
AIS Aided Multi Hypothesis Tracker
Multi-Frame Multi-Target Tracking Using

Radar and the Automatic Identification

System

Erik Liland

Master of Science in Cybernetics and Robotics

Supervisor: Edmund Førland Brekke, ITK

Department of Engineering Cybernetics

Submission date: June 2017

Norwegian University of Science and Technology



 



Problem description

Background

Multitarget tracking is a key ingredient in collision avidance system for autonomous

vehicles. Multi-frame tracking methods are commonly acknowledged as gold standards

for multi-target tracking. The purpose of this master thesis is to develop a complete

multi-frame tracking system for autonomous ships, based on sensor inputs from radar

and the Automatic Identi�cation System (AIS).

Proposed tasks

The following task are proposed for this thesis:

• Extend an integer-linear-programming (ILP) based tracking method with suitable

algorithms for track initiation and track management

• Develop a framework for fusion between radar tracks and AIS tracks

• Develop alternatives to N-scan pruning in order to enhance the computational ef-

�ciency of the tracking method

• Implement the tracking system in Python and/or C++

• Test the tracking system on simulated data

Autosea

This thesis is associated with the AUTOSEA project, which is collaborative research

project between NTNU, DNV GL, Kongsberg Maritime and Maritime Robotics, focused

on achieving world-leading competence and knowledge in the design and veri�cation of

methods and systems for sensor fusion and collision avoidance for Autonomous Surface

Vessels (ASVs). The project has access to supervision and physical test platforms through

our industry partners.
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Abstract

To enable autonomous sea vessel’s safe voyage, a real time situational awareness sys-

tem is required. A tracking system incorporating both radar and Automatic Identi�cation

System (AIS) sensor data is preferred in maritime situations since radar and AIS have dif-

ferent strong and weak properties. A multi-frame multitarget tracking system based on

radar measurements from own vessel, aided by AIS messages is developed. The system

consist of two main parts, a logic based initialization algorithm and a Track Oriented

Multi Hypothesis Tracker (TOMHT), both utilizing radar and AIS. This tracking system

is demonstrated on simulated multitarget data with di�erent tuning settings, external

environment and AIS con�gurations.

The track loss improvement for window sizes of 3–9 of all targets equipped with class

A AIS in a cluttered environment with low Probability of detection (PD) (50%) was 85–

94% compared with only radar data. The tracking time percentage was improved by 43%

for small (N=3) multi-frame window sizes and 15–8% for larger (N=6–9) window sizes

when comparing pure radar measurements with full class A AIS coverage for very low

detection probability (50%) and high clutter density.
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Sammendrag

For å muliggjøre sikre selvkjørende fartøy er de avhengige av systemer som kan opp-

fatte hva som skjer rundt dem i sanntid. Målfølgingssystemer som benytter både radar og

Automatic Identi�cation System (AIS) data er foretrukne i det maritime domene, fordi de

har utfyllende sterke og svake sider. Denne oppgaven utvikler et målfølgingssystem som

kan følge �ere mål ved å bruke data fra �ere radar målinger over tid fra radar montert på

egen båt, assistert av AIS. Systemet er bygd opp av to hoveddeler, en logikkbasert start-

algoritme og en spor-orientert �er-hypotese målfølgingsalgoritme, hvor begge bruker

målinger fra radar og AIS. Målfølgingssystemet er testet på simulerte data med forskjel-

lige interne målfølgings-, miljø- og AIS-innstillinger.

Antall spor som mistet målet sitt ble redusert med 85–94% for vindu-størrelser på 3–9 i

et støyfullt miljø hvor alle mål var utstyrt med klasse A AIS sammenlignet med målfølging

basert utelukkende på radar når målene hadde en lav deteksjons-sannsynlighet på 50%.

Den totale tidsandelen målene ble fulgt økte med 43% for små vindu-størrelser (N=3), og

15–8% for større vindu-størrelser (N=6–9) når alle målene var utstyr med klasse A AIS

sammenlignet med kun radar-målinger i er støyfullt miljø med deteksjons-sannsynlighet

på 50%.
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Chapter 1
Introduction

1.1 Motivation

Automation- and control technology have throughout the history been a crucial part of

relieving humans from for instance dangerous, exhaustive, repetitive or boring work.

Examples of this is automation and robotics in production facilities, remotely operated

vehicles for working and exploring the deep sea, disarming explosives and explore space.

The level of self control varies from remotely controlled to self sensing and planning

without human interaction.

The early motivation for automation was probably, and in many situations still are, to

improve speed, quality and consistency, which all tends to lead to better economics. With

a still decreasing threshold for automating processes, more focus is applied on easing the

burden on people, either by combining robotics and humans in the same operation, or

by fully automate the task. These jobs are typically repetitive, dangerous or both.

Although humans are capable of both self improving and easily adapting to new tasks,

they will always have good and bad days, performing the same task slightly di�erent or be

bored and unfocused. These are all aspects that leads to inconsistency and errors, which

may not be a problem in a production environment with quality inspections, though

inconvenient, but can be fatal in critical applications.

There also exists several places where humans and automated system work together

to exploit the strengths from both humans and machines, for instance in aviation where

the pilots are always present in the cockpit, but the autopilot are �ying the plane most

of the time. This gives the pilots freedom from a very static and repetitive task where a
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human error could have fatal consequences. This symbiosis is somewhat similar to the

workload on the bridge of commercial vessels, where the autopilot is steering the ship

most of the time, while the crew is setting the course.

For vessels that do very repetitive routes and jobs, like ferries and short domestic

cargo transport, the mental fatigue on the crew can be an issue. Because of the need

for crew in emergency situations, customer service and ship maintenance, larger fer-

ries would still need crew if their navigation were to be automated. The vessels could,

however, be controlled by an automated route planning- and Collision Avoidance Sys-

tem (CAS). The control system would never be tired, bored, intoxicated or distracted in

the same ways as humans can. These are some aspects that make Autonomous Surface

Vessels (ASVs) applicable for certain use cases.

The sensor and control system needed for safe automation of any vessel is large

and complex, and requires several layers of fault barriers to prevent system errors from

spreading in addition to the ability to self monitor its own performance. The control

system would know its own position and desired position, it would have access to maps

to make a route, a CAS to deviate from its planned route to act in accordance with the

rules at sea (COLREGS) based on real-time situation information from the sensors on the

vessel.

For ASVs to be a viable alternative to human guided ships, the potential savings must

be more than marginal, and the control system must be at least as safe as a human op-

erated vessel. The state-of-the-art is not at this point yet, but recent initiatives by large

corporations in development in ASVs and the regulation of a dedicated test area for ASVs

in Trondheimsfjorden in Norway are just two examples of the direction this technology

is headed.

The worlds �rst autonomous ferry might be between Ravnkloa and Vestre kanalkai in

Trondheim or between YARA’s production plant in Porsgrunn to Brevik and Larvik. The

�rst project is a collaboration between Norwegian University of Science and Technology

(NTNU) and Det Norske Veritas Germanischer Lloyd (DNV GL), with the aim to develop

a small autonomous battery powered passenger and bike cycle ferry as an alternative to

a bride over a canal. The second project is a partnership between YARA and Kongsberg

Maritime, with the goal of having a domestic short range electric vessel fully autonomous

by 2020.

Another indicator of the momentum autonomous surface vessels have is the Mar-

itime Unmanned Navigation through Intelligence in Networks (MUNIN) project, which

is a collaborate project between several European companies and research institutes, par-

2



tially funded by the European Commission. The project aims at developing and verifying

concept of autonomous vessels with remote control from onshore control stations.

This work is focused on the sensor fusion which generates a real time data stream

into the control system, enabling situational awareness and the foundation for predictive

CAS like [1].

1.2 Previous work

This work is based on a pre-master project executed autumn 2016 [2]. In this project, it

was shown that several o�-the-shelf Integer Linear Programming (ILP) solvers was capa-

ble of solving the data association optimization problem in a single sensor Track Oriented

Multi Hypothesis Tracker (TOMHT). It also showed that under good to moderate condi-

tions, the performance return when increasing multi-scan window more than a relative

low threshold, was very low.

1.3 Outline of the Thesis

Chapter 2 provides an introduction to the sensor systems used in this work, as well as

some of the di�erent �avours of tracking methods that exist. Chapter 3 gives a brief

introduction to radar and Automatic Identi�cation System (AIS) as systems, with focus

on their pre-processing requirements prior to the MHT module. Chapter 4 presents an

overview of the complete measurement-to-track system and an in-depth explanation of

the fused radar and AIS TOMHT tracking system. Chapter 5 presents the di�erent sce-

narios that are used in the performance evaluation of the tracker and the results of the

simulated scenarios. A discussion of the results and evaluation of the performance with

respect to safety at sea is presented in Chapter 6, followed by suggestion for future work

in Section 6.1. The thesis is concluded in Chapter 7.
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Chapter 2
Theoretical Background

2.1 Radar

2.1.1 Overview

RAdio Detection And Ranging (RADAR) is a detection technology that uses radio waves

to observe stationary and moving objects. A transmitter sends out radio waves and a

receiver is waiting for re�ected echo’s from objects, were the time the echo is delayed de-

termines the distance to the object. The transmitter and receiver will in many situations

be in the same location, and can be both stationary or mobile and have �xed or rotat-

ing orientation. Depending on frequency, a radar can observe solid objects like aircraft,

ships, terrain, road vehicles and less solid objects like people and weather formations.

Figure 2.1: Fixed radar an-

tenna

Figure 2.2: Rotating radar

antenna

Figure 2.3: Maritime radar

antenna
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2.1.2 History

The �st implementation of an instrument that were able to detect the presence of distant

metallic objects by radio waves was done by Christian Hülsmeyer in 1904. His invention

did not measure the distance to objects, but whether there was an object in the direction

of the instrument. The radar as we know it today was introduced in the mid to late 1930’s,

with world war two triggering research to improve the still immature technology to be

used in military applications. After the war, the technology matured and were put in

use in several civil applications, where air tra�c control, maritime safety and weather

monitoring is the most common.

2.1.3 Principles

Figure 2.4: Corner re�ector

The electromagnetic waves that a radar emits travels at the

speed of light in air and vacuum. It re�ects back when

there is a change in the density of the medium it is travel-

ling through, which is what happens when radio waves hit

targets. Electrically conductive materials tend to be good

re�ectors, since they have a very di�erent atomic density

than air. On the other hand, materials with poor conductiv-

ity, and also some magnetic materials, tend to absorb radio

waves. Like light, there are many ways an incoming radio wave can be re�ected, pri-

marily dependent on the geometry of the target. A corner with angles less than 90
◦

will

re�ect the incoming radio waves directly back to the sender, and is a good thing on tar-

gets that want to be visible on a radar. This principle is the basis for radar re�ectors

commonly used to boost the radar signature on smaller vessels, see Figure 2.4.

The opposite is used on targets that try to minimize their radar signature, and is the

reason why stealth vessels and aircraft are tiled by �at areas.

Figure 2.5: USS Zumwalt Figure 2.6: KNM Gnist Figure 2.7: F177 Nighthawk
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2.2 AIS

The Automatic Identi�cation System (AIS) is a maritime safety and information system

primarily designed for collision avoidance. AIS works by broadcasting messages on the

Very High Frequency (VHF) band at irregular intervals with information about the ves-

sels. AIS transceivers are required on international voyaging vessels over 300 gross ton-

nage, and on all passenger vessels. AIS signals are received at both vessels and shore

stations for use in Vessel Tra�c Service (VTS) stations, open tracking databases like

www.marinetra�c.com, �eet-monitoring and search and rescue operations. Since the

AIS messages contains position, course and speed, AIS tracks can be overlaid on a map

in a chart plotter or on top of a radar image, giving the operator two sensors to verify

each other.

