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Abstract 

 

Growth rate and body size have long been used as surrogate measures of fitness, and particularly 

for fish. However, many organisms often show a lower growth rate than they are capable of. With an 

increase in growth rate the time spent feeding also has to increase, and although large body size 

provides protection against many predators, survival may be significantly lower for fast-growing 

individuals in the presence of predators. There might therefore be a trade-off between growth and 

survival, and movement is one trait that may be predicted to increase risk of predation exposure. 

Movement provides increased opportunity to select the most preferable habitats in terms of prey 

resources, and hence enable the individuals to track the spatiotemporal variation in environmental 

quality. Stream-living salmonids tend to have a limited territory at any given time, but the home range 

a fish utilizes throughout the year is much larger and overlapping with other individuals. Among the 

salmonids, one of the least well studied species with respect to movement patterns is the European 

grayling (Thymallus thymallus), which is the focal species of the present study. In the present study the 

aim was to test for correlations between growth rates (both juvenile and adult), post spawning 

migration distances, and activity during the growth season. This study was performed in two rivers 

situated in the central and south-eastern parts of Norway. During the period 2008 to 2010, 191 

European grayling were caught, where 184 were suitable for growth analysis and 155 were radio-

tagged. Radio tagged grayling were positioned once a week from early April until late November. For 

post spawning migration, model selection revealed that all fixed effects (location, sex, fish condition 

and body size) could be removed. Furthermore, model selection revealed that all fixed effects (sex, 

river, condition, body size, and year of capture) could be removed for the summer movement model. 

Thus, the results provided no evidence for a relationship between movement activity and growth. This 

conclusion assumes that there is a temporally consistent degree of movement activity between years 

for each individual grayling, which may be violated. Furthermore, this study does not take into 

account small-scale movements which may or may not be more important in influencing growth than 

large-scale movements are. Thus, studies incorporating data with a higher spatial resolution and which 

simultaneously measure growth and activity are required to corroborate my findings. 
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Introduction 

 

For many organisms, and particularly for fish, size and growth rate have long been used as 

surrogate measures of fitness (Schluter 1995). Therefore selection for rapid growth and a short 

juvenile period should be expected. However, many organisms often show a lower growth rate than 

they are capable of (Arendt 1997). With an increase in growth rate, the time spent feeding also has to 

increase. This will often result in reduced time spent vigilant (Caraco 1979), and although large size 

provides protection against many predators, survival may be significantly lower for fast-growing 

individuals in the presence of predators. Fish may therefore alter their behavior to spend more time in 

less risky, but less food rewarding habitats, causing reduced growth rates (Werner et al. 1983). Due to 

this potential trade-off between growth and survival, observed growth rate may be lower than what is 

physiologically possible in a given environment (Gotthard 2000). Furthermore, variation in growth 

rate can then be predicted to be correlated with traits that influence predation risk. 

 

Movement is one trait that may be predicted to increase risk of predation exposure, but also to 

influence growth rates (Werner and Anholt 1993). It provides increased opportunity to select the most 

preferable habitats in terms of prey resources (Gowan and Fausch 2002), and hence enable the 

individuals to track the spatiotemporal variation in environmental quality (Fausch et al. 2002). Such a 

correlation between movement and growth has been found over either short time periods (days to 

weeks), small spatial scale (tens to hundreds of meters) or both (Grant and Noakes 1987; Skelly and 

Werner 1990; Martin-Smith and Armstrong 2002; Sundt-Hansen et al. 2009). However, less is known 

about the consistency of such patterns over larger temporal and spatial scales.  

 

Salmonids tend to have a limited territory at any given time, but the home range a fish utilizes is 

much larger and overlapping with other individuals (Gerking 1959). Jonsson and Jonsson (1993) 

explains that partial migration (i.e., coexistence of migratory and resident individuals) occurs for 

several species. Movement is well studied in salmonids, especially for brown trout (Solomon and 

Templeton 1976) and Atlantic salmon (Cunjak and Randall 1993), and even coupled with growth 

(Sundt-Hansen et al. 2009). Thus, it seems clear that there exists a significant variation in the amount 

of movement shown by individual salmonids. Among the salmonids, one of the least well studied 

species with respect to movement patterns is the European grayling (Thymallus thymallus), which is 

the focal species of the present study. Like all species in the genus Thymallus (family Salmonidae), the 

