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Abstract 

Digital core analysis can replace the use of conventional core samples by decreasing the time 

required for conducting experiments. Moreover, it gets a better understanding of complex 

reservoir structures due to its ability to capture pore geometries and fluid behavior at pore scale 

level. 

In the current thesis, the whole workflow of digital core analysis – from image study to overlook 

of pore network models – had been performed. It started from analysis of color 2D thin section 

images. It was noticed that they might contain significant amount of information about pore 

microstructure. In addition, several different approaches of image binarization were considered.  

Then some 3D micro-CT models (incl. four sandstone and one carbonate samples from the open 

database of the Imperial College London) had been analyzed and reconstructed. To calculate 

the absolute permeability, a direct pore-scale modeling approach using the lattice Boltzmann 

method (LBM) was implemented in PALABOS software. It is worth noting that several 

parameters influenced on the obtained results, for example, the image resolution and the volume 

of analyzed microstructure. It was found that while using low quality images the permeability 

by LBM might be significantly overestimated. In addition, to obtain reliable permeability (i.e. 

close to experimentally measured), the volume should be greater or equal to representative 

elementary volume (REV). Furthermore, it was possible to compare LBM permeability for 

reconstructed cases and original models. Results showed the best consistency for medium 

permeable sandstone samples. However, it had been noticed that reconstruction was not able to 

produce exactly the same porous media, since several other properties of reconstructed models, 

e.g. formation factor and specific surface area, were differed from original inputs. 

When multiphase flow occurs in porous structures, it is difficult to estimate relative 

permeabilities directly, since in this case REV should be bigger and LBM calculations are very 

computationally expensive. That is the reason why the pore network modeling approach was 

briefly discussed, and several models generated by maximal ball extraction algorithm had been 

reviewed. 
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Chapter 1. 

Introduction 

Porosity, pore size distribution and average pore diameter, as well as pore connectivity and 

formation factor are important parameters of every porous structure. Correctly estimated, they 

play a significant role in determining transport properties of reservoir rocks, since to have 

accurate predictions of absolute and relative permeabilities, realistic input of the pore space is 

highly required.  

The actual pore structure can be obtained either by direct imaging of core samples (e.g. by 

computer tomography) or by 3D reconstruction of thin sections. In some cases, the direct CT 

method may not be reliable, e.g. in carbonate reservoir studies due to their submicron structures 

and the similarity in X-ray absorption for calcite and dolomite (Sakellariou, et al., 2003). That 

is why, there are several approaches to reconstruct 3D porous media from 2D thin section 

images, and perhaps the most well studied technique deals with a Gaussian random field 

concept, which is discussed in more details in Chapter 3. 

The practical importance of using pore-scale modeling is related to estimation of such 

macroscopic parameters as capillary pressure, absolute and relative permeabilities which are 

important data-in of almost every reservoir model. With a current development of 

computational methods in imaging, digital core analysis can become a good alternative of 

expensive laboratory experiments and existing phenomenological approach, or at least, help to 

check their quality control. Furthermore, it is possible to use the same digital model several 

times to simulate different displacement scenarios. 

Therefore, the motivation behind the present thesis aims to extract necessary information from 

micro-CT and thin section images to build a reliable pore-scale model that can be used further 

for prediction of important reservoir properties (absolute and relative permeabilities are the 

most important ones). In addition, it can be interesting to estimate how good the results obtained 

by proposed numerical solutions match with available experimental measurements.  

Figure 1.1 displays the major steps that have been done under the current research. 
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Figure 1.1. The workflow of the current research 

Conceptually, the thesis is divided by several sections, and the outline starts out by presenting 

the major theoretical aspects in Chapters 2-5. Chapter 2 contains basics of image analysis 

(including brief introduction about imaging by means of thin section & SEM microscopy and 

micro-CT), as well as ways how to binarize input color images. The general information about 

reconstruction procedure with focus on the stochastic Gaussian random field method is 

discussed in Chapter 3. Chapter 4 presents the most important equations and theory behind the 

lattice Boltzmann method that is used for absolute permeability estimation. Finally, Chapter 5 

summarizes theory about pore network models and the most commonly used network extraction 

procedures. The methodology and obtained results are presented in Chapter 6. Here, each 

subchapter is dedicated to one of the chapters with theory described above. Finally, the most 

important findings and possible suggestions for future work are stated in Chapter 7, which also 

contains discussion about all possible inaccuracies and bottlenecks of this research study, as 

well as compares obtained results with those from other literature. 
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Chapter 2. 

Image Analysis 

Image analysis involves the extraction of measurements from an image  (Alshibli & Reed, 

2010). Thin section and SEM images are 2D digital representatives of reservoir rocks. They are 

easily available, relatively cheap (e.g. thin sections obtained by optical microscope) and may 

contain significant amount of information about pore microstructure. Therefore, image analysis 

of thin section, SEM and micro-CT samples can provide a reliable information about geometric 

complexity of reservoir pore systems.  

2.1. General information about imaging of porous media 

Perhaps the most widespread method for visualization of the pore space is geological thin 

section analysis by optical microscopy. Thin section examination is a standard technique of 

analysis under a petrographic microscope for almost all rock types, since it can provide a 

valuable information about mineralogical composition, textural and structural features of rocks 

and soils. The best resolution that can be achieved by petrographic microscopy is limited by the 

wavelength of visible light, or so-called diffraction barrier, which is around 0.23 μm (Bultreys, 

et al., 2016) & (Nichols, 2009).  

In thin sections, some grains may appear as dark brown or black due to their opacity. Opaque 

minerals do not allow any light to go through them even when thin slices (normally 30 μm 

thickness) had been cut. The most typical opaque minerals are oxides and sulphides, particularly 

iron oxides (hematite) and iron sulphides (pyrite). In these cases, it is important to highlight the 

pore space. Colored dye (e.g. blue epoxy vacuum impregnation) is often used to assist in the 

determination of porosity and to stabilize the material (Nichols, 2009).  

Figure 2.1 indicates the typical examples of photomicrograph obtained by a petrographic 

microscope. 
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Figure 2.1. A photomicrograph of a sandstone (left) and a blue epoxied thin section of Reigate Silver 

Sand under cross-polarized light (right) 

(taken from Nichols, 2009 and Alshibli & Reed, 2010 respectively) 

If a higher resolution is required, scanning electron microscopy (SEM) can be used, since it 

provides resolution down to several nanometers. In general, SEM is quite similar to electron 

micro-probe procedure, but is primarily developed for imaging rather than for chemical 

analysis. Images are produced by scanning the sample with a high-energy electron beam (Figure 

2.2, left). These electrons interact with atoms of the sample, producing signals that contain 

information about sample’s surface topography and composition (Bultreys, et al., 2016).  

  

Figure 2.2. Schematic representation of a SEM (left); BSE image of Vosges sandstone (right)  

(taken from Bultreys, et al., 2016) 
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One serious drawback of SEM imaging on geological materials is related to the necessity of 

samples’ prior treatment, since most of geological samples are electrical insulators and require 

a conductive coating to avoid charging under electron bombardment.  

There are several types of signal produced by a SEM, such as secondary electrons (SE), 

backscattered electrons (BSE) and characteristic X-rays. Probably the most common SEM 

approach is to detect secondary electrons that are emitted by atoms excited by the electron beam 

due to their low energy (as a result, very high resolution can be achieved). Backscattered 

electrons are electrons generated by the electron beam, but reflected from the sample by 

electron scattering. Although spatial resolution in SE images is higher than in BSE images due 

to smaller interaction volume, the latter are still considered as an important tool for analysis of 

composition and porosity of geological materials. The number of detected electrons depends 

on specimen topography. Therefore, by scanning and collecting electrons by a special detector, 

it can be possible to obtain an image displaying the topography of the created surface, as in 

Figure 2.2, right (Bultreys, et al., 2016). 

Finally, X-ray computed tomography provides 3D structural information of porous media in a 

wide range – between submicron to millimeter scale. The micro-CT method is based on the 

attenuation of X-rays when they travel through materials with different absorbing capacity, 

expressed by the Beer-Lambert law: 

( )

0

s ds

I I e
                              (2.1) 

which states that transmitted X-ray intensity I  depends on the initial intensity 0I  and absorption 

coefficient ( )s  along the path of rays s . 

This method is a non-destructive technique to examine the internal structure of objects by 

creating 3D images that map the variation of the X-ray attenuation coefficient values (so-called 

CT numbers). There are two main types of micro-CT devices that are commonly used in 

imaging of geological materials – desktop micro-CT scanner and synchrotron X-ray setup. The 

main differences between them are related to the resolution limit and rotational angle for a 

sample (360 deg. for desktop and 180 deg. for synchrotron, due to having two parallel beams 

in the latter case) (Dong, 2007) & (Bultreys, et al., 2016).  

A typical X-ray CT setup includes stationary X-ray source and detector, and rotating sample, 

as it is shown in Figure 2.3. In addition, computers are used during micro-CT scanning 

procedure to control the scanning parameters and to monitor the reconstruction. The sample is 
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placed between source and detector, where the resulting radiograph is recording. The intensity 

of X-rays reaching detector, among other factors, depends on the sample’s thickness, 

composition and density. At the time when the rotational angle reaches 360 deg. (or 180 deg. 

for synchrotron), several hundreds of radiographs are registered and further transformed into a 

3D volume by applying appropriate reconstruction algorithm. This data volume represents a 3D 

distribution of the linear attenuation coefficient values which can be viewed as gray scales. 

After that, it is necessary to apply filtering to smooth, reduce noise and improve the contrast 

between pores and grains of the obtained image (Bultreys, et al., 2016). 

 

Figure 2.3. The schematic representation of basic components of a micro-CT scanner  

(taken from Bultreys, et al., 2016).  

Here SOD denotes the distance between X-ray source and stage sample, and ODD – between stage 

sample and detector 

Although most of the desktop scanners can typically provide a resolution between 2 and 5 

microns (Sakellariou, et al., 2003), the best achievable image resolution is around 700 nm, and 

it has been obtained by using synchrotron micro-CT (Bultreys, et al., 2016).  

 

2.2. Image binarization and porosity estimation 

One of the most significant properties that can be determined during image analysis is porosity. 

Usually, to find porosity from thin sections, optical point count method can be used. Although 

this method provides accurate results, it can be difficult to automate porosity estimation in a 

case of a big amount of thin sections. In this case, the better approach is to define porosity from 

binary images (Richa, et al., 2006).  

To represent binarized images the indicator binary function can be introduced: 
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1 if in pore space
Z( )

0 otherwise


 


r
r                                     (2.2)  

For statistically homogeneous media, the simplest morphological measure is the volume 

fraction 1
  of phase 1 (i.e. pore space), which is the one-point correlation function and can be 

written as follows: 

1 ( )Z  r              (2.3)

                   

It means that the volume fraction, or porosity, can be interpreted as the probability to find a 

point in phase 1. In a digitized medium, it is possible to find 1  by direct counting the number 

of pixels in phase 1, and then divide them over the total amount of pixels (Yeong & Torquato, 

1998). 

There are several approaches to convert colored thin section images to binary format, e.g. using 

thresholds or classifying grains and pore space by supervised or unsupervised learning 

techniques (Richa, et al., 2006). In this thesis, threshold method is implemented, since it 

provides a trustworthy and quick algorithm to obtain porosity. 

 

2.3. Important image processing techniques and morphological operations 

Very often, real image systems are imperfect and may contain some noise or artifacts that can 

make the image analysis a challenging task. For example, as it will be discussed later, input 

color thin sections contain some tiny dark spots that during binarization can be considered as 

an undesired noise. Furthermore, raw reconstructed images can also be noised due to the 

stochastic nature of the reconstruction procedure. 

Therefore, in this subchapter the most important and widely used image processing techniques 

are described, including median filtering, erosion-dilation operations and opening procedure. 

 

2.3.1. Median filtering 

This filtering is often used to remove salt and pepper, as well as other types of noise. As an 

averaging filter, median filter sets the value of the output pixel to the average of the pixel values 

in the neighborhood around the corresponding input pixel. Due to the fact that median filtering 
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is less sensitive to extreme values and does not reduce the image sharpness, it typically uses 

more often than mean (average) filtering (MathWorks_Documentation, 2017). 

Figure 2.4 shows an example of 3x3 median filter mask. In this case, nine pixel values are taken 

from the input image with further numerical sorting. Then, the median of this 1D list can be 

found, and this value is assigned to the appropriate pixel in the output image. 

 

Figure 2.4. 3x3 median filter mask 

 

2.3.2. Erosion-dilation morphological operations 

Morphology offers a broad set of image processing operations based on shapes. In a 

morphological operation, the value of each pixel in the output image is based on a comparison 

of the corresponding pixel in the input image with its neighbors (MathWorks_Documentation, 

2017). 

The most important morphological operations are dilation and erosion. In general, dilation is 

defined by placing an imaginary sphere to the non-reference phase and determining space 

available for it as if the reference phase was impenetrable to this sphere. The space unavailable 

to the sphere is considered as a dilated reference phase. Erosion is an inversed procedure such 

that now reference phase is allowed to be penetrated by a virtual sphere (Guo, et al., 2014).  

Figure 2.5 displays these two processes. In digital imaging, dilation adds pixels to the 

boundaries of objects in an image, while erosion removes pixels on object boundaries. 
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Figure 2.5. Principle of morphological dilation and erosion  

(taken from ImageJ website – www.imagej.net) 

The number of added or removed pixels depends on the size and shape of the structuring 

element used to process the image. In the morphological dilation and erosion operations, the 

state of any given pixel in the output image is determined by applying a rule to the 

corresponding pixel and its neighbors in the input image (MathWorks_Documentation, 2017). 

Dilation and erosion operations are commonly used in pair, and this coupled method is called 

the opening procedure. It allows to improve significantly the quality of the reconstructed images 

and can be especially helpful for a topologically complex microstructure when it is challenging 

to capture the important structural features using a limited number of statistical correlations. In 

this work, it was used after finishing the reconstruction procedure to improve the connectivity 

within obtained reconstructed images. 
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Chapter 3. 

Stochastic Reconstruction of Pore Structure 

As it has been referred earlier, in some cases when the submicron structure of porous media 

occurs, microtomography may not be reliable due to resolution limits. Furthermore, in some 

cases there is no technical possibility to use the direct μ-CT imaging, as Figure 3.1 displays.  

 

Figure 3.1. Map showing a global distribution of micro-CT scanners  

(taken from www.microctworld.net). 

Here different marker colors are related to different sources, incl. universities and research institutes 

marked in purple 

Although this map is not the most updated one, since it does not show presence of CT-scanners 

in Australia (new ANU laboratory), in Norway (FEI company, Trondheim) or in Russia 

(Schlumberger research center in Moscow), it clearly indicates that there are a lot of countries 

where X-ray computed micro-tomography analysis is simply unavailable.  

That is why, the reconstruction of 3D porous media is still of a great interest among many 

researchers and will be discussed in more details below. 

http://www.microctworld.net/
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3.1. General information and review of existing methods 

There is a great amount of techniques for reconstructing 3D porous media from 2D thin section 

images (the latter are in binary format). E.g. several statistical methods have been developed – 

typically, they include measurements of statistical properties using 2D images. Then, random 

3D models can be generated.  

As follows from Equation 2.3, porosity is a one-point probability function for a void phase, and 

it reflects the probability of chosen point to be inside the considered phase. Another important 

characteristic is a two-point correlation function which defines the probability of finding two 

points separated by some distance within the same phase. It is typically used to assess the 

sample’s heterogeneity and representative volume size (e.g. through the characteristic length as 

it will be shown later), since it contains an important information about the typical feature size 

of image objects and depends on both rock particles and porels between them 

(ImageJ_webpage, 2015). 

Moreover, the form of a two-point correlation function provides an additional information about 

a type of particle systems, as Figure 3.2 indicates.  

 

Figure 3.2. Two-point probability function of void phase for two different systems  

(taken from Torquato, 2002) 
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As follows from Figure 3.2, in a case of nonoverlapping disks, the two-point correlation 

function shows oscillations for small r  (short-range order) with periodicity approximately 

equal to the particle diameter D . In a case of overlapping disks, however, it displays no short-

range order oscillation, but rather demonstrates a monotonic decay to the asymptotic value of 

2  at r D . 

Nevertheless, to reproduce a high degree interconnectivity, two-point statistical method may 

not be sufficient. In this case, so called multi-point statistical approach developed by Okabe and 

Blunt can be implemented (Okabe & Blunt, 2005). Very often, to reconstruct pore scale 

structures, binarized thin section images are used as training images that contain only void or 

solid phase. The training image then is scanned using a special template, and each occurrence 

of any possible pattern of void and solid phases is reported. Generally, the key mechanism of 

the method deals with the finding of local conditional probability distribution functions. The 

template includes a center location and several others which can be found as: 

, 1,...,n    u u h                                             (3.1) 

where h  are vectors describing the template, u  is a central location and u  are other available 

locations within the template. 

Figure 3.3 shows an example of training 2D thin section image and a 9x9 template used to 

capture multiple-point statistics. In order to have a better reconstruction, however, various 

template sizes n  and geometries are recommended to try. 

   

Figure 3.3. One of training images from 3D micro-CT model (left); a 9x9 template used to analyze 

multi-point statistics  

(taken from Okabe & Blunt, 2005) 

Since 2D images were used to measure the multi-point statistics, to generate a whole 3D cube, 

it is necessary to propagate statistics obtained on the XY plane to the YZ and XZ planes assuming 

2.25 mm 
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the sample’s isotropy in orthogonal directions (Okabe & Blunt, 2005). If strong anisotropy of 

sample takes place, this assumption can be a serious limitation of the proposed method. 

Another possible option to avoid the lack of matching parameters is to implement a simulated 

annealing method, when additional correlated functions are used as constrains (e.g. chord 

distribution function, void-phase lineal path function, etc.). It starts from an initial random 

binary configuration satisfying the volume fraction. It is necessary then to transform this high-

energy state into a state with the minimum of ‘energy’. Here, ‘energy’ measures the difference 

in correlation function, two-point cluster function, lineal path function, etc. between the 

reference and the simulated image: 

( ) ( ) 2[ ( ) ( )] when mink k

ref i sim i

k i

E f r f r E                            (3.2) 

In Equation 3.2 i  indicates counting on the number of using statistical functions as constrains, 

while k  is used for counting number of iterations.  

At each iteration step, the interchange of two randomly chosen pixels occurs. If energy 

decreases after this pixel rearrangement, a new configuration is accepted as a suitable one. 

However, if energy increases after the exchange, this configuration can be considered as an 

intermediate one, and the exchange is accepted with a certain probability, which depends on 

the energy difference between current and previous iterations and the value of annealing 

temperature: 

( )

( )

1,  if E 0

E
exp ,  if E>0

k

a

k

p

T

 


   
  
 

                     (3.3) 

Figure 3.4 demonstrates how this method works. Here, the reconstruction of glass sphere 

aggregate is shown (pores are indicated in black). Two constrain functions are used – the pore-

pore autocorrelation function and the solid-phase chord distribution function. 
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Figure 3.4. Simulated annealing reconstruction method  

(taken from Talukdar, et al., 2002). 

Here: (a) Initial random structure (E=36.31); (b) Intermediate structure (E=18.00); (c) Intermediate 

structure (E=1.00); (d) Final structure (E=10-4) 

Serious drawback of simulated annealing method is related to its computational efficiency. Due 

to the random interchange of pixels, it can require a lot of time to get the final low-energy state. 

As many researchers emphasized, the main computational cost in the simulated annealing 

technique occurs due to the repeated computations of the reconstructed statistical functions after 

each iteration. Furthermore, in a case of a multiple sampling, the required computational time 

should increase proportionally to the number of used samples. Therefore, to overcome 

mentioned method’s shortcomings, several modifications have been suggested (e.g. hybrid tabu 

search-simulated annealing method, etc.). 

