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ABSTRACT 
	
Backround: The relation between energy expenditure (EE) in childhood physical activity and 

childhood or later adult health status is not clearly established. Thus, a better understanding of 

relation between energy expenditure and health in children are needed. An accessible 

approach for estimation of energy expenditure is important and may be established by using 

acceleration data. Aim: Determine the accuracy of Brandes´ linear regression equation for 

estimation of EE when applied to children (7-15 years old) using raw acceleration data. 

Furthermore, stepwise regression equations will be developed to improve accuracy of 

estimating EE from children acceleration data. Method: A cross-sectional study examining 42 

children (20 girls and 22 boys; 7-15 years) wearing two accelerometers (to the lower back and 

thigh) and a portable indirect calorimetry as reference measure for total EE estimation was 

performed. The children performed several physical activities including walking with 

different speed, jogging and running. The accuracy of an existing data model (1) for 

evaluation of EE was tested. Further, stepwise regression analysis was used for developing 

new regression equations based on walking activities (NTNUwalking), vigorous activities 

(NTNUvigorous) and all activities combined (NTNUall int.). The accuracy of the different 

equations was assessed using correlation, coefficient of determination and Bland-Altman 

plots. Further, Bland-Altman plots is presented as mean bias and limits of agreement (LoA). 

EE is presented both as an absolute measure (kJ/min) and relative to body mass (J/kg/min). 

Results: The smallest difference between measured and estimated EE using Brandes et al.´s 

equation was found when walking moderately both for absolute (mean bias -0.78 and 95% 

LoA -9.80 to 8.24) and relative measures (mean bias -57.24 and 95% LoA -213.92 to 99.44). 

Further, NTNUwalking presented a greater accuracy for walking activities compared to Brandes 

et al.´s equation (absolute units: mean bias 0.24 and 95% LoA -3.23 to3.72. Relative units: 

mean bias 18.06 and 95% LoA -43.71 to 79.84). In addition to NTNUwalking, NTNUall int. 

presented the greatest accuracy for jogging and running when absolute values for EE were 

used (NTNUwalking: mean bias -1.23 and 95% LoA -12.88 to 10.40. NTNUall int.: mean bias 

1.22 and 95% LoA -9.29 to 11.75). Conclusion: Brandes´ equations estimated EE in children 

most accurately for absolute values when walking moderately. However, newly developed 

equations were more accurate for both walking and vigorous intensities, supporting child-

specific regression equations for estimating EE in children. The above equations worked 

reasonably well for estimating group estimates.  However, further adaptations are needed to 

enhance accurate individual EE estimation. 
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SAMMENDRAG 
	
Bakgrunn: Sammenhengen mellom energiforbruk (EE) under fysisk aktivitet hos barn og 

barnehelse eller senere helse i voksenlivet er uklar. En bedre forståelse av forholdet mellom 

EE og barnehelse en derfor nødvendig. For å estimere energiforbruk ønskes det en tilgjengelig 

og lett håndterlig metode. En mulighet er derfor å bruke akselerometer som måler 

akselerasjon. Problemstilling: Se på nøyaktigheten av Brandes regresjonslikning for å 

estimere EE hos barn (7-15 år) der det brukes råakselerasjonsdata. I tillegg vil det lages nye 

regresjonslikninger for å se om de kan estimere energiforbruk mer nøyaktig. Metode: Dette er 

en tverrsnittstudie basert på 42 barn (20 jenter og 22 gutter; 7-15 år) som hadde på seg 

akselerometer (på nedre rygg og lår) og et bærbart indirekte kalorimetriutstyr som referanse 

for måling av totalt energiforbruk. Barna gjennomførte ulike fysiske aktiviteter som jogge, 

løpe, gå sakte, normalt og fort. Nøyaktigheten av en allerede eksisterende datamodell for 

estimering av EE ble evaluert.  I tillegg ble det utført en “stepwise” regresjonsanalyse for å 

utvikle nye regresjonslikninger for ganghastighetene (NTNUwalking), de vigorøse aktivitetene 

(NTNUvigorous)  og alle aktivitetene kombinert (NTNUall int.). Nøyaktigheten av de ulike 

likningene ble deretter evaluert ved bruk av korrelasjon, forklart varians og Bland-Altman 

plots. Bland-Altman plots ble presentert ved bruk av gjennomsnittlig feil og ”limits of 

agreement” (LoA). EE ble presentert i absolutte verdier (kJ/min) og relativt til kroppsvekt 

(J/kg/min). Resultat: Den minste forskjellen mellom målt og estimert EE ved bruk av 

Brandes likning var for normal ganghastighet, både for absolutte (gjennomsnittlig forskjell -

0.78 og 95% LoA -9.80 til 8.24) og relative verdier (gjennomsnittlig forskjell -57.24 og 95% 

LoA -213.92 til 99.44). NTNUwalking estimerte ganghastigheter med større nøyaktighet enn 

Brandes likning (absolutte verdier: gjennomsnittlig forskjell 0.24 og 95% LoA -3.23 til 3.72. 

Relative verdier: gjennomsnittlig forskjell 18.06 og 95% LoA -43.71 til 79.84). I tillegg til 

NTNUwalking predikerte NTNUall int. aktivitetene jogge og løpe med like stor nøyaktighet for 

absolutte verdier (NTNUwalking: gjennomsnittlig forskjell -1.23 og 95% LoA -12.88 til 10.40. 

NTNUall int.: gjennomsnittlig forskjell 1.22 og 95% LoA -9.29 til 11.75). Konklusjon: 

Brandes likning estimerte EE hos barn mest nøyaktig for absolutte verdier når barna gikk i 

normal hastighet. De nye regresjonslikningene estimerte uansett ganghastigheter og vigorøse 

aktiviteter med større nøyaktighet, noe som kan tyde på at spesifikke regresjonslikninger for 

barn er nødvendig. Likningene predikerte EE godt på gruppenivå, men trenger videre 

tilpasninger for å kunne estimere EE like nøyaktig for barn på et individuelt nivå.   
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1. INTRODUCTION 

 

It is well known that regular physical activity is central for improving health and reducing risk 

of disease (2, 3). This association is broadly documented in the adult population (2). 

