
Autonomous Multi-Robot Mapping

Henrik Kaald Melbø

Master of Science in Cybernetics and Robotics

Supervisor: Tor Engebret Onshus, ITK

Department of Engineering Cybernetics

Submission date: June 2017

Norwegian University of Science and Technology

Problem Description

The focus of this thesis will be on the server-side handling of data collected
by multiple robots exploring a labyrinth. The aim is to improve the map
estimate created from the data. The current system simply plots the data
from each robot into a common map, with no regards to its accuracy. The
server also need exact input from the user on the starting pose of the robots,
a quite limiting restraint with a high possibility of introducing errors even
before the robots start moving. In this thesis the following improvement to
the system will be implemented:

• An improved SLAM algorithm

• No need for initial pose information

• An improved path planning algorithm will be discussed

The idea is that a proper SLAM algorithm will improve the pose estimate
and therefore create an overall more consistent map.

By removing the initial pose constraint, a large source of uncertainty can
be removed, as each robot can be initialize in separate reference frames.
This however requires some method to build a consistent global map from
multiple local, and partially overlapping maps.

Lastly, a new approach for the multi-robot exploration algorithm is needed
as the current implemented algorithm delegates resources in an inefficient
way. Possible exploration algorithms will therefore be discussed.

i

ii

Summary

In this thesis a multi robot algorithm for Simultaneous Localization and Map-
ping (SLAM) using a Rao-Blackwellized particle filter was implemented. The
particle filter was paired with a map-matching algorithm for calculating par-
ticle weights. The particle filter was then used to improve the map estimate
of each robot exploring and mapping a labyrinth. The improved maps from
each robot was then subjected to a map merging algorithm, which attempts
to merge the partial maps from each robot together. The merged map will
now be a better estimate of the real world, and remove the constraint that
robots need prior knowledge of each others relative position.

The particle filter uses a motion model based on the robots odometry readings
to estimate the current pose of the robot. Each particle will move according
to the motion model, but will in addition incorporate some Gaussian noise.
This will cause a distribution of belief states to appear, as each particle have a
different trajectory over time and therefore produces their own version of the
map. When a particle returns to a previously known position, a comparison
between the current observations and the previous observation is performed
using a map matching algorithm. The match between these map gives a
score, also called weight, to the particle. The better match, the higher the
score. Based on each particles score, it is chosen as a progeny, or discarded
in a sequence called resampling. The particle with the highest score at the
end of the exploration has a high likelihood of being a good representation
of the robots true state.

iii

iv

Sammendrag

Denne oppgaven omhandler implementasjonen av en algoritme for simultan
lokalisering og kartlegging (SLAM) ved bruk av flere roboter. Algoritmen
bruker et Rao-Blackwellisert partikkelfilter sammen med en algoritme som
sammenligner kartene for s̊a å kalkulere partikelenes vekt. Partikkelfiltret
brukes s̊a til å laget et forbedret kart estimat for hver av robotene. De
forbedrede kartene blir s̊a sydd sammen til et globalt kart. Dette fjerner
restiksjonen som krever at robotenes relative posisjon må være kjent p̊a
forh̊and.

Partikkelfiltret bruker en bevegelsesmodel basert p̊a målt endring i posisjon
over tid. Hver partikkel beveger seg s̊a etter denne modelen, men legger i
tillegg til Gaussisk støy. Dette vil føre til at partikklene g̊ar forskjellige veier
og vi f̊ar en distribusjon av mulige tilstander. Hver partikkel har n̊a sitt
eget unike kart. N̊ar en partikkel returner til en tidligere kjent posisjon vil
den sammenligne de nye observasjonene med de den gjorde sist gang den
var p̊a samme sted. Avhenging av hvor bra kart dataen stemmer overens,
f̊ar hver partikkel en poengsum kalt vekt, jo bedre overlapp med de gamle
observasjonene, jo høyere vekt. Partikkler med høy vekt blir s̊a valgt ut i en
prosess kalt resampling, siden de har en god sannsynlighet for å være et godt
estimat p̊a robotens faktiske posisjon.

v

vi

Conclusion

The particle filter is shown to improve the pose estimate of individual robots
when tuned correctly. The improved pose estimate again manifest itself in a
better map estimate. It is however necessary to employ a decent amount of
particles for this attempt to be successfully, which comes at a cost of addi-
tional computational power. In addition, the uncertainty model parameters
must not be to conservative, as to be unable to predict the robots actual
motion. Lastly, the map matching algorithm, responsible for weighing the
particles, must be tuned appropriately. A large value for the exponential
term used in the scoring algorithm gives fast convergence but might wrong-
fully eliminate relevant states. A to conservative value of the term will cause
the particle filter not to converge, and in turn perform badly.

The map merging algorithm uses an approach similar to simulated annealing
to optimize a cost function based on the Manhattan distance between cor-
responding observations, in addition to a term that values the total overlap
of the maps. The total overlap term is added to avoid over fitting when
the corresponding maps are only partially overlapping. Each iteration of the
algorithm a matrix transformation rotates and translates one of the maps
slightly. The cost function then evaluates this neighbouring state, to see if
it is a better fit than the last state. This part is similar to hill-climbing
algorithms. Since there potentially are many local minima of the function,
a random selector may chose a less optimal transformation at the beginning
of the run, but this becomes less likely for each iteration, known as cooling.
If this random selection is ”cooled” gradually, the state estimate will settle
down into some local, and hopefully, a global minima.

It is shown that the individual partial maps produced from each particle filter
can be merged into a global map using the map merger algorithm. The map
merging algorithm performs perfectly on two fully overlapping maps, but it
is unfortunately prone to certain issues when applied to partially overlapping
maps. Situations such as symmetry, over fitting and large sensor errors makes
the map matching algorithm perform suboptimal. The approach also suffers
from the same problem as any other stochastic optimization algorithm, in
that suboptimal solutions may be accepted.

vii

viii

Acknowledgements

I would like to thank Tor Onshus for his support through the process of
writing this thesis. And also give a big thank you to the rest of the team that
worked on various parts of this project. Your unique insight and feedback
has been greatly appreciated.

ix

Henrik Kaald Melbø

x

Contents

Problem description i

Summary iii

Sammendrag v

Conclusion vii

1 Introduction 1
1.1 Previous Work . 2
1.2 Hardware . 3

2 Localization and Mapping 5
2.1 Localization . 5

2.1.1 Localization Strategies 6
2.1.2 The Motion Model . 7

2.2 Mapping . 10
2.2.1 Mapping Strategies . 11
2.2.2 The Observation Model 13

2.3 SLAM . 16
2.3.1 SLAM Strategies . 17

2.4 Particle Filters . 19
2.4.1 Particle Weighting . 20
2.4.2 Resampling . 21

2.5 Implementation of the SLAM algorithm 22
2.6 Simulations . 27

2.6.1 Robot Without the Particle Filter 27
2.6.2 Robot With the Particle Filter 28

xi

CONTENTS Henrik Kaald Melbø

2.7 Field Testing . 28

3 Map Merging 33
3.1 Map Merging Strategies . 34
3.2 Implementation of the Map Merger 34
3.3 Simulations . 36
3.4 Field Testing . 37

4 Multi-Robot Exploration 41
4.1 Multi-Robot Exploration Strategies 41
4.2 Limitations to the Current System 42
4.3 Improving the Current System 42

5 Discussion 45

6 Other Implementations 49
6.1 The CleanMap Function . 49
6.2 Integration of Drone Data . 50
6.3 Debug Logger Functionality 52
6.4 Simulator Changes . 52
6.5 General Changes to Server . 53

7 Further Work 55
7.1 Efficiency . 55
7.2 A Better Exploration Algorithm 55
7.3 Integration of Drone Data . 56

Bibliography 57

Appendix 61

xii

List of Figures

1.1 The robot running on the NXT system. 4

2.1 The basic idea of Markov localization[1]. 8
2.2 Monte Carlo Localization, a particle filter applied to robot

localization[1]. 9
2.3 The odomotry motion model[1]. 11
2.4 Example of a grid-map with uncertain poses (a) and known

poses (b)[1]. 12
2.5 The data association problem in SLAM[1]. 14
2.6 Occupancy grid-map of the 1994 AAAI mobile robot compe-

tition arena. The grid cells divisions are bearly visable[1]. . . . 14
2.7 The inverse sensor model at two different ranges for a sonar.