Finally, process-based method can be considered as more advanced reconstruction technique, 

since it considers how different geological processes affect the pore structure and the 

permeability of sedimentary rocks. The approach suggested by Øren and Bakke is to build 

sandstone models that are analogs of real sandstones by stochastic modeling of the main 

sandstone forming processes, like sedimentation, compaction, and diagenesis. For example, to 

model compaction the shift of vertical coordinates of every grain center to the center of 
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considered plane should take place with a choice of a required compaction factor z  and a 

random variance that imitates grain rearrangement. To mimic compaction of the Berea 

sandstone, Øren and Bakke used 0.05z   and randomly distributed z  in the interval 

[ 0.02;0.02] . At last, to simulate diagenesis processes the radius of the originally deposited 

grain should be modified in order to mimic quartz cement growth or dissolution. Also, it is 

possible to control a direction of cement growth (in the direction of pore bodies or pore throats) 

(Øren & Bakke, 2003). 

The input properties for the process-based modeling are taken from backscattered electron 

(BSE) images of 2D thin sections represented as a gray-scale values array (Figure 3.5). 

 

Figure 3.5. BSE thin section image of Berea sandstone  

(taken from Øren & Bakke, 2003) 

By applying a thresholding procedure, it is possible to distinguish different phases within the 

given image, e.g. in Figure 3.5, pore space is presented in black, feldspar – in light gray, quartz 

– in medium gray, and clays are dark gray. 

However, in this thesis, the two-point statistical method based on the Gaussian random field 

reconstruction has been used due to its simplicity and easiness to code it. As it was discussed 

in Chapter 2, the opening procedure can be applied after the reconstruction procedure to 
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improve its quality and connectivity. More details about how to implement this method in 

MATLAB will be presented in Chapter 6. 

Several options will suggest to check in which extent the geometrical properties of 

reconstructed media are matching with the original cases. As many researchers point out, one 

of the most important criterion for estimation of stochastic reconstruction is its ability to 

reproduce the connectivity of the original pore structures (Manwart, et al., 2000). Another 

important factor is how good reconstructed samples can capture the macroscopic parameters of 

the original materials, e.g. permeability.  

Therefore, the visual inspection of real and reconstructed cases is implemented, first, following 

by comparison of transport properties of these porous media (absolute permeability and 

formation factors), as well as cluster analysis.  

 

3.2. Gaussian random field reconstruction method 

Due to the random nature of phase distribution, in a probabilistic context, it is possible to 

consider the indicator function in Equation 2.2 as a binary random field, y( , )r  where   

characterizes a basic random event (Feng, et al., 2014). The difference between random process 

and random field is in dimensionality: random process can be considered as a 1D-case of the 

random field, while the latter is related to 2D or 3D space. 

It is a common practice to describe random fields as statistically homogeneous, or stationary 

up to the second order. Stationarity means that field’s mean and variance are invariant when 

shifted in space. Isotropy of the random field means that in this case the correlation function is 

a function of the distance only, and can be extracted from 2D images, i.e.:  

1 2g(r) ( ) ( )y y r r                             (3.4) 

As it was mentioned earlier, in porosity analysis, a two-point correlation function can also be 

used: 

2 2

2( ) g(r) ( )S r                    (3.5) 

It is clear that 2 ( ) 1S r   when 0r  , and 
2

2S   when ( ) 0g r   (absence of correlation). 
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Another typical assumption of ( )y r  is its ergodicity, i.e. if a system is ergodic, it is possible to 

observe a few elements of it for a long period, or many elements during a short time, and the 

results in both cases should be the same. 

A random field is called a Gaussian random field (GRF) if it involves Gaussian probability 

density functions of the variables. When ( )y r  is a GRF, its joint probability density is given 

by: 

 11 1
( ) exp

2(2 ) det

T

n
n

P


 
  

 
y y G y

G
                          (3.6) 

where 
1[ ( ),..., y( )]T

nyy r r  and the elements of G  are given by field-field correlation function 

( ) ( ) ( )ij ij i jg g r y y  r r  (the last equation is identical to Equation 3.4). 

Note: It is feasible to assume without loss of generality that ( )y r  has zero mean and unit 

standard deviation (as it has been done in Equation 3.6).  

There are two main methods to generate isotropic GRF. The first one uses Fourier summation 

and creates a random field in a cube with a side length T : 

( ) ijk

N N N
i

ijk

i N j N k N

y c e


  

   
k r

r                                             (3.7) 

where 
2

( )ijk e e ei j k
T


   k i j k . In this case, the statistics of the field are set by the random 

variables 
ijk ijk ijkc a ib  . 

Alternatively, the random field can be considered as a superposition of waves with wave 

vectors’ magnitude ik , and phase i  in a range [0;2 ] : 

1

2 ˆ( ) cos( )
N

i i i

i

y k
N




  r k r           (3.8) 

If the Gaussian field can be presented as a sum of planes or waves, then the GRF is completely 

described by its power spectral density (PSD) function ( )k , or according to the Wiener-

Khinchin theorem, by its autocorrelation function which can be defined for the isotropic radial 

function as follows (Roberts, 1997): 
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2

1 2

0

sin
( ) ( ) ( ) 4 ( )

kr
g r y y k k dk

kr
 



  r r                                                            (3.9) 

The general form of analytical correlation function that is used in this work: 

2
sin

( )
2

1

c

rr

rc

c

r re e
dg r

r r

d

 














                                         (3.10) 

where   is a correlation length, d  is a domain scale and cr  – a cut-off scale (Roberts, 1997). 

The function in Equation 3.10 has the following Fourier transform (can be obtained from 

Equation 3.9 by inserting Formula 3.10 and inverting): 

2 1 4 4 2 1 4 4

2 2 2 2 2 2 2 2 2 2 2 2

( ) ( )
( )

[ ( 2 ) ][ ( 2 ) ] [ ( 2 ) ][ ( 2 ) ]

c c c

c c

r d r r d
k

d kd d kd d r kd d r kd

    


     

    
 

       
     (3.11) 

here k  is a frequency (Roberts, 1997). 

Some authors emphasize the direct connection between the average pore radius (diameter) and 

the correlation length  , which can be described by the following expression (Bowen & Tanner, 

2006): 

(1 )
D







                           (3.12) 

where D  is the average pore diameter,   – the correlation length and   is porosity. 

It means, if the correlation length is known, one may calculate the pore radius and compare 

with the value obtained by other methods, e.g. by watershed segmentation to check the results 

consistency. Furthermore, there is a connection of cut-off parameter with pore connectivity, i.e. 

high cut-off value indicates a case when only few pores are connected, and vice versa – low cr  

means better connection between pores within the sample (Mooney & Korošak, 2009). Finally, 

domain scale value d  can characterize the minimum size of lag that can be chosen to build the 

representative partial correlation function in a case of having too big image samples. 

Stationary Gaussian fields are fully defined by two first statistical moments – one-point 

correlation function, or porosity from Equation 2.3, and two-point autocorrelation function of 

Formula 3.4. This fact has a contradictory effect, since using only two constrains greatly 

simplifies the reconstructed procedure. On the other hand, in several cases with complex 
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structured and continuous patterns, using only the void fraction (porosity) and void-phase 

autocorrelation function of the target medium as reconstruction criteria can be not enough and 

more statistical information is required. 

To reconstruct microstructure, the one-cut GRF is used in the current study. The level-cut 

parameter   can be obtained by solving the following equation: 

2 2

2 2
1

1 1
e  e

2 2

t t

dt dt






 


 



                                (3.13) 

Remember that the complementary error function can be defined in the following manner, 

22
( ) 1 ( ) t

x

erfc x erf x e dt




                       (3.14) 

it is possible then to rearrange Equation 3.13 and to express  : 

1 1 1

1
1 (1 2 ) 2 (1 2 )

2 2 2
erf erfinv erfinv

 
   

  
          

  
                                   (3.15) 

where erfinv  is the inverse error function so that ( ( ))erfinv erf x x , and 1  is a volume fraction 

of pore space, or porosity, as in Equation 2.3.  

Considering one-cut level parameter, it is possible to rewrite Equation 2.2 in the following 

manner (Yuan, et al., 2010): 

 
1, y( )

( )
0, y( )

Z





 



r
r

r
                                  (3.16) 

Three parameters ( , , cd r ) can be determined by a best-fit procedure, which minimizes the 

least-square errors between target and reconstructed functions: 

2

fit expt[ ( ) ( )]E p r p r                           (3.17) 

where 
exptp  is experimentally measured two-point correlation function (or ‘target correlation 

function’). In this work, it is found in ImageJ open-source platform. The correlation function 

of reconstructed images ( fitp ) is assumed to be of the general form given by Equation 3.10.  

Once parameters have been obtained, the reconstruction can be generated. Probably, the most 

efficient method is to use a fast Fourier transform, since it can be implemented in MATLAB 

(Yuan, 2007). The discrete realizations of the random field y( )r  in a cubic domain 3

1V s , 
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where 1s  is a side length of input images, can be generated by 3D inverse FFT, taking into 

account Formula 3.7: 

1 2 3

1 1 1

1 2 33
0 0 0

1 2
exp ( L M N)

T T T

LMN m m m

i j k

i
y Y m m m

T N

  

  

 
   

 
                         (3.18) 

where T  is the number of sampling points in each direction (assume that it is equal to the side 

length, since a single sample interval has been chosen), and 
1 2 3m m mY  are random numbers defined 

as follows, since typically the Fourier image is considered as a complex function (Yuan, et al., 

2010): 

 
1 2 3 1 2 3 1 2 3

2 2 2

1 2 3

1

( )

2

real imag

m m m m m m m m m

M M MV k
Y G i G

s

   
    
 
 

                     (3.19) 

In Equation 3.19 ( )k  is a power spectral density function described by Equation 3.11, 

1 2 3 1 2 3
,imag real

m m m m m mG G  are independent Gaussian distributed random variables, and 1 2 3M ,M ,M  can be 

found using the following scheme (Yuan, et al., 2010): 

,
2

, 1, 2,3

,
2

j j

j

j j

T
m m

M j
T

T m m




 
  


                        (3.20) 

It is worth noting that 
1 2 3 1 2 3

,imag real

m m m m m mG G are characterized by zero mean and unit variance. 

Condition of having real LMNy  requires considering several possible cases. Furthermore, adding 

the frequency threshold can help to avoid the use of high frequencies, to improve smoothness 

of the obtained reconstructed images, as well as to decrease the runtime (Yuan, 2007). 
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Chapter 4. 

Lattice Boltzmann Method for Permeability Estimation 

Direct pore scale modeling methods are currently considered as a standard tool to calculate 

single-phase flow and transport properties, although the obtained real structure of the 

reconstructed porous media can be very complex. Among the most widely used methods for 

numerical flow simulations is the lattice Boltzmann method (LBM) that can be applied directly 

to the real pore structure without simplifying it. This is a great advantage of the proposed 

method, since there is no need to build approximated pore models to calculate absolute 

permeability. 

 

4.1. Theoretical background about LBM method 

 

4.1.1. Mesoscopic theory: from Boltzmann equation to the Navier-Stokes equations 

Before discussing theory behind the LBM, it is important to mention why this method is used 

for flow simulations in the porous materials.  

Actually, everything starts from the Navier-Stokes equations that govern the motion of fluids 

and are considered as the fundamental in fluid flow modeling. They can be interpreted as 

Newton’s second law of motion for fluids. In a case of an incompressible Newtonian fluid, it is 

possible to write this as follows (Comsol_webpage, 2017): 

inertial forces
viscosity forces

2

external forcespressure gradient

p
t

 
 

       
 

u
u u u F        (4.1) 

where   is the fluid density, u  is the fluid velocity,   – fluid dynamic viscosity.  

Very often, Equations. 4.1 are solved together with the continuity equation: 

( ) 0
t





  


u                        (4.2) 
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Since Equations. 4.1 represent the conservation of momentum, while Equation 4.2 introduces 

mass conservation. 

Solving the Navier-Stokes equations for a particular set of boundary conditions, one may obtain 

the distribution of fluid velocity and its pressure for a considered geometry. It should be noted 

that due to computational complexity, these equations can be directly solved only for few 

analytical cases (e.g. flow in circular pipe, flow between two parallel plates, etc.). However, 

they still need to be solved for geometries that are more complex (Comsol_webpage, 2017). 

One way to do that is to find potential alternatives, i.e. to solve them numerically or to use 

simplified concepts. Although the Boltzmann equation is not suitable for dense fluids (i.e. non-

gases), it becomes possible to substitute the microscopic equations for liquids by microscopic 

equations for gases while keeping the macroscopic level (i.e. the Navier-Stokes equations) 

properly described (Sukop & Thorne, 2006). 

There are many excellent literature resources that describe the lattice Boltzmann method in 

details, e.g. (Succi, 2001), (Krüger, et al., 2017), (Sukop & Thorne, 2006), etc. Therefore, in 

the current thesis only few words about its theory are mentioned. 

The lattice Boltzmann method is a mesoscopic scheme of solving a discretized Boltzmann 

equation of fluid particle distributions that move and interact on a regular lattice pattern. Particle 

interaction is characterized by limited degrees of freedom, since the number of vectors defined 

for a particle distribution at each node is restricted by only allowing particles to move to a 

neighboring node. At each time step, these particles propagate to the neighboring lattice 

according to their velocity and initial position, and then collide with each other, while 

conserving momentum. 

The lattice can be considered as the voxel grid of the 3D image obtained, for example, by means 

of microtomography, and therefore no complicated meshing is required. Thus, during LBM 

simulations, it can be very practical to use the same number of cells as the pixel size of micro-

CT images, i.e. when one lattice cell is equal to a single pixel. 

In this work, D3Q19 scheme is implemented for LBM simulations. It describes motion in 3D 

with 18 links representing 19 possible velocity distributions (incl. zero velocity), as Figure 4.1 

indicates. 
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Figure 4.1. Diagram showing the velocity discretization in D3Q19 lattice scheme  

(taken from Krüger, et al., 2017) 

Discretized Boltzmann equation is described by the following equation: 

( , ) ( , ) ( ( , ))
i i i i i

f t t t f t f t     x c x x                     (4.3)  

where ( , )
i

f tx  is the particle distribution function at location x  and time t  along the ith direction, 

( ( , ))
i i

f t x  is the collision operator, and ic  is local particle velocity (on the D3Q19 lattice 

0,1,...,18i  ). 

Furthermore, ic  is proportional to a constant lattice velocity 
x

c
t




 , where x  and t  are the 

lattice grid spacing and time step respectively (Guiet, et al., 2011). 

Once again, the ‘mesoscopy’ of this method means that by considering interactions between 

particles on the microscopic scale, it can be possible to reproduce their macroscopic behaviors 

in a correct manner. 

 

4.1.2. The lattice-BGK method 

The simplest case takes place when the collision operator in Equation 4.3 is defined as the 

Bhatnagar-Gross-Krook operator (Guiet, et al., 2011): 

 1

( ) ( )( , ) ( , )i BGK i i eqf t f t     x x                     (4.4) 
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where   is the relaxation time and 
( )i eqf  – the local equilibrium state.  

Relaxation time   is directly related to the kinematic viscosity as follows: 

2 1

3 2

t c
 

  
   

 
            (4.5) 

From Equation 4.5 it is clear that in order to provide numerical stability by keeping viscosity 

positive 
1

2
   should take place.  

Although BGK collision scheme is a very simple, it has one serious drawback namely almost 

linear increase of permeability with increase of relaxation frequencies, which is unphysical. 

However, this effect disappears when 1   is chosen. Therefore, using a single relaxation time 

in BGK operator allows to avoid more complicated collisional models, e.g. the multiple 

relaxation time model (Krüger, et al., 2017).  

The equilibrium distribution 
( )i eqf  appearing in Formula 4.4 corresponds to an ideal state to 

which the particle distribution functions tend to a specific macroscopic state. This is derived 

from a Maxwellian distribution function and is expressed in terms of macroscopic flow 

parameters ( , ) u  under a low-Mach assumption to ensure fluid incompressibility (Guiet, et 

al., 2011): 

2 2

( ) 2 4 2

3 9 3
( , ) 1 ( )

2 2
i eq i i if w

c c c
 

 
      

 
u c u c u u                         (4.6) 

here iw  are weighting parameters that depend on the chosen lattice scheme, other parameters 

have been described earlier. 

For D3Q19 lattice scheme they are defined as follows: 

1  for i=0
3

1  for i=1,...,6
18

1  for i=7,...,18
36

iw





 




                            (4.7) 

Finally, at each time step, from the distribution functions at a mesoscopic level, the macroscopic 

flow characteristics can be approximated in the following manner (Guiet, et al., 2011): 
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f tf t

c c





 

 

 

 
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u c c

          (4.8) 

The set of Equations. 4.4-4.8 along with specific boundary conditions allows to simulate fluid 

flow in the lattice Boltzmann framework. Very often, for simplicity x t   is chosen, since it 

enables to have 1c   (Guiet, et al., 2011). 

Therefore, one may conclude that the Navier-Stokes equations can be recovered from lattice 

Boltzmann scheme in the incompressible limit (Guiet, et al., 2011). 

 

4.2. LBM implementation in PALABOS 

It is possible to use the open source software PALABOS (PArallel LAttice BOltzmann Solver) 

to carry out permeability calculations. In the current study, a single-phase fluid flow has been 

simulated.  

 

4.2.1. LBM application to calculate absolute permeability 

In general, permeability can be calculated according to the empirical Darcy’s law, which for a 

single-phase 1D flow is defined as follows: 

u
k

p
x







             (4.9) 

where u  is the average velocity,   – dynamic viscosity,  p
x




 – pressure gradient. 

Application of the Darcy’s law, or continuum modeling, becomes possible after averaging 

macroscopic parameters obtained from the direct pore-scale simulations.   

It is worth noting that the use of Equation 4.9 requires adherence of several important 

assumptions about fluid flow in porous media. In particular, having a laminar (i.e. slow, low-

Reynolds flow), single-phase and 1D horizontal flow.  

Flow laminarity means that it is possible to neglect inertial forces compared with viscous ones 

in Equations. 4.1. Assuming also absence of external forces ( 0F ), the following expression 

is obtained: 
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20 p     u                           (4.10) 

Furthermore, an additional source term must be added to Equation 4.10. From mechanical point 

of view, this term is a drag force due to the viscous friction of fluid with solid walls (Soulaine, 

2017). Taking this fact into account and using an averaged value for velocity, one may write a 

new expression as follows: 

20 p
k


     u u                                            (4.11) 

here, the permeability k  is seen as a drag force coefficient. 

In practice, in most cases, the viscous term 2 u  is negligible compared with 
k


 u . 

Considering this, one may obtain an easy recognizable Darcy’s law: 

0
k

p p
k




       u u                         (4.12) 

here “–” indicates that velocity is directed towards the pressure decrease. 

Figure 4.2 summarizes all above-mentioned conversions. First, it is required to shift from 

Navier-Stokes equations to the lattice Boltzmann approach in order to determine such 

macroscopic fluid parameters as density and velocity. At this level, the most serious assumption 

is referred to fluid incompressibility (or having a low-Mach number). In general, it seems to be 

a valid assumption for liquid meaning that its density should stay constant. 

Next step deals with transition from direct pore-scale simulations to continuum modeling which 

allows using a very simple Darcy’s law to find the permeability. 
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Figure 4.2. Scheme showing how the absolute permeability is calculated 

It is important to mention that permeability as an output from PALABOS is given in the 

dimensionless lattice units. To convert it to physical units the following formula can be used 

(Sukop, et al., 2013): 

2

physical

physical PALABOS

PALABOS

L
k k

L

 
  

 
                        (4.13) 

where PALABOSk  is permeability from PALABOS in lattice units, 
physicalL  is the length in physical 

units (i.e. image resolution times on pixel size) and PALABOSL  is the length in lattice units. 

Other practical questions about PALABOS simulations (e.g. how to check flow laminarity) will 

be discussed in Chapter 6. 

 

4.2.2. Boundary conditions 

Within the image samples, two types of boundary conditions have been used in LBM 

simulations in this work – bounce-back or no-slip boundaries and ‘no dynamics’ boundaries. 