However, the evidence linking physical activity with health is more ambiguous for children 

and adolescents. A review of the physical activity, fitness and health of children concluded 

that even though studies had shown several benefits of physical activity, the supporting 

evidence for the assertions were weak (4). The main benefits of childhood physical activity 

discussed in this review included that active children had generally healthier cardiovascular 

profiles and higher peak bone masses than their less active peers. Higher peak bone masses in 

children was also associated with reduced risk of osteoporosis in old age and promoted health 

benefits difficult to catch up later in life. Furthermore, children learning movement skills such 

as jumping, cycling and running early in life were more likely to feel the joy of an active 

lifestyle, and thereby become more active and healthy adults. A later systematic review 

published by Janssen and co-workers (2010) found that childhood physical activity was 

associated with numerous health benefits, but added that existence of a particular threshold 

value for obtaining a better health seemed unclear when examining health benefits of physical 

activity and fitness in school-age children. 

 Despite this uncertain dose-response relation, the World Health Organization recommends 

at least 60 minutes of moderate- to vigorous- intensity physical activity every day for children 

and adolescents in order to improve health status at an early stage in life (5). Commissioned 

by the Norwegian directorate of health, Norges Idrettshøyskole (NIH) examined the number 

of school children that met these recommendations. Among 6-years-olds 87.0 % of girls and 

95.7% of boys met the recommendation and in the age of 9 years the numbers had decreased 

to 69.8% and 86.2%. The corresponding number for 15 year-old girls and boys were 43.2% 

and 58.1% (6). To evaluate the consequences of these results and the relevance of physical 

activity recommendations, we need a better understanding of the dose-response relation 

between physical activity and health outcomes. In such, precisely measurement technique of 

both health and physical activity outcomes is needed. Accurately quantifying physical activity 

in children and adolescents also allows further evaluation of the effectiveness of intervention 

that aim to increase childhood physical activity.   

  Physical activity refers to any bodily movement produced by skeletal muscles leading 

to a significant increase in energy expenditure (EE) from rest (7). The variables of frequency, 

intensity and duration are commonly used to describe physical activity. However, positive 
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health benefits of physical activity are mostly related to physiological adaptations during 

increased intensity physical activity (3). As exercise intensity increase, a greater demand in 

the muscle tissue is met by physiological adaptations such as an increase in cardiac output and 

greater oxygen extraction from the vasculature (8). These physiological adaptations result in 

increasing or maintaining physical fitness, which is associated with positive impacts on 

general health (9). Measuring intensity of physical activity accurately is therefore important in 

terms of studying the relation between physical activity and health. 

There is a diversity of methods for estimating intensity of physical activity, but they 

vary in validity and reliability. Some of the issues are common for all population, while other 

methodological challenges arise from the unique developmental and behavioural aspects of 

children (10, 11). The methods are often divided into subjective and objective approaches. 

Subjective measurements, such as self-report of physical activity level are often used due to 

the low cost and time efficiency. However, there is a widespread concern about the accuracy 

of self-report data from children due to the lack of ability for a detailed recall (12). 

Additionally, the physical activity pattern in children tends to be sporadic and intermittent, 

which increase the need for a more sensitive and objective measurement approach (10). 

Objective measures of intensity of physical activity include estimations of EE (e.g. indirect 

calorimetry and doubly labelled water) and acceleration of movement (e.g. activity monitors). 

Indirect calorimetry is often referred to as the most objective “gold standard” in controlled 

settings. In a free-living situation, it is more suitable to use doubly labelled water as a 

reference standard. However, both indirect calorimetry and doubly labelled water are not 

always appropriate techniques because they are expensive, time consuming and associated 

with complex organization (13).  

The most popular objective measurement device used to assess intensity of physical 

activity is activity monitors and in particular accelerometers. They are small, light weighted 

and capable of large memory storage, making them practical for extended measurement 

periods (14) and are particularly appealing for use on children. Accelerometers detect 

acceleration which is the change in velocity over a given time. In such, when a child is being 

physically active, the accelerometer gives information about volume and intensity of the 

child’s movement. The information can further be calibrated to derive point estimates of EE.  

Up until recently the most standard output from the accelerometer has been activity 

counts and cut-points to categorize time spent in different activity intensities (14, 15). This 

analytic approach is appealing because of the simplicity of applying ready-to-use software. 

However, this simple method has shown not to be accurate enough for calculating EE for 
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different individuals and activities (15). Firstly, different personal factors such as age, height 

or body mass may result in different metabolic cost for these individuals, although activity 

count values may be the same (14). Secondly, there is currently no consensus on how to select 

cut-of points to define activity intensities (16). Thirdly, it seems to be no linear relationship 

between acceleration and EE in free-living environments (17). Consequently, the method fails 

to explain a considerable portion of EE estimation in daily living. Another drawback is that 

the algorithms calculating counts have been protected and specific for different activity 

monitors, making it problematic to easily compare the different manufacturer’s devices and 

thereby directly compare different study results (14).  

Using raw accelerometer data may overcome these problems. More advanced 

mathematical algorithms can estimate EE from the raw acceleration signal and does not relay 

on cut of points as for the computation of activity counts. Consequently, methods of analysis 

such as more flexible regression equations (1, 18) and artificial neural network (19, 20) have 

been established, and are still being developed and optimised to reach for a consensus 

analytical approach (14). However, existing studies are mostly based on adults conducting 

different free-living activities. This is questionable, as we know children tend to have a more 

sporadic activity pattern in free-living communities and varies in growth and maturation (21, 

22). Though, being able to estimate EE with high accuracy in adults and in such distinctive 

movement patterns builds optimism for more complex free-living activities and other study 

populations, such as children and adolescents. One study presented by Brandes and colleagues 

(2012) used a mixed linear regression analysis for EE estimation in three different walking 

speed (slow, moderate and fast) in addition to stair walking and cycling.  The study targeted 

notable 180 study participants (91 males and 95 females) ranging from 6–81 years old. They 

concluded that acceleration, body weight, and their interaction explained 95% of the variation 

in the absolute EE in walking (1). In this regard, raw acceleration may represent a good 

replacement for indirect calorimetry and achieve the request for objective and accurate 

physical activity measuring technique.  

