
Prototype of HIL Test Platform for
Autonomous USV
Simulation and Visualization of Vessel

Surroundings

Kjetil Svae Børs-Lind

Master of Science in Cybernetics and Robotics

Supervisor: Morten Breivik, ITK
Co-supervisor: Rein Anders Apeland, Kongsberg Maritime

Department of Engineering Cybernetics

Submission date: July 2017

Norwegian University of Science and Technology

i

Preface

"What is real? How do you define ’real’? If you’re talking about what you can feel, what you can

smell, what you can taste and see, then ’real’ is simply electrical signals interpreted by your brain."

- Morpheus, The Matrix

This thesis contains the details of my master’s project conducted in the spring of

2017, and concludes my degree in Engineering Cybernetics at the Norwegian University

of Science and Technology. I am grateful for the knowledge and skills I have acquired

through the 5 years of interesting courses and intense studying.

The thesis considers the simulation of the maritime surroundings of Unmanned

Surface Vehicles (USVs) in a Hardware-In-the-Loop (HIL) setup for verification tests of

the USVs’ control systems. The project was conducted under instruction from Kongs-

berg Maritime AS, who, in cooperation with the Norwegian Defense Research Estab-

lishment (FFI), develops the USVs. In cooperation with Even Ødegaard, who considers

the modeling and simulation of the dynamics of the vehicles in the loop, the project

resulted in the first prototype of a HIL simulator for the USVs. It is hoped that the sim-

ulator will be of use in the ongoing USV project of Kongsberg Maritime and FFI.

I would like to thank my supervisor at NTNU, Morten Breivik, for frequent meetings

and feedback throughout the spring. I would also like to thank Rein Anders Apeland

from Kongsberg Maritime for his guidance and enthusiasm for the project. Lastly, I

would like to thank my fellow student Even Ødegaard for the satisfying cooperation

and useful discussions during the entirety of the project.

Trondheim, July 6, 2017

Kjetil Svae Børs-Lind

ii

iii

Summary

This thesis considers the simulation and visualization of the maritime surroundings of

unmanned surface vehicles (USVs) in a Hardware-In-the-Loop (HIL) simulator. The

development of the simulator was conducted as two master’s projects, and resulted in

the first prototype of a HIL simulator meant for verification testing of two USVs devel-

oped by Kongsberg Maritime AS in cooperation with Norwegian Defense Research Es-

tablishment (FFI). The two USVs are called Odin and Jolner, where Odin is the primary

target of the HIL simulator. The simulator consists of 3 main software modules: the

Surroundings simulator, the Dynamics simulator and a graphical user interface (GUI),

where the modeling and simulation of the dynamics of the USVs are considered in Øde-

gaard (2017).

The desired sensor systems to simulate in the Surroundings simulator are an Au-

tomatic Identification System (AIS) and a dedicated target detection module (TDM),

which is a sensor fusion of AIS, radar and Light Detection and Ranging (LiDAR) sensors.

An investigation of these sensor systems and how they can be simulated with appropri-

ate levels of sensor noise are considered. A basic sensor fusion algorithm is applied to

artificial data from AIS, radar and LiDAR to make an educated guess in regards to the

performance of the TDM, which is currently under development at FFI.

Possible simulation scenarios and objects to include in the simulations are dis-

cussed, with emphasis on usefulness in regards to the current development stage of

Odin. The Surroundings simulator is implemented based on this discussion and the

investigation of the relevant sensor systems. A GUI is also implemented, with real-time

plots and visualization of the simulation in both 2D and 3D.

The functionality of the HIL simulator in its entirety is demonstrated through an ex-

ample, simulating Odin in an open sea scenario under presence of icebergs and other

vessels. Odin navigates in the simulated environment using thrust inputs as logged

from a real, unrelated mission. Unfortunately, the control system and the TDM of Odin

is still under development, so the Surroundings simulator could not be tested with the

real control system in the loop. It is, however, implemented simple motion control,

which enabled testing of the Dynamics simulator against Odin’s control system. This

is proven successful in Ødegaard (2017), and indicates that the interface between the

iv

simulator and the control system works as intended. It is hence expected that the sim-

ulator in its entirety will provide a complete and functional HIL simulator platform for