It is a common practice to represent solid boundaries using simple bounce-back condition 

meaning that when a batch of particles hit a solid wall node at a certain time step, they will be 

“bounced back” to the node in a pore space from where they came, as Figure 4.3 demonstrates. 
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Here, solid phase is shown as a dark gray semicircle, while pore space – in a white color. Nodes 

that are situated deep in the solid phase and do not have any neighbours from void space are 

displayed in yellow color, those who are in solid phase, but have pore neighbors – in light blue, 

and finally nodes situated in the pore space – in dark blue. At each time step, particles can be 

redistributed according to the possible directions showing by arrows between nodes. As it 

clearly seen from Figure 4.3, once particles reach solid border, they have to jump back to pore 

space. Thus, for nodes showing in light blue, bounce-back boundaries are used, and for yellow 

nodes – ‘no dynamics’ rule is valid. 

 

Figure 4.3. Different types of boundary handlings in the LBM  

(adapted for PALABOS from Bultreys, et al., 2016) 

Furthermore, the inlet and outlet boundaries of image samples are characterized by the Dirichlet 

boundary conditions.   

In some cases, the simulated flow does not stay stable. In this case, it should be simulated using 

periodic boundary conditions, which are typically applicable for the pairs of connecting faces 

with similar area. However, real pore microstructure does not have this geometrical feature. 

Therefore, to mimic cyclic boundary conditions, one may surround the representative pattern 

by a thin layer of void space. It should be thin enough to have a small impact on the simulation 

results. Usually, the thickness should be of the same order of magnitude as an average throat 

radius (Soulaine, 2017). The implementation of this option in PALABOS for several models is 

considered in more details in Chapter 6. 
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4.2.3. Issues on grid spacing, REV and image resolution 

As it has been discussed previously, the LBM is a powerful tool to compute fluid dynamics, 

even for complex pore structures. However, it is impossible to predict absolute and relative 

permeabilities accurately without having good quality input data, i.e. digital rocks models.  

There are two main parameters influencing on the quality of digital rocks, viz. image resolution, 

and the size of digital rock, or representative elementary volume. More formal and general 

definition of REV states that the representative elementary volume is the smallest volume over 

which a measurement can be made that will yield a value representative of the whole sample 

(Keehm & Mukerji, 2004) & (Hill, 1963). 

In order to have reasonable comparison among several digital rocks, it is practically convenient 

to use a common length parameter that can be measured for all of them. Due to its easy 

calculation and rigorous definition, it is possible to use the characteristic length as such a 

parameter. It can be described as the first decay length (i.e. when correlation function reaches 

zero at the first time), and it can be easily extracted from the autocorrelation plot. It is important 

to note that the choice of the most suitable length scale should be defined by considering both 

the extra cost of numerical simulations and improvement in accuracy.  

In a case of homogeneous and well-sorted pore structures like Berea or Fontainebleau 

sandstones and for the single fluid flow simulations, it has been suggested to choose length 

scale according to the following empirical rule (Keehm & Mukerji, 2004): 

10L a                        (4.14) 

where a  is a characteristic first decay length. 

Due to some computational limits related to the selected single relaxation time BGK-scheme, 

the input micro-CT models have to be further cropped in order to satisfy these computational 

constrains. Based on Formula 4.14, it is possible to check whether the chosen size of cropped 

models is representative enough to estimate absolute permeability. 

Furthermore, in a case of numerical simulations, the question of grid spacing is closely linked 

with REV concept, since it was showed that permeability results depend on the number of grid 

points (Keehm & Mukerji, 2004), as indicated by Figure 4.4 (left).  
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When the grid spacing is big (i.e. when coarse grids are used), the permeability is overestimated 

significantly. This happens mainly because of poor representation of complex pore geometry 

by coarse grids.  However, almost in all LBM studies, the numerical grid coincides with voxel 

grid, and it can be difficult to separate effect of improved image resolution from the improving 

numerical resolution. When grid spacing is low enough (
8

ad  ), the pore structure is well 

represented by the digital rocks (Keehm & Mukerji, 2004).  

The same effect is seen in a case of low image resolution, since images with low resolution lose 

details in structural complexity and show solid-void surfaces in more staircase-like manner, as 

it is illustrated in Figure 4.4 (right).  

  

Figure 4.4. Grid spacing effect on permeability and its overestimation by coarse grid  

(taken from Keehm & Mukerji, 2004, pores are shown in dark brown) 

This loss in structure’s definition usually provides less values of the specific surface area (i.e. 

pore surface area per unit volume). It means that for samples with the same porosity, smaller 

specific surface gives higher permeability according to the general form of the Kozeny-Carman 

equation (Berg, 2014): 

3
2

0 2

0

k c
S


                             (4.15) 

where 0c  is Kozeny’s constant,   is tortuosity,   is porosity, and 0S  – specific surface area.  

It is possible to modify Equation 4.15, considering the connection between tortuosity and 

formation factor (Torsæter & Abtahi, 2003): 
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F



                                             (4.16)  

where   is the tortuosity of the rock, and   – its porosity. 

Inserting Formula 4.16 into Equation 4.15, one can obtain the equation that relates permeability, 

formation factor and specific surface area: 

 

2 5

0

2

0

c F
k

S


                            (4.17) 
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Chapter 5. 

Pore Network Modeling 

In spite of the fact that LBM simulations are characterized by relatively simple implementation 

and suitability for parallelization, there are several important limitations of their use. They are 

related to their computational efficiency and numerical stability for multiphase flows with large 

density & viscosity ratios, e.g. for water-gas systems. Furthermore, it is not so easy to connect 

model’s interaction forces to the modeled physical processes in the LBM for multi-phase cases 

(Bultreys, et al., 2016). Finally, researchers from the Stanford University proved that in a case 

of two-phase flow simulations, suggested length (Equation 4.14) can be not enough for accurate 

relative permeabilities’ prediction, and hence 2-3 times bigger length size is required (Keehm 

& Mukerji, 2004). However, bigger volumes cannot be used in PALABOS with simple BGK 

operator, and more complicated models have to be applied. Therefore, pore network modeling 

approach has been considered as the most successful modeling tool for practical applications 

of pore scale simulations of two- and three-phase flow. 

 

5.1. Review of pore network extraction methods 

Pore network models describe complex pore structures by a network of simplified geometrical 

elements – pore bodies and pore throats (the latter are narrow constrictions that connect pores 

together). Attempts to extract pore networks from 3D images have been tried for more than two 

decades, although the first serious research using network concept goes back to 1950s, when 

Fatt created regular lattice of tubes with random radii to simulate fluid flow through the porous 

medium. After that, pore size distributions started to be used as constrains for regular lattice 

patterns to match coordination numbers of the considered networks. However, in most cases, 

regular lattice networks are not able to catch the complex topology of the complex porous 

structures properly. Therefore, image based network extraction methods became to be widely 

used starting from 1990s, since they could reproduce the real pore space. When transition to 

network approach from the real pore microstructure occurs, some arbitrary considerations 

should be made as to where a pore ends and a constriction starts. It means that PNM is non-
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unique representation of pore space, and for each network extraction method different 

assumptions have to be made, which may complicate significantly a comparison of networks 

obtained by different extraction algorithms (Bultreys, et al., 2016). 

Typically, network extraction includes segmentation of continuous pore space into discrete 

network elements and defining the main geometrical properties of each element, e.g. hydraulic 

radius, the volumes and lengths of pores and throats, etc. (Bultreys, et al., 2016).  

There are several different approaches to classify PNM extraction, however, the most common 

one is to distinguish two classes: topology-central and morphology-central methods (Bultreys, 

et al., 2016). Medial axis, maximal balls and watershed algorithms are discussed in more details 

below, as the typical representatives from both groups, as well as the most widely used ones. 

Medial axis extraction techniques (very often, skeletonization based algorithms are included as 

a part of them) are related to topology-central methods. They use thinning effect, which includes 

deleting the pore space from rock surfaces until a line with denoting centers of the pore space 

– or medial axis – can be found. Thinning starts in the largest pores and occurs while this erosion 

is not changing the topology of the pore structure. Figure 5.1 shows an example of medial axis 

network extraction of the pore space for the Fontainebleau sandstone sample. Here, pores will 

be located at branches of the skeleton, while throats will connect pores. 

  

Figure 5.1. 2563 voxel image of Fontainebleau sandstone with 12% porosity and 6 μm/pixel resolution 

(left); medial axis of its pore space (right)  

(taken from www.ams.sunysb.edu) 

Methods based on the concept of the medial axis capture pore interconnection adequately, but 

may have some problems with pore identification, i.e. partitioning of the pore bodies. 

http://www.ams.sunysb.edu/
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Furthermore, they are very sensitive to small defects in the input pore space surface that may 

lead to significant pore over-segmentation, as faked brunches of the medial axis would be 

identified. Pre- and post-processing of the input images can help to avoid this problem 

(Bultreys, et al., 2016) & (Dong, et al., 2007). 

The concept of maximal ball algorithm has been suggested by Silin, Jin and Patzek (Silin, et 

al., 2003). It begins with extraction of maximal balls which are the largest inscribed spheres 

centered on each void voxel that just touch the grain or the boundary. After that spheres located 

completely inside other spheres are removed, allowing to decrease the complexity of resulting 

set of maximal balls. It is possible to cluster them into families, where the common ancestor of 

each cluster denotes a pore. A throat is determined as a child of parents with different common 

ancestors, as Figure 5.2, left shows. Here, the white arrows display the pore-throat chains, and 

they are used to define the pore space’s topology (Dong, 2007). The right figure shows the 

typical network representation extracted by maximal balls method.    

  

Figure 5.2. Clustering of overlapping maximal balls into family trees (left); the extracted network for 

S1 sample using the maximal ball algorithm (right).  

Taken from Dong, 2007 

The main advantage of the maximal ball method deals with explicit manner of pore and throat 

distinction. In general, the scheme works good for pore identification, but the construction of 

throats may become a challenge, since there can be several ways to connect pores by 

overlapping smaller spheres (Dong, et al., 2007). 

Finally, the pore space can be segregated on discrete network elements by using of a watershed 

algorithm on the distance map calculated from the segmented pore space image. The throats 
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can be found as surfaces separating pores from each other (Rabbani, et al., 2014). More details 

about watershed algorithm are given in the following subchapter. 

 

5.2. Watershed algorithm 

It has been decided to use a watershed algorithm to extract important network characteristics, 

since it is applicable in 2D, and it can be more understandable in this case. While using the 

binary images, it is required to modify them and to find boundaries between pores and grains 

using special segmentation technique. 

 

5.2.1. Watershed in 2D by image segmentation and pore size distribution 

As it has been mentioned before, pore size distribution and average pore diameter have 

significant impact in pore network characterization. Pore size distribution describes the range 

of sizes for pores in a considered sample or image. Very often, pore sizes are described by 

single value of average pore diameter (or radius). As it is shown later, average pore diameter is 

directly connected to a correlation length parameter which was introduced in Chapter 3 

(Equation 3.12). 

The watershed segmentation method couples two well-known image processing algorithms of 

distance (bwdist command in MATLAB) and watershed transform (watershed command in 

MATLAB), due to the fact that watershed segmentation can produce reasonable results only 

when it is applied to images with different minima and catchment basins. However, binary 

images contain only two possible outcomes, zero or one. Therefore, before applying watershed 

segmentation to binary images, the distance transform should be used to preprocess them.  

To understand how the algorithm works, one may consider two connected objects with local 

deepest points situated in their centers, as Figure 5.3, left indicates. These deepenings are called 

catchment basins. If water starts to come up in these basins now, the first contact line before it 

will be connected, is called a watershed ridge line. By cutting the structure on this line, the two 

touching objects can be separated and labeled as pore bodies, while the line between them is 

considered as a pore throat, as it can be seen from Figure 5.3, right (Rabbani, et al., 2014).  
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Figure 5.3. Watershed based algorithm: catchment basins (left) and two detected pore bodies, 

separated by ridgeline or as a ball-and-stick model (right) 

(taken from Rabbani, et al., 2014)  

As it was mentioned previously, distance transform plays a significant role in detection and 

distinction of connected pores. For each pixel ( , )i ix y  inside the object, the distance from the 

nearest non-zero pixel need to be calculated. In order to find a distance map, the distance 

between this particular pixel and an arbitrary non-zero pixel should be minimized (Rabbani, et 

al., 2014).  

This Euclidian distance is: 

2 2( ) ( )n z i n z iD x x y y                         (5.1) 

where ( , )n z n zx y   are coordinates of the nearest arbitrary non-zero pixel.  

One thing that should be kept in mind is that watershed segmentation can be sensitive to image 

noise, and sometimes it has a tendency to "over-segment" input images. The reason behind this, 

is that each local minimum (even a small one), can easily become a catchment basin. To avoid 

over-segmentation, median filter should be applied on the distance map. For thin section 

images, the median filter with the same 7x7 neighboring interval has been used. 
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Chapter 6. 

Methodology and Results 

The following chapter presents the used methodology and obtained results. Each subsection 

below is referred to one of the chapters (Chapter 2-Chapter 5) that described theoretical aspects. 

 

6.1. Image analysis 

6.1.1. Information about input images and models 

In this work, a set of two microscopic images and six micro-CT models (incl. five sandstone 

and one carbonate) are analyzed. The images are color thin sections of reservoir samples 

collected from the outcrops in the Southern England (the Wessex Basin). Five micro-CT models 

are taken from the open source database of the Imperial College London. Samples had been 

chosen such wise to represent a broad variety in permeability values. General information 

related to the porosity, permeability and other properties of images and samples is presented in 

Table 6.1. 

Table 6.1. General information about input images and models 

Images 

Image 

# 
Information 

Resolution, 

μm/pixel 

Porosity, 

% 

Absolute permeability, 

mD 

1 
Sherwood Sandstone Group: Triassic 

age, fine to medium grained 
2.40 36.2 100-140 

2 
Bridport Sand: Lower Jurassic age, 

very fine grained 
1.94 28.1 15-25 

Micro-CT models 

Model 

# 
Information 

Resolution, 

μm/pixel 

Porosity, 

% 

Absolute permeability, 

mD 

1 Berea Sandstone 5.420 14.0 - 

2 Berea Sandstone: high permeable 5.345 19.0 1286* 1111** 

3 Sandstone S1: high permeable 8.643 14.1 1678* 1486** 

4 Sandstone S3: medium permeable 9.100 16.9 224* 281** 

5 Sandstone S4: medium permeable 8.960 17.1 259* 169** 

6 Carbonate C2 5.345 16.8 72.3* 158** 
Note: * – experimentally measured permeability (averaged value); ** – permeability obtained from network modeling 

Figure 6.1 shows microscopic images #1-2. 
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Figure 6.1. Input thin section color images. 

The upmost is the image of the Sherwood sample, the left in the bottom row is the thin section of the 

Bridport sample, and the right one is the binary micro-CT image of Berea sample 
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Pore space in colored thin section images from the Wessex Basin is indicated in light blue color, 

since they had been prepared by a blue epoxy impregnation. Sand grains are shown by white or 

light beige colors. In general, grains for the Wessex Basin’s samples are characterized by 

angular shape. The Sherwood sample is described by greater variety in grain size and shapes, 

however, the Bridport sample shows denser packing of grains. Furthermore, it is possible to 

distinguish some dark inclusions in colored images #1 and 2. Image of the Sherwood sample 

(the upmost one in Figure 6.1) may contain some dark brown inclusions related to hematite 

mineral that also gives the outcrop its characteristic red color. Grains that are dark brown can 

be fragments of organic material or calcite cement, since the grains of calcite against glass have 

dark edges due to density and high refractive index (Nichols, 2009). It is important to mention 

that the presence of dark inclusions in the Wessex Basin’s color thin sections can challenge 

their binarization process. Therefore, to avoid the probable misestimation of porosity, a proper 

thresholding should be applied.   

Note: Hereinafter, for the binary thin section images, pores will be indicated in black and grains 

– in white, however, for micro-CT models pores will be displayed in white and solid matrix 

will have a black color. This choice is simply due to the initial light color of solids in the thin 

sections. 

The input X-ray microtomography models studied under the current research are presented in 

Figure 6.2-Figure 6.7, which show 3D cubes of their microstructure.  

As it was mentioned in Chapter 4, due to the limit of computational power, these models should 

be further modified, i.e. during permeability estimation and reconstruction procedure only their 

fragments are used. The final size of analyzed samples will be chosen according to the REV 

concept.
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High permeable samples 

Berea Sandstone (sample #2): Initial size 400x400x400 voxels               

 

    

       

 

Figure 6.2. Top: 4003 voxel 3D micro-CT representation of Berea sandstone structure (pores are shown in magenta, solid matrix – in cyan); bottom: several 

2D cuts from the model (pores are white, rock matrix is black) 
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Sandstone S1: Initial size 300x300x300 voxels 

    

                   

 

Figure 6.3. Top: 3003 voxel 3D micro-CT representation of S1 sandstone structure (pores are shown in red, solid matrix – in yellow); bottom: several 2D cuts 

from the model (pores are white, rock matrix is black) 
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Medium permeable samples 

Sandstone S3: Initial size 300x300x300 voxels 

 

              

                    

 

Figure 6.4. Top: 3003 voxel 3D micro-CT representation of S3 sandstone structure (pores are shown in red, solid matrix – in blue); bottom: several 2D cuts 

from the model (pores are white, rock matrix is black) 
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Sandstone S4: Initial size 300x300x300 voxels 

         

       

 

Figure 6.5. Top: 3003 voxel 3D micro-CT representation of S4 sandstone structure (pores are shown in magenta, solid matrix – in blue); bottom: several 2D 

cuts from the model (pores are white, rock matrix is black) 
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Berea Sandstone (sample #1): Initial size 713x713x262 voxels with further cropping of cubic model (262x262x262 voxels) 

                    

 

                                    

 

Figure 6.6. Top: Initial and cropped 3D micro-CT representation of Berea sandstone structure (pores are shown in magenta, solid matrix – in cyan); bottom: 

several 2D cuts from the model (pores are white, rock matrix is black) 
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Carbonate sample C2: Initial size 400x400x400 voxels 

                  

                 

 

Figure 6.7. Top: 4003 voxel 3D micro-CT representation of C2 carbonate structure (pores are shown in red, solid matrix – in yellow); bottom: several 2D cuts 

from the model (pores are white, rock matrix is black)
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6.1.2. Thresholding and binarization (for color thin section images only) 

The procedure of image binarization for images #1 and 2 has been implemented in MATLAB. 

As it was mentioned earlier, in the scope of the present work, only threshold method is 

considered due to its reliability and simplicity. 

There are two possible options to binarize thin section images. First method is related to a 

conversion of input thin sections into gray-colored images using MATLAB command 

rgb2gray. The second technique deals with applying so called multiple dimension thresholds, 

i.e. finding its own threshold for each component of the input color RGB image. This approach 

is described in details in the paper “Image analysis and pattern recognition for porosity 

estimation from thin sections” (Richa, et al., 2006). 

Gray-colored images 

Having gray images, one can build a gray image data histogram that reflects the distribution of 

pixels based on the chosen color pattern. Figure 6.8 shows such a gray-colored image and its 

histogram for one of the analyzed samples (image of Bridport sample, 509x677 pixels size). 

 

Figure 6.8. Gray-colored image and corresponding histogram for the Bridport sample 

As follows from Figure 6.8, the histogram displays several peaks. The first peak is referred to 

the darkest gray values and can be related to the cemented material. The second peak, most 

likely, reflects pore space, and the last one shows the grains. 

It has been noticed that while applying a single threshold on a gray image, MATLAB considers 

dark ‘spots’ as a part of pore space. Since the value of threshold is selected such that the porosity 

of image should be close to the measured sample porosity, the image quality has been 
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decreased, and all solid particles become indistinguishable. Figure 6.9 displays an example of 

a failed binarization by applying a single threshold for the image of the Bridport sample. 

 

Figure 6.9. Example of a failed binarization using single threshold. 

Black pixels marked with red circle are counted as a part of pore space, however, they are related to 

cement or other mineral intrusions 

That is why, it is suggested to use two thresholds for gray images – minimum and maximum 

ones. In MATLAB, it can be implemented by the following command: gray_image 

(gray_image < min | gray_image > max) = 0, i.e. everything that is out of min & max 

borders becomes zero. After that, it is possible to binarize image using im2bw command. 