The aim of this thesis is therefore to determine the accuracy of Brandes´ linear 

regression equations for estimation of EE when applied to children (7-15 years old) using raw 

acceleration data. Furthermore, stepwise regression equations will be developed to improve 

accuracy of estimating EE from children acceleration data.  
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2. METHOD 

2.1 Participants 
 

The study took place in October –December 2016 at Lundamo Skole, which is a primary and 

secondary school in Mid-Norway. A total of 310 children from second to tenth grade and their 

caregivers were informed about this study and asked to participate. This resulted in 61 

children from primary and 28 children from secondary school that gave written consent. To 

meet recommendation for validation of activity monitors in children (15) 3 girls and 3 boys 

from each class were randomly chosen to participate in this study. Descriptive statistics of the 

participants are presented in Table 1. 

 This study is a part of a larger validation study from raw acceleration sensors in 

children. The validation study was approved by Norwegian Centre for Research Data (NSD-

nr:50683). In addition, the study was reported to the Regional Ethical Committee (REK-

nr:2016/707/REK nord) but was not classified under the act on medical and health research. 

 

2.2 Protocol and equipment 
	
The children performed several physical activities including walking with different speed, 

jogging and running. Gas exchange measures, acceleration of back and thigh, heart rate and 

video were recorded for all activities (see Figure 2).  

 

2.2.1 Axivity AX3 
 The main instrumentation used for estimation of EE was the Axivity AX3 activity monitor 

(Axivity, UK). The activity monitor measures acceleration in three directions (x, y, z). The 

monitors are small (23 x 32.5 x 7.6 mm), light weighted (11 gram) and capable of large 

memory storage (512 MB). Acceleration was sampled at 100 Hz, within a range of ± 8g.  

During the measurement period, one sensor was attached to the right mid-thigh, 

approximately to the front midline and between the anterior superior iliac spine and the 

patella. A second sensor measured acceleration at the lower back central for the lumbar 

vertebrae 3. Sensor placements are illustrated in Figure 1. The monitors were attached to the 

skin using double-adhesive tape, Fixomull (brand: BSN Medical) and sport tape (Scansport). 

Further, the accelerometers were orientated with the x-axis equalled to the vertical axis, the y-

axis to the mediolateral axis, and the z-axis to the anterioposterior axis. 
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Figure 1. Axivity AX3 monitors placed to the mid thigh and lower back.  

 

 

2.2.2 Indirect calorimetry 
A portable gas exchange system (Metamax 11 Cortex Biophysik GmbH, Leipzig, Germany) 

was used as the reference method for estimation of EE. The entire system weighted 

approximately 980 g and had a dimension of 189 x 160 x 47 mm. It was attached to the 

children’s back using a chest harness (see Figure 2.). A pedriatic face mask (held in place by a 

mesh cap) was placed over nose and mouth, and attached to a digital turbine flow meter that 

registered inspired and expired air volume for the calculation of VO2 and VCO2. This system 

offered the participants good mobility, and made it possible performing free-living activities. 

The Metamax was calibrated before testing according to the manufacturer’s guidelines. After 

each test, the collected data were downloaded to a laptop with the manufacturer software 

(Metasoft).  
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Figure 2. A participant wearing measurement equipment and ready for testing (pictures used 

with permission). 

 

2.2.3 Validation protocol 
All participants performed 6 different ambulatory activities. The activities were performed in 

the following fixed order: walking slow, walking moderately, walking fast, jogging and 

running. The duration of each activity was set to 5 minutes although subjects’ physical fitness 

and age had to be considered. However, the duration of each activity had to overcome 3 

minutes in order to ensure steady state measures of VO2 and VCO2. Subjects were allowed to 

rest between the activities, and the resting period was individualized to each subject’s own 

preferences. If the weather outside was good (no rain or snow) the protocol was implemented 

outside on an athletic track. If not, the protocol was performed at an indoor handball field.  

Anthropometrical measurements of participants were noted from previous testing in 

the larger validation study. This included measuring weight on a digital scale (Tanita) to the 

nearest 0.1kilogram and measuring height using a measuring tape to the nearest 0.1centimetre 

(both without shoes or heavy clothes). Before the test started, children were fitted with axivity 

monitors, Metamax, a GoPro camera and heart rate monitor. 

The GoPro camera (HERO +, with video resolution of 720 pixels and 30 frames per 

second) was placed to the subjects’ chest with a chest harness making it possible capture the 

subjects’ legs and thereby differentiate between the different activities. Additionally, heart 
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rate was continuously recorded for all activities using a polar heart rate monitor (Polar M400, 

H7 Heart Rate Sensor). Walking speed was assessed by measuring time spent on a given 

distance. Walking distance was measured using a measuring wheel (Binkrn AS, Gressvik, 

Norway). 

The test leader gave a standardized verbal instruction of the content and order of the 

test protocol. This included familiarizing the subjects to the equipment (particularly the face 

mask). When introducing the different activities, the test leader used standardized instructions 

to decrease the risk of interfering preferred speed; “walk slower than you usually do”, “Walk 

as you usually do”, “walk faster than you usually do”, “jog” and “run, but not as fast as you 

can”. The subjects were asked to restrain from talking during the activity protocol, as this 

could affect the gas exchange measurement. However, if they felt any discomfort while 

completing protocol they were asked to show a “thumb down”. If they did, the equipment was 

immediately taken off. The protocol took approximately 60 minutes to complete. 