2.2.1 History

AIS was designed and developed by technical committees in the International Maritime

Organization (IMO). Its objective was to enhance vessels safety and e�ciency by increas-

ing their ability to see and identify other vessels. The main motivation for adopting AIS

was its independence of humans in operation, since it automatically identi�es other ves-

sels and displays the information on the navigational system on the bridge. It also enables

automatic calculation of Closest Point of Approach (CPA) and time until CPA, from which

the navigation system could alarm the bridge of incoming tra�c on dangerous course.

This gives the navigator on the bridge more and better information for making decisions,

but with the caveat that not all vessels have AIS. In the 2002 IMO SOLAS Agreement, it is

required that vessels over 300 gross tonnage and all passenger vessels must be equipped

with class A AIS transceivers. A simpler and cheaper AIS version named class B aimed

at smaller vessels and yachts was published in 2006, followed by a large increase in the

amount of non-commercial vessels equipped with AIS.

2.2.2 Messages

AIS broadcasts both static, dynamic and voyage information with varying intervals based

on the vessels speed, status and on request from shore stations. Static, dynamic and voy-

age messages are listed in Table tables 2.1 to 2.3. When the AIS standard was developed,

the peak tra�c situations in the two most densely tra�cked waterways, Singapore and

Dover Straits, were used to calculate the update frequency for the AIS system. Based on

these two locations and a desire to keep the number of reports per minute below 2000,
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the dynamic information report intervals for class A and B was set as in Table 2.4 and 2.5

respectively [3]. Static information is transmitted every 6 minutes, and on request from

VTS stations. AIS transceivers are utilizing two reserved VHF channels; AIS 1 — 87B

(161.975MHz) and AIS 2 — 88B (162.025MHz) to improve robustness against interference.

An important note is that AIS transceivers are alternating which channel they are trans-

mitting on, which means that if a receiver is only listening on one channel, the e�ective

update rate halves.

2.2.3 Class A

Class A AIS transceivers are designed for Self Organized Time Division Multiple Access

(SOTDMA) transmission, which is a way of reserving transmission time slot for the next

broadcast. SOTDMA is based on Time Division Multiple Access (TDMA), with an ex-

tension allowing for self organizing of time slots compared to TDMAs dedicated timing

manager. This e�ectively gives class A AIS transmissions priority over Class B equipment

which may not have SOTDMA. Class A transceivers are also required to have build-in

display, minimum transmission power of 12.5W, ability to �lter targets and communica-

tion interfaces like RS-232 and NMEA.

2.2.4 Class B

Class B AIS transceivers are designed to be simpler and cheaper than Class A transceivers,

which is accomplished through less strict requirements for hardware and operation. Class

B AIS transmits at lower power, usually 2W and transmits at larger time intervals than

Class A, see Table 2.5. It is not required to have a build-in display and can use both

Carrier Sense Time Division Multiple Access (CSTDMA) and SOTDMA for transmission.

CSTDMA is a simpler approach to time division than SOTDMA since it only listen for a

single time slot to be unused before it transmits.
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Static AIS information

MMSI Maritime Mobile Service Identity

Call sign Maritime radio (VHF) call sign

Name Name of vessel

IMO Number Vessel IMO number

Length and beam

Location of positioning �xing antenna

Height over keel

Table 2.1: Static AIS information

Dynamic AIS information

Position In WGS84 frame

Position accuracy Better or worse that 10 meter

Position time stamp UTC in whole seconds

Course over ground (COG)

Speed over ground (SOG)

Heading

Navigational status

Rate of turn (ROT)

Table 2.2: Dynamic AIS information

Voyage AIS information

Draught Depth in water

Hazardous cargo Type

Destination Name of place

Estimated time of arrival (ETA)

Route plan / waypoints

Number of persons on board

Table 2.3: Voyage AIS information
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Vessels status Reporting Interval

Ship at anchor or moored

and not moving faster than 3 knots

3 minutes

Ship at anchor or moored

and moving faster than 3 knots

10 seconds

Ship 0–14 knots 10 seconds

Ship 0–14 knots and changing course 3.3 seconds

Ship 14–23 knots 6 seconds

Ship 14–23 knots and changing course 2 seconds

Ship > 23 knots 2 seconds

Ship > 23 knots and changing course 2 seconds

Table 2.4: Class A Reporting Intervals

Vessels status Reporting Interval

Ship < 2 knots 3 minutes

Ship 2–14 knots 30 seconds

Ship 14–23 knots 15 seconds

Ship > 23 knots 5 seconds

Search and Rescue aircraft 10 seconds

Aids to navigation 3 minutes

AIS base station 10 seconds

Table 2.5: Class B Reporting Intervals
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2.3 Tracking

2.3.1 Overview

Tracking, in this context, is the process of estimating the state of stationary and moving

targets that are observed by a system without included association data. A key challenge

is to know which measurements belong together over time, often referred to as the data

association problem. An observation system can be a radar, sonar or any other sensor

that, passively or actively, detects objects within an area or volume. Any observation

system will be prone to noise, both in form of internal- and external noise from the en-

vironment. This noise will cause false measurements that the tracking system must take

care of. These false measurements are often referred to as clutter.

In this work ‘tracking algorithm’ will be used to describe the main logic in a track-

ing method or approach, while ‘tracking system’ will be used on complete systems with

everything around the main algorithm included. A tracking system can be de�ned as:

A system that process consecutive measurements from one or more observation system and

associates measurements from the same target into tracks with initialization of new tracks

and termination of dead tracks. A track is a sequence of states associated with a subset of

all measurements from the observation systems.

Tracking is a relative new �eld of study, driven by the military and aerospace industry

and enabled by the development of microprocessors and computers from the 1960’s. The

applications ranges from sonar tracking of submarines, from submarines and navy sur-

face vessels to air tra�c control and missile guidance. This historical background is likely

the reason for most published papers using these types of applications as background for

testing. In recent years, tracking people and vehicles from visual- and Synthetic Aper-

ture Radar (SAR) imagery have also become a topic in the research community [4]–[6].

New applications areas like oceanography, autonomous vehicles and biomedical research

have also found use of tracking [7]–[9].

There are several factors contributing to the challenge of good tracking; clutter, lower

than unity Probability of detection (PD), multiple detections of the same vessel and

wakes. Clutter is a term for unwanted measurements or noise, which is inherent in every

observation system. For a maritime radar, this can be caused by waves, rain, snow, birds

or shore echo. A common assumption on clutter is to assume the amount being Poisson

distributed, and spatially uniformly distributed. PD is a measure of how persistent the

target is in the measurements, and will vary much between di�erent types of targets,

primarily dependent on their size, construction material and shape. Multiple detections
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of each target can occur when the target is large and have several distinct areas which

re�ects radar waves better than the rest of the vessel, for instance when the hull of a boat

is made from �breglass and the metal objects inside is re�ecting. Wakes are re�ection

caused by the turbulent water behind a moving object, which can be a problem for both

sonar and maritime- and air-radar.

2.3.2 Single-target tracking

The simplest approach to tracking is single-target tracking, where it is assumed that it is

only one target in the surveillance area, and any other measurement is regarded as either

extra measurements of the target or clutter.

Nearest Neighbour Filter (NNF)

The simplest single-target tracking algorithm is the NNF, where the closest measurement

is always selected [10]. This approach is very vulnerable to clutter and dense multitarget

scenarios.

Probabilistic Data Association Filter (PDAF)

The most popular single-frame single-target tracking algorithm is PDAF, which calcu-

lates probabilities of all target to measurement association for all measurement inside its

gate. A gate is an ellipse (2D) or ellipsoid (3D) which outlines the con�dence area / vol-

ume for a predicted state and covariance for a given con�dence value. The state update

is then based on a weighted sum of measurement innovations where the weightings are

the probabilities for their respective innovations. PDAF, like most tracking algorithms,

assumes that at most one measurement is originating from the true target at each scan.

It does not have a build-in initialization routine, and is dependent on an external initial-

ization algorithm. One major drawback with PDAF if using it to track multiple targets

is its vulnerability to track coalescence, which is when two tracks are merged into one

‘average’ in between them [11].

2.3.3 Multitarget tracking

A more generalized approach assuming that there can be any number of targets is called

multitarget tracking, where the problem expands to jointly estimate several targets tra-

jectories.
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While a large number of tracking techniques have been developed, the three most

used are Joint Probabilistic Data Association Filter (JPDAF), Multi Hypothesis Tracking

(MHT) and the Random Finite Set (RFS) paradigm [9]. Compared to MHT and JPDAF, RFS

is a relatively new approach to tracking, and has not reached the same maturity as MHT

and JPDAF. MHT and JPDAF also di�ers from RFS in that they both do data association

and �ltering, whereas RFS directly seeks both optimal and suboptimal estimates of the

multitarget state [9].

JPDAF

JPDAF is a multitarget expansion of PDAF which is a single-target tracking technique.

JPDAF calculates joint posteriori association probabilities for every target in every scan.

Each targets probability is a weighted sum over an exponential number of association hy-

potheses, where the weights are the key di�erence between PDAF and JPDAF. Like MHT,

JPDAF su�ers from high computational cost. However, various approximations have

been proposed, and an e�cient implementation exist and is patented by QinetiQ [12].

JPDAF, like its single target brother JPDAF also su�er from track coalescence.

MHT

MHT is a decision logic which generates and maintains alternative hypotheses when new

measurements are received within the gate. By making several possible hypotheses, the

decision on which measurement to choose can be propagated into the future when more

information is available. MHT is a multi frame method, meaning it has the ability to

utilize multiple scans to make better decisions. Each hypothesis is given a score based on

a likelihood ratio as a re�ection of how well the measurement �ts the model, which are

accumulated to evaluate the combinations of consecutive measurements.

In contrast to the PDAF and JPDAF methods which su�ers from track coalescence [11],

[13], MHT methods split when in doubt. The idea of using multiple hypotheses was �rst

introduced by [14], but the �rst complete algorithm was presented in [15], where a Hy-

pothesis Oriented Multi Hypothesis Tracker (HOMHT) was developed. Following this,

a TOMHT was proposed in [16] and the score function for MHT was later deduced and

discussed in [17] since no explicit track-score function were given in [16]. MHT is, in the

same way as PDAF/JPDAF, developed under the main assumption that each target gives

rise to maximally one measurement (possibly zero if PD less than 1). The MHT approach

to tracking and data association has been for a long time dismissed by many because of

its computationally large cost. The dramatic increase in computational capability from
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the 1980’s to the late 2010’s has lead to a new spring for MHT, with an increasing interest

for use in tracking system. In 2004 Blackman stated that “Multiple hypothesis tracking

is generally accepted as the preferred method for solving the data association problem in

modern multiple target tracking system” [18]. Already in 2001 did Blackman publish a

demonstration that MHT is capable of real-time demands [19].

MHT comes in two variations, HOMHT and TOMHT. They di�er in their approach

to arrange the measurements into hypotheses in that HOMHT builds hypotheses that

are di�erent ways of organizing the measurements into tracks, while TOMHT maintains

already existing tracks and a hypothesis is only a possible track for a single target and

not all targets.

RFS

RFS is a family of Bayesian methods and �lters that is based on representing a multitarget

state as a �nite set of single target states. This leads to a more compact formulation of

multitarget tracking, where the entire tracking problem can be expressed in terms of

Bayes rule and the Chapman-Kolmogorov integral. This is known as the multitarget

Bayes �lter.