European grayling favor cold, fast flowing and well oxygenated rivers as well as lakes. In Norway, 

grayling reach sizes of 60 cm and 3.5 kg. Age at first spawning depends on whether the population is 

from South, Central or Northern Europe. In the northern parts, spawning usually occurs after their 

third year of life. Spawning occurs in late May or early June, when the water temperature is around 4-



4 

 

8 °C. Grayling have a small mouth, so that only the largest individuals include fish in their diet. They 

mainly feed on drifting plankton, insects and crustaceans (Northcote 1995; Pethon 2005; Kottelat and 

Freyhof 2007). Research on grayling movement and growth is limited. However, Northcote’s (1995) 

review paper discussed some migration patterns and homing, and concluded that grayling undergo a 

complex migratory cycle which involves wintering habitat, feeding habitat and spawning habitat. 

 

In the present study the aim was to test for correlations between growth rates (both juvenile and 

adult), post spawning migration distances, and activity during the growth season. Can patterns of 

growth be linked to movements on a seasonal/annual scale and over a spatial scale of kilometers? And 

can movement activity among individuals of older age classes be predicted from growth rates 

experienced as juveniles? If so, this would suggest that correlations between growth and movement 

may be maintained throughout life, with different individuals consistently differing in their choice 

with regard to the growth/survival trade-off. Other interesting questions that will be addressed are 

whether factors such as population (two rivers studied), sex and fish condition have an effect on 

movement activity or post spawning migration distance. Because of the one-dimensional nature of 

streams and rivers, such habitats have been the most productive for animal movement studies (Skalski 

and Gilliam 2000). European grayling in Norwegian rivers are thus well suited for such studies.  

 

 

 

 

 

 



5 

 

Materials and methods 
 

Study sites 

This study was performed in two rivers situated in the central and south-eastern parts of Norway. 

More specifically, two substantial river sections without migration barriers constituted the study area. 

In River Glomma, a 65 km long reach between Røstefossen in Os municipality (6932775 N, 616537 

E) and Høyegga in Alvdal municipality (6877763 N, 595286 E). Correspondingly, in River 

Gudbrandsdalslågen, the 53 km reach between Rosten in Sel municipality (6859695 N, 521680 E) and 

Harpefoss in Sør-Fron municipality (6827814 N, 544579 E) in addition to the lower 15 km in the 

tributary River Otta made up the study area. 

 

Fish capture and telemetry 

During the period April-October in 2010, 92 European grayling were caught in River Glomma, and 

99 grayling were caught during the periods April-May 2008, April-June 2009 and April 2010 in River 

Gudbrandsdalslågen. All individuals were measured for body size (fork length, ± 1 mm) and mass (± 5 

g), and the capture date and location of capture was recorded. Most fish (155) were subsequently 

radio-tagged and all fish had scale samples taken before being released. Out of the 191 scale samples, 

184 were suitable for growth analysis. Radio tagged grayling were positioned once a week, and twice 

a week during the spawning period within areas where spawning sites were known or indicated by fish 

behavior. In all three years, during the period from early April to late November, the fish were located 

by telemetry and assigned to 500 m river zones. Some fish had tags that were still active and could be 

located the year after tagging, but only the data from the year of tagging was used in this study. All 

tagged fish were likely to be spawning fish, as European grayling become mature at their third year 

and will spawn every year after the beginning of their fourth year of life (Hellawell 1969). 

Fish were caught and tagged at a total of 28 localities in the two rivers. However, some localities 

were merged due to their spatial proximity (≤ 1500 m). In River Glomma eight localities were defined 

as tagging sites (reduced from the original nine), and in River Gudbrandsdalslågen 15 localities were 

defined (reduced from the original 19). The tags used were both internal and external radio 

transmitters manufactured by Advanced Telemetry Systems (ATS). Individual fish with a mass more 

than 550 g were tagged with an internal transplant (model F1830), whereas smaller individuals were 

tagged with either an internal transplant (model F1580) or external attachment (model F1970). The 

transmitters were in all cases less than 2% of the fish body mass (Mellas and Heynes 1985; Thorstad et 

al. 2000). All fish used in this study were anaesthetized by water administered 2-phenoxyethanol (0.7 

ml l-1) before they were placed in a cylindrical tube with well oxygenated water (external transmitters), 
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or placed with the ventral side upwards in a V-shaped operation device (internal transmitters), for 

swift attachment of the transmitters.  