However, this approach typically causes the inversion of the image, i.e. for thin sections pore 

space displays in white and grains – in black. To return the chosen color pattern (pores are in 

black, grains are in white), imcomplement MATLAB command should be applied. 

Furthermore, to improve the quality of the obtained binary images and to decrease the image 

noise, the median filter can be applied. The neighborhood pixel interval of 7-by-7 pixels is 

chosen. It means that each output pixel contains the median value in the 7x7 neighborhood 

around corresponding pixel in the input image, as it was discussed in Chapter 3. 

Final versions of the Wessex Basin’s binary images obtained by min-max thresholding of the 

gray images are shown in Figure 6.10. 

Threshold 

value > 132 

Porosity = 29.8 % 
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Figure 6.10. Post-processed binary images obtained by double thresholding of gray images. 

Left is the image of Sherwood sandstone, right – the image of Bridport sand 

RGB images 

It is important to note that RGB is not an image format, but a color separation scheme, when 

colored images can be represented as a combination of Red, Green and Blue color components 

unlike JPEG image format, which uses YUV scheme. Several file formats support images in 

RGB-form, e.g. PNG, TIFF, BMP. In this work, TIFF image format is used. It can be possible 

to extract each individual component (red, green and blue respectively) in MATLAB using 

rgbimage command. Figure 6.11 presents histograms of color components for the Wessex 

Basin’s images. 

 

Figure 6.11. Histograms of color components for the image of Sherwood sample (left) and for the 

image of Bridport sample (right) with chosen values of thresholds 

As it is stated in the article “Image analysis and pattern recognition for porosity estimation from 

thin sections”, for RGB color-space reasonable binary images are obtained if only red and blue 

components have been constrained, since thresholding of green constituent element often 

Red < 191 

Blue > 128 

Red < 231 

Blue > 118 
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distort the output (Richa, et al., 2006). That is why, in this work, the same approach is 

considered. 

Figure 6.12 shows obtained binary images for this method of thresholding. The detailed 

MATLAB code describing both methods is presented in Appendix B. 

 

Figure 6.12. Binary unprocessed images obtained by multiple dimension thresholding. 

The image of Sherwood sample is on the left side, the image of Bridport sample – on the right 

As follows from the comparison of Figure 6.10 and Figure 6.12, the obtained binary images 

resemble to each other in quite a good manner. The porosity estimation is done for both cases, 

however, henceforth, only binary images obtained by double thresholding will be used, since 

they have been already post-processed and do not contain noise. 

 

6.1.3. Porosity estimation 

In MATLAB, first, a total number of pixels in binary image should be counted by numel 

command, which returns the number of elements in an array. After that, an amount of white 

pixels can be determined as: whitepix = sum (B1(:)), where B1 is a binary image. The 

number of black pixels is calculated as the difference between total number and white pixels. 

Finally, porosity is defined as a ratio of black pixels to the total number of pixels. 

Note: For micro-CT images, porosity value is defined as an average for all images in the model. 

It is possible to read all BMP-files of image sequence in the chosen folder by find_fil = 

fullfile(fold,'*.bmp') and then find porosity as described above (poro{y} = 

black_pix{y}/pix{y}) keeping in mind that here y indicates the number of 2D cut images in 

the folder. 
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Table 6.2 shows a comparison of porosity obtained by means of image analysis vs. given values, 

where the relative error is calculated as the ratio of absolute difference between porosity values 

divided by the value from Table 6.1. 

Table 6.2. Comparison of porosity values (image analysis vs. experimental measurements) 

Images 

Image # 

Porosity φ, % Relative error Δ, % 

Measured 

Double 

thresholding (gray 

images) 

Multiple 

dimension 

thresholding 

Double 

thresholding 

Multiple 

dimension 

thresholding 

1 36.2 35.6 36.1 1.66 0.28 

2 28.1 28.8 28.7 2.49 2.14 

Micro-CT models 

Model # 
Porosity φ, % 

Relative error Δ, % 
Measured From image analysis 

1 - 14.30 - 

2 19.6 19.65 0.230 

3 14.1 14.13 0.215 

4 16.9 16.86 0.254 

5 17.1 17.13 0.150 

6 16.8 16.83 0.183 

As follows from Table 6.2, due to an appropriate choice of thresholds (both for gray and color 

images) values of porosity obtained by image analysis are quite close to the measured ones – 

the errors are less than 5%. Furthermore, in both cases, binary images capture the pore 

distribution in a very good manner without counting cemented material as a pore space. 

Moreover, as it can be seen from results for the micro-CT models, porosity values obtained 

through a direct pixel counting are close to the indicated values with less than 1% relative errors. 

 

6.2. Stochastic reconstruction and analysis of autocorrelation functions 

Imagine that there is only one binary image from each model available, and it is necessary to 

build the whole 3D model of pore space by reproducing statistical information measured on this 

2D thin section binary cut. As it has been discussed in Chapter 3, the stochastic reconstruction 

in this work will be based on matching porosity and two-point correlation function between the 

given image and those created during the reconstruction. 

Since there are several micro-CT models available, it can be an advantage to use them for 

validating the results of numerical reconstruction of the given samples. However, only visual 

inspection can be not enough, and that is why, it is decided to use permeability and other 

transport properties estimation as a quantitative parameter to analyze the quality of the 

reconstruction procedure. 
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Below, the algorithm of the reconstruction procedure implemented in MATLAB is briefly 

discussed. 

First, it is required to read an input image. In MATLAB, it is possible to do this with function 

imread. The next step is to find the statistical parameters of the target (i.e. input) image, since 

these correlation functions will be the matching criteria for the whole reconstruction process.  

To find the radially averaged autocorrelation function (it is called radially averaged 

autocorrelation function, because instead of using a probe line, it draws ‘a probe circle’ 

assuming that there is an isotropy in all directions), the macro from the open-source ImageJ 

library is used (Appendix C). The macro is based on the Fourier transform, and it considers the 

finite size of the image (i.e. there is no need to extend the image size to avoid the edging effects). 

Then it is possible to export values to Excel file, from where they will be read by the MATLAB 

code. 

Figure 6.13 shows a general view of autocorrelation functions obtained for three samples in 

ImageJ. For two of them – S4 and C2 – it is possible to compare ImageJ results with those 

obtained by Dr. Hu Dong in his PhD thesis (Dong, 2007). As Figure 6.13 indicates, they look 

almost identical. The autocorrelation graphs for remained models are presented in Appendix A. 
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Figure 6.13. Autocorrelation functions for three analyzed samples. 

Those from ImageJ are shown in orange color, from Dong’s thesis – in blue 
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Referring to the discussion in Chapter 3 and Chapter 4, the plots of autocorrelation functions 

may contain important data that can be used in REV estimation. Table 6.3 summarizes 

information related to the characteristic length obtained from their analysis for all studied 

samples.  

Table 6.3. Information about characteristic length for all samples 

Sample 
First decay length, microns Length scale, microns 

ImageJ Dong ImageJ Dong 

Berea #1 No decay  - No decay - 

Berea #2 116 - 1160 - 

S1 220 220 2200 2200 

S3 200 170 2000 1700 

S4 190 232 1900 2320 

C2 881* 881* 8810 8810 
Note: * – the value of first decay length for C2 sample has been taken from (Dong, 2007), since autocorrelation from 

ImageJ did not reach zero. 

As follows from Table 6.3, for Berea #1 there is no decay in the autocorrelation function graph; 

therefore, this sample is not going to be considered in further permeability calculations, since 

without knowing the characteristic length it is impossible to choose a reasonable REV size. 

The part of the MATLAB code was taken from the master thesis of Prof. Hongyan Yuan. It is 

included in Appendix D in a red frame and is written based on Equations. 3.7, 3.9-3.11, 3.13-

3.20 from Chapter 3. The reconstruction begins with generation of a continuous 3D 

uncorrelated Gaussian field. Then it passes through the linear one-cut filter that is constructed 

from the target 1  and 
exptp . Furthermore, condition of having real LMNy  requires to consider 

eight possible realizations. Finally, adding the high frequency threshold can help to avoid using 

of high frequencies, to improve smoothness of the obtained reconstructed images, as well as to 

decrease the runtime. 

As an output, reconstructed cross sectional images and a plot that indicates a fit between target 

and reconstructed statistical functions can be obtained. 

Comparison of target 
exptp  and reconstructed fitp  autocorrelation functions for Berea #2, S4 

and C2 samples is shown in Figure 6.14. The comparison for remained samples is presented in 

Appendix A. 
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S4 sample 

 

C2 sample 
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Berea #2 sample 

 

Figure 6.14. Comparison of target and reconstructed autocorrelation functions for the chosen micro-

CT models 

As it can be seen from Figure 6.14, the difference between target 
exptp  and reconstructed fitp  

functions for Berea #2 and S4 sandstone samples is small, suggesting a good quality of the 

reconstruction procedure. However, for C2 it is possible to observe a significant mismatch 

between functions. This can be an indicator of either non-successful reconstruction or failure 

of the selected analytical function to capture complex carbonate structure properly. In addition, 

for the reconstructed case, correlation function reaches zero much earlier than for a real case 

meaning that if correlation length is used for estimation of REV, the latter will be significantly 

lower than it should be in the reality. 

Dr. Hiroshi Okabe obtained similar mismatch between target and reconstructed cases in his 

PhD thesis (Figure 6.15), although he used another approach of multi-point statistics to obtain 

reconstructed images. As the researcher mentioned, this discrepancy might be due to strong 

heterogeneity of carbonate samples. The autocorrelation function can be reproduced only if the 

lag distance is small, and improvements are required to capture longer correlation lengths 

(Okabe, 2004). 
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Figure 6.15. Void-void correlation functions of a carbonate rock: the reconstructed structure is 

compared with those from 2D thin sections incl. the original (target) image  

(taken from Okabe, 2004) 

Finally, the parameters , , cd r  of the analytical correlation function have been found based on 

the best-fit condition given by Equation 3.17. Table 6.4 contains values of these parameters for 

the models. 

Table 6.4. Values of correlation length, cutoff scale and domain scale for all samples 

Sample 
Parameters, microns 

  
cr  d  

Berea #2 31.45 3.79e-04 2.99e+02 

S1 60.76 2.78e-03 4.74e+02 

S3 27.40 2.14 7.17e+03 

S4 26.96 2.35 3.54e+02 

C2 7.57e-05 41.55 2.53e+03 

As it has been discussed in Chapter 3, these parameters can help to better understand the 

microstructure analysis. For instance, based on the cut-off length values, Berea #2 and S1 

samples should have the greatest pore interconnection, whereas C2 stack is characterized by 

the lowest one. Since permeability is directly related to the pore connectivity, most likely, Berea 

#2 and S1 samples should have the highest permeability among others, S3 and S4 – medium 

permeability, and C2 – the lowest one. 



Chapter 6. Methodology and Results 

 

61 

Since the input models are quite big, it is decided to reconstruct only their fragments. The size 

is chosen according to the concept of REV, and it is discussed in more details in the next 

subchapters. 

It is possible to compare 2D reconstructed cuts with the original image, and their porosity 

values. Figure 6.16 displays the comparison between target image and some of cropped 2D cuts 

(the latter ones are post-processed, i.e. after median filtering and opening dilation-erosion 

procedure; pores are shown in white). 

S4 sample 

 

 

 

 

C2 sample 

         
 

 

Berea #2 sample 

 

 

 

Figure 6.16. Comparison of original micro-CT images with randomly chosen 2D cuts of the 

reconstructed media 
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Table 6.5 shows difference between porosities for target and reconstructed images. The 

reconstruction results for remained samples are placed in Appendix A. 

Table 6.5. Comparison of porosity for the target and reconstructed images 

S4 C2 Berea #2 

Image # 
Porosity, φ 

[%] 
Image # 

Porosity, φ 

[%] 
Image # 

Porosity, φ 

[%] 

Target image 17.13 Target image 16.87 Target image 19.05 

Micro-CT cropped 

image sequence 
17.13 

Micro-CT 

cropped image 

sequence 

9.54 

Micro-CT 

cropped image 

sequence 

19.65 

Reconstructed 

sequence 
17.00 

Reconstructed 

sequence 
12.93 

Reconstructed 

sequence 
23.74 

In order to check whether stochastic reconstruction provides a reliable representation of target 

porous media, visual inspection has been done for initial and reconstructed models respectively. 

Indeed, visual comparison of 3D cubes shows that the reconstructed microstructure does not 

provide an exact representation of the true samples’ microstructure, since it contains a bigger 

number of smaller pores, as Figure 6.17 indicates.  

S4 sample 
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C2 sample 

   

Berea #2 sample 

   

Figure 6.17. The pore space of original (left) vs. reconstructed (right) for three analyzing cases; pores 

are shown in magenta color 

In general, from Figure 6.16 and Figure 6.17 it is possible to see that reconstructed cases have 

identical pore distribution within the post-processed 2D cuts and 3D cubes for sandstone 

samples, although for high permeable Berea, pores seem to be smaller in the case of stochastic 

reconstruction. Non-processed images, however, look almost identical for all cases, so that one 

may agree on how important the post-processing procedure is. It is also possible to notice that 

the C2 reconstructed sample is characterized by more homogeneous pore distribution compared 

with the original model. 
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In some cases, a stochastic reconstruction using Gaussian random functions yields much lower 

connectivity than it is for the actual sample, and this could be a serious bottleneck of the 

proposed method. Although, as Øren and Bakke mentioned, the average properties of different 

media may agree in quite a good manner even if the visual inspection shows the opposite (Øren 

& Bakke, 2003). Therefore, to have more quantitative comparison between original and 

reconstructed models, it is suggested to use estimation of transport properties (e.g. absolute 

permeability, formation factor) as a reference parameter. 

 

6.3. Permeability estimation by lattice Boltzmann method using PALABOS 

6.3.1. PALABOS input: creating a DAT-file and code description 

There are three main steps in permeability calculations using PALABOS (Degruyter, 2011): 

 Read the geometry that is given by a stack of binary images.  

On this step, the creation of an input DAT-file from these images is required in order to ensure 

that the code is able to capture a particular geometry. The procedure of DAT-file generation is 

written in MATLAB and is presented in Appendix E. It consists of two elements – the function 

itself that was taken from PALABOS website, and the script, which calls the function. The 

DAT-file contains a unique combination of zeros, ones and twos, where zero means a pore, one 

– a material voxel that is contacted with pore space, and two indicates an interior material voxel. 

Furthermore, for illustration purposes, the script visualizes the conversion of each 2D-cut 

image, and displays each number – 0, 1 or 2 – in a specific color. Figure 6.18 shows several 

examples of such a visualization. Here, zeros are shown in dark blue, ones – in light blue, and 

twos as a yellow color background. 

  

Figure 6.18. Visualization of DAT-files. S4 sample is on left, Berea #2 – on right 
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Once the DAT-file is created, the simulation can be started. 

 Next step is related to the simulation itself. Before running a simulation, it is required 

to compile the code and to create the permeability.exe file in bin folder. If IDE 

Code::Blocks is used (www.codeblocks.org), it is important to check that all PALABOS 

directories, incl. sources, headers and others have been indicated on the left panel, as 

Figure 6.19 shows. 

 

Figure 6.19. The main window of IDE Code::Blocks 

In this study, a single-phase fluid flow is simulated through the given geometry of the porous 

structure by imposing a constant pressure at the inlet and outlet. After the initial step when a 

fluid velocity is zero, the flow is continued due to applied pressure gradient between inlet and 

outlet of the image. When the standard deviation of the average energy falls below the given 

threshold value (10-4) or when there are no changes in StdDev/Average parameter, a flow time-

independency is taking place, and the steady state flow is assumed to be reached.  

The code is written in C++ and is presented in Appendix F. It is possible to find a general 

outline of the code on the PALABOS website, and therefore it will be briefly described below. 

Lines 1-4: There are several include files (e.g. “palabos3D.h”) that give access to all 

declarations in the PALABOS project. It is important either to copy them to the project’s folder, 

or to specify the path where they are located. 

http://www.codeblocks.org/
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Lines 6-7: These two declarations guarantee an access to the names in PALABOS code (plb), 

and to C++ standard library (std). 

Lines 9-10: The simulation will be executed with double precision floating point numbers and 

using D3Q19 lattice scheme. 

Lines 16-33: This part of the code defines the initial conditions.  It is used in 

porousMediaSetup function. Initially, the fluid has a zero velocity, and a linear pressure 

gradient is applying in the x-direction. 

Lines 35-68: This code fragment is responsible for setting boundary conditions. For all voxels 

read as ones in DAT-file, the bounce-back boundary conditions are defined, while for twos no 

dynamics boundaries are using, as it was discussed in Chapter 4. For inlet and outlet, Dirichlet 

boundary conditions with fixed pressure difference are setting by default.  

Lines 70-133: Several output files are created. In particular, several GIF-files can be generated 

to capture the velocity distribution within different slices (lines 70-93), as well as a final VTK-

file, which can be visualized by ParaView program afterwards (lines 96-105). The permeability 

is calculated based on the Darcy’s law applying to obtained velocity data (lines 107-133). 

Line 135-231: The main part of the code. According to lines 141-148, six input parameters are 

required – input DAT-file, a directory where outputs will be saved, number of cells in x-, y- 

and z-directions and pressure difference between inlet and outlet. If some inputs are missing, 

the code will give a warning notice. After each 500 iterations, PPM-files are written, and after 

finishing simulations, a VTK-file showing velocity distribution is generated. 

After creating exe-file, the simulation can be run through the Command Prompt. As it was 

mentioned before, it is necessary to specify six input parameters to start calculations. Typical 

view of the Command Prompt with input parameters is presented in Figure 6.20. Here, if 

required, it is possible to change the directories by commands chdir /d (change disk), or by cd 

to change folders within the same disk. 
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Figure 6.20. Typical view of the Command Prompt while running PALABOS simulations 

 Finally, it is required to calculate permeability based on the Darcy’s law as Equation 

4.9 indicates. Considering that in PALABOS all physical quantities are given in lattice 

units for convenience, to obtain permeability in physical units, special conversion has 

to be applied according to the Formula 4.13. 

Furthermore, as it has been mentioned in Chapter 4, applying the Darcy’s law requires several 

assumptions to be valid (in particular, a flow laminarity is the most important one). To ensure 

that flow is laminar, it is possible to check whether the permeability stays constant when the 

applied pressure difference varies. In addition, the relaxation parameter ( )  has been chosen 

to be equal to single l.u. (or 1
6

   equivalently) to minimize the effect of viscosity on 

permeability. This choice allows to obtain the maximum accuracy by means of the simplified 

BGK collisional model and to avoid the use of more complex cases, like the multiple-

relaxation-time (MRT) model. 

As it was discussed in Chapter 4, in some cases when the flow is not stable, it is required to 

have periodic boundary conditions in order to apply the lattice Boltzmann method. However, 

PALABOS does not have this type of boundary conditions. Therefore, it is necessary to mimic 

them by adding a thin layer of void space as a frame for the used models. It has been defined 

that one lattice cell is equal to one voxel, so the size of this frame should not exceed 1-2 lattice 
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cells, since it should be the same order of magnitude as a throat radius which is normally no 

more than 5-10 microns.   

Figure 6.21 compares 2 cases when there is no thin layer framing the input images of S4 sample 

and when a thin layer of void space is applied. For the case of having a void frame, the standard 

deviation over average energy (StdDev/Average) parameter is decreased with number of 

iterations, and stable and time-independent flow can be reached after 5000 iterations. However, 

for the case of no periodic boundaries, the solution is unstable, and the parameter of 

StdDev/Average is increasing all the time, meaning that steady-state flow, most likely, is not 

achievable even after 30000 iterations. 

 

Figure 6.21. Comparison of the StdDev/Average parameter for 200x200x200 and 202x202x202 cases 

in PALABOS simulations for S4 sample 

Note: For Berea #2 and S1 samples it is decided to use 200 lattice cells, since for these samples 

the parameter StdDev/Average has been stabilized after the first 5000 iterations (Figure 6.22), 

although its value is greater than for other samples. This might be due to having a high velocity 

in some big pores for these high permeable samples, as 3D velocity plots clearly demonstrate 

(Figure 6.23). 