The RFS approach to multi sensor multitarget tracking was done by Mahler in 1994,

which lay the foundation for the development of Finite Set Statistic (FISST). One popular

�lter based on RFS is the Probability Hypothesis Density (PHD) �lter. The PHD �lter is

an approximation of the multitarget Bayes �lter derived by Mahler using FISST [9]. The

PHD �lter normally estimates the number of targets and then selects the same numbers

highest probable tracks. One large drawback with the PHD �lter is its assumption that

the predicted multitarget RFS is Poisson distributed. This assumption is relaxed in the

Cardinalized Probability Hypothesis Density (CPHD) �lter where the prior and predicted

multitarget densities are independently and identically distributed cluster processes [20].
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Chapter 3
Radar and AIS preprocessing

The process from raw radar and AIS data to target tracks is made up from several pro-

cessing steps. The aim of this chapter is to give the reader a basic understanding of these

steps and their challenges.

3.1 Radar preprocessing

Rotating maritime radars (Figure 2.3) are wide and short, giving them a tall and narrow

beam. A ping, transmit and receive sequence is carried out for each antenna rotation an-

gle in the radars scan resolution. This gives re�ections as signal level in spokes described

by polar coordinates, rotation angle and distance. Each spoke has a width determined

by the design of the antenna, primarily the width of the antenna, and a number of cells

dictated by the discretization and sampling interval of each spoke. The spokes is then

run through a detection algorithm, which is �ltering the received signal according to de-

tection setting. The detection algorithm is often built in to the radar system, with both

�xed and user adjustable detection parameters.

When displayed on a screen in a vessel, the output from the detection step is viewed

and interpreted by the operators. In an automated scenario with autonomous vessels, the

next step would be to transform the detections from polar vessel body frame to for in-

stance a Cartesian world �xed local frame. Which frame to convert to is a design choice,

and can be dependent on use-case, interconnected systems and performance require-

ments. This transformation is strongly dependent on knowing the position and attitude

of own vessel at each spoke sampling time, which is fed from the vessel’s navigation
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system.

With all the spoke resolution cells converted to a world-�xed Cartesian coordinate

system, it is desirable to remove land re�ections, if any such are present. This step is

dependent on highly detailed digital maps of the area in question, which are commercially

available for most of the world. Since maps have both o�sets and inaccuracies to some

extent, a cleaner land masking can be accomplished by dilating the coastline. This is in

many situations acceptable since the vessels will never be that close to shore, and any

targets masked away is in a region out of interest.

The last step in the radar processing chain is to convert a point cloud into measure-

ments, as one target will in most cases �ll multiple resolution cells and therefore it does

not yield good result to send all cells with detection forward as measurements. This clus-

tering of the detections is also desirable due to the assumption that each target maximum

generates one measurements. This leads to clustering algorithms that assumes that de-

tections closely spaced are originating from the same target, and thus should be one mea-

surement. There are many clustering algorithms available to solve this problem, some

build graphs with vertices between neighbouring detections given a neighbour criterion,

some estimate the number of clusters and optimizing the detections into this number of

clusters [21]–[23]. When a set of detections are clustered together, their respective mea-

surement is calculated as the centroid of the polygon made from the detections, which

would be weighted by their signal strength if available. These measurements are sent to

the tracking module.

3.1.1 Frame conversion

The radar measurements is by nature in polar frame, and the target motion model is

best described in a Cartesian frame. The most usual solution is to convert the radar

measurements to a Cartesian frame, and to avoid biased and optimistic covariances of

the converted measurements, a procedure which compensates for these errors, (3.1) and

(3.2), should be used in stead of the standard conversion (3.3) and (3.4) [24].x
y

 =

rm cos θm

rm sin θm

− µa
µa ,

E[x̃|rm, θm]

E[ỹ|rm, θm]

 =

rm cos θm(e−σ
2
θ )− e−σ2

θ/2

rm sin θm(e−σ
2
θ )− e−σ2

θ/2

 (3.1)
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R11
a , r2me

−2σ2
θ [cos2 θm(cosh 2σ2

θ − coshσ2
θ) + sin2 θm(sinh 2σ2

θ − sinhσ2
θ)]

+ σ2
re

−2σ2
θ [cos2 θm(2 cosh 2σ2

θ − coshσ2
θ) + sin2 θm(2 sinh 2σ2

θ − sinhσ2
θ)]

R22
a , r2me

−2σ2
θ [sin2 θm(cosh 2σ2

θ − coshσ2
θ) + cos2 θm(sinh 2σ2

θ − sinhσ2
θ)]

+ σ2
re

−2σ2
θ [sin2 θm(2 cosh 2σ2

θ − coshσ2
θ) + cos2 θm(2 sinh 2σ2

θ − sinhσ2
θ)]

R12
a , sin θm cos θme

−4σ2
θ [σ2

r + (r2m + σ2
r)(1− eσ

2
θ )]

(3.2)

x = rm cos θm y = rm sin θm (3.3)

R11
L , r2mσ

2
θ sin2 θm + σ2

r cos2 θm

R22
L , r2mσ

2
θ cos2 θm + σ2

r sin2 θm

R12
L , (σ2

r − r2mσ2
θ) sin θm cos θm

(3.4)

rm = measured range

θm = measured bearing

σr = range measurement standard deviation

σθ = bearing measurement standard deviation

Ra = average true converted measurement covariance

RL = linearised converted measurement covariance

3.2 AIS preprocessing

AIS does not su�er from the association uncertainty, clutter and low accuracy like radar

measurement. It does, however, have some issues caused by suboptimal or erroneous

transmitter implementation, transmission collision caused by TDMA leading to ID (Mo-

bile Maritime Safety Identity (MMSI)) swaps, and delayed messages leading to out of

order reception. In order to remove most of these errors, it is desirable to �lter the in-

coming AIS messages before sending them to the tracking module.
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3.2.1 Out-of-order �ltering

All AIS messages are stamped with the Coordinated Universal Time (UTC) of transmis-

sion, and ‘frequently arrive out-of-order’ [25], illustrated in Figure 3.1 [25] (with permis-

sion).

Figure 3.1: Un�ltered and �ltered AIS arrival time

One of the simplest ways of remedying this issue is to discard all messages with older

timestamps than the current newest for each MMSI. This will lead to a loss of data, which

will lead to a slower AIS update period for the tracking module.

3.2.2 ID swap �ltering

According to [26], 2% of the received AIS messages in a data-mining study contained

erroneous MMSI. One of the errors were that many vessels transmitted messages with

the same MMSI (11930446). This is the default MMSI on equipment from a speci�c man-

ufacturer. Another example from the same study is two vessels which swapped IDs for

a moment when they were passing, with a recovery after about 15 minutes. The latest

example could be caused by simultaneous transmission or re�ections, but the cause is

not examined in the paper. Although much more rare that the out-of-order reception,

ID swaps can occur and should be monitored by i.e. a logic testing AIS measurement

innovations.

To remedy this issue, a simple test logic can be incorporated to check for obvious

faults like sudden large position change and known default IDs. When a message and

MMSI is categorized as bad, it would be held back from the tracking module.
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Chapter 4
MHT Module

To create a complete tracking system, rather than a tracking algorithm, it is often neces-

sary to complement the main algorithm with support modules. The system, or module if

it is a part of a bigger system, presented here is an extension of the pre master project [2].

The aim of this chapter is to provide a complete walkthrough of the the track oriented

MHT system developed in this thesis. This MHT module is based on both radar and AIS

data from sensors mounted on own vessel. Since the radar is one of the most trustworthy

sensors on board any vessel is this tracking module based on radar measurement primar-

ily, with the AIS as an aiding system. This approach guided some of the design choices

made throughout the development of the module.

The motion model which is used throughout the entire tracking system when pre-

dicting and �ltering target behaviour is presented �rst. Next follows an overview of the

algorithm used to initiate new tracks into the MHT algorithm, followed by the entire

MHT tracking algorithm with all its sub-routines.

It will be assumed throughout this thesis that radar data is processed, as outlined in

Section 3.1, into a set of points. These points is referred to as radar measurements.

4.1 Motion Model

4.1.1 Reference frame

A local Cartesian NED-frame, like Universal Transverse Mercator coordinate system

(UTM) will be used throughout this thesis, with the assumption than all input sensors
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are transformed to this frame (see Section 3.1.1). This local projection from a geodetic

coordinate system to a Cartesian coordinate system is acceptable as long as the area the

system is working on is within one grid. A global geodetic frame, like WGS84 would

be preferable in situations where the system tracks object over world-scale lengths but

would yield non-linear equations of motion.

4.1.2 Constant velocity model

A target’s state (4.1) is modelled with position and velocity in a 2D Cartesian frame where

the positivex-axis is pointing east and the positive y-axis is pointing north. The two latest

states are the velocities in their respective direction.

x =
[
x y ẋ ẏ

]T
(4.1)

Since modelling the behaviour of any ship under unknown command is next to im-

possible, a common assumption in tracking theory is that every target will continue on

as usual, more precisely that their velocity is constant. Although simple, this model cap-

tures the essence of most vessels at sea, and it should be noted that both maritime train-

ing [27] and regulation [28] dictates that vessels should hold steady course and change

course in clear decisive turns. This model is also very common in tracking applications

and is used in [6], [9], [15], [25], [29]–[31] among others. To give room in our model

for manoeuvring, process noise is introduced with covariance set according to the as-

sumed manoeuvring capabilities of the vessels. This could be set as a �xed value for all

targets, as done in this work, or estimated based on the history of the track or AIS in-

formation. This behaviour can be modelled as a linear time invariant system with time

evolution (4.2), measurement model (4.3), transition and observation matrices (4.4), and

system and measurement noise matrices (4.5).

xk+1 = Φxk + wk w ∼ N (0;Q) (4.2)

zk+1 = Hxk + vk v ∼ N (0;R) (4.3)

Φ =


1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

 H =

1 0 0 0

0 1 0 0

 (4.4)
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Q = σ2
v


T 3

3 0 T 2

2 0

0 T 3

3 0 T 2

2
T 2

2 0 T 0

0 T 2

2 0 T

 R = σ2
m

1 0

0 1

 (4.5)

Φ = state transition matrix

H = state observation matrix

Q = system covariance matrix

w = system noise

v = measurement noise

z = measurement vector

k = time index

T = time step

4.2 Track Initiation

In comparison with HOMHT, which treats every measurement as a potential new track.

TOMHT does not have any built-in initialization of tracks since it only maintains already

existing tracks with track splitting and measurement-to-track association for every scan.

To remedy this lack, we need an algorithm that can �nd consistent and predictable pat-

terns in an assumed uniformly distributed measurement space of clutter.

In this work, new tracks are initiated with 2/2 & m/n logic [9] on the unused mea-

surements after each MHT iteration. As the name of the method indicates, this is a two

step veri�cation, where the �rst act as a rough �lter and the second as a �ne �lter. As a

common in most tracking systems, the radar clutter is assumed uniformly distributed in

the measurement area.

The �ow of the method is illustrated in Figure 4.1, and for better clarity, the algorithm

is explained from the last step to the �rst step, since this is the sequence a newly started

initiation algorithm will perform its operations.
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Figure 4.1: 2/2&m/n �owchart

4.2.1 Spawn new initiators

All measurement unused by the ‘Process preliminary tracks’ and ‘Process initiators’ steps

will be the basis for new initiators. An initiator is a measurement that awaits its match

in the next scan. The idea is that uniformly distributed clutter will not (often) reappear

at approximately the same location two times in a row, e�ectively �ltering out most of

the clutter.