 

2.3 Synchronization 
The start and end time of the protocol were indicated by setting markers in the GoPro camera, 

polar clock and Axivity monitors accomplished by performing a heel drop (rise up on toes 

and rapidly drop the heels towards the ground) three times and standing still at least five 

seconds in between each heel drop. For example, for the Axivity monitors, this would set 

undoubtedly marks in the acceleration signal, making it easier to find the right period of time 

for later data analysis (Figure 3). Furthermore, the test leader made a lap in the child's polar 

clock and wrote down the relative time at the first heel drop. During the testing, the test leader 

made a marker in the oxygen analyser and polar clock before and after each activity to easily 

separate activities. Consequently, this would set marks in the equipment to easier ensure 

synchronised data material for further data analysis.  
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Figure 3. Acceleration signal from the lower back when performing the heel drops before test 

start. The blue (z), green (y) and red (x) curves represent the different acceleration axis. 

 

2.4 Data analysis 
Acceleration data, heart rate data and gas exchange data for the activity periods were 

extracted from the remaining data material, and a one minute steady state period was 

identified in the gas exchange data for all activities. Further, a steady state period was defined 

as the most stable one-minute period from the last two minutes of testing. Furthermore, 

average VO2 and RER from the selected minute was calculated. In addition, the acceleration 

signal for the same period was evaluated. The acceleration signal should display a repetitive 

and rhythmic activity pattern. If the acceleration was non-period for the selected steady state 

period, a new time period was selected. The video recordings were able to reveal deviating 

activities (e.g. tie shoelaces) resulting in an intermittent non-periodic acceleration signal.  

 

2.4.1 Energy expenditure 
Gas exchange data was converted to absolute and relative EE using already existing equations 

(23). Equation 1 represents relative EE, while equation 2 represents absolute EE.  

Relative EE-O2 (J/kg/min) = ("#$%∗'('	*	+$%"%)∗	-./	[1/345]
789:	3;<<	[=>]

   (Eq. 1) 

With VO2 in l/min, respiratory exchange ratio (RER) as VCO2/VO2, Body mass in kilograms.  

 EE-O2 (KJ/min) = 4.96 ∗ RER + 16.04 ∗ VO2	(l/min)  (Eq. 2) 

With VO2 in l/min, respiratory exchange ratio (RER) as VCO2/VO2.  
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2.4.2 Accelerometer signal 
Brandes et al.´s method was followed for the acceleration signal processing (1). The raw 

acceleration signal was filtered using a fourth-order band-pass frequency filter (0.1- 15Hz) to 

each acceleration axis. Furthermore, the raw acceleration signals were converted into vector 

magnitude (see equation 3), which gives information about size of the signal using all three 

axis. Finally, mean vector magnitude from the one-minute analyze window represented the 

acceleration signal in the different equations.  

 

 Vector magnitude (g) = (x2+y2+z2) 1/2-1     (Eq. 3) 

 

2.4.3 Brandes et al.´s equation 
The equations by Brandes et al. (2012) were used to estimate relative and absolute EE 

(J/kg/min and kJ/min). The equations are presented in Table 4. They are based on 57 children 

and 128 adults with an age range of 6-81 years. The equations estimated activity EE, and it 

was therefore necessary to add resting EE (REE) to calculate total EE. Mean REE values from 

Brandes et al.’s study was applied. Accordingly, we added a mean REE of 4.8 kJ/min or 107 

j/kg/min for 7-11 years old children and 5.7 kJ/min or 107 j/kg/min for 12-17 years old 

children.  

 

2.4.4 NTNU developed equations 
We developed 3 new regression equations for estimation of EE. One was based on walking 

activities only (NTNUwalking) one was based on jogging and running (NTNUvigorous) and one 

was based on all activities conducted (NTNUall intensities). The new equations for EE estimation 

were developed using stepwise linear regressions. In order to develop equations explaining as 

much as possible of the variance in EE, several variables were evaluated in respect to their 

contribution due to their theoretical relation to EE. The variables were: acceleration (on both 

thigh and lower back), body weight, gender, age, BMI, step frequency, velocity and heart rate. 

If the stepwise regression not entered acceleration output into the equations automatically, 

acceleration from the lower back was entered manually. The equations were developed on 

70% of the children and validated on the remaining 30%. The regression equation is presented 

in Table 4.  
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2.5 Statistics 
Statistical analyses were conducted in Excel (Microsoft excel for mac 2011), Matlab 

(MATLAB R2016a, The MathWorks, Inc., Massachusetts, US) and SPSS statistics (IBM 

SPSS statistics, version 24). Mean and standard deviation (± SD) were used to presents 

participant characteristics, activity velocities and EE values.  

Normal distribution of the data was examined using Kolmogorov-Smirnov and visual 

assessment of histogram and normal Q-Q plots. The association between measured and 

estimated EE was further assessed with spearman correlation (r). A greater strength of linear 

relationship would give a correlation closer to +1.0 or -1.0. For newly developed equations, 

coefficient of determination (r2) was presented as an indication of how much variation in the 

measured EE that could be explained by the regression equations. A p-value of <0.05 was 

considered to be significant. 

In addition, accuracy of the EE estimation was presented as root-mean-square error 

(RMSE) values, which is the square root of the variance of the residuals and indicates the 

absolute fit of the model to the data. In other words, the difference between observed and 

estimated values. For example, a RMSE value of 0 would suggest that it is no spread in the 

values of the dependent variable around the regression line.  

 To be able to evaluate the differences between the two methods, Bland-Altman plots 

were conducted. Y-axis represents the differences in EE for the two measurement approaches 

while the x-axis is the mean EE for the two measurement approaches. Consequently, this 

would give us the opportunity to study the differences between the methods and reveal any 

systematic pattern of error and individual deviations. Previous studies have suggested that 

measuring gas exchange with a Metamax 11 analyser gives a random variation of 5% (24). 

Therefore, a ±2.5% deviation line was calculated for the different activities and added to the 

bland-Altman plots as an indication of measurement error.  