A Challenger Receiver (model R2100, manufactured by Advanced Telemetry Systems, USA) and a 

three-element folding Yagi antenna (model 12762) were operated from a car, and occasionally on foot. 

The telemetry study was approved by the National Animal Research Authority in accordance with 

national legislation. All telemetry data and fish scales were provided by NINA Lillehammer (Jon 

Museth). 

 

Fish scale analysis 

To analyze the fish scales, they were first photographed with a Nikon Ri1 camera fitted to a 

microscope. The analysis itself was done with Image Pro Plus. Based on winter and summer growth 

zones (sclerites), age of the fish and the scale growth for every year was estimated (fig. 1). Based on 

these estimates, body sizes at age were back-calculated for individual fish assuming proportional 

growth where the ratio between body size and scale radius is assumed to be constant through life 

(Francis 1990; Pierce et al. 1996). The grayling scales are somewhat irregular compared to scales from 

other salmonid fish species like salmon and trout. It was decided that the best distance to measure the 

scales was to choose the second outermost edge to the right (anterior transect, fig. 1). One reason for 

this is that this distance in most scales is perfectly linear when drawing a line from the center to the 

edge of the scale (compared to the diagonal transect). 

 

 

 

Annulii 

Fig. 1 A typical European grayling scale. The 

red line from the center of the scale to the 

second outermost edge (anterior transect) is 

where the measurements were taken. The blue 

line shows the diagonal transect (not used), and 

the black lines indicate the annuli. 

 

Anterior transect 

Diagonal transect 
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Movement and growth measurements 

First, the distance of the post spawning migration was calculated, which was defined as the largest 

absolute distance between positions observed during the spawning period and the growth period. In 

River Glomma the combined spawning and summer period was between May 13th and October 4th, 

while in River Gudbrandsdalslågen this period was between May 25th and September 30th. The reason 

for the different start dates of these calculations was that spawning commenced during late May in 

River Glomma, and in early June in River Gudbrandsdalslågen, respectively (Museth et al. 2011, 

2012). Any fish tagged after mid May (Glomma) or late May (Gudbrandsdalslågen), or lost before the 

end of September were excluded, giving a total sample size of 100 individuals. 

Furthermore, the average daily large-scale movement in the rivers over the growth season (defined 

to include the months of July, August and September) was calculated, hereafter termed summer 

movement. For each interval between two observations for a fish, the distance moved and the number 

of days in the interval was used to calculate minimum distance moved per day. The average was then 

calculated from these intervals for each fish. This period was chosen to exclude potential post 

spawning and winter migrations. Any fish tagged after June or lost before the end of September were 

excluded, giving a total sample size of 101 individuals. 

In this study, juvenile growth was defined as the estimated body size achieved at the end of their 

third year of life. After this, fish growth (mm year-1) declined (fig. 2), as they became mature and 

spent resources on reproduction. It was possible to estimate growth data for 178 fish.  

As not all fish were located every week, the number and length of observation intervals varied. It 

was tested if this affected post spawning migration and summer movement, but there was no 

significant effect of the number of observations. 
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Fig. 2 Estimated annual growth (mm 

during preceding year) for European 

grayling in the rivers Glomma and 

Gudbrandsdalslågen. Dots represent mean 

growth, lines are ±SD. 
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Statistical analyses 

All statistical analyses were conducted using the statistical software R, v. 2.12.1. (R Development 

Core Team 2011). We used a model selection approach to obtain the best models according to Zuur et 

al. (2009). For post spawning migration, the full model consisted of the fixed effects sex, location of 

capture, fish condition (K) and body size, whereas cohort was entered as a random effect. For summer 

movement, the full model consisted of the fixed effects sex, river, year of capture, fish condition (K) 

and body size, with location of capture and cohort entered as random effects. The reason for entering 

location of capture as a fixed effect for post spawning migration was that this effect is probably more 

important than the effect of the difference between the rivers. 

Variation in growth rates as dependent variables were then modeled. Growth post maturation was 

modeled with estimated total body size the year before capture, post spawning migration, summer 

movement, sex and river as fixed effects, and location of capture and cohort as random effects. For 

juvenile growth, fixed effects were summer movement, post spawning migration, sex and river, and 

location of capture and cohort as random effects. Since the measurement of post spawning migration 

and summer movement were correlated (61.6%), a VIF test was done to see if both explanatory 

variables could be included in the same model. The GVIF value was 1.61, and it was decided to 

include both variables. The limit for not including both is when the GVIF value is above 2 (Zuur et al. 