The darkness of each grid cell corresponds to the likelihood of
occupancy[1]. 15

2.8 Bayes network graph of the SLAM problem[1] 18
2.9 A Venn diagram of how SLAM fits inn among localization and

mapping[2]. 18
2.10 Graphical representation of how a particles spread out with

time[1]. 23
2.11 Graphical representation of how each particle have a unique

representation of the map[1]. 24
2.12 Map matching shortly before a loop closure[3]. 25
2.13 The particle filter options in the system GUI. 26
2.14 One robot simulated using the previously developed explo-

ration algorithm stopped mid run. 27
2.15 One robot simulated using the previously developed explo-

ration algorithm after finished run. 28
2.16 Particles (cyan dots) estimating the actual pose of the robot. . 29

xiii

LIST OF FIGURES Henrik Kaald Melbø

2.17 The real world test labyrinth. The original map to the left,
and the map from the particle filter to the right. 30

2.18 The test labyrinth made for field testing the system. 31

3.1 Simulations of robots initialized in wrong pose. The original
map to the left, and the merged map to the right. The clock
was set to 7.5. 37

3.2 This figure shows how the two partially overlapping maps can
be combined using the map merging algorithm. The clock value
was set to 100. 38

3.3 The expanded test labyrinth made for field testing the system. 39
3.4 Map merging the real world maps. 40

6.1 The CleanMap algorithm on a good map. Left is before, and
right is after the CleanMap function is run. 50

6.2 The CleanMap algorithm on a poor map. Left is before, and
right is after the CleanMap function is run 51

6.3 The Drone collecting data from a 250 x 250 cm frame of the
map. 52

xiv

Chapter 1

Introduction

A fundamental problem when working with autonomous robots are naviga-
tion in unknown or changing environments. For the robot to manoeuvre in
the real world and solve problems, a good estimation of the robots surround-
ings are needed. This can be acquired by using sensors to measure the envi-
ronment and then constructing a map. The robot then uses this map along
with its pose (position and orientation) to successfully navigate the world.
In real life however, there will always be uncertainty in all measurements. It
can therefore be assumed that both the robots pose and the measured obser-
vations are an inaccurate description of the real world. This inaccuracy will
accumulate over time, as the robot makes new assumptions on false premises.

The so called Simultaneous Localization And Mapping (SLAM) problem is
therefore to simultaneously build a map of the surrounding, and keeping track
of the location of the robot. This is an inherently difficult problem due to the
correlation between the uncertainty in the pose estimate and the uncertainty
in the map estimate. SLAM defines a family of approaches, whose purpose
is to make an accurate prediction of the pose of the robot at all times, as
well as building an accurate map of the environment.

A SLAM algorithm needs a motion model, to keep track of how the robot
moves, and also an observation model, to correctly apply the sensor data
to build a map. Many paradigms in SLAM exist, but most are developed
from a probabilistic view of the world based on Bayes filter[1]. Some major
paradigms in SLAM includes, Kalman filter based SLAM, information filter
based SLAM and particle filters based SLAM.

1

1.1. PREVIOUS WORK Henrik Kaald Melbø

In this thesis a mulitrobot SLAM algorithm for a setup of 4 LEGO-robots ex-
ploring a maze using infra-red sensors to map distance, will be implemented.
The goal is to improve the map estimate.

1.1 Previous Work

The collaborating LEGO-robot project has been around at NTNU since 2004.
The aim was to create a system that efficiently maps an area using relatively
cheap sensors and robots.

There has been much work done on this subject through the years, a short
summary follows.

The first robot was constructed, using Lego as the framework around an
AVR microcontroller, by H̊akon Skjelten in 2004[4], the work was further
developed in 2005 when Helgeland made the system autonomous[5]. In 2006
a navigation algorithm was implemented by Bjørn Syvertsen[6]. In 2007 Kal-
levig expanded the sensor capabilities of the robot[7] and Schrimpf improved
the real-time characteristics of the robot[8]. In 2008 Bakken made the sec-
ond, NXT based Lego robot[9], Næss made improvments on the robot power
system[10], Maggnusen created a simulator for easier testing and debugging
of the software[11] and Haugedal worked on an implemntation for a docking
station for the robot[12]. In 2009 the mapping and navigation-algorithm were
modified and improved by Tusvik[13], Kristiansen worked on improving the
mapping system[14], and Tøraasen worked on using cameras as sensors[15].
In 2011 Hannaas worked on an interface in Matlab for two robots using an
IR-sensor[16]. In 2013 Homestad worked on integrating the the NXT robot
into the system[17]. In 2014 Halvorsen imporved the system so it handles
two robots[18]. In 2015 Ese implemeted FreeRTOS on a robot[19] and then
in 2016 he implemented the BLE module[20]. In 2016 the whole server was
rewritten and a new Arduino based robot was introduced by Andersen and
Rødseth[21], and a new Simulator and an improved navigation algorithm
based on A* was implemented by Thon[22].

For a complete picture, the reader is recommended to consult the refereed
articles, which is provided in the appendix.

2

CHAPTER 1. INTRODUCTION Henrik Kaald Melbø

1.2 Hardware

The system consist of multiple robots used to explore the environment using
infra-red (IR) sensors mounted on a rotary tower. The robots collects range
data and transmits the data to a server. The servers task is to build a map
of the environment given the ranged data, keeping track of each robots pose,
and also to plan the best trajectory for all robots.

The system so far consist of three Lego robots, one based on an Atmel AVR
microcontroller, another using the Lego proprietary system NXT, and the
last one is based on an Arduino. Each robot is equipped with the four IR
range sensors placed with 90 degrees spread on the rotating tower. The max
range of the sensors is 80 cm. In addition, work is currently under way to
include a flying drone with a camera to detect edges and aid mapping. The
NXT is shown in figure 1.1, the black box on top is the IR sensors.

On the server side there exist a GUI and a simulator, both are programmed
in Java. The server implements an A* algorithm for navigation and uses
grid-maps to plot the acquired data. The robots communicate with the
server using nRF51 Bluethoot Low Energy (BLE), as can be seen by the
blue dongle in on the top left of the robot in figure 1.1.

3

1.2. HARDWARE Henrik Kaald Melbø

Figure 1.1: The robot running on the NXT system.

4

Chapter 2

Localization and Mapping

Any autonomous robot, set on exploring the real world, will experience some
problems. To be able to successfully interact with the world, a notion of
how the world looks like and also where the robot is positioned in relation to
the world, is needed. The world may be static, as in a closed space with no
moving objects, or it may be dynamic, with people and objects moving as
time passes. In any case, the robot needs a way to keep track of itself and any
objects in the world. In a ideal world, the robot would be able to perfectly
sense its own movement, and at the same time, build a perfect internal map
of the world using some form of sensors. Unfortunately, the world is a noisy
place, and the robot may end up being mislead by false or noisy information.

2.1 Localization

Localization is the science of estimating the robots pose given a set of ac-
tions. If the starting pose of the robot is known and the goal is to keep track
of where the robot moves, we deal with what is known as position tracking
or local localization.

The localization problem in essence tries to solve the seemingly simple prob-
ability density function (PDF) shown in equation 2.1.

p(xt|m, z1:t) (2.1)

That is the Bayesian statistic posterior of the current pose xt, given all pre-
vious observations z1:t and the map m.

5

2.1. LOCALIZATION Henrik Kaald Melbø

To track a robots motion, some form of motion model is needed. The term
odometry is often used for motion model that uses motion sensor data (dis-
tance travelled and direction) to estimate change in the position over time.
An other approach would be using GPS to track the absolute position, but
GPS are ill suited for indoor use. In any case, all sensors are inherently prone
to noise and biases, and some form of processing is needed to efficiently uti-
lize the acquired data. For wheeled robots rotary encoders are often used to
produce odometry data, as they are cheap and simple. Other vehicles may
use accelerometers, and integrate over time to get change in position, while
flighted drones that manoeuvre in 3D space may use a inertial measurement
unit (IMU), a combination of accelerometers and gyroscopes, to estimate its
movement.

Common for all sensors is that they will always impart noise and errors
which will lead to inaccurate odometry measurements. The robot may think
it is at one location while the actual location is far of. This problem can be
avoided by having a good map of the environment to navigate and correct the
pose by. It is worth to mention at this point that if it were given an accurate
map of the environment, location would be trivial. You could in fact take a
robot, place it at an unknown location and have the robot figure out where
it was based on the map it was given, this is known as global localization[1].

2.1.1 Localization Strategies

Some of the most common approaches to localization will now be discussed,
it is important to note that localization assumes that a preexisting map is
given. For brevity, this section will have few detail and no mathematical
derivations. The interested reader is recommended to have a look at ”Prob-
abilistic Robotics” by Thrun et al.[1]. The book gives a good overview of
localization and other important themes of this thesis such as a refresher in
Bayesian statistics, and also gives vigorous mathematical derivations.

One common approach to localization is called Markov localization. This
approach is a probabilistic algorithm, based on Bayes theorem, which in-
stead of maintaining a single hypothesis as to where in the world a robot
might be, maintains a probability distribution over the space of all such hy-
potheses. Figure 2.1 shows Markov localization in action. Each frame depicts

6

CHAPTER 2. LOCALIZATION AND MAPPING Henrik Kaald Melbø

the position of the robot in the hallway and where it believe it is located,
written bel(x). The observation model p(zt|xt) describes the probability of
observing a door at the different locations in the hallway. The robot updates
its belives after each observation[1]. Markov localization can deal with both
the local and global localization problem.

Another approach uses the Extended Kalman Filter (EKF) on a feature
based map to estimate the robots position, and update the believes mean µt

and covariance Σt of the pose for every new feature observed. Feature based
maps will be discussed further in the section on mapping. There is also a
version known as Unscented Kalman Filter (UKF) localization that uses a
unscented transform to linearise the the motion and measurement models to
improve stability and convergence rate[1].

Monte Carlo Localization (MCL) is another interesting approach, based on
what is known as a grid-map. The grid-map will also be discussed in detail
in the secton on mapping. The MCL represents the belief state bel(xt) by a
set of random particles and is therefore also known as a particle filter. The
particles are random samples from the motion model and they represents all
(or most of, depending on the sample size) the different states the robot may
be in. The particles are then evaluated (weighted) using the observations
the robots make to find the most probable position of the robot. It is worth
noting that this approach needs not extract features from the environment,
raw sensory data is enough (this is a property of the grid-map). MCL is
also non-parametric, and can solve both the local and the global localization
problem. Figure 2.2 illustrates the approach in the same way as figure 2.1
illustrates Markov localization. Note that the particles are uniformly dis-
tributed at the beginning, and gets more concentrated around the possible
solutions as new observations are made[1].