3. RESULTS 
	
From the 54 participants, instances of irregular acceleration signals (n= 3), malfunction or 

measurement error of Metamax analyser (n=7), not conducting the protocol (n=1) and not 

reaching one-minute steady state (n=1) were excluded from further analysis. Furthermore, 

when analysing the data, 2 participants walked significantly faster than the rest, and had to be 

excluded in all walking activities. This resulted in 42 participants. Participant characteristics 

are presented in Table 1.  
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Subject characteristics Mean (±SD) 

N (female/male) 42 (20/22) 

Age (years) 10.6 (±2.62) 

Weight (kg) 43.52 (±12.47) 

Height (cm) 149.98 (±15.94) 

BMI (kJ*m-1) 19.13 (±3.03) 

Walking speed Mean (±SD) 

Walking slow (m/s) 0.96 (±0.25) 

Walking moderate (m/s) 1.33 (±0.2) 

Walking fast (m/s) 1.54 (±0.22) 

Jogging (m/s) 2.35 (±0.41) 

Running (m/s) 2.84 (±0.56) 

Energy expenditure Mean (±SD) 

Walking slow (kJ/min) 14.1 (±2.9) 

Walking moderate (kJ/min) 16.3 (±3.1) 

Walking fast (kJ/min) 18.72 (±3.7) 

Jogging (kJ/min) 30.45 (±7.81) 

Running (kJ/min) 34.52 (±9.7) 

Table 1. Subject characteristics, walking speed and energy expenditure presented as mean 

(±SD). 

 

3.1 Brandes et al.´s equation 
The correlation between EE estimated from Brandes et al.´s equation and estimations 

from ergospirometry for activities separately, both in absolute and relative units was: walking 

slowly = 0.8 (p <0.001) and 0.44 (p < 0.006), walking moderate= 0.68 (p <0.001) and 0.42 (p 

<0.008), walking fast = 0.65 (p <0.001) and 0.38 (p <0.017), jogging= 0.43 (p <0.004) and 

0.14 (p <0.388), running= 0.63 (p <0.001) and 0.26 (p <0.126).  

A significant positive correlation was found between measurement output for both 

combined walking and vigorous activities. Overall, the strongest correlation was shown for 

absolute values, and particularly for the combined walking category. In addition, the lowest 

RMSE values were found when the equation estimated walking activities in absolute units. 

Correlation coefficients and RMSE values when walking activities and more vigorous 

activities are combined can be found in Table 3. 



	 22	

The Bland-Altman plots for the different activities when using Brandes´ estimation 

equation are shown in Figure 4. and show that Brandes equation underestimated walking 

slow, and overestimated walking fast, jogging and running. For relative units, Brandes 

equation underestimated walking slow, moderate and fast and overestimated jogging and 

running. Overall, the smallest difference between measured and estimated EE was found 

when walking moderately both for absolute and relative units.  
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Figure 4. The outermost solid blue lines represent 95% limits of agreement (1.96SDs), 
whereas the solid blue line in between is the mean bias between measured and estimated EE. 
The grey lines represent ±2.5% deviation. 
 

 

3.2 NTNU developed equations 
When estimating EE for walking activities, NTNUwalking and NTNUall int. presented the greatest 

correlations and lowest RMSE values. In addition, NTNUvigorous and NTNUall int. presented the 

greatest correlations and RMSE values when estimating jogging and running. EE estimation 

from the newly developed equations compared with the EE estimation from indirect 

calorimetry is presented in Table 3.  
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3.2.1 NTNUwalking (walking slow, moderate and fast) 
Table 2. displays selected regression equation from the regression development. For 

NTNUwalking, acceleration and weight explained 73% (kJ/min) and 75% (j/kg/min) of the 

variation in EE. After the split sample validation, the explained variances were 69% (kJ/min) 

and 78% (j/kg/min) for walking activities. Bland-Altman plots are presented in Figure 5. 

presenting 95% limits of agreement of -3.23 to 3.72 (kJ/min) and -43.71 to 79.84 (j/kg/min). 

Bland-Altman plots for the different activities separately, are presented in Appendix 1.  

 

3.2.2 NTNUvigorous (jogging and running) 
For NTNUvigorous, the most robust equation included acceleration and height, which explained 

72% (kJ/min) of the variance in EE. After the split sample validation, the explained variance 

increased to 74% for jogging and running activities and the Bland-Altman plots presented 

95% limits of agreement of 11.72 to 26.29 for absolute values (Figure 6.). For relative units, 

the relation between NTNUvigorous and indirect calorimetry was not statistical significant (p= 

0.96). Bland-Altman plots for the different activities separately, are presented in Appendix 2.  

 

3.2.3 NTNUall int. (jogging, running, walking slow, moderate and fast) 
For NTNUall int. the most robust equations included acceleration and weight, which explained 

83% (kJ/min) and 85% (j/kg/min) of the variance in EE. After the split sample validation, 

acceleration and weight explained 70% (kJ/min) and 78% (j/kg/min) of the variance in EE 

when walking. For vigorous intensities, the explained variances for absolute units were lower 

(43% kJ/min) whereas the explained variance for relative units was not significant (p =0.102). 

Bland-Altman plots for walking activities and vigorous activities combined are presented in 

Figure 7. whereas Bland-Altman plots for the different activities separately, are presented in 

Appendix 3. 

 

3.2.4 NTNU developed equations summary 
Compared to NTNUvigorous and NTNUall int., NTNUwalking presented a lower mean bias 

and narrower 95% limit of agreement when estimating walking activities in both relative and 

absolute units. This indicates that NTNUwalking estimated EE during walking more accurate 

both on an individual and population based level. 

 Compared to NTNUvigorous, NTNUall int. and NTNUwalking presented a lower mean bias 

and narrower 95% limit of agreement for absolute values, which indicates that NTNUall int. and 
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NTNUwalking estimated EE during vigorous activities more accurate both on an individual and 

population based level for absolute units.  

 

3.3 NTNU developed equations compared to Brandes et al.´s equation 
Compared to Brandes´ equation, NTNUwalking presented mean bias closer to zero and a 

narrower 95% limit of agreement both in absolute and relative units. In addition, compared to 

Brandes´ equation, NTNUall int. and NTNUwalking presented a mean bias closer to zero and a 

narrower 95% limit of agreement for absolute values.  