2010). 
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Results 

 

Post spawning migration 

Most fish performed a fairly short post spawning migration, with 45% migrating 3 km or less. 

Some fish, however, migrated much longer distances, with 24% migrating more than 10 km. Only a 

few individuals (8%) migrated more than 20 km (fig. 3). 

The best model for post spawning migration is a simple linear model, compared to the model with 

one random effect (∆AIC = 2.00). Model selection revealed that all fixed effects could be removed (p 

= 0.06 for location, p > 0.29 for sex, condition and body size) from the model of post spawning 

migration distance.  

 

Summer movement 

As expected, most fish performed a fairly restricted summer movement, with 66.3% moving 40 

meters per day or less. Some fish, however, were much more active, with 11.9% moving more than 

100 meters per day. Only a few individuals (4.9%) travelled more than 150 meters per day (fig. 4).  

 The simple linear model was considerably better than the three mixed effect models (∆AIC ≤ 

2.00). As for post spawning migration, model selection revealed that all fixed effects (sex, river, 

condition, body size, and year of capture) could be removed (p > 0.19 for all). Hence, none of the 

factors investigated seemed to affect summer movement (fig. 5).  

 

 

 

 

 

Fig. 4 The distribution of summer movement in 

European grayling in River Glomma and River 

Gudbrandsdalslågen. 

Fig. 3 The distribution of spawning migration 

distances in European grayling in River 

Glomma and River Gudbrandsdalslågen. 
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Fig. 5 Mean summer movement (m d-1), for 

(a) males and females, (b) the rivers, (c) 

year of capture, (d) fish condition and (e) 

body size in European grayling in River 

Glomma and River Gudbrandsdalslågen. 

Error bars represent 1 SD. 
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Fig. 6 Distribution of juvenile growth for 

European grayling in River Glomma and 

River Gudbrandsdalslågen. 

Juvenile growth 

As expected, juvenile growth distribution seemed to be fairly normally distributed, with few 

individuals showing very low growth and a few with high growth (fig. 6). 

When testing which factors that may affect juvenile growth, the model including both location of 

capture and cohort were considerably better than models with just one or no random effects (∆AIC ≤ 

3.8). Model selection revealed that river, sex, post spawning migration and summer movement could 

be removed (p > 0.24 for all). Thus, none of the fixed effects seem to affected juvenile growth (fig. 7). 
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Fig. 7 Distribution of juvenile growth with respect to (a), post spawning and (b), summer 

movement in European grayling in the rivers Glomma and Gudbrandsdalslågen. 
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Growth post maturation 

As expected, the body size of the fish affected its growth, and the term is necessary in the model 

selection (fig. 8). When testing which factors affect growth the year before tagging (mature growth), 

the models including both random effects were considerably better than models with just one or no 

random effect (∆AIC ≤ 8.3). Model selection revealed that summer movement, post spawning 

migration and river could be removed from the model (p > 0.37). In contrast, sex and estimated body 

size the year before capture could not be removed (p < 0.0001 for both). 

This model was refitted with all data that had the required information (i.e. increasing the sample 

size from 90 to 147 individuals). For this new model only cohort was included as a random effect 

(∆AIC ≤ 4.1), but the same fixed effects remained significant. According to this model, growth 

decreased with size, and growth was slightly better for males than for females (Table 1). 

 

 

 

 

 

 

 

 Estimate t P 

Intercept 141.86 13.09 < 0.0001 

Body size -0.28 -10.04 < 0.0001 

Sex (male) 4.51 2.17 0.0315 

 

 

 

Table 1 Summary of the linear mixed effect 

model with only cohort as random effect. This 

shows that only the initial length before that 

year and the sex affect growth the year prior to 

capture. 

Fig. 8 The estimated body size of European 

grayling in River Glomma and River 

Gudbrandsdalslågen the year before tagging 

with respect to growth the year before tagging. 
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Discussion 

 

My results indicate that there is no relationship between juvenile growth, summer movement and 

the distance of post spawning migrations in European grayling. For juvenile growth there also seems 

to be no significant difference between the sexes, or between fish in two studied rivers. For post 

spawning migration distance, neither fish condition nor body size showed any significant effect. 

Similarly, neither river, fish condition, body size, nor year of capture has any significant effect on 

summer movement. After maturation, the growth was slightly better for males than for females. 