4.2.2 Process initiators

When the next scan arrives, all the unused measurements from the ‘Process preliminary

tracks’ step will be used as candidates in this step. Since an initiator is only a position

and not a full state with velocity, all directions are equally likely, and the only design

parameter in this step is maximum speed of targets to be tracked. This parameter sets

an outer limit on the circle acting as a gate for the second and con�rming measurement.

When matching initiators with a second measurement, we want to select the closest

measurement, making the assumption that the two consecutive measurements are the

most likely to belong together. In a single target scenario, where this would be to calculate

the distance to all the alternative measurements and select the lowest, the association is

already done. While in a multitarget scenario, we could select the closest measurement

to any initiator, but we would have to do this one initiator at a time. This would lead

to di�erent results depending on the arrangement of the initiators in the programming

of this method. A di�erent approach would be to calculate all the di�erent distances for

any possible combination of initiators and measurements, sort the list, and assign the

distances from the shortest to the longest possible distances. This approach would not

be in�uenced by randomness like the arrangement of the initiators in a programming
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language, but would not necessarily give the global optimal association regarding the

how many initiators that are assigned measurements and their respective distances.

Since we can have situations like exempli�ed in Figure 4.2, where two initiators have

the same measurement inside their gates, and one of them have a second measurement

inside its gate, we need to take the global consequence of any assignment into consider-

ation. If using method 1; to sequentially select the best, we have two possible outcomes.

When starting with initiator 1, this initiator would be associated with measurement 2,

and initiator 2 would not be associated with any measurements. On the other hand, start-

ing with initiator 2 would lead to this initiator being associated with measurement 2, and

initiator 1 would be associated with measurement 1. This randomness in outcome based

on which initiator the algorithm starts with is clearly not a desired property. If using

using method 2; to sequentially select the globally shortest distance, we would �rst asso-

ciate initiator 1 with measurement 2, and there would not be any measurements left for

initiator 2, leaving this empty.

A third option is to formulate the problem as a global combinatorial problem, and use

an ‘o�-the-shelf’ solution to solve the problem. We have essentially a matrix with initia-

tors along one axis and measurements along the second axis and the distance between

them in their intersections, as in (4.6) for our example.


M1 M2 M3

I1 3 1 5

I2 7 2 6

 (4.6)

The values above the threshold set by the maximum speed multiplied with the time period

between the radar scans can be set to in�nity to symbolise that this combination is not

possible, see (4.7) where the gate threshold is 4.


M1 M2 M3

I1 3 1 ∞
I2 ∞ 2 ∞

 (4.7)

If we remove the columns with only in�nity, we are removing measurements that cannot

be associated under any circumstances, thus reducing the size of the problem, see (4.8).

With this pre processing, we want to assign each row to a column so that the sum of the
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Figure 4.2: Initiator gating example

selected intersections are minimal.


M1 M2

I1 3 1

I2 ∞ 2

 (4.8)

We now have formulated our problem in a way that it can be solved by the ‘Hungarian’
1

algorithm [32], which will give us the association I1 → M1 and I2 → M2. From the

associations, a full state and new preliminary track is created with the latest measure-

ment as position and velocity calculated based on the position di�erence divided by the

time di�erence between the measurements. A preliminary track contains a state, initial

covariance and counters of number of checks and passed checks. The initial covariance

is a design variable and would be set according to the measurement and process noise.

4.2.3 Process preliminary tracks

When a new set of unused measurements arrive from the tracker, all the preliminary

tracks are predicted to the time of the measurements. We now have the same association

challenge between the predicted states and the measurements as with the initiators and

measurements. Since we now have a full state and covariance for every preliminary

track, we calculate the Normalized Innovation Squared (NIS) for every combination of

preliminary tracks and measurements, and selects the best combination. The preliminary

1
also known as the Munkres or Kuhn-Munkres algorithm
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tracks that are associated with a new measurement, their passed counter is incremented

with one, while all preliminary tracks’ checks counter is incremented with one.

For preliminary tracks that have enough passed measurements, a new initial target

is sent to the tracker. All preliminary tracks with check counter above the threshold is

categorized as dead and deleted.

4.2.4 AIS aiding

Since we might have AIS data available, it would be desirable to use this to improve the

time and reliability of the initialization. In the same way as unused radar measurements

are the input to the initialization procedure, we can use the unused AIS measurements

to skip the �rst 2/2 �ltering and create a preliminary track for each AIS measurement.

This way we are giving the AIS measurements a little more ‘weight’, but as this tracking

system is based on AIS aiding we still want the m/n �ltering to be done with radar mea-

surements. To avoid creating duplicate preliminary tracks for the same MMSI over time,

only unused AIS measurements with a MMSI not in the preliminary tracks are created.

These choices are highly design speci�c and many other approaches is possible.

4.3 MHT Overview

The aim of this section is to outline the major steps in the MHT module and the �ow

of data and decisions. Figure 4.4 shows the main steps that the module perform at each

iteration / radar scan. The MHT algorithm is working on a set of Directed Acyclic Graphs

(DAGs) or tree structures, often called a forest. The forest contains as many trees as

targets the algorithm is tracking. Each tree consist of a root node and a set of child

nodes, where each row represent a scan or discrete time. The leaf nodes are referred to

as track hypotheses since leaf nodes represents itself and its parents.

When new AIS and radar measurements are received, all leaf nodes are predicted

forward to the time of the radar measurements. The radar measurements are then gated

for each leaf node, and new pure radar hypotheses are generated for radar measurements

within the gate. Each leaf node are then predicted to the time of the AIS measurements,

and are gated at their time. AIS measurements inside the gate are then predicted to the

time of the radar measurements where the radar measurements are gated based on each

of the �ltered AIS measurements. For each gated radar measurements give rise to fused

hypotheses and from each AIS measurements without any radar measurement inside its

gate a pure AIS hypothesis is created. Each new hypothesis is then given a score, which
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Figure 4.3: Hypothesis tree

is the cumulative score of the parent node score and the new node’s score. The target

trees are then clustered according to which trees that shares measurements, whereon

clusters with only one tree has the option of removing / merging similar hypotheses to

reduce the size of the tree. For each cluster, the cluster-wise globally best association

combination is selected using ILP. Then, for each selected hypothesis the parent N steps

above becomes the new root of that tree, and the unused children to the previous root

node are removed. Next, targets whose best hypothesis have a score below the threshold

is terminated, followed by the initialization of new targets from the initiator module.

The algorithm described in the three following sections are repeated for every leaf

node in the forest. To avoid an extensive use of node- and measurement indexing the

procedure is explained for one leaf node, with this node referred to as c—node, and is re-

peated for all leaf nodes in the forest. The c is only a symbol for indexing and referencing

the chosen leaf node relative to predicted and �ltered states.
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Figure 4.4: Algorithm �owchart

To illustrate how this MHT system works we can look at an example of a target when

it is turning. Figure 4.5 shows a single target which started in the lower left side doing a

hard port turn followed by a straight course. The purple dots is the true track, the black

dot is the stating position, the solid line is the selected/best hypothesis and the dotted

lines are all the other hypotheses. As the target is turning, the zero hypotheses will

continue in a straight line to allow for the possibility that there is a missed detection at

that time. Most of the zero hypotheses are also splitting after their �rst and second scan

upon creation, which can be seen as sharp angles between dotted lines moving outwards

in the turn and dotted lines representing hypotheses which have re-connected with the

true target.
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Figure 4.5: Hypotheses when turning

4.4 Process radar measurements

4.4.1 Predict to radar time

To compare new radar measurements with existing hypotheses, we should predict their

states to the same time as the radar measurements, which can be done with the Kalman

�lter ‘time update’ equation (4.9) and the motion model from Section 4.1. The residual

covariance (4.10), which is a part of the ‘measurement update’ sequence of a Kalman �lter

are also calculated as the residual covariance is needed in the gating and these matrices

are not dependent on the measurement residual.

x̄1 = Φ(∆TR)xc

P̄1 = Φ(∆TR)PcΦ
T (∆TR) +Q(∆TR)

(4.9)

S1 = HP̄1H
T +RRadar (4.10)
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x̄ = predicted state

xc = origin node state

P̄ = predicted state covariance

Pc = origin node state covariance

∆TR = Radar time period

4.4.2 Gate

To limit the number of hypotheses the leaf node have to create, the measurements are

gated based on the leaf node’s predicted covariance and a set con�dence value. The size of

the gate (Figure 4.6) will re�ect how insecure the prediction is, which is a function of how

many detections and missed detections the leaf node and its parents have had. The gate

(4.11) is de�ned as NIS less than a threshold set by the inverseχ2
–distribution Cumulative

Distribution Function (CDF) with as many degrees of freedom as the measurement, two

degrees of freedom for a maritime radar, and a set con�dence value. A set of con�dence

levels and belonging χ2
CDF values are listed in Table 4.1. The measurement residual

and NIS is calculated for each measurement, and the measurements that does not pass

the test are discarded.

z̃ = z−Hx̄1

NIS = z̃TS−1z̃ ≤ η2
(4.11)

z̃ = Measurement residual

η2 = Gate size

4.4.3 Filter, score and create new nodes

The scoring used in this tracking system is based on a dimensionless score function by

Bar-Shalom [17]. His paper discusses the issue of scoring measurement-to-track associ-

ations and comparing scores based on di�erent numbers of measurement and measure-

ment dimensions. He proposes a dimensionless likelihood ratio, which is the Probability

Con�dence 70% 80% 90% 95% 97.5% 99% 99.5%

η2df=2 2.41 3.22 4.61 5.99 7.38 9.21 10.60

Table 4.1: Inverse χ2
CDF for two degrees of freedom
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Figure 4.6: Gating radar measurements at radar time

Density Function (PDF) of a measurement having originating from the track, divided by

the PDF of it not originating from the track. The outcome of not originating from the

track is the union of the measurement being a clutter measurement and originating from

a new target. The clutter and new target densities are both assumed Poisson distributed

with λν being the new target density and λφ the clutter density. The total extraneous

measurement density is then λex = λν + λφ. For numerical

For each pure radar track hypothesis, a Negative Logarithmic Likelihood Ratio (NLLR)

(4.12) is calculate, which is the negative natural logarithm of the score. The hypothesis

is then scored with a Cumulative NLLR (CNLLR), which is the sum of its parent CNLLR

and its own NLLR.

NLLRRadar =
1

2
NIS + ln

λex|2πS|1/2

PD
(4.12)

CNLLR ,
∑

NLLR (4.13)

Zero hypothesis

To account for the possibility that the target is not present in this scan, a zero hypothesis,

or dummy hypothesis as it is sometimes called, is generated with the predicted state and

covariance x̄1, P̄1. This node is numbered 0 in Figure 4.3, and x̄1 in Figure 4.9.
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Pure radar hypotheses

For every radar measurement (R1,R2 and R3 in Figure 4.6) inside the gate in (4.11), a

new track hypothesis (x̂R1 and x̂R2 in Figure 4.6) is generated with �ltered state and

covariance according to the regular Kalman ‘measurement update’ equation (4.14).

K = P̄HTS−1

x̂ = x̄ +Kz̃

P̂ = (I −KH) P̄

(4.14)

K = Kalman gain

S = Covariance innovation

P̂1 = �ltered state covariance

4.5 Process AIS measurements

As elaborated in Section 3.2 all AIS measurements are preprocessed to remove out-of-

order messages and ID-swap errors, and only the latest AIS update from each target

(MMSI number) are passed through to the MHT tracking loop. All AIS measurements

outside the radar surveillance region are also removed from the measurement set.