2.1.2 The Motion Model

Any localization algorithm is dependent on predicting the robots movements.
In essence the motion model tries to find the PDF as shown in equation 2.2.

p(xt|x1:t−1, u1:t) (2.2)

Here xt is the current pose, x1:t−1 is all the previous poses, and u1:t is the
input sequence.

7

2.1. LOCALIZATION Henrik Kaald Melbø

Figure 2.1: The basic idea of Markov localization[1].

8

CHAPTER 2. LOCALIZATION AND MAPPING Henrik Kaald Melbø

Figure 2.2: Monte Carlo Localization, a particle filter applied to robot
localization[1].

9

2.2. MAPPING Henrik Kaald Melbø

There are two dominant approaches in robot kinematics, the velocity mo-
tion model and the odometry motion model. The velocity motion model
assumes that we use rotational and translational velocity as set point for the
robots motor driver. Drivetrains that uses this approach include the differ-
ential drives, Ackerman drives, and synchro-drives[1]. The model assumes
that the robot is capable of following the given input, and is prone to errors
due to drift, slippage and dead zones.

The odomtry motion model uses odomtry data, usually obtained by integrat-
ing wheel encoder information, to calculate the robots motion. This model is
based on output (sensor data) instead of input commands, but it is common
to model the odometry data as if it were control signals. The odomtry mo-
tion model is in general a better estimation than the velocity motion model.
The model is depicted in figure 2.3, where δrot is the measured rotation of
the robot and δtrans is the measured translation of the robot. The odomtry
data and the posees are connected when the robot moves from pose (x, y, θ)
to the new pose (x′, y′, θ′) as shown in equation 2.3 to 2.5[1].

δtrans =
√
(x′ − x)2 + (y′ − y)2 (2.3)

δrot1 = atan2(y′ − y, x′ − x)− θ (2.4)

δrot2 = θ′ − θ − δrot1 (2.5)

Both of theses motion model can easily be calculated and a probability dis-
tribution can be made by introducing Gaussian noise, or other form of noise
if the noise attributes are known. The distribution can then be used to make
probabilistic estimations on where the robot is currently located.

2.2 Mapping

Mapping is the task of modelling the environment. In all cases this requires
data from the surroundings obtained using some form of sensors, such as LI-
DAR, camera, sonar, tactile sensors or any other device capable of retrieving
information from the surroundings.

Maps are needed for any autonomous unit to be able to move around and
complete tasks. Often the map may be given in advance from blueprints,

10

CHAPTER 2. LOCALIZATION AND MAPPING Henrik Kaald Melbø

Figure 2.3: The odomotry motion model[1].

satellite data or other sources. This information gives the robot the oppor-
tunity to plan its actions and complete complex task with relative ease. In
the case of an unknown environment, or in the case of uncertain environments
(blueprints may be outdated, and does not include furniture etc.), mapping
may be used to gather information about the environment. The problem with
mapping is that it requires information on the robots pose, and the pose of
the robot is not always exactly known, causing the map to be generated to
be incorrect. An example of a occupancy grid-map can be seen in figure 2.4.
Here drift in the pose causes several observations of the same walls to be
missaligned adn produce a poor map estimate. It is worth noting that given
the exact pose of the robot at all times, mapping is trivial[1].

2.2.1 Mapping Strategies

The mapping problem in essence tries to find the PDF shown in equation
2.6.

p(m|z1:t, x1:t) (2.6)

Where m is the map, z1:t is a sequence of measurements, and x1:t are all the
previous poses.

11

2.2. MAPPING Henrik Kaald Melbø

Figure 2.4: Example of a grid-map with uncertain poses (a) and known poses
(b)[1].

12

CHAPTER 2. LOCALIZATION AND MAPPING Henrik Kaald Melbø

There are many ways to construct a map, the main paradigms in robotics
are landmark based mapping and occupancy grid based mapping. Landmark
based mapping or feature based mapping, is based on extracting distinct ob-
jects from the real world, such as corners, trees, doors or other easily iden-
tified markers in the environment. These can then be used to estimate the
position of the moving robot. As opposed to using all the acquired informa-
tion from the sensors. This might be less computationally taxing, but the
features must be extracted from the sensor data, which is not always easy.
This approach also suffers from a major problem called data association.

Data association occurs if the robot pose is not exactly known, and may
cause the robot to be unable to differentiate between different landmarks.
This again may cause the robot to believe it is in a completely different loca-
tion than it actually is. This is illustrated in figure 2.4, where two different
data associations can be made between three star shaped landmarks. This
causes major problems when making maps and navigating, and can be fatal
for the operation of the robot.

Occupancy grid (grid-map) based mapping is another way to model maps.
In 2D space, a floor plan like model of the environment is produced. As can
bee seen in figure 2.6, the world is discretized into smaller squares. Each
square can take on a value that describes the likelihood of there being an
obstacle in that square. Other approaches simply uses a binary value. The
advantage of this approach is that it is more intuitive than a landmark based
approach, but it requires more data to be stored and may therefore be more
computational taxing. Problems may also occur with the resolution of the
map, as the real world is not square in nature, and a cell might be partially
filled. The larger the size of each cell in the occupancy grid, the lower the
accuracy of the map will be, but will requires less data to be stored.

A nice survey of single robot indoor mapping methods is done by Thrun
et al.[23].

2.2.2 The Observation Model

When it comes to mapping, there are different types of sensors used to gain
knowledge about the environment. Some sensors only gives the the general
direction, or bearing, of obstacles, while other gives both the bearing and

13

2.2. MAPPING Henrik Kaald Melbø

Figure 2.5: The data association problem in SLAM[1].

Figure 2.6: Occupancy grid-map of the 1994 AAAI mobile robot competition
arena. The grid cells divisions are bearly visable[1].

14

CHAPTER 2. LOCALIZATION AND MAPPING Henrik Kaald Melbø

Figure 2.7: The inverse sensor model at two different ranges for a sonar. The
darkness of each grid cell corresponds to the likelihood of occupancy[1].

range to obstacles in a wide cone in front of the sensor. The laser-based
ranged sensor and sonar is of the latter category.

In essence, any observation model tries to find the PDF in equation 2.7,
finding the current observation zt given the current pose xt.

p(zt|xt) (2.7)

For range and bearing type sensors, such as a sonar or LIDAR, the inverse
range sensor model is often used. The model takes in the angle of the sensor
and the distance to an observation and gives out the set of free and occupied
cells in a grid-map as shown in figure 2.7.

When using a simple laser range finder, where only one point is being eval-
uated at a time, and no specific sensor characteristics are known, the simple
approach is to add the discovered point straight into the map. This can be
done by the adding the robots position to the measured position and taking
into account the angle of the sensor relative to the robot. The simple way of
calculating this would be a transformation matrix T , which is the combina-
tion of a rotation matrix R and a translation matrix t as shown in equations

15

2.3. SLAM Henrik Kaald Melbø

2.8 to 2.10.

R =

[
cos θ sin θ
−sin θ cos θ

]
(2.8)

t =

[
xt
yt

]
(2.9)

T =

 cos θ sin θ xt
−sin θ cos θ yt

0 0 1

 (2.10)

Here θ is the angle between the robot and the sensor, and the variables xt
and yt is the measurement position, relative to the robot. The measurements
position in the map would now simply be Tp, where p = [x, y]T is a vector of
the robots position. This transformation however, assumes rotation around
the origin. This can simply be mended by first translating the robots pose
to the origin, rotate and then translate back to its original position[24].

2.3 SLAM

It has been stated that given a accurate map, location is trivial, and given
accurate pose, mapping is trivial. The grater challenge is making a map,
while the pose is uncertain, this is referred to as the Simultaneous Location
and Mapping (SLAM) problem. The SLAM problem is an inherently difficult
problem due to the fact that:

• Robot path and map are both unknown

• Map and pose estimates are correlated

• The mapping between observations and the map is unknown

• Picking wrong data associations can have severe consequences

The SLAM problem in essence tries to find the PDF shown in equation 2.11.

p(xt,m|z1:t, u1:t) (2.11)

Finding the current pose xt and the map m of the robot, given the set of
measurements z1:t and the sequence of motion input u1:t.

16

CHAPTER 2. LOCALIZATION AND MAPPING Henrik Kaald Melbø

If compared to the location problem in equation 2.1, and the mapping prob-
lem in equation 2.6, this is a relatively more complex problem. Especially
when you realize that solving the map is dependent on the pose and solving
the pose is dependent on the map.

Two main paradigms exists in SLAM: Full-SLAM, where the entire path
is calculated and the map is construed after data acquisition is done, and
online-SLAM, where the previous poses are a continuous estimate and a
map is built on the fly. Both approaches has their own merits. Full-SLAM
can be said to be easier, as the data only needs to be processed and of-
ten no real-time requirements needs to be fulfilled, while the online-SLAM is
more useful if the map is also incorporated in the robot navigation system[1].

Figure 2.8 shows a Bayesian network graph representation of the SLAM
problem. Each pose xt is updated using the motion model via the motion
input ut. The robot than makes measurements zt from the surroundings and
they are then integrate into the map m. The process is then repeated for the
next motion input.