0,88

0,89

0,9

0,91

0,92

0,93

0,94

0,95

0,96

0,97

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0 5000 10000 15000 20000 25000 30000 35000 S
ta

n
d
ar

d
 d

ev
ia

ti
o

n
 /

 A
v
er

ag
e,

 [
-]

S
ta

n
d
ar

d
 d

ev
ia

ti
o

n
 /

 A
v
er

ag
e,

 [
-]

PALABOS number of iterations, [-]

202x202x202 200x200x200



Chapter 6. Methodology and Results 

 

69 

 

Figure 6.22. StdDev/Average parameter for Berea and S1 samples 

 

6.3.2. Size of digital rock (representative elementary volume) 

It is impossible to use the full-size input micro-CT models, since PALABOS does not allow 

running simulations with grid systems finer than 210 elements. In this case, the value of 

relaxation time will not be one anymore, and BGK collision operator cannot be used. Therefore, 

the input models have to be modified, and during permeability calculations and reconstruction 

process, only their cropped fragments of maximum 200x200x200 voxels can be used. However, 

it is necessary to check whether this size of analyzed samples is enough according to the REV 

concept discussed in Chapter 4. Table 6.6 summarizes the obtained results for all given models.  

Table 6.6. Comparative table for REV values 

Sample 
Size of cube 

side (s1), pixels 

Resolution, 

μm/pixel 

Size of cube 

side (s1), μm 

First decay 

length, μm 

Characteristic 

length ≡ REV 

cube side, μm 

Delta (L-s1), 

μm 

Berea #1 200* 5.42 1084 No decay Undefined - 

Berea #2 200* 5.345 1069 116 1160 91 

S1 200* 8.643 1728.6 220 2200 471.4 

S3 200* 9.1 1820 200 2000 180 

S4 200* 8.960 1792 190 1900 108 

C2 200* 5.345 1069 881 8810 7741 
Note: * – the value has been chosen taking into account PALABOS computational limits. 

One can see from Table 6.6 that for S3, S4 and Berea #2 samples, the chosen 2003 voxel size is 

seemed to be sufficient, since the difference between this constrained size and the necessary 

REV is quite small, and theoretically it is able to find statistically meaningful transport 
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properties using these cropped models. For S1 the difference is bigger, but still it might be 

possible to obtain reasonable results. However, for C2 sample, even the initially given model 

size is far less than the required REV, so it is most likely that there will be serious variance 

between LBM and experimental permeability values for this case. 

 

6.3.3. Verification of having a laminar flow 

To be ensure that the flow is laminar, it is possible to check whether the permeability stays 

constant when the applied pressure gradient has been varied (Wang, et al., 2015). In the present 

work, this has been done by running each simulation several times with different p . Due to 

the computational limits, only two input micro-CT models have been checked. Table 6.7 

contains the comparison of three different cases for them. 

Table 6.7. Three different cases for checking flow laminarity (S4 and Berea samples) 

S4 sample 

Case 
Number of 

grids 

Pressure 

difference, l.u. 
Output from PALABOS 

Permeability in 

physical units, mD 

1 202 5e-04 

Average velocity = 5.39e-08 

Grad P = 2.49e-06 

Permeability = 0.00361072 

293.72 

2 202 5e-05 (base case) 

Average velocity = 5.39e-09 

Grad P = 2.49e-07 

Permeability = 0.00361027 

293.69 

3 202 5e-06 

Average velocity = 5.39e-10 

Grad P = 2.49e-08 

Permeability = 0.00361023 

293.68 

Berea #2 sample 

Case 
Number of 

grids 

Pressure 

difference, l.u. 
Output from PALABOS 

Permeability in 

physical units, mD 

1 200 5e-04 

Average velocity = 6.99e-07 

Grad P = 2.51e-06 

Permeability = 0.0463433 

1341.56 

2 200 5e-05 (base case) 

Average velocity = 6.99e-08 

Grad P = 2.51e-07 

Permeability = 0.0463082 

1340.54 

3 200 5e-06 

Average velocity = 6.99e-09 

Grad P = 2.51e-08 

Permeability = 0.0463052 

1340.45 

Table 6.7 clearly indicates that while varying the pressure difference in 100 times magnitude, 

permeability remains constant for both cases. This indicates that the main assumption of having 

a laminar flow is satisfied under the PALABOS simulations.  
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6.3.4. Results and 3D velocity plots for original and reconstructed cases 

Table 6.8 summarizes the results of permeability calculations for both input micro-CT models, 

and reconstructed media. From the first part of this table, it is possible to conclude that LBM 

simulations are able to predict absolute permeability successfully with an average 

overestimation factor of 1.03 and 1.08 for experimental measurements and networks 

respectively. The greatest deviation, as expected, has been observed for C2 carbonate sample. 

However, for the reconstructed cases, several models do not predict permeability in a good 

manner. This is mostly true for high permeable samples of Berea #2 and S1, as well as for C2 

carbonate. The best results have been obtained for the medium permeable sandstone samples, 

like S3 and S4. 
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Table 6.8. Final table showing computed permeability values for all studied samples 

Micro-CT original models: 

Sample Size 

# of 

lattice 

cells 

Output from PALABOS, lattice units 
LBM_k, 

m2  

Comparison 

Δp Grad p Visc. v_avg LBM_k 
LBM_k, 

mD 

Experiments and network, mD Rel.err

1 

Rel.err

2 k_x k_y k_z k_avg k_net 

S4 

2003 

202* 5e-06 2.49e-08 

0.167 

5.39e-10 3.6e-03 2.87e-13 293.7 273 289 215 259 169 1.13 1.74 

C2 201* 5e-06 2.5e-08 2.59e-10 1.7e-03 4.92e-14 49.9 38 161 18 72.3 158 0.69 0.32 

B_#2 200* 5e-05 2.51e-07 6.98e-08 4.6e-02 1.34e-12 1340.5 1360 1304 1193 1286 1111 1.04 1.21 

S1 200* 5e-05 2.51e-07 3.25e-08 2.2e-02 1.64e-12 1666 1969 1752 1312 1678 1486 0.99 1.12 

S3 202* 5e-06 2.49e-08 5.13e-10 3.4e-03 2.85e-13 288.7 143 420 109 224 281 1.29 1.03 

Average 1.028 1.084 
Note: * – the value has been chosen taking into account PALABOS computational limits; Rel.err_1 is the ratio of LBM_k over k_avg, while Rel.err_2 is the ratio of LBM_k over k_net 

Reconstructed samples and comparison between original & reconstructed models: 

Sample Size 

# of 

lattice 

cells 

Output from PALABOS, lattice units 

LBM_k 

m2  

Comparison 

Δp Grad p Visc v_avg LBM_k 
LBM_k, 

mD 

LBM_k

_micro, 

mD 

k_avg, 

mD  

k_net, 

mD 

Rel.err

1 

Rel.err

2 

Rel.err 

3 

S4 

2003 

201* 5e-06 2.5e-08 

0.167 

5.21e-10 3.5e-03 2.8e-13 282.5 293.7 259 169 0.96 1.09 1.67 

C2 201* 5e-06 2.5e-08 4.82e-10 3.2e-03 9.2e-14 93.0 49.9 72.3 158 1.86 1.29 0.59 

B_#2 200* 5e-05 2.51e-07 3.88e-08 2.6e-02 7.4e-13 753.4 1340.5 1286 1111 0.56 0.59 0.68 

S1 200* 5e-05 2.51e-07 9.68e-09 6.4e-03 4.8e-13 490.5 1666 1678 1486 0.29 0.29 0.33 

S3 201* 5e-06 2.5e-08 4.85e-10 3.2e-03 2.7e-13 271.3 288.7 224 281 0.94 1.21 0.97 

Average 0.922 0.894 0.848 
Note: * – the value has been chosen taking into account PALABOS computational limits; Rel.err_1 is LBM_k / LBM_k_micro (i.e. ratio of permeability for the reconstructed case over 

the permeability for the input micro-CT model), Rel.err_2 is LBM_k / k_avg, and Rel.err_3 is LBM_k / k_net 
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Figure 6.23 displays 3D velocity distribution plots obtained for S4, C2 and Berea #2 samples 

(ParaView program is used for visualization of VTK-files). It compares original and 

reconstructed cases for these models. 

S4 sample 

 

 

 

 

 

 

 

C2 sample 

 

 

 

 

 

 

 

 

Berea #2 sample 
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Figure 6.23. Velocity distribution for considered cases. 

Real models on left (at top) and reconstructed – on right (at bottom); direction of the flow is showing 

by arrows 

As it is possible to observe from Figure 6.23, the velocity distribution matches with the 

distribution of pores showing in Figure 6.17, since fluid transportation takes place in pores. 

Furthermore, it is important to mention that the original micro-CT models are characterized by 

smoother and bigger channels, while reconstructed models have more tortuous and narrow flow 

paths (especially, it is visible for the Berea and S1 samples).  

Note: The velocity plots for S1 and S3 samples are presented in Appendix A. 

 

6.3.5. Grid spacing and image resolution 

Due to PALABOS computational limitations that referred to the single relaxation time 

approximation, cropping procedure has to be applied. It can be easily done in ImageJ software 

(Image → Crop), and it does not change the resolution of input images.  

In the current work, the image resolution is modified by changing in image scale. First, the scale 

of input micro-CT model of 2003 voxel size is decreased by factor 2 (Image → Scale), and then 

it can be rescaled back to the original size, wherein the resolution will not stay constant, and 

should decrease in twice. Since voxel dimension increases for the second case, the numerical 

resolution is deteriorated, and grid spacing increases.  

Figure 6.24 indicates the comparison of two cases with different image resolutions.  
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Figure 6.24. Images and DAT-files for S4 sample with two different resolutions (initially given at top 

and blurred in ImageJ – at bottom) 

From this figure, it is clear that the original image is characterized by better image quality and 

more distinguishable borders between phases due to its higher resolution compared with low-

resolution image showing at bottom. It is even more obvious from the comparison of DAT-

files. Here, low-resolution image produces a DAT-file, where all pores become connected, and 

it should cause a dramatic increase in permeability, as it was discussed in Chapter 4. Table 6.9 

summarizes results for both cases. 

Table 6.9. Impact of the image resolution on permeability 

Case 
Resolution, 

μm/pixel 
Output from PALABOS 

Permeability in physical units, 

mD 

Initially given 

case 
8.96 

Average velocity = 5.39e-09 

Grad P = 2.49e-07 

Permeability = 0.00361027 

293.69 

Blurred case 17.92 

Average velocity = 5.82e-08 

Grad P = 2.49e-07 

Permeability = 0.0390189 

3174.08 

As it can be seen from Table 6.9, for a case with lower image quality, the obtained value of 

permeability is almost 11 times higher than in a case with original resolution. It occurs, because 
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when too low-resolution input has been used, the pore structure is represented by digital images 

in a very poor manner. This fact is directly connected with grid spacing issue, as mentioned 

earlier.  

 

6.4. Cluster analysis and calculation of formation factors  

In order to investigate a possible difference between original and reconstructed cases, it was 

decided to visualize percolation clusters using the MATLAB script percolation.m developed 

by the Department of Physics in the University of Sydney (The_University_of_Sydney, 2017). 

 

6.4.1. Cluster analysis using 2D images  

The input for the program is a square lattice of linear dimension L (for this particular case, the 

input is one of the 2D cut binary image, where L is its linear size in pixels). The number of 

lattice sites is LxL, and it can be occupied (1) or cannot be occupied (0). Each site is occupied 

independently from the neighbors with a given probability p, which is the porosity of the 

considered image, or the ratio of white pixels over their total amount. Occupied sites form 

clusters, in which sites may or may not be connected to their neighbors. An important parameter 

showing the connectivity of considered medium is so-called spanning cluster, which extends 

from one edge of the lattice to another. 

If the probability is small (as it happens for the considered samples), then only small clusters 

are formed, basically, as it can be found from Figure 6.25. Here, the cluster distribution for 

original and reconstructed cases is compared for two different sandstones – S4 and Berea #2. 

As follows, from the given information, number of occupied sites in clusters is higher for more 

permeable Berea sample. In general, reconstructed cases are characterized by smaller number 

of distinguished clusters. Both cases show no presence of spanning cluster. 
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Figure 6.25. Comparison of cluster numbers  

for original and reconstructed models of S4 and Berea #2 samples 

Although the suggested cluster analysis is helpful as a quick estimation of reconstruction’s 

quality, it cannot fully evaluate the ability of the reconstruction process to represent the given 

porous media, since only 2D images have been compared. For more detailed 3D analysis, the 

comparison of formation factors is proposed to be used. 

 

6.4.2. Calculation of formation factors for the digital images 

The estimation of formation factors for the digital images has been done by using of TauFactor 

MATLAB application developed in the Imperial College London (Cooper, 2015). The main 
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principle is to calculate the decrease in diffusive transport caused by convolution in the 

geometry of heterogeneous media using input microstructural image data. 

The results of formation factors’ comparison for original and reconstructed cases are presented 

in Table 6.10. As it can be observed, formation factors of original input models are in a good 

agreement with values obtained by Dr. Hu Dong, since the average error is less than 6 %. For 

C2 sample, TauFactor could not define the formation factor, giving Inf value. 

Table 6.10. Comparison of formation factors and specific surface areas for all samples 

# 

Formation factor Specific surface area, μm-1 

Dong Original Reconst. 
Rel.err 

1 

Rel.err 

2 
Measured Original Reconst. 

Δ, 

1e-03 

S4 82.8 81.73 149.45 0.987 1.829 24.15e-03 20.4e-03 25.6e-03 5.2 

C2 169.8 - 284.61 - - - 12.6e-03 22.1e-03 9.5 

B2 24.1 23.56 27.38 0.978 1.136 26.90e-03 24.0e-03 40.1e-03 16.1 

S1 41.3 35.88 114.65 0.869 3.195 14.11e-03 12.3e-03 14.8e-03 2.5 

S3 52.4 48.99 122.18 0.935 2.507 23.76e-03 20.2e-03 24.1e-03 3.9 

Average 0.942 2.167 Average 7.4 
Note: Rel.err_1 is the ratio of formation factor for the original model over the value stated in Dong, 2007; Rel.err_2 

is the ratio of formation factor for the reconstructed model over the formation factor for the original model; the measured values 

have been taken from (Rabbani & Jamshidi, 2014); Δ is the difference between SSA of reconstructed and original models 

From Table 6.10, it is also possible to see that the reconstructed cases tend to overestimate 

formation factors significantly (by a factor of 2.2), meaning that the conductivity in a case of 

stochastic reconstruction is underestimated (formation factor is inverse of conductivity).  

Furthermore, using the same TauFactor application, the surface area per volume can be 

computed for each case. From the table one can see that the specific surface area values for the 

reconstructed cases are higher than for the original cases. This is due to having more edgy 

borders between rock and void phases, as well as more structural complexity in general, as 

Figure 6.16 indicates. If permeability has been matched for original and reconstructed cases, 

the only way to keep the same values for k  is to increase the formation factor in the numerator 

to compensate the increase in surface area in the denominator, according to Equation 4.17. 

 

6.5. Pore network modeling   

6.5.1. Watershed algorithm for image segmentation and pore size distribution 

Figure 6.26 displays the obtained results after image segmentation (for Sherwood and Bridport 

images respectively). 
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Figure 6.26. Segmented 2D sample images showing pores and throats. 

MATLAB label2rgb command is used for visualization purpose 

After successful segmentation procedure, it can be possible to find pore size distribution, since 

pores and throats are separated now. First, it is required to label each pore using bwlabel 

command in MATLAB. After that, it is necessary to check for all pixels whether the chosen 

element in the binary image is zero or non-zero in the distance map (i.e. if it is pore or not), and 

if so the pore counter is filled with this element. Afterwards, one may determine size of the 

obtained pores (assuming that they are circular), as well as it is able to create a histogram of 

relative frequency and to build a cumulative distribution function for detected pores. To obtain 

radius of pores in physical quantities, it is necessary to convert pixels into microns using 

resolution values from Table 6.1.  

Figure 6.27 displays the pore size distribution obtained for input thin section images. 

Image #1 (Sherwood sample) 
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Image #2 (Bridport sample) 

 

Figure 6.27. Pore size distribution obtained for segmented binary images of thin sections from the 

Wessex Basin 

The Bridport sample can be considered as a strongly consolidated sample compared with the 

Sherwood sample (which has significant porosity and permeability values), and that is why its 

average radius is smaller. 

As it was mentioned in Chapter 3, it may be possible to use empirical formula to find an average 

pore radius (diameter). Table 6.11 tots up the results of average pore radius estimation obtained 

by the two discussed methods. 

Table 6.11. Values of average pore radius for analyzed images and samples 

Image 
Average pore radius, microns 

2D watershed Equation 3.12 Abs. difference 

Sherwood 16.5 10.09 6.41 

Bridport 12.2 7.67 4.53 

Sample 
Average pore radius, microns 

2D watershed Equation 3.12 Abs. difference 

S4 28.27 16.27 12.00 

C2 21.27 9.1e-05 21.27 

Berea #2 21.21 19.57 1.64 

S1 38.07 35.38 2.69 

S3 26.82 16.48 10.34 

As follows from results comparison, in general, the values of average pore radius estimated by 

Equation 3.12 are smaller than those obtained by the watershed algorithm, although for several 

samples the difference between the two methods is not so significant. The main shortcoming of 

the proposed watershed technique is that it uses only a single 2D image, and maybe it is not 

representative, especially in the case of micro-CT models. Moreover, as it has been mentioned 

before, the assumption of having only circular pores may not be true, and there can be pores 
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with other shapes. Furthermore, the observed overestimation of pore radius by watershed 

method for S4 and S3 samples may be related to their resolution, which is lower than for Berea 

#2 sample. For C2 model, it seems that both methods cannot predict the average pore radius 

accurately. For watershed method, it may happen due to having of several huge pores on 2D 

image, so the mean value in this case can be significantly overestimated. For the empirical 

formula, obtaining such a small radius may be related to some errors in the correlation length 

estimation, since as it was discussed previously it was not possible to match analytical 

correlation function with the original one, as Figure 6.14 indicates. The typical range of pore 

radius for chalk is between 0.7 and 4.3 μm (Talukdar, 2002). 

It is possible to compare the obtained pore radius value for Berea sample with those from Dr. 

Hu Dong’s thesis. There, the values of the average pore radius estimated by pore networks built 

using process based method and maximal ball algorithm are 19.17 and 15.36 microns 

respectively (Dong, 2007). They are quite close to the value obtained by Equation 3.12. 

 

6.5.2. Using of OpenPNM for pore networks extracted by maximal ball algorithm 

As it has been emphasized in Chapter 5, direct LBM simulations for the multi-phase flow can 

be very difficult to implement due to the requirement of having bigger REV and possible BGK 

solution instability. Therefore, the pore network modeling can be a reliable option to predict 

permeabilities of each flow component. 

It is possible to use the OpenPNM package (www.openpnm.org) for pore network simulations. 

It has five main objects: Network, Geometry, Physics, Phase, Algorithm, and has been coded 

in Python language (numerical operators are computed using NumPy and SciPy packages), 

which is a powerful, free object-oriented programming language. The main advantage of using 

Python is that no compilation of source code is required. 

It is necessary to modify four input DAT-files with information about pore networks extracted 

by the maximal ball method from the Imperial College London to one common MAT-file, 

which then can be used as an input to OpenPNM software package. The import can be done 

directly in OpenPNM using, for example, Spyder – the Scientific PYthon Development 

EnviRonment. The code is presented in Appendix G, and Figure 6.28 shows the visual 

comparison of both networks. As it can be seen, they look more or less identical, although in 

OpenPNM the pore sizes are fixed, and only color displays the pore size distribution. However, 

http://www.openpnm.org/
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in Rhino software (Imperial College), it is possible to vary both sizes and colors for showing 

different pore dimensions. The color bar situated below network images in Figure 6.28 is used 

to display color range for the networks extracted by Dong. 