The integration of AIS measurements into the MHT framework is not obvious and

multiple approaches is possible. Since the AIS and radar measurement originate from dif-

ferent times, only sequential fusion methods [24] are considered in this work. The �rst

step in any approach would be to decide which AIS measurements the leaf node shall

consider. The radar measurements usually arrive at �xed intervals and is normally not

synchronized to an external clock. AIS on the other hand is transmitted at asynchronous

intervals and the messages are time stamped with UTC time in whole seconds. These

properties leads to a �nite and in most cases relatively small number of possible AIS

time stamps in between each radar scan. The long runtime for each iteration for a MHT

algorithm favours synchronous processing of both AIS and radar measurements at the

arrival of each radar scan (synchronous processing). A choice that have to be made is if

and when the AIS measurements should be gated. If no MMSI are associated in a track

hypothesis the most natural way might be to gate the AIS measurements in a somewhat

similar fashion as the radar measurements. However, if a track hypothesis have been as-

sociated with an MMSI previously, a natural approach could be to automatically associate

this track hypothesis with new AIS measurement with the same MMSI. This could most
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likely lead to a very good tracking as long as the MMSI to target association is correct,

but would lead to a divergence between the following radar measurements for the actual

target and the falsely associated AIS track. An alternative to the latest approach is to

always gate the AIS measurements in some way and only allow track hypotheses which

are already associated with an MMSI to only accept AIS measurements with that MMSI.

Since this MHT module is based on AIS aiding, the latest approach with continuous

gating is chosen. This leads to two alternatives to gating; compare and gate AIS measure-

ments at the AIS message times or predict the AIS measurements forward to the radar

measurements time and gate at the same time as radar measurements.

Algorithm 1 AIS gating at AIS time

1: procedure Node::gateAisMeasurements(AISmeasurements)

2: M0← AISmeasurements

3: aisTimes← Set(M0.times)

4: for time in aisTimes do
5: T ← time− node.time
6: x̄ = Φ(T )xc

7: P̄ = Φ(T )PcΦ(T ) +Q(T )

8: M1←M0 where measurement.time == time

9: accuracySet← Set(M1.accuracy) . Accuracy can only be high or low

10: for accuracy in accuracySet do
11: M2←M1 where measurement.accuracy == accuracy

12: S ←HP̄HT +Raccuracy

13: for measurement inM2 do
14: z← measurement.value

15: z̃← z−Hx̄

16: NIS← z̃TS−1z̃

17: aisInsideGate← NIS ≤ η2

18: if aisInsideGate then
19: Filter x̄ with measurement

20: Predict to radar time

21: for radarMeasurement in radarMeasurements do
22: Gate radar measurement as with pure radar measurements

23: for radarMeasurement inside gate do
24: Create fused node
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Algorithm 1 outlines the main steps when gating at AIS times. The �rst step is to �nd

all the di�erent time stamps in the AIS measurement list. Since most maritime radars

operate between 24 and 48 Rotations Per Minute (RPM) and the AIS time in seconds is

always integer, a maximum of 2 di�erent AIS times will exist in between two radar scans

of a 24 RPM radar. Then for each time in the time set, a predicted state and covariance

is calculated and the measurements that are stamped with this time is picked out of the

AISmeasurement list. Since AIS messages transmit accuracy as either high or low, two

di�erent measurement covariances might be needed. The covariance residual is calcu-

lated for each accuracy among the AIS measurements, whereon the AIS measurements

are gated, �ltered and scored. The �ltered state is then predicted to the radar time, where

the predicted state and residual covariance are used to gate radar measurements as in

Section 4.4. In the situation were no radar measurements is inside the gate, a pure AIS

hypothesis is created at the predicted state (radar time). Whether or not it is desirable

to create an AIS ‘dummy’ hypothesis / pure AIS hypothesis if there are any radar mea-

surements inside the gate is a design choice. It will lead to a further increase in tree

growth and computational cost, and might not lead to better tracking performance since

the residual covariance after �ltering with an AIS measurement would be relatively small

and the di�erence between the pure AIS hypothesis and the fused hypotheses would be

marginal.
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R2

A1 (t=1)

Current leaf node

ҧ𝑥2,
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ҧ𝑥𝐴1,
ത𝑃𝐴1

A2(t=2)
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ത𝑃𝑐
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Accuracy > 10m

Accuracy < 10m

ො𝑥𝐴1,
෠𝑃𝐴1
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Figure 4.7: Gating AIS at AIS time

Figure 4.7 illustrates a situation where a single leaf node is showed in the upper left

corner at t = 0, two red AIS measurements (A1 and A2) with position and velocity at

t = 1 and t = 2 respectively and three blue radar measurements (R1, R2 and R3) at
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t = 2.5. x̄1 and x̄2 are the predicted states for AIS messages at t = 1 and t = 2

respectively, and the solid blue circles are representing the high accuracy gates while the

dotted blue circles are representing the low accuracy gates. In this scenario only A1 is

inside the AIS gates, and a �ltered state x̂A1 and covariance P̂A1 is calculated. x̂A1 is

then predicted to t = 2.5 (x̄A1 and P̄A1) and radar measurements are gated with the

black solid circle based on the residual covariance to P̄A1. Only R1 is inside this gate,

thus a single fused hypothesis (F1) is created based on x̄A1 �ltered with R1.

R1

R2

A1 (t=1)

Current leaf node

A2(t=2)

ҧ𝑥𝑐,
ത𝑃𝑐
t=0 R3

𝐴1

𝐴2

Figure 4.8: Gating AIS at radar time

If gating at radar time, all AIS measurements are predicted to radar time, and the pre-

dicted measurements are gated with the same gate at the radar measurements. By using

the same gate on all measurements we assume that the radar measurement covariance is

larger than the largest AIS measurement covariance, which is a reasonable assumption.

This approach could however lead to unwanted AIS measurements inside the gate since

the AIS measurements from other vessels can be predicted into the gate, thus leading to a

more challenging association. This is exempli�ed in Figure 4.8, where AIS measurement

A2 would be inside the gate when gating at radar time but not if gating at AIS time. For

all AIS measurements inside the gate, a complete set of fused hypotheses are created.

In our example this would be (A1,R1), (A1, R2), (A2, R1) and (A2,R2). Since pure radar

hypotheses are created prior to AIS processing it is not necessary to create any new pure

radar hypotheses.

In this work, the �rst approach is used for its assumed better performance and uti-

lization of original data rather than predicted data. The AIS measurements are bu�ered

between the radar scans, and pure AIS hypotheses are only created when no radar mea-
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surements fall inside the gate.

4.5.1 Predict to AIS times

To gate the AIS measurements, we �rst have to predict the target state and covariance

(4.16) for each of the AIS time stamps (4.15) in the received AIS measurements. Since

AIS only transmits a single integrity status, better or worse than 10 meter, maximum two

possible RAIS must be considered. With maximum two di�erent time stamps and two

di�erent accuracies, a maximum of four di�erent gates must be considered.

∆TAIS1 = tAIS1 − tc

∆TAIS2
= tAIS2

− tc
(4.15)

x̄1 = Φ(∆TAIS1
)xc

P̄1 = Φ(∆TAIS1
)PcΦ

T (∆TAIS1
) +Q(∆TAIS1

)

S1High = HP̄1H
T +RAIS,High

S1Low = HP̄1H
T +RAIS,Low

x̄2 = Φ(∆TAIS2)xc

P̄2 = Φ(∆TAIS2
)PcΦ

T (∆TAIS2
) +Q(∆TAIS2

)

S2High = HP̄2H
T +RAIS,High

S2Low = HP̄2H
T +RAIS,Low

(4.16)

4.5.2 Gate, �lter and score

For each leaf node, all AIS measurements are gated with the gate matching their time,

accuracy and threshold (Table 4.2). The measurements that pass the gating is then �ltered

with the predicted state and covariance matching its time, giving rise to an intermittent

node (4.17).

x̂1 = x̄1 +Kz̃ (4.17)

Con�dence 70% 80% 90% 95% 97.5% 99% 99.5%

η2df=4 4.88 5.99 7.78 9.49 11.14 13.28 14.86

Table 4.2: Inverse χ2
CDF for four degrees of freedom
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Depending on how we want the AIS to a�ect our tracking, two di�erent scoring

strategies are explored. The �rst approach is to view the AIS as a pure aiding, where

its only purpose is to improve the gating and uncertainty for the radar measurements.

In this case, all AIS measurements are gated with a logarithmic score of zero, leading to

neither improvement or worsening of the accumulative score of the track.

A second approach is to adapt the TOMHT score function [17] to the AIS paradigm.

Since the AIS measurements are inherently labelled, then viewed from a single target, all

AIS measurements except maximum one (depending on whether it have AIS transceiver

or not) can be considered as clutter. If we then make the same assumptions as for radar

measurements with respect to uniform spatial distribution and Poisson density distribu-

tion, we can estimate the expected number of AIS ‘clutter’ measurements λAIS based on

the amount of targets with AIS transmitters and the observation area (4.18), where rradar

is the radar range. The clutter is in this context any measurement that does not belong

to the target and which the target can erroneously utilize. The estimated clutter density

could be calculated for a single frame, or averaged over a sliding window to re�ect the

AIS message �ow over time since AIS transmission is not synchronised with the radar

period. The resulting score function becomes (4.19).

λAIS =
nAIS
πr2radar

(4.18)

NLLRAIS =
1

2
NIS + lnλAIS |2πS|1/2 (4.19)

Testing has shown that both the �rst and last method gives an improvement over pure

radar tracking, and since the last method gives a little more improvement since it scores

the AIS measurements with a reasonable values compared to the radar measurements,

hence not giving the AIS measurements an enormous advantage or disadvantage. The

second method is used in all the simulations in Chapter 5.

4.5.3 Predict to radar time

All gated and �ltered states from Section 4.5.2 is then predicted forward to the time of

the radar measurements. This time delta will di�er based on the time of the AIS mea-

surement. Radar measurements are then gated for each predicted state and covariance,

whereon a fused hypothesis are created for each radar measurement inside the gate. If

there is no radar measurements inside the gate, a pure AIS hypothesis are created.
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Fused hypotheses

The predicted state and covariance is then �ltered with the gated radar measurement ac-

cording to (4.14). The radar measurement is scored according to (4.12), and the hypothesis

score is a weighted sum of the AIS and radar score (4.20).

NLLR =
1

2
NLLRAIS +

1

2
NLLRRadar (4.20)

Pure AIS hypotheses

If no radar measurements are present in the gate, pure AIS hypotheses are created. This

can be the situation when a target is broadcasting an AIS message, but is either in radar

shadow or is not detected by the radar for any reason. These hypotheses are not created

when one or more radar measurements are available, based on the assumption that if a

radar measurement is present, the di�erence between a fused hypothesis and a pure AIS

hypothesis is quite small since the AIS measurement covariance typically will be much

smaller than the radar measurement covariance, leading to a fused state very close to the

AIS measurement. The pure AIS hypothesis will use its predicted state and covariance

and be scored with NLLRAIS , somewhat similar to radar zero hypotheses.

4.6 Clustering

The problem of �nding the globally optimal set of track hypotheses increases exponen-

tially with the number of hypotheses in the problem. To reduce the size of the problem, it

is desirable to split it into smaller independent problems. Both because it enables parallel

computation and it reduces the total cost of solving the problem. Track trees that have

common measurements must be solved together, since they can have mutual exclusive

leaf nodes. The clustering can be done e�ciently through Breath First Search (BFS) or

Depth First Search (DFS) on a graph made from the track hypothesis tree.