 

Growth 

Acolas et al. (2012) found that increased growth rates in juvenile brown trout was positively 

correlated to observed migration rate, probability of migration and winter survival. Furthermore, they 

concluded that body size was not a key factor for the decision to migrate. This may support my 

findings that adult post spawning migration distance is not affected by body size. The model for 

growth after maturation showed no significant effect of post spawning migration distance. This 

suggests that there is no correlation between how far an adult migrates after spawning and the 

subsequent growth rate that it achieves. However, because the data for this analysis consisted of 

growth rate for one year and post spawning migration distance in the subsequent year, this assumes 

that that there is a temporally consistency in the length of post spawning migration between the years 

for each individual grayling. This assumption is likely violated as such consistency is not previously 

known for grayling.  

Similarly, the test of a relation between juvenile growth and summer movement activity relies on 

the assumption of individual differences in activity that are consistent throughout life, since my 

measures of activity were at the adult stage. This assumption will not be true if individuals differ in 

how their movement activity changes throughout their lives, or are influenced to different extents by 

predator presence or other external factors. It is likely that fish will change their behavior in many 

ways through different stages of their life cycle. Morrissey and Ferguson (2011) concluded that for 

brook char, “heterogeneity in individual movement of adults is not representative of patterns of 

movement throughout the life cycle”. If this conclusion is also valid for European grayling, my design 

would fail to find positive relations between movement and growth even if such relationships are 

present within years. 

 

Post spawning migration 

The number of suitable spawning habitats for European grayling is likely to be limited due to 

specific habitat requirements for their eggs in terms of water velocity and gravel size (Fabricius and 

Gustafson 1955; Gonczi 1989; Maitland and Campbell 1992) . Requirements for suitable summer 
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habitats may be less specific, so that larger sections of the rivers will likely be utilized during summer. 

There is an indication that the overwintering site selected by the fish will affect the distance of the post 

spawning migration. The reason we did not get a significant result for location of capture is that there 

is a large number of localities (23), and most contain very few fish (mean number of fish at each 

location ± SD is 6.7±4.5). Thus it is reasonable to assume that distances to suitable summer habitats 

will vary among different spawning habitats. However, I have not been able to test whether the 

distance of the spawning migration affects the post spawning migration distance, but it seems that 

grayling prefer spawning habitats close to the winter habitat. Taking account of the spawning 

migration distance or the spawning site location will reveal if the overwintering location has an effect 

on the post spawning migration. European grayling in the British Isles migrate from slow flowing river 

sections to faster flowing tributaries to spawn (Maitland and Campbell 1992), and Arctic grayling in 

North America have been recorded to spawn in the main river under the turbid conditions of spring 

flood (Schallock 1965). Such floods occur every year in both River Glomma and River 

Gudbrandsdalslågen, and will affect suitable spawning habitat for grayling. 

 

Summer movement 

This study does not take into account small scale movements which may or may not be more 

important for European grayling than large-scale movements. Very different micro- and mesohabitats 

are likely to exist within each 500 meter zone. In some river sections, long stretches may contain 

suitable feeding habitats, whereas in other sections suitable habitats may be much more patchy. If an 

individual fish occupy a part of the river with a large continuous feeding habitat, it may most likely be 

stationary, whereas an individual fish in a more patchy habitat will be forced to move more frequently. 

A result of this may be that summer movement might not be consistent between years for individual 

fish.  

Museth et al. (2012) did show that there is some genetic variation between the different parts of my 

study area in Glomma, and Junge (2011) could show the same for Gudbrandsdalslågen. Both 

concluded that the small genetic difference is caused by “isolation-by-distance” and that the grayling 

in each of the rivers do not consist of separate spawning populations. My data also show that there is a 

substantial movement of grayling in the river. The spawning biology of grayling may play a role in 

this. Northcote (1995) mentions that female graylings do not construct redds, and that the eggs are 

lodged about 3 cm into the gravel. After emerging the fry are small and weak swimmers. Both eggs 

and fry are therefore subject to passive downstream drift, and combined with subsequent active 

migration the fish might end up in very different sections of the river for their first winter. Both the 

genetic studies and the possible large downstream drift of juveniles might explain the random pattern 

in grayling movements. Several studies have reported reproductive homing for both European 

(Witkowski and Kowaleski 1988; Kristiansen and Doving 1996) and Arctic (Vincent-Lang 1990) 

grayling. However, these patterns seem complex and with much regional variation. Less is known 
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about habitat fidelity for feeding habitats and other trophic migrations. Most spawning migration 

studies have been conducted in tributaries to big rivers or lakes. There is reason to assume that 

reproductive homing is less strong in systems where the grayling spawn in the main river like River 