 

	
	

Activities Dependent Independent R2 RMSE 
NTNUwalking	 EE (kJ/min)	 Acc.	 0.28	 3.36	

Acc. * weight 0.73 2.07 
Acc. * weight * velocity 0.78 1.89 

EE 
(J/min/kg) 

Acc. 0.34 76.97 
Acc. * weight 0.75 47.58 
Acc. * weight * heart rate 0.82 41.08 
Acc. * weight * heart rate * velocity 0.84 38.2 

NTNUvigorous	 EE (kJ/min)	 Acc.	 -0.02	 9.71	
Acc. * height 0.72 5.15 
Acc. * height * velocity 0.72 5,18 
Acc. * Height * velocity * BMI 0.76 4.75 

EE 
(J/min/kg) 

Acc. 0.23 130.3 
Acc. * BMI 0.40 115.08 
Acc. * BMI * velocity 0.41 113.9 

NTNUall 

intensities 
EE (kJ/min) Acc. 0.67 6.03 

Acc. * weight 0.83 4.39 
Acc. * weight * velocity 0.87 3.8 
Acc. * weight * velocity * heart rate 0.89 3.79 

EE 
(J/min/kg) 

Acc. 0.76 110.7 
Acc. * weight 0.85 88.33 
Acc. * weight * velocity 0.89 71.45 
Acc. * weight * velocity * heart rate 0.91 65.68 

	
Table	2.	Overview	of	models	estimating	EE.
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Table 3. Correlation coefficients and RMSE for walking activities and vigorous activities combined. Significant P < 0.05 
 

Dependent Independent Brandes et al.´s equation NTNUwalking NTNU vigorous NTNUall intensities 

 Coefficient (95% 
CI) 

P-
value 

Coefficient (95% 
CI) 

P-
value 

Coefficient (95% CI) P-
value 

Coefficient (95% CI) 
 

P-
value 

EE 
(kJ/min) 

Intercept -18.61 (-21.02 to -
16.20) 

<0.001 1.634 (-0.41 to 
3.68) 

0.116 -44.068 (-57.71 to -
30.43) 

<0.001 -4.351 (-7.12 to -1.58)  0.002 

Weight 0.24 (0.20 to 0.28) <0.001 0.194 (0.16 to 0.23) <0.001 -  0.307 (0.25 to 0.36) <0.001 
Acceleration 53.97 (51.60 to 

56.34) 
<0.001 19.327(15.56 to 

23.1) 
<0.001 19.175 (4.74 to 33.61) 0.010 22.716 (20.77 to 24.66) <0.001 

Height -  -  0.487 (0.4 to 0.57) <0.001 -  
EE 
(J/kg/min) 

Intercept -40.19 (-52.75 to -
27.63) 

<0.001 438.048 (389.68 to 
486.42) 

<0.001 1027.396 (778.31 to 
1276.78) 

<0.001 444.285 (388.23 to 500.33) <0.001 

Weight  -  -4.351 (-5.124 to -
3.58) 

<0.001 -  - 4.907 (-6.01 to -3.8) <0.001 

Acceleration 816.11 (783.0 to 
849.2) 

<0.001 454.817 (359.5 to 
550.134) 

<0.001 559.576 (226.0 to 
893.14)  

0.001 519.403 (480.21 to 558.6) <0.001 

BMI -  -  -20.416 (-31.2 to -9.63) <0.001 -  
Table 4. Values integrated in the regression equation developed by Brandes and NTNU.  
 
 
 

Activity  R  RMSE 
Brandes et 
al.´s equation 

NTNUwalking NTNUvigorous NTNUall 

intensities 
Brandes et 
al.´s equation  

NTNUwalking NTNUvigorous NTNUall 

intensities 
 (kJ/ 

min) 
(J/kg/
min) 

(kJ/ 
min) 

(J/kg/
min) 

(kJ/ 
min) 

(J/kg/
min) 

(kJ/ 
min) 

(J/kg/
min) 

(kJ/
min) 

(J/kg/
min) 

(kJ/
min) 

(J/kg/
min) 

(kj/m
in) 

(J/kg/
min) 

(kj/m
in) 

(J/kg/
min) 

Combined 
walking  

0.77* 0.61* 0.84* 0.88* 0.79* 0.83* 0.84* 0.88* 2.44 71.7 1.8 31.42 2.0 37.76 1.77 31.43 

Jogging 
and 
running 

0.6* 0.36* 0.59* 0.35* 0.87* 0.35 0.68* 0.35 7.20 133,6 5.95 89.46 3.68 89.27 5.44 89.48 
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Figure 5. The outermost solid blue lines represent 95% limits of agreement (1.96SDs), 
whereas the solid blue line in between is the mean bias between measured and estimated EE. 
The grey lines represent ±2.5% deviation.
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 NTNUvigorous 
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Figure 6. The outermost solid blue lines represent 95% limits of agreement (1.96SDs), 
whereas the solid blue line in between is the mean bias between measured and estimated EE. 
The grey lines represent ±2.5% deviation. 
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 NTNUall int. 
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Figure 7. The outermost solid blue lines represent 95% limits of agreement (1.96SDs), 
whereas the solid blue line in between is the mean bias between measured and estimated EE. 
The grey lines represent ±2.5% deviation. 
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4. DISCUSSION 
	

The aim of this study was to 1) examine the validity of Brandes´ estimation equations for EE 

detection in children using raw acceleration data and to 2) develop stepwise regression 

equations for EE estimation to improve accuracy.  Results from the current study indicate that 

Brandes´ equation manages to estimate EE accurately for a specific range of EE values, 

corresponding to the children´s preferred walking speed. For absolute units, Brandes et al.´s 

equation underestimated walking slow, and overestimated walking fast, jogging and running. 

For relative units, Brandes´ equation underestimated walking slow, moderate and fast and 

overestimated jogging and running. Further, the newly developed equations for walking 

activities (NTNUwalking) presented a greater accuracy for walking activities compared to 

Brandes et al.´s equation. In addition to NTNUwalking, the new equations for all intensities 

(NTNUall int.) presented the greatest accuracy for jogging and running when absolute values for 

EE were used.  