By constructing a 0–1 adjacency matrix describing the connection between all the

nodes in the track forest, the clustering problem is equivalent to the connected components

problem in graph theory [33].
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4.7 Optimal data association

The aim of this section is to elaborate the use of ILP to solve the data association problem

in MHT that arises when there are multiple, possibly mutually exclusive, possibilities

of measurement arrangements within the existing set of tracks. When the targets are

divided into independent clusters, each of them can be treated as a global problem where

we want to minimize the cost or maximize the score of the selected track hypotheses

(leaf nodes). The selected track hypotheses must also ful�l the constraints, that each

measurement can only be a part of one track, and that exactly one track hypothesis must

be selected from each target. Since only binary values, selected or not selected, is possible

for selection of hypotheses, the problem becomes an ILP. In the case where a cluster is

only containing one target tree, the best hypothesis can be selected by running a search

among the leaf nodes after the highest score, since none of the leaf nodes are excluding

other leaf nodes in other target trees. This will often be the case for targets that are

largely spaced out, and their gates are not and have not overlapped in a while. For any

other case, where there are two or more targets in a cluster, the procedure in Section 4.7.1

must be carried out.

4.7.1 Integer Linear Programming

The essence of any optimization problem is a cost function and a set of constraints. In

our problem, we want to select the combination of hypotheses (leaf nodes) that gives the

highest score / lowest cost, while not selecting any measurement more than one time and

ensure that we select minimum and maximum one hypothesis from each target.

Our score function is the sum of the selected node scores, and since we are using

negative logarithmic scores the goal is to minimize the overall score, making the problem

a minimum cost problem. Our cost vector c is made up from the scores of all the leaf nodes

in the forest build by the trees clustered together, arranged in the order they are visited

by a DFS. The accompanying selection vector τ is of the same dimension with boolean

values, where the selected hypotheses are value 1 and all other is value 0. These two

together form the objective function (4.21).

min

τ
cT τ (4.21)

To ensure that we are selecting the same measurement maximum one time, a binary

matrix A1 describing the association between nodes and measurements are created.A1
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has as many rows are there are unique real measurement in the cluster forest and as as

many columns as there are track hypotheses. All radar- and AIS measurement are real

measurement, whereas dummy nodes do not contain any real measurements. Each rows

in A1 represents a real measurements that exists in the cluster forest, and each column

represents a track hypothesis. For each track hypothesis are the rows that represents the

measurements used by that track hypothesis given value 1 (True) to indicate the usage.

All other rows for that column are given value 0 (False) to indicate that it does not use

these measurements. The order of the columns in A1 is the same as the rows in c and

τ . Since we are only limiting a maximum of one usage of each measurement and no

minimum, the constraint becomes an inequality constraint (4.22) where 1 is a vector of

ones with the same dimension as τ .

A1τ ≤ 1 (4.22)

The second constraint we need to impose is that we need to select exactly one track

hypothesis from each tree. This can be done by creating a boolean matrix A2 which

describes the relationship between hypotheses and trees / targets. A2 will have as many

rows as there are targets in the cluster, and columns as A1. The intersections between

hypotheses and targets that belong together is value 1, all other is value 0. Since this

constraint has a �xed requirement, it is formulated as an equality constraint (4.23) with

1 as in (4.22).

A2τ = 1 (4.23)

The complete ILP formulation becomes (4.24), where τ is a binary vector with dimen-

sion equal the number of leaf nodes in the track forest.

max

τ
cT τ

s.t. A1τ ≤ b1

A2τ = b2

τ ∈ {0, 1}M

(4.24)

An example based on Figure 4.9 at time step 2, where the A matrices and C vector

would be (4.25).
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Figure 4.9: Track hypotheses forest

A1 =


0 1 1 0 0 0 0 0 0

0 0 1 0 0 1 0 1 0

0 0 0 1 0 0 1 1 1

0 0 0 0 0 0 0 0 1

 , b1 =


1

1

1

1


A2 =

1 1 1 1 0 0 0 0 0

0 0 0 0 1 1 1 1 1

 , b2 =

1

1


c =

[
λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9

]T

(4.25)

4.7.2 Solvers

The problem (4.24) is formulated on standard form, which enables the use of existing

o�-the-shelf ILP solvers. There are a lot of o�-the-shelf ILP and Mixed Integer Linear

Programming (MILP) solvers on the marked, both free open source and commercial. The

performance di�erence of some solvers were tested in [2], where the di�erence where

found marginal, most likely because each optimization problem is relatively small and

the initialization and preprocessing of the solver and problem played a signi�cant part of

the runtime compared to the actual solving. In this work, Google Optimization Tools is

used as interface between the programming language and the solver. The default solver

CBC was used exclusively in this work as its performance was on par with the others

tested in [2].
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4.8 N-Scan pruning

To keep the computational cost within reasonable limits, it is necessary to limit the

amount of time steps backwards in time that the algorithm computes. This is done by

removing all branches but the active track hypothesis at the current root node, and as-

sign the one remaining node as new root node. This procedure is graphically explained

in Figure 4.10, where a solid square frame indicates the current root node, and a dotted

square frame indicates the new root node. The bold arrows in the �gure represents the

active track.

4.8.1 Dynamic window

For any MHT to be realistic over time it need to have a sliding window removing the

unused hypotheses N steps back in time. The sliding window size (N) could be a static

design parameter or a function of the runtime of that tree, which re�ects the overall size

of the tree. This enables the system to adapt its core parameters to guarantee its runtime

demands. This scaling of N proved itself very e�cient through testing and development,

but is disabled in Chapter 5 for true comparison between di�erent windows sizes.
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Figure 4.10: N-scan pruning

4.9 Track termination

Since targets can disappear from the observation region both by leaving the radar range

and by driving behind objects that puts them in a radar shadow, it is necessary to ter-

minate these tracks. It is also desirable to terminate falsely initiated tracks as soon as

possible, since a guidance system would steer clear of any objects reported to it. The

�rst scenario, where the target is leaving the radar range can easily be detected and the

track can be terminated quickly based on the predicted position of the target relative to

our own position. The second scenario, can be approached in di�erent ways depending

on the available data and computational power. The simplest solution is to terminate

all tracks where the selected node after each iteration have a score higher that a thresh-

old. This could terminate tracks with consecutive miss detections, which is desirable for

false tracks, but can lead to premature termination of true targets with temporarily low

PD . This means that the termination threshold becomes a trade-of between killing false

tracks and keeping targets with lower PD and shadowed targets.

A more advanced approach could be to utilize map data to estimate whether or not

a target is in a radar shadow of land objects, and then make a decision on whether this

target should be given a lower PD temporary or terminated based. This could also be

done between targets if target extent is estimated, where targets behind other targets are

given a lower PD to punish miss detections less.
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In this work, only range and score termination is implemented.

4.10 Track smoothing

After each iteration of the MHT algorithm a track list based on the selected hypotheses

from Section 4.7 is passed forward to the operator and guidance system. Both human

operators and guidance systems will try to predict the targets’ behaviour based on their

historical track. To improve the visualisation for this purpose it is possible to smooth

the tracks based on the real measurements in the track and masking the dummy mea-

surements in a Kalman smoother [34] with the same model as used in the predictions.

As illustrated in Figure 4.12, this will lead to a smother and in most cases a more ac-

curate representation of the true track since it avoids the straight lines caused by dead

reckoning. The circles represent dummy measurements, while it is real measurements

on both sides of the dead reconing period (not plotted to avoid cluttered illustration).

Figure 4.11 is the same image zoomed in around the dead reconing area. This smoothing

will however not a�ect the tracking performance since it is done after miss detections

are corrected and only on the track list sent out of the tracking module.

Figure 4.11: Track smoothing zoomed
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Figure 4.12: Track smoothing
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Chapter 5
Results

The performance evaluation of any tracking system is di�cult since the degrees of free-

dom are very large and there are no single obvious performance metric [35]. There are

however two distinct testing methods found in the literature, pure Monte Carlo testing

and situation/scenario testing. The �rst being that parameters like number of tracks, start

position, velocity, manoeuvring, missed detections and clutter all are randomly selected

and repeated many times. This approach is reasonable from a stochastic point of view,

but it does not necessary create realistic tracking scenarios for in our case a maritime

environment. The second approach is to create one or more scenarios which then is

simulated with random variables like missed detections and clutter measurements. This

approach is vulnerable to the created scenarios, since the design can heavily impact the

measured performance. However, this method allows for construction of very speci�c

situations where it is desirable to test multiple tracking system on the same custom cre-

ated situation for comparison purposes.

The second approach is used in this work based on its ability to run user de�ned

scenarios and its perceived more realistic behaviour.

5.1 Testing scheme

The performance evaluation of any MHT system is tedious in that it is necessary to test

very many di�erent situations to get a good understanding of how the system performs

in a broad sense. This is partially due to events like track loss should be rare, hence

a large sample set is necessary to get a signi�cant number of events. The two largest
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factors contributing to the di�culty is the random nature of the clutter and lost detec-

tions. It is also desirable to evaluate the initialization and tracking performance under

both varying environmental (external) conditions and tuning (internal) setting. We want

good tracking of targets with low probability of detection in cluttered environment, and

have a runtime no larger than the radar rotation period. The initialization module must

be able to detect targets with probability of detection lower than unity without initial-

izing too many false tracks into the MHT algorithm. The testing following is separated

into two parts; initialization and tracking.

5.2 Scenario

All simulations in this work is based on a generated scenario, shown in Figure 5.1, with

black dots marking the initial time and position of the targets. The radar range is 5500

meter (~3 Nautical Miles (NMs)), which gives an area of surveillance of approximately 95

square km. The scenario contains 16 targets, which all starts inside the observable area

of the radar. The scenario contains a mixture of fast and slow moving vessels, some with

sharp turns and some almost at stand still. Table 5.1 show the initial states of all targets,

and the true path is generated once from these initial values.

From this base scenario, �ve scenarios were generated with di�erent AIS con�gura-

tion on the vessels, see Table 5.2. The �rst scenario represents the baseline with only

radar information available, whereas the rest have some level of AIS information. Sce-

nario 1 adds 50% class B AIS transmitters, and is representing a situation where all the

targets are smaller vessels with some voluntarily installed AIS transceivers. In scenario

3, all vessels have AIS class B installed. This scenario represents a best case situation

regarding yacht and leisure vessels from an autonomous anti collision perspective and is

only realistic if AIS class B were to be mandatory for these vessel classes. Scenario 2 is

the same as scenario 1, with the di�erence that the vessels have class A transmitters in

stead of class B. This gives them higher and smarter rate of transmission (see Tables 2.4

and 2.5), which in theory should improve tracking. This scenario can be viewed as a

few commercial vessels travelling in between a large group of yachts. The last scenario,

where all targets are equipped with class A transmitters is the ultimate situation for any

fusion tracking system. This case would be realistic in a crowded professional working

area, for instance harbours, �shing areas and o�-shore installations.