Figure 2.9 show how SLAM relates to localization and mapping. In later
sections, path planning will be further explored, and the problem then moves
into the ”integrated approaches” section of the diagram.

2.3.1 SLAM Strategies

There exist numerous methods to solving the SLAM problem, all depending
on the specific flavour of problem. What sensors are in use? Are we using
grid-map, feature based maps or something completely different? Are we
doing online- or full-SLAM? Over the years, many different approaches has
cropped up.

A popular approach for feature based maps is the Extended Kalman Filter
(EKF), which applies the EKF to online-SLAM using maximum likelihood
data association. The EKF assumes the noise is Gaussian for motion and
perception. EKF integrates out the robots pose as the robot moves, and
therfore only keeps track of the current pose[1].

17

2.3. SLAM Henrik Kaald Melbø

Figure 2.8: Bayes network graph of the SLAM problem[1]

Figure 2.9: A Venn diagram of how SLAM fits inn among localization and
mapping[2].

18

CHAPTER 2. LOCALIZATION AND MAPPING Henrik Kaald Melbø

Another popular approach, that solves the full-SLAM problem, is the graph
based approach known as Graph-SLAM. In Graph-SLAM the robot poses
are represented as a graph where the nodes correspond to the poses of the
robot at different points in time, and the edges represent constraints between
the poses. The latter are obtained from observations of the environment or
from movement actions carried out by the robot. The whole problems boil
down to solving a large optimization problem. The graph can be shown to
be a sparse graph of nonlinear constraints. Graph-SLAM needs to keep track
of all poses and measuremtns at all times, but since it is an ofline approach,
does not need to do computations while collecting data[1].

The Sparse Extended Information Filter (SEIF) implements an information
solution to the online-SLAM problem and solves feature based maps. As
EKF, this algorithm also only needs to keep track of the current pose and
the maps, and like Graph-SLAM maintains an information representation of
all knowledge[1].

Particle filters or Sequential Monte Carlo (SMC) filters, is a set of genetic-
type statistical approaches to solving the filtering problem. Interestingly
this approach can be used to solves both the online- and full-SLAM prob-
lem simultaneously. This approach will be discussed more in details in the
following section.

2.4 Particle Filters

Of particular interest is the particle filter, as it solves the SLAM problem us-
ing a grid-map based approach. Particle filters has become one of the most
popular approaches to solving the SLAM problem in modern robotics[1]. The
particle filter is a tool for tracking the state of a dynamic system, even when
the state is not fully observable. Particle filters is in practice a Bayes filter
that uses a prediction and update cycle to estimate the state of a dynam-
ical system from sensor measurements, and has similar applications as the
Kalman filter, but handles large dimensionality better.

The particle filter estimates the posterior over all state sequences, as shown
in equation 2.12.

bel(x0:t) = p(x0:t|u0:t, z0:t) (2.12)

19

2.4. PARTICLE FILTERS Henrik Kaald Melbø

The state space will become large extremely quickly, and it is therefore not
advised to calculate this posterior for all possible states. Instead, random
samples are drawn from the motion model. By using Bayes theorem and
Markow assumptions, we can show that the posterior can be calculated as
shown in equation 2.13.

bel(x0:t) = ηw
[m]
t p(xt|xt−1, ut)p(x0:t−1|z0:t−1, u0:t−1) (2.13)

Where η is a normalizer and wt is the particle wheight. The whole derivation
can be found on page 103 of ”Probabilistic Robotics”[1].

Each particle is given an importance weight according to its likelihood of
being a correct estimate. This importance weight is used in a process called
resampling.

A large source of error in particle filters are related to the fact that we do
random sampling. Whenever samples are drawn from a continuous distribu-
tion, the statistics of the sample will vary from the statistics of the original
distribution. Variability due to random sampling is called variance. A larger
set of samples, meaning more particles, will therefore be a more accurate
approximation, ie. have a lower variance[1]. The resampling process, as will
be discussed in a later section, will further amplify this variance.

2.4.1 Particle Weighting

Every particle filter needs a way to determine if any particular particle is a
good estimate of the real world or not. This process is called weighting, as
each particles is given an importance weight based on how likely it is to be
a good estimate of the true state. There are several ways of weighting the
particles.

One approach used to estimate a particle weight is called scan-matching.
Scan-matching aims to superimpose two grid-maps (or images for that sake)
using a rotation (R) and translation matrix (T). This is handy, as it gives
us a tool to compare two map estimates against each other. Scan-matching
can also provide a locally consistent pose correction. Some well know im-
plementations of scan-matching includes the Singular-Value Decomposition
(SVD)[25] and the Iterative Closest Points (ICP)[26] algorithms. Scan-
matching however requires additional computational resources and might not

20

CHAPTER 2. LOCALIZATION AND MAPPING Henrik Kaald Melbø

be the best real-time approach. The approach is also multi-modal, meaning
more than one pose can correctly be identified as the current one. Another
shortcoming of this approach is that they often expect two point sets of same
size, which any two sensor reading can not guarantee.

Another approach to weighting particles is called map matching. Here two
maps will be compared directly and the correlation between the maps gives
an indication off how good the particles estimate is, and therefore correlates
directly to the weight. A simple way of doing this is scoring +1 if two points
corresponds and −1 if they don’t. It is of interest to not include unexplored
grid cells, as they include no information, any attempt to compare with an
unexplored cell will therefore return zero value. The final score is then used
to compute the weight according to equation 2.14.

weight = e(c·score) (2.14)

The scoring system gives an exponential weighting distribution which can be
adjusted by the paramter c[27].

2.4.2 Resampling

A major optimization for particle filters is resampling, also known as impor-
tance sampling. As the uncertainty increases, the particle will spread more
and more out in space. This will eventually cause the particles to be spread
very thin, and ultimately an infinitely large amount of particle is needed to
cover the whole state space. Instead of using infinitely many particles (and
infinite RAM), a selection based on the most probable particles are made,
and an almost genetic ”survival of the fittest” approach is used to propagate
these particles onward. This of course introduces a loss of diversity as we
remove some particles and may even gain several copies of the same (highly
probable) particles. As mentioned earlier, this constitutes an amplification
of the sample variance. The set prior to resampling is drawn from the motion
model and represents the prior belief, the resampled set represents a more
accurate description of the what the posterior belief looks like.

In essence the resampling step modifies the weighted approximate density
to an unweighted density by eliminating particles having low importance
weights and by reproducing particles having high importance weights.

21

2.5. IMPLEMENTATION OF THE SLAM ALGORITHMHenrik Kaald Melbø

Some common approaches includes, low variance resampling, multinomial re-
sampling, stratified resampling, systematic resampling, and residual resampling[28].

An interesting approach is the so called low variance resampling. The basic
idea is that the selection involves a sequential stochastic process. Low vari-
ance resampling computes a random number and selects samples according
to this number with a probability proportional to the sample weight. Some
of the advantages to low variance resamlping are that it covers the sample
space in a systematic manner. Also if we resamople and all particles has the
same weight it will return an identical set, meaning we do not lose informa-
tion. And lastly, it has a time complexity of O(M log M), where M is the
size of the sample set[1].

Even in a large population of particles, it may occur that no particles are in
the vicinity of the correct state, as any stochastic algorithm may accedentily
discard particles near the correct pose. This is known as particle deprivation,
and is the result of high variance in random sampling[1]. This mostly tend to
happen if the set of particles is small, but the probability of this happening
in a population of any given size is non-zero.

2.5 Implementation of the SLAM algorithm

The LEGO project already had an online-SLAM type setup, as it integrates
data continuously into a global map while exploring. It was therefore of
interest to solve the online-SLAM problem, such that most of the current
system could be reused. There was also inbuilt features to handle grid-maps,
and therefore the logical choice was to solve the online-SLAM problem for a
grid-map.

The approach used in this thesis to solve the SLAM problem is called the
Rao-Blackwellized Particle Filter (RBPF) for Grid-based SLAM. This is a
way to simplify equation 2.11 by assuming the map estimate and the pose es-
timate is independent, as shown in equation 2.15, by using the Rao-Blackwell
theorem.

p(x1:t,m|z1:t, u1:t−1) = p(m|z1:t, x1:t)p(x1:t|z1:t, u1:t−1) (2.15)

22

CHAPTER 2. LOCALIZATION AND MAPPING Henrik Kaald Melbø

Figure 2.10: Graphical representation of how a particles spread out with
time[1].

This factorization allows us to first estimate only the trajectory of the robot
and then to compute the map given that trajectory. Since the map strongly
depends on the pose estimate of the robot, this approach offers an efficient
computation[29].

The base of this SLAM approach is a particle filter, where each particle
contains a pose estimate (x,y,θ) as well as a estimate of the map, assem-
bled as the robot acquires measurements. Without loss of generality, we can
assume the robot to start mapping at position (0,0,0), however, it is also
possible to initialize the particle filter at any other pose. While the robot
moves, the particles also moves, according to the probabilistic motion model,
which describes the uncertainty in the actual robot motion. Due to this un-
certainty, the motion model contains a stochastic component, which results
in the particles spreading out and generating slightly different trajectories,
as can be seen in figure 2.10. Since the position estimate for each particles
are slightly different, the maps will differ as well and each particle will have
its unique map of the environment, as shown in figure 2.11.