4.1 Brandes et al.´s equation 
When using the equation by Brandes and co-workers to estimate EE the greatest 

correlation and lowest RMSE between measured and estimated EE was found for walking 

activities. This might be explained by the fact that the equations of Brandes and co-workers 

were originally developed using a protocol only including walking intensities. Still, the 

current study presented a weaker relation between measured and estimated EE during walking 

compared to Brandes et al.´s own results. Brandes et al.´s study reported an explained 

variance of 95% in absolute EE using acceleration, body weight, and their interaction as 

contributing factors. For relative units, acceleration alone explained 93% of the variance (1) 

whereas in the present study, a correlation of 0.77 was found for absolute values and 0.61 for 

relative units. Both studies had relatively similar experimental settings placing the 

accelerometer to the lower back and conducting the same activities. However, using 

correlation as evaluation statistics alone could be uninformative when the aim is to identify 

systematic bias in measures (25).  

Accordingly, compared to our results, Brandes et al. reported a broader limit of 

agreement for absolute values suggesting lower agreement between methods, which is 

important considering validity of two measurement approaches. Their paper reported 95% 

limits of agreement of -12.5 to 12.9 for absolute units (kJ/min) and -133 to 139 for relative 

units (j/kg/min), respectively. In comparison, the current study reported 95% limits of 
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agreement of -9.80 to 8.24 for absolute units (kJ/min) and -213.92 to 99.44 for relative units 

(j/kg/min). This may indicate that the individual differences for absolute values were more 

accurate explained in our results. A possible explanation is the observed difference in walking 

speed. Brandes study population had an average slow, moderate and fast walking speed (SD) 

at 1.3 (0.2) m/s, 1.5 (0.2) m/s and 1.9 (0.3) m/s. Compared to our findings, Brandes et al.´s 

walking speed was notably higher for all walking trials. However, Brandes included both 

children and adults in his study sample, which could increase the range of preferred walking 

speed. In such, it may be that the regression equation is more accurate for lower walking 

speed (more represented in children) and for that reason our study sample estimated 

individual accuracy better. 

However, any range in limit of agreement itself does not give sufficient information to 

confirm that acceleration and weight estimates EE accurately enough. For example, a greater 

amount of observed data would narrow the limits and therefore, we can only conclude that 

95% of the differences between the two measurement approaches lies within these limits. For 

this purpose, limits based on clinical relevance should be used. A previous study suggested 

that EE reported by Metamaxes presents a random variation of approximately 5% (24).  

Therefore, the upper and lower limits based on this random variation were added to the 

Bland-Altman plots suggesting that values between these limits might be due to error reported 

by Metamax, and not necessarily inaccurate regression equations. In addition, there exist no 

clear definition of clinical relevant change in EE. However, a previous study used 10% as a 

clinical significant change in energy cost (26). For example, adding these limits to 

NTNUwalking (kJ/min) results in an upper and lower limit of 1.647 to -1.647. Consequently, all 

the data points do not lie between these limits, suggesting that there still is some error related 

to this regression equation.  

The equation by Brandes and co-workers is estimating activity related EE, which is 

total EE (as measured with indirect calorimetry during activities) minus their individual 

resting EE (REE). We did not record REE in the present study, but used the mean age related 

REE from Brandes to be able to compare methods. Resting energy expenditure is simply 

defined as the energy expended at rest by a fasted individual in a thermo-neutral environment 

and is known to play an important role in the total energy expenditure output (27). However, 

because individual measurements in children tend to be time consuming and are associated 

with participant burdens (28), we used mean individual measures calculated from Brandes et 

al.´s study. Consequently, this could have affected the association between measured and 

estimated values, and caused higher differences between the two measurement approaches. 
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However, major factors contributing to individual variation in REE are anthropometric 

characteristics, such as age, gender and body size (29). If REE significantly influence 

estimated values, it is suggested that such variables should have improved EE estimation 

significantly, and been entered into Brandes´ estimation equation.  

 

When using Brandes´ equation to estimate EE for more vigorous activities such as 

jogging and running, it overestimated both absolute and relative values. However, applying an 

equation based on walking trials to evaluate more vigorous activities may cause lower 

estimation accuracy since the slope and intercept of the regression line would be affected. 

Furthermore, research indicates that no single regression equation developed for use in 

children provides accurate estimations across a wide range of activities (22, 30-32). A lower 

back mounted accelerometer may measure vertical acceleration with a high degree of 

accuracy, but not identify horizontal acceleration such as arm movements with equal 

accuracy, which may be more present in children during jogging and running. It is therefore 

possible that activity specific equation may enhance accuracy of acceleration based EE 

estimation.  

 

4.2 NTNU developed equations 
In the present project we developed three new regression equations to estimate EE. 

One was based on walking activities only (NTNUwalking) one was based on jogging and 

running (NTNUvigorous) and one was based on all activities conducted (NTNUall intensities). 

Further, two equations included acceleration and weight (NTNUwalking and NTNUall int.), while 

one equation included height and accelerometer for absolute values and BMI and acceleration 

for relative values (NTNUvigorous) as contributing factors.  

Previous work has emphasized the high accuracy for measuring activities with an 

accelerometer attached as close as possible to the body’s centre of mass, such as to the lower 

back, thigh or hip (33). In addition, adding anthropometrical characteristics seem to improve 

EE estimation (1, 22, 34) In particular, weight is known to explain a significant part of the 

variance in EE since heavier individuals expend more energy at a given speed than smaller 

individuals do (22).  

When performing split sample validation we found that NTNUwalking measured EE 

most accurate for walking activities both for absolute and relative units, while NTNUall int. and 

NTNUwalking measured EE most accurate for vigorous intensities in absolute units. This is in 

contrast with previous findings, suggesting that activity-specific regression equations lead to 
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more accurate EE results in children (34). In such, NTNUvigorous was expected to estimate EE 

more accurate than observed in this study. However, NTNUvigorous consisted of other 

contributing factors (BMI and height), which might explain some of the inadequate results. 

Additionally, our study used a limited set of structured activities, and it may be that activity-

specific regression equations are needed in more complex free-living activities such as 

playing football, pushing and lifting objects.  