Figure 5.2 show all radar measurements for an entire scenario for the di�erent clutter

level overlaid.
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Figure 5.1: True tracks
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Target North East North speed East speed
0 2100.0 -2000.0 10.0 270.0

1 -2000.0 100.0 8.0 -2.0

2 300.0 -4000.0 -1.0 12.0

3 0.0 -4000.0 12.0 90.0

4 -200.0 -4000.0 1.0 17.0

5 -2000.0 4000.0 -8.0 1.0

6 4000.0 3000.0 -8.0 2.0

7 5000.0 200.0 -1.0 10.0

8 -3500.0 -3500.0 5.0 10.0

9 3200.0 -4100.0 -2.0 17.0

10 3000.0 3600.0 3.0 -10.0

11 1000.0 5000.0 -2.0 -7.0

12 100.0 2000.0 8.0 -10.0

13 -5000.0 0.0 2.0 10.0

14 300.0 -400.0 0.0 17.0

15 2000.0 0.0 15.0 15.0

Table 5.1: Initial states

T S0 S1 S2 S3 S4

0 - B A B A

1 - - - B A

2 - B A B A

3 - - - B A

4 - B A B A

5 - - - B A

6 - B A B A

7 - - - B A

8 - B A B A

9 - - - B A

10 - B A B A

11 - - - B A

12 - B A B A

13 - - - B A

14 - B A B A

15 - - - B A

Table 5.2: AIS class scenario con�guration
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Figure 5.2: Scenario measurements overlaid
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5.3 Simulation

Both initialization- and tracking performance are averaged over a set of 25 Monte Carlo

simulations with di�erently seeded clutter- and missed radar detections. All simulations

were done with a sampling interval at 2.5 seconds (24 RPM), which is a common rotation

speed on a coastal maritime radar. Each of the 540 initialization variations and 180 track

performance simulations where run on a dual Intel i7–6700 server running Linux Ubuntu

with Solid State Storage (SSD) storage and 64 GB Random Access Memory (RAM).

5.4 Initialization results

The �rst performance metric for the initialization module is how long time it takes to

initialize the correct tracks, which is tested under a range of internal and external con-

ditions, see (5.1). All 108 combinations of these parameters were simulated on all �ve

scenarios (Table 5.2), which are the same routes but with di�erent AIS con�gurations.

Each of these 540 variations were repeated 30 times, and from these 16,200 simulations,

the average time to initiate true targets and amount of erroneous targets are calculated.

PD =
[
0.9 0.8 0.6

]

(m/n) =


(1/1) (1/2) (1/3) (1/4)

(2/2) (2/3) (2/4) (2/5)

(3/3) (3/4) (3/5) (3/6)


λφ =

[
0 5 · 10−6 1 · 10−5

]
(5.1)

A track is categorized as correctly initialized if the position di�erence between the

true track and the initial track (5.4) is less than a threshold. All initial tracks that do not

correspond to true tracks, are categorized as erroneous. To analyse the impact of the

erroneous tracks, the lifespan of falsely initiated tracks are investigated to see whether

they die out at the same rate as they are initiated, or if they accumulate.

Figures B.1 to B.12, �gs. B.13 to B.24, �gs. B.25 to B.36, �gs. B.37 to B.48 and �gs. B.49

to B.60 show the initialization performance for Scenario 0 to 4 respectively, averaged over

the Monte Carlo simulations. Their �rst plot is the share of true track correctly initialized

over time, whereas the second and third plot is the amount and density of falsely initiated

tracks. The share of correctly initialized tracks is de�ned as the number of true tracks that

have been initialized minimum one time divided on the total number of true tracks. This
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prevents re-initialized true tracks to be counted more than one time, and an initialization

share on 100% means that all tracks have been initialized correctly at least one time. The

di�erence between the two last plots is that the �rst is an accumulation of false track

over time, while the last is the number of erroneous tracks alive at that time. These data

are summarized in Figures 5.3 to 5.7 to better evaluate their performance over the set of

variations.

For each scenario and initialization setting (m/n), an average cost of the variations

(PD and λφ) were calculated based on (5.2). t80% is the time it took to reach 80% correctly

initialized true tracks, and variations that never reaches 80% is penalized with a high

‘initialization time’ selected to match the worst scenarios. A lower cost means that the

time it took to correctly initialize 80% of the true tracks and the average number of false

tracks alive where both low. An increase in either time or number of false tracks would

increase the cost. To better see the nuances close to zero, the plot show the normalized

square root of the cost, were the normalization constant is the highest cost among all the

scenario’s tuning parameters. The normalization is done to keep in numeric values in a

de�ned set since the cost function is only a representation of the performance between

the di�erent tuning setting.

Cost = t80%(1 + nFalseTrack) (5.2)

From Figures 5.3 to 5.7 we see that each M row has a peak (low cost) and edges with

higher costs. (2/3) and (2/4) are overall good values with a balance between initialization

time and the amount of erroneous tracks. We can also see that the AIS aided initializations

are all performing better than the pure radar scenario.
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Figure 5.3: Scenario 0 — Initiator performance
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Figure 5.4: Scenario 1 — Initiator performance
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Figure 5.5: Scenario 2 — Initiator performance
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Figure 5.6: Scenario 3 — Initiator performance
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Figure 5.7: Scenario 4 — Initiator performance
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5.5 Tracking results

When testing the tracking performance, it is desirable to remove the variable of initial-

ization to better see di�erence in tracking rather than initialization. All simulations test-

ing tracking performance are carried out with all targets correctly initialized at initial

time, and with the initiator set to (2/4). The unused measurements from the tracking

algorithm is processed by the initialization algorithm, giving lost targets a chance to get

re-initialized, which is an important property for any safety critical system. For scenarios

where AIS measurements are available, the unused AIS measurements are used to aid the

initiator. Similar to the initialization testing, each of the �ve scenarios are tested under

varying internal and external conditions (5.3). The 180 variations are repeated 30 times,

giving rise to 5400 simulations from which the performance metrics are calculated.

PD =
[
0.9 0.8 0.6

]
N =

[
1 3 6 9

]
λφ =

[
0 5 · 10−6 1 · 10−5

] (5.3)

Since the targets are initialized perfectly in every situation, we are interested in how

good our system is able tomaintain the tracks. We measure this by means of the Euclidean

distance between the estimated and true track (5.4). The �rst track performance metric

is the track loss percentage, where a track is considered correct as long as ∆P ≤ εp

for a given threshold εp. This approach is based on [36], but with some modi�cations.

If a track is deviating more than the threshold and never returns within the threshold

again, it is considered lost at the time-step when it exceeded the threshold. If the track

should converge after exceeding the threshold, it is considered restored at the time-step

it is returning within the limit. Tracks that deviate more than 10εp are considered lost

at the time they exceeded εp. This two step threshold is to allow tracks to dead reckon

for a while without being registered as lost, while still dismiss tracks that are deviating

away from the true track.

∆P = ‖ptrack − ptarget‖2 (5.4)

The second and closely related metric is the tracking percentage, where the total

time a target is correctly tracked is summed up and compared with the existence time of

the target. This situation is illustrated in Figure 5.8 where a track is lost at (-2500,2600),
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and re-initialized at (-2500,2650). The track is considered lost at (-2500,2600), while the

tracking percentage is also accounting the last track from (-2500,2650). This metric gives

a more realistic measure of how likely targets are to be tracked, since lost tracks are

assumed to often be re-initialized.
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Figure 5.8: Tracking percentage, the sum of the total tracking time relative the existence time of

the target

The third metric is how close the estimated track is to the true track on average. This

is measured as the Root Mean Square Deviation (RMSD) of the entire track (5.5), where

n is the length of the track.

RMSD =

√√√√ 1

n

n∑
t=1

(∆Pt)
2

(5.5)

5.5.1 Track loss

From �gs. 5.9 to 5.13 we can see that the amount of lost tracks are very dependent on

the probability of detection PD and window size (N). An interesting observation is the

declination of lost tracks with increased clutter when N=1, which is most likely caused by

clutter being gated and selected, giving the track a high enough score to not be terminated

while still being similar enough to not loose the true track.
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Table 5.3 show the improvement in track loss of the di�erent AIS scenarios compared

to the pure radar scenario, all for λφ = 1·10−5
. From this we can see that that the class of

AIS has a large e�ect on the improvement when comparing the gain of all targets being

equipped with class A versus class B AIS. It can also be seen that a minimum window size

is necessary to achieve a substantial gain, this is probably because the tracking percentage

is increasing but because of the lowPD and the varying nature of AIS report interval most

of the targets will still be lost at least one time.

Pd N S1 S2 S3 S4

50% 1 0% 1% 0% 2%

50% 3 5% 46% 12% 94%

50% 6 26% 52% 50% 90%

50% 9 26% 50% 58% 85%

70% 1 1% 13% 1% 28%

70% 3 13% 49% 26% 93%

70% 6 12% 45% 27% 86%

70% 9 10% 45% 20% 84%

90% 1 4% 36% 9% 61%

90% 3 17% 50% 33% 50%

90% 6 18% 45% 36% 45%

90% 9 18% 45% 36% 45%

Table 5.3: Track loss improvement relative pure radar. Higher values are better.
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Figure 5.9: Scenario 0 — Track loss. Lower values are better.
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Figure 5.10: Scenario 1 — Track loss. Lower values are better.
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Figure 5.11: Scenario 2 — Track loss. Lower values are better.
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Figure 5.12: Scenario 3 — Track loss. Lower values are better.
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Figure 5.13: Scenario 4 — Track loss. Lower values are better. The red lines are equal and behind
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5.5.2 Tracking percentage

Figures 5.14 to 5.18 show the tracking percentage for scenario 0 — 4. From these we can

see a substantial increase in the tracking percentage for low PD and small window size

when comparing the pure radar tracking with the AIS aided tracking.

Table 5.4 list the improvements for the AIS scenarios compared to the pure radar

baseline, all for λφ = 1 · 10−5
. From this we can see that the class of AIS equipment

impacts the tracking performance more than the amount of AIS transmitters. It also

shows that the bene�ts of AIS decreases with an increased PD and N. The performance

gain for 70% PD and higher is marginal for all cases except N=1 with class A AIS.

Pd N S1 S2 S3 S4

50% 1 17% 69% 29% 129%

50% 3 11% 24% 17% 43%

50% 6 6% 9% 10% 15%

50% 9 3% 5% 6% 8%

70% 1 8% 20% 11% 37%

70% 3 1% 2% 2% 4%

70% 6 0% 1% 0% 1%

70% 9 0% 0% 0% 1%

90% 1 1% 2% 1% 4%

90% 3 0% 0% 0% 0%

90% 6 0% 0% 0% 0%

90% 9 0% 0% 0% 0%

Table 5.4: Tracking percentage improvement relative pure radar
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Figure 5.14: Scenario 0 — Tracking percentage
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Figure 5.15: Scenario 1 — Tracking percentage
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Figure 5.16: Scenario 2 — Tracking percentage
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Figure 5.17: Scenario 3 — Tracking percentage
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Figure 5.18: Scenario 4 — Tracking percentage
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5.5.3 E�ect of smoothing

Figures 5.19 to 5.23 show the Root Mean Square (RMS) error between the true and es-

timated tracks for λφ = 1 · 10−5
with and without Kalman smoothing. From these we

can see that the larger window sizes have higher errors, most likely since they are dead

reckoning for a longer period and still able to converge back to the true track. We can

also see that a larger window size gains more on smoothing and leads to better smoothed

track overall, giving the CAS more accurate tracks to work on.
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Figure 5.19: Scenario 0 — Tracking Correctness
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Figure 5.20: Scenario 1 — Tracking Correctness
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Figure 5.21: Scenario 2 — Tracking Correctness
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Figure 5.22: Scenario 3 — Tracking Correctness
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Figure 5.23: Scenario 4 — Tracking Correctness
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5.5.4 Runtime performance

Figures 5.24 to 5.28 show the average runtime for an iteration for scenario 0 — 4. From

these we can see the very expected increase in runtime as the window size increases, and

that the AIS scenarios have a steeper increase that the pure radar scenario. This is caused

by an increase in the number of nodes in the forest and a not as fast implementation of

the AIS measurements processing as radar measurements, primarily caused by the large

amount of steps in the AIS processing.
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Figure 5.24: Scenario 0 — Tracking runtime
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Figure 5.25: Scenario 1 — Tracking runtime
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Figure 5.26: Scenario 2 — Tracking runtime
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Figure 5.27: Scenario 3 — Tracking runtime
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Figure 5.28: Scenario 4 — Tracking runtime
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Chapter 6
Discussion

The 2/2&m/n initialization logic have proved to be a simple and reliable way to incor-

porate initialization to TOMHT. Its performance is tuning dependent and the simulation

results indicates that there are multiple alternatives which all gives satisfactory results,

though with a trade o� between initialization time and amount of erroneous tracks.