Odin and Jolner when their respective control systems are ready to receive data from

the sensor systems considered in this thesis.

v

Sammendrag

Denne avhandlingen tar for seg simuleringen og visualiseringen av de maritime om-

givelsene til ubemannede overflatefartøy (USVer) i en Hardware-In-the-Loop (HIL) -

simulator. Utviklingen av simulatoren ble gjennomført som to masteroppgaver og re-

sulterte i den første prototypen av en HIL-simulator ment for verifikasjonstesting av

to USVer utviklet av Kongsberg Maritime AS i samarbeid med Forsvarets Forskningsin-

stitutt (FFI). De to USVene heter Odin og Jolner, hvor Odin er primærmålet for HIL-

simulatoren. Simulatoren består av 3 programvaremoduler: Omgivelsessimulatoren,

Dynamikksimulatoren og et grafisk brukergrensesnitt (GUI), hvor modelleringen og

simuleringen av USVenes dynamikk er behandlet i Ødegaard (2017).

Sensorsystemene som er ønsket simulert i Omgivelsessimulatoren er et Automa-

tisk identifikasjonssystem (AIS) og en dedikert mål-deteksjons-modul (TDM), som er

en fusjon av data fra AIS, radar og en optisk fjernmåler (LiDAR). Detaljer om disse

sensorsystemene og hvordan de kan simuleres med passende nivåer av usikkerhet er

diskutert. En grunnleggende sensorfusjonsalgoritme blir anvendt på fiktive data fra

AIS, radar og LiDAR for å kunne gjøre et kvalifisert estimat på ytelsen man kan forvente

av TDMen som fortsatt er under utvikling hos FFI.

Mulige simuleringsscenarioer og objekter man kan inkludere i simuleringene blir

diskutert med vekt på nytteverdi i sammenheng med det nåværende utviklingsstadiet

til Odin. Omgivelsessimulatoren blir implementert basert på denne diskusjonen og

utredningen om de relevante sensorsystemene. Et GUI blir også implementert, med

sanntidsgrafer og mulighet for visualisering av simuleringen i både 2D og 3D.

Funksjonaliteten til HIL-simulatoren i sin helhet blir demonstrert gjennom et

konkretisert eksempel som simulerte Odin i et åpent hav-scenario med tilstedeværelse

av isfjell og andre fartøyer. Odin navigerer i de simulerte omgivelsene ved hjelp av

pådragskommandoer loggført fra et urelatert virkelig oppdrag. Odins kontrollsystem

er fortsatt under utvikling, så omgivelsessimulatoren kunne dessverre ikke testes med

det virkelige kontrollsystemet i loopen. Bevegelsesstyring er imidlertid allerede imple-

mentert, noe som legger til rette for testing av Dynamikksimulatoren opp mot Odin.

Dette viser seg å fungere som det skal i Ødegaard (2017), noe som indikerer at grenses-

nittet mellom simulatoren og styringssystemet virker som tilsiktet. Det er derfor ventet

vi

at simulatoren i sin helhet vil utgjøre en komplett og funksjonell HIL-platform for Odin

og Jolner når styringssystemene er klare til å motta data fra sensorsystemene i denne

avhandlingen.