  

 

Figure 6.28. Comparison of pore networks for S1 sample (extracted in OpenPNM – on left, from Dr. 

Dong’s thesis – on right) 

After network import, it can be possible to use obtained networks to find capillary pressure and 

relative permeabilities. For example, it is shown in Appendix G that by using only 12 strings 

the mercury intrusion porosimetry simulation for regular lattice networks can be performed. 

The resulting curve is presented in Figure 6.29. 

 

Figure 6.29. Capillary pressure curve obtained in OpenPNM for the mercury intrusion porosimetry 

using a regular lattice network 
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Chapter 7. 

Discussions and Conclusions 

 

7.1. Discussions 

Although a brief analysis and interpretation of obtained results has been already given in the 

previous chapter, here, the more generalized discussions with focus on possible source of errors 

are presented. For convenience, they are divided by the subchapters. 

 

7.1.1. Image Analysis 

In the current thesis, several thin section images and micro-CT models had been analyzed. The 

given thin sections were in color, since they were obtained by blue epoxy impregnation. The 

first step was to propose a suitable way of their binarization. It was required to have binary 

images, since for digital images the porosity was suggested to be defined as the ratio of white 

or black pixels over the total number of them. The main challenge for thin sections was to avoid 

counting of cement / organic intrusions as a part of porous media. It was shown that using of 

double thresholding for gray images or multiple dimension thresholding for colored images 

provided a fast and reliable technique for realistic porosity estimation from binary images. The 

difference between the obtained results and measured porosity values was very small. The same 

was true for given micro-CT sequences (although for them binarization was not needed) – the 

proposed method of porosity estimation showed a good consistency with given porosity values 

from the Imperial College London with less than 1 % error. 

Possible challenge: In some cases, if there is microporosity and clay minerals are presented, 

having only black and white colors within images can be not enough. 
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7.1.2. Stochastic reconstruction and analysis of autocorrelation graphs 

The proposed one-cut GRF reconstruction had been considered as a simple method of obtaining 

real pore structure with relatively easy implementation in MATLAB. Two first statistical 

moments – one- and two-point correlation functions used as matching criteria during the 

stochastic reconstruction. Some significant improvements of reconstruction process had been 

achieved by applying the opening procedure and other post-processing techniques. Although, 

as further analysis had been shown, it was impossible to reproduce exactly the same porous 

structure, however, several properties, like permeability and porosity, were able to be captured 

very accurately for some samples by using these modified pore media.  

Moreover, it had been noticed that the autocorrelation plots contained important information 

about pore connectivity and required size of REV, and could be used as a quick analysis of 

input micro-CT data. 

In particular, it was shown that the carbonate sample could not be reconstructed in a good 

manner, due to its heterogeneous complex structure and small size of the input model. 

Possible challenge: In several cases when complex, highly structured and continuous patterns 

may occur, having only the void fraction (porosity) and void-phase autocorrelation function of 

the target medium as reconstruction criteria can be insufficient. 

 

7.1.3. Absolute permeability estimation and checking of reconstruction quality 

For accurate prediction of absolute permeability using LBM, several important modeling 

parameters had to be considered, e.g. the size of digital rock chosen as representative 

elementary volume and image resolution. It was shown that for all samples, except the 

carbonate, the chosen size of models was enough to be REV. The effect of decreasing in image 

resolution showed a huge impact on the estimated permeability, making it overestimated 

significantly. As practice indicates, the typical limit of acceptable resolution should not exceed 

10 μm/pixel in order to get reasonable values of permeability. The role of image resolution is 

also important in the estimation of the average pore radius. When the watershed 2D method 

was used, it was discovered that samples with lower resolution (S3 and S4) had been 

characterized by a big overvalue of pore radius, compared with empirical formula using 

statistical information. 
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According to the obtained absolute permeabilities for the original models, the good agreement 

with experimental data had been observed with the average overestimation factor of 1.028. In 

addition, the comparison of k  values for the original micro-CT models and for the reconstructed 

cases indicated a very good consistency for medium permeable S3 and S4 sandstones with only 

3.8 and 6 % difference respectively, but with a general underestimation for high permeable 

samples (up to 70.6 %). The average underestimation factor was equal to 0.922 compared with 

LBM permeability for original models, and 0.894 in comparison with experimental 

measurements. However, even though porosity and permeability were matched successfully for 

the reconstructed models, they might be completely different porous media, since other 

properties could be different, e.g. velocity and pore distributions, as well as formation factors 

and specific surface area values, as it was shown during the analysis of reconstruction quality. 

It had been noticed that if porosity of reconstructed models was matched perfectly with a given 

value, then a significant underestimation of permeability and overestimation of formation factor 

took place, as it was in a case of S1 sample (490.5 vs. 1666 mD, and 114.7 vs. 35.9 for formation 

factors). For the Berea sample, however, the porosity of the reconstructed model was a bit 

overrated from the beginning (23.7 vs. 19.7 %), but it allowed to get closer permeability match 

(753.4 vs. 1340.5 mD), as well as almost the same formation factor value (27.4 vs. 23.6). 

 

7.1.4. Pore network modeling 

As it had been discussed earlier, the modeling of multi-phase transport properties directly on 

pore space images was a challenging and non-trivial task. In particular, the computational 

demands due to having of BGK single relaxation time might constrain these simulations to 

small image samples, although to predict relative properties accurately, bigger REV size were 

required. Therefore, it was decided to apply a pore network modeling approach, which had 

substituted complex real pore structures with simplified models consisting of balls and sticks.  

OpenPNM is a powerful, open-sourced pore network modeling package, which was coded in 

Python. As it was stated in the OpenPNM website, the main aim was to provide the porous 

media community with a general and flexible framework for tackling various PNM problems 

from the same code base. The use of Python as a main programing language allows to create 

short and elegant codes. For instance, it was shown that to implement the mercury intrusion 

porosimetry simulation using a simple regular lattice network in OpenPNM, only 12 strings of 

code were required (for network import – only 8 strings were needed). However, due to time 

limits it was not possible to perform any capillary pressure & relative permeability calculations 
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using imported networks extracted by maximal balls method.  This can be considered as an 

important part that needs to be improved in future. 

 

7.2. Recommendations for the future work 

The future work may include a further testing of suggested permeability estimation using more 

input micro-CT models with different properties. Furthermore, several efforts can be done to 

improve existing stochastic reconstruction procedure, e.g. by using higher order statistics as 

constraints. Finally, more detailed study of pore network modeling is required, for instance, 

different pore extraction method can be checked in addition to maximal ball algorithm. 

Furthermore, it can be interesting to determine relative permeabilities and capillary pressures 

in OpenPNM using imported pore networks and to compare the results with those from the 

Imperial College London database. 

 

7.3. Conclusions 

It was possible to prove that suggested digital core analysis technique could be a reliable 

alternative of routine laboratory experiments, at least, for widely used homogeneous sandstone 

samples, like Berea or Fontainebleau. For carbonate sample, however, it had been challenging 

to estimate main reservoir properties due to its complex heterogeneity, and therefore, more 

advanced methods should be applied in future, e.g. nano-CT scanning.  

The most important factors, which had influence on the results, were image resolution, 

representative sample size and proper simulation set-up (i.e. different approaches for single- 

and multi-phase flow, boundary conditions, etc.). 

P.S. The author is deeply convinced that this work can be considered as a good starting point 

for investigation of digital rock analysis at NTNU IGP. Thank you! 
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Appendix A  
Information for remained micro-CT models (Berea #1, S1, 
S3) 

The plots of autocorrelation functions  
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Figure A.1. Autocorrelation functions for three reminded samples. 

Those from ImageJ are shown in orange, from Dong’s thesis – in blue 

Comparison of target and reconstructed autocorrelation functions  

S1 sample 
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S3 sample 

 

Figure A.2. Comparison of target and reconstructed autocorrelation functions for the remained micro-

CT models 

Reconstruction procedure 

S1 sample  

 

 

 

S3 sample 

 

 
Figure A.3. Comparison of original micro-CT images with randomly chosen 2D cuts of the 

reconstructed media 
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Table A.1. Comparison of porosity for the target and reconstructed images 

S1 S3 

Image # Porosity, φ [%] Image # Porosity, φ [%] 

Target image 14.03 Target image 16.86 

Micro-CT image 

sequence 
14.21 

Micro-CT image 

sequence 
16.86 

Reconstructed 

sequence 
14.94 

Reconstructed 

sequence 
16.59 

S1 sample 

   

S3 sample 

   

Figure A.4. The pore space of original (left) vs. reconstructed (right) for remaining models; pores are 

shown in magenta color 
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3D velocity plots 

S1 sample 
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S3 sample 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.5. Velocity distribution for remaining models. 

Original are at top and reconstructed – at bottom; direction of the flow is showing by arrows 

Note: Due to the chosen delta p, the velocity values for S3 sample were too small to show them 

in Volume mode. Therefore, the blue background has to be added to visualize velocity 

distribution in this case. 
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Appendix B  
MATLAB code: binarization and PSD 

%%%%%%%%%%%%%%%%    MATLAB code – Image Binarization       %%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%   Part of the master's thesis (TPG4920)   %%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%              Spring 2017                  %%%%%%%%%%%%%%%% 

Multiple dimension threshold: 

clear all; clc; close all; 
rgbimage = imread('Sherwood_sand.tiff'); % Sherwood 
% rgbimage = imread('Bridport_sand.tiff'); % Bridport 
figure(1) 
imshow(rgbimage); 
% Extract the individual red, green, and blue color components 
red = rgbimage(:, :, 1); 
green = rgbimage(:, :, 2); 
blue = rgbimage(:, :, 3); 
% Display the histogram for the red component 
redhist = imhist(red, 256); 
% Display the histogram for the green component 
greenhist = imhist(green, 256); 
% Display the histogram for the blue component 
bluehist = imhist(blue, 256); 
% Plot all three histograms on the same plot 
figure(2) 
lineWidth = 2; 
hold off; 
plot(redhist, 'r', 'LineWidth', lineWidth); 
hold on; 
grid on; 
plot(greenhist, 'g', 'LineWidth', lineWidth); 
plot(bluehist, 'b', 'LineWidth', lineWidth); 
title('RGB components histogram'); 
% Set the x axis range manually to be 0-255. 
xlim([0 255]);  
ylabel('Number of pixels'); xlabel('Color tones');  
legend ('Red component','Green component','Blue component','Location', 

'NorthWest'); 
% Thresholding 
threshold_red = 231; % for red component 
red_t = red < threshold_red; 
threshold_blue = 118; % for blue component 
blue_t = blue > threshold_blue; 
% Bridport values 
% threshold_red = 191; % for red component 
% red_t = red < threshold_red; 
% threshold_green = 240; % for red component 
% green_t = green < threshold_green; 
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% threshold_blue = 128; % for blue component 
% blue_t = blue > threshold_blue; 
% rgb_t = uint8(red_t & green & blue_t); 
rgb_t = uint8(red_t & green & blue_t); 
maskedrgbimage = uint8(zeros(size(rgb_t))); % Initialize 
maskedrgbimage(:,:,1) = rgbimage(:,:,1) .* rgb_t; 
maskedrgbimage(:,:,2) = rgbimage(:,:,2) .* rgb_t; 
maskedrgbimage(:,:,3) = rgbimage(:,:,3) .* rgb_t; 
% imshow(maskedrgbImage); 
% title('Masked Original Image'); 
b = im2bw(maskedrgbimage); 
binary = imcomplement(b); 
figure (3) 
imshow(binary); 
% Counting the amount of white and black pixels 
pixels = numel(binary); 
whitepix = sum(binary(:)); 
blackpix = pixels - whitepix; 
% Porosity will be found as the percentage of black pixels to the total 

amount of them 
phi = blackpix / pixels; 

 

Double threshold and pore size distribution: 

clear all  
clc; close all; 
% Read input images  
a = imread('Sherwood_sand.jpg'); 
% a = imread('Bridport_sand.jpg');  
g = rgb2gray(a); % transform to gray-colored image    
% Gray image  
figure (1)  
imshow(g);  
title ('Gray image');    
% Histogram of image data (y-axis: Number of pixels, x-axis: Color tones) 

=>   
% show distribution of pixels based on color pattern (for gray images the 

default is 256)  
figure (2)  
imhist (g);  
title ('Gray image data histogram');  
ylabel('Number of pixels'); xlabel('Gray-level value'); 
% Based on the histogram, set custom defined min-max thresholds for the 

gray image  
% for Bridport   
% min_1 = 127;   
% max_1 = 171;  
% 127 and 163    
% % for Sherwood  
min_1 = 127;   
max_1 = 201;  
% 127 and 188    
% Threshold -> everything out of min & max becomes 0  
g1 = g;  
g1(g1<min_1|g1>max_1) = 0; 
figure (3) 
imshow(g1); title ('Gray image after thresholding'); 
b = im2bw(g1); % inversed binary image (pores - white, grains - black) 
bw1 = imcomplement(b); % 'anti-inversed' binary image 
% Filtering 
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B1 = medfilt2(bw1,[7 7]); % median filter to decrease noise 
B1 = bwareaopen(B1,10); 
figure(4) 
imshow(B1); 
% Counting the amount of white and black pixels 
pixels = numel(B1); 
whitepix = sum(B1(:)); 
blackpix = pixels - whitepix; 
% Porosity is found as a percentage of black pixels to their total amount 
phi = blackpix / pixels; 
% Segmentation 
Ed = -bwdist(bw1); % Euclidian distance function; bw1 
B = medfilt2(Ed,[7 7]); % median filter for the distance map (avoid 

oversegmentation) 
Ld1 = watershed(B); 
% Pore size distribution 
[s1, s2] = size(B); 
Pr = zeros(s1,s2); 
for i = 1:s1 
for j = 1:s2 
if B1(i,j)==0 && Ld1(i,j)~= 0 % find pores 
Pr(i,j) = 1; 
end 
end 
end 
Pr = bwareaopen(Pr,10); % pores greater than 10 pixels are considered 
[Pr_L,Pr_n] = bwlabel(Pr); % here Pr_n - number of connected objects, Pr_L 

- matrix of labeled elements 
z = regionprops(Pr_L,'Area'); 
Area = [z.Area]; 
% Pixels to microns 
% Resolution = 1310/677; % Bridport [micron/pixel] 
Resolution = 2320/968; % Sherwood 
k = regionprops(Pr_L,'area'); 
R = Resolution.*sqrt(Area)./sqrt(pi); % Pore radius (A = pi*R^2); 
Diam = 2*R; 
Number_of_categories = 20; 
% Histogram of relative frequency 
Pore_rad_av = mean(R); % Average pore radius [microns] 
St_dev = std(R); % Standard deviation of pore radius [micron] 
Rel_Frequencies = 

hist(R,(1:round(max(R)/Number_of_categories):round(max(R))))./sum(sum(hist(

R,(1:round(max(R)/Number_of_categories):round(max(R)))))); 
formatSpec = 'Average pore radius is %6.4f microns '; 
fprintf(formatSpec,Pore_rad_av); 
figure(5) 
bar((1:round(max(R)/Number_of_categories):round(max(R))),Rel_Frequencies); 
title('Histogram of pore size distribution') 
xlabel('Equivalent pore radius (micron)'); ylabel('Relative Frequency'); 
% Cumulative distribution function 
figure(6) 
m = cdfplot(Diam); 
set(gca,'XScale','log') 
title('Cumulative Distribution Function') 
xlabel('Equivalent pore diameter, micron'); ylabel('Cumulative 

percentage'); 
q = label2rgb(Pr_L); % show pore & throats  
figure(7) 
imshow(q); 
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Appendix C  
ImageJ macro for the autocorrelation 

// ImageJ macro to calculate the Radially Averaged Autocorrelation 

Function, 

// Corrected for finite size effects 

// The output is normalized to a value of 1 at zero radius 

// and corrected for effects of the finite image size. 

// (No need to extend the image size for avoiding edge effects) 

// 

// Use with a binary input image. 

// Needs the "Radial Profile" plugin, 

http://rsb.info.nih.gov/ij/plugins/radial-profile.html 

// 

// Version: 2008-May-14 Michael Schmid 

// 

requires("1.42p"); 

doStack=false; 

if (nSlices()>1) doStack = getBoolean("Get RDF from full stack?"); 

setBatchMode(true); 

firstSlice=getSliceNumber(); 

lastSlice=getSliceNumber(); 

if (doStack) { 

  firstSlice=1; 

  lastSlice=nSlices(); 

} 

width=getWidth; 

height=getHeight; 

getPixelSize(unit, pixelWidth, pixelHeight); 

run("Select None"); 

//maxRadius may be modified, should not be larger than 0.3*minOf(width, 

height); 

maxRadius=0.3*minOf(width, height); 

minFFTsize=1.3*maxOf(width, height); 

title=getTitle(); 

size=4; 

while(size<minFFTsize) size*=2; 

for (slice=firstSlice; slice<=lastSlice; slice++) { 

  //make autocorrelation of particle image 

  tempTitle="temp-"+random(); 

  run("Duplicate...", "title="+tempTitle); 

  tempID=getImageID(); 

  getRawStatistics(nPixels, mean); 

  run("Canvas Size...", "width="+ size+" height="+ size+" position=Center 

zero"); 

  makeRectangle(floor((size-width)/2), floor((size-height)/2), width, 

height); 

  run("Make Inverse"); 

  run("Set...", "value="+mean); 

  run("Select None"); 

  getRawStatistics(nPixels, mean); 
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  run("FD Math...", "image1=["+tempTitle+"] operation=Correlate 

image2=["+tempTitle+"] result=AutoCorrelation do"); 

  psID=getImageID(); 

  run("Subtract...", "value="+(nPixels*mean*mean)); 

  selectImage(tempID); 

  close(); 

 

  //make autocorrelation reference to correct finite image size effects 

  newImage("frame", "8-bit White", width, height, 1); 

  run("Set...", "value=255"); 

  tempID=getImageID(); 

  rename(tempTitle); 

  run("Canvas Size...", "width="+ size+" height="+ size+" position=Center 

zero"); 

  run("FD Math...", "image1=["+tempTitle+"] operation=Correlate 

image2=["+tempTitle+"] result=AutoCorrReference do"); 

  refID=getImageID(); 

  imageCalculator("Divide", psID,refID); 

  selectImage(refID); 

  close(); 

  selectImage(tempID); 

  close(); 

 

  //prepare normalized power spectrum for radial averaging 

  selectImage(psID); 

  circleSize=2*floor(maxRadius)+1; 

  norm = getPixel(size/2, size/2); 

  run("Divide...", "value="+norm); 

  run("Specify...", "width="+circleSize+" height="+circleSize+" 

x="+(size/2+0.5)+" y="+(size/2+0.5)+" oval centered"); 

  run("Radial Profile", "x="+(size/2+0.5)+" y="+(size/2+0.5)+" 

radius="+floor(maxRadius)-1); 

  Plot.getValues(x, y); 

  plotID=getImageID(); 

  selectImage(psID); 

  close(); 

   if (slice==firstSlice) ySum = newArray(y.length); 

  for (i=0; i<y.length; i++) 

    ySum[i]+=y[i]/nSlices; 

  selectImage(plotID); 

  close(); 

} 

if (pixelWidth==pixelHeight) { 

  for (i=0; i<x.length; i++) 

    x[i] *= pixelWidth; 

} else 

  unit = "pixels"; 

if (doStack) title = title + " (stack)"; 

Plot.create("Autocorrelation of "+title, "Distance ("+unit+")", "Normalized 

Autocorrelation", x, ySum); 

 

setBatchMode(false); 
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Appendix D  
MATLAB code of 3D reconstruction (on the example of S1 
sample) 

