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Abstract  

In the present study, using stream-dwelling brown trout (Salmo trutta) as a model species,   

movement through the summer and autumn in two large Norwegian rivers, River Glomma 

and River Gudbrandsdalslågen, was observed. In addition fish from each river were sampled 

for age and growth analysis.  The aim of the study was to test for which individual 

characteristics (sex, body mass, body condition factor, tagging site and cohort) that influenced 

movement and to test for correlations between growth rates (both immature and mature) and 

movement (movement during the growth season and spawning migration) on a large 

spatiotemporal scale.   

 

Model selection showed that body condition was negatively related to movement during the 

growth season and that there was a difference in movement activity between the two rivers. 

Female body size had a positive effect on the activity level shown for movement during the 

growth season and spawning period; however no such relationship was found for males. As 

this relationship has not been shown before in salmonids, the reason for this pattern remains 

unknown. However, one might speculate that it is related to differences between the two sexes 

in size-specific energy requirements associated with spawning.  Neither movement during the 

growth season nor spawning migration could be predicted from growth rates experienced as 

juveniles. This indicates that variation in movement among individuals is not temporally 

consistent throughout life in brown trout.  
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Sammendrag 

Bevegelse hos stedfast brunørret (Salmo trutta) ble observert gjennom sommeren og høsten i 

to store norske elver, Glomma og Gudbrandsdalslågen. I tillegg ble fisk fra hver elv 

aldersbestemt og analysert for vekst gjennom skjellesing. Hensikten med studiet var å se om 

noen av brunørretens individuelle karaktertrekk (kjønn, kroppsvekt, kroppskondisjon, 

merkeplass og kohort) påvirket bevegelse og å teste for en korrelasjon mellom vekstrate (både 

hos umodne og kjønnsmoden individer) og bevegelse (bevegelse i vekstsesongen og 

gytevandring) på en stor romlig- og tidsskala.  

 

Modellseleksjon viste at kroppskondisjon var negativt korrelert med bevegelse i 

vekstsesongen og at det var en forskjell i hvor mye populasjonene beveget seg i de to elvene. 

Kroppsvekt hos huer hadde en positiv effekt på bevegelse i vekstsesongen og gytevandringen. 

Kroppsvekt hadde ikke lignende effekt for hanner. Ettersom dette forholdet ikke har blitt vist 

før hos laksefisk, kan man bare spekulere i årsaken. Likevel kan man tenke seg at forskjeller i 

forhold til størrelsesspesifikke energibehov assosiert med gytinga kan være ulikt mellom 

kjønnene. Verken bevegelse under vekstsesongen eller gytevandringen kunne bli forutsett fra 

vekstrater erfart som juvenil. Dette indikerer at variasjon i bevegelse blant individer ikke er 

konstant over tid gjennom livet til brunørreten.   
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Introduction  

For animals, movement is one of the primary behavioral patterns (Kahler et al. 2001). 

Movement permits animals to respond to their physical habitat, conspecifics and other biotic 

parameters in their environment in order to increase their fitness. These movements occur 

over many scales of space and time (Dingle 1996; Kahler et al. 2001). One group of 

organisms that are commonly considered to be suitable model organisms for movement is 

stream fish, since longitudinal movement is easy to model in one single dimension, and hence 

this reduces model complexity. Furthermore, stream fish can be efficiently sampled and 

individually tagged and be observed in their natural environment (Knouft and Spotila 2002; 

Rodriguez 2002). Many salmonid populations inhabit streams throughout the majority of their 

lives. Movement on a seasonal scale like spawning migration and moving between wintering 

and feeding habitats are typical characteristics of salmonid life histories (Jonsson and Jonsson 

2011). Stream-dwelling salmonids however, have for a long time been characterised as having 

restricted movement throughout their entire lifespan (Gerking 1959). Although some forms of 

movement like spawning migration are recognized, the focus has been on the restricted 

territories the fish establish for feeding during the summer months (Gowan et al. 1994). 

Research during the lasts decades, using radio telemetry to study movement, has revealed that 

stream-dwelling salmonids have more variable movement patterns than first anticipated and 

can move from a few meters to many kilometres (Höjesjö et al. 2007; Jonsson and Jonsson 

2011). The home range over a season can therefore be much larger and overlap substantially 

among individuals (Höjesjö et al. 2007), indicating a complex social structure. Most 

organisms have to move through a mosaic environment where they try to optimise foraging 

and safety. Thus, they cannot spend all of their time in a limited spatial patch since their needs 

change over a single day and a year (Barraquand and Benhamou 2008). The major focus 

regarding influences on movement has been in relation to environmental factors like water 

levels and temperature (Popoff and Neumann 2005; Zimmer et al. 2010), but there is also an 

increasing interest in the influence of individual characteristic on movement. 