23

2.5. IMPLEMENTATION OF THE SLAM ALGORITHMHenrik Kaald Melbø

Figure 2.11: Graphical representation of how each particle have a unique
representation of the map[1].

In this RBPF SLAM algorithm a map matching algorithm is used to weight
the particles. Each particle will in addition to a global map, also have a
local map, built from a sequence of recent observations. The global grid-map
will not updated immediately, but stored in the local map and updated at
discrete times. The trajectories of each particle is stored in a history vector
for each particle, so when the particles returns to a known position it will
compare (hence map match) the local map to the global map. The correla-
tion between the maps gives a indication off how good the estimate is. An
illustration is shown in figure 2.12, here a set of particles with different local
and global maps are approaching a known destination. The local map of the
particle to the right has a poor match to the global map, while the local map
of the particle to the left fits nicely.

The beauty of this approach is that it is a purely algorithmic approach to
solving the SLAM problem, we make no assumption on the hardware in ques-
tion. This approach was proposed by Christof Schroeter and Horst-Michael
Gross[3][27], they emphasis that the approach can be used independent of
which sensors the robot is equipped with, and also allows for multi-sensor

24

CHAPTER 2. LOCALIZATION AND MAPPING Henrik Kaald Melbø

Figure 2.12: Map matching shortly before a loop closure[3].

fusion.

There are some parameters that can be adjusted in the particle filter, that
may influence its performance. The GUI gives the opportunity to adjust
these before each run, as shown in figure 2.13

The number of particles is an important parameter. When it comes to set-
ting the number of particles, more is always better. This allows us to cover
a larger set of pose hypothesis. The drawback is that it consumes more com-
putational resources.

Another thing to tune is the size of local frame. A larger frame gives more
data points to compare and therefore a might ensure a more accurate match,
but will also come at a higher cost, as all comparison happens at discrete
time, simultaneous for all particles. A very large frame will often not have
a very large overlap anyway, as the robot mostly traverse unexplored areas
and the sensor data is noisy.

The weighting acceptance factor adjusts how strict the resampling will be, a
high factor will favour a few good particles, while a low factor will keep as

25

2.5. IMPLEMENTATION OF THE SLAM ALGORITHMHenrik Kaald Melbø

Figure 2.13: The particle filter options in the system GUI.

diverse a collection as possible. A good balance is often a good approach.

Lastly the uncertainty in the motion model can be adjusted. This sets the
variance in a Gaussian motion model, and will effect how much the particles
spread out. It is important not to make a to conservative assumption.

A user manual for how to apply the particle filter, as well as the map merger
(explained later), along with the code documentation can be found in the
appendix.

26

CHAPTER 2. LOCALIZATION AND MAPPING Henrik Kaald Melbø

Figure 2.14: One robot simulated using the previously developed exploration
algorithm stopped mid run.

2.6 Simulations

After the particle filter was implemented, testing was performed. Firstly
a test without the particle filter was done for comparison, and then a the
particle filter was applied to see if it had the desired effect.

2.6.1 Robot Without the Particle Filter

Figure 2.14 shows a simulation run using the previously developed explo-
ration algorithm. Here the simulation is stopped relatively early in the run.
The map is warped, but still almost usable. Figure 2.15 shows the same
simulation some time later. The robot can make no further progress, and
the map have actually degenerated to completely useless since the robot has
made multiple observation of the same features, only believing that it was at
different positions each time.

From these result, we can easily see that if we can remove the position uncer-
tainty, we can reduce the problem to a mapping with known pose problem,
a trivial problem.

27

2.7. FIELD TESTING Henrik Kaald Melbø

Figure 2.15: One robot simulated using the previously developed exploration
algorithm after finished run.

2.6.2 Robot With the Particle Filter

The important part of the particle filter, is to see if it can actually give a
god estimate of the robot pose. Since the Simulator gives both the estimated
pose, and the actual pose of the robot in the GUI, a visual verification is
easy to do.

We now enable the particle filter and test its accuracy. The map was chosen
to be a smaller map version, so the particle filter actually re-observed some
features and had a chance to close the loop. The larger map even had the
possibility to move along without making any observations, as the corridor
was wider than the sensor range. As can be seen in figure 2.16, the particle
filter performs quite well. The red marker in simulator window shows where
the robot believes it is, and the blue where it actual is. The particles (cyan
dots) seems to have pinpointed exactly where the robot should be.

2.7 Field Testing

Since this thesis is mostly dedicated to applications on the server side, simu-
lations are often enough to prove the concept of the implementations, but of

28

CHAPTER 2. LOCALIZATION AND MAPPING Henrik Kaald Melbø

Figure 2.16: Particles (cyan dots) estimating the actual pose of the robot.

course, real life testing is also an important aspect of development. For this
purpose a test labyrinth, as shown in figure 2.18, was prepared. The Arduino
robot was used during the testing. Unfortunately the Arduino robot proved
to have some issues, and would some times disconnect, making longer runs
infeasible.

Figure 2.17 shows the results from a test run with the particle filter. The
original map is shown to the left, and the cyan dots represents particles. Nei-
ther of the maps are perfect, as sensor noise is still present. The map from
the best scoring particles is shown to the right. When comparing the two
maps, it can easily be verified that the particle filter appears less ”noisy”.
The original map seems to have observed the left and top walls from two
different poses, causing the map to have what appears as a an inner and
outer wall. There is also indication of warping of the right wall, probably
indicating that the robot drifted to the side when it believed it was driving
straight. On the other hand, the particle map has none of these issues.

29

2.7. FIELD TESTING Henrik Kaald Melbø

Figure 2.17: The real world test labyrinth. The original map to the left, and
the map from the particle filter to the right.

Another thing to draw from this, is that the server and particle filter also
functions in the real world, and that the maps produced are not that far off
what the simulator would produce.

30

CHAPTER 2. LOCALIZATION AND MAPPING Henrik Kaald Melbø

Figure 2.18: The test labyrinth made for field testing the system.

31

2.7. FIELD TESTING Henrik Kaald Melbø

32

Chapter 3

Map Merging

In the case of multiple collaborating robots, mapping can in theory be done
at a much quicker pace. In an ideal case the with N robots, the mapping will
be almost N times faster. This is however higly unlikely in the real world,
as there is no way of perfectly divideing up the resources, unless you already
have a perfect map. The major issue with multi robot exploration is to merge
together each robots map into one global map. This can be done in several
ways, either in form of start conditions, such as the relative positions of the
robots[30], or the identification of the position of a robot within the existing
map of another one[31], or by using an explicit rendezvous strategy[32]. All
of these approaches requires a way to merge the data from each robot into a
coherent map.

The current approach used in the Lego project requires the relative posi-
tions of all the robots to be known. This is a major limitation, and also a
potential way to introduce errors into the system if one or more of the robots
starting pose is slightly different than assumed. The major advantage of this
approach is that it is quite simple, all robots can directly add its data to
a global map and no advanced merging is needed. But to be able to use
other exploration algorithms, or to improve the map estimate when one or
more robots are initialize in the wrong position or the robots drift in separate
directions while exploring, a map merging algorithm is needed.

33

3.1. MAP MERGING STRATEGIES Henrik Kaald Melbø

3.1 Map Merging Strategies

Merging together map data is closely linked to a problem in computer vision
known as image registration. In image registration different sets of data are
transformed into one coordinate system, such as matching two or more im-
ages, or creating a landscape image from separate but overlapping images,
also known as image stitching. Image registration has uses in such fields as
computer vision, medical imaging and automatic target recognition[33].

There are several approaches to the image registration problem. A popular
approach is to use a transformation model, such as a linear transformation,
which include rotation, scaling, translation, and other affine transforms. The
goal is then to fit one image on top of the other[33].

Other approaches uses frequency domain methods, such phase correlation
which esitmates the relative translative offset between two similar images by
applying the Fast Fourier Transform (FFT)[34].

The field of computer vision is large and complex. The interested reader
is recommended to consult textbooks such as Szeliskis ”Computer Vision:
Algorithms and Applications” for an in depth introduction in the field[35].

3.2 Implementation of the Map Merger

Given that the robots does not know the other robots relative position, merg-
ing of several local map into a global map becomes necessary. One approach
proposed by Birk and Carpin tries to fit two maps, m and m’ using a stochas-
tic search algorithm to transform m’ by rotations and translations to find the
maximum overlap between m and m’, using a heuristic similarity metric to
guide the search algorithm toward optimal solutions[36]. This non-convex op-
timization problem can be solved using Carpin’s Gaussian Random Walk[37],
which is quite similar to simulated annealing. Normal hill-climbing algorithm
is not advised in this kind of optimization, as the worst and best solutions
may lie in neighbouring states[36]. The problem of merging maps from more
than two robots can easily be handled by merging two and two maps at a
time.

34

CHAPTER 3. MAP MERGING Henrik Kaald Melbø

We first need a cost function to optimize, this function needs to give gra-
dient information to the solver, so that improvements can be made in the
estimate. A simple example of a cost function would be: number of agreeing
cells - number of disagreeing cells. This gives quantitative data on how well
the image fits, unfortunately it provides no gradient information. Another
approach is using the image similarity ψ as described in equations 3.1 to 3.2.