Contents

Preface . i

Summary . iii

Sammendrag . v

List of Tables . xi

List of Figures . xvi

List of Abbreviations . xvii

1 Introduction 1

1.1 Background . 1

1.2 Motivation . 3

1.2.1 Hardware-In-the-Loop Simulations 4

1.3 Problem Formulation and Contribution . 5

1.4 Outline of the Report . 6

2 Sensors 7

2.1 Sensors Used on Odin . 8

2.1.1 Proprioceptive Sensors . 9

2.1.2 Exteroceptive Sensors . 9

2.1.3 The Network of Sensors on-board Odin 11

2.2 Automatic Identification System (AIS) . 11

2.2.1 The AIS Data Packet . 12

2.2.2 The Data Payload . 13

2.2.3 Limitations of AIS . 14

2.3 Radar . 14

vii

viii CONTENTS

2.3.1 Limitations of the Radar . 15

2.4 LiDAR . 16

2.4.1 Limitations of the LiDAR . 17

2.5 Modeling of Sensor Noise . 18

3 Sensor Fusion in a Target Detection Module 21

3.1 The Target Detection Module (TDM) . 22

3.1.1 The TDM Data Format . 23

3.1.2 Limitations of the TDM . 24

3.2 Sensor Fusion Example Using Kalman Filters 25

3.2.1 Kinematic Model of Tracked Object 25

3.2.2 The Extended Kalman Filter (EKF) Applied to Tracked Object 27

3.2.3 Results From Simple Fusion Algorithm 29

3.2.4 Simple Fusion Algorithm as Inspiration for Simulated TDM 32

4 Simulation Scenarios and Objects 35

4.1 Simulation Scenarios . 36

4.2 Fixed Obstacles . 37

4.3 Vessels . 38

4.4 Representation of Land . 39

5 Software and APIs for Use in the HIL Simulator 41

5.1 Robot Operating System (ROS) . 42

5.1.1 ROS Packages . 42

5.1.2 YAML Configuration Files . 43

5.1.3 3D Visualization Using RViz . 43

5.2 Qt . 44

5.2.1 Signals and Slots . 45

5.2.2 Threads in Qt . 46

5.2.3 Parameter Plotting with QCustomPlot 46

5.3 Choice of Programming Language . 47

CONTENTS ix

6 Implementation of the HIL Simulator 49

6.1 The General HIL Simulator Software Architecture 50

6.2 The Surroundings simulator . 50

6.2.1 Package: obstacleManager.h . 55

6.2.2 Simulation Objects . 55

6.2.3 Simulation of the Target Detection Module 59

6.2.4 Navigational Data . 61

6.3 The Graphical User Interface (GUI) . 62

6.3.1 The Main Window . 62

6.3.2 Real-Time Plots . 62

6.3.3 The Obstacle Control Panel . 65

6.3.4 The Position Update Handler . 65

6.3.5 The RViz Interface . 65

6.3.6 The 2D Map . 66

6.4 ROS Messages of the Surroundings simulator 66

6.4.1 The Obstacle Command ROS Message 66

6.4.2 The Position Update ROS Message . 67

6.4.3 The Detected Target ROS Message . 68

6.4.4 The AIS ROS Message . 68

6.5 Configuration Files . 69

6.5.1 Obstacle Parameters . 69

6.5.2 Sensor Parameters . 70

7 Running the HIL Simulator 73

7.1 Setting Up the Simulator . 74

7.2 Simulating a Busy Open Sea Scenario . 74

7.3 Running the Simulation . 75

7.3.1 3D Visualization in RViz . 75

7.3.2 Visualization Using the GUI . 77

7.4 Performance of the Simulated TDM . 79

7.5 Performance of Simulated AIS . 81

7.6 True HIL Simulation of Motion Control . 83

x CONTENTS

8 Conclusion and Further Work 85

8.1 Conclusion . 85

8.2 Further Work . 87

Appendices 89

A Installation of the HIL Simulator 91

B Configuration Files of the Busy Open Sea Scenario 93

B.1 Sensor Parameters of the Dynamics Simulator 94

B.2 Obstacles and Vessels . 95

B.3 Sensor Parameters of the Surroundings Simulator 96

Bibliography 98

List of Tables

2.1 The proprioceptive and exteroceptive sensors of Odin relevant for the im-

plementation of the HIL Simulator. 9

3.1 Suggested structure of a detected object ROS message. 24

3.2 Resulting steady state standard deviations of errors from true values in

the Kalman filtered data from AIS, radar and LiDAR, as well as standard

deviations of the output from the Simple Fusion algorithm. The first 50

seconds of data were excluded from the calculation to give the filters some

time to reach steady state. 30

6.1 Format of the obstacleCmd ROS message. 66