Gudbrandsdalslågen and upper parts of River Glomma, as physical and chemical cues might be more 

homogenous. Because of this, even trophic migrations might vary from year to year for any individual 

fish. In young Atlantic salmon the downstream movement patterns are well studied (Fleming and 

Einum 2011), and Naesje et al. (1986) found significant drift of both cisco (Coregonus albula) and 

whitefish (C. lavaretus) larvae during the spring flood in Gudbrandsdalslågen. However, little is 

known about downstream migrations of young European grayling. Important causal mechanisms for 

movement in other studies have been identified as temperature (Zimmer et al. 2010), water flow 

(Popoff and Neumann 2005), environmental heterogeneity (Gowan et al. 1994) and anti-predator 

behavior (Young 1995). Without accounting for these factors in the present study it may be difficult to 

link summer movement to both growth and other variables. 

 

Fish scale analysis 

One source of error in the study is likely to be growth estimation of the fish. Although there are 

several guidelines when it comes to determining age and growth based on fish scales, there is no true 

model that fits all fish species. Hurley et al. (1997) concluded that the diagonal transect of the scale is 

harder to read compared to the anterior transect in ctenoid scales (fig. 1). They also discussed that 

there is in many cases a significant difference between back-calculated lengths when using the 

different transects, however this is not likely to affect the growth assessment. In this study we have 

reasons to believe that the second outermost edge from the right (anterior transect) is the best choice in 

European grayling, as it is observed to be the less irregular than the diagonal transect or any other edge 

(fig. 1). In addition, the radius to this edge is easier to read compared to any other edge. Horka et al. 

(2010) found that it is common to underestimate age when reading grayling scales, as the annuli 

formation can be hard to detect during the later years when the growth rates of the fish decreases. 

However, this problem was mostly avoided in this study as we were mainly interested in the early 

growth of the fish, and the first few winter annuli formations were easily identified. Zivkov (1996) 

reported that there are several problems with the assumption of proportional growth when back-

calculating fish growth. They found that the ratio between fish length and scale radius will differ both 

between fish and within fish dependent on age. As a result of compensatory growth in fish, this ratio, 

in particular, varies a lot for juvenile fish from year to year. In this study this problem was mostly 

avoided as the fish length after the third year of growth was used as an estimate of juvenile growth 

rate. Any compensatory growth in the juvenile period is therefore not likely to affect my results. 

 

In the two Norwegian rivers investigated, as well as in many other rivers, fish movement and 

growth is determined by variation in both environmental and life-history. On the large spatiotemporal 
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scale used in this study, any connection between summer movement and growth may be difficult to 

find. Migration models are probably more suitable with data that include such large-scale movements, 

whereas during the summer when grayling are more stationary, models may call for much more 

detailed movement registrations. Thus, studies incorporating data with a higher spatial resolution and 

which simultaneously measure growth and activity are required to corroborate my findings. 

 

 

Acknowledgements 

 

I would like to thank my supervisors, Sigurd Einum (NTNU) for help with the design of the thesis 

and statistical analyses, Jon Museth (NINA Lillehammer) and Odd Terje Sandlund (NINA 

Trondheim) for providing me with an exceptional dataset and much needed assistance with writing 

and discussing my thesis. I thank Marius Berg (NINA Trondheim) for assistance with fish scale 

analysis, Fredrik Gunerius Fevang for help with English proofreading, and Stine Marie Skjellevik for 

practical and moral support. I would also like to thank all my fellow master students for putting up 

with my bad sense of humor for 5 long and interesting years. 

 



17 

 

 

References 

 

Acolas, M. L., J. Labonne, J. L. Bagliniere, and J. M. Roussel. 2012. The role of body size versus 
growth on the decision to migrate: A case study with Salmo trutta. Naturwissenschaften 
99:11-21. 

Arendt, J. D. 1997. Adaptive intrinsic growth rates: An integration across taxa. Quarterly Review of 
Biology 72:149-177. 

Caraco, T. 1979. Time budgeting and group-size: A theory. Ecology 60:611-617. 
Cunjak, R. A. and R. G. Randall. 1993. In-stream movements of young Atlantic salmon (Salmo salar) 

during winter and early spring. Canadian Special Publication of Fisheries and Aquatic 
Sciences 118:43-51. 