 

Movement is a trait that may be predicted to increase the risk of predation exposure, but also 

to influence growth rates. Tracking the spatiotemporal variation in environmental quality can 

have a positive influence on growth rates (Werner and Anholt 1993). Active individuals might 

find more energetically profitable areas or locations that minimise energy cost (Dieterman et 

al. 2012), and as a result mobile individuals may show more rapid growth than immobile 
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individuals (Forseth et al. 1999; Jonsson 1985). Growth rate has long been used as a surrogate 

measure for fitness (Schluter 1995). As a result of the positive fitness consequences of having 

a high growth rate one should thus expect selection for rapid growth and maturing at an early 

age (Arendt 1997). However, growth often fluctuates noticeably and in nature one often 

observes an intermediated growth (Elliott 1994; Gotthard 2000). Substantial intra-cohort 

variation in body size is often displayed in stream-resident salmonids; this may give selection 

a basis to act on (Elliott 1994). For an organism to increase its growth rate it has to increase 

its food intake (i.e. the time spent feeding). This will likely increase the time spent moving 

around and reduce the time spent vigilant. Sedentary individuals may benefit from keeping 

more cryptic and have a lower mortality rate (Biro et al. 2006; Lankford et al. 2001). 

Therefore in the presence of predators a fish may alter its behaviour to feed in less risky 

habitats, although the habitat may be less food rewarding (Werner et al. 1983). Support has 

been for movement affecting growth in salmonids, where mobile fish grew faster (Grant and 

Noakes 1987; Kahler et al. 2001; Naslund 1990; Steingrimsson and Grant 2003). Martin-

Smith and Armstrong (2002) found that growth was positively correlated to the degree of 

movement between areas of a stream, on a small spatial scale (meters). However, most of 

these studies have looked at the relationship on a small spatial scale and little is known about 

the correlation between movement and growth in river-dwelling salmonids on a large spatial 

scale.  

In the present study movement through the summer and autumn in brown trout in two large 

Norwegian rivers, River Glomma and River Gudbrandsdalslågen, was observed. Fish from 

each river were tagged with radio transmitters and sampled for age and growth analysis. The 

data on movement and growth of individual fish allowed me to address two issues: First I 

tested whether the amount of movement during the growth season or spawning migration was 

correlated with individual characteristics (sex, body mass, body condition factor, tagging site 

and cohort) recorded during tagging. Second, using back-calculations based on scale samples, 

I examined whether growth rates experienced earlier in life (as juvenile or the last year prior 

to tagging) were correlated with movements during the growth season or spawning migration. 

Some studies have tested whether heterogeneity observed in the movement pattern among 

mature fish is constant over time in an individual’s life (Morrissey and Ferguson 2011). If so, 

this may suggest that correlations between growth and movement may be maintained 

throughout life, with different individuals consistently differing in their choice with regard to 

the trade-off between growth and survival.  
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Method  

Telemetry data and fish scale samples were provided by the Norwegian Institute for Nature 

Research (NINA) division in Lillehammer (courtesy of Dr. Jon Museth). The telemetry study 

was approved by the National Animal Research Authority in accordance with national 

legislation.   

 

Study sites  

Brown trout were monitored and sampled from the two rivers Glomma and 

Gudbrandsdalslågen situated in the south-eastern part of Norway. The study site in River 

Glomma consisted of a 85 kilometer reach between Røstefossen in Os municipality (6932775 

N, 616537 E) and Høyegga in Alvdal municipality (6877763 N, 595286 E). Røstefossen 

power station prevents any upstream movement and Høyegga is set as delimitation for the 

study site in Glomma (Museth et al. 2012).   

 

The study site in River Gudbrandsdalslågen consisted of a 54.5 kilometer reach between 

Rostenfallene in Sel municipality (6859695 N, 521680 E) and Harpefoss in Sør-Fron 

municipality (6827814 N, 544579 E). Harpefoss power station works as a migration barrier 

whereas Rostenfallene is a natural barrier is a natural barrier to upstream migration. In 

addition to the reach between Rostenfallene and Harpefoss, 15 km of the major tributary 

River Otta was included (i.e. up to the migration barrier at Eidefoss power plant)(Museth et 

al. 2009).  

 

Both rivers support multispecies fish communities, the study section of River 

Gudbrandsdalslågen contain grayling (Thymallus thymallus), brown trout (Salmo trutta) and 

European minnow (Phoxinus phoxinus). In addition, the following species are found in River 

Glomma: whitefish (Coregnus lavaretus), pike (Esox lucius), perch (Perca fluviatilis), roach 

(Rutilus rutilus), European minnow, bullhead (Cottus poecilopus), burbot (Lota lota), and 

brook lamprey (Lampetra planeri) (Museth et al. 2012).   
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Study organism  