The marginal increase in tracking percentage of medium to high PD and N variations

when aiding the tracking system with AIS can indicate that the AIS aiding will have

greatest impact in situations where a vessels is in a temporary radar shadow. This is

situations where a target for a limited time have a reduced PD caused by blocking objects

like other vessels and land or masking phenomena like heavy snow and rain. Kalman

smoothing of the outgoing track list have showed to provide a better estimate of the true

tracks for all window sizes, and with a greater gain for larger window sizes.

6.1 Future work

There are several unanswered questions that need to be addressed in order to achieve a

full utilization of the AIS information. The maybe most important is what to do when

a track previously associated with an MMSI no longer has new AIS measurements from

that MMSI inside its gate? This is a natural situation since the radar update period is often

smaller that the AIS update period, but for how long time shall that track continue to be

associated with that MMSI? Equally important are the decisions that need to me made

when the associated MMSI is appearing outside the gates for that track. One option is to

always make a hypothesis where the associated MMSI measurements is, but this could
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lead to large jumps in the target state and if the associated MMSI was wrong, this would

force a target of its radar track and lock it onto an AIS track.

The scoring of AIS measurements are also an area of improvement. To better score

these measurements, a model that mimics the major dynamics of AIS is needed to deduce

a likelihood ratio for AIS measurements.

Another open question is how to utilize the AIS meta-data to improve the tracking?

From AIS length information, it might be possible to estimate the maximum turning rate

for a vessel, which can be used to more accurately set the model parameters for a single

target.

The core issue with any MHT algorithm is the exponential growth in the problem size.

A novel approach to this could be to formulate a pruning score function for each node

tree with the goal of removing nodes that does not add information while still having

enough nodes to never render the original association optimization problem infeasible.
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Chapter 7
Conclusion

To the knowledge of the author, this thesis has presented the �rst MHT implementation

utilizing both AIS and radar information. It has shown the bene�ts of using AIS to aid an

ILP based track oriented MHT integrated into a complete tracking system. The behaviour

and performance for di�erent tuning parameter in a logic based track initiator has also

been demonstrated. Through simulations it has been shown that targets with low prob-

ability of detection bene�ts greatly from AIS aiding, whereas targets with moderate to

high probability of detection gained less bene�ts.
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Appendix A
Source code

pyMHT, the Python3 implementation of the MHT module developed in this thesis can

be found at GitHub: https://github.com/erikliland/pyMHT.

Except for packages available via PyPI the only requirements are the Google Opti-

mization Tools (OR-Tools) which can be obtained from https://developers.google.com/

optimization/, and Jacob Frelinger’s Cython / C++ implementation of the Munkres algo-

rithm https://github.com/jfrelinger/cython-munkres-wrapper. The later is installed au-

tomatically with the pyMHT package.
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Appendix B
Initialization time plot
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Figure B.1: Scenario 0 — Initialization time (1/1)
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Figure B.2: Scenario 0 — Initialization time (1/2)
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Figure B.3: Scenario 0 — Initialization time (1/3)
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Figure B.4: Scenario 0 — Initialization time (1/4)
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Figure B.5: Scenario 0 — Initialization time (2/2)
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Figure B.6: Scenario 0 — Initialization time (2/3)

81



0 15 30 45 60 75 90 105 120 135 150
Time [s]

0

20

40

60

80

100

Tr
ue

 tr
ac

ks
 in

iti
al

iz
ed

 [%
]

Percentage of true tracks initialized

PD = 0.9, λφ = 0.0

PD = 0.9, λφ = 5e-06

PD = 0.9, λφ = 1e-05

PD = 0.7, λφ = 0.0

PD = 0.7, λφ = 5e-06

PD = 0.7, λφ = 1e-05

PD = 0.5, λφ = 0.0

PD = 0.5, λφ = 5e-06

PD = 0.5, λφ = 1e-05

0 15 30 45 60 75 90 105 120 135 150
Time [s]

10-3

10-2

10-1

100

101

102

103

Av
er

ag
e 

nu
m

be
r o

f t
ra

ck
s

Accumulative number of erroneous tracks

0 15 30 45 60 75 90 105 120 135 150
Time [s]

0

1

2

3

4

5

Av
er

ag
e 

nu
m

be
r o

f t
ra

ck
s

Number of erroneous tracks alive

Figure B.7: Scenario 0 — Initialization time (2/4)
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Figure B.8: Scenario 0 — Initialization time (2/5)
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Figure B.9: Scenario 0 — Initialization time (3/3)
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Figure B.10: Scenario 0 — Initialization time (3/4)
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Figure B.11: Scenario 0 — Initialization time (3/5)

86



0 15 30 45 60 75 90 105 120 135 150
Time [s]

0

20

40

60

80

100

Tr
ue

 tr
ac

ks
 in

iti
al

iz
ed

 [%
]

Percentage of true tracks initialized

PD = 0.9, λφ = 0.0

PD = 0.9, λφ = 5e-06

PD = 0.9, λφ = 1e-05

PD = 0.7, λφ = 0.0

PD = 0.7, λφ = 5e-06

PD = 0.7, λφ = 1e-05

PD = 0.5, λφ = 0.0

PD = 0.5, λφ = 5e-06

PD = 0.5, λφ = 1e-05

0 15 30 45 60 75 90 105 120 135 150
Time [s]

10-3

10-2

10-1

100

101

102

103

Av
er

ag
e 

nu
m

be
r o

f t
ra

ck
s

Accumulative number of erroneous tracks

0 15 30 45 60 75 90 105 120 135 150
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Av
er

ag
e 

nu
m

be
r o

f t
ra

ck
s

Number of erroneous tracks alive

Figure B.12: Scenario 0 — Initialization time (3/6)
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Figure B.13: Scenario 1 — Initialization time (1/1)
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Figure B.14: Scenario 1 — Initialization time (1/2)
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Figure B.15: Scenario 1 — Initialization time (1/3)
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Figure B.16: Scenario 1 — Initialization time (1/4)
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Figure B.17: Scenario 1 — Initialization time (2/2)
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Figure B.18: Scenario 1 — Initialization time (2/3)
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Figure B.19: Scenario 1 — Initialization time (2/4)
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Figure B.20: Scenario 1 — Initialization time (2/5)
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Figure B.21: Scenario 1 — Initialization time (3/3)
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Figure B.22: Scenario 1 — Initialization time (3/4)
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Figure B.23: Scenario 1 — Initialization time (3/5)
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Figure B.24: Scenario 1 — Initialization time (3/6)
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Figure B.25: Scenario 2 — Initialization time (1/1)
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Figure B.26: Scenario 2 — Initialization time (1/2)
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Figure B.27: Scenario 2 — Initialization time (1/3)
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Figure B.28: Scenario 2 — Initialization time (1/4)
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Figure B.29: Scenario 2 — Initialization time (2/2)
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Figure B.30: Scenario 2 — Initialization time (2/3)
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Figure B.31: Scenario 2 — Initialization time (2/4)
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Figure B.32: Scenario 2 — Initialization time (2/5)
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Figure B.33: Scenario 2 — Initialization time (3/3)
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Figure B.34: Scenario 2 — Initialization time (3/4)
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Figure B.35: Scenario 2 — Initialization time (3/5)
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Figure B.36: Scenario 2 — Initialization time (3/6)
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Figure B.37: Scenario 3 — Initialization time (1/1)
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Figure B.38: Scenario 3 — Initialization time (1/2)
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Figure B.39: Scenario 3 — Initialization time (1/3)
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Figure B.40: Scenario 3 — Initialization time (1/4)

115



0 15 30 45 60 75 90 105 120 135 150
Time [s]

0

20

40

60

80

100

Tr
ue

 tr
ac

ks
 in

iti
al

iz
ed

 [%
]

Percentage of true tracks initialized

PD = 0.9, λφ = 0.0

PD = 0.9, λφ = 5e-06

PD = 0.9, λφ = 1e-05

PD = 0.7, λφ = 0.0

PD = 0.7, λφ = 5e-06

PD = 0.7, λφ = 1e-05

PD = 0.5, λφ = 0.0

PD = 0.5, λφ = 5e-06

PD = 0.5, λφ = 1e-05

0 15 30 45 60 75 90 105 120 135 150
Time [s]

10-3

10-2

10-1

100

101

102

103

Av
er

ag
e 

nu
m

be
r o

f t
ra

ck
s

Accumulative number of erroneous tracks

0 15 30 45 60 75 90 105 120 135 150
Time [s]

0.0

0.2

0.4

0.6

0.8

Av
er

ag
e 

nu
m

be
r o

f t
ra

ck
s

Number of erroneous tracks alive

Figure B.41: Scenario 3 — Initialization time (2/2)
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Figure B.42: Scenario 3 — Initialization time (2/3)
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Figure B.43: Scenario 3 — Initialization time (2/4)
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Figure B.44: Scenario 3 — Initialization time (2/5)
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Figure B.45: Scenario 3 — Initialization time (3/3)
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Figure B.46: Scenario 3 — Initialization time (3/4)
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Figure B.47: Scenario 3 — Initialization time (3/5)

122



0 15 30 45 60 75 90 105 120 135 150
Time [s]

0

20

40

60

80

100

Tr
ue

 tr
ac

ks
 in

iti
al

iz
ed

 [%
]

Percentage of true tracks initialized

PD = 0.9, λφ = 0.0

PD = 0.9, λφ = 5e-06

PD = 0.9, λφ = 1e-05

PD = 0.7, λφ = 0.0

PD = 0.7, λφ = 5e-06

PD = 0.7, λφ = 1e-05

PD = 0.5, λφ = 0.0

PD = 0.5, λφ = 5e-06

PD = 0.5, λφ = 1e-05

0 15 30 45 60 75 90 105 120 135 150
Time [s]

10-3

10-2

10-1

100

101

102

103

Av
er

ag
e 

nu
m

be
r o

f t
ra

ck
s

Accumulative number of erroneous tracks

0 15 30 45 60 75 90 105 120 135 150
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Av
er

ag
e 

nu
m

be
r o

f t
ra

ck
s

Number of erroneous tracks alive

Figure B.48: Scenario 3 — Initialization time (3/6)
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Figure B.49: Scenario 4 — Initialization time (1/1)
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Figure B.50: Scenario 4 — Initialization time (1/2)
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Figure B.51: Scenario 4 — Initialization time (1/3)
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Figure B.52: Scenario 4 — Initialization time (1/4)
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Figure B.53: Scenario 4 — Initialization time (2/2)
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Figure B.54: Scenario 4 — Initialization time (2/3)
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Figure B.55: Scenario 4 — Initialization time (2/4)
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Figure B.56: Scenario 4 — Initialization time (2/5)
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Figure B.57: Scenario 4 — Initialization time (3/3)
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Figure B.58: Scenario 4 — Initialization time (3/4)
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Figure B.59: Scenario 4 — Initialization time (3/5)
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Figure B.60: Scenario 4 — Initialization time (3/6)
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