ψ(m1,m2) =
∑
c∈C

d(m1,m2, c) + d(m2,m1, c) (3.1)

d(m1,m2, c) =

∑
m1[p1]=cmin{md(p1, p2)}|m2[p2] = c

#c(m1)
(3.2)

Here C is the set of values, 1 for occupied and -1 for free in this case. Undis-
covered cells gives no helpful information, and is therefore not included in
the metric. The function md(p1, p2) = |x1−x2|+ |y1−2 | and is also known as
the Manhattan distance between two points. #c(m1) stands for the number
of cells in m1 with value c etc.. The strong point of the image similarity ψ
is that it can be computed relatively efficiently, and it gives gradient infor-
mation guiding the search algorithm closer to a solution at each iteration[36].

Image similarity is a good metric for fitting perfectly overlapping images,
but when working on partially built maps, where only smaller regions may
overlap, some adjustments is needed. The algorithm will potentially over fit
as ψ only tries to minimize the Manhattan distance between points. The
new cost function ∆(m1,m2) is therefore introduced in equation 3.5, with a
term that penalizes over fitting.

∆(m1,m2) = ψ(m1,m2) + clock · (dis(m1,m2)− agr(m1,m2)) (3.3)

dis(m1,m2) = #{p = (x, y)|m1[p] = m2[p] ∈ C} (3.4)

agr(m1,m2) = #{p = (x, y)|m1[p] ̸= m2[p] ∈ C} (3.5)

The functions agr() and dis() returns the number of agreeing (both occu-
pied or both free) and disagreeing points in the map. Note that only the
information from map parts that are aligned with each other in the current
transformation step is used, if one of the points are unexplored, they are
not accounted for in the agr() or dis() functions. The parameter clock is a
tuneable parameter that adjusts the amount of necessary overlap between
the two maps for a successful merger. This parameter is quite important and

35

3.3. SIMULATIONS Henrik Kaald Melbø

needs to be adjusted for each map. Two perfectly identical maps which only
need rotation and translation to perfectly overlap can have the clock set to
zero, while two maps who barely overlaps needs a larger value for clock.

All stochastic algorithms has the potential of failing, so we need a way of
recognizing failure. This can simply be done by introducing the acceptance
indicator ai(m1,m2) as shown in equation 3.6.

ai(m1,m2) = 1− agr(m1,m2)

agr(m1,m2)− dis(m1,m2)
(3.6)

The acceptance indicator gives a percentage overlap of the images, and only
if it is very close to 1.0 is there a good overlap between a region of m1 and a
region of m2, other solutions should be rejected. Due to noise in the sensor
data, a slightly lower value than 1.0 should be acceptable.

3.3 Simulations

To check the capabilities of the map merging algorithm, some simulations
were run. The first simulation, shown in in figure 3.1 tested if the maps
could be merged given that the wrong assumptions of starting position was
given. As can be seen to the left in figure 3.1, the outline of two identical
maps are clearly visible, but the actual map makes little sense. Arduino2
also cant explore the interior of the map as it believes a wall (non existent,
but discovered by the other robot) is blocking its path. To the right in figure
3.1, the maps are successfully merged. It can be said that this is an extreme
case of misplacing the robot, often a few centimetres and a few degrees would
be the extent of miscalculation, but the proof of concept for the map merger
is clearly shown.

The next test was to show that two barely overlapping maps could be merged
together. Figure 3.2 shows the two partial maps from two different robots
running particle filters to the right, and the successfully merged map to the
right. The positioning of the robots are wrong in the merged map, as the
map adds some buffer around the individual maps before merging them. This
simulations proves that even partial maps can be merged together using the
map merger algorithm.

36

CHAPTER 3. MAP MERGING Henrik Kaald Melbø

Figure 3.1: Simulations of robots initialized in wrong pose. The original map
to the left, and the merged map to the right. The clock was set to 7.5.

3.4 Field Testing

The simulations shows that the map merging algorithm works, but the true
test is see if it can merge maps in a real world setting. Figure 3.3 shows the
testing area for the map merger, the area was expanded from the previous
test (see figure 2.18) to give more a more realistic and challenging test.

Figure 3.4 show the map merging of two real world maps acquired from
the Arduino and NXT robot running particle filters. To the left, the two
partial maps from the robots particle filters are shown, and to the right is
the merged map. Again, the Arduino had some issues so the length of the
test run was limited. Both maps are quite noisy, especially the NXT. In spite
of that, the algorithm managed to correctly piece the two maps together even
with minimal overlap. The area mapped is the rightmost part in figure 2.18.
The triangular wall can almost be identified in the middle of the merged map.

When merging the maps The clock value was set to 100 in this attempt.
The the algorithm did produce some less satisfactory attempts at first, but

37

3.4. FIELD TESTING Henrik Kaald Melbø

Figure 3.2: This figure shows how the two partially overlapping maps can be
combined using the map merging algorithm. The clock value was set to 100.

by adjusting the values of clock to account for the small overlap of the maps,
a good estimate emerged.

38

CHAPTER 3. MAP MERGING Henrik Kaald Melbø

Figure 3.3: The expanded test labyrinth made for field testing the system.

39

3.4. FIELD TESTING Henrik Kaald Melbø

Figure 3.4: Map merging the real world maps.

40

Chapter 4

Multi-Robot Exploration

When the SLAM problem is solved, we are still left with the task of ex-
ploring the environment. We now trespass onto the field of AI, and unveil
a completely different, but still extremely important aspect of robotics: ex-
ploration. The goal is to fully explore the environment as efficiently and
accurate as possible.

Important questions arises when planing with collaborating agents, shall the
agents seek out each other to determine the their relative locations, or spread
out to cover more ground faster? The robots themselves introduce a dynamic
component in an otherwise static environment, how is this handled? Is one
unit more accurate than another, in that case, how to allocate the agents
to minimize uncertainty? How are collisions handled? These and numerous
other questions emerges. Unfortunately all of these questions will not be
answered in this thesis. Time ran short, and a proper implementation of the
exploration algorithm was never finalized. It is however the last piece of the
puzzle, and therefore still has a place here, if only as a theoretical exercise.

4.1 Multi-Robot Exploration Strategies

The most popular of the existing approaches to coordinated multi-robot ex-
ploration assume that all robots know their locations in a shared frame of
reference. Using the same frame to coordinate exploration frontiers from a
common map and assigning robots to the frontier locations[30].

41

4.2. LIMITATIONS TO THE CURRENT SYSTEM Henrik Kaald Melbø

Another approach, makes all robots explore independently of each other.
They then depend on coincidentally detecting another robot to determine
its position and then combines their maps. This approach scales well, and
probably performs better with more robots, but it can result in inefficient
exploration. It will take arbitrarily long until a robot coincidentally detects
another robot. For instance, if one robot follows the same path as another,
both robots might explore the complete map without ever detecting each
other[32].

Some other approaches try to connect relative locations between pairs of
robots by estimating one robots location in another robots map. This as-
sumes that one robot starts in the map already built by the other robot and
can therefore easily fail[31].

4.2 Limitations to the Current System

The current setup uses an A* (frontier) based exploration algorithm. The
algorithm assumes that the starting pose of each robot is known, and chooses
to ignore all measurements in close proximity of other agents. The A* algo-
rithm and it predecessors back to Dijkstra’s algorithm, has been used heavily
in the field of AI for finding the shortest path in graphs. A* is an informed
search algorithm (best-first search), meaning that it searches among all pos-
sible paths to the goal for the one that incurs the smallest cost. In this case,
the frontier (closest unexplored region) is the goal, and the agents expands
the frontier as they search, and ultimately explores the whole region. The
algorithm is therefore complete and will always find a solution if one exists,
but does not delegate resources optimally and requires quite a bit of com-
putational power per unit, especially when the number of unexplored nodes
gets smaller and the number of explored nodes gets larger. The algorithm
also requires all poses to be known at the beginning, or that the agents have
global positions such as with GPS.

4.3 Improving the Current System

The plan for this thesis was to implement an algorithm using a multiple ob-
jective utility function that take into account distance/effort/time (these are

42

CHAPTER 4. MULTI-ROBOT EXPLORATION Henrik Kaald Melbø

in essence equal in this case) and the amount of new information available
at that goal state[38]. Alas, other aspects of the thesis was prioritized and
time ran short. This part was therefore never implemented.

Ideally the map merger would work reliably in real-time and output a global
map estimate. In this case, the frontier based approach would actually still
work, even without knowing the relative poses of the robots. But the cur-
rent A* approach still delegates resources inefficiently, something similar to
the multiple objective utility function previously mentioned should be im-
plemented. The robots would then use an utility function to optimize the
exploration, and optimal use of resources would only depend on how we de-
fine the utility function.

The utility function could potentially be constructed with more complex
constraints. For example if one robot was low on battery, it would priori-
tize to explore closer to the charging station. Or if one area was to narrow
for one robot to fit, a smaller robot should be prioritized. Or maybe one
robot is faster than the other ones, then it could prioritize exploring furthest
away, and leave the rest for its slower companions. The flexibility a properly
constructed cost function gives, is worth exploring.

43

4.3. IMPROVING THE CURRENT SYSTEM Henrik Kaald Melbø

44

Chapter 5

Discussion

The particle filter and map merging algorithm works quite well when tested.
Sometimes the particle filter is not a much better estimate than the initial
guess of the robot, but it is very seldom worse. The map merger may need
a few iterations to get the maps stitched together, especially when there is
only a partial overlap, and the clock value must be experimented with on a
case to case basis, but overall it works surprisingly well.