Fabricius, E. and K.-J. Gustafson. 1955. Observations on the spawning behaviour of the grayling, 
Thymallus thymallus (L.). Rept Inst Freshwater Res Drottningholm 36:75-103. 

Fausch, K. D., C. E. Torgersen, C. V. Baxter, and H. W. Li. 2002. Landscapes to riverscapes: Bridging 
the gap between research and conservation of stream fishes. Bioscience 52:483-498. 

Fleming, I. A. and S. Einum. 2011. Reproductive ecology: A tale of two sexes. 
Francis, R. 1990. Back-calculation of fish length: A critical review. Journal of Fish Biology 36:883-

902. 
Gerking, S. D. 1959. The restricted movement of fish populations. Biological Reviews of the 

Cambridge Philosophical Society 34:221-242. 
Gonczi, A. P. 1989. A study of physical parameters at the spawning sites of the European grayling 

Thymallus thymallus L. Regulated Rivers Research and Management 3:221-224. 
Gotthard, K. 2000. Increased risk of predation as a cost of high growth rate: An experimental test in a 

butterfly. Journal of Animal Ecology 69:896-902. 
Gowan, C. and K. D. Fausch. 2002. Why do foraging stream salmonids move during summer? 

Environmental Biology of Fishes 64:139-153. 
Gowan, C., M. K. Young, K. D. Fausch, and S. C. Riley. 1994. Restricted movement in resident 

stream salmonids: A paradigm lost. Canadian Journal of Fisheries and Aquatic Sciences 
51:2626-2637. 

Grant, J. W. A. and D. L. G. Noakes. 1987. Movers and stayers: Foraging tactics of young-of-the-year 
brook charr, Salvelinus fontinalis. Journal of Animal Ecology 56:1001-1013. 

Hellawell. 1969. Age determination and growth of grayling Thymallus thymallus (L) of River Lugg, 
Herefordshire. Journal of Fish Biology 1:373-&. 

Horka, P., A. Ibbotson, J. I. Jones, R. J. Cove, and L. J. Scott. 2010. Validation of scale-age 
determination in European grayling Thymallus thymallus using tag-recapture analysis. Journal 
of Fish Biology 77:153-161. 

Hurley, K. L., K. L. Pope, and D. W. Willis. 1997. Back-calculated length-at-age estimates from two 
scale radii. Prairie Naturalist 29:229-236. 

Jonsson, B. and N. Jonsson. 1993. Partial migration: Niche shift versus sexual maturation in fishes. 
Reviews in Fish Biology and Fisheries 3:348-365. 

Junge, C. 2011. Spatio-temporal population structuring in complex environments: Insights from the 
European grayling (Thymallus thymallus). PhD thesis, University of Oslo. 

Kottelat, M. and J. Freyhof. 2007. Handbook of European freshwater fishes. 
Kristiansen, H. and K. B. Doving. 1996. The migration of spawning stocks of grayling Thymallus 

thymallus, in Lake Mjøsa, Norway. Environmental Biology of Fishes 47:43-50. 
Maitland, P. S. and R. N. Campbell. 1992. Freshwater fishes of the British Isles. Harper Collins 

Publishers, London, Glasgow etc. 
Martin-Smith, K. M. and J. D. Armstrong. 2002. Growth rates of wild stream-dwelling Atlantic 

salmon correlate with activity and sex but not dominance. Journal of Animal Ecology 71:413-
423. 



18 

 

Mellas, E. J. and J. M. Haynes. 1985. Swimming performance and behaviour of rainbow trout (Salmo 
gairdneri) and white perch (Morone Americana): Effects of attaching telemetry transmitters. 
Canadian Journal of Fisheries and Aquatic Sciences 42:488-493. 

Morrissey, M. B. and M. M. Ferguson. 2011. Individual variation in movement throughout the life 
cycle of a stream-dwelling salmonid fish. Molecular Ecology 20:235-248. 

Museth, J., S. I. Johnsen, O. T. Sandlund, J. V. Arnekleiv, G. Kjærstad, and M. Kraabøl. 2012. Tolga 
Kraftverk: Utredning av konsekvenser for bunndyr og fisk. NINA Rapport 828. 

Museth, J., M. Kraabøl, S. Johnsen, J. V. Arnekleiv, G. Kjærstad, J. Teigen, and Ø. Aas. 2011. Nedre 
Otta Kraftverk: Utredning av konsekvenser for harr, ørret og bunndyr i influensområdet. 
NINA Rapport 621. 