Compared to Brandes´ equations, NTNUwalking presented a higher accuracy for 

walking intensities while NTNUall int. and NTNUwalking presented a higher accuracy for jogging 

and running in absolute units. For relative units, overall estimation accuracy was low for 

newly developed equations, and no good explanation was found. However, a possible 

explanation for the better estimation accuracy for absolute units was our study sample, only 

including children from 7-15 years. Previous research indicates that specific equations based 

on children should be applied when estimating EE in children (30) since it is more difficult to 

estimate EE in children compared to adults (22). This is mainly because of the difference in 

children´s metabolic rate, movement economy and activity pattern compared to older age 

groups (21, 22, 35). For example, when looking at the children running, the movement was 

more irregular compared to adult movement pattern. Hence, acceleration signal from child 

movement could provide a less rhythmic and repetitive signal with different vector magnitude 

than observed in the adult population (36).  

Individual EE estimates are known to be more challenging than group estimates (22). 

This was coherent with our study results, showing a mean bias close to zero while the limits 

of agreements were considered to be broad. However, as previously mentioned, the limits 

should be interpreted with caution, since they are dependent of sample size. Consequently, 

our sample size is relatively small compared to Brandes et al.´s study. However, it should be 

mentioned that our study sample compared to Brandes et al. was smaller but still managed to 

narrow the limits, indicating that our regression equations succeeded to estimate EE more 

accurately for individual values.  

When performing the stepwise regression, only regression equations based on all 

intensities (both absolute and relative units) and walking (in absolute units) entered vector 

magnitude output from the lower back into the equation. For the remaining equations, 

acceleration output (from the lower back) had to be entered manually, indicating that vector 

magnitude´s explained variance was too low for these equations. It may be that other factors 

in the acceleration signal influence EE with greater quantity, such as peak acceleration, total 

power, or root mean square. In addition, the accelerometer worn on the thigh did not improve 
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EE estimation for any equations, although it has shown high accuracy for measuring EE in 

ambulatory activities in the adult population (20). However, the current study only evaluated 

one-posture specific activities, suggesting that the ability to distinguish different orientations 

of body segments were not needed. For example, estimating EE for cycling or sitting may 

require multiple accelerometers for better estimation accuracy. 

For some of the newly developed equations, velocity and heart rate output increased 

the explained variance with a reasonable amount. However, including such variables prevent 

these equations from being feasible for use in large surveillance or epidemiological studies. It 

complicates the regression equations and makes them less available for free-living measuring 

because of the demanding data retrieval. For example, when gathering heart rate information 

we need an additional sensor attached to the participants. Furthermore, it is not possible to 

calculate velocity precise enough from accelerometer output, and in such, it has to be gathered 

separately. In this way, variables not contributing in a sufficient manner would only be 

considered redundant and decrease robustness of an already decent and practicable regression 

equation.  

The possibility to measure EE accurately using more accessible approaches, such as 

raw accelerometer data and additional anthropometrical characteristics in children calls for a 

better understanding. To date there is a lack of studies for EE estimations in children using 

raw accelerometer data. One study, conducted by Hildebrand and co-workers (2014) 

compared raw accelerometer output from wrist and hip worn monitors in children (ranging 

from 7-11 years) suggesting that acceleration output explained 71-78% of the variance in 

VO2. Consequently, contribution of acceleration data were greater compared to our study 

results, despite both studies used children as study sample and vector magnitude as 

acceleration output. However, the accelerometer placements were different. In addition, the 

activity protocol consisted of treadmill walking and running conducting specific velocities, 

which result in a more standardised data material. Furthermore, it may be that gas exchange 

data have a greater relation to acceleration data, although this was not coherent with this study 

(results not shown). 

Besides, it may be that other alternative methods of analysis manage to estimate EE 

more accurately. For example, artificial neural networks have appeared to be a promising 

approach (14, 19, 20). It is a nonlinear model that takes a set of inputs and uses them to 

estimate a certain output variable (e.g. energy expenditure). It can contain different input 

features (e.g. participant characteristics, time domain features) that allow high estimation 

accuracy. In addition, the technique seems to be appropriate when the ideal solution of the 
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estimating outcome is unknown (19). However, future studies are needed to investigate which 

statistical approaches that improve precision and individual EE estimation in children. 

 

4.3 Strengths and limitations 
There are several strengths of the current study that should be highlighted. First and foremost, 

a study sample of children, including both genders, wide range of age and BMI levels was 

evaluated. Such heterogeneous participant groups ensure variance, which is considered to be 

important when conducting validation studies. Secondly, a semistructured, simulated free-

living setting gave the participants some extent of freedom in regard of movement pattern and 

intensity, while the researchers could maintain control over activities conducted. As 

previously mentioned, this could be even more important when studying children because of 

the tendency of sporadic movements and rarely achievements of steady-state during free-

living physical activity settings. Finally, our study compared estimated equations to indirect 

calorimetry, which is considered to be gold standard for EE measurements.  

 In addition, some limitations should be addressed. The study sample only included 

healthy children and our results may therefore not generalize to certain patient groups. 

Furthermore, although the experimental setting included free-living activities, it is 

questionable whether the activity pattern of children might differ from daily life behaviour. 

For practical reasons, only common daily life activities such as walking and running were 

evaluated. However, for children it could be even as common to jump, throw or crawl. In 

addition, it cannot be known whether the children behaved as they usually do. For example, 

some of the participants were observed moving a bit stiff, which may be due to all the 

attached equipment or the data collection situation. Finally, our newly developed equations 

were only tested on a small sample of children, and should be further examined in other 

children to ensure the equations external validity.   

 
 

5. CONCLUSION 
The current study indicates that Brandes´ equations manage to estimate EE in children most 

accurately for absolute values when walking moderately. However, stepwise regression 

equations developed in the present study were more accurate for both walking and vigorous 

intensities, supporting child-specific regression equations for estimating EE in children. Thus, 

stepwise regression equations may work reasonably well for estimating group estimates. 
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However, further development of the stepwise regression equations is needed to provide a 

more accurate individual EE estimation. In addition, future research should evolve toward a 

methodological consensus for accelerometry-based EE estimation in children. 
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APPENDIX	2	
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APPENDIX 3 
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