There are of course some issues with the whole approach, some stemming
from the fact that some crucial pieces are missing. For example, since the
exploration algorithm in the current setup assumes the robots are mapping
on a global map and uses a frontier based approach to assign tasks, some
issues occur when applying the particle filter and map merging algorithm.
If the robots are initialized wrongly or if they drift to much from their esti-
mates while exploring, the current system have a tendency to make a rather
bad map. Often robots will bar each other inside, since they believe a wall
is in a different places than it actually is. This can cause a robot standing
in an open space to believe it cant reach any other place. The exploration
algorithm should therefore be re-evaluated.

Another issue is that noise in the IR sensors data will deteriorate the ef-
fect of the particle filter, since if the outcome of two scans from the same
position is unequal, the overlap from map matching will not be optimal. It is
however often assumed that the range and bearing sensors are more accurate
than odometer information, and therefore it is valid to correct the pose based
on observations.

45

Henrik Kaald Melbø

The noise in the IR sensor also causes trouble for the map merging algo-
rithm. In its basic form (clock = 0), the algorithm tries to get all points as
close as possible to any other matching points, ideally having two perfectly
overlapping images. The algorithm minimizes the cost function as much as
possible and returns the local minima, which hopefully also is the global
minima (simulated annealing gives no such guarantee however). Noisy data
will create more local minima, as there are now several ways to interpret the
data. There is only one way to overlap a perfect line with another line (two, if
directions are important), but there are potentially many equally good ways
to minimize the distance between two noisy point clouds of a line.

An issue connected to the exploration algorithm and the particle filter, is
that there is no guarantee that the robot returns to a known position. The
drawback of this is the particle filter has no way of correcting its estimate.
Appropriate measures in the exploration algorithm should be taken to ensure
optimal behaviour.

The robots themselves proved a challenge when it came to testing. The
Arduino had a tendency to disconnect from the server at (seemingly) ran-
dom intervals. This made the the scale of the real world test we could do
limited, since the server is constructed such that it must be relaunched to
reconnect to the robots. This gives two important insights: field testing and
simulations are vastly different, and no mater how clever your algorithm is,
if the hardware does not function properly it is useless.

The server now assumes that the basic properties of all the robots are the
same, this is a good assumption when working with simulations, as all the
simulated robots are the same. In practice however the different robots have
their own behaviour, some move faster, some are more accurate, and some
are bigger and need more space when cutting corners etc.. The transition
from simulation to reality can sometimes be harsh.

Memory usage quickly becomes a limitation in this system. In an ideal world,
where memory is infinite, the particle filter would have infinite particles and
all possible states of the system would be compared to the actual state. This
would give an ideal pose estimate. In the real world, we must limit the
amount of particles, and therefore we run the risk of suboptimal solutions.

46

CHAPTER 5. DISCUSSION Henrik Kaald Melbø

Some techniques, such as resampling, can be used to improve the selection
of particles, but everything is a trade-off. Resampling runs the risk of par-
ticle deprecation and is also in it self a memory and CPU consuming process.

It may be argued that the same algorithm used, only with a scan-matching
instead of a map-matching algorithm would be a better option. In fact, the
only thing that would need to be changed in the source code would be a
call to a scan-matching algorithm, taking the same input, and (depending
on how one choose to use the result) might give the same output. This
would of course be more memory intensive, as the scan-matcher uses a more
exhaustive approach, but can be solved quite efficiently using a Java linear
algebra library such as JAMA. Even running these calculations in C/C++
or similar may be an approach worth considering, as they are significantly
faster languages than Java using a Just in Time (JIT) compiler and running
on a virtual machine (JVM).

In one of the earlier implementation, the GridMap class implemented origi-
nally in the server was used for each particle. The performance was horrific.
It was clearly not designed to have more than one instance running at a
time. Even running 30-40 particles would give most computers trouble after
running for a few minute. After identifying the problem, a more efficient, but
less intuitive, hashmap was used to hold map locations. This simple change
now allowed over 1000 particles to run seamlessly for even larger maps. This
shows how smart choices of data types matters, even for modern computers.

As of now, all robot plots on the same grid, the problem is that all data
will be overwritten by any robot traversing the same path. If the robot is a
tiny bit off, the whole section of map will be shifted, even if it was a better
estimate of the real world, since the robots and server don’t know what the
real world really looks like. This could be avoided by making all data points
permanent. Ideally, an estimate of the robots probability of being in the right
position should be maintained, and the robot that is most ”sure” of being
at the correct pose gets precedence. This could be taken as far as denying
robots from adding data to the common grid, until it is relatively certain of
its position.

47

Henrik Kaald Melbø

48

Chapter 6

Other Implementations

A series of other functionality has been added to the server side during the
work of this project, they do not relate directly with the theme of this thesis,
but will be documented here for posterity.

6.1 The CleanMap Function

There were an interest of transforming the data point clouds to nice lines
in the final map. A ”CleanMap” function was therefore added to make this
transformation. No good example algorithms was found in any papers, so
a customized variant was developed by trial and error. This function eval-
uate each 5x5 grid in the map grid and finds the mass center. The points
are then connected together if they are within proximity of each other. An
example is shown in figure 6.1. As can be seen there are some strange arte-
facts, especially in corner areas. The algorithm is confused as to which point
is the neighbouring point, and connects both. If there is insufficient data
points, gaps in the lines will appear, as the algorithm thinks sparse points
are outliers. Figure 6.1 was drawn using the simulator and no measurement
and position estimate error, in this case the algorithm does little else than
remove superfluous data points and connects the dots. In the case of a poor
map, the algorithm will naturally preform worse, as illustrated in figure 6.2.
As can be seen, the algorithm tries to cope with thick cluster of points and
make some fascinating geometrical figures. The figures was an accident, but
they look nice, and was therefore kept instead of solid black walls. To be
fair, the algorithm is not an oracle, and relies on the data at hand, a perfect

49

6.2. INTEGRATION OF DRONE DATA Henrik Kaald Melbø

Figure 6.1: The CleanMap algorithm on a good map. Left is before, and
right is after the CleanMap function is run.

result from poor data is a bit much to ask for.

6.2 Integration of Drone Data

A drone was added to the project this year, and therefore needed a way to
integrate its data into the map. The drone has an birds eye view of the
labyrinth and extracts walls in the form of lines. To accommodate this new
data transfer, the communication protocol was expanded. The format is the
same as all other robots, except the 4 data fields are start of line (x and y
position) and end of the line:

{U : X,Y, heading, startX, startY, endX, endY }

The full communication protocol can be found in the thesis by Andersen and
Rødseth[21].

At this point the data from the drone is indiscriminatingly added to the

50

CHAPTER 6. OTHER IMPLEMENTATIONS Henrik Kaald Melbø

Figure 6.2: The CleanMap algorithm on a poor map. Left is before, and
right is after the CleanMap function is run

map as if it were data from any other robots. The only exception is that it
is processed to make a line in the map using Bresenham algorithm first[39].
A simple example is shown in figure 6.3.

The grand plan was to integrate the data collected from the drone in some
way that improves the map estimate, such as using scan matching to cor-
rect the already explored map. The potential for the drone is limitless, better
mapping, better cooperation of ground vehicles etc.. Unfortunately the drone
project has not yet left the ground (figuratively and literally) and little infor-
mation is therefore known of the characteristics of the data collected. Is the
drone data more or less trustworthy than the ground based vehicles? Can it
track moving objects and process information real-time to advise the server?
As such, only basic support for a drone is added on the server at the current
time.

A drone simulator has been added to the simulator part of the server. This
drone can be moved manually (as no motion model is known) and will detect
the edges in a given frame. This seems to be working well. Note that no error

51

6.3. DEBUG LOGGER FUNCTIONALITY Henrik Kaald Melbø

Figure 6.3: The Drone collecting data from a 250 x 250 cm frame of the map.

estimate is included in the simulator, since even the error characteristics of
the drone data is unknown.

6.3 Debug Logger Functionality

The robots can now send messages in plain text to the server using the mes-
sage prefix ”D” (for Debug), and the communication protocol: {D : Text}.
The appended text will be added to a ”LOG.txt” file in the application
folder. This functionality was requested as some of the developers needed a
way for the robots to communicate more detailed information to the server
while debugging.

6.4 Simulator Changes

The robot selection is made easier, you can now chose what type of robot
you want in the simulator from a drop down menu. As functionality for other
units such as the drone was added to the simulator, the need for selecting a

52

CHAPTER 6. OTHER IMPLEMENTATIONS Henrik Kaald Melbø

specific unit became apparent. The old simulator added robots from a list in
a preselected order. This was fine if you wanted to test unit number 1 of the
list, but quite tedious if you wanted to test unit number 9. You would then
have to add 8 other robots first and then place them outside the borders of
the map, and possibly risk a null pointer exception if you initialized them.
The addition of a drop down menu saves everyone some time and frustration.

6.5 General Changes to Server

I started out with the mindset of being as little intrusive in the previous im-
plemented code as possible. The ideal was just adding a module and calling
it only once or twice in the main loop of the server. This would give a clean
and object oriented interface.

In reality i ended up adding a bunch of functions in many different classes. I
needed copy constructors, functionality to render new items in the GUI, fixed
bugs in the old code, and added template classes for the Drone etc.. The
code already bears the mark of being programmed by different people and
no clear API. There even exist two different (three if you include the Pose
class) ways to express position, one as a class Position(), and one as an int
array. Different functions (probably developed by different people) requires
one or the other. There are several things that could be improved in the
code, and having more people work on the same project will probably bloat
the code until it is impossible for anyone to wrap their head around it. The
code is already a mouthful at first read, and I have personally made some
unintentionally strange side effects and used days to figure out what really
happens. I have an eerie feeling that in some years, someone will scrap the
whole thing and recreate it in their own image (so to speak), and possibly
do the same mistakes again.

