path (a straight line)
and the prediction step length. The latter difference is further
a function of the speed error v̂1+ − vtrue and the prediction
time ∆ti, where ∆ti is equal for the predicted vector and
the true vector. Hence, the prediction error in the single step
test is a function of the course error and the speed error and
these errors are treated separately in order to evaluate their
individual impact. Figure 2 shows the absolute error for all
predictions with explanations of the corresponding notation in
Table III. For visualization purposes, the figure axis are limited
to capture 90% of the error mass. Lastly, Table IV shows root
mean square error (RMSE) values and three percentiles for
the prediction methods. The percentiles are calculated from
absolute errors.

The RMSE and the presented percentiles are all measures
of prediction accuracy. As opposed to the lower percentiles,
the RMSE is sensitive to large errors. The course RMSE
values are particularly large and are caused by a significant
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(c) Prediction method: χ̃c
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(d) Prediction method: ṽc
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(e) Prediction method: χ̄c
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(f) Prediction method: v̄c

Fig. 2. Absolute course and speed prediction errors when applying Algo-
rithm 1 with k = 1 on 2500 random states with decision parameters given in
Table II. Figure 2a and Figure 2b use the last received course and speed from
the AIS message, respectively. Figure 2c and Figure 2d use the median course
of the CNs and the median speed of the CNs, respectively. Lastly, Figure 2e
and Figure 2f use the mean course of the CNs and the mean speed of the
CNs, respectively.

TABLE III
EXPLANATION OF COURSE AND SPEED PREDICTION METHODS

Prediction Explanation
method

χi Last received vessel course (COG) from the AIS message
χ̃c Median course of the CNs
χ̄c Mean course of the CNs
vi Last received vessel speed (SOG) from the AIS message
ṽc Median speed of the CNs
v̄c Mean speed of the CNs

amount of situations where a vessel has made a U-turn
between Xi and Xi+1 resulting in a prediction error close
to 180°. Further examination of these errors reveal that they
are mainly from passenger ferries which travel back and
forth the same route. Clearly, predictions made just before
a ferry turns will cause large prediction errors and heavily
impact the RMSE values. The algorithm can fairly easily
be adjusted to cope with these passenger ferry situations,
for instance by using the vessel type information provided
by the AIS message together with detection of when the
vessel is approaching an area where other ferries historically

TABLE IV
COMPARISON OF COURSE AND SPEED PREDICTION METHODS FOR THE

SINGLE TIME STEP TEST

Course/speed RMSE Percentile Percentile Percentile
prediction (10th) (50th) (90th)
method

χi 33.57° 0.142° 1.217° 20.44°
χ̃c 34.19° 0.435° 2.982° 25.52°
χ̄c 33.83° 0.503° 3.290° 23.19°
vi 5.801 kn 0.071 kn 0.865 kn 7.786 kn
ṽc 5.497 kn 0.273 kn 1.842 kn 7.303 kn
v̄c 5.377 kn 0.405 kn 2.199 kn 7.870 kn

tended to make a U-turn. Based on this, the percentiles that
are not affected by the prediction anomalies, such as the
50th percentiles, provide a more representative picture of the
prediction accuracy.

Not surprisingly, as seen from Figure 2a and Figure 2b,
using the course and speed from the most recent AIS message
yield the most accurate course and speed predictions for one
time step. However, these predictions assume the vessel to
continue with constant course and speed without relying on
the CNs historical behavior. The constant velocity model does
not utilize the information in the historical AIS data and is
therefore not suitable for curved paths. The CNs approaches,
on the other hand, can adapt to the surroundings at every
prediction step and have the potential to handle curved paths,
as will be tested next.

B. Multiple time steps

The SPNS algorithm is tested on 10 manually chosen
scenarios to highlight the algorithm’s potential and to reveal
shortcomings. The decision parameters5 are given in Table V
and the predictions are illustrated in Figure 36.

TABLE V
CURVED TRAJECTORY TEST: DECISION PARAMETERS

Decision
parameter Value Explanation

rc 50 m Search radius for CNs
∆l 2rc Prediction step length
∆χ 25° Maximum course deviation for CNs
χ̂k+
i χ̃c Course prediction method used at every iteration k
v̂k+
i ṽc Speed prediction method used at every iteration k

5Due to the tight turns in Figure 3c, the plot is generated with half the step
length (and hence half search radius) and a larger accepted maximum course
deviation for neighbors, meaning rc = ∆l

2
= 25m and ∆χ = 35°.

6Be aware that the ratio between the x-axis and the y-axis are not 1:1 and
that it vary among the subfigures.



Figure 3a - Figure 3e all yield relatively accurate trajectory
predictions (in both course and speed). Figure 3f shows
accurate speed prediction, but the predicted path deviates
from the true path inside the wide sea lane, illustrating that
although the algorithm can potentially follow sea lanes, it can
not guarantee to take the correct path within it.

Figure 3g illustrates a situation where the turn was too
tight for the given decision parameters. However, by reducing
the step length from 50 m to 25 m, the algorithm is able
to follow the turn, as shown in Figure 3h. The relationship
between ∆χ and ∆l is important. For a given step length,
a too low value of ∆χ will limit the radius of curvature
that the algorithm can follow. On the other hand, a too large
value may for instance cause a prediction to suddenly be
pulled into a crossing sea lane. However, by lowering the
step length, the maximum course deviation can be lowered
without compromising the range of radii of curvatures to
follow, at the same time as crossing sea lanes are less likely
to be an issue.

Figure 3i and Figure 3j demonstrate that the algorithm
does not handle branching of sea lanes as it typically follows
the most dense path ahead.

V. CONCLUSION

As opposed to the large amount of AIS-based prediction
techniques that rely on clustering methods, the SPNS algo-
rithm bases the prediction directly on historical AIS data.
The algorithm shows good potential for vessel trajectory
prediction for medium time horizons ranging up to about
30 minutes. Further, it is able to follow paths of various
curvatures. However, the algorithm is sensitive to the choice of
certain decision parameters. Also, the algorithm can not handle
branching of sea lanes and it does not yield any uncertainty
measure of the predictions. Despite these shortcomings, the
algorithm may still be well suited to proactively assist collision
avoidance systems.

VI. SUGGESTIONS FOR FUTURE WORK

• Automatically adapt the decision parameters ∆l, rc and
∆χ to the curvature ahead of the vessel to avoid unnec-
essary small step lengths and to better fit the parameters
to a given density and radius of curvature.

• Develop a measure of prediction uncertainty.
• Detect branching sea lanes. For instance by letting ∆χ =

90° while searching for more than one peak in a course
histogram of all CNs. Every peak will indicate a certain
course where a significant amount of vessels tend to
travel.

• Develop probability estimates for predicted trajectories,
allowing several possible future trajectories for a single
vessel, e.g. by sampling from the CNs instead of using
the median or mean values.

(a) Time horizon: 18.87 min (b) Time horizon: 30.38 min

(c) Time horizon: 26.35 min (d) Time horizon: 21.82 min

(e) Time horizon: 23.22 min (f) Time horizon: 21.32 min

(g) Time horizon: 18.33 min (h) Time horizon: 18.33 min

(i) Time horizon: 49.17 min (j) Time horizon: 15.32 min

Fig. 3. The SPNS algorithm tested on various curved trajectories. Explanation
of the sub figures’ markers are shown in Figure 3a.

• Use AIS data with higher time resolution to better vali-
date a predicted trajectory against the true trajectory.
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