
Control of an Underwater Swimming
Manipulator, With Compensation for
Reaction Forces and Hydrostatic Forces

Morten Fyhn Amundsen

Master of Science in Cybernetics and Robotics

Supervisor: Kristin Ytterstad Pettersen, ITK
Co-supervisor: Eleni Kelasidi, ITK

Jørgen Sverdrup-Thygeson, ITK

Department of Engineering Cybernetics

Submission date: June 2017

Norwegian University of Science and Technology



 



Problem description

The project is concerned with a class of robots called underwater swimming manipulators, or
USMs. These are hybrid systems that merge features of underwater snake robots (USRs), robotic
manipulator arms, and traditional thruster-equipped underwater robots, such as ROVs and
AUVs. A USM has an appearance similar to that of a floating manipulator arm, and is equipped
with thrusters in addition to movable joints. It can move freely in water either by undulatory
locomotion, or by combining the undulation with thruster propulsion. USMs are designed to be
highly maneuverable, while also having the ability to perform intervention tasks.

Most USMs—including the specific model covered here—have a number of joints that make
them redundant with respect to the tasks that they perform. The hyperredundancy creates a very
interesting control problem, providing both more flexibility and thus more challenges when it
comes to motion planning and control. USM control must also take into account that the USM
floats freely in the water—it is not a�ached to its environment. Control of the hyperreduntant,
free-floating USM is the topic of this project.

1. Do a literature survey on modeling and control of redundant robot manipulators, especially
for underwater robots.

2. Develop a control system for USM manipulation tasks.

3. Implement the control system in MATLAB/Simulink.

4. Validate the control system through simulations with Vortex Studio.

The report shall be wri�en in English and edited as a research report including Abstract,
Introduction with motivation, literature survey, contributions of the project work, and the outline
of the report. This is followed by the chapters describing the results of the project work, simulation
results and corresponding discussion, and a conclusion including a proposal for further work.

Assignment given: January 9, 2017
Deadline: June 5, 2017
Supervisor: Kristin Y. Pe�ersen
Co-supervisors: Jørgen Sverdrup-Thygeson

Eleni Kelasidi



Abstract

The underwater swimming manipulator (USM) is a new class of robots that combines the
underwater snake robot’s biologically inspired shapewith the thruster actuators typical of
other underwater robots. This combinationmakes USMs highly flexible and facilitates for
inspection, maintenance, and repair in otherwise inaccessible environments. However,
because the USM floats freely in the water, any motion of the manipulator will cause
a reaction that affects the position and orientation of the base, and hydrostatic forces
will cause rotations of the entire vehicle. This thesis proposes a USM control scheme
that accounts for reaction forces and hydrostatic forces. The approach is based on a
method originally developed for robots in space, using the generalized Jacobian matrix.
The generalized Jacobian takes base-manipulator coupling into account and allows
manipulation without actuating the base coordinates. Applying this to a USM differs
from previous USM control methods, which actively control the base link to allow fixed-
base control of the end-effector. The previous methods require many thrusters, and
the power to drive them. This thesis investigates if USM control with the generalized
Jacobian is feasible, despite the differences between underwater and space robots. The
complete control system is implemented inMATLAB/Simulink and verified in the Vortex
Studio real-time hydrodynamic simulator. Without hydrostatic forces, the system is
found to be useful even without sensor feedback, with small tracking errors. With
nonzero hydrostatic forces, sensor feedback is required for acceptable accuracy, and
position feedback was found to give significantly better precision than velocity feedback.
The thesis demonstrates that the generalized Jacobian can be used for efficient USM
control, and is applicable to any underwater vehicle manipulator system, including
underwater snake robots without thrusters. For USMs, this means that longer missions
on battery power are possible and that the thrusters are freed to other tasks.

ii



Sammendrag

Svømmende undervannsmanipulatorer (USM-er) er en ny klasse roboter som kombinerer
den biologisk inspirerte formen til undervanns slangeroboter med thrustere som er van-
lige for andre undervannsroboter. Denne kombinasjonen gjør USM-er svært fleksible og
legger til rette for inspeksjon, vedlikehold og reparasjon i ellers utilgjengelige omgivelser.
EttersomUSM-er flyter fritt i vannet vil enhver leddbevegelse skape reaksjonskrefter som
påvirker posisjonen og rotasjonen til basen, og hydrostatiske krefter vil få hele farkosten
til å rotere. Denne avhandlingen foreslår et styresystem for USM-er som tar høyde for
reaksjonskrefter og hydrostatiske krefter. Tilnærmingen er basert på en metode utviklet
for roboter i verdensrommet, som benytter den generaliserte jacobimatrisen. Den gener-
aliserte jacobimatrisen tar hensyn til koplingskrefter mellom base og manipulator-arm,
og muliggjør manipulering uten å aktuere basens koordinater. Å anvende dette på en
USM skiller seg fra tidligere styringsmetoder for USM-er, som aktivt regulerer basen
for å tillate fast base-styring av armen. De tidligere metodene krever mange thrustere,
og effekt til å drive dem. Denne avhandlingen undersøker om USM-styring med den
generaliserte jacobimatrisen er mulig, tross forskjellene mellom roboter under vann og
i verdensrommet. Det fullstendige styresystemet er implementert i MATLAB/Simulink
og verifisert i Vortex Studio, en sanntids hydrodynamikk-simulator. Uten hydrostatiske
krefter er styresystemet nyttig selv uten tilbakekopling, med små reguleringsavvik. Med
hydrostatiske krefter er tilbakekopling nødvendig for å oppnå akseptabel nøyaktighet,
og posisjonstilbakekopling har vist seg å være vesentlig mer presist enn hastighetstil-
bakekopling. Avhandlingen viser at den generaliserte jacobimatrisen kan gi effektiv
USM-styring, og er anvendelig på ethvert undervanns farkost-manipulator-system,
inkludert slangeroboter uten thrustere. For USM-er betyr dette at lengre oppdrag blir
mulige, og thrusterne blir fri til å utføre andre oppgaver.

iii



Contents

Abstract ii

Sammendrag iii

List of Tables vii

List of Figures viii

List of Acronyms x

List of Symbols xii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Inverse kinematic control and redundancy resolution . . . . . . 6
1.3.2 Singularity avoidance . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.3 Robot manipulators in space . . . . . . . . . . . . . . . . . . . . 8
1.3.4 Hydrodynamic effects on underwater manipulators . . . . . . . 10

1.4 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Kinematic model 15
2.1 Forward kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Reference frames . . . . . . . . . . . . . . . . . . . . . . . . . . 15

iv



2.1.2 Transformations between frames . . . . . . . . . . . . . . . . . 16
2.2 Differential kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 The manipulator Jacobian matrix . . . . . . . . . . . . . . . . . 19

3 Underwater manipulator control 23
3.1 Compensating for reaction forces . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 The generalized Jacobian matrix . . . . . . . . . . . . . . . . . 24
3.1.2 Singularities of the GJM . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Compensating for hydrostatic forces . . . . . . . . . . . . . . . . . . . . 29
3.2.1 Quantifying the hydrostatic forces . . . . . . . . . . . . . . . . 29
3.2.2 Finding the locations of the COM and COB . . . . . . . . . . . 31
3.2.3 Rotation caused by hydrostatic forces . . . . . . . . . . . . . . . 32
3.2.4 Velocities caused by hydrostatic forces . . . . . . . . . . . . . . 34
3.2.5 Velocity feedback . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.6 Position feedback . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.7 Damping hydrostatics-induced oscillations . . . . . . . . . . . . 36

3.3 Inverse kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.1 The Jacobian pseudoinverse . . . . . . . . . . . . . . . . . . . . 39
3.3.2 Damped least-squares . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.3 Numerical filtering . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Joint limit avoidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.1 Weight normalization . . . . . . . . . . . . . . . . . . . . . . . 43
3.4.2 Weight offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Thrust allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Implementation and simulation 49
4.1 Vortex simulation model . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Vortex-Simulink interface . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3 Control design model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4 Overview of simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5 Simulations without restoring forces . . . . . . . . . . . . . . . . . . . 54

4.5.1 Case 0: Traditional control (non-GJM) . . . . . . . . . . . . . . 55
4.5.2 Case 1: Open-loop control . . . . . . . . . . . . . . . . . . . . . 57
4.5.3 Case 2: Velocity feedback . . . . . . . . . . . . . . . . . . . . . 58

v



4.5.4 Case 3: Position feedback . . . . . . . . . . . . . . . . . . . . . 59
4.5.5 Case 4: Accuracy for slow vs. fast motion . . . . . . . . . . . . 60

4.6 Simulations with restoring forces . . . . . . . . . . . . . . . . . . . . . 61
4.6.1 Case 5: Open loop . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.6.2 Case 6: Velocity feedback . . . . . . . . . . . . . . . . . . . . . 63
4.6.3 Case 7: Position feedback . . . . . . . . . . . . . . . . . . . . . 65
4.6.4 Case 8: Position feedback and thruster damping . . . . . . . . . 66

5 Conclusion 69
5.1 Prospects for future research . . . . . . . . . . . . . . . . . . . . . . . . 70

A Control design model 73

B Implementation details 75

C Conference paper 81

References 89

vi



List of Tables

2.1 Summary of reference frames. . . . . . . . . . . . . . . . . . . . . . . . 17

A.1 Geometric properties of each link of the USM model. . . . . . . . . . . 73
A.2 Mass and inertia properties of the USM model. . . . . . . . . . . . . . . 74
A.3 Positions and orientations of the thrusters relative to their parent frame. 74

vii



List of Figures

1.1 Examples of classes of underwater robots. . . . . . . . . . . . . . . . . 2
1.2 Differences between fixed-base and floating-base manipulation. . . . . 4
1.3 Effects of kinematic redundancy. . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Notation for links, joints, and reference frames. . . . . . . . . . . . . . 16
2.2 Close-up on a joint frame and its corresponding home-configuration

frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Visualization of the vectors that define the GJM. . . . . . . . . . . . . . 26
3.2 Forces of gravity and buoyancy on a submerged body. . . . . . . . . . . 31
3.3 Frames Fm1 and Fm2 in relation to the COM, COB, and the inertial frame. 32
3.4 Execution times for an SVD. . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5 Weight characteristics for different angle units, using unnormalized

weights. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.6 Weight characteristics for different angle units, using normalized weights. 45
3.7 An example of thruster placement on a USM. . . . . . . . . . . . . . . . 46

4.1 The USM simulation model, as seen in Vortex. . . . . . . . . . . . . . . 50
4.2 Unit step response of the joint motors in the Vortex USM model. . . . . 50
4.3 Connections between MATLAB/Simulink and Vortex. . . . . . . . . . . 51
4.4 The geometry of the simulation model. . . . . . . . . . . . . . . . . . . 52
4.5 The initial USM configuration. . . . . . . . . . . . . . . . . . . . . . . . 55
4.6 (Case 0) End-effector velocity (above) and position accuracy (below) for

traditional control (stationkeeping with fixed-base inverse kinematics). 56

viii



4.7 (Case 0) Commanded force from each thruster, in newtons, for traditional
control (stationkeeping with fixed-base inverse kinematics). . . . . . . 56

4.8 (Case 0) Snapshots of the configuration change for traditional control
(stationkeeping with fixed-base inverse kinematics), at 2 s increments
of the simulation time t . Notice how the base stays fixed while the
end-effector moves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.9 (Case 1) End-effector velocity (above) and position accuracy (below) for
open-loop GJM control. . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.10 (Case 1) Snapshots of the configuration change for open-loop GJM
control, at 2 s increments in the simulation time t . Notice how all parts
of the robot move to allow correct end-effector motion. . . . . . . . . . 59

4.11 (Case 2) End-effector velocity (above) and position accuracy (below) for
closed-loop GJM control with velocity feedback. . . . . . . . . . . . . . 60

4.12 (Case 3) End-effector velocity (above) and position accuracy (below) for
closed-loop GJM control with position feedback. . . . . . . . . . . . . . 61

4.13 (Case 4) End-effector velocity accuracy for fast (above) and slow (below)
velocities using open-loop GJM control. . . . . . . . . . . . . . . . . . . 62

4.14 (Case 5) End-effector velocity (above) and position accuracy (below) for
open-loop GJM control, subjected to hydrostatic forces. . . . . . . . . . 63

4.15 (Case 6) End-effector velocity (above) and position accuracy (below) for
closed-loop GJM control with velocity feedback, subjected to hydrostatic
forces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.16 (Case 7) End-effector velocity (above) and position accuracy (below) for
closed-loop GJM control with position feedback, subjected to hydrostatic
forces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.17 (Case 8) End-effector velocity (above) and position accuracy (below) for
closed-loop GJM control with position feedback and thruster stopping,
subjected to hydrostatic forces. . . . . . . . . . . . . . . . . . . . . . . . 66

5.1 Comparison of rootmean square of the position error norm for variations
of the control system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

B.1 Top-level view of the control system implemented in Simulink. . . . . . 76
B.2 The Simulink-Vortex interface. . . . . . . . . . . . . . . . . . . . . . . . 78

ix



List of Acronyms

AUV autonomous underwater vehicle

CAD computer-aided design

CLIK closed-loop inverse kinematics

COB center of buoyancy

COM center of mass

DOF degree of freedom

DVL Doppler velocity log

GJM generalized Jacobian matrix

GNSS global navigation satellite system

IMU inertial measurement unit

INS inertial navigation system

LBL long baseline

PD proportional-derivative

PID proportional-integral-derivative

PIW path-independent workspace

RMS root mean square

x



RNS reaction null-space

ROV remotely operated vehicle

SLAM simultaneous localization and mapping

SNAME The Society of Naval Architects and Marine Engineers

SVD singular value decomposition

USBL ultra-short baseline

USM underwater swimming manipulator

USR underwater snake robot

UVMS underwater vehicle-manipulator system

VM virtual manipulator

xi



List of Symbols

n Number of joints

nd Number of controllable DOFs

nt Number of thrusters

R The set of real numbers

S(3) ⊂ R3 A sphere

H ⊂ R4 The set of unit quaternions

SO(3) ⊂ R3×3 The special orthogonal group

FI The inertial frame

F0 The USM base frame

Fi The USM joint i frame

Fn The USM end-effector link frame

FE The USM end-effector tool frame

{ax̂b ,
aŷb ,

aẑb } Normalized Cartesian basis for Fb expressed in Fa

apb ∈ R3 Position of Fb given in Fa

aRb ∈ SO(3) Rotation from Fa to Fb

aT b ∈ R4×4 Homogeneous transformation from Fa to Fa

aηb,c Pose of Fc relative to Fb , expressed in Fa
1

1The target set depends on the representation of orientation. Using Euler angles, it is R3 × S(3), and using
unit quaternions, it is R3 × H.

xii



avb = (aub ,
avb ,

awb )
T ∈ R3 Linear velocities of Fb wrt. Fa

aωb = (apb ,
aqb ,

arb )
T ∈ R3 Angular velocities of Fb wrt. Fa

aνb = (avT
b ,

aωT
b )

T ∈ R6 Velocity twist (linear and angular) of Fb wrt. Fa
aτ = (

a f T, amT)T ∈ R6 Wrench (forces and moments) expressed in Fa

a f grav ∈ R3 Force of gravity expressed in Fa

a f buoy ∈ R3 Force of buoyancy expressed in Fa

aд ∈ R6 Hydrostatic restoring forces expressed in Fa

q = (q1, . . . ,qn) ∈ R
n Manipulator joint positions

Ûq ∈ Rn Manipulator joint velocities

t = (t1, . . . , tm) ∈ R
m Task space positions

Ût ∈ Rm Task space velocities

h = (η,ϵT)T Quaternion base orientation

J Arbitrary Jacobian matrix

J † Pseudoinverse of the Jacobion

J Sд (q) ∈ R
6×n Spatial geometric manipulator Jacobian

J 0д (q) ∈ R
6×n Base geometric manipulator Jacobian

J Eд (q) ∈ R
6×n End-effector geometric manipulator Jacobian

J ∗(q, IR0) ∈ R
6×n Generalized Jacobian matrix

S(p) ∈ R3×3 Skew-symmetric matrix of vector p ∈ R3

Ad
(aT b

)
∈ R6×6 Adjoint map of the transformation aT b

X ′
i Base joint twist

X i
i Body joint twist

B =
(
b1,b2, . . . ,bnt

)
∈ Rnd×nt Thrust configuration matrix

u ∈ Rnt Thruster force vector

mi Mass of USM link i

mtot Total USM mass

W Total USM weight

xiii



∇i Displacement of USM link i

∇tot Total USM displacement

B Total USM buoyancy

д Acceleration of gravity

ρ Density of water

I The identity matrix

Kclik ∈ Rm×m CLIK gain

Kp ∈ R3×3 Orientation controller proportional gain

Kd ∈ R3×3 Orientation controller derivative gain

λd , λw , λn Inverse kinematics scaling factors

σ = (σmin, . . . ,σmax)
T Singular values of the Jacobian

H (q) Performance criterion for joint limit avoidance

W ∈ Rn×n Joint velocity weight matrix

xiv



Chapter 1

Introduction

This introductory chapter will briefly provide context for the class of robots discussed in
this thesis and give motivation and a description of the problem to be solved. A literature
review summarizes existing relevant knowledge, and establishes the foundation of the
later control system. The scope of the work is then defined through a list of assumptions.
Finally, the contributions of the thesis are defined and elaborated.

1.1 Motivation

Underwater robots exist in numerous forms and have a multitude of applications.
Applications include seafloor mapping and geological sampling in research and science;
construction, inspection, maintenance and repair of subsea installations in the oil and
gas industry; and search and disposal of mines for the military [1]. Figure 1.1 shows
examples of different classes of underwater robots.

Some tasks, especially complex intervention tasks that have yet to be automated, and
also some observation tasks, are suited for remotely operated vehicles (ROVs) (Figures
1.1a and 1.1b), which are tethered to the surface and usually teleoperated [2]. Other
tasks, such as wide area surveying and mapping, are usually done by autonomous
underwater vehicles (AUVs) (Figures 1.1c and 1.1d), as they can operate for extended
periods of time without human involvement [1].

The underwater swimming manipulator (USM) is a new class of underwater robots

1



2 CHAPTER 1. INTRODUCTION

(a) AC-CESS AC-ROV 100 miniature ROV (b) Sperre SUB-fighter 10k ROV

(c) Kongsberg REMUS 100 AUV (d) Girona 500 AUV

(e) HiBot ACM-R5H USR (f) Eelume USM

Figure 1.1: Examples of classes of underwater robots.



1.2. PROBLEM DESCRIPTION 3

that combines a bio-inspired snake-like appearance with thruster actuators [3]. USMs
are currently only in development by Eelume, and represent a novel field of robotics
research. The Eelume USM is shown in Figure 1.1f. USMs are a development of the
underwater snake robot (USR), which is a snake-like underwater robot designed to
“swim” like an eel or a sea snake [4]. Figure 1.1e gives an example of a USR.

USMs are intended to combine the range of AUVs, the accessibility of small ROVs,
and the intervention capabilities of work class ROVs. The shape of a USM gives it access
in confined and cluttered environments, and it can adapt to different tasks by assuming
an appropriate configuration [3]. For long-distance transportation, the USM assumes
a fully extended shape to reduce drag, while for intervention it can use its motorized
joints to move like an industrial manipulator arm. Another prospect is to use USMs
as “resident” robots: Robots that live on site underwater, with a charging and docking
station to return to between missions.

This thesis will investigate how to achieve accurate and flexible USM manipulation
with reduced power consumption compared to today’s methods. Previous USM and
underwater vehicle-manipulator system (UVMS) control has used thrusters and joint
motors for manipulation, which is energy-inefficient due to the high power consumption
of the thrusters. In contrast to the existing methods, this thesis will seek a solution that
does not rely on thruster usage, ultimately saving power and extending the possible
mission duration.

1.2 Problem description

This thesis will develop a manipulation control system for the underwater swimming
manipulator class of robots. A USM floats freely in the water, in contrast to an industrial
robotic manipulator which is fixed to the ground. Because of this, the USM responds
differently to three types of forces in particular:

1. Reaction forces: Moving the joints of the USM will induce reaction forces that
disturb the position and orientation of the manipulator base [5]. The disturbance
occurs because the base is floating freely in the water. By contrast, the base of an
industrial manipulator is firmly fixed to its environment and is not disturbed by
joint motion. Figure 1.2 compares the effects of joint motion and reaction forces
on fixed-base and floating-base manipulators.



4 CHAPTER 1. INTRODUCTION

2. Hydrostatic forces: Gravity “pulls” the center of mass (COM) down, and buoy-
ancy “pushes” the center of buoyancy (COB) up. For a USM, its total COM and
COB are not necessarily aligned, and this causes rotational hydrostatic restoring
forces on the USM [6, Ch. 4]. Because the COM and COB locations depend on the
joint configuration of the USM, the resulting restoring forces also depend on the
joint configuration.