Naesje, T. F., B. Jonsson, and O. T. Sandlund. 1986. Drift of cisco and whitefish larvae in a 
Norwegian river. Transactions of the American Fisheries Society 115:89-93. 

Northcote, T. G. 1995. Comparative biology and management of Arctic and European grayling 
(Salmonidae, Thymallus). Reviews in Fish Biology and Fisheries 5:141-194. 

Pethon, P. 2005. Aschehougs store fiskebok: Norges fisker i farger. Aschehoug 5th edt:86-87. 
Pierce, C. L., J. B. Rasmussen, and W. C. Leggett. 1996. Back-calculation of fish length from scales: 

Empirical comparison of proportional methods. Transactions of the American Fisheries 
Society 125:889-898. 

Popoff, N. D. and R. M. Neumann. 2005. Range and movement of resident holdover and hatchery 
brown trout tagged with radio transmitters in the Farmington River, Connecticut. North 
American Journal of Fisheries Management 25:413-422. 

Schallock, E. 1965. Investigations of the Tanana River grayling fisheries: Migratory study. Alaska 
Dept Fish Game, Ann. Rep. Progr., 1964-1965 Project F-5-R-6(16-B):307-319. 

Schluter, D. 1995. Adaptive radiation in sticklebacks: Trade-offs in feeding performance and growth. 
Ecology 76:82-90. 

Skalski, G. T. and J. F. Gilliam. 2000. Modeling diffusive spread in a heterogeneous population: A 
movement study with stream fish. Ecology 81:1685-1700. 

Skelly, D. K. and E. E. Werner. 1990. Behavioral and life-historical responses of larval American 
toads to an odonate predator. Ecology 71:2313-2322. 

Solomon, D. J. and R. G. Templeton. 1976. Movements of brown trout Salmo trutta L in a chalk 
stream. Journal of Fish Biology 9:411-423. 

Sundt-Hansen, L., L. Neregard, S. Einum, J. Hojesjo, B. T. Bjornsson, K. Hindar, F. Okland, and J. I. 
Johnsson. 2009. Growth enhanced brown trout show increased movement activity in the wild. 
Functional Ecology 23:551-558. 

Thorstad, E. B., F. Okland, and B. Finstad. 2000. Effects of telemetry transmitters on swimming 
performance of adult Atlantic salmon. Journal of Fish Biology 57:531-535. 

Vincent-Lang, D., Alexandersdottir, M. 1990. Assessment of the migrational habits, growth and 
abundance of the arctic grayling stocks of the Gulkana River during 1989. Alaska Dept Fish 
Game, Sport Fish Divn, Anchorage, Fish Fishery data series no. 90-10:59. 

Werner, E. E. and B. R. Anholt. 1993. Ecological Consequences of the trade-off between growth and 
mortality-rates mediated by foraging activity. American Naturalist 142:242-272. 

Werner, E. E., J. F. Gilliam, D. J. Hall, and G. G. Mittelbach. 1983. An experimental test of the effects 
of predation risk on habitat use in fish. Ecology 64:1540-1548. 

Witkowski, A. and M. Kowalewski. 1988. Migration and structure of spawning population of 
European grayling Thymallus thymallus (L) in the Dunajec basin. Archiv Fur Hydrobiologie 
112:279-297. 

Young, M. K. 1995. Telemetry-determined diurnal positions of brown trout (Salmo trutta) in 2 south-
central Wyoming streams. American Midland Naturalist 133:264-273. 

Zimmer, M., J. F. Schreer, and M. Power. 2010. Seasonal movement patterns of Credit River brown 
trout (Salmo trutta). Ecology of Freshwater Fish 19:290-299. 

Zivkov, M. 1996. Critique of proportional hypotheses and methods for back-calculation of fish 
growth. Environmental Biology of Fishes 46:309-320. 

Zuur, A. F., E. N. Ieno, and C. S. Elphick. 2010. A protocol for data exploration to avoid common 
statistical problems. Methods in Ecology and Evolution 1:3-14. 



19 

 

Zuur, A. F., E. N. Ieno, N. J. Walker, A. A. Saveliev, and G. M. Smith. 2009. Mixed effects models 
and extensions in ecology with R. Springer, 233 Spring Street, New York, Ny 10013, United 
States. 

 

 


	Tittelside
	Masteroppgave Kenneth Nygård