%%%%%%%%%%%%%%%%    MATLAB code - 3D Reconstruction        %%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%   Part of the master's thesis (TPG4920)   %%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%   Based on code of Yuan Hongyan (in a red frame) %%%%%%%%%%%% 
%%%%%%%%%%%%%%%%                Spring 2017                %%%%%%%%%%%%%%%% 
%% Image analysis   
clear all; clc; close all; 
delete('M:\MATLAB codes for thesis\S1\*.bmp');  
delete('M:\MATLAB codes for thesis\S1\S1_filtered\*.bmp'); % delete images 

from previous reconstruction 
delete('M:\MATLAB codes for thesis\S1\S1_recon_cropped\*.bmp');  
delete('M:\MATLAB codes for thesis\S1\S1_recon_cropped_dil_er\*.bmp');  
a1 = imread('S1_inversed0110.bmp'); % read input image 
% Counting the amount of white and black pixels 
pixels = numel(a1); 
whitepix = sum(a1(:)); 
blackpix = pixels - whitepix; 
% Porosity will be found as the percentage of black pixels to the total 

amount of them 
phi_single = whitepix / pixels; 
%average porosity 
phi = 0.141302778; % found as an average value for all images in micro-CT 

model 
Resolution = 8.683; % [microns/pixel] 
[s1,s2]=size(a1); 
%% Two-point- and autocorrelation correlation functions [found using the 

plagin in ImageJ] 
Dist = ... 
    xlsread('Data_Imperial_College_samples.xlsx','S1_auto','A3:A69'); % 

read data from the Excel-file 
Dist2 = Dist*Resolution; 
Rz = ... 
    xlsread('Data_Imperial_College_samples.xlsx','S1_auto','B3:B69'); % 

read data from the Excel-file 
% Plot Rz 
figure (2) 
plot(Dist2, Rz, '-.r','LineWidth', 2); 
title('Target autocorrelation function'); 
xlabel('Distance, microns'); ylabel('R_z(r)'); 
legend ('R_z (Image J)','Location', 'NorthEast'); 
% Find and plot target 2-point correlation function 
S2 = phi.^2 + Rz.*(phi-phi.^2); 
figure (3) 
plot(Dist2, S2, '-rx','MarkerSize',3); 
title('Target pore-pore correlation function'); 
xlabel('Distance, microns'); ylabel('S_2(r)'); 
legend ('S_2 (ImageJ)','Location', 'NorthEast'); 
%% Solution of non-linear equation => filter for the GRF algorithm 
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cinit1 = [30 0.08 299]; 
% Correlation function from paper of A. Roberts "Statistical reconstruction 
% of 3D porous media from 2D images" (eq. 8), or equation (3.10) in this 

work 
%  Here c(1) is a correlation length, c(2) is a cutoff scale and c(3) is a 
%  domain scale 
analyt = @(c,r)((exp(-r./c(1))-(c(2)./c(1)).*exp(-

r./c(2))).*sin(2.*pi.*r./c(3)))./((1-c(2)./c(1)).*(2.*pi.*r./c(3))); 
c1 = lsqcurvefit(analyt,cinit1,Dist2,Rz); 
f1 = analyt(c1,Dist2); 
figure (4) 
plot(Dist2,Rz,'-o',Dist2,f1,'--') 
title('Comparison of target and reconstructed autocorrelation functions') 
xlabel('Distance, microns') 
ylabel('R_z(r)') 
legend ('Target R_z','Reconstructed R_z','Location', 'NorthEast'); 
%% Stochastic reconstruction by GRF 
V = s1.^3; % cube 
ImFolder = 'M:\MATLAB codes for thesis\S1';  
alpha = sqrt(2)*erfinv(1-2*phi); % equation (3.15) 

c = c1; % coefficents obtained from 'Solution of non-linear equation' 

section 
% Power spectral density function -> from Roberts, (eq. 9), or equation 

(3.12)  

% in this work 
PSD = @(freq,c) pi^(-2)*(c(1)-c(2))^(-

1)*c(1)^4*c(3)^4/((c(3)^2+c(1)^2*(freq*c(3)-

2*pi)^2)*(c(3)^2+c(1)^2*(freq*c(3)+2*pi)^2))... 
    -pi^(-2)*(c(1)-c(2))^(-1)*c(2)^4*c(3)^4/((c(3)^2+c(2)^2*(freq*c(3)-

2*pi)^2)*(c(3)^2+c(2)^2*(freq*c(3)+2*pi)^2)); 
% Define matrix 
Yijk = zeros(s1,s1,s1); 
Eff_rad = s1/2/s1; 
% case 1 
for ii = 2:s1/2+1 
    for jj = 2:s1/2+1 
        for kk = 2:s1/2+1 
            freq = sqrt((ii-1)^2+(jj-1)^2+(kk-1)^2)/s1; 
            if freq <= Eff_rad  
                Yijk(ii,jj,kk) = (randn+1i*randn)*sqrt(0.5*V*PSD(freq,c)); 
                Yijk(s1+2-ii,s1+2-jj,s1+2-kk) = conj(Yijk(ii,jj,kk)); 
            end 
        end 
for kk = s1/2+2:s1 
    freq = sqrt((ii-1)^2+(jj-1)^2+(kk-s1-1)^2)/s1; 
         if freq <= Eff_rad  
                Yijk(ii,jj,kk) = (randn+1i*randn)*sqrt(0.5*V*PSD(freq,c)); 
                Yijk(s1+2-ii,s1+2-jj,s1+2-kk) = conj(Yijk(ii,jj,kk)); 
         end 
end 
    end 
    for jj = s1/2+2:s1 
        for kk = 2:s1/2+1 
            freq = sqrt((ii-1)^2+(jj-s1-1)^2+(kk-1)^2)/s1; 
         if freq <= Eff_rad  
                Yijk(ii,jj,kk) = (randn+1i*randn)*sqrt(0.5*V*PSD(freq,c)); 
                Yijk(s1+2-ii,s1+2-jj,s1+2-kk) = conj(Yijk(ii,jj,kk)); 
         end 
        end 
    for kk = s1/2+2:s1 
            freq = sqrt((ii-1)^2+(jj-s1-1)^2+(kk-s1-1)^2)/s1; 
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         if freq <= Eff_rad  
                Yijk(ii,jj,kk) = (randn+1i*randn)*sqrt(0.5*V*PSD(freq,c)); 
                Yijk(s1+2-ii,s1+2-jj,s1+2-kk) = conj(Yijk(ii,jj,kk)); 
         end 
    end 
    end 
end 
% case2: ii = 1 
for jj = 2:s1/2+1 
    for kk = 2:s1/2+1 
            freq = sqrt((jj-1)^2+(kk-1)^2)/s1; 
         if freq <= Eff_rad  
                Yijk(1,jj,kk) = (randn+1i*randn)*sqrt(0.5*V*PSD(freq,c)); 
                Yijk(1,s1+2-jj,s1+2-kk) = conj(Yijk(1,jj,kk)); 
         end 
    end 
    for kk = s1/2+2:s1 
            freq = sqrt((jj-1)^2+(kk-s1-1)^2)/s1; 
         if freq <= Eff_rad  
                Yijk(1,jj,kk) = (randn+1i*randn)*sqrt(0.5*V*PSD(freq,c)); 
                Yijk(1,s1+2-jj,s1+2-kk) = conj(Yijk(1,jj,kk)); 
         end 
   end 
end 
% case3: jj = 1 
for ii = 2:s1/2+1 
    for kk = 2:s1/2+1 
            freq = sqrt((ii-1)^2+(kk-1)^2)/s1; 
         if freq <= Eff_rad  
                Yijk(ii,1,kk) = (randn+1i*randn)*sqrt(0.5*V*PSD(freq,c)); 
                Yijk(s1+2-ii,1,s1+2-kk) = conj(Yijk(ii,1,kk)); 
         end 
    end      
   for kk = s1/2+2:s1 
            freq = sqrt((ii-1)^2+(kk-s1-1)^2)/s1; 
         if freq <= Eff_rad  
                Yijk(ii,1,kk) = (randn+1i*randn)*sqrt(0.5*V*PSD(freq,c)); 
                Yijk(s1+2-ii,1,s1+2-kk) = conj(Yijk(ii,1,kk)); 
         end 
   end 
end 
% case4: kk = 1 
for ii = 2:s1/2+1 
    for jj = 2:s1/2+1 
            freq = sqrt((ii-1)^2+(jj-1)^2)/s1; 
         if freq <= Eff_rad  
                Yijk(ii,jj,1) = (randn+1i*randn)*sqrt(0.5*V*PSD(freq,c)); 
                Yijk(s1+2-ii,s1+2-jj,1) = conj(Yijk(ii,jj,1)); 
         end 
    end    
   for jj = s1/2+2:s1 
            freq = sqrt((ii-1)^2+(jj-s1-1)^2)/s1; 
         if freq <= Eff_rad  
                Yijk(ii,jj,1) = (randn+1i*randn)*sqrt(0.5*V*PSD(freq,c)); 
                Yijk(s1+2-ii,s1+2-jj,1) = conj(Yijk(ii,jj,1)); 
         end 
   end 
end 
% case5: ii = jj = 1 
for kk = 2:s1/2 
    freq = (kk-1)/s1; 
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         if freq <= Eff_rad  
                Yijk(1,1,kk) = (randn+1i*randn)*sqrt(0.5*V*PSD(freq,c)); 
                Yijk(1,1,s1+2-kk) = conj(Yijk(1,1,kk)); 
         end 
end 
% case6: ii = kk = 1 
for jj = 2:s1/2 
    freq = (jj-1)/s1; 
         if freq <= Eff_rad  
                Yijk(1,jj,1) = (randn+1i*randn)*sqrt(0.5*V*PSD(freq,c)); 
                Yijk(1,s1+2-jj,1) = conj(Yijk(1,jj,1)); 
         end 
end 
% case7: jj = kk = 1 
for ii = 2:s1/2 
    freq = (ii-1)/s1; 
         if freq <= Eff_rad  
                Yijk(ii,1,1) = (randn+1i*randn)*sqrt(0.5*V*PSD(freq,c)); 
                Yijk(s1+2-ii,1,1) = conj(Yijk(ii,1,1)); 
         end 
end 
% case 8: points of Yijk are real numbers 
freq = s1/2/s1; 
Yijk(1,1,s1/2+1) = randn*sqrt(V*PSD(freq,c)); 
Yijk(s1/2+1,1,1) = randn*sqrt(V*PSD(freq,c)); 
Yijk(1,s1/2+1,1) = randn*sqrt(V*PSD(freq,c)); 
Yijk(1,1,1) = randn*sqrt(V*PSD(0,c)); 
% solve for Ylmn - FFT 
yLMN = ifftn(Yijk); %3D inverse FFT 
clear Yijk; 
yLMN = sign(yLMN - alpha); 
for i = 1:s1 
imwrite(yLMN(:,:,i),[ImFolder '/' 'S1_images' int2str(000+i) '.bmp']); % 

write cross sections 
end 
my_folder = 'M:\MATLAB codes for thesis\S1\'; 
ImFolder = 'M:\MATLAB codes for thesis\S1\S1_filtered'; % mkdir(ImFolder);  
f = fullfile(my_folder,'*.bmp'); f = dir(f); % list bmp-files in the 

current folder 
fileNames = {f.name}; 
ff = natsortfiles(fileNames); % sort files in normal order (1,2,3,... 

instead of 1,11,100,...) 
for z = 1:s1 
  Im{z} = imread([my_folder,(ff{z})]); 
  II = bwareaopen(Im{z},5); % II = medfilt2(I,[5 5]); % opening & median 

filter to delete reconstruction's artifacts 
  imwrite(II,[ImFolder '/' 'S1_filtered' int2str(000+z) '.bmp']); % write 

filtered images 
end 
%% Find porosity of reconstructed sections, further image cropping and 

dilation-erosion 
fold = 'M:\MATLAB codes for thesis\S1\S1_filtered\'; 
fold3 = 'M:\MATLAB codes for thesis\S1\S1_recon_cropped\'; 
fold4 = 'M:\MATLAB codes for thesis\S1\S1_recon_cropped_dil_er\'; 
find_fil = fullfile(fold,'*.bmp'); 
fil_files = dir(find_fil); 
fil_names = {fil_files.name}; 
f_sort = natsortfiles(fil_names); 

% Counting the amount of white and black pixels, cropping 
for yy = 1:s1 
Images{yy} = imread([fold,(f_sort{yy})]); 
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%Images{yy} = im2bw(Images{yy}); 
SmallImages{yy} = imcrop(Images{yy}, [0 0 150 150]); % image cropping 
imwrite(SmallImages{yy},[fold2 '/' 'S4_recon_cropped' int2str(000+yy) 

'.bmp']); 
% Porosity will be found as the percentage of black pixels to the total 

amount of them 
pixs_1{yy} = numel(Images{1,yy}); 
white_pixs_1{yy} = sum(Images{1,yy}(:)); black_pixs_1{yy} = pixs_1{yy} - 

white_pixs_1{yy}; 
poro_1{yy} = white_pixs_1{yy} / pixs_1{yy}; 
se = strel('sphere',1); %sphere 2 
dilatedimages{yy} = imdilate(SmallImages{yy},se);   
erodedimages{yy}= imerode(dilatedimages{yy},se); 
imwrite(erodedimages{yy},[fold3 '/' 'S4_recon_dilated_eroded' 

int2str(000+yy) '.bmp']); 
pixs_2{yy} = numel(erodedimages{1,yy}); 
white_pixs_2{yy} = sum(erodedimages{1,yy}(:)); black_pixs_2{yy} = 

pixs_2{yy} - white_pixs_2{yy}; 
poro_2{yy} = white_pixs_2{yy} / pixs_2{yy}; 
end  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix D

 
   

 
108 

 

 

 



 

 
 
 
 
 
 
 
 
 

109 

Appendix E  
MATLAB code of creating DAT-file 

Function (provided by www.palabos.org): 

function createDAT(numFiles,path,baseInput,baseOutput) 

  
tic 
basename = [path '/' baseInput]; % base name of the bmp files 
fid = fopen(baseOutput, 'w');    % open the output file to write in 

  
%%%%%%%%%%%%%%%%%%%%% INLET SLICE %%%%%%%%%%%%%%%%%%%%%%%% 

  
% fname = [basename num2str(1, '%0.4i') '.bmp']; 
% fnameu = [basename num2str(2, '%0.4i') '.bmp']; 
fname = [basename num2str(1) '.bmp']; 
fnameu = [basename num2str(2) '.bmp']; 

  
BB = imread(fname ,'bmp'); 
CC = imread(fnameu ,'bmp'); 
nx = size(BB,2) 
ny = size(BB,1) 
B = zeros(ny,nx); 

  
wholeGeom=zeros(ny,nx,2); 

  
wholeGeom(:,:,1) = BB; 
wholeGeom(:,:,2) = CC; 

  
indexMin = find(wholeGeom==0); 
indexMax = find(wholeGeom>0); 

  
wholeGeom(indexMin) = 255; 
wholeGeom(indexMax) = 0; 

  
%i 
rA = circshift(wholeGeom,[0,1,0]); 
lA = circshift(wholeGeom,[0,-1,0]); 
fA = circshift(wholeGeom,[1,0,0]); 
bA = circshift(wholeGeom,[-1,0,0]); 
rfA = circshift(wholeGeom,[1,1,0]); 
rbA = circshift(wholeGeom,[-1,1,0]); 
lfA = circshift(wholeGeom,[1,-1,0]); 
lbA = circshift(wholeGeom,[-1,-1,0]); 

  
%i+1 
uA=circshift(wholeGeom,[0,0,1]); 
urA = circshift(wholeGeom,[0,1,1]); 
ulA = circshift(wholeGeom,[0,-1,1]); 

http://www.palabos.org/
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ufA = circshift(wholeGeom,[1,0,1]); 
ubA = circshift(wholeGeom,[-1,0,1]); 
urfA = circshift(wholeGeom,[1,1,1]); 
urbA = circshift(wholeGeom,[-1,1,1]); 
ulfA = circshift(wholeGeom,[1,-1,1]); 
ulbA = circshift(wholeGeom,[-1,-1,1]); 

  
for i = 1:nx 
        for j = 1:ny 
            if (wholeGeom(j,i,1) == 255 && rA(j,i)==0) 
                B(j,i) = 1; 
            elseif (wholeGeom(j,i,1) == 255 && lA(j,i)==0) 
                B(j,i) = 1; 
            elseif (wholeGeom(j,i,1) == 255 && fA(j,i)==0) 
                B(j,i) = 1; 
            elseif (wholeGeom(j,i,1) == 255 && bA(j,i)==0) 
                B(j,i) = 1; 
            elseif (wholeGeom(j,i,1) == 255 && rfA(j,i)==0) 
                B(j,i) = 1; 
            elseif (wholeGeom(j,i,1) == 255 && rbA(j,i)==0) 
                B(j,i) = 1; 
            elseif (wholeGeom(j,i,1) == 255 && lfA(j,i)==0) 
                B(j,i) = 1; 
            elseif (wholeGeom(j,i,1) == 255 && lbA(j,i)==0) 
                B(j,i) = 1; 
            elseif (wholeGeom(j,i,1) == 255 && uA(j,i)==0) 
                B(j,i) = 1;  
            elseif (wholeGeom(j,i,1) == 255 && urA(j,i)==0) 
                B(j,i) = 1; 
            elseif (wholeGeom(j,i,1) == 255 && ulA(j,i)==0) 
                B(j,i) = 1; 
            elseif (wholeGeom(j,i,1) == 255 && ufA(j,i)==0) 
                B(j,i) = 1; 
            elseif (wholeGeom(j,i,1) == 255 && ubA(j,i)==0) 
                B(j,i) = 1; 
            elseif (wholeGeom(j,i,1) == 255 && urfA(j,i)==0) 
                B(j,i) = 1; 
            elseif (wholeGeom(j,i,1) == 255 && urbA(j,i)==0) 
                B(j,i) = 1; 
            elseif (wholeGeom(j,i,1) == 255 && ulfA(j,i)==0) 
                B(j,i) = 1; 
            elseif (wholeGeom(j,i,1) == 255 && ulbA(j,i)==0) 
                B(j,i) = 1; 
            elseif (wholeGeom(j,i,1) == 0) 
                B(j,i) = 0; 
            else 
                B(j,i) = 2; 
            end 
        end 
end 

  
image(30*B) 
axis equal 
drawnow 

  
% printing first slice 
fprintf(fid, '%i\n', B); 

  
%%%%%%%%%%%%%%%%%%%%% INTERNAL SLICES %%%%%%%%%%%%%%%%%%%%%%%% 
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for ii = 2:numFiles-1 
ii 
% fname = [basename num2str(ii, '%0.4i') '.bmp']; 
% fnamed =[basename num2str(ii-1, '%0.4i') '.bmp']; 
% fnameu = [basename num2str(ii+1, '%0.4i') '.bmp']; 
fname = [basename num2str(ii) '.bmp']; 
fnamed =[basename num2str(ii-1) '.bmp']; 
fnameu = [basename num2str(ii+1) '.bmp']; 
AA = imread(fnamed ,'bmp'); 
BB = imread(fname ,'bmp'); 
CC = imread(fnameu ,'bmp'); 

  
wholeGeom = zeros(ny,nx,3); 
wholeGeom(:,:,1) = AA; 
wholeGeom(:,:,2) = BB; 
wholeGeom(:,:,3) = CC; 

  
indexMin = find(wholeGeom==0); 
indexMax = find(wholeGeom>0); 

  
wholeGeom(indexMin) = 255; 
wholeGeom(indexMax) = 0; 

  
%i 
rA = circshift(wholeGeom,[0,1,0]); 
lA = circshift(wholeGeom,[0,-1,0]); 
fA = circshift(wholeGeom,[1,0,0]); 
bA = circshift(wholeGeom,[-1,0,0]); 
rfA = circshift(wholeGeom,[1,1,0]); 
rbA = circshift(wholeGeom,[-1,1,0]); 
lfA = circshift(wholeGeom,[1,-1,0]); 
lbA = circshift(wholeGeom,[-1,-1,0]); 

  
%i-1 
dA=circshift(wholeGeom,[0,0,-1]); 
drA = circshift(wholeGeom,[0,1,-1]); 
dlA = circshift(wholeGeom,[0,-1,-1]); 
dfA = circshift(wholeGeom,[1,0,-1]); 
dbA = circshift(wholeGeom,[-1,0,-1]); 
drfA = circshift(wholeGeom,[1,1,-1]); 
drbA = circshift(wholeGeom,[-1,1,-1]); 
dlfA = circshift(wholeGeom,[1,-1,-1]); 
dlbA = circshift(wholeGeom,[-1,-1,-1]); 