6.2 Format of the obstacleUpdate ROS message. 67

6.3 Format of the detectedTarget ROS message. 68

6.4 Format of the AIS ROS message. 69

7.1 Comparison of navigational data obtained from a simulated AIS message

compared to their true associated values. The deviation in position corre-

sponds to an error of approximately 3m. 83

xi

xii LIST OF TABLES

List of Figures

1.1 Illustration of the USV Odin during a fictitious mine search and neutral-

ization mission working together with the AUVs Hugin and Munin. Photo

adapted from FFI. 2

1.2 The student team working on Jolner throughout the Survey Explorer sum-

mer project of 2016. From the left: Jørgen Apeland, Even Ødegaard, Rune

Nordmo, Mariusz Eivind Grøtte, Peder Aaby, Kjetil Børs-Lind. Courtesy of

Kongsberg Gruppen. 3

1.3 Illustration of a HIL simulator setup for an autonomous vessel. Adapted

from Ødegaard (2017). 4

2.1 Illustration of some of the sensors used on Odin. The satellites along with

a receiver on-board Odin constitutes the GPS. The radar transmits radio

waves, illustrated as pink sine curves, in a certain direction and measures

the reflected signal. Similarly, the LiDAR uses laser beams to measure the

distance to nearby objects. With the use of AIS, nearby ships and vessels

can share navigational data as illustrated with the radio transmission of

data between Odin and a cruise ship. 8

2.2 Network layout of the different computers and sensors on-board Odin.

Courtesy of Kongsberg Maritime. 10

2.3 Live overview ship traffic utilizing AIS. Courtesy ofwww.marinetraffi

c.com. 12

2.4 Simrad Broadband 4G radar used on Odin. Courtesy of Simrad. 14

xiii

www.marinetraffic.com
www.marinetraffic.com

xiv LIST OF FIGURES

2.5 Illustration of radar shadow. Objects behind other objects relative to the

radar will not be detected. Courtesy of http://www.ibiblio.org. . 16

2.7 Example of how a LiDAR can be used for 3D mapping of a harbor. Source:

http://agrg.cogs.nscc.ca/node/234. 17

2.6 The Velodyne HDL-32E LiDAR used on Odin. Courtesy of Velodyne. 17

3.1 Conceptual illustration of the sensor fusion of AIS, Radar and LiDAR in a

Target Detection Module (TDM). 22

3.2 The steps of discrete-time Kalman filtering, visualized as the famous Kalman

loop. Source: Brown and Hwang (1997). 27

3.3 The Extended Kalman Filter algorithm presented in Fossen (2011). 28

3.4 Plots of the estimated speed, heading and position of a tracked object us-

ing Extended Kalman filters on data from AIS, radar and LiDAR (blue, or-

ange and green, respectively). Red is the result from the weighted average

calculated from the Simple Fusion algorithm. 31

3.5 Plots of the errors in speed, heading and position in the estimates of a

tracked object using Extended Kalman filters on data from AIS, radar and

LiDAR (blue, orange and green, respectively). Red is the error of the esti-

mates from the Simple Fusion algorithm. 32

4.1 Illustration of a real world open sea scenario. Courtesy of www.alamy.

com . 36

4.2 Lone iceberg in the Atlantic Ocean. Courtesy of www.airphotona.com 37

4.3 Cargo ships. Courtesy of Mike Kelly, www.mpkelley.com 39

4.4 Sælavika inner harbor in Horten, represented as a polygon with corner

coordinates. 40

5.1 A GUI for control and monitoring of Jolner developed using Qt in the Sur-

vey Explorer summer project of 2016. 44

5.2 Illustration of signals and slots in Qt. Courtesy of The Qt Company Ltd. . . 45

5.3 Example of a plot made with the QCustomPlot package. 46

http://www.ibiblio.org.
http://agrg.cogs.nscc.ca/node/234
www.alamy.com
www.alamy.com
www.airphotona.com
www.mpkelley.com

LIST OF FIGURES xv

6.1 Simplified overview of the software constituting the HIL test platform.

The software modules colored in dark blue are considered in this report.

Light blue is considered in Ødegaard (2017). 51

6.2 Definitions of arrows used in the package, class and message diagrams of

this thesis. 52

6.3 Combined package and class diagram describing the general structure

and dependencies between packages and classes within the Surroundings

simulator. 53

6.4 Message diagram describing the flow of ROS messages in the Surround-

ings simulator. 54

6.5 Class description of the obstacleManager-class. 55

6.6 Class diagram of the simObject-classes declared in the simObjects-

package. 56

6.7 Class diagram of the targetDetection-package. Some of the func-

tions and parameters are generalized to save space. 58

6.8 Illustration of the implementation of radar shadow in the simulator. Ob-

ject 2 will not be detected by the radar or LiDAR because it exists in the

radar shadow of Object 1. 60

6.9 Class description of the navData-class. 61

6.10 Combined package and class diagram describing the general structure

and dependencies between packages in the GUI module. 63

6.11 Message diagram describing the flow of ROS messages in the GUI module. 64

7.1 The RViz window visualizing the simulation in 3D, with the control panel

to the left providing options to show and hide groups of simulation ob-

jects. Fixed obstacles, represented as white cylinders, as well as a nearby

vessel, are visible around Odin. 76

7.2 The GUI application window with real-time plots of the heading and ve-

locity of Odin and a 2D map giving an overview of the simulation. 76

7.3 Odin in the simulated environment, seen in the center of the figure, sur-

rounded by icebergs and other vessels. 77

xvi LIST OF FIGURES

7.4 Odin during simulation of the busy open sea scenario. Detected objects

broadcast by the simulated TDM are illustrated as partially transparent,

orange discs, representing the estimated size, position and heading of the

object. A descriptive keyword, the object’s given ID, COG and SOG are

illustrated as text hovering above the estimated position of the detected

object. Arrows representing the angle and force of thrust are connected to

Odin’s thrusters. 78

7.5 The busy open sea scenario seen from above, illustrated in RViz. The path

of Odin is visible as a purple line. 79

7.6 The 2D map included in the GUI. Green rectangles illustrate fixed obsta-

cles, blue rectangles illustrate other simulated vessels. Odin is locked to

the center of the map, represented by a black rectangle. The tracks of

Odin and other vessels are visible as blue lines. A mouse click on the map

will mark a position with a blue circle. By clicking the "Spawn obstacles"-

button, a request to create an obstacle at this position is sent to the Sur-

roundings simulator. 80

7.7 Illustration of how the accuracy of the position and size estimates of de-

tected objects increases with the distance from the USV. Odin is barely

visible in the top right corner of the picture (red arrow). At this distance,

only the radar is used for position estimates. 81

7.8 Illustration of the effect of radar shadow. When an object is located be-

hind another object relative to the USV, the radar will not detect the first

object. This is the case in this situation, where an iceberg is located be-

hind a larger vessel. Hence, the iceberg is not detected by the TDM. 82

List of Abbreviations

AIS Automatic Identification System

API Application Programming Interface

AUV Autonomous Underwater Vehicle

COG Course Over Ground

COLREGs International Regulations for Preventing Collisions at Sea

DOF Degree Of Freedom

DP Dynamic Positioning

EKF Extended Kalman Filter

ENC Electronic Nautical Chart

FFI Norwegian Defense Research Establishment (Forsvarets Forskningsinsti-

tutt)

GNC Guidance Navigation and Control

GNSS Global Navigation Satellite System

GPS Global Positioning System

GUI Graphical User Interface

HIL Hardware In the Loop

HW Hardware

IMU Inertial Measurement Unit

LAN Local Area Network

xvii

xviii LIST OF FIGURES

LiDAR Light Detection And Ranging

MMSI Maritime Mobile Service Identity

NMEA National Marine Electronics Association

OS Operating System

RCS Radar Cross Section

ROS Robot Operating System

SMI Special Maneuver Indicator

SOG Speed Over Ground

SW Software

TDM Target Detection Module

USV Unmanned Surface Vehicle

VHF Very High Frequency

Chapter 1

Introduction

1.1 Background

For inspection, surveillance and intelligence operations at sea, the use of smaller au-

tonomous vehicles are considered particularly useful. The Autonomous Underwater

Vehicles (AUVs) Hugin and Munin, developed by Kongsberg Maritime, have already

achieved great success in the maritime market and are sold to a range of companies

worldwide. Today, Hugin is used in a variety of operations, ranging from seabed map-

ping, reconnaissance and mine countermeasures, and is considered to be among the

leading technologies within these fields.

To maintain the position as a leading maritime technology company, Kongsberg

Maritime has entered a cooperation with the Norwegian Defense Research Establish-

ment (FFI) to develop a prototype of an unmanned surface vehicle (USV