53

6.5. GENERAL CHANGES TO SERVER Henrik Kaald Melbø

54

Chapter 7

Further Work

7.1 Efficiency

The whole algorithm implemented in this thesis hinges on the number of
particles the server is using. Using only one particle is probably useless, but
using a million will probably cover most of the possible poses. A million par-
ticle will now unfortunately eat all the memory for even a decent computer.
Finding clever solutions to save memory can greatly improve the usefulness
of the particle filter.

7.2 A Better Exploration Algorithm

The grand plan was to make a better exploration algorithm, but time ran
short. Finding an algorithm that can utilize the fact that there are more
robots in use, and efficiently distribute task would be a great improvement
on the system.

The way the particle filter is now implemented draws great benefit of travers-
ing already discovered places. A* is not the ideal algorithm for this approach,
as it will not necessarily retrace its step. A exploration algorithm that ”closes
the loop” will be more beneficial for this approach.

55

7.3. INTEGRATION OF DRONE DATA Henrik Kaald Melbø

7.3 Integration of Drone Data

As mentioned earlier, the drone data is only added to the map, as if it were
any other robot. But there should be a way of exploiting the characteristic
of the drone (when they are known) to improve certain aspects of the map.
If we, for instance, know the placement of a line might be off, but the length
of the line is quite certain, we can use this to augment the map, or even
correct the robots pose based on the knowledge. Integrating this aspect into
the server will be an interesting and challenging task.

56

Bibliography

[1] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic
Robotics (Intelligent Robotics and Autonomous Agents). The MIT Press,
2005.

[2] Cyrill Stachniss. Lecture notes in robot mapping, 2015.

[3] Horst-Michael Gross Christof Schroeter. A sensor-independent approach
to rbpf slam - map match slam applied to visual mapping. 2008
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2008.

[4] H̊akon Skjelten. Fjernnavigasjon av lego-robot, 2004. Project report,
NTNU, Dept. of Engineering Cybernetics.

[5] Sveinung Helgeland. Autonomous legorobot. Master’s thesis, Dept. of
Engineering Cybernetics, NTNU, 2005.

[6] Bjørn Syvertsen. Autonom legorobot. Master’s thesis, Dept. of Engi-
neering Cybernetics, NTNU, 2006.

[7] Paul Sverre Kallevik. Improvement of hardware on legorobot, 2007.
Project report, NTNU, Dept. of Engineering Cybernetics.

[8] Johannes Schrimpf. Improvement of the real-time-characteristics of a
legorobot, 2007. Project report, NTNU, Dept. of Engineering Cyber-
netics.

[9] Jon Martin Bakken. Bygge og programmere ny legorobot, 2008. Project
report, NTNU, Dept. of Engineering Cybernetics.

[10] Erik Næss. Legorobot - forbedring av eksisterende system, 2008. Project
report, NTNU, Dept. of Engineering Cybernetics.

57

BIBLIOGRAPHY Henrik Kaald Melbø

[11] Trond Magnussen. Fjernstyring av legorobot. Master’s thesis, Dept. of
Engineering Cybernetics, NTNU, 2008.

[12] Andreas Haugedal. Forbedring av de autonome egenskapene til en
legorobot, 2008. Project report, NTNU, Dept. of Engineering Cyber-
netics.

[13] Jannicke Selnes Tusvik. Fjernstyring av legorobot, 2009. Project report,
NTNU, Dept. of Engineering Cybernetics.

[14] Morten Andr Kristiansen. Fjernstyring av lego-robot, 2009. Project
report, NTNU, Dept. of Engineering Cybernetics.

[15] Jens Kristian Tøraasen. Kartlegging ved hjelp av robot og kamerasensor,
2009. Project report, NTNU, Dept. of Engineering Cybernetics.

[16] Sigurd Hannaas. Samarbeidende legoroboter. Master’s thesis, NTNU,
2011.

[17] Trond K̊are Homestad. Fjernstyring av legorobot. Master’s thesis, Dept.
of Engineering Cybernetics, NTNU, 2013.

[18] Ø yvind Ulvin Halvorsen. Collaborating robots. Master’s thesis, Dept.
of Engineering Cybernetics, NTNU, 2014.

[19] Erlend Ese. Fjernstyring av legorobot, 2015. Project report, NTNU,
Dept. of Engineering Cybernetics.

[20] Erlend Ese. Sanntidsprogrammering p̊a samarbeidande mobil-robotar.
Master’s thesis, Dept. of Engineering Cybernetics, NTNU, 2016.

[21] Thor Eivind Svergja Andersen and Mats Gjerset Rødseth. System for
self-navigating autonomous robots. Master’s thesis, Dept. of Engineering
Cybernetics, NTNU, 2016.

[22] Eirik Thon. Mapping and navigation for collaborating mobile robots.
Master’s thesis, Dept. of Engineering Cybernetics, NTNU, 2016.

[23] Sebastian Thrun. Exploring Artificial Intelligence in the New Millen-
nium. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2003.

58

BIBLIOGRAPHY Henrik Kaald Melbø

[24] Olav Egeland and Tommy Gravdhal. Modeling and Simulations for
Automatic Control. Tapir Trykkeri, Throndheim, Norway, 2002.

[25] Olga Sorkine-Hornung and Michael Rabinovich. Least-squares rigid mo-
tion using svd. Technical report, Department of Computer Science, ETH
Zurich, 2017.

[26] Zhengyou Zhang. Iterative point matching for registration of free-form
curves and surfaces. International journal of computer vision, 13:119–
152, October 1994.

[27] Hans-Joachim Bohme Horst-Michael Gross Christof Schroter. Memory-
efficient gridmaps in rao-blackwellized particle filters for slam using
sonar range sensors. Technical report, Ilmenau Technical University,
98684 Ilmenau, Germany, 2007.

[28] Jeroen D. Hol, Thomas B. Schon, and Fredrik Gustafsson. On resam-
pling algorithms for particle filters. Technical report, Department of
Electrical Engineering. Linkoping University, 2006.

[29] G. Grisetti, C. Stachniss, and W. Burgard. Improved techniques for grid
mapping with rao-blackwellized particle filters. IEEE Transactions on
Robotics, 23(1):34–46, Feb 2007.

[30] W. Burgard, M. Moors, R. Simmons D. Fox, and S. Thrun. Col-
laborative multi-robot exploration. IEEE International Conference on
Robotics and Automation, 2000.

[31] J.W. Fenwick, P.M. Newman, and J.J. Leonard. Cooperative concurrent
mapping and localization. IEEE International Conference on Robotics
& Automation, 2002.

[32] A. Howard, L.E. Parker, and G.S. Sukhatme. The sdr experience: Ex-
periments with a large-scale heterogenous mobile robot team. Proc. of
the International Symposium on Experimental Robotics, 2004.

[33] Lisa Gottesfeld Brown. A survey of image registration techniques. ACM
Comput. Surv., 24(4):325–376, December 1992.

[34] H. Foroosh, J.B. Zerubia, and M. Berthod. Extension of phase correla-
tion to subpixel registration. IEEE Transactions on Image Processing,
2002.

59

BIBLIOGRAPHY Henrik Kaald Melbø

[35] Szeliski Richard. Computer Vision: Algorithms and Applications.
Springer London, 2011.

[36] Andreas Birk and Stefano Carpin. Merging occupancy grid maps from
multiple robots. IEEE Proceedings, special issue on Multi-Robot Sys-
tems, 94(7):1384–1397, 2006.

[37] S. Carpin and G. Pillonetto. Robot motion planning using adaptive
random walks. IEEE International Conference on Robotics and Au-
tomation, page 38093814, 2003.

[38] S. Carpin and G. Pillonetto. Planning for multi-robot exploration with
multiple objective utility functions. IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2011.

[39] Kenneth I. Joy. Breshenhams algorithm. Technical report, Computer
Science Department, University of California, Davis, 1999.

60

Appendix

See appended DVD.

1. Copy of Thesis

2. Original Source Code

3. New Developed Source Code

4. Code Documentation

5. Previous Work

6. User Manuals

61

	Problem description
	Summary
	Sammendrag
	Conclusion
	Introduction
	Previous Work
	Hardware

	Localization and Mapping
	Localization
	Localization Strategies
	The Motion Model

	Mapping
	Mapping Strategies
	The Observation Model

	SLAM
	SLAM Strategies

	Particle Filters
	Particle Weighting
	Resampling

	Implementation of the SLAM algorithm
	Simulations
	Robot Without the Particle Filter
	Robot With the Particle Filter

	Field Testing

	Map Merging
	Map Merging Strategies
	Implementation of the Map Merger
	Simulations
	Field Testing

	Multi-Robot Exploration
	Multi-Robot Exploration Strategies
	Limitations to the Current System
	Improving the Current System

	Discussion
	Other Implementations
	The CleanMap Function
	Integration of Drone Data
	Debug Logger Functionality
	Simulator Changes
	General Changes to Server

	Further Work
	Efficiency
	A Better Exploration Algorithm
	Integration of Drone Data

	Bibliography
	Appendix