  
%i+1 
uA=circshift(wholeGeom,[0,0,1]); 
urA = circshift(wholeGeom,[0,1,1]); 
ulA = circshift(wholeGeom,[0,-1,1]); 
ufA = circshift(wholeGeom,[1,0,1]); 
ubA = circshift(wholeGeom,[-1,0,1]); 

  
urfA = circshift(wholeGeom,[1,1,1]); 
urbA = circshift(wholeGeom,[-1,1,1]); 
ulfA = circshift(wholeGeom,[1,-1,1]); 
ulbA = circshift(wholeGeom,[-1,-1,1]); 

  
for i = 1:nx 
        for j = 1:ny 
            if (wholeGeom(j,i,2) == 255 && rA(j,i)==0) 
                B(j,i) = 1; 
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            elseif (wholeGeom(j,i,2) == 255 && lA(j,i)==0) 
                B(j,i) = 1; 
            elseif (wholeGeom(j,i,2) == 255 && fA(j,i)==0) 
                B(j,i) = 1; 
            elseif (wholeGeom(j,i,2) == 255 && bA(j,i)==0) 
                B(j,i) = 1;             
            elseif (wholeGeom(j,i,2) == 255 && rfA(j,i)==0) 
                B(j,i) = 1; 
            elseif (wholeGeom(j,i,2) == 255 && rbA(j,i)==0) 
                B(j,i) = 1; 
            elseif (wholeGeom(j,i,2) == 255 && lfA(j,i)==0) 
                B(j,i) = 1; 
            elseif (wholeGeom(j,i,2) == 255 && lbA(j,i)==0) 
                B(j,i) = 1;     
            elseif (wholeGeom(j,i,2) == 255 && dA(j,i)==0) 
                B(j,i) = 1;    
            elseif (wholeGeom(j,i,2) == 255 && drA(j,i)==0) 
                B(j,i) = 1; 
            elseif (wholeGeom(j,i,2) == 255 && dlA(j,i)==0) 
                B(j,i) = 1; 
            elseif (wholeGeom(j,i,2) == 255 && dfA(j,i)==0) 
                B(j,i) = 1; 
            elseif (wholeGeom(j,i,2) == 255 && dbA(j,i)==0) 
                B(j,i) = 1;      
            elseif (wholeGeom(j,i,2) == 255 && drfA(j,i)==0) 
                B(j,i) = 1; 
            elseif (wholeGeom(j,i,2) == 255 && drbA(j,i)==0) 
                B(j,i) = 1; 
            elseif (wholeGeom(j,i,2) == 255 && dlfA(j,i)==0) 
                B(j,i) = 1; 
            elseif (wholeGeom(j,i,2) == 255 && dlbA(j,i)==0) 
                B(j,i) = 1; 
            elseif (wholeGeom(j,i,2) == 255 && uA(j,i)==0) 
                B(j,i) = 1; 
            elseif (wholeGeom(j,i,2) == 255 && urA(j,i)==0) 
                B(j,i) = 1; 
            elseif (wholeGeom(j,i,2) == 255 && ulA(j,i)==0) 
                B(j,i) = 1; 
            elseif (wholeGeom(j,i,2) == 255 && ufA(j,i)==0) 
                B(j,i) = 1; 
            elseif (wholeGeom(j,i,2) == 255 && ubA(j,i)==0) 
                B(j,i) = 1;     
            elseif (wholeGeom(j,i,2) == 255 && urfA(j,i)==0) 
                B(j,i) = 1; 
            elseif (wholeGeom(j,i,2) == 255 && urbA(j,i)==0) 
                B(j,i) = 1; 
            elseif (wholeGeom(j,i,2) == 255 && ulfA(j,i)==0) 
                B(j,i) = 1; 
            elseif (wholeGeom(j,i,2) == 255 && ulbA(j,i)==0) 
                B(j,i) = 1;       
            elseif (wholeGeom(j,i,2) == 0) 
                B(j,i) = 0; 
            else 
                B(j,i) = 2; 
            end 
        end 
end 

  
image(30*B) 
axis equal 
drawnow 
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fprintf(fid, '%i\n', B); 
end 

  
%%%%%%%%%%%%%%%%%%%%% OUTLET SLICES %%%%%%%%%%%%%%%%%%%%%%%% 

  
% fname = [basename num2str(numFiles, '%0.4i') '.bmp']; 
% fnamed =[basename num2str(numFiles-1, '%0.4i') '.bmp']; 
fname = [basename num2str(numFiles) '.bmp']; 
fnamed =[basename num2str(numFiles-1) '.bmp']; 

  
AA = imread(fnamed ,'bmp'); 
BB = imread(fname ,'bmp'); 

  
wholeGeom = zeros(ny,nx,2); 
wholeGeom(:,:,1) = AA; 
wholeGeom(:,:,2) = BB; 

  
indexMin = find(wholeGeom==0); 
indexMax = find(wholeGeom>0); 

  
wholeGeom(indexMin)=255; 
wholeGeom(indexMax)=0; 

  
%i 
rA = circshift(wholeGeom,[0,1,0]); 
lA = circshift(wholeGeom,[0,-1,0]); 
fA = circshift(wholeGeom,[1,0,0]); 
bA = circshift(wholeGeom,[-1,0,0]); 
rfA = circshift(wholeGeom,[1,1,0]); 
rbA = circshift(wholeGeom,[-1,1,0]); 
lfA = circshift(wholeGeom,[1,-1,0]); 
lbA = circshift(wholeGeom,[-1,-1,0]); 

  
%i-1 
dA = circshift(wholeGeom,[0,0,-1]); 
drA = circshift(wholeGeom,[0,1,-1]); 
dlA = circshift(wholeGeom,[0,-1,-1]); 
dfA = circshift(wholeGeom,[1,0,-1]); 
dbA = circshift(wholeGeom,[-1,0,-1]); 
drfA = circshift(wholeGeom,[1,1,-1]); 
drbA = circshift(wholeGeom,[-1,1,-1]); 
dlfA = circshift(wholeGeom,[1,-1,-1]); 
dlbA = circshift(wholeGeom,[-1,-1,-1]); 

  
for i = 1:nx 
        for j = 1:ny 
            if (wholeGeom(j,i,2) == 255 && rA(j,i)==0) 
                B(j,i) = 1; 
            elseif (wholeGeom(j,i,2) == 255 && lA(j,i)==0) 
                B(j,i) = 1; 
            elseif (wholeGeom(j,i,2) == 255 && fA(j,i)==0) 
                B(j,i) = 1; 
            elseif (wholeGeom(j,i,2) == 255 && bA(j,i)==0) 
                B(j,i) = 1;  
            elseif (wholeGeom(j,i,2) == 255 && rfA(j,i)==0) 
                B(j,i) = 1; 
            elseif (wholeGeom(j,i,2) == 255 && rbA(j,i)==0) 
                B(j,i) = 1; 



Appendix E

 
   

 
114 

            elseif (wholeGeom(j,i,2) == 255 && lfA(j,i)==0) 
                B(j,i) = 1; 
            elseif (wholeGeom(j,i,2) == 255 && lbA(j,i)==0) 
                B(j,i) = 1;    
            elseif (wholeGeom(j,i,2) == 255 && dA(j,i)==0) 
                B(j,i) = 1; 
            elseif (wholeGeom(j,i,2) == 255 && drA(j,i)==0) 
                B(j,i) = 1; 
            elseif (wholeGeom(j,i,2) == 255 && dlA(j,i)==0) 
                B(j,i) = 1; 
            elseif (wholeGeom(j,i,2) == 255 && dfA(j,i)==0) 
                B(j,i) = 1; 
            elseif (wholeGeom(j,i,2) == 255 && dbA(j,i)==0) 
                B(j,i) = 1; 
            elseif (wholeGeom(j,i,2) == 255 && drfA(j,i)==0) 
                B(j,i) = 1; 
            elseif (wholeGeom(j,i,2) == 255 && drbA(j,i)==0) 
                B(j,i) = 1; 
            elseif (wholeGeom(j,i,2) == 255 && dlfA(j,i)==0) 
                B(j,i) = 1; 
            elseif (wholeGeom(j,i,2) == 255 && dlbA(j,i)==0) 
                B(j,i) = 1;                         
            elseif (wholeGeom(j,i,2) == 0) 
                B(j,i) = 0; 
            else 
                B(j,i) = 2; 
            end 
        end 
end 

  
image(30*B) 
axis equal 
drawnow 

  
% printing last slice 
fprintf(fid, '%i\n', B); 
fclose(fid); 
toc 

Example of the script (for S1 sample): 

numFiles = 200; 
path = 'S1_200'; 
baseInput = 'S1_200'; 
baseOutput = 'S1_200.dat'; 
createDAT_init(numFiles,path,baseInput,baseOutput);  



 

 
 
 
 
 
 
 
 
 

115 

Appendix F  
The permeability.cpp code (PALABOS) 

/* This file is part of the Palabos library. 

 * 

 * Copyright (C) 2011-2015 FlowKit Sarl 

 * Route d'Oron 2 

 * 1010 Lausanne, Switzerland 

 * E-mail contact: contact@flowkit.com 

 * 

 * The most recent release of Palabos can be downloaded at 

 * <http://www.palabos.org/> 

 * 

 * The library Palabos is free software: you can redistribute it and/or 

 * modify it under the terms of the GNU Affero General Public License as 

 * published by the Free Software Foundation, either version 3 of the 

 * License, or (at your option) any later version. 

 * 

 * The library is distributed in the hope that it will be useful, 

 * but WITHOUT ANY WARRANTY; without even the implied warranty of 

 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 

 * GNU Affero General Public License for more details. 

 * 

 * You should have received a copy of the GNU Affero General Public License 

 * along with this program.  If not, see <http://www.gnu.org/licenses/>. 

*/ 

/* Main author: Wim Degruyter */ 

   

  1 

  2 

  3 

  4 

  5 

  6 

  7 

  8 

  9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

#include "palabos3D.h" 

#include "palabos3D.hh" 

#include <vector> 

#include <cmath> 

 

using namespace plb; 

using namespace std; 

 

typedef double T; 

#define DESCRIPTOR descriptors::D3Q19Descriptor 

 

// This function object returns a zero velocity, and a pressure 

which decreases 

//   linearly in x-direction. It is used to initialize the 

particle populations. 

class PressureGradient { 

public: 

    PressureGradient(T deltaP_, plint nx_) : deltaP(deltaP_), 

nx(nx_) 

    { } 
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 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 

 35 

 36 

 37 

 38 

 39 

 40 

 41 

 42 

 43 

 44 

 45 

 46 

 47 

 48 

 49 

 50 

 51 

 52 

 53 

 54 

 55 

 56 

 57 

 58 

 59 

 60 

 61 

 62 

 63 

 64 

 65 

 66 

 67 

 68 

 69 

 70 

 71 

 72 

 73 

 74 

 75 

 76 

 77 

 78 

 79 

 80 

    void operator() (plint iX, plint iY, plint iZ, T& density, 

Array<T,3>& velocity) const 

    { 

        velocity.resetToZero(); 

        density = 1. - deltaP*DESCRIPTOR<T>::invCs2 / (T)(nx-1) * 

(T)iX; 

 

    } 

private: 

    T deltaP; 

    plint nx; 

}; 

 

void porousMediaSetup( MultiBlockLattice3D<T,DESCRIPTOR>& lattice, 

    OnLatticeBoundaryCondition3D<T,DESCRIPTOR>* boundaryCondition, 

    MultiScalarField3D<int>& geometry, T deltaP) 

{ 

    const plint nx = lattice.getNx(); 

    const plint ny = lattice.getNy(); 

    const plint nz = lattice.getNz(); 

 

    pcout << "Definition of inlet/outlet." << endl; 

    Box3D inlet (0,0,      1,ny-2, 1,nz-2); 

    boundaryCondition->addPressureBoundary0N(inlet, lattice); 

    setBoundaryDensity(lattice, inlet, 1.); 

 

    Box3D outlet(nx-1,nx-1, 1,ny-2, 1,nz-2); 

    boundaryCondition->addPressureBoundary0P(outlet, lattice); 

    setBoundaryDensity(lattice, outlet, 1. - 

deltaP*DESCRIPTOR<T>::invCs2); 

 

    pcout << "Definition of the geometry." << endl; 

    // Where "geometry" evaluates to 1, use bounce-back. 

    defineDynamics(lattice, geometry, new 

BounceBack<T,DESCRIPTOR>(), 1); 

    // Where "geometry" evaluates to 2, use no-dynamics (which 

does nothing). 

    defineDynamics(lattice, geometry, new 

NoDynamics<T,DESCRIPTOR>(), 2); 

 

    pcout << "Initilization of rho and u." << endl; 

    initializeAtEquilibrium( lattice, lattice.getBoundingBox(), 

PressureGradient(deltaP, nx) ); 

 

    lattice.initialize(); 

    delete boundaryCondition; 

} 

 

void writeGifs(MultiBlockLattice3D<T,DESCRIPTOR>& lattice, plint 

iter) 

{ 

    const plint nx = lattice.getNx(); 

    const plint ny = lattice.getNy(); 

    const plint nz = lattice.getNz(); 

 

    const plint imSize = 600; 

    ImageWriter<T> imageWriter("leeloo"); 

 

    // Write velocity-norm at x=0. 
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    imageWriter.writeScaledGif( createFileName("ux_inlet", iter, 

6), 

        *computeVelocityNorm(lattice, Box3D(0,0, 0,ny-1, 0,nz-1)), 

        imSize, imSize ); 

 

    // Write velocity-norm at x=nx/2. 

    imageWriter.writeScaledGif( createFileName("ux_half", iter, 

6), 

        *computeVelocityNorm(lattice, Box3D(nx/2,nx/2, 0,ny-1, 

0,nz-1)), 

        imSize, imSize ); 

 

} 

 

 

void writeVTK(MultiBlockLattice3D<T,DESCRIPTOR>& lattice, plint 

iter) 

{ 

        VtkImageOutput3D<T> vtkOut(createFileName("vtk", iter, 6), 

1.); 

        vtkOut.writeData<float>(*computeVelocityNorm(lattice), 

"velocityNorm", 1.); 

        vtkOut.writeData<3,float>(*computeVelocity(lattice), 

"velocity", 1.); 

} 

 

T computePermeability ( 

    MultiBlockLattice3D<T,DESCRIPTOR>& lattice, T nu, T deltaP, 

Box3D domain ) 

{ 

    pcout << "Computing the permeability." << endl; 

 

    // Compute only the x-direction of the velocity (direction of 

the flow). 

    plint xComponent = 0; 

    plint nx = lattice.getNx(); 

 

    T meanU = computeAverage ( 

        *computeVelocityComponent (lattice, domain, xComponent ) 

); 

 

 

    pcout << "Average velocity     = " << meanU             << 

endl; 

    pcout << "Lattice viscosity nu = " << nu                << 

endl; 

    pcout << "Grad P               = " << deltaP/(T)(nx-1)            

<< endl; 

    pcout << "Permeability         = " << nu*meanU / 

(deltaP/(T)(nx-1)) << endl; 

 

    return meanU; 

} 

 

int main(int argc, char **argv) 

{ 

    plbInit(&argc, &argv); 

 

    if (argc!=7) 
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171 
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173 

174 
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177 

178 

179 
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    { 

        pcout << "Error missing some input parameter\n"; 

        pcout << "The structure is :\n"; 

        pcout << "1. Input file name.\n"; 

        pcout << "2. Output directory name.\n"; 

        pcout << "3. number of cells in X direction.\n"; 

        pcout << "4. number of cells in Y direction.\n"; 

        pcout << "5. number of cells in Z direction.\n"; 

        pcout << "6. Delta P .\n"; 

        exit (EXIT_FAILURE); 

    } 

    std::string fNameIn  = argv[1]; 

    std::string fNameOut = argv[2]; 

 

    const plint nx = atoi(argv[3]); 

    const plint ny = atoi(argv[4]); 

    const plint nz = atoi(argv[5]); 

    const T   deltaP = atof(argv[6]); 

 

    global::directories().setOutputDir(fNameOut+"/"); 

 

    const T omega = 1.0; 

    const T nu    = ((T)1/omega-0.5)/DESCRIPTOR<T>::invCs2; 

 

    pcout << "Creation of the lattice." << endl; 

    MultiBlockLattice3D<T,DESCRIPTOR> lattice(nx,ny,nz, new 

BGKdynamics<T,DESCRIPTOR>(omega)); 

    // Switch off periodicity. 

    lattice.periodicity().toggleAll(false); 

 

    pcout << "Reading the geometry file." << endl; 

    MultiScalarField3D<int> geometry(nx,ny,nz); 

    plb_ifstream geometryFile(fNameIn.c_str()); 

    if (!geometryFile.is_open()) { 

            pcout << "Error: could not open geometry file " << 

fNameIn << endl; 

            return -1; 

    } 

    geometryFile >> geometry; 

 

    pcout << "nu = " << nu << endl; 

    pcout << "deltaP = " << deltaP << endl; 

    pcout << "omega = " << omega << endl; 

    pcout << "nx = " << lattice.getNx() << endl; 

    pcout << "ny = " << lattice.getNy() << endl; 

    pcout << "nz = " << lattice.getNz() << endl; 

 

    porousMediaSetup(lattice, 

createLocalBoundaryCondition3D<T,DESCRIPTOR>(), geometry, deltaP); 

 

    // The value-tracer is used to stop the simulation once it has 

converged. 

    // 1st parameter:velocity 

    // 2nd parameter:size 

    // 3rd parameters:threshold 

    // 1st and second parameters ae used for the length of the 

time average (size/velocity) 

    util::ValueTracer<T> converge(1.0,1000.0,1.0e-4); 
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    pcout << "Simulation begins" << endl; 

    plint iT=0; 

 

    const plint maxT = 30000; 

    for (;iT<maxT; ++iT) 

    { 

        if (iT % 20 == 0) { 

            pcout << "Iteration " << iT << endl; 

        } 

        if (iT % 500 == 0 && iT>0) { 

            writeGifs(lattice,iT); 

        } 

 

        lattice.collideAndStream(); 

        converge.takeValue(getStoredAverageEnergy(lattice),true); 

 

        if (converge.hasConverged()) 

        { 

            break; 

        } 

    } 

 

    pcout << "End of simulation at iteration " << iT << endl; 

 

    pcout << "Permeability:" << endl << endl; 

    computePermeability(lattice, nu, deltaP, 

lattice.getBoundingBox()); 

    pcout << endl; 

 

    pcout << "Writing VTK file ..." << endl << endl; 

    writeVTK(lattice,iT); 

    pcout << "Finished!" << endl << endl; 

} 
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Appendix G  
OpenPNM examples 

Import network models generated by maximal ball algorithm (Imperial College London): 

import OpenPNM as op 
import OpenPNM.Utilities.IO as io 
pa = r'C:\Users\Radmila\Desktop\files' 
pref = 'S1' 
statoil = io.Statoil; 
pn = op.Network.MatFile() 
statoil.load(network=pn, path=pa, prefix=pref) 
op.export_data(pn) 
 

The following code shows how to perform the mercury intrusion porosimetry simulation using 

a simple regular lattice network: 

import OpenPNM as op 
pn = op.Network.Cubic(shape=[10, 10, 10], spacing=0.0001) 
geo = op.Geometry.Stick_and_Ball(network=pn, pores=pn.Ps,throats=pn.Ts) 
Hg = op.Phases.Mercury(network=pn) 
Air = op.Phases.Air(network=pn) 
phys = op.Physics.Standard(network=pn, phase=Hg, pores=pn.Ps,throats=pn.Ts) 
MIP = op.Algorithms.Drainage(network=pn) 
MIP.setup(invading_phase=Hg, defending_phase=Air) 
MIP.set_inlets(pores=pn.pores(['top', 'bottom'])) 
MIP.run() 
MIP.plot_drainage_curve() 
op.export_data(network=pn, filename='test', fileformat='VTK') 
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