3. Hydrodynamic forces: The manipulator moves through water, and is subject
to hydrodynamic effects such as drag forces and increased inertia from added
mass [7, Ch. 10].

The effects of the forces listed above are present for all underwater manipulators,
but not to the same extent. Robots that have a large “body” with a smaller manipulator
attached to it will not be strongly affected, because of the large inertia of the base.
Intervention-ROVs and -AUVs are typical examples, such as those in Figures 1.1b and
1.1d.

Base

End-

e�.

(a) Initial configuration

Base

End-

e�.

(b) Fixed base

Base

End-

e�.

(c) Floating base

Figure 1.2: Differences between fixed-base and floating-base manipulation. (a) shows
the initial configuration, and (b) and (c) shows final configurations after identical joint
motion. In (b), the base is fixed, and this causes the total COM, denoted , to move.
In (c), the base is floating, and reaction forces on the base cause it to move, while the
location of the COM remains the same.

USRs and USMs are more strongly affected than traditional UVMSs. The snake
robots have a base link that is only a small fraction of the total vehicle’s inertia and size.



1.3. LITERATURE REVIEW 5

As a result, both reaction forces and hydrostatic forces that occur while moving the
manipulator will affect them much more than ROVs and AUVs. It is therefore vital to
compensate for these effects when attempting manipulation tasks.

The title of the thesis describes its core aim: “Control of an Underwater Swimming
Manipulator, With Compensation for Reaction Forces and Hydrostatic Forces”. The
necessary elements for the realization of such a control system will be developed,
including a suitable model, the control scheme itself, and concerns necessary for practical
implementation. The proposed solutions apply to many classes of robots, but will be
discussed in the context of USMs here.

The control scheme in this thesis will not be designed to counteract hydrodynamic
effects. The thesis will, however, investigate the significance of hydrodynamics in
comparison to hydrostatics and reaction forces, and to what extent the hydrodynamic
forces subside at the low velocities typical for precision manipulation. The quadratic
terms in hydrodynamic added mass and damping [7, Ch. 10] suggest that low velocities
lead to small hydrodynamic forces.

1.3 Literature review

This section reviews central literature in areas relevant to the problem description above,
including modeling, inverse kinematics, and free-floating manipulation.

A thorough overview of how to derive forward kinematics for UVMSs, through
a series of homogeneous transformation matrices, is given in [7, Ch. 4–5]. A USM
is—kinematically speaking—simply a UVMS with a tiny base, and the same methods
are directly applicable to USMs. An example of applying UVMS modeling methods to
USMs is given in [8].

A kinematic and dynamic model for underwater snake robots is derived in [9]. It
is general in the sense that it does not assume constant link lengths or masses, and it
also models added thrusters. This makes it a generalization of the USR model of [10], in
which link lengths and masses are assumed constant, and there are no added effectors.
The model of [10] is, in turn, a generalization of the land-based snake robot model given
in [11].

The control system proposed in this thesis is based on kinematics combined with
the mass and inertia properties of the robot. It is therefore not necessary to use a



6 CHAPTER 1. INTRODUCTION

full dynamic model—it is sufficient to have a kinematic model and knowledge of basic
vehicle parameters.

1.3.1 Inverse kinematic control and redundancy resolution

Inverse kinematic control is the problem of determining the joint positions or velocities
(or even accelerations) needed to fulfill a given task, such as reaching a given end-effector
pose. For redundant manipulators, there will be an infinite number of solutions for a
task, and a method for choosing one of them is needed. This is referred to as redundancy
resolution and is illustrated with an example in Figure 1.3. A survey of some widely
adopted methods is given in [12].

Figure 1.3: Effects of kinematic redundancy: A 3 joint manipulator performing a 2 DOF
end-effector positioning task. The gray dot at the origin represents the first joint, the
arrow heads represent end-effectors, and the green circle is the desired end-effector
position. Yellow, orange, and red are used to display different joint configurations that
all accomplish the same task—this is possible due to the kinematic redundancy.

The most common inverse kinematic redundancy resolution methods are based on
the Jacobian matrix of the manipulator. Two simple methods are the Jacobian transpose
[13] and the more widely used Jacobian pseudoinverse [14]. Siciliano [12] explains
that the Jacobian transpose may be useful when the computational load is of particular
importance and that it avoids the numerical instability that Jacobian inverse methods
exhibit at kinematic singularities. The Jacobian pseudoinverse is also easy to implement
and computationally cheap, and is optimal in a minimum least-square joint velocity
sense [12]. This optimality condition is useful for the control system investigated in



1.3. LITERATURE REVIEW 7

this thesis, but the lack of singularity avoidance is problematic, due to the large and
spurious velocities singularities can cause.

Another way to resolve redundancy is by defining more than one task. This not
only resolves but exploits the mechanical redundancy. A common approach is task
priority redundancy resolution, which is based on filtering a secondary task through
the null-space of the primary task. The filtering gives a strict priority between the
tasks—the secondary task is only fulfilled to the extent possible without interfering
with the primary task. The method is described in [15] in the context of general robot
manipulators, and [16] in the context of UVMSs. Task priority can also be used for
redundancy resolution alone, by defining an arbitrary secondary task, but this may lead
to algorithmic singularities [12].

Singularity-robust task-priority has been applied to a USM in [3], where it is used
to coordinate the motion of the base and end-effector, by actuating both the joints
and the thrusters. The primary task was six degree of freedom (DOF) control of the
end-effector, and the secondary task was stationkeeping of the base. This is an example
of applying traditional fixed-base inverse kinematics to a floating base robot, and it
takes stationkeeping errors into account.

An augmented Jacobian can also resolve redundancy. The idea is to add a task by
altering the Jacobian directly, in such a way that it becomes square and invertible [12]. It
then becomes possible to use a regular matrix inverse as opposed to the pseudoinverse,
but the strict priority between tasks disappears. The augmented Jacobian also restricts
the number of possible subtasks considerably.

1.3.2 Singularity avoidance

Several singularity robust inverse kinematic methods exist. An alternative to the Jaco-
bian pseudoinverse, termed the singularity-robust inverse, is presented in [17], which
gives feasible joint velocity solutions at and near singular points. Another singularity-
avoidance technique, damped least-squares, based on damping the pseudoinverse Jaco-
bian near singular points, is suggested in [18]. Numerical filtering is an improvement on
this, presented in [19], which maintains the singularity robustness but reduces tracking
error near singularities by only damping the relevant joint velocities. The latter two are
very relevant—the first for its straightforward implementation and the second for its
improved tracking near singular points.



8 CHAPTER 1. INTRODUCTION

Furthermore, [20] studies existing singularity-robust methods applied to redundant
manipulators and proposes a new method to overcome the problem of algorithmic
singularities. This method is, however, only applicable to task-priority-based inverse
kinematics.

Chirikjian and Burdick [21] present a solution that avoids the Jacobian altogether:
The macroscopic configuration of the manipulator is here defined by a backbone curve,
which is a curve in space that represents the curvature of the manipulator itself. The
inverse kinematics simplify to determining how the curve changes over time. A fitting
procedure calculates joint actuator references that make the manipulator assume the
shape of the curve. The method applies to many classes of robot manipulators, including
inextensible rigid-link snake robots such as the USM.

1.3.3 Robot manipulators in space

There has been much research done on the behavior and control of vehicles with
manipulators in outer space. Because both vehicle and manipulator float freely in
vacuum, without significant external forces, the system is more complex than a fixed-
base manipulator on earth.

In [22], the kinematics of a satellite-mounted manipulator are examined. When the
manipulator’s joints move, the satellite base experiences translational and rotational
reaction forces. These effects are derived for a manipulator with rigid links, both for
a free-floating satellite and an attitude-controlled satellite. The authors mention the
possibility of using these terms as a feed-forward signal to a controller, and present
a reaction moment compensation command that can cancel the attitude disturbance
caused by the manipulator. The feed-forward requires knowledge of the joint positions
along with their first and second derivatives. This can be hard to measure or estimate
accurately, but assuming sufficiently small deviations from the planned path, one may
use the planned joint trajectory and its derivatives instead [22].

The generalized Jacobian matrix (GJM) is introduced and discussed in [23] and [5],
amongst others. The GJM is, as the name implies, a generalization of the Jacobian
matrix, and can be used for inverse kinematic manipulator control on a floating base,
as it takes momentum conservation and base-manipulator coupling into account. [23]
derives the GJM, explains some practical considerations, and suggests directions for
future study. It is made clear that the GJM can be used for inverse kinematics just



1.3. LITERATURE REVIEW 9

like a conventional Jacobian matrix: direct inversion if it is square and non-singular;
pseudoinversion otherwise. An in-orbit experiment has been conducted to validate the
approach in a realistic environment, which successfully verified both GJM and reaction
null-space (RNS)-based control methods [24].

An alternative approach is presented in [25]. It is based on the concept of a virtual
manipulator (VM)—an imagined, shorter manipulator that represents the actual reach-
able workspace of the real manipulator when accounting for the coupling between the
base and the manipulator. The base of the virtual manipulator is fixed to the COM of
the real vehicle-manipulator-system, and its end-effector is usually, but not necessarily,
chosen to coincide with the actual end-effector. The COM does not move, assuming
no external forces, and the VM can be controlled as a fixed-base manipulator. Any
given joint configuration will result in the same position of the end-effector of the VM
and the real manipulator. However, this method only considers conservation of linear
momentum [26], and is more suitable for systems with active attitude control. The
USM can perform attitude control with its thrusters, but the GJM does not have this
requirement and is, therefore, a better alternative.

Many subsequent publications have used the GJM, the VM approach, and other
methods to solve floating-base manipulation problems. Some consider only free-floating
bases; some assume active attitude control; and some design for platforms with active
attitude and position control. Examples are [27]–[31].

A decoupling of manipulator and base dynamics is achieved in [32] by the use of
the RNS. The method differs from those based on the GJM or a VM in that it attempts to
carry out manipulation in a way that does not produce reaction forces. This eliminates
the need for any attitude or position correction, but the downside is that working only
inside the reaction null-space may restrict the workspace too much.

The size of the workspace along with a measure of manipulability for floating
manipulators is defined and discussed in [33]. As the reachable workspace for a floating
manipulator is smaller than that of a fixed-base manipulator, knowing its bounds
is especially interesting. Several types of reachable workspaces based on different
assumptions are defined. For the USM, knowledge of the reachable workspace can be
used to determine which tasks can be carried out without a repositioning of the robot
as a whole. Another way to determine workspace is given [25], based on VMs.



10 CHAPTER 1. INTRODUCTION

1.3.4 Hydrodynamic effects on underwater manipulators

Although modeling and prediction of hydrodynamic effects is outside the scope of this
thesis, it is still something to keep in mind for future work. A hydrodynamic model
for a cylindrical, single-link underwater manipulator is developed in [34]. The authors
identified and modeled the presence of state-dependent hydrodynamic coefficients. In
comparison to traditional constant-coefficient models, the new model gave a “significant
improvement in modeling accuracy” [35, p. 463]. The model was used in a model-based
coordinated vehicle/manipulator control scheme in [34]. Using the OTTER vehicle for
experiments, they compared the cases of

• no vehicle control,

• pure feedback control,

• pure feed-forward control, and

• combined feedback and feed-forward control.

with the conclusion that “Experimental results showed that substantial performance
improvements could be realized in the control of an underwater arm/vehicle system by
incorporating model-based feed-forward information about the hydrodynamic coupling
into the control of the system.” [34, p. 1215]. For a USM used for pure manipulation,
without actuating the thrusters, this accurate cylinder-based model is applicable. If the
thrusters are actuated, however, the hydrodynamic behavior must be expected to change,
possibly invalidating the model. Further analysis of the hydrodynamic properties of
underwater manipulators with thrusters is required, but outside the scope of this thesis.

1.4 Assumptions

This section defines assumptions that will be adopted throughout the thesis.

Assumption 1. The USM links are rigid bodies.

Assumption 2. The USM link masses and displaced volumes are constant.

Assumption 3. No water currents or wave forces act on the USM.



1.5. CONTRIBUTIONS 11

Assumption 4. The initial velocities of the USM base and joints are zero.

Assumption 5. The thrust configuration matrix is well-conditioned in 6 degrees of
freedom.

Assumption 6. The USM as a whole is neutrally buoyant.

Assumption 7. The COM and COB of each link is known.

Assumption 8. All joints on the USM are 1 DOF revolute joints.

Remark 1. Assumption 4 can be fulfilled by giving the USM a few seconds to stabilize
in the water.

Remark 2. Assumption 6 implies that the USM does not float or sink. It may, however,
experience rotational hydrostatic forces if the COM and COB are out of alignment.

Remark 3. Assumption 8 is not very restrictive, as multi-DOF joints can be modeled
as successive single-DOF joints.

1.5 Contributions

The following is a list of the main contributions of this thesis:

• The core contribution is applying GJM-based control to underwater robotic ma-
nipulators. GJM control is previously only used in space robotics, yet this thesis
demonstrates its potential for other, non-space applications, including USMs. Its
primary advantage is the ability to control the manipulator without regard to the
base coordinates, and therefore without needing to actuate the base, and it has
been proven to provide highly accurate control. This also makes it possible to
perform manipulation with thruster-less USRs, which have not previously been
used for manipulation tasks underwater. (Section 3.1.)

• A general kinematic model for robotic manipulators is applied to the USM and
verified to be valid without the need for simplification or any other adaptation,
thus proving that standard modeling frameworks also apply to USMs. (Chapter
2.)



12 CHAPTER 1. INTRODUCTION

• A simple velocity controller and an adaptation of an existing position controller
have been formulated for use in conjunction with GJM control. The controllers
are implemented and simulated as a study of how hydrostatic disturbances and
unmodeled hydrodynamic effects can be counteracted. (Sections 3.2.5 and 3.2.6.)

• An attitude controller has been adapted from a known stationkeeping algorithm.
The controller is used in conjunction with predictions of the vehicle orientation
at hydrostatic equilibrium to stabilize the vehicle quickly, with minimal thruster
usage. With this solution, the thrusters of the USM can be utilized. The thruster
damping functionality is modular and possible to deactivate. (Sections 3.2.3 and
3.2.7.)

• Existing joint limit avoidance methods have been improved so that they pro-
vide identical functionality independent of how large the range of the joints are.
(Section 3.4.)

• A thrust allocation algorithm has been adapted to the USM. Thrust allocation of
USMs is different from conventional underwater robots, as the configuration of
the thrusters changes when the joints move. (Section 3.5.)

• All parts of the kinematic model and control system are implemented in MAT-
LAB/Simulink. The core functionality of the implementation has been unit tested
to assure its validity. (Appendix B.)

• A robust custom interface between MATLAB/Simulink and the Vortex Studio sim-
ulation software has been developed. The interface vectorizes inputs and outputs
and guarantees that the simulator output is valid at all times. Output velocities
and positions are transformed appropriately to allow outputs for arbitrary base
and end-effector frames. (Section 4.2.)

• The control system has been verified through extensive simulations, comparing
six variants of the control system on two different simulation models. (Chapter 4.)

• The main contribution of the thesis—GJM control of underwater vehicles—has
been condensed into a research paper draft, to be submitted to the European
Control Conference of 2018. (Appendix C.)



1.6. THESIS OUTLINE 13

1.6 Thesis outline

After this introductory chapter, the outline of the thesis is as follows: Chapter 2 presents
a kinematic model of the USM. Chapter 3 develops a control system for free-floating
manipulation, based on the kinematic model. Chapter 4 runs extensive simulations of
several variants of the control system, and discusses the results case-by-case. Chapter 5
draws conclusions, and suggests directions for future work.





Chapter 2

Kinematic model

This chapter defines the forward and inverse kinematics of the USM. A kinematic model
is a description of the movement of a system without regard to underlying forces and
inertias. A dynamic model, on the other hand, also includes the forces that act on the
system and the mass-dependent accelerations they cause. The model presented here
is based on [7] and [36], with some changes to notation. The model is general and
applies to any snake robot or robotic manipulator with revolute joints. It can also easily
be extended to accommodate prismatic joints. The generality of the model makes it
applicable to any variation of floating robotic manipulators, and not exclusively to USMs.
It can, however, be applied to USMs without modification.

2.1 Forward kinematics

This section will present the forward kinematic model of the USM: The spatial relation-
ships between all manipulator links and joints as functions of the joint positions. All
relevant reference frames and the transformations between them will be defined.

2.1.1 Reference frames

The links and joints of the USM are numbered as in [36]: Joints from 1 to n, and links
from 0 to n. Joint i connects links i − 1 and i . The index of the base link is 0, and the
index of the end-effector is n. Reference frames are fixed to the joints so that the joint’s

15



16 CHAPTER 2. KINEMATIC MODEL

rotational axis aligns with one of the frame axes. Frame Fi has its origin on the axis of
joint i and is fixed to link i . There is no joint 0. Hence, the base frame F0 is set to some
convenient location fixed to the base link, such as its COM or COB. The end-effector
has a separate frame FE , fixed to the end-effector link and therefore to frame Fn . It
is common to define the end-effector frame to be between the jaws of a gripper or
something of similar effect. The relative locations of the reference frames are illustrated
in Figure 2.1, and summarized in Table 2.1.

F0

F1

F2

F3

F4

FE

x̂I

ŷI

ẑI

Link 0
Link 1

Link 2

Link 3

Link 4

Joint 1

Joint 2

Joint 3

Joint 4

FI

Figure 2.1: Notation for links, joints, and reference frames, shown on a 5-link manipu-
lator. Note that F4 = Fn .

The home position is defined so that all joint positions are zero, q0 = (0, . . . , 0)T ∈

Rn×1. When the USM is in its home position, all its coordinate frames are parallel in
their x , y, and z axes. Their x axes are directed longitudinally (toward the end-effector),
their y axes laterally (to the right when watching from behind and above), and their z
axes normally (downwards when the robot is level). Figure 2.2 shows a joint frame in
its home position and in an arbitrary position.

Finally, the inertial frame FI is fixed to an arbitrary location in the environment,
and its positive z axis points down.

2.1.2 Transformations between frames

Transformations between frames are expressed as homogeneous transformation matri-
ces [37], as they allow concise notation and ease of programmatic implementation [36,



2.1. FORWARD KINEMATICS 17

x̂i

ẑi ŷi , ŷi0
ẑi0

x̂i0
Link i − 1

Link iJoint i

Link i
at home
position

Figure 2.2: Close-up on a joint frame and its corresponding home-configuration frame.

Table 2.1: Summary of reference frames.

Frame Description

FI inertial frame (z-axis down)
F0 base link local frame
Fi joint i frame for i ∈ {0, 1, . . . ,n}
Fn end-effector joint frame
FE end-effector tool frame



18 CHAPTER 2. KINEMATIC MODEL

p. 17]. The homogeneous transformation from Fi to Fj is denoted iT j . (In other words,
iT j expresses the position and orientation of Fj relative to Fi .) A transformation iT j

is composed of a rotation matrix iR j ∈ R
3×3 and a translation ip j ∈ R3. The three are

related by

iT j =
©«
iR j

ip j

0 1

ª®®¬ ∈ R4×4. (2.1)

The transformation i−1T i between successive joint frames depends only on the angle qi
of the ith joint and can be written

i−1T i (qi ) =
©«
i−1Ri (qi ) i−1pi

0 1

ª®®¬ , (2.2)

where i−1pi is the position of Fi expressed in Fi−1. The transformation 0T E (q) from the
base frame F0 to the end-effector frame FE is a product of successive transformation
matrices

0T E (q) =
0T 1(q1)

1T 2(q2) · · ·
n−1T n(qn)

nT E . (2.3)

In the following, the notation is sometimes simplified by omitting the argument of
the transformations, so that T , T (q).

2.2 Differential kinematics

The forward kinematics define a map from the joint positions to e.g. the pose of the
end-effector, usually relative to the base link as

0ηE = k(q), (2.4)

where the definition of the pose vector η depends on the chosen representation of
orientation.

The tasks a USM carries out are defined in a task space—the space spanned out by
the task variables. For the task of 6 DOF end-effector control, there are 6 task variables:
Translation along three axes and rotation around three axes. However, the USM inputs



2.2. DIFFERENTIAL KINEMATICS 19

are in joint space, not task space. The forward kinematics k(q) maps between these
two spaces, with k(q) depending on the chosen task variables. Finding the necessary
joint motion for a desired task space action requires its inverse k−1(q), but k(q) is not
generally invertible. Two options exist to solve the inverse kinematics:

1. Solve the inverse kinematics numerically, such as with the algorithm of [38] or
the IKFast software module from OpenRAVE [39]. Such methods have the benefit
of solving for joint positions directly but are time-consuming and complex in
implementation, especially for elaborate or unusual robots, which makes it less
desirable for a real-time system.

2. Solve the inverse kinematics at the differential level. The map from joint space
velocities to task space velocities takes the form of a Jacobian matrix, the inverse
of which is easier to compute (or approximate) than the position level forward
kinematics. The drawback is that task space and joint space motions must be ex-
pressed as velocities, which adds complexity to systems controlled at the position
level [40].

The remainder of this chapter presents variations of the manipulator Jacobian matrix.

2.2.1 The manipulator Jacobian matrix

The Jacobian matrix for a robot manipulator provides a map from its joint velocities
to the linear and angular velocities of the end-effector.1 There are multiple ways to
express the velocities of the end-effector, and this affects the corresponding Jacobian
matrix. Two useful choices are

• 0ν 0,E : the end-effector velocity relative to the base frame, expressed in the base
frame, and

• Eν 0,E : the end-effector velocity relative to the base frame, expressed in the end-
effector frame.

The map from joint velocities to 0ν 0,E is expressed with the base geometric Jacobian J 0д ,

0ν 0,E = J 0д (q) Ûq, (2.5)
1It is possible to express the Jacobian for the velocities of any link, but the end-effector is usually the link

of interest.



20 CHAPTER 2. KINEMATIC MODEL

while the map from joint velocities to Eν 0,E is expressed with the end-effector geometric
Jacobian2 J Eд ,

Eν 0,E = J Eд (q) Ûq. (2.6)

Following from its definition, the geometric Jacobian of a manipulator can be cal-
culated by first deriving its forward kinematics vector k(q), and then analytically
calculating partial derivatives of each element with respect to each joint variable. Ex-
plicitly calculating the partial derivatives is very laborious for manipulators with many
joints. A method that scales better is given in [7] and repeated here. First, the spatial
geometric Jacobian is written

J Sд =
(
X ′

1 X ′
2 . . . X ′

n

)
(2.7)

where
X ′
i = Ad

(
0T i

)
X i
i , (2.8)

are the base joint twists,

Ad
(
iT j

)
=
©«
iR j S(ip j )

iR j

0 iR j

ª®®¬ , (2.9)

are the adjoint maps from the base to each joint,

X i
i =


(0, 0, 0, 1, 0, 0)T, for x-axis rotation,

(0, 0, 0, 0, 1, 0)T, for y-axis rotation,

(0, 0, 0, 0, 0, 1)T, for z-axis rotation,

(2.10)

are the body joint twists, and S(p ) is the skew-symmetric matrix of the vector p , so
that S(p ) R = p × R . The base and end-effector geometric Jacobians can be found by
applying spatial transformations to the spatial geometric Jacobian, as shown below.
Refer to [7] for details on the spatial Jacobian and its related transformations.

2Sometimes called the body geometric Jacobian.



2.2. DIFFERENTIAL KINEMATICS 21

The base geometric Jacobian is

J 0д =
©«
I S(Ep0)

0 I

ª®®¬ J Sд , (2.11)

and the end-effector geometric Jacobian is

J Eд = Ad
(
ET 0

)
J Sд , (2.12)

which define the maps of (2.5) and (2.6).
The transformations applied to the spatial Jacobian in (2.11) and (2.12) are adjoint

map transformation from the spatial coordinates to the base and end-effector coordinates,
respectively. The former for simplicity is written out in matrix form as it involves no
rotation.





Chapter 3

Underwater manipulator
control

This chapter develops a control scheme for USM manipulation that compensates for the
reaction forces and hydrostatic forces it experiences. The first section introduces the
generalized Jacobian matrix—previously only applied to space robots—and applies it to
the USM. The section ends with a discussion of the singularities of the GJM, focusing
on the practical differences for a robot in space and a robot under water.

The second section discusses how hydrostatic forces affect the USM. The effect is
different than on traditional underwater vehicles because the COM and COB are strongly
dependent on the joint configuration. The locations of the COM and COB are derived
as functions of the joint configuration and are used to predict the rotation between the
vehicle’s current orientation and its orientation at hydrostatic equilibrium. An estimate
of the end-effector velocities caused by the hydrostatics, using measurements obtainable
with a low-cost inertial measurement unit (IMU), is also derived. Simple velocity and
position feedback laws are defined to correct the hydrostatics disturbance. A method
for damping rotational oscillations, using the predicted equilibrium rotation, is also
developed.

The third section compares some existing inverse kinematic methods for the present
application, which is necessary to realize GJM-based control and combine it with the
hydrostatics compensation. The fourth section presents some existing methods of joint

23



24 CHAPTER 3. UNDERWATER MANIPULATOR CONTROL

limit avoidance, which is necessary to avoid mechanical damage and loss of control. An
improvement upon the current methods is developed and proven valid. The fifth section
handles the control allocation problem and generalizes control allocation to vehicles
with arbitrary and time-variant thrust configuration.

The control approach here is general, like the model in Chapter 2, and can be applied
to any robotic system that meets the assumptions of the model, that is, most robotic
manipulators. Thrusters are required only for the optional oscillation damping in Section
3.2.7.

3.1 Compensating for reaction forces

This section summarizes the definition of the GJM from [41], which will be used to
solve the inverse kinematics problem. The GJM is chosen because it makes it possible to
control the end-effector relative to the inertial frame, despite the reaction forces created
by the joint motion. Using the GJM compensates for both rotational and translational
reaction forces. The virtual manipulator has been investigated as another alternative,
but it does not compensate for rotational errors and would require active attitude control
[25], rendering it unsuitable.

3.1.1 The generalized Jacobian matrix

The GJM, introduced in [5], [23], provides a map from the joint velocities to the end-
effector velocity twist, expressed in the inertial frame:

Iν I,E = J ∗(q, IR0) Ûq, (3.1)

where J ∗ is the GJM. This map contrasts that of the fixed-base manipulator Jacobians
defined in Section 2.2.1, which map to end-effector velocities expressed in, for instance,
the base or end-effector frame. By mapping to velocities in an inertial frame, the GJM
takes into account the displacement of the floating manipulator that occurs as a result
of moving its joints. Figure 1.2 illustrates how base displacement can occur.

The GJM was originally developed for manipulators mounted on free-floating ve-
hicles in space, typically satellites [24], which experience negligible external forces.
For these systems, conservation of momentum applies. As described in Section 1.2,



3.1. COMPENSATING FOR REACTION FORCES 25

underwater manipulators are subject to external forces such as hydrostatic restoring
forces and hydrodynamic effects. Hence, the assumption of no external forces does
not hold for these systems. It has so far been unknown whether the GJM is valuable
for systems that do experience some external forces. The aim of this chapter and the
simulations is Chapter 4 is to investigate the usability of the GJM for USMs.

Below follows a complete definition of the GJM, adapted from [41]. The symbols
used are:

• q ∈ Rn are the joint variables,

• ri ∈ R3 is the position of the COM of link i ,

• rд ∈ R3 is the position of the total COM,

• r0д = rд − r0 is a vector from the base to the total COM,

• r0i = ri − r0 is a vector from the base to the COM of link i ,

• p j ∈ R3 is the position of joint j,

• pr ∈ R3 is the position of the end-effector,

• p0r = pr − r0 is a vector from the base to the end-effector,

• kj ∈ R
3 is a unit vector indicating the rotation axis of joint j.

• IR0 ∈ R
3×3 is the rotation from the inertial frame to the base,

• mi is the mass of link i ,

• mtot is the total mass, and

• Ii ∈ R3×3 is the inertia tensor of link i ,

where the vectors above are expressed in the inertial frame, and are illustrated for an
example vehicle in Figure 3.1.

To define the GJM, it is necessary to first define the manipulator Jacobian1

Jm =
©«
k1 × (pr − p1) k2 × (pr − p2) . . . kn × (pr − pn)

k1 k2 . . . kn

ª®®¬ ∈ R6×n , (3.2)

1Note that Jm is identical to the base geometric Jacobian Jд,0 defined in Section 2.2.1.



26 CHAPTER 3. UNDERWATER MANIPULATOR CONTROL

0

0.2

0

-0.2

-0.4

-0.6

1.2 0.2

-0.8

-1

-1.2

Z

-1.4

-1.6

1 0.4
0.8 0.6

X

0.6

Y

0.8
0.4 1

0.2 1.2
0

Figure 3.1: Visualization of the vectors that define the GJM, shown for an 8-link
manipulator. The joint frames are shown as mutually perpendicular red/green/blue
rods, connected by blue lines. The base frame is shown in black at the origin, and the
end-effector frame is pink.



3.1. COMPENSATING FOR REACTION FORCES 27

the base Jacobian

Js =
©«
I3×3 −S(p0r )

0 I3×3

ª®®¬ ∈ R6×6, (3.3)

and their extensions

Ĵs = Js
©«
S(r0д)

I3×3

ª®®¬ ∈ R6×3,
Ĵm = Jm − Js

©«
JTw/mtot

0

ª®®¬ ∈ R6×n ,
(3.4)

where Ĵm happens to be identical to the Jacobian of the virtual manipulator [25]. The
GJM can then be defined as

J ∗ = Ĵm − Ĵs I
−1
s Im ∈ R6×n , (3.5)

where

Is = Iω +mtotS(rдr0д) ∈ R
3×3, (3.6)

Im = Iϕ − S(rд)JTw ∈ R3×n , (3.7)

Iω =
n∑
i=1

(
Ii −miS(ri )S(r0i )

)
+ I0, (3.8)

Iϕ =
n∑
i=1

(
Ii JRi +miS(ri )JT i

)
, (3.9)



28 CHAPTER 3. UNDERWATER MANIPULATOR CONTROL

and

JT i =
(
k1 × (ri − p1) k2 × (ri − p2) . . . ki × (ri − pi ) 0 . . . 0

)
∈ R3×n ,

(3.10)

JRi =
(

k1 k2 . . . ki 0 . . . 0
)
∈ R3×n ,

(3.11)

JTw =

n∑
i=1

mi JT i ∈ R
3×n . (3.12)

Further details on the derivation of the GJM can be found in [5], [23], and more
thoroughly in [41].

3.1.2 Singularities of the GJM

A manipulator is said to be in a singular configuration when its Jacobian is singular,
or rank deficient. When the Jacobian is singular, some of its task-space velocities are
impossible to reach, and its inverse mapping is not well-defined. For square singular
Jacobians, the inverse matrix is undefined. In the neighborhood of a singularity, the
task velocities may be theoretically reachable, but only with excessive joint velocities.
Large joint velocities can cause spurious and unpredictable motion, and may exceed the
physical ability of the joint actuators.

Nearly all manipulators have kinematic singularities, which are singularities due to
its kinematic structure. They can occur at the workspace boundary, and at points where
joint axes align. The GJM also exhibits dynamic singularities, which are dependent
on the dynamic properties of the vehicle. Kinematic and dynamic singularities reflect
physical limitations and are only avoidable by staying away from them, not by, for
instance, expressing the problem differently.

A USM is subject to more significant reaction forces than typical free-floating space
manipulators. For a normal USM, the base link is of approximately the same size and
mass as the other links, while for a satellite manipulator (a typical application of GJM
control) the base is usually significantly heavier than the entire manipulator. An example
is the “Engineering Test Satellite VII”, which is a 140 kg arm mounted on a 2550 kg base,
used for in-orbit experiments [24]. The workspace of a free-floating USM is therefore



3.2. COMPENSATING FOR HYDROSTATIC FORCES 29

fairly small in comparison to its kinematic dimensions. Singularities at workspace
boundary and inside the workspace are rarely far away, and it is necessary to avoid
them in a way that minimizes the resulting tracking errors. This will be addressed in
Section 3.3.

3.2 Compensating for hydrostatic forces

The USM is assumed to be neutrally buoyant—it experiences no translational hydrostatic
forces. However, due to its local hydrostatic restoring moments, each link will have a
tendency to move toward its equilibrium orientation. When many links are connected,
as is the case for a USM, the structure as a whole will experience restoring moments
that depend on the joint configuration. This disturbance makes it harder to perform
manipulation tasks. If not accounted for, the entire vehicle may rotate out of position,
causing large end-effector velocity and position errors. The following describes the
hydrostatic forces, and how to compensate for them.

The definition of the restoring force vector in Section 3.2.1 is a well established
result, but normally assumes that the COM and COB are fixed in the body frame of the
vehicle—a reasonable assumption for larger UVMSs, but not for USRs and USMs. Snake
robots have configuration-dependent locations of the COM and COB, which are derived
as functions of the joint positions in Section 3.2.2, to yield a more general expression for
the restoring force vector. The expression is used to predict the orientation of the base
before and after reaching hydrostatic equilibrium, and to define velocity and position
feedback terms to counter the hydrostatics-induced rotation.

3.2.1 Quantifying the hydrostatic forces

By Assumption 6, the USM is neutrally buoyant, which means that the linear component
of the restoring force vector disappears. If the mass distribution of the body is such that
its total COM aligns with its total COB, the rotational forces also disappear, but this is
not generally the case. The following will define the restoring force vector.

The weight of a submerged object is

W = дmtot, (3.13)



30 CHAPTER 3. UNDERWATER MANIPULATOR CONTROL

where mtot is its mass and д is the gravitational acceleration [42]. By Archimedes’
principle [43], the buoyancy of a submerged object is

B = ρд∇tot, (3.14)

where ρ is the density of the surrounding fluid, and ∇tot is the displaced volume of the
object.

Gravity acts through the COM of the object. The COM can be found either experi-
mentally; computationally with the help of a computer-aided design (CAD) model; or
by calculating the weighted centroid of the mass distribution. For an object of uniform
mass distribution, the COM is at its centroid.

Buoyancy acts through the COB. The COB is located at the COM of the displaced
volume, meaning it would coincide with the COM if the object has a uniform mass
distribution. The COM and COB of each link is known by Assumption 7.

It is simple to express the forces of gravity and buoyancy in a coordinate system
defined with one axis straight up or down. The z-axis of the inertial frame FI points
down, and we get

I f grav =

©«
0

0

W

ª®®®®®¬
, I f buoy = −

©«
0

0

B

ª®®®®®¬
, (3.15)

illustrated in Figure 3.2.

Having defined the forces of gravity and buoyancy, the restoring force vector ex-
pressed in the base frame is [6]

0д(IR0,q) = −
©«

IR0
(
I f grav +

I f buoy
)

S(0pcm)
IR0

I fgrav + S(0pcb)
IR0

I fbuoy

ª®®¬ . (3.16)

It is clear from (3.15) and (3.16) that whenW = B, the upper three (translative)
elements of 0д vanish, while the lower three (rotational) elements can still be nonzero,
given that 0pcm ,

0pcb.



3.2. COMPENSATING FOR HYDROSTATIC FORCES 31

x̂I

ŷI

ẑI

CB

CM

I
fbuoy

I
fgrav

Figure 3.2: Forces of gravity and buoyancy on a submerged body, shown in its equilib-
rium position. If the magnitudes of the forces are equal, the body is neutrally buoyant
and will not sink or float. If the COM and COB have different locations, the body will
experience hydrostatic restoring moments.

3.2.2 Finding the locations of the COM and COB

The location of the total COM of the USM is dependent on its configuration and can be
calculated as a weighted sum of the positions of each link’s COM [25]. Expressed in the
base frame:

0pcm(q) =
n∑
i=1

0pcm,i (q)
mi

mtot
(3.17)

where
0pcm,i (q) =

0Ri (q)
ipcm,i +

0pi (q) (3.18)

defines the position of the COM of link i in the base frame.

The method can be repeated for buoyancy: The COB of a link is at its geometric
center. Mirroring the equations above, a weighted sum of the locations of each link’s
COB can express the location of the overall COB. However, this time, the weights are
not based on the mass of the links, but on their volumes:

0pcb(q) =
n∑
i=1

0pcb,i (q)
∇i

∇tot
(3.19)



32 CHAPTER 3. UNDERWATER MANIPULATOR CONTROL

where
0pcb,i (q) =

0Ri (q)
ipcb,i +

0pi (q) (3.20)

as before expresses a link’s COB in the base frame as a function of the joint configuration.

3.2.3 Rotation caused by hydrostatic forces

The aim of this section is to find the rotation of the base link before and after reaching
hydrostatic equilibrium. In an attitude controller, the rotation of the base at equilibrium
can be used as the setpoint, to aid the vehicle in reaching its hydrostatic equilibrium
faster and with less oscillations.

The end-effector position in the inertial frame is IpE . If the joints and thrusters are
stationary, and the COM does not move considerably, then the most significant forces
affecting the USM are the hydrostatic forces. By calculating how much, and around
what axis the hydrostatic forces causes the USM to move, it is possible to estimate the
final orientation of the USM.

x̂I

ŷI

ẑI

x̂m1

x̂m2

ŷm1

ŷm2

ẑm1, ẑm2

CB

CM

Figure 3.3: Frames Fm1 and Fm2 in relation to the COM, COB, and the inertial frame.
These frames represent the relative locations of the COM and COB before and after the
vehicle reaches hydrostatic equilibrium. The origins of both frames are at the COM.
Frame Fm1 is shown with solid arrows and Fm2 with dashed arrows.

To do so, define two new coordinate frames Fm1 and Fm2, shown in Figure 3.3, both
with origins at the COM. Fm1 represents the relative locations of the COM and COB
before hydrostatic equilibrium, while Fm2 represents their locations at equilibrium—
when the COB is directly above the COM. The x-axis of Fm1 is defined parallel to the
vector from the COM to the COB, Ir cmcb =

Ipcb −
Ipcm. The orthogonal, unnormalized



3.2. COMPENSATING FOR HYDROSTATIC FORCES 33

basis vectors for Fm1 and Fm2, in the inertial frame, are

I x̂ ′
m1 =

Ir cm,cb
I ŷ ′

m1 =
I ẑ ′m1 ×

I x̂ ′
m1

I ẑ ′m1 =


I f grav × Ir cm,cb when Ir cm,cb ∦

I f grav

(1, 0, 0)T otherwise,

(3.21)

and
I x̂ ′

m2 = (0, 0,−1)T

I ŷ ′
m2 =

I ẑ ′m2 ×
I x̂ ′

m2
I ẑ ′m2 =

I ẑ ′m1,

(3.22)

where I f grav is the downward-pointing gravity vector. Note the split definition of I ẑ ′m1
in (3.21): The first case is ambiguous at equilibrium2, i.e. when Ir cm,cb is parallel to the
gravity vector. This is resolved by setting I ẑ ′m1 equal to an arbitrary horizontal vector.

By denoting the unit length counterparts of the basis vectors using the same notation
sans the prime mark ( ′ ), we can define rotation matrices that describe the orientations
of Fm1 and Fm2 relative to the inertial frame:

IRm1 =
(
I x̂m1,

I ŷm1,
I ẑm1

)
IRm2 =

(
I x̂m2,

I ŷm2,
I ẑm2

)
.

(3.23)

Knowing these rotations makes it possible to determine the rotation from the current
orientation of any given link to the orientation of that link at hydrostatic equilibrium.
Typically, the base link or end-effector link will be most interesting, and the following
derivation is valid for the base link rotation.

The current rotation of the base link is IR0, and the rotation of the base link at
hydrostatic equilibrium is denoted IR0,eq. We assume that the equilibrium orientation is
the orientation closest to the current orientation while also being at equilibrium, given
the current joint configuration. Using the Fm1 and Fm2 frames andm1Rm2 =

m1RI
m2R−1

I ,

2It is strictly speaking ambiguous at both equilibria: The stable equilibrium when the vehicle is upright,
and the unstable equilibrium when the vehicle is upside-down. This has no impact on the solution.



34 CHAPTER 3. UNDERWATER MANIPULATOR CONTROL

the equilibrium orientation can be found as

IR0,eq =
IR0

0Rm1
m1Rm2

0R−1
m1. (3.24)

In other words, rotate first from the inertial frame to the current base frame, then from
the base frame to the “before equilibrium COM frame” Fm1, then complete the predicted
hydrostatics-rotation m1Rm2 itself, and finally, rotate back to the new base frame with
0R−1

m1 =
m1R0.

3.2.4 Velocities caused by hydrostatic forces

It is also possible to estimate the velocities of the end-effector based on the rotation of
an arbitrary frame attached to the USM. If we assume small linear external forces, in
particular, small linear components of the hydrodynamic forces, the USM will rotate
about the COM during pure hydrostatic restoring motion. As the USM is rigid, the
angular velocity of a frame attached to the COM will be the same as the angular velocity
of any parallel frame on the USM. We have the velocity of the end-effector

IωE =
ER0

0Rm1
Iωm1, (3.25)

and use it to predict its linear velocity, given pure rotation around the COM, as

IvE = S(Epcm)
IωE . (3.26)

The above provides a rudimentary estimate of the linear end-effector velocity which
can be used instead of a direct measurement. A direct measurement would require
complex and expensive sensor equipment, such as a Doppler velocity log (DVL), and is
therefore not necessarily available.

3.2.5 Velocity feedback

Velocity estimates are often available in some form, such as the estimates in Section
3.2.4, and this allows for velocity feedback. Angular velocity can be measured directly
with a gyroscope, which is available for instance as part of an IMU. Linear velocity can
also be estimated from IMU accelerometer and gyroscope data through integration and



3.2. COMPENSATING FOR HYDROSTATIC FORCES 35

sensor fusion, with the drawback that the estimate drifts over time, depending on the
accuracy of the IMU [6]. One can produce better estimates by including a DVL, which
measures velocity relative to the sea floor through Doppler effects [44].

When end-effector velocity measurements or estimates are available, it is possible
to use velocity feedback for end-effector control in the face of disturbances. While
designing a potentially complex velocity controllers is worth considering, it is outside the
scope of this thesis, and a simple controller is used here for illustration and comparison.
The controller used simply adds the measured velocity error to the current velocity
command:

Ûtc = Ûtd +
(
Ûtd − Ûtm

)
(3.27)

where the subscripts are “c” for commanded value, “d” for the desired value, and “m”
for the measured or estimated value. This control algorithm is essentially an error P
controller with unit gain, where the control output (Ûtd − Ûtm) is added onto the original
control signal Ûtd . A slightly more ornate option could be to use, for instance, the
real-time motion compensation algorithm of [45].

3.2.6 Position feedback

Estimates of end-effector position are harder to obtain than estimates of velocity. The
position is possible to estimate by dead-reckoning, which combines and integrates veloc-
ity and acceleration level measurements. Due to the numerical integration, the position
estimates will drift. If only acceleration measurements are available, the drift error will
be quadratic in time (due to the double integration), and with velocity measurements, it
will be linear in time (due to the single integration) [46]. Estimators based on double
integration are usually not accurate for a long enough time to be useful for precision
tasks. For instance, the USAF SNU84-1 categorizes a “precision inertial navigation
system (INS)” as having a position error growth rate of less than 0.5M/h ≈ 25 cm/s
[47].3 For this reason, DVL measurements are normally used in INSs [48]. These indirect
estimation methods are not perfect, but are often the only available methods for ocean
operations away from human-made structures.

Various methods exist for direct position measurement underwater. While global
navigation satellite systems (GNSSs) are unavailable underwater, a similar method based

3M/h refers to nautical miles per hour.



36 CHAPTER 3. UNDERWATER MANIPULATOR CONTROL

on triangulation with ranges to acoustic transponders, called long baseline (LBL), is
possible. Another possibility is ultra-short baseline (USBL), using a sonar array for
position measurements [48]. The drawback of all underwater position measurement
methods is that the sensor equipment must be installed on site—sensors on board the
vehicle are not sufficient for most methods. An exception is camera-based simultaneous
localization and mapping (SLAM), which is a viable method in situations with good
visibility and does not require equipment installed in the environment [49].

A simplemethod for incorporating position data into themanipulator control scheme
is to use closed-loop inverse kinematics (CLIK) [50]. CLIK was developed to remove
the accumulated integration error from joint trajectory reconstruction [51], but is
here used to also account for position error that occurs during underwater GJM-based
manipulation. A first-order CLIK algorithm is [51]

Ûqc = J †(q)
(
Ûtd +Kclik [td − tm]

)
+
(
I − J †(q)J (q)

)
Ûq0, (3.28)

where the subscripts are as in Section 3.2.5, and Kclik is a constant, positive definite gain
matrix. The last term allows exploitation of the redundancy, with the arbitrary joint
velocity vector Ûq0. In this thesis, the inverse kinematics in CLIK are removed, so that
(3.28) reduces to

Ûtc = Ûtd +Kclik (td − tm) . (3.29)

The advantage is that (3.29) can be used with any inverse kinematic method, some
of which are discussed below. Note again that this is a very simple position feedback
control scheme. It is likely possible to achieve better performance with other methods,
but the aim here is to illustrate the potential benefits of closed-loop control with position
feedback compared to control without position feedback—not to investigate the feedback
algorithms thoroughly.

3.2.7 Damping hydrostatics-induced oscillations

If the USM is not at its hydrostatic equilibrium, it will return to the equilibrium by itself.
Although water creates much more damping than air, the dynamics of the rotational
motion toward equilibrium are qualitatively similar to the oscillations of a pendulum: It
will swing past its equilibrium point, turn around, swing past the equilibrium in the



3.2. COMPENSATING FOR HYDROSTATIC FORCES 37

opposite direction, and so on for some time before coming to a halt. While the feedback
algorithms of Sections 3.2.5 and 3.2.6 help stabilize end-effector at its correct position
though joint motion, the accuracy will likely drop if the algorithm needs to compensate
for oscillations as well. Power consumption will also increase. To alleviate accuracy
and energy concerns, the thrusters can be used to damp the oscillations, by activating a
setpoint attitude controller immediately after a completed task velocity trajectory. The
attitude controller must estimate the equilibrium orientation as a function of the current
orientation and joint configuration, and use that as its setpoint. This is done in (3.24).

The orientation IR0,eq can then be used as the setpoint for an attitude controller. A
suitable controller for this is the quaternion-based proportional-derivative (PD) con-
troller of [52]. While technically a full pose (position and orientation) controller, the
position and orientation are decoupled, making it trivial to adapt the controller to the
present requirements by extracting the attitude “sub-controller”.

The controller uses unit quaternions for orientation representation, which makes it
singularity free. A controlled based on Euler angles would experience the gimbal lock
singularity when yaw and roll axes align [36]. Most 3D geometry software packages,
including the Robotics System Toolbox inMATLAB [53], include methods for conversion
between unit quaternions and rotation matrices. Below,

h =
©«
η

ϵ

ª®®¬ ∈ H (3.30)

is the unit quaternion for the current orientation,

hd =
©«
ηd

ϵd

ª®®¬ ∈ H (3.31)

is the desired orientation, and

h̃ =
©«
η̃

ϵ̃

ª®®¬ = hdh =
©«
ηd ϵTd

−ϵd ηd I3×3 − S(ϵd )

ª®®¬
©«
η

ϵ

ª®®¬ ∈ H , (3.32)

represents the quaternion error, or difference between h and hd . The set H is the set of



38 CHAPTER 3. UNDERWATER MANIPULATOR CONTROL

all unit quaternions.
With the position control part removed, and notation changed to match this thesis,

the control law is
m = −Kd ω − IRT

0Kp sgn(η̃)ϵ̃ + дrot, (3.33)

wherem are the commanded moments to be acted on the vehicle, Kd = KT
d ≻ 0 is a

derivative gain matrix, Kp = KT
p ≻ 0 is a proportional gain matrix, sgn(·) is the signum

operator defined as

sgn(x) =

−1 when x < 0

1 otherwise
, (3.34)

and дrot ∈ R3 is the angular component of the restoring forces vector.
Perfect attitude regulation corresponds to an orientation error ˜IR0 = I3×3, equivalent

to h̃ = (±1, 0, 0, 0)T, which in turn is equivalent to η̃ = ±1, because of the unit norm
of the quaternion. The controller is shown to have η̃ = ±1 as an asymptotically stable
equilibrium point, while also exhibiting no unstable equilibrium points or singular
points [52] (under the assumption that m is perfectly realizable). These properties
make it suitable for the task at hand, but care must be taken to account for possible
ill-conditioning or loss of rank of the thrust configuration matrix, and the limited
bandwidth of the thrusters. In this thesis, the thrust configuration matrix is assumed
well-conditioned by Assumption 5.

3.3 Inverse kinematics

The methods in Sections 3.1 and 3.2 create a task-space velocity reference Ût (with the
exception of Section 3.2.7, which gives a vector of moments to be acted out by the
thrusters). A technique for calculating joint space commands Ûq as a function of task
space references Ût is needed. Such methods are termed inverse kinematic methods. This
section will discuss some existing inverse kinematic methods for USM control.

In general, the map between joint velocities Ûq task space velocities Ût is expressed

Ût = J Ûq, (3.35)

where J is the Jacobian matrix for the given task. The following will compare some



3.3. INVERSE KINEMATICS 39

existing methods for solving the inverse problem of (3.35).

3.3.1 The Jacobian pseudoinverse

Pseudoinversion of the Jacobian is one of the simplest methods of inverse kinematics.
Following from the properties of the Moore-Penrose matrix pseudoinverse [54], a
solution of the inverse kinematics is

Ûq = JT
(
J JT

)−1︸       ︷︷       ︸
J †

Ût , (3.36)

where J † is the Jacobian pseudoinverse. It is interesting to note, especially for compari-
son with other inverse kinematic methods, that (3.36) is the solution of the optimization
problem [6]

min
Ûq

ÛqT Ûq

s.t. Ût − J Ûq = 0.
(3.37)

The optimization problem reveals that J † minimizes the squared sum of the joint
velocities, while not allowing any deviation from the desired task space velocity. The
main drawback is that the pseudoinverse does not avoid singularities of the Jacobian,
which is unacceptable for a manipulator control system because the Jacobian is almost
guaranteed to exhibit singularities.

It is also possible to weight the joint velocities. Static weights can be used to prioritize
between different types of joints, and dynamic weights can offer joint limit avoidance
(discussed in Section 3.4), among others. The weighted variant solves [6]

min
Ûq

ÛqTW Ûq

s.t. Ût − J Ûq = 0
(3.38)

as
Ûq =W −1JT

(
JW −1JT

)−1︸                    ︷︷                    ︸
J
†
w

Ût , (3.39)



40 CHAPTER 3. UNDERWATER MANIPULATOR CONTROL

where
W = diag(w1,w2, . . . ,wn) (3.40)

is a diagonal weight matrix.

3.3.2 Damped least-squares

Damped least-squares, introduced in [18], is a way of solving the inverse kinematics
problem that avoids singularities of the Jacobian. It is the solution of the optimization
problem

min
Ûq

Ût − J Ûq
2 + λ2d Ûq2, (3.41)

which is
Ûq = JT

(
J JT + λ2d I

)−1 Ût . (3.42)

Here, perfect task velocity tracking is no longer an equality constraint when com-
pared to the pseudoinverse solution. Instead, it is a term in the objective function which
is weighted against a damping term with the damping factor λd . The damping term is
designed to reduce joint velocities when the manipulator is near a singular configuration,
which can be achieved by choosing λ2d according to [55]

λ2d =


0 when σmin ≥ ϵ[
1 −

(
σmin
ϵ

)2]
λ2d,max otherwise,

(3.43)

where σmin is the smallest singular value (which is a measure of the proximity to a
singularity [56]), ϵ is the singular value threshold below which the damping becomes
active, and λd,max is the maximum damping factor. With (3.43), the solution is a pure
task velocity error minimization when the manipulator is sufficiently far from any
singularities. As it approaches a singular configuration, the joint velocity damping term
will dominate.

The damped least-squares method can also be modified with joint velocity weights
[18]. The optimization problem then becomes

min
Ûq

Ût − J Ûq
2 + λ2d Ûq2 + λ2w ÛqTW Ûq, (3.44)



3.3. INVERSE KINEMATICS 41

which is solved as
Ûq =

(
JTJ + λ2d I + λ

2
wW

)−1 Ût , (3.45)

where λw must be balanced against λd to decide the relative influence of the standard
damping term and the joint velocity weight term.

3.3.3 Numerical filtering

A shortcoming of the damped least-squares method is that it damps all velocity compo-
nents equally, even though typically only one or a few of the components are singular.
Numerical filtering separates the poorly-conditioned and the well-conditioned compo-
nents, and damps only those that are nearly singular. All well-conditioned components
are allowed to behave normally. The result is singularity avoidance that does not cause
unnecessary errors in the task space velocities. In other words, numerical filtering
achieves “the physically realizable limits of manipulator performance for the given task”
[19, p. 551].

The inverse kinematic solution using numerical filtering can be written [51]

Ûq = JT
©«J JT + λ2d I + λ2n

m∑
i=k+1

ũiũ
T
i
ª®¬
−1

Ût , (3.46)

wherem is the total number of task velocity components so that Ût ∈ Rm , k is the number
of well conditioned components, and ũi is an estimate of the input singular vector ui in
the singular value decomposition (SVD)

J = UΣV T =

min(m,n)∑
i=1

σiuiv
T
i , (3.47)

for anm by n Jacobian. The scaling factor λn must be balanced against λd , typically
with λn ≫ λd .

In 1988, Maciejewski and Klein wrote “. . . the SVD is in general too computationally
expensive for use in real-time control”, and they opted instead for estimates of the
singular values [19, p. 532]. Because the estimates may be inaccurate, another damping
term λ2d I in (3.46) is added as a “fallback” to assure singularity avoidance even if the
numerically filtered damping fails. However, the computational burden of an SVD today



42 CHAPTER 3. UNDERWATER MANIPULATOR CONTROL

is much smaller: The SVD of a typical USM Jacobian, performed with the command
[U,S,V] = svd(J, 'econ') in MATLAB, on a modern personal computer4, takes
on the order of tens of microseconds, as shown in Figure 3.4. As underwater control
systems can run at fairly low frequencies due to the slow dynamics, there is ample time
for SVD. Compare, for instance, the Intel 80386 processors from 1988 to the Intel Kaby
Lake processors from 2017 for quantitative differences in computing power.

10 15 20 25 30 35 40

Execution time (microseconds)

0

0.05

0.1

0.15

0.2

0.25

P
ro

ba
bi

lit
y

Figure 3.4: Execution times for an SVD of random-configuration GJMs of size 6-by-8,
using MATLAB, on a typical personal computer.

3.4 Joint limit avoidance

When using a weighted redundancy resolution method, such as in Sections 3.3.1 and
3.3.2 above, the weights can be used to avoid joint limits. The weights of the diagonal
weighting matrix in (3.40) are defined so that they increase when the corresponding
joint approaches its limits and decreases when the joint approaches its midpoint. If any
joints are close to their limits, the inverse kinematics method will prioritize using other
joints. Joint limit avoidance is important for two main reasons: Reaching the limits can

4In this case on a Intel i7-7700HQ CPU.



3.4. JOINT LIMIT AVOIDANCE 43

cause mechanical damage to the joints and their actuators, and it will produce infeasible
joint trajectories, which causes tracking errors in the task velocities.

A weighted least-norm solution is suggested in [57]. The authors use a performance
criterion

H (q) =
n∑
i=1

1
4

(qi,max − qi,min)
2

(qi,max − qi )(qi − qq,min)
(3.48)

and its partial derivatives

∂H (qi )

∂qi
=

(qi,max − qi,min)
2(2qi − qi,max − qi,min)

4(qi,max − qi )2(qi − qi,min)2
(3.49)

to define the weights

wi =


1 +

��� ∂H∂qi ��� when ∆
��� ∂H∂qi ��� ≥ 0

1 otherwise.
(3.50)

These weights are exactly 1 at the midpoint, and approach infinity at the joint limits,
so that joints in the middle of their range behave as in the unweighted case, while
for joints approaching their limits, the joint velocities will decrease toward zero. The
split definition in (3.50) has the advantage of only penalizing velocities of joints that
approach their limits, not joints that retreat from them.

3.4.1 Weight normalization

The performance criterion H (q) in (3.48), is normalized with respect to the range of the
joints. However, the normalization does not carry over to its partial derivative, and as a
result, the weights themselves are not normalized. As Figure 3.5 shows, this results in
different weighting characteristics for different joint ranges. Even for joints that have
the same physical range, the choice between radians or degrees as the joint angle unit
dramatically changes the weighting.

To normalize the partial derivative of H , we require

∂H

∂qi
= f (t), for qi = qi,min + t(qi,max − qi,min), (3.51)



44 CHAPTER 3. UNDERWATER MANIPULATOR CONTROL

where 0 < t < 1 is a parametrization of the position of qi between its limits (t = 0
being the lower limit and t = 1 being the upper). If ∂H

∂qi
is a function of t only, then the

function is independent of the joint range. The requirement of exclusive dependence on
t is met by

∂H

∂qi
= α

(qi,max − qi,min)
3(2qi − qi,max − qi,min)

(qi − qi,max)2(qi − qi,min)2
(3.52)

where α is an arbitrary scaling factor. Denoting the joint ranges as qR,i , qi,max −qi,min

for brevity, and inserting qi = qi,min + t · qr i , we can prove that (3.52) is independent of
joint range:

∂H

∂qi
= α

q3R,i
(
2(qi,min + tqR,i ) − qi,max − qi,min

)(
qi,min + tqR,i − qi,max

)2 (
qi,min + tqR,i − qi,min

)2
= α

q3R,i
(
2tqR,i + qi,min − qi,max

)(
tqR,i − qR,i

)2 (
tqR,i

)2
= α

q4R,i (2t − 1)
q4R,i (1 − t)2t2

= α
2t − 1

(1 − t)2t2

= f (t)

(3.53)

- /2 - /4 0 /4 /2

Joint angle in radians

0

5

10

Jo
in

t w
ei

gh
t

-90 -45 0 45 90

Joint angle in degrees

0

5

10

Jo
in

t w
ei

gh
t

Figure 3.5: Weight characteristics for different angle units, using unnormalized weights.

Combining (3.50) with (3.52) gives the weight characteristics shown in Figure 3.6
(using α = 0.001). It is evident that the weight characteristics are indeed independent of
the joint range.



3.5. THRUST ALLOCATION 45

- /2 - /4 0 /4 /2

Joint angle in radians

0

5

10
Jo

in
t w

ei
gh

t

-90 -45 0 45 90

Joint angle in degrees

0

5

10

Jo
in

t w
ei

gh
t

Figure 3.6: Weight characteristics for different angle units, using normalized weights.

3.4.2 Weight offset

Denote the weight matrix when all joints are at their midpoints asW0. Figures 3.5 and
3.6 show that both methods discussed giveW0 = I. This is suitable for the weighted
pseudoinverse (3.39): The scaling ofW does not affect the solution of the optimization
problem5, because the weighting term in the objective function is its only term, so
there are no tradeoffs against other terms. ThereforeW0 = βI gives the same analytical
solution for all β , andW0 = I is a reasonable choice.

However, in the case of weighted damped least-squares, the objective function
minimizes three terms: the task space velocity error; the joint velocity norm when the
configuration is nearly singular; and the weighted joint velocities. To avoid unnecessary
errors, we must haveW0 = 0, which is easily achieved by modifying (3.50) to

wi =


��� ∂H∂qi ��� when ∆

��� ∂H∂qi ��� ≥ 0

0 otherwise.
(3.54)

3.5 Thrust allocation

This section derives the joint position-dependent thrust configuration matrix B(q) ∈
Rnd×nt and presents how to use it to solve the thrust allocation problem—the task of
calculating thruster inputs as a function of the desired resultant forces on the vehicle.

Here, nd is the number of controlled degrees of freedom and nt is the number of

5Except in cases when the scaling is so small or large that it leads to numerical inaccuracies.



46 CHAPTER 3. UNDERWATER MANIPULATOR CONTROL

thrusters. The transformation matrix

0T ti =
©«
0Rti

0pti

0 1

ª®®¬ , (3.55)

defines the position and orientation of thruster ti in the base frame, where the rotation
of the thruster is defined such that a positive control input produces a force along the
positive x-axis of the thruster frame, as illustrated in the simulation model in Figure 3.7.

Figure 3.7: An example of thruster placement on a USM, showing the positive x-axes
of the thruster frames as red arrows.

Each thruster defines to one column of

B(q) =
(
b1 b2 . . . bnt

)
, (3.56)

and each column, assuming nd = 6, is calculated as [44]

bi =
©«

I3×3

−S(0pti )
T

ª®®¬ 0Rti

©«
1

0

0

ª®®®®®¬
∈ R6, (3.57)



3.5. THRUST ALLOCATION 47

which is simply an extraction of the first column (x-direction) of the adjoint map of the
base-to-thruster transformation. For nd < 6, the elements of bi corresponding to the
uncontrolled degrees of freedom can simply be removed, so that bi ∈ Rnd .

The next step is to determine 0pti and 0Rti as a function of the joint variables. If
thruster ti is fixed to frame Fj with the transformation jT ti , then the thruster transfor-
mation from the base frame can be calculated as

0T ti (q) =
0T j (q)

jT ti . (3.58)

Repeating the process for ti = 1, 2, . . . ,nt fully defines the thrust configuration matrix.
If forces and moments expressed in the inertial frame are used, the equations above can
be modified by adding the inertial to base frame transformation IT 0.

The thrust configuration matrix B defines a mapping from the forces produced by
each thruster to the resulting forces and moments exerted on the USM. In a similar
fashion to the inverse kinematics problem at the differential level, in Section 2.2, we need
to find the opposite mapping: From desired forces and moments to the corresponding
thruster forces.

There are several ways of solving

τ = B(q)u, (3.59)

for the thruster force vector u, where τ are the forces and moments exerted by the
thrusters on the vehicle. An in-depth discussion of this topic, however, is outside the
scope of this thesis. Instead, the most straightforward solution is used, which simply
uses the pseudoinverse [6, Ch. 12]:

u = B†(q) τ , (3.60)

where
B† = BT

(
BBT

)−1
. (3.61)

Pseudoinverse thrust allocation is sufficient given that the thrust configuration matrix
B is full-rank, which is true by Assumption 5.





Chapter 4

Implementation and
simulation

This chapter analyzes the potential of GJM based USM control, both for vehicles subjected
to and not subjected to hydrostatic restoring forces. After an introduction to the
simulation environment and model, the simulation results and their discussion will be
presented. Several scenarios based on similar velocity and position reference trajectories
are simulated, to allow comparison between the different components and alternatives
of the control scheme.

4.1 Vortex simulation model

The simulations are run on a combination of MATLAB/Simulink [53] and Vortex Studio
[58]. The control system is implemented in Simulink, while the dynamic model is im-
plemented in Vortex. Vortex performs real-time, multi-body hydrodynamic simulations
with visualization. Vortex is previously used in [3], which also describes a previous
iteration of the Vortex implementation of the USM model.

The USM simulation model in Vortex is based on a CAD drawing of the Eelume
USM, which is a 3.3m long vehicle weighing 81.3 kg. The real-life USM is shown in
Figure 1.1f and its representation in Vortex is shown in Figure 4.1. The CAD drawing
and Vortex model have been developed externally, not as part of this thesis.

49



50 CHAPTER 4. IMPLEMENTATION AND SIMULATION

Figure 4.1: The USM simulation model, as seen in Vortex. The end-effector link is to
the left, and the base link to the right.

The model consists of nine links connected by eight joints. The eight joints are
arranged pairwise, in double compound joints that rotate in yaw and pitch. Five of the
nine links are larger “modules” (colored yellow, lengths ranging from 37 to 73 cm), and
the remaining four are smaller “couplings” between yaw and pitch joints (colored gray,
10 cm long). The three central modules are equipped with a total of seven thrusters,
enabling 6 DOF actuation in most joint configurations. The motorized joints are modeled
as first order systems, with a step response time constant τq = 100ms, shown in Figure
4.2.

0.5 1 1.5

Time [s]

0

0.2

0.4

0.6

0.8

1

Jo
in

t p
os

iti
on

 [r
ad

]

Figure 4.2: Unit step response of the joint motors in the Vortex USM model. The time
constant is τq = 100ms.



4.2. VORTEX-SIMULINK INTERFACE 51

4.2 Vortex-Simulink interface

In Appendix B, Figure B.1 shows the top-level of the implementation of the control
system in MATLAB/Simulink. Figure B.2 shows the interface in Simulink that wraps
the Vortex-Simulink connection block. With this custom interface, both applications
can be linked to each other and run in parallel. The Simulink connections to the block
inputs are sent to the Vortex model, while the Simulink connections to the block outputs
are retrieved from the Vortex model, in real time, as Figure 4.3 shows. As is visible in
Figure B.1, the inputs to the simulator are joint position commands q1,cmd, . . . ,q8,cmd,
in radians, and thruster commands u1,rpm, . . . ,u7,rpm, in revolutions per minute. The
Vortex outputs are the measured joint positions q1,m, . . . ,q8,m; transformations from
the global Vortex frame to the front module vxT front and to the tether module (base link)
vxT tether; as well as the linear and angular velocities of the front and tether modules.

MATLAB

Vortex StudioSimulink
Control inputs

Simulation outputs

Figure 4.3: Connections between MATLAB/Simulink and Vortex.

The signals are vectorized and processed in a wrapper subsystem to simplify the
interface between Vortex and Simulink. The wrapper defines initial conditions so that
the transformation outputs are guaranteed to be valid at all times.1 All signals are
processed to assure that algebraic loops do not occur. The transformations outputs
are also further transformed to allow for arbitrary definitions of the base and of the
end-effector frames, as well as of the inertial frame. Angular and linear velocity outputs
are transformed correspondingly.

1Vortex outputs zero matrices for all transformations at the first time step.



52 CHAPTER 4. IMPLEMENTATION AND SIMULATION

4.3 Control design model

For specification of the GJM and other parts of the control scheme, the kinematic model
of Chapter 2 is used. As this is a general kinematic model for robotic manipulators, it
can describe the kinematics of a USM without modification. In addition to the kinematic
parameters, themasses, inertiamatrices, COMandCOB positions, and displaced volumes
are specified for each link of the model. This provides the properties required for GJM
control, as well as the properties governing the hydrostatic forces. It is not necessary
to define hydrodynamic parameters for the control model. Appendix A contains the
full specification of the control design model parameters used in the simulations in this
chapter.

Figure 4.4: The geometry of the simulation model. The black coordinate frame is the
base frame, the pink frame is the end-effector frame, and the remaining frames are the
joint frames.

4.4 Overview of simulations

The simulations will be seen in the context of three example use cases:

1. Human-controlled teleoperation for end-effector positioning: The human pilot



4.4. OVERVIEW OF SIMULATIONS 53

can compensate for errors in the trajectory tracking. If the end-effector moves
slower than expected, they can simply move the joystick further. With a human
in the loop [44, Ch. 5], the accuracy requirements are not strict—it is only required
that the output velocities be approximately proportional to the inputs. It is also
important that a zero input guarantees a near-zero output

2. Autonomous positioning of sensor equipment, such as a camera: This situation
does not need very precise positioning. For a camera, it would be reasonable to
require a maximum position error of 10 cm. End-effector orientation accuracy is
only important for non-gimballed cameras.

3. Autonomous valve-turning, using a grabber tool attached to the end-effector.
Valve-turning is an intervention task that requires high precision. Although it
depends on the valve and grabber tool, a reasonable limit is an accuracy on the
centimeter-level, for instance, no more than 2 cm position error. See the valves
and tool used in [59].

To investigate which components of the control system are applicable in which
situations, nine simulation cases will be run. The first five cases are run on the Vortex
model without hydrostatic forces, while the last four are run on the full model with
hydrostatics included. Case 0 acts as a reference point for those that follow by simulating
traditional control using base stationkeeping and fixed-base inverse kinematics for
the manipulator control. Cases 1–3 and 5–7 simulate the the system in open loop,
with velocity feedback, and with position feedback, on the models without and with
hydrostatics, respectively. Case 4 investigates the accuracy difference of a quick motion
versus a slow motion, and Case 8 is a repetition of Case 7 with the thruster-based
rotation damping functionality of Section 3.2.7 activated.

The damped least-squares inverse kinematics solution (Section 3.3.2) is used in all
simulations. The control law presented in Section 3.2.5 is used for velocity feedback,
and the law presented in Section 3.2.6 for position feedback.

All cases simulate 3 DOF linear motion control of the end-effector in inertial space,
which is applicable to many tasks and use cases, such as positioning a gimballed camera,
and light intervention with a multi-DOF end-effector tool. Other tasks may require
control of fewer or more DOF, such as valve turning with a simple grabber (5 DOF), or
camera direction control (2 DOF). Any combination of the 6 spatial DOFs are possible



54 CHAPTER 4. IMPLEMENTATION AND SIMULATION

to control when using the GJM, by extracting the appropriate sub-matrix. For 3 DOF
velocity control, the desired values are given as linear velocities

IvE,d ≡

(
ud vd wd

)T
(4.1)

while for position control the desired values are x , y, and z positions

IpE,d ≡

(
xd vd wd

)T
, (4.2)

where subscript “d” denotes the desired value, as in Section 3.2.5. The velocity and
position variables adhere to standard notation by The Society of Naval Architects and
Marine Engineers [60].

The reference velocity and position trajectories that will be given are similar or
identical to each other for all simulation scenarios, to allow comparison of performance.
In general, the motion commanded corresponds to pulling the end-effector back, left,
and up, starting from a nearly outstretched configuration.

Due to Vortex software technicalities, all simulations begin at t = 0 with the USM
in its home position. This is however not a good choice, as it is a kinematically singular
configuration. Therefore, the USM is commanded to “twitch” into the non-singular
configuration

q(t = 0) = π

180◦
(
0◦ 5◦ 0◦ −5◦ 0◦ 5◦ 0◦ −5◦

)T
(4.3)

immediately after the start of each simulation, as shown in Figure 4.5. This configuration
is chosen in order to move the joints sufficiently far away from the singularity while
generating minimal net forces on the vehicle. The twitch causes some initial velocities,
visible at the beginning of the simulations. The simulations trajectories begin only after
a full second has passed, to allow the velocities to die out.

4.5 Simulations without restoring forces

The simulations in this section are run with zero restoring forces and moments, which
is achieved by defining the COM of each link to align with its COB.



4.5. SIMULATIONS WITHOUT RESTORING FORCES 55

Figure 4.5: The initial USM configuration, used for all simulations unless otherwise
noted.

4.5.1 Case 0: Traditional control (non-GJM)

This section will present a simulation of the “traditional” control alternative to the
GJM-based control schemes presented later, to provide a basis for comparison.

The traditional approach for floating base manipulation is to hold the base stationary
enough to use inverse kinematic control with the fixed-base Jacobian, in other words,
to control the manipulator the same way as an industrial manipulator. The GJM is
not involved. For this to work, it is necessary to have a stationkeeping algorithm of
sufficient performance, and actuators to fulfill its control command. The base must be
controlled in 6 DOF, and any deviation from perfect setpoint regulation will normally
appear as errors in the end-effector control.

For the simulation, the controller presented in [52] and discussed in Section 3.2.7
is used, in its original, full pose control form. The position gain is set to 200 · I, the
orientation gain to 400 · I, and the derivative gain to 50 · I. The end-effector velocity
and position trajectories are shown in Figure 4.6, and snapshots of the configuration
throughout the maneuver are given in Figure 4.8.

The velocity tracking is very inaccurate, but the position trajectory is better, as the
velocity errors change signs throughout the simulation. Better performance will be
possible to achieve with a better stationkeeping algorithm, for instance by defining a
feed-forward term based on the commanded joint trajectory. Another improvement
would be to use the singularity-robust task-priority approach of [3]. The most relevant
information is however in Figure 4.7. It displays the commands for each thruster, which



56 CHAPTER 4. IMPLEMENTATION AND SIMULATION

0 1 2 3 4 5 6 7 8

Time [s]

-0.2

-0.1

0

0.1

0.2

E
nd

-e
ffe

ct
or

 v
el

oc
ity

 [m
/s

]

0 1 2 3 4 5 6 7 8

Time [s]

-0.6

-0.4

-0.2

0

0.2

0.4

E
nd

-e
ffe

ct
or

 p
os

iti
on

 [m
]

Figure 4.6: (Case 0) End-effector velocity (above) and position accuracy (below) for
traditional control (stationkeeping with fixed-base inverse kinematics). Dashed lines
are desired values, solid lines are measurements.

0 1 2 3 4 5 6 7 8

Time [s]

-5

0

5

T
hr

us
te

r 
co

m
m

an
ds

 [N
]

Figure 4.7: (Case 0) Commanded force from each thruster, in newtons, for traditional
control (stationkeeping with fixed-base inverse kinematics).



4.5. SIMULATIONS WITHOUT RESTORING FORCES 57

(a) t ≈ 1 s (b) t ≈ 3 s (c) t ≈ 5 s (d) t ≈ 7 s

Figure 4.8: (Case 0) Snapshots of the configuration change for traditional control
(stationkeeping with fixed-base inverse kinematics), at 2 s increments of the simulation
time t . Notice how the base stays fixed while the end-effector moves.

range roughly from negative five to five newton. Thrusters are usually more expensive
to actuate than motorized joints. With stationkeeping and fixed-base inverse kinematics,
it is necessary to actuate both, leading to a significant increase in energy expenditure,
which is especially problematic for battery-powered vehicles.

4.5.2 Case 1: Open-loop control

This simulation scenario expresses to what extent the GJM is applicable for USM control,
despite the unmodeled hydrodynamic effects. Figure 4.9 compares the desired and
the measured end-effector velocities, and the integrals of the desired velocities to the
measured positions. USM configurations during the operation are shown in Figure 4.10.

The end-effector velocities follow the trajectory with only small deviations, no
larger than approximately 0.02 cm/s. The errors are mostly found in the sway and
heave velocities during the steady-state segment of the trajectory. This is presumably
due to the unmodeled hydrodynamic effects—the tendency of the vehicle to “swim”
when moving the joints. A small part of the transient error can also be attributed to the
joint motor dynamics (Figure 4.2). (Research on USR propulsion, such as [10], exploit
the swimming effect for locomotion.) That the surge velocity is relatively accurate is
likely because negative surge velocity corresponds to a contraction of the whole USM.
When contracting under GJM control, the head and tail are both pulled inward, which



58 CHAPTER 4. IMPLEMENTATION AND SIMULATION

0 1 2 3 4 5 6 7 8

Time [s]

-0.15

-0.1

-0.05

0

0.05

0.1

E
nd

-e
ffe

ct
or

 v
el

oc
ity

 [m
/s

]

0 1 2 3 4 5 6 7 8

Time [s]

-0.6

-0.4

-0.2

0

0.2

0.4

E
nd

-e
ffe

ct
or

 p
os

iti
on

 [m
]

Figure 4.9: (Case 1) End-effector velocity (above) and position accuracy (below) for
open-loop GJM control. Dashed lines are desired values, solid lines are measurements.

will create reaction forces that approximately cancel out. On the other hand, reaction
forces due to sway and heave motion of the head are not compensated for by movement
with canceling hydrodynamic forces. Despite this, the norm of the position deviation at
t = 8 s is no more than about 2.2 cm, making this suitable for all three use cases listed
in Section 4.4. However, the position error must be expected to accumulate over time,
so the applicability depends on the required time horizons for autonomous tasks.

4.5.3 Case 2: Velocity feedback

With velocity feedback, the velocity tracking errors are reduced compared to the open-
loop errors in Case 1, from 2.2 cm (Figure 4.9) to 1.5 cm (Figure 4.11). It is task-dependent
whether the difference is significant or not, based on the accuracy needed. This case is



4.5. SIMULATIONS WITHOUT RESTORING FORCES 59

(a) t ≈ 1 s (b) t ≈ 3 s (c) t ≈ 5 s (d) t ≈ 7 s

Figure 4.10: (Case 1) Snapshots of the configuration change for open-loop GJM control,
at 2 s increments in the simulation time t . Notice how all parts of the robot move to
allow correct end-effector motion.

applicable to the same use cases as Case 1. Velocity feedback is useful and should be used
whenever velocity estimates are available, but the difference is not crucial. However, a
more sophisticated velocity controller will be able to increase the advantage of velocity
feedback.

4.5.4 Case 3: Position feedback

This simulation uses CLIK with Kclik = 3 · I3×3, discussed in Section 3.2.6. As shown in
Figure 4.12, the velocities differ from their references in order to follow the position
trajectory closely. The position references are generated by integrating the velocity
references over time,

xd (t) ≡
∫ t
0 ud (t) dt , (4.4)

yd (t) ≡
∫ t
0 vd (t) dt , (4.5)

zd (t) ≡
∫ t
0 wd (t) dt . (4.6)

The norm of the position error, at the end of the simulation, is on the order of mil-
limeters, and the performance overall is excellent (Figure 4.12). With position feedback,
the control scheme is sufficiently accurate for all three use cases.



60 CHAPTER 4. IMPLEMENTATION AND SIMULATION

0 1 2 3 4 5 6 7 8

Time [s]

-0.1

-0.05

0

0.05

0.1

E
nd

-e
ffe

ct
or

 v
el

oc
ity

 [m
/s

]

0 1 2 3 4 5 6 7 8

Time [s]

-0.6

-0.4

-0.2

0

0.2

0.4

E
nd

-e
ffe

ct
or

 p
os

iti
on

 [m
]

Figure 4.11: (Case 2) End-effector velocity (above) and position accuracy (below) for
closed-loop GJM control with velocity feedback. Dashed lines are desired values, solid
lines are measurements.

4.5.5 Case 4: Accuracy for slow vs. fast motion

One hypothesis of this thesis is that the hydrodynamic effects weaken significantly as
the velocity decreases (Section 1.2). A velocity trajectory modified from that of Figure
4.9 is repeated in Figure 4.13, in one faster and one slower variant.

The largest velocity error of the slow maneuver is 1.2 cm/s (in the y-direction),
while the largest error for the fast maneuver is 7.1 cm/s (Figure 4.13). It does indeed
appear to be true that the velocity tracking errors increase and decrease with velocity,
but not so much that they become negligible even at velocities on the order of 1 cm/s,
which is the maximum velocity command of the slow maneuver given.



4.6. SIMULATIONS WITH RESTORING FORCES 61

0 1 2 3 4 5 6 7 8

Time [s]

-0.15

-0.1

-0.05

0

0.05

0.1

E
nd

-e
ffe

ct
or

 v
el

oc
ity

 [m
/s

]

0 1 2 3 4 5 6 7 8

Time [s]

-0.6

-0.4

-0.2

0

0.2

0.4

E
nd

-e
ffe

ct
or

 p
os

iti
on

 [m
]

Figure 4.12: (Case 3) End-effector velocity (above) and position accuracy (below) for
closed-loop GJM control with position feedback. Dashed lines are desired values, solid
lines are measurements.

4.6 Simulations with restoring forces

The simulations below are run on the full model, with nonzero restoring moments.
They give an idea of the magnitude of the restoring force disturbance, and how well
velocity and position feedback can counteract it. Simulation horizons are doubled in
the remaining cases, to show the oscillations caused by hydrostatics.

4.6.1 Case 5: Open loop

For comparison, the same open-loop maneuver as that in Case 1 (Section 4.5.2) is
repeated with the full model. Unsurprisingly, substantial errors ensue, as no steps
are taken to avoid the disturbances. This is evident from Figure 4.14. The velocities



62 CHAPTER 4. IMPLEMENTATION AND SIMULATION

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

E
nd

-e
ffe

ct
or

 v
el

oc
ity

 [m
/s

]

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-0.02

-0.01

0

0.01

0.02

E
nd

-e
ffe

ct
or

 v
el

oc
ity

 [m
/s

]

Figure 4.13: (Case 4) End-effector velocity accuracy for fast (above) and slow (below)
velocities using open-loop GJM control. Dashed lines are desired values, solid lines
are measurements.

follow their references to some extent, but poorly, especially in the heave direction. The
increased error is guaranteed to be caused by hydrostatic forces, as the model, control
scheme, and parameters are otherwise identical to those in Figure 4.9. In addition to
the poor following of the trajectory during the first half of the simulation, sinusoidal
oscillations appear during the latter half (Figure 4.14). These oscillations are due to the
rotation induced by the restoring moments, and they oscillate around the hydrostatic
equilibrium point. Pure open-loop control is insufficient for all three sample use cases
when hydrostatic forces are present. The root mean square (RMS) of the position error
norm during the simulation is 26.3 cm, which is almost half of the 56.6 cm total desired
position change.



4.6. SIMULATIONS WITH RESTORING FORCES 63

0 2 4 6 8 10 12 14 16

Time [s]

-0.1

-0.05

0

0.05

0.1

E
nd

-e
ffe

ct
or

 v
el

oc
ity

 [m
/s

]

0 2 4 6 8 10 12 14 16

Time [s]

-0.5

0

0.5

E
nd

-e
ffe

ct
or

 p
os

iti
on

 [m
]

Figure 4.14: (Case 5) End-effector velocity (above) and position accuracy (below) for
open-loop GJM control, subjected to hydrostatic forces. Dashed lines are desired values,
solid lines are measurements.

4.6.2 Case 6: Velocity feedback

Similar to in Case 2 (Section 4.5.3), velocity feedback with the restoring forces model
(Figure 4.15) reduces the errors to roughly half of their original magnitude (Figure 4.14).
The velocity tracking is as such significantly better than without feedback, but not
good enough to be considered acceptable. Although the x and y-directions are precise,
the heave direction is not. Inaccurate z motion is as problematic as inaccurate x and y
motion, but easier to solve as it can be measured and compensated for at the position
level by a simple pressure sensor. Measurements of x and y position require much
more complex and expensive equipment. Section 4.6.3 shows the result of repeating
the simulation with full 3 DOF position feedback, and it is reasonable to assume that
a similar performance for the heave direction could be achieved with heave feedback



64 CHAPTER 4. IMPLEMENTATION AND SIMULATION

only.

0 2 4 6 8 10 12 14 16

Time [s]

-0.1

-0.05

0

0.05

0.1

E
nd

-e
ffe

ct
or

 v
el

oc
ity

 [m
/s

]

0 2 4 6 8 10 12 14 16

Time [s]

-0.6

-0.4

-0.2

0

0.2

0.4

E
nd

-e
ffe

ct
or

 p
os

iti
on

 [m
]

Figure 4.15: (Case 6) End-effector velocity (above) and position accuracy (below)
for closed-loop GJM control with velocity feedback, subjected to hydrostatic forces.
Dashed lines are desired values, solid lines are measurements.

If the USM is teleoperated, this still is somewhat usable, as the end-effector mostly
moves in the right direction, and the pilot would be able to compensate for the poor
accuracy by increasing the corresponding velocity commands. However, for both of the
autonomous use-cases, the performance here is too poor. A better velocity feedback
algorithmmight alleviate the problem, but, given sufficient sensor data, position feedback
is a safer solution, as shown in the next section. The RMS of the position error norm is
13.3 cm, which mirrors the apparent halving of the error, which was 26.3 cm previously,
without feedback (Section 4.6.1).



4.6. SIMULATIONS WITH RESTORING FORCES 65

4.6.3 Case 7: Position feedback

With position feedback, and the same CLIK algorithm as in Section 4.5.4, the tracking
performance is greatly improved from the previous case, and the RMS of the position
error norm is reduced from 13.3 cm (Figure 4.15) to only 1.1 cm (Figure 4.16), fulfilling the
requirements of all three use-cases. There are some small transient errors in the position
tracking, and some oscillatory errors after the reference trajectory ends. Compare to
Figure 4.12, which shows an identical simulation run on the model without restoring
forces. Although the oscillations will eventually die out on their own, waiting for the
slow decay is not desirable, as it reduces accuracy, and wastes power by moving the
joints to keep the end-effector stable. The transient tracking is however excellent (Figure
4.16) and can be improved further by a better-tailored position controller.

0 2 4 6 8 10 12 14 16

Time [s]

-0.15

-0.1

-0.05

0

0.05

0.1

E
nd

-e
ffe

ct
or

 v
el

oc
ity

 [m
/s

]

0 2 4 6 8 10 12 14 16

Time [s]

-0.6

-0.4

-0.2

0

0.2

0.4

E
nd

-e
ffe

ct
or

 p
os

iti
on

 [m
]

Figure 4.16: (Case 7) End-effector velocity (above) and position accuracy (below)
for closed-loop GJM control with position feedback, subjected to hydrostatic forces.
Dashed lines are desired values, solid lines are measurements.



66 CHAPTER 4. IMPLEMENTATION AND SIMULATION

4.6.4 Case 8: Position feedback and thruster damping

Section 3.2.7 describes how the attitude of the vehicle can be actively controlled toward
its hydrostatic equilibrium point, in order to damp the oscillations that are present
in Sections 4.6.1 (Case 5), 4.6.2 (Case 6), and 4.6.3 (Case 7). The attitude controller is
activated immediately after the trajectory ends, at t = 7 s. The controller succeeds in
damping out the oscillations and does so swiftly. With the oscillations damped, the RMS
of the position error norm has been reduced to as little as 0.4 cm.

0 2 4 6 8 10 12 14 16

Time [s]

-0.1

-0.05

0

0.05

0.1

E
nd

-e
ffe

ct
or

 v
el

oc
ity

 [m
/s

]

0 2 4 6 8 10 12 14 16

Time [s]

-0.6

-0.4

-0.2

0

0.2

0.4

E
nd

-e
ffe

ct
or

 p
os

iti
on

 [m
]

Figure 4.17: (Case 8) End-effector velocity (above) and position accuracy (below) for
closed-loop GJM control with position feedback and thruster stopping, subjected to
hydrostatic forces. Dashed lines are desired values, solid lines are measurements.

Whether thruster damping is preferable depends on the cost of actuating the
thrusters. Typically, thruster actuators spend more energy than joint motors, and
this is the case for the Eelume USM in Figure 1.1f. The Eelume USM’s thrusters consume
up to 350W, and its joint motors up to 70W. The change in total power consump-



4.6. SIMULATIONS WITH RESTORING FORCES 67

tion should be weighed against the importance of the accuracy improvement thruster
stopping gives, which will depend on the use case.





Chapter 5

Conclusion

The thesis has demonstrated that GJM-based control of underwater manipulators, specif-
ically USMs, is possible. Despite the GJM being originally formulated based on the
assumption of no external forces, it is shown to give good performance also for under-
water systems that are subject to hydrostatic and hydrodynamic forces. Hydrodynamic
simulations have verified the control scheme, and shown which variants are applicable
in which situations. In particular, open-loop control was found to be sufficient for
teleoperation, autonomous sensor positioning, and autonomous intervention, when the
vehicle is freed from hydrostatic disturbance, assuming short task durations. When
hydrostatic forces are present or task durations are long, position feedback is necessary
to reach the same level of performance.

The accuracy improves with access to velocity and position measurements. Accuracy
is further improved with a thruster-based method implemented to damp oscillations
that occur after an end-effector trajectory, due to restoring forces. Figure 5.1 shows how
adding velocity and position feedback reduces the RMS end-effector position error, and
how the thruster damping can reduce it further, for nonzero restoring forces. While
the accuracy is good, a main drawback of GJM control is that the size of the reachable
workspace shrinks due to the low base inertia, but this is a limitation of the physical
structure, not of the control system.

In summary, the system achieves centimeter-level accuracy even in the face of
hydrostatic restoring forces, given that reliable position estimates are available for

69



70 CHAPTER 5. CONCLUSION

Case 5 Case 6 Case 7 Case 8
0

5

10

15

20

25

30

R
M

S
 p

os
iti

on
 e

rr
or

 n
or

m
 [c

m
]

Figure 5.1: Comparison of root mean square of the position error norm for variations
of the control system, using the restoring forces simulation model. Case 5 is open-loop;
Case 6 with velocity feedback; Case 7 with position feedback; and Case 8 with position
feedback and thruster damping.

feedback control. The accuracy makes it a viable and more efficient alternative to
traditional control methods, for both teleoperation and autonomous work.

5.1 Prospects for future research

As the USM is a recently developed robot architecture, their control systems are in an
early phase of development. This opens for many possible directions for future work,
some of which are discussed below.

Already mentioned is the possibility of improving the velocity and position con-
trollers. The controllers used for simulations in this thesis are very rudimentary, and
proportional-integral-derivative (PID) control or more advanced, possibly model based
alternatives deserve investigation.

As discussed in Section 1.2, the control scheme here does not consider hydrodynamic
forces. It was observed, especially in Figure 4.9, that the effects of hydrodynamics on the
USM are small but existent. Estimation of the hydrodynamics and subsequent incorpo-
ration into the control system should give improved accuracy and better predictability
of the performance. Research by McLain and colleagues, especially [35], can act as a
starting point.

Control of any redundantmanipulator requires redundancy resolution. The proposed
control system performs redundancy resolution with a focus on singularity avoidance.
Singularity avoidance is necessary, as discussed in Section 3.1.2, but possible to combine



5.1. PROSPECTS FOR FUTURE RESEARCH 71

with additional objectives. Some examples are:

• Use the reaction null-space to perform reactionless manipulation, to minimize
the disturbance of the base link. Reactionless manipulation is particularly useful
for vehicles that have cameras or other sensor equipment attached to the base
link, such as the Eelume USM which has a base swivel camera. Whether the RNS
is large enough to be realistically useful requires examination.

• Define a “hydrostatic null space”, which is the space inside of which the hydro-
static restoring forces always are zero. It is straightforward to prove that such a
workspace can exist: If the COM and COB of each link is vertically aligned and the
vehicle is horizontal, any yaw motion will gives pure translation of the COM and
COB, not creating restoring forces. Depending on the size of the workspace,
it might be possible to do useful work within it, thereby avoiding reliance on
restoring force compensation.

• Alternatively, define avoidance of hydrostatic forces as a secondary task. This
is a better solution than a hydrostatic null space if the null space is too small to
keep operation entirely inside it.

• Avoid configurations where the thruster configuration is ill-conditioned. With
the 7-thruster USM used for simulations in this thesis, the thrust configuration
matrix is usually able to maintain full rank, giving the ability to actuate all 6 DOF,
but some configurations cause rank deficiency. Avoiding these configurations
will assure that proper actuation from the thrusters is possible at all times.

Another useful addition is to use the thrusters to extend the manipulator workspace.
Normally, the thrusters are dormant during manipulation, but if the manipulator ap-
proaches the boundary of its workspace, the thrusters can move the whole vehicle closer
to the point of interest. This can be implemented as an on/off or a gradually activating
effect. A workspace must be defined for this method, and a good choice seems to be
the path-independent workspace (PIW), or guaranteed workspace, which is a workspace
within which it is guaranteed that a free-floating manipulator can reach any point,
regardless of its path toward that point [56]. Alternatively, a dexterity measure, such
as that proposed in [61], or one that is based on the SVD [62], can determine when
to switch to vehicle repositioning. These methods would need a trajectory tracking



72 CHAPTER 5. CONCLUSION

algorithm to reposition the COM of the manipulator, the motion of which is decoupled
from the manipulation itself. Therefore, it is straightforward to implement on top of the
manipulation algorithm presented here.



Appendix A

Control design model

This appendix contains tables that define the properties of the USM model used in the
control design.

Table A.1: Geometric properties of each link of the USM model. Defines the location
the link’s center of mass and center of buoyancy, the location of the origin of the
next link, and the link’s displaced volume. For the model with zero restoring forces,
izcm,i = 0 for all i .

Link Next link pos. [mm] COM pos. [mm] COB pos. [mm] Volume [dm3]

i ix i+1 iyi+1 izi+1 ixcm,i
iycm,i

izcm,i
ixcb,i

iycb,i
izcb,i ∇i

0 620 0 0 303 0 0 303 0 0 143
1 104 0 0 52 0 0 52 0 0 60
2 584 0 0 292 0 70 292 0 0 127
3 104 0 0 52 0 0 52 0 0 60
4 726 0 0 362 0 70 362 0 0 98
5 104 0 0 52 0 0 52 0 0 60
6 584 0 0 292 0 70 292 0 0 127
7 104 0 0 52 0 0 52 0 0 60
8 370 0 0 193 0 0 193 0 0 78

73



74 APPENDIX A. CONTROL DESIGN MODEL

Table A.2: Mass and inertia properties of the USM model. The inertia properties are
given as the six unique elements of the standard inertia tensor Ii ∈ R3×3.

Link Mass [kg] Inertia tensor [kgm2]

i mi Ixx,i Iyy,i Izz,i Ixy,i Ixz,i Iyz,i

0 14.3 0.0579 0.3737 0.3737 0.0000 0.0000 0.0000
1 6.0 0.0163 0.0103 0.0163 1.647 · 10−4 −9.143 · 10−9 3.372 · 10−7

2 12.7 0.0487 0.3479 0.3479 −9.456 · 10−5 −9.513 · 10−5 −1.017 · 10−6

3 6.0 0.0163 0.0103 0.0163 1.647 · 10−4 −9.143 · 10−9 3.372 · 10−7

4 9.8 0.0506 0.3671 0.3826 −4.580 · 10−5 −1.238 · 10−5 2.825 · 10−6

5 6.0 0.0163 0.0103 0.0163 1.647 · 10−4 −9.143 · 10−9 3.372 · 10−7

6 12.7 0.0487 0.3480 0.3480 −9.564 · 10−5 −9.436 · 10−5 2.5433 · 10−6

7 6.0 0.0163 0.0103 0.0163 1.647 · 10−4 −9.143 · 10−9 3.372 · 10−7

8 7.8 0.0302 0.0966 0.0968 3.4143 · 10−5 9.1293 · 10−6 1.3929 · 10−6

Table A.3: Positions and orientations of the thrusters relative to their parent frame.
The parent of a thruster is the link to which it is attached. Position is given in the
parent link frame. θ is the azimuth angle and ϕ is the elevation angle.

Thruster Parent link Thruster pos. [mm] Thruster rot. [rad]

ti i ixti
ixti

ixti θti ϕti

t1 2 237 0 0 0 −π/2
t2 2 347 0 0 π/2 0
t3 4 278 −100 0 0 0
t4 4 278 100 0 0 0
t5 4 488 0 0 0 −π/2
t6 6 237 0 0 π/2 0
t7 6 347 0 0 0 −π/2



Appendix B

Implementation details

This appendix contains key illustrations of the implementation of the control system.

75



76 APPENDIX B. IMPLEMENTATION DETAILS

Inverse	kinematics

Velocity/position	feedback

Vortex	InterfaceOrientation	controller

Thrust	allocation

0:	None
1:	Thrusters	(tau)
2:	Joints	(v)

1

EN

buttons

v

tau

Joystick	interface

6

6

	10{10}

	10{10}

[8x1]

1

~=	0
1

[3x3]

	7{70}

[6x1]
ik_bus

vx_bus

To	Workspace

	7{70}

	7{93}

Idx
3

	7{93}

8

RS

nu_I_ee_c

R_I_0

Idx

ik_bus

Inverse	kinematics

[3x3]

[6x1] 	7{93}

3

q_d
(rad)

u_d
(rpm)

bus

Vortex	Interface

7

[8x1]
	7{70}

[8x1]	(rad)

8

[8x1]

tau

q

u_rpm

Thrust	allocation

6

8

7	(rpm)

1

	7{70}

8

nu_I_ee_d

T_I_ee_m

nu_I_ee_m

nu_I_ee_c

Velocity/position	feedback

[6x1]

[4x4]

6

[6x1]

6	7{70}

[4x4]

R_I_0

q_m

nu_I_0

tau

Orientation	controller

6

6
[3x3]

8

1

6

6
	7{70}

[3x3]

8

[6x1]

[6x1]

6 <BACK>

<R_I_0>

<q>

<q_m>

<T_I_e>

<nu_I_e>

<R_I_0>

<q_m>

<nu_I_0>

Figure B.1: Top-level view of the control system implemented in Simulink.



77

Inverse	kinematics

Velocity/position	feedback

Vortex	InterfaceOrientation	controller

Thrust	allocation

0:	None
1:	Thrusters	(tau)
2:	Joints	(v)

1

EN

buttons

v

tau

Joystick	interface

6

6

	10{10}

	10{10}

[8x1]

1

~=	0
1

[3x3]

	7{70}

[6x1]
ik_bus

vx_bus

To	Workspace

	7{70}

	7{93}

Idx
3

	7{93}

8

RS

nu_I_ee_c

R_I_0

Idx

ik_bus

Inverse	kinematics

[3x3]

[6x1] 	7{93}

3

q_d
(rad)

u_d
(rpm)

bus

Vortex	Interface

7

[8x1]
	7{70}

[8x1]	(rad)

8

[8x1]

tau

q

u_rpm

Thrust	allocation

6

8

7	(rpm)

1

	7{70}

8

nu_I_ee_d

T_I_ee_m

nu_I_ee_m

nu_I_ee_c

Velocity/position	feedback

[6x1]

[4x4]

6

[6x1]

6	7{70}

[4x4]

R_I_0

q_m

nu_I_0

tau

Orientation	controller

6

6
[3x3]

8

1

6

6
	7{70}

[3x3]

8

[6x1]

[6x1]

6 <BACK>

<R_I_0>

<q>

<q_m>

<T_I_e>

<nu_I_e>

<R_I_0>

<q_m>

<nu_I_0>

Figure B.1: Continued from last page.



78 APPENDIX B. IMPLEMENTATION DETAILS

Transformation	from	inertial	frame	to	base

Vortex	wrapper

Transformation	from	inertial	frame	to	end-effectorUnit	delays	to	avoid
algebraic	loop	errors

Initial	conditions

Enable

(rad)

(rad)

(rad)

[8x1]

(rad)

(rad)

(rad)

(rad)

(rad)

8

(rpm)

(rpm)

(rpm)

(rpm)

(rpm)

(rpm)

7

(rpm)

1
q_d

[8x1]	(rad)

2
u_d

7	(rpm)

Reshape
16

[4x4]

My	Model

q1_cmd

q2_cmd

q3_cmd

q4_cmd

q5_cmd

q6_cmd

q7_cmd

q8_cmd

u1_rpm

u2_rpm

u3_rpm

u4_rpm

u5_rpm

u6_rpm

u7_rpm

Status

Time

FrameIndex

T_vx_front

T_vx_tether

q1

q2

q3

q4

q5

q6

q7

q8

v_vx_front

v_vx_tether

w_vx_front

w_vx_tether

Not	Connected

Vortex	Simulink

3

3

3

3

16

16 T_front_e
[4x4]

T_I_vx
[4x4]

Matrix
Multiply

[4x4]

[4x4]

[4x4]

[4x4]
T R

[4x4]

[3x3]

[q_IC]
8

8

Z-1
[4x4]

[4x4]

Z-1
8

8

Reshape
[4x4]

16

Z-1
[4x4]

[4x4]

T_tether_0
[4x4]

T_I_vx
[4x4]

Matrix
Multiply[4x4]

[4x4]

[4x4]
[4x4]

T R
[3x3]

[4x4]

T_in T_out

Transformation	matrix	IC

[4x4]

[4x4]

T_in T_out

Transformation	matrix	IC1

[4x4]

[4x4]

RealtimeSynchronization

S-Function

6

[3x3]

[4x4]

[4x4]

[3x3]

8

6

	7{70}
1
bus

	7{70}

Z-1
6

6

Z-1
6

6

T_I_e

nu_I_front
nu_I_e

[4x4] 6

6

63

3

3

3 6

T_I_vx
[4x4]

T_B_A

m_A
m_B

Spatial	motion	transform

[4x4] 6

6

T_B_A

m_A
m_B

Spatial	motion	transform1
6

[4x4] 6
T_I_vx

[4x4] T_I_0

nu_I_tether
nu_I_0

6[4x4]

6

T_vx_front

T_I_0

R_I_e

R_I_0

q_m

T_vx_tether

nu_vx_front

T_I_e

nu_I_front
nu_I_e

nu_vx_tether

nu_I_0
nu_I_tether

Figure B.2: The Simulink-Vortex interface.



79

Transformation	from	inertial	frame	to	base

Vortex	wrapper

Transformation	from	inertial	frame	to	end-effectorUnit	delays	to	avoid
algebraic	loop	errors

Initial	conditions

Enable

(rad)

(rad)

(rad)

[8x1]

(rad)

(rad)

(rad)

(rad)

(rad)

8

(rpm)

(rpm)

(rpm)

(rpm)

(rpm)

(rpm)

7

(rpm)

1
q_d

[8x1]	(rad)

2
u_d

7	(rpm)

Reshape
16

[4x4]

My	Model

q1_cmd

q2_cmd

q3_cmd

q4_cmd

q5_cmd

q6_cmd

q7_cmd

q8_cmd

u1_rpm

u2_rpm

u3_rpm

u4_rpm

u5_rpm

u6_rpm

u7_rpm

Status

Time

FrameIndex

T_vx_front

T_vx_tether

q1

q2

q3

q4

q5

q6

q7

q8

v_vx_front

v_vx_tether

w_vx_front

w_vx_tether

Not	Connected

Vortex	Simulink

3

3

3

3

16

16 T_front_e
[4x4]

T_I_vx
[4x4]

Matrix
Multiply

[4x4]

[4x4]

[4x4]

[4x4]
T R

[4x4]

[3x3]

[q_IC]
8

8

Z-1
[4x4]

[4x4]

Z-1
8

8

Reshape
[4x4]

16

Z-1
[4x4]

[4x4]

T_tether_0
[4x4]

T_I_vx
[4x4]

Matrix
Multiply[4x4]

[4x4]

[4x4]
[4x4]

T R
[3x3]

[4x4]

T_in T_out

Transformation	matrix	IC

[4x4]

[4x4]

T_in T_out

Transformation	matrix	IC1

[4x4]

[4x4]

RealtimeSynchronization

S-Function

6

[3x3]

[4x4]

[4x4]

[3x3]

8

6

	7{70}
1
bus

	7{70}

Z-1
6

6

Z-1
6

6

T_I_e

nu_I_front
nu_I_e

[4x4] 6

6

63

3

3

3 6

T_I_vx
[4x4]

T_B_A

m_A
m_B

Spatial	motion	transform

[4x4] 6

6

T_B_A

m_A
m_B

Spatial	motion	transform1
6

[4x4] 6
T_I_vx

[4x4] T_I_0

nu_I_tether
nu_I_0

6[4x4]

6

T_vx_front

T_I_0

R_I_e

R_I_0

q_m

T_vx_tether

nu_vx_front

T_I_e

nu_I_front
nu_I_e

nu_vx_tether

nu_I_0
nu_I_tether

Figure B.2: Continued from last page.





Appendix C

Conference paper

This appendix provides a draft for a conference paper based on the core findings of this
thesis, aimed for submission to the 2018 European Control Conference. The draft is
in accordance with all formal formatting requirements of the PaperCept Conference
Management System for initial submission as a contributed paper to ECC’18.

81



Inverse Kinematic Control of a Free-Floating
Underwater Manipulator Using the Generalized

Jacobian Matrix
Morten F. Amundsen, Jørgen Sverdrup-Thygeson, Eleni Kelasidi, Kristin Y. Pettersen

Norwegian University of Science and Technology (NTNU)
Faculty of Information Technology and Electrical Engineering

Department of Engineering Cybernetics
Trondheim, Norway

Email: morten.f.amundsen@ntnu.no

Abstract—Traditional control of robotic manipulators has as-
sumed that the base of the manipulator is fixed, which holds true
for industrial manipulators. Underwater vehicle-manipulator
systems are not fixed to their environment, but can be held fairly
still by thruster actuation and a good stationkeeping algorithm,
which allows traditional fixed-base manipulator control. This
paper will describe a method for underwater manipulation that
does not require stationkeeping, and by extension does not
require thrusters. The method is based on inverse kinematics
using the generalized Jacobian matrix, a generalization of the
traditional fixed-base manipulator Jacobion, originally used
for control of robotic manipulators in outer space. With the
generalized Jacobian matrix, a free-floating manipulator can
be controlled in inertial coordinates, and the base remains
passive and unactuated, only moving to aid in the motion
of the end-effector. The control system is verified through
hydrodynamic simulations using the Vortex Studio software, and
open loop control is compared to position feedback control. The
simulations show that underwater manipulation without base
actuation is possible, and that the accuracy can be improved
with access to position estimates.

I. INTRODUCTION

Underwater robots exist in numerous forms and have a
multitude of applications. Examples are seafloor mapping and
geological sampling in research and science; construction,
inspection, maintenance and repair of subsea installations in
the oil and gas industry; and search and disposal of mines
for the military [1].

Some tasks, especially complex intervention tasks that
have yet to be automated, and also some observation tasks,
are suited for remotely operated vehicles (ROVs), which are
tethered to the surface and usually teleoperated [2]. Other
tasks, such as wide area surveying and mapping, are usually
done by autonomous underwater vehicles (AUVs), as they
can operate for extended periods of time without human
involvement [1].

The underwater swimming manipulator (USM) is a new
class of underwater robots that combines a bio-inspired
snake-like appearance with thruster actuators [3]. It is cur-
rently only produced by Eelume and represents a recent field
of robotics research. The Eelume USM is shown in Figure

Fig. 1. The Eelume USM, an example of an underwater snake robot. It is
approximately 3.3m long and weighs 80 kg.

1. USMs are a continuation of the underwater snake robot
(USR), which is a snake-like underwater robot designed to
“swim” like an eel or a sea snake [4].

This paper will investigate how to achieve accurate and
flexible underwater manipulation without thruster usage.
Previous underwater vehicle-manipulator system (UVMS)
and USM control has used thrusters and joint motors for
manipulation [5], which is energy-inefficient due to the high
power consumption of the thrusters. In contrast to the existing
methods, this paper will present a solution that does not rely
on thruster usage, ultimately saving power and extending the
possible mission duration. The control system will be general
for any UVMSs. Underwater robots float freely in the water,
in contrast to an industrial robotic manipulator which is fixed
to the ground. Because of this, the USM responds differently
to three types of forces in particular:

1) Reaction forces: Moving the joints of the manipulator
will induce reaction forces that disturb the position and
orientation of the manipulator base [6]. The disturbance
occurs because the base is floating freely in the water.



Base

End-

e�.

(a)

Base

End-

e�.

(b)

Base

End-

e�.

(c)

Fig. 2. Differences between fixed-base and floating-base manipulation: (a)
shows the initial configuration, and (b) and (c) shows final configurations
after identical joint motion. In (b), the base is fixed, and this causes the total
COM to move. In (c), the base is floating, and reaction forces on the base
cause it to move, while the location of the COM remains the same.

By contrast, the base of an industrial manipulator is
firmly fixed to its environment and is not disturbed by
joint motion. Figure 2 compares the effects of joint
motion and reaction forces on fixed-base and floating-
base manipulators.

2) Hydrostatic forces: Gravity “pulls” the center of mass
(COM) down, and buoyancy “pushes” the center of
buoyancy (COB) up. The COM and COB of an under-
water manipulator are not necessarily aligned, and this
causes rotational hydrostatic restoring forces [7, Ch. 4].
Because the COM and COB locations depend on the
joint configuration, the resulting restoring forces also
depend on the joint configuration.

3) Hydrodynamic forces: The manipulator moves
through water, and is subject to hydrodynamic effects
such as drag forces and increased inertia from added
mass [8, Ch. 10].

The effects of the forces listed above are present for all
underwater manipulators, but not to the same extent. Robots
that have a large “body” with a smaller manipulator attached
to it will not be strongly affected, because of the large
inertia of the base. Intervention-ROVs and -AUVs are typical
examples. USRs and USMs are more strongly affected. These
robots have a base link that is only a small fraction of the
total vehicle’s inertia and size, and as a result, both reaction
forces and hydrostatic forces that occur while moving the
manipulator will affect them much more than ROVs and
AUVs. It is therefore vital to compensate for these effects
when attempting manipulation tasks.

II. INVERSE KINEMATIC CONTROL

A. The generalized Jacobian matrix

The generalized Jacobian matrix (GJM), introduced first
in [9] and [6] provides a map between the joint velocities
q̇ ∈ Rn to the velocity twist ν = (vT,ωT)T ∈ R6 of the
end-effector in the inertial frame,

ν = Ĵ(q,R) q̇, (1)

where n is the number of joints, Ĵ ∈ R6×n is the GJM,
q ∈ Rn are the joint positions, and R ∈ SO(3) is the rotation
from the inertial frame to the base link. Equation (1) contrasts
the map of fixed-base manipulator Jacobians, which map to
the end-effector velocity twist, (usually) expressed in the base
link or end-effector frame. The GJM is able to map to inertial
velocities by taking into account the displacement of the end-
effector that occurs due to conservation of momentum.

A full derivation of the GJM is available in [10]. The
kinematic parameters of the vehicle, its link masses and
inertia matrices, the joint configuration, and the orientation
of the base frame, are necessary to define the GJM. The
constant parameters are typically available for a given robot.
The joint configuration can be measured for instance with
rotary encoders, and the base orientation can be estimated
based on measurements from an inertial measurement unit
(IMU).

The GJM was originally developed for manipulators
mounted on free-floating vehicles in the near-vacuum of
space, which experience negligible external forces [11].
Conservation of momentum applies for these systems. As
described in Section I, underwater vehicles are subject hy-
drodynamic effects, and the assumption of no external forces
does not hold for these systems. However, the aim here is
to investigate whether the hydrodynamic effects are small
enough to make GJM-based control feasible.

B. Singularities of the generalized Jacobian matrix

A manipulator is said to be in a singular configuration
when its Jacobian is singular, or rank deficient. When the
Jacobian is singular, some of its task-space velocities are
impossible to reach, and its inverse mapping is not well-
defined. For square singular Jacobians, the inverse matrix
is undefined. In the neighborhood of a singularity, the task
velocities may be theoretically reachable, but only with
excessive joint velocities. Large joint velocities can cause
spurious and unpredictable motion, and may exceed the
physical ability of the joint actuators.

Nearly all manipulators have kinematic singularities,
which are singularities due to its kinematic structure. They
can occur at the workspace boundary, and at points where
joint axes align. The GJM also exhibits dynamic singularities,
which are dependent on the dynamic properties of the vehicle.
Kinematic and dynamic singularities reflect physical limita-
tions and are only avoidable by staying away from them, not
by, for instance, expressing the problem differently.

USMs and USRs are subject to more significant reaction
forces than typical free-floating space manipulators. For a
normal snake robot, the base link is of approximately the
same size and mass as the other links, while for a satellite
manipulator (a typical application of GJM control) the base
is usually significantly heavier than the entire manipulator.
An example is the “Engineering Test Satellite VII”, which
is a 140 kg arm mounted on a 2550 kg base, used for in-
orbit GJM experiments [11]. The workspace of a free-floating
snake robot is therefore fairly small in comparison to its
kinematic dimensions. Singularities at workspace boundary



and inside the workspace are rarely far away, and it is
necessary to avoid them in a way that minimizes the resulting
tracking errors.

C. Inverse kinematics

Equation (1) maps from joint velocities to end-effector
velocities. For control, it is necessary to define the inverse
mapping—finding the joint velocities needed to achieve a
desired end-effector velocity. However, Ĵ is not generally
invertible. Methods that solve this are termed inverse kine-
matic methods. This section will discuss an alternative for
inverse kinematic control of USMs. The inverse of (1) can
be written

q̇ = f(Ĵ)ν. (2)

Damped least-squares inverse kinematics [12] is a solution
of (2) that avoids singular configurations by damping the joint
velocities in the neighborhood of the singularities. It is the
minimizer of ∥∥∥ν − Ĵ q̇

∥∥∥
2

+ λ2∥q̇∥2 (3)

with respect to joint velocities. The solution is

q̇ =
(
ĴTJ + λ2I

)−1

ĴTν, (4)

or equivalently [13],

q̇ = ĴT
(
Ĵ ĴT + λ2I

)−1

ν. (5)

Equation (4) is preferable as it requires fewer operations to
compute, assuming n > 6 [13].

The damping term λ2∥q̇∥2 in (3) is designed to slow down
joint motion when the manipulator is near a singular config-
uration, which can be achieved by choosing λ2 according to
[14]

λ2 =




0 when σmin ≥ ϵ[
1−

(
σmin

ϵ

)2]
λ2
max otherwise,

(6)

where σmin is the smallest singular value (which is a measure
of the proximity to a singularity [15]), ϵ is the singular
value threshold below which the damping becomes active,
and λmax is the maximum damping factor. With (6), the
solution is a pure task velocity error minimization when
the manipulator is sufficiently far from any singularities.
As it approaches a singular configuration, the joint velocity
damping term will dominate.

D. Position feedback

Accurate estimates of end-effector position may be hard
to obtain. The position is possible to estimate by dead-
reckoning, which combines and integrates velocity and ac-
celeration level measurements, but the estimate will drift.
If only acceleration measurements are available, the drift
error will be quadratic in time (due to the double integra-
tion), and with velocity measurements, it will be linear in
time (due to the single integration) [16]. Estimators based
on double integration are usually not accurate for a long
enough time to be useful for precision tasks. For this reason,

Doppler velocity log (DVL) measurements are normally used
in inertial navigation systems (INSs) [17]. These indirect
estimation methods are not perfect, but are often the only
available methods for ocean operations away from human-
made structures.

Various methods exist for direct position measurement un-
derwater. While global navigation satellite systems (GNSSs)
are unavailable underwater, a similar method based on trian-
gulation with ranges to acoustic transponders, called long
baseline (LBL), is possible. Another possibility is ultra-
short baseline (USBL), using a sonar array for position
measurements [17]. The drawback of all underwater position
measurement methods is that the sensor equipment must
be installed on site—sensors on board the vehicle are not
sufficient for most methods. An exception is camera-based
simultaneous localization and mapping (SLAM), which is a
viable method in situations with good visibility and does not
require equipment installed in the environment [18].

A simple method for incorporating position data into the
manipulator control scheme is to use closed-loop inverse
kinematics (CLIK) [19]. CLIK was developed to remove
the accumulated integration error from joint trajectory recon-
struction [13], but is here used to also account for position
error that occurs during underwater GJM-based manipulation.
A first-order CLIK algorithm, adapted from [13] to give
position but not orientation feedback, is

q̇ = Ĵ†
(
v +K(p− p̂)

ω

)
+

(
I− Ĵ†Ĵ

)
q̇0, (7)

where K is a constant, positive definite gain matrix, p is the
end-effector position in the inertial frame according to the
reference trajectory, and p̂ is a measurement or estimate of
p. The last term allows exploitation of the redundancy, with
an arbitrary joint velocity vector q̇0. We remove the inverse
kinematics of the CLIK, so that (7) reduces to

νc =

(
v +K(p− p̂)

ω

)
(8)

where νc is the velocity twist command extracted from (7).
The advantage is that (8) can be used with any inverse kine-
matic method. Note again that this is a very simple position
feedback control scheme. It is likely possible to achieve
better performance with other methods, but the aim here
is to illustrate the potential benefits of closed-loop control
with position feedback compared to open-loop control—not
to investigate the feedback algorithms thoroughly. A diagram
of the closed loop system, combining position feedback (8)
with damped least-square inverse kinematics (4), is displayed
in Figure 3.

III. SIMULATIONS

This section analyzes the potential of GJM based control.
Two simulation scenarios will be compared: Open-loop in-
verse kinematics, and position-feedback closed-loop inverse
kinematics.

Both situations simulate 3 degree of freedom (DOF) linear
motion control of the end-effector in inertial space, which is
applicable to many tasks and use cases, such as positioning



Z
K

Z
USM

_q q p̂

p

v

−

+

+
+

P

P IK

!

Fig. 3. Diagram of the closed-loop inverse kinematics control system, using position feedback.

Fig. 4. The USM simulation model, as seen in Vortex

a gimballed camera, and light intervention with a multi-DOF
end-effector tool. Any combination of the 6 spatial DOFs are
possible to control when using the GJM, by extracting the
appropriate sub-matrix. The reference trajectories are given
as linear velocities

v ≡ (ud, vd, wd)
T, (9)

and as linear positions

p ≡ (xd, vd, wd)
T. (10)

The reference velocity and position trajectories are iden-
tical in both simulation scenarios, to allow comparison of
performance. The trajectory corresponds to pulling the end-
effector back, left, and up, starting from a nearly outstretched
configuration.

A. Simulation environment

The simulations are run on a combination of MAT-
LAB/Simulink [20] and Vortex Studio [21]. The control
system is implemented in Simulink, while the dynamic model
is implemented in Vortex. Vortex performs real-time hydrody-
namic and visual simulations, based on a link-by-link model
of the USM, where each part has its kinematic and dynamic
properties specified. The Vortex model is a continuation of
the model presented in [3]. The main differences are that
the model used here has links of varying lengths, and the
thrusters have been moved and increased in number from
five to seven. The newer model used here is shown in Figure
4.

0 1 2 3 4 5 6 7 8

Time [s]

-0.15

-0.1

-0.05

0

0.05

0.1

E
nd

-e
ffe

ct
or

 v
el

oc
ity

 [m
/s

]

0 1 2 3 4 5 6 7 8

Time [s]

-0.6

-0.4

-0.2

0

0.2

0.4

E
nd

-e
ffe

ct
or

 p
os

iti
on

 [m
]

Fig. 5. End-effector velocity (above) and position trajectories (below) for
the open-loop maneuver. Dashed lines represent the reference trajectory,
and solid lines the simulation output. The lower sub-figure compares the
integrated velocity trajectory to the measured end-effector positions.

B. Open loop inverse kinematics

The desired and measured end-effector velocity are com-
pared in Figure 5, together with a comparison of the measured
position versus the integrals of the velocity references. The
chosen trajectory corresponds to moving the end-effector
backward, to the right, and up (as seen from the aft of
the vehicle). Vehicle configurations during the operation are
shown in Figure 6.

This simulation scenario expresses to what extent the GJM
is applicable for underwater manipulator control, despite the
unmodeled hydrodynamic effects. Figure 5 compares the
desired and the measured end-effector velocities, and the
integrals of the desired velocities to the measured positions.
USM configurations during the operation are shown in Figure
6.

The end-effector velocities follow the trajectory with only
small deviations, no larger than approximately 0.02 cm/s.
The errors are mostly found in the sway and heave velocities
during the steady-state segment of the trajectory. This is
presumably due to the unmodeled hydrodynamic effects—the
tendency of the vehicle to “swim” when moving the joints.
A small part of the transient error can also be attributed



(a) t ≈ 1

(b) t ≈ 3

(c) t ≈ 5

(d) t ≈ 7

Fig. 6. Snapshots of the vehicle configurations throughout the open-loop
maneuver, at even intervals of the simulation time t.

to the joint motor dynamics, which are modeled as a first
order system with a 100ms time constant. That the surge
velocity is relatively accurate is likely because negative surge
velocity corresponds to a contraction of the whole manipu-
lator. When contracting under GJM control, the head and
tail are both pulled inward, which will create reaction forces
that approximately cancel out. On the other hand, reaction

0 1 2 3 4 5 6 7 8

Time [s]

-0.15

-0.1

-0.05

0

0.05

0.1

E
nd

-e
ffe

ct
or

 v
el

oc
ity

 [m
/s

]

0 1 2 3 4 5 6 7 8

Time [s]

-0.6

-0.4

-0.2

0

0.2

0.4

E
nd

-e
ffe

ct
or

 p
os

iti
on

 [m
]

Fig. 7. End-effector velocity (above) and position trajectories (below) for
the closed-loop maneuver. Dashed lines represent the reference trajectory,
and solid lines the simulation output. The upper sub-figure compares the
derivative of the position trajectory to the measured end-effector velocity.

forces due to sway and heave motion of the head are not
compensated for by movement with canceling hydrodynamic
forces. Despite this, the norm of the position deviation at
t = 8 s is no more than about 2.2 cm, making this suitable
for teleoperation and autonomous operation. However, the
position error must be expected to accumulate over time, so
the applicability depends on the required time horizons for
autonomous tasks.

C. Closed loop inverse kinematics

This simulation uses CLIK with K = 3·I3×3. As shown in
Figure 7, the velocities differ from their references in order to
follow the position trajectory closely. The position references
are generated by integrating the velocity references over time,

xd(t) ≡
∫ t

0

ud(t) dt, (11)

yd(t) ≡
∫ t

0

vd(t) dt, (12)

zd(t) ≡
∫ t

0

wd(t) dt. (13)

The norm of the position error, at the end of the simu-
lation, is on the order of millimeters, and the performance
overall is excellent (Figure 7). With position feedback, the
control scheme is sufficiently accurate for teleoperation and
autonomy, without restrictions on the time horizon.

IV. CONCLUSION

A control system for free-floating underwater manipulators
has been proposed. The system has been shown through hy-
drodynamic simulations to perform well, given that sufficient
measurement data is available. The most significant drawback
is that the size of the reachable workspace shrinks a lot due
to the low base inertia, but this is a limitation of the physical
structure, not of the control system.



The specific application dictates the level of precision
needed for underwater manipulation. If the vehicle is piloted
by a human, using a joystick or other device to give end-
effector velocity commands, main concern is that the result-
ing end-effector velocities must be somewhat proportional to
the velocity references given. Errors in magnitude can fairly
easily be countered by the pilot: If they notice that the end-
effector moves too fast or slow, they can simply adjusting
how far they push the joystick. A human pilot will also
typically have access to a live camera feed, which allows the
pilot to perform manual position feedback, by monitoring the
position of the end-effector on the video. The human-in-the-
loop situation is elaborated on in [22].

If the system navigates with full autonomy, the require-
ments on control accuracy are much stricter, as no human
is present to detect and correct unexpected errors. For in-
tervention tasks, for instance valve turning, the end-effector
position accuracy needs to be on the order of centimeters
(compare for instance the valves used in [23]).

Inverse kinematics with the GJM without feedback is
sufficient for teleoperation. Expanding the control system
with position feedback increases accuracy and therefore eases
the operator’s work, but is not essential. For autonomous op-
eration, position feedback is clearly preferable, as it accounts
for the errors that occur due to the unmodeled hydrodynamic
effects, and allows the desired centimeter precision.

In summary, the system achieves centimeter-level precision
given that good position estimates are available for feedback
control, making both teleoperation and autonomous operation
possible.

REFERENCES

[1] J. Yuh, “Design and control of autonomous underwater robots: A
survey,” Autonomous Robots, vol. 8, no. 1, pp. 7–24, 2000.

[2] J. Yuh, G. Marani, and D. R. Blidberg, “Applications of marine robotic
vehicles,” Intelligent Service Robotics, vol. 4, no. 4, pp. 221–231, oct
2011.

[3] J. Sverdrup-Thygeson, E. Kelasidi, K. Y. Pettersen, and J. T. Gravdahl,
“The Underwater Swimming Manipulator – A Bio-Inspired AUV,” in
2016 IEEE/OES Autonomous Underwater Vehicles (AUV). Tokyo,
Japan: IEEE, 2016, pp. 387–395.

[4] E. Kelasidi, P. Liljebäck, K. Pettersen, and J. Gravdahl, “Biologically
Inspired Swimming Snake Robots: Modeling, Control and Experimen-
tal Investigation,” IEEE Robotics and Automation Magazine, 2015.

[5] J. Sverdrup-Thygeson, E. Kelasidi, K. Y. Pettersen, and J. T. Gravdahl,
“A control framework for biologically inspired underwater swimming
manipulators equipped with thrusters,” in Proc. 10th IFAC Conference
on Control Applications in Marine Systems (CAMS), vol. 49, no. 23,
Trondheim, Norway, 2016, pp. 89–96.

[6] Y. Umetani and K. Yoshida, “Resolved Motion Rate Control of Space
Manipulators with Generalized Jacobian Matrix,” IEEE Transactions
on Robotics and Automation, vol. 5, no. 3, pp. 303–314, jun 1989.

[7] T. I. Fossen, Handbook of Marine Craft Hydrodynamics and Motion
Control. Wiley, apr 2011.

[8] P. J. From, J. T. Gravdahl, and K. Y. Pettersen, Vehicle-Manipulator
Systems, 1st ed., ser. Advances in Industrial Control. London:
Springer, 2014.

[9] Y. Umetani and K. Yoshida, “Continuous path control of space
manipulators mounted on OMV,” Acta Astronautica, vol. 15, no. 12,
pp. 981–986, dec 1987.

[10] K. Yoshida and Y. Umetani, “Control of Space Manipulators with Gen-
eralized Jacobian Matrix,” in Space robotics: Dynamics and control,
Y. Xu and T. Kanade, Eds. Springer, 1993, ch. 7, pp. 165–204.

[11] K. Yoshida, “Engineering Test Satellite VII Flight Experiments for
Space Robot Dynamics and Control: Theories on Laboratory Test Beds
Ten Years Ago, Now in Orbit,” The International Journal of Robotics
Research, vol. 22, no. 5, pp. 321–335, may 2003.

[12] C. W. Wampler, “Manipulator Inverse Kinematic Solutions Based
on Vector Formulations and Damped Least-Squares Methods,” IEEE
Transactions on Systems, Man and Cybernetics, vol. 16, no. 1, pp.
93–101, jan 1986.

[13] S. Chiaverini, G. Oriolo, and A. A. Maciejewski, “Redundant Robots,”
in Springer Handbook of Robotics, 2nd ed., B. Siciliano and O. Khatib,
Eds. Springer International Publishing, 2016, ch. 10, pp. 221–242.

[14] S. Chiaverini, O. Egeland, and R. K. Kanestrøm, “Achieving user-
defined accuracy with damped least-squares inverse kinematics,” in
Fifth International Conference on Advanced Robotics Robots in Un-
structured Environments, 1991, pp. 672–677.

[15] E. Papadopoulos and S. Dubowsky, “Dynamic Singularities in Free-
Floating Space Manipulators,” in Dynamic Systems, Measurement and
Control, 1993, ch. 4th.

[16] Y. K. Thong, M. S. Woolfson, J. A. Crowe, B. R. Hayes-Gill, and D. A.
Jones, “Numerical double integration of acceleration measurements
in noise,” Measurement: Journal of the International Measurement
Confederation, vol. 36, no. 1, pp. 73–92, 2004.

[17] J. C. Kinsey, R. M. Eustice, and L. L. Whitcomb, “A survey of
underwater vehicle navigation: recent advances and new challenges,”
Proc. of MCMC, Lisbon, 2006, no. May, 2006.

[18] R. M. Eustice, H. Singh, J. Leonard, M. Walter, and R. Ballard, “Vi-
sually Navigating the RMS Titanic with SLAM Information Filters,”
Robotics: Science and Systems, pp. 57–64, 2005.

[19] P. Chiacchio, S. Chiaverini, L. Sciavicco, and B. Siciliano, “Closed-
Loop Inverse Kinematics Schemes for Constrained Redundant Manip-
ulators with Task Space Augmentation and Task Priority Strategy,”
The International Journal of Robotics Research, vol. 10, pp. 410–425,
1991.

[20] MathWorks Inc., “MATLAB Robotics System Toolbox Release
2017a,” Natick, MA, 2017.

[21] CM Labs Simulations Inc., “Vortex Studio Release 6.8.1,” Montreal,
Canada, 2016.

[22] F. Dukan, “ROV Motion Control Systems,” Ph.D. dissertation, Norwe-
gian University of Science and Technology, 2014.

[23] P. Cieslak, P. Ridao, and M. Giergiel, “Autonomous underwater panel
operation by GIRONA500 UVMS: A practical approach to autonomous
underwater manipulation,” Proceedings - IEEE International Confer-
ence on Robotics and Automation, vol. 2015-June, no. June, pp. 529–
536, may 2015.





References

[1] J. Yuh, “Design and control of autonomous underwater robots: A survey,” Au-
tonomous Robots, vol. 8, no. 1, pp. 7–24, 2000.

[2] J. Yuh, G. Marani, and D. R. Blidberg, “Applications of marine robotic vehicles,”
Intelligent Service Robotics, vol. 4, no. 4, pp. 221–231, Oct. 2011.

[3] J. Sverdrup-Thygeson, E. Kelasidi, K. Y. Pettersen, and J. T. Gravdahl, “The Un-
derwater Swimming Manipulator – A Bio-Inspired AUV,” in 2016 IEEE/OES Au-
tonomous Underwater Vehicles (AUV), Tokyo, Japan: IEEE, 2016, pp. 387–395.

[4] E. Kelasidi, P. Liljebäck, K. Pettersen, and J. Gravdahl, “Biologically Inspired
Swimming Snake Robots: Modeling, Control and Experimental Investigation,”
IEEE Robotics and Automation Magazine, 2015.

[5] Y. Umetani and K. Yoshida, “Resolved Motion Rate Control of Space Manipulators
with Generalized Jacobian Matrix,” IEEE Transactions on Robotics and Automation,
vol. 5, no. 3, pp. 303–314, Jun. 1989.

[6] T. I. Fossen, Handbook of Marine Craft Hydrodynamics and Motion Control. Wiley,
Apr. 2011, p. 575.

[7] P. J. From, J. T. Gravdahl, and K. Y. Pettersen, Vehicle-Manipulator Systems, 1st,
ser. Advances in Industrial Control. London: Springer, 2014, p. 388.

[8] J. Sverdrup-Thygeson, E. Kelasidi, K. Y. Pettersen, and J. T. Gravdahl, “A con-
trol framework for biologically inspired underwater swimming manipulators

89



90 REFERENCES

equipped with thrusters,” in Proc. 10th IFAC Conference on Control Applications in
Marine Systems (CAMS), vol. 49, Trondheim, Norway, 2016, pp. 89–96.

[9] ——, “Modeling of underwater swimming manipulators,” in Proc. 10th IFAC Con-
ference on Control Applications in Marine Systems (CAMS), vol. 49, Trondheim,
Norway, 2016, pp. 81–88.

[10] E. Kelasidi and K. Y. Pettersen, “Modeling of underwater snake robots,” in IEEE
International Conference on Robotics and Automation, Hong Kong, China: IEEE,
2014, pp. 4540–4547.

[11] P. Liljebäck, K. Y. Pettersen, Ø. Stavdahl, and J. T. Gravdahl, Snake robots: mod-
elling, mechatronics, and control, ser. Advances in Industrial Control. Springer
London, 2012.

[12] B. Siciliano, “Kinematic control of redundant robot manipulators: A tutorial,”
Journal of Intelligent and Robotic Systems, vol. 3, no. 3, pp. 201–212, 1990.

[13] L. Sciavicco and B. Siciliano, “Solving the Inverse Kinematic Problem for Robotic
Manipulators,” in RoManSy 6, Boston, MA: Springer US, 1987, pp. 107–114.

[14] D. Whitney, “Resolved Motion Rate Control of Manipulators and Human Prosthe-
ses,” IEEE Transactions on Man Machine Systems, vol. 10, no. 2, pp. 47–53, 1969.

[15] Y. Nakamura, H. Hanafusa, and T. Yoshikawa, “Task-Priority Based Redundancy
Control of Robot Manipulators,” The International Journal of Robotics Research,
vol. 6, no. 1, pp. 32–42, 1987.

[16] G. Antonelli and S. Chiaverini, “Task-priority redundancy resolution for under-
water vehicle-manipulator systems,” in Proceedings 1998 IEEE International Con-
ference on Robotics and Automation, IEEE, vol. 1, Leuven, Belgium, 1998, pp. 768–
773.

[17] Y. Nakamura and H. Hanafusa, “Inverse Kinematic Solutions With Singularity
Robustness for Robot Manipulator Control,” Journal of Dynamic Systems, Mea-
surement, and Control, vol. 108, no. 3, p. 163, 1986.



REFERENCES 91

[18] C. W. Wampler, “Manipulator Inverse Kinematic Solutions Based on Vector For-
mulations and Damped Least-Squares Methods,” IEEE Transactions on Systems,
Man and Cybernetics, vol. 16, no. 1, pp. 93–101, Jan. 1986.

[19] A. A. Maciejewski and C. A. Klein, “Numerical filtering for the operation of
robotic manipulators through kinematically singular configurations,” Journal of
Robotic Systems, vol. 5, no. 6, pp. 527–552, 1988.

[20] S. Chiaverini, “Singularity-robust task-priority redundancy resolution for real-
time kinematic control of robot manipulators,” IEEE Transactions on Robotics and
Automation, vol. 13, no. 3, pp. 398–410, 1997.

[21] G. S. Chirikjian and J. W. Burdick, “A Modal Approach to Hyper-Redundant
Manipulator Kinematics,” IEEE Transactions on Robotics and Automation, vol. 10,
no. 3, pp. 343–354, 1994.

[22] R. W. Longman, R. E. Lindberg, and M. F. Zedd, “Satellite-Mounted Robot Ma-
nipulators—New Kinematics and Reaction Moment Compensation,” International
Journal of Robotics Research, vol. 6, no. 3, pp. 87–103, 1987.

[23] Y. Umetani and K. Yoshida, “Continuous path control of space manipulators
mounted on OMV,” Acta Astronautica, vol. 15, no. 12, pp. 981–986, Dec. 1987.

[24] K. Yoshida, “Engineering Test Satellite VII Flight Experiments for Space Robot
Dynamics and Control: Theories on Laboratory Test Beds Ten Years Ago, Now in
Orbit,” The International Journal of Robotics Research, vol. 22, no. 5, pp. 321–335,
May 2003.

[25] Z. Vafa and S. Dubowsky, “On the dynamics of manipulators in space using the
virtual manipulator approach,” in Proceedings of the IEEE International Confer-
ence on Robotics and Automation, vol. 4, Institute of Electrical and Electronics
Engineers, 1987, pp. 579–585.

[26] K. Yoshida, B. Wilcox, G. Hirzinger, and R. Lampariello, “Space Robotics,” in
Springer Handbook of Robotics, B. Siciliano and O. Khatib, Eds., 2nd, Springer
International Publishing, 2016, ch. 55, pp. 1423–1462.



92 REFERENCES

[27] S. Dubowsky and E. Papadopoulos, “The Kinematics, Dynamics, and Control
of Free-Flying and Free-Floating Space Robotic Systems,” IEEE Transactions on
Robotics and Automation, vol. 9, no. 5, pp. 531–543, 1993.

[28] O. Egeland and J. R. Sagli, “Coordination of Motion in a Spacecraft/Manipulator
System,” The International Journal of Robotics Research, vol. 12, no. 4, pp. 366–379,
Aug. 1993.

[29] B. Siciliano, “Closed-loop inverse kinematics algorithms for redundant space-
craft/manipulator systems,” in Proceedings IEEE International Conference on Robotics
and Automation, IEEE Comput. Soc. Press, 1993, pp. 95–100.

[30] Y. Xu and T. Kanade, Space robotics: dynamics and control. New York: Springer
Science & Business Media, 1993, p. 290.

[31] M. Oda, “Coordinated control of spacecraft attitude and its manipulator,” in IEEE
International Conference on Robotics and Automation, vol. 1, Minneapolis, MN:
IEEE, 1996, pp. 732–738.

[32] D. N. Nenchev, K. Yoshida, and M. Uchiyama, “Reaction Null-space Based Control
of Flexible Structure Mounted Manipulator Systems,” in Proceedings of 35th IEEE
Conference on Decision and Control, vol. 4, Kobe, Japan: IEEE, 1996, pp. 4118–4123.

[33] Y. Umetani and K. Yoshida, “Workspace and Manipulability Analysis of Space
Manipulator,” Transactions of the Society of Instrument and Control Engineers, vol.
E-1, no. 1, pp. 1–8, 2001.

[34] T. W. McLain, S. M. Rock, and M. J. Lee, “Experiments in the coordination of
underwater manipulator and vehicle control,” in ’Challenges of Our Changing
Global Environment’. Conference Proceedings. OCEANS ’95 MTS/IEEE, vol. 2, San
Diego, CA: IEEE, 1995, pp. 1208–1215.

[35] T. W. McLain and S. M. Rock, “Experiments in the hydrodynamic modeling of an
underwater manipulator,” Proceedings of Symposium on Autonomous Underwater
Vehicle Technology, pp. 463–469, 1996.



REFERENCES 93

[36] K. J. Waldron and J. Schmiedeler, “Kinematics,” in Springer Handbook of Robotics,
B. Siciliano and O. Khatib, Eds., 2nd, Springer International Publishing, 2016, ch. 2,
pp. 11–36.

[37] O. Egeland and J. T. Gravdahl, Modeling and Simulation for Automatic Control.
Trondheim, Norway: Marine Cybernetics, 2002, p. 639.

[38] T. Sugihara, “Solvability-unconcerned inverse kinematics by the Levenberg-
Marquardt method,” IEEE Transactions on Robotics, vol. 27, no. 5, pp. 984–991,
2011.

[39] R. Diankov, “Automated Construction of Robotic Manipulation Programs,” PhD
thesis, Carnegie Mellon University, Robotics Institute, Aug. 2010.

[40] G. Antonelli, Underwater Robots, 3rd, ser. Springer Tracts in Advanced Robotics.
Springer International Publishing, 2014, vol. 96, p. 279.

[41] K. Yoshida and Y. Umetani, “Control of Space Manipulators with Generalized
Jacobian Matrix,” in Space robotics: Dynamics and control, Y. Xu and T. Kanade,
Eds., Springer, 1993, ch. 7, pp. 165–204.

[42] H. D. Young and R. A. Freedman, University Physics with Modern Physics, 14th ed.,
J. Zalesky, Ed. Pearson, 2016, p. 1600.

[43] T. L. Heath, The works of Archimedes. Cambridge University Press, 1897, p. 524.

[44] F. Dukan, “ROV Motion Control Systems,” PhD thesis, Norwegian University of
Science and Technology, 2014, p. 203.

[45] M. Hildebrandt, L. Christensen, J. Kerdels, J. Albiez, and F. Kirchner, “Realtime
motion compensation for ROV-based tele-operated underwater manipulators,” in
OCEANS 2009-EUROPE, May 2009, pp. 1–6.

[46] Y. K. Thong, M. S. Woolfson, J. A. Crowe, B. R. Hayes-Gill, and D. A. Jones, “Nu-
merical double integration of acceleration measurements in noise,” Measurement:



94 REFERENCES

Journal of the International Measurement Confederation, vol. 36, no. 1, pp. 73–92,
2004.

[47] H.-T. Choi and J. Yuh, “Underwater Robots,” in Springer Handbook of Robotics, B.
Siciliano and O. Khatib, Eds., 2nd, Springer International Publishing, 2016, ch. 25,
pp. 595–622.

[48] J. C. Kinsey, R. M. Eustice, and L. L. Whitcomb, “A survey of underwater vehicle
navigation: recent advances and new challenges,” Proc. of MCMC, Lisbon, 2006,
no. May, 2006.

[49] R. M. Eustice, H. Singh, J. Leonard, M. Walter, and R. Ballard, “Visually Navigating
the RMS Titanic with SLAM Information Filters,” Robotics: Science and Systems,
pp. 57–64, 2005.

[50] P. Chiacchio, S. Chiaverini, L. Sciavicco, and B. Siciliano, “Closed-Loop Inverse
Kinematics Schemes for Constrained Redundant Manipulators with Task Space
Augmentation and Task Priority Strategy,” The International Journal of Robotics
Research, vol. 10, pp. 410–425, 1991.

[51] S. Chiaverini, G. Oriolo, and A. A. Maciejewski, “Redundant Robots,” in Springer
Handbook of Robotics, B. Siciliano and O. Khatib, Eds., 2nd, Springer International
Publishing, 2016, ch. 10, pp. 221–242.

[52] O.-E. Fjellstad and T. I. Fossen, “Quaternion feedback regulation of underwater
vehicles,” Proceedings of IEEE International Conference on Control and Applications
CCA-94, 857–862 vol.2, 1994.

[53] MathWorks Inc., MATLAB Robotics System Toolbox Release 2017a, Natick, MA,
2017.

[54] R. Penrose and J. A. Todd, “A generalized inverse for matrices,” Mathematical
Proceedings of the Cambridge Philosophical Society, vol. 51, no. 03, p. 406, 1955.



REFERENCES 95

[55] S. Chiaverini, O. Egeland, and R. K. Kanestrøm, “Achieving user-defined accuracy
with damped least-squares inverse kinematics,” in Fifth International Conference
on Advanced Robotics Robots in Unstructured Environments, 1991, pp. 672–677.

[56] E. Papadopoulos and S. Dubowsky, “Dynamic Singularities in Free-Floating Space
Manipulators,” in Dynamic Systems, Measurement and Control, 1993, ch. 4th.

[57] T. F. Chan and R. V. Dubey, “A Weighted Least-Norm Solution Based Scheme for
Avoiding Joint Limits for Redundant Joint Manipulators,” IEEE Transactions on
Robotics and Automation, vol. 11, no. 2, pp. 286–292, 1995.

[58] CM Labs Simulations Inc., Vortex Studio Release 6.8.1, Montreal, Canada, 2016.

[59] P. Cieslak, P. Ridao, and M. Giergiel, “Autonomous underwater panel operation
by GIRONA500 UVMS: A practical approach to autonomous underwater manip-
ulation,” Proceedings - IEEE International Conference on Robotics and Automation,
vol. 2015-June, no. June, pp. 529–536, May 2015.

[60] The Society of Naval Architects and Marine Engineers, Nomenclature for Treating
the Motion of a Submerged Body Through a Fluid, 1950.

[61] T. Yoshikawa, “Measure of Manipulability for Robot Manipulators,” Journal of the
Robotics Society of Japan, vol. 2, no. 1, pp. 63–67, 1984.

[62] D. N. Nenchev, Y. Umetani, and K. Yoshida, “Analysis of a Redundant Free-Flying
Spacecraft/Manipulator System,” IEEE Transactions on Robotics and Automation,
vol. 8, no. 1, pp. 1–6, 1992.


	Abstract
	Sammendrag
	List of Tables
	List of Figures
	List of Acronyms
	List of Symbols
	1 Introduction
	1.1 Motivation
	1.2 Problem description
	1.3 Literature review
	1.3.1 Inverse kinematic control and redundancy resolution
	1.3.2 Singularity avoidance
	1.3.3 Robot manipulators in space
	1.3.4 Hydrodynamic effects on underwater manipulators

	1.4 Assumptions
	1.5 Contributions
	1.6 Thesis outline

	2 Kinematic model
	2.1 Forward kinematics
	2.1.1 Reference frames
	2.1.2 Transformations between frames

	2.2 Differential kinematics
	2.2.1 The manipulator Jacobian matrix


	3 Underwater manipulator control
	3.1 Compensating for reaction forces
	3.1.1 The generalized Jacobian matrix
	3.1.2 Singularities of the GJM

	3.2 Compensating for hydrostatic forces
	3.2.1 Quantifying the hydrostatic forces
	3.2.2 Finding the locations of the COM and COB
	3.2.3 Rotation caused by hydrostatic forces
	3.2.4 Velocities caused by hydrostatic forces
	3.2.5 Velocity feedback
	3.2.6 Position feedback
	3.2.7 Damping hydrostatics-induced oscillations

	3.3 Inverse kinematics
	3.3.1 The Jacobian pseudoinverse
	3.3.2 Damped least-squares
	3.3.3 Numerical filtering

	3.4 Joint limit avoidance
	3.4.1 Weight normalization
	3.4.2 Weight offset

	3.5 Thrust allocation

	4 Implementation and simulation
	4.1 Vortex simulation model
	4.2 Vortex-Simulink interface
	4.3 Control design model
	4.4 Overview of simulations
	4.5 Simulations without restoring forces
	4.5.1 Case 0: Traditional control (non-GJM)
	4.5.2 Case 1: Open-loop control
	4.5.3 Case 2: Velocity feedback
	4.5.4 Case 3: Position feedback
	4.5.5 Case 4: Accuracy for slow vs. fast motion

	4.6 Simulations with restoring forces
	4.6.1 Case 5: Open loop
	4.6.2 Case 6: Velocity feedback
	4.6.3 Case 7: Position feedback
	4.6.4 Case 8: Position feedback and thruster damping


	5 Conclusion
	5.1 Prospects for future research

	A Control design model
	B Implementation details
	C Conference paper
	References