Brown trout (Salmo trutta), belongs in the family Salmonidae (Elliott 1994). Brown trout can 

be divided into three forms; lake-run brown trout, sea-run brown trout and resident brown 

trout (Pakkasmaa and Piironen 2001). Although the different forms have different habitat 

requirements and movement behaviors, they belong to the same population and have the 

ability to interbreed (Arnekleiv and Ronning 2004). Stationary brown trout has an ontogenetic 

life cycle that consists of four stages; alevin (hatched individuals with yolk sac), fry 

(emerging individuals), parr (older juveniles) and mature individuals (Elliott 1994). Habitat 

preference changes with size, life stage and season. Larger individual favor deeper stream 

areas than smaller individuals, fry prefers more aquatic vegetation than parr and substrate 

preference varies through the season (MakiPetays et al. 1997). Brown trout is an opportunistic 

feeder and diet and varies with season, age, size, habitats and among individuals. Small 

individuals feed on zoobenthos, terrestrial insects and occasionally zooplankton. Only the 

individuals that have reached a length of about 15 cm or more may become fully or partial 

piscivor (L'Abée-Lund et al. 1992). Northern populations of brown trout have a larger feeding 

activity in the spring and early summer, when water temperatures is increasing, than during 

other parts of the year (Klemetsen et al. 2003). Their breeding season in my study areas lasts 

from late September to mid October.  

 

Fish capture and telemetry  

In River Glomma 47 fish were captured between April and October 2010 from 12 different 

localities. In River Gudbrandsdalslågen a total of 201 fish from 40 localities were caught 

during three different periods; April to September 2008, March to November 2009 and April 

to November 2010. The fish were caught through cooperation with local anglers and were 

kept in fish traps at the tagging site for a maximum of three days before tagging. All fish were 

anaesthetized to surgical level by water administrated 2-phenoxyethanol (0.7 ml l
-1

) for two to 

three minutes prior to tagging. The anaesthesia resulted in a loss of voluntary and involuntary 

muscle movement. The handling time lasted between three to eight minutes such that the 

anaesthetic did not need to be sustained. Throughout the procedure oxygenated water was 

pumped over the gills (Museth et al. 2011). For immature fish internal radio transmitters was 

used and for spawning fish an external radio transmitter was applied (model F1960, F1970, 

Museth et al., 2012). The external transmitter was positioned laterally above the lateral line on 

the right side of the dorsal fin. Wires coated with plastic were attached through the dorsal 
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musculature to secure the transmitter (Bridger and Booth 2003). For immature fish internal 

transmitters (model F1830, F1580, F1170 (coil)) were surgically implanted in the peritoneal 

cavity through a ventral incision made in front of the pelvic fin. The fish were placed with the 

ventral side upwards in a V-shaped operation device. Two to three sutures were used to close 

the incision. After the operation, for both the internal and the external transmitters, the fish 

were immediately placed in a recovering tub with fresh water from the river. Although it took 

between 1.5 to 4 minutes for the fish to recover, it was kept in the tub 15-30 minutes to be 

monitored prior to release (Museth et al. 2012). 

 

For both types of transmitters the general “2% rule”, where the weight of the transmitter 

should not exceed 2% of the fish body mass in air, was applied (Winter 1996). The 

transmitters were provided by Advanced Telemetry Systems (ATS). A Challenger Receiver 

(model R2100) manufactured by ATS (USA) and a three-element folding Yagi antenna 

(model 12762) were operated from a car, and occasionally on foot (Museth et al. 2011).  

 

The radio tagged fish were positioned once a week, and twice a week during the spawning 

period (specified below). During each positioning each fish was assigned to a 500 meter river 

zone. 

 

In addition to the tagging, fork length (±1 mm), body mass (±5g) and sex (through external 

characters) were recorded. A scale sample for ageing and growth analysis was taken from 

each individual. Moreover, capture date, tagging site and whether the fish appeared to be 

spawning the subsequent fall or not was recorded. According to Museth et al. (2011) there are 

indications that a large fraction of the sexually mature part of the population spawn every 

year, for both rivers. It is however possible that some individuals will not spawn and this can 

be a source of error. To minimize this error, particular attention was given to the movement 

pattern ahead of the spawning period and the concentration of radio tagged so non-spawning 

individuals could be excluded.  
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Fish scale analysis  

Scale-reading is a validated method for age estimation of brown trout (Rifflart et al. 2006). As 

a fish grow the growth is reflected in the scale, through rings called circulii laid down from 

the center of the scale (Nordeng and Jonsson 1978). Food availability and temperature 

changes cause circulii to be laid down at different rates, resulting in differences between 

summer and winter zones (Fig. 1).  Age is given by the number of winter zones. The distances 

between winter zones are used to back-calculate growth every year of life, assuming direct 

proportion between scale radius and fish (Lea, 1910), 

  

  Li = (Si/Sc)Lc        (i) 

 

, where Lc og Sc refer to fish body length and scale radius at the time of capture, respectively. 

Li and Si are the corresponding measurements at the time of formation of the ith scale mark 

for winter i = 1, 2,…, n. (Francis 1990)  

 

To minimize the errors in the age determination process each individual scale was read twice. 

A Nikon Ri1 camera fitted to a microscope was used to photograph the scales. The scale 

reading was done with Image Pro Plus. 

 

A total of 296 fish scale was read; there were however numerous scale samples only 

containing replacement scales, which had to be excluded. Thus growth estimates were 

available from a total of 203 individuals.  

 

 

Fig. 1 Picture of a brown trout 

scale. The black line represent the 

anterior transect which is followed 

when reading of age. From the 

center of the scale eight winter 

zones are evident.    
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Definition of movement- and growth measurements  

Movement measurements  

Average daily large scale movement during the growth season (hereafter termed summer 

movement) was defined to include the months May, June and July in both rivers. The period 

was chosen to exclude potential migration from winter habitat to summer habitat, as well as 

the spawning migration. The spawning period is between September 15
th

 and October 15
th

 in 

River Glomma and between September 25
th

 and October 15
th

 in River Gudbrandsdalslågen 

(Museth et al. 2012; Museth et al. 2011) There is large variation among individuals regarding 

the start of spawning migration relative to actual spawning. Spawning migration may occur 

immediately; prior to spawning or it may start as early as August. Thus by excluding data 

from August and onwards I avoid including spawning migration into the summer movement 

measurement. The absolute distance between two consecutive positionings divided by the 

number of days in the interval was used as a measure of minimum distance moved per day. 

The average was then calculated from these measures for each individual. The other measure 

of movement was spawning migration distance. Spawning migration distance was defined as 

the largest absolute distance between the most downstream and the most upstream position 

observed during the whole observation period (i.e. May – October) 

Growth measurements  

Juvenile growth during the first four years of their lives was measured as the estimated body 

size achieved at the end of age one to age four (mm year
-1

). Brown trout in the two rivers 

mature at age 5-6 around 30 cm (Jon Museth, pers. comm.). After the first sexually maturation 

growth declines as most of their available resources are spent on reproduction (Reznick 

1983). Mature growth was defined as growth (mm year
-1

) the year before tagging.  
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Statistical analysis   

I first test whether the amount of movement during the growth season or spawning migration 

were correlated with individual characteristics (sex, body mass, body condition factor, tagging 

site and cohort) recorded during tagging. The full models consisted of the fixed effects sex 

(S), river (R), body condition factor (K) and body mass (W). In addition to the main effects of 

these fixed effects, I also included the possibility for different effects of body mass between 

males and females through an interaction term between S and W. Cohort and tagging site 

were entered as random factors.  

 

Thus, the full model for movement (M, either representing summer movement or spawning 

migration) is given as   

  

 Mi = α + β1Ki + β2Ri + β3Si + β4Wi+ β5GiWi + aj,k + ԑi   (ii) 

 

 

The index i denotes individuals, α and β are the parameters for the fixed factors and aj,k 

represents the random factors cohort and tagging site.  

 

The body condition factor K was calculated according to the Fulton formula (Sømme 1954) as 

 

 K =(100 x W)/L
3
       (iii) 

 

,where L is the length of the fish (cm) and W designates the body mass (g). 

 

For summer movement, number of observations did not have a statistically significant effect 

and was thus not included in the analysis.  

 

To test for growth (immature and mature), the full model consisted of the fixed effects 

spawning migration, summer movement, sex, river and body mass. Cohort and tagging site 

were entered as random factors. To avoid overly complex models, no interaction was 

considered.  
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Thus the full models for juvenile growth (G, immature or mature) is given as  

 

 Gi = α + β1M + β2Ri + β3Si + β4Wi + aj,k  + ԑi    (iv) 

 

 

 

All statistical analyses were conducted using the statistical software R, v. 2.15.0 (R 

Development Core Team 2012)  

 

To test for an effect of cohort and tagging site, I first compared the models with the same 

fixed effects, but with different random structures using the package nlme in R (Pinheiro et al. 

2009). I compared four models; the random structures to the mixed effect models were 

cohort/tagging site and cohort and tagging site respectively. To compare the four models the 

function linear mixed effects (lme) were used with the mixed effect models, and the 

generalized least square function (gls) was applied for the linear model. All the calculations 

were based on REML and compared with ANOVA and I selected the best random structure 

based on likelihood ratio tests (Zuur et al. 2009).  

 

To compare the different fixed effects structure a model selection approach was used to obtain 

the optimal model (Zuur et al. 2009). The calculations were based on maximum likelihood 

(ML) and compared using likelihood ratio tests. Fixed factors were removed until no further 

model simplification could be made without causing a significant (P<0.05) decrease in log-

likelihoods. After finding the optimal model the models were refitted with REML and 

validated. 

 

The residuals for the full model for both spawning migration and summer movement showed 

heteroscadasticity relative to body mass and sex. The function varPower was therefore applied 

to stabilise the variables according to body mass (P<0.0001 for both models). The form 

argument of the function varPower was also incorporated to allow for dissimilar variation 

between the two sexes (Zuur et al. 2009). The stabilisation was successful (visually assessed). 

 

The residuals for the growth models showed no signs of heteroscadasticity and no weights 

argument was specified.  
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Result 

Summer movement 

In general brown trout from both rivers showed a tendency for low summer movement; 61% 

moved an average of 40 meter or less per day. There was some variation among individuals as 

12% moved 100 meters or more per day and 8% moved 150 meters or more per day. Median 

summer movement for River Glomma and River Gudbrandsdalslågen was 61 meters and 27 

meters per day, respectively (Fig. 2).   

 

Fig. 2 The distribution of summer movement of brown trout in (a) River Glomma and (b) 

River Gudbrandsdalslågen.  

 

The comparison of models with different random structures showed no indication of a cohort 

effect or an effect of tagging site on summer movement (P≥0.9998). The model selection 

showed that year of capture was not statistically significant in explaining summer movement 

(P=0.1287) and it was therefore removed from the model. No remaining terms could be 

removed (P≤0.0447). The main terms population and body condition factor K and the 

interaction between body mass and sex were significantly related to summer movement (table 

1). The brown trout in River Gudbrandsdalslågen was estimated to move on average 39 meter 

per day less than those in River Glomma. K was negatively related to summer movement 

which may indicate that a fish in good condition move less. Body mass was positively related 

to summer movement for females, which indicates that larger females tend to move more in 

the summer than smaller females. For males no such relationship was found (Fig. 3a) 
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Table 1 Summary table of a gls model, describing variation in summer movement (meters) of 

brown trout in River Glomma and River Gudbrandsdalslågen. N=78 individuals. 

  

 Estimates SE T P 

Intercept 230.25 51.20 4.49 <0.0001 

Population2
1
 -39.19 11.17 -3.47 0.0009 

Body mass 0.003 0.02 0.16 0.8706 

Sex2
2
 -88.52 32.06 -2.76 0.0073 

Fish condition -167.97 60.1 -2.79 0.0066 

Body massxSex2
3
 0.16 0.06 2.52 0.0140 

1 
Estimate for River Gudbrandsdalslågen relative to the intercept (i.e. that for River Glomma). 

2 
Estimate given for females relative to the intercept (i.e. that for males) 

3
 Estimate given for body mass effect in females relative to the main effect (i.e. that for 

males). 

 

 

 

Fig 3. The estimated relationship between body mass and movement for male and female 

brown trout during  a) summer movement and b) spawning migration. 
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Spawning migration  

Individual spawning migrations varied from staying within one zone to moving 24 kilometres 

(Fig 4). During the spawning period 40.5% of the brown trout were relatively stationary; 

either staying within one 500 meter zone or moving between two 500 meter zones. A large 

proportion, 80.2% of the brown trout moved 5 kilometres or less, while 7.7% moved more 

than 10 kilometres. The median spawning migration was 1.5 kilometres. 

 

 

Fig. 4 The pooled distribution of spawning migration distances in brown trout in River 

Glomma and River Gudbrandsdalslågen.  

 

 

The comparison of models with different random structures showed no indication of a cohort 

effect or an effect of tagging site on spawning migration (P≥0.1704). The main terms capture 

year, K and population were removed as they were not statistically significant in explaining 

spawning migration distance (P≥0.4480). No remaining terms could be removed (P≤0.032). 

There was a significant interaction between body mass and sex. Body mass was positively 

related to spawning migration for females. For males no such relationship was found (Table 2, 

Fig. 3b).   
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Table 2 Summary table of a gls model, describing variation in spawning migration distance 

(meters) of brown trout in River Glomma and River Gudbrandsdalslågen. N=98 individuals. 

 Estimates SE T P 

Intercept 1551.56 950.48 0.92 0.1059 

Body mass 1.29 1.40 1.63 0.3599 

Sex2
1
 -3533.12 1793.50 -1.30 0.0518 

Body mass x Sex2
2 8.43 3.37 2.50 0.0140 

1 
Estimate given for females relative to the intercept (i.e that for males) 

2
 Estimate given for body mass effect on females relative to the main effect (i.e. that for 

males) 

 

 

Juvenile growth    

Juvenile growth was fairly normally distributed for all the four age classes, with few 

individuals showing either very low or very high growth (Fig 5a-d) 

  

The comparison of models with different random structures showed no evidence of a cohort 

effect or an effect of tagging site on juvenile growth at either age one, two, three or four 

(P≥0.1947), hence the gls model was used in the model selection. The model selection 

showed that none of the main terms sex, summer movement, spawning migration, body mass 

or population were significantly explaining juvenile growth for any age (P≥0.2019).     
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Fig 5. The pooled distribution of juvenile growth mean±sd for brown trout, for both rivers at 

a) age 1; 51±12 mm b) age 2; 111±20 mm c) age 3; 174±33 mm and d) age 4; 239±45 mm  
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Mature growth  

Mature growth was fairly normally distributed with a mean of 43±2 mm per year and a mean  

of 34±3 mm per year in the rivers Glomma and Gudbrandsdalslågen, respectively (Fig 6a-b).  

 

 

 

Fig 6. The distribution of mature growth (mm) in a) River Glomma and b) in River 

Gudbrandsdalslågen.   

There was no indication that tagging site influenced growth after maturation (P=0.9998). 

Cohort was almost significant (P=0.0501), but the gls model was used in the model selection 

that followed. The fixed factors summer movement, spawning migration, sex and body mass 

and did not influence adult growth (P≥0.154). Population could not be removed as it proved 

significant (P<0.001), reflecting the higher growth in River Glomma than in River 

Gudbrandsdalslågen.   
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Discussion 

Overall, this study showed that brown trout were relatively stationary as the highest 

proportion of the fish showed a tendency for low movement activity during the summer 

months (Fig. 2). The same trend was apparent for spawning migration distance (Fig. 4). This 

is consistent with other findings, with a large resident part and a smaller mobile part in the 

fish population (Heggenes et al. 1991; Hesthagen 1988; Knouft and Spotila 2002; Solomon 

and Templeton 1976). Gowan et al. (1994) however have questioned the terms sedentary and 

mobile fractions in a population. Movement behaviour may be more plastic, allowing an 

individual to switch between strategies according to the environment. Harcup et al. (1984) 

tracked a sample of a fish population for two years and recorded that individuals adapted the 

degree of movement: mobile fish became resident and the other way around. A common 

movement pattern for stream salmonids is a high turnover rate, but short movement distance 

(Gowan and Fausch 1996). This kind of movement pattern may be characterized as ranging 

behaviour where the individuals leave their current habitat to monitor and seek similar 

habitats with better feeding opportunities on a large spatial scale (Gowan and Fausch 2002). 

These kinds of normal exploratory trips may suggest that the use of area is larger than 

commonly estimated (Smithson and Johnston 1999). 

  

Summer movement  

The model for movement in the growth season yields several results. The result indicates that 

there is less movement in River Gudbrandsdalslågen than in River Glomma (Table 1). The 

variation in movement in the growth season between rivers may reflect differences in 

environmental factors like temperature, water discharge and distribution among different 

habitats – which is reflected in the movement activity between rivers in the growth months. 

As specific environmental variables have not been recorded and taken into consideration in 

this study it is difficult to infer which abiotic variables may be most important.   

There was also evidence for effects of individual characteristics on movement within 

populations as the body condition factor (K) was negatively correlated to summer movement 

(Table 1). There are two potential explanations for this result. First, K may be related to 

dominance. Studies have shown how dominant individuals reside in the most profitable 

feeding or breeding areas, and exclude subordinates (Fox et al. 1981; Krebs 1971). 

Furthermore, Hansen and Closs (2009) demonstrated that subordinate individuals relocated at 

a higher frequency to other pools than individuals of higher social rank. A reason for the 
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higher relocation rate can be a “department rule” where a decline in the individual’s energy 

reserves will make the individual more willing to take risks for higher food intake (Railsback 

et al. 1999). Dominant individuals that reside in the most profitable feeding sites will have a 

higher food intake and grow faster, because relocation does not always result in higher growth 

rates (Fausch 1984; Hansen and Closs 2009; Höjesjö et al. 2002). The spatio-temporal 

distribution of resources has been shown to influence dominance (Grand and Grant 1994; 

Martin-Smith and Armstrong 2002). Within the 500 meter zone that is applied in this study 

there can be very different micro – and mesohabitats. Dominance is likely to work on a much 

smaller spatial scale than what is used in this study, which perhaps makes it more unlikely 

that dominance is affecting the pattern we see between K and summer movement. An 

alternative mechanism may be effects of K on food requirement. The relationship between 

summer movement and K can reflect that individuals in poor body condition must be more 

active and search for improved resources (Gowan and Fausch 1996; Mesick 1988; Naslund et 

al. 1993; Nordeng 1983). Hilderbrand and Kershner  (2004) found a negative relationship 

between mobility and condition in stream-dwelling Bonneville cutthroat, this correlation was 

however in relation to fish of similar lengths in the general population. Mobile and resident 

individuals did not differ in condition or growth the following year. Due to the spatial scale in 

this study food requirements may be a more probable cause for the negative relationship 

between K and summer movement activity than dominance.  

 

Movement activity in females is dependent on body mass, as body mass has a positive effect 

on the distance moved. Body mass did not influence the distance moved for males (Fig. 3a). 

To my knowledge, the present study is the first to test for a relationship between sex and body 

mass on summer movement in salmonids, and the reason for this pattern remains unknown. 

One might speculate that it is related to differences between the two sexes in size-specific 

energy requirements associated with spawning. Large females may move more than small 

ones because they need more energy to account for higher energetic needs to produce more 

eggs. In general, increased feeding provides larger energy reserves for use during gonadal 

development (Jonsson et al. 1996). In a study done on brown trout, where both resident 

morphs and anadromous morphs were taken into consideration, the relative gonadal 

investment increased with female size. This relationship was not evident for males (Jonsson 

and Jonsson 1997). In a review by (Fleming 1996) mature Atlantic salmon females 

(anadromous) were found to invest between 20-25% of their body mass into gonads, whereas 

mature males (anadromous and parr) only invested 3-6% and 9% of their body mass prior to 
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spawning, respectively. Thus, the relationship between body mass and sex in relations to 

summer movement in this study may be a reflection of differences in gonadal investment 

between the sexes. However, as stated above, one can only speculate as nothing is known 

about the in gonadal investment between the sexes in the two study-systems.  

 

Spawning migration distance  

The potential for movement in both rivers is great as there are no barriers to movement over a 

large scale. This is reflected in the fact that some of the individuals in River 

Gudbrandsdalslågen moved more than 20 km to the spawning area and in River Glomma the 

corresponding figure was over 11 km. 

For spawning migration distance there is a positive relationship with body mass for females, 

however this relationship was not found for males (Fig 3b.). Jørgensen et al. (2008) devised a 

bioenergetics model for the Northeast Arctic cod stock (Gadus morhua) that showed the same 

relationship for females, where the distance migrated increased with female body size. They 

only focused on females as the selection pressure on male body size is not well known.  

 

Larger anadromous fish are known to move further upriver than smaller conspecifics of 

srealmonids (L'Abée-Lund 1991; Schaffer and Elson 1975). Jonsson and Jonsson (2006) 

examined whether natural tip length had any impact on the distance moved upstream in 

anadromous brown trout in nine rivers. They did find a trend that there was a positive 

relationship between standard fish length and distance moved for anadromous fish. No 

differences were found between males and females.   

 

This effect of body size may be explained by size-specific differences in energetic demands 

related to swimming, as the cost of swimming is reduced with increased body size (Ware 

1978). Thus, overall there may be reasons to believe that given an advantage of long 

spawning migrations, the optimal migration distance may depend on body size. However, it is 

not clear why this should differ between sexes, and the reason for the observed differences in 

effect of body size on spawning migration between males and females in the present study 

therefore remains unknown. 
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Juvenile growth 

Sex was not significant in explaining any of the variation in immature growth at any age; this 

is consistent with earlier observations in salmonids where immature male and female brown 

trout grew at equal rates (Dittman et al. 1998; Jonsson 1989) 

 

Neither summer movement nor spawning migration could be predicted from growth rates 

experienced as juveniles. Such an effect might have been predicted if growth and movement 

are positively correlated, and variation in movement among individuals is temporally 

consistent throughout life. However, this latter assumption may be violated as fish change 

their behavior throughout life due to ontogenetic shifts (Elliott 1994). Movement abilities are 

likely to vary considerably as a fish gets larger (Ims and Hjermann 2001; Roff 1991), and 

there are changes in energy stores and mortality risks (Einum et al. 2006). As stated by 

Werner et al. (1983) ontogenetic change in resource use among fish is nearly universal. Early 

life-stages show a tendency for density-dependent dispersal with strong juvenile territoriality 

(Einum and Nislow 2005). In later age classes differences in movement have been found 

between males and females (Hutchings and Gerber 2002), between dominant and subordinate 

individuals (Höjesjö et al. 2007) and among different size classes (Skalski and Gilliam 2000). 

Few studies take into consideration movement through the entire life cycle of fish.  Morrissey 

and Ferguson (2011) followed one cohort of brook charr (Salvelinus fontinalis) in order to 

study movement throughout the life cycle in Freshwater River. They did not find any 

evidence of temporally consistent intra-population heterogeneity in movement. Biro and 

Ridgway (2008) looked at repeatability of foraging tactics in young lake-dwelling brook trout. 

The repeatability in foraging tactics (pursuit of prey vs. sit-and-wait) was significant: active 

individuals tended to be active and sedentary individuals tended to stay put, but although the 

effect was significant, estimated repeatability was relatively low. They concluded that low 

repeatability indicates considerable within-individual variance in foraging activity over time. 

Sih et al. (2004) argued that more field studies are needed to discover the extent to which 

repeatable differences (personality) exists in behaviour, and to infer more about their stability 

over a life time. This issue has not been studied in brown trout, making it difficult to conclude 

whether the absence of a relationship between movement and growth in the present study is 

because these two are not causally related, or whether there are no temporally consistent 

differences among individuals in movement rates. 
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Mature growth  

In contrast to immature growth, river was a significant factor in explaining some of the 

variation in mature growth, as mature individuals in River Glomma grew 9 mm more than 

mature individuals in River Gudbrandsdalslågen the year before tagging (Fig 6 a-b). The 

difference in mature growth between rivers may be linked to different allocation and quantity 

of good feeding habitats. Within a population, different growth rate patterns can be shown for 

different year classes, due to environmental parameters and fish density (Carlson and Letcher 

2003; Cucherousset et al. 2005). In this study cohort was almost significant in explaining 

some of the variation within mature growth. Lack of a significant cohort effect may be due to 

a small sample size for each year class, which makes it difficult to detect any variance across 

cohorts.  

 

In the two rivers mature growth was not influenced by sex. For Atlantic salmon, there is 

abundant support that growth rates differ between mature males and females (Thorpe, 1977). 

It has been speculated that the variation in growth rates reflects differences in foraging 

behaviour between the sexes (Holtby and Healey 1990). Differences in foraging behaviour 

between males and females have not been shown for brown trout, however Greenberg and 

Giller (2001) found evidence for variation in habitat utilization between mature males and 

females, independent of size. Neither was mature growth influenced by movement in the 

growth season. Although there were differences between individuals regarding movement, as 

the results for summer movement have shown, different strategies may not necessarily mean 

unequal gain in growth (Wilson 1998).   

 

The distanced covered by a fish during the spawning season could not be linked to the 

differences in growth experienced by each individual, neither could summer movement. Such 

an effect could have been predicted if growth and movement were positively correlated. Like 

juvenile growth, the mature growth model assumes that variation in movement among 

individuals is temporally consistent throughout life.  However, a temporal consistency in the 

spawning migration distance each year for every individual brown trout has not been proven 

earlier for brown trout or summer movement.  A better estimate for mature growth may be the 

growth the same year as tagging. The decision to migrate have been linked to growth the same 
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year, but only for juvenile individuals migrating from natal streams (Acolas et al. 2012) or 

migrating to new growing environments (Cucherousset et al. 2006; Jonsson 1985).  

Fish scale analysis 

The growth estimates from scales may also be a source of error as the assumptions for the 

Lea-Dahl’s proportional hypothesis are often violated (Francis 1990; Zivkov 1996). Growth is 

a complex self-regulating process which will continuously change throughout ontogeny 

(Zivkov 1996). One assumption is that fish scales are laid down at length zero, However 

scales are usually formed when the fish is at a minimum length of around 40 mm for brown 

trout (Jonsson 1976) and some fish may not have reached this minimum length during first 

growth season and scales are therefore not laid down before the second growth season (Berg 

and Jonsson 1990). Moreover, at the onset of maturation there will be a trade-off between 

somatic growth and reproductive investment which will result in stagnated growth (Reznick 

1983). These two factors make it difficult to estimate the correct age and growth rate for an 

individual. Age is often underestimated in older brown trout and the same goes for growth 

(Berg and Jonsson 1990; Jonsson 1976).  Both growth and age estimates may therefore in this 

study be underestimated. The Lea-Dahl’s proportional hypothesis should only be considered a 

rough aid to estimate growth and the results must be handled accordingly (Nordeng and 

Jonsson 1978).  

 

One study conducted by Johal et al. (2001) have compared different methods of back-

calculating using silver carp (Hypophthalmichthys molitrix). They found no significant 

differences among dissimilar models. Heidarsson et al. (2006) compared the Dahl-Lea model 

and the Fraser-Lee model (tries to account for the body growth before scale formation) by 

using Atlantic salmon smolt. They tested if predicted lengths by the two models differed with 

observed lengths, which is one of the criterion suggested by Francis (1990) for validating 

different back-calculating models.  The comparison suggested that that the accuracy for the 

Dahl-Lea model is acceptable in back-calculation, although the model overestimated smolt 

length to some degree. However, the Fraser-Lee model overestimated smolt length even more. 

It has been argued that one should include both sex and age to get better estimates (Francis 

1990; Kielbassa et al. 2011). 
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Conclusion 

The movement pattern for brown trout in the two Norwegian rivers investigated is consistent 

with previous studies: A large part of the population was found to have a sedentary life style 

with short distance moved. However, some individuals have long range movement in the 

growth period and during spawning migration. Consequently, it is important to study 

movement on a larger scale to avoid biased results against low movement activity. Large 

spatial scale studies should incorporate environmental data in addition to individual 

characteristics and more studies are needed to investigate the interaction between sex and 

body mass on movement. 

Stream-living populations have traditionally been considered as a unit of identical individuals 

(Greenberg and Giller 2001). This assumption is however ignorant as this study and other 

studies have shown. Brown trout show a high variability in biology and ecology and future 

studies should take into account individual variation instead of treating it as background 

noise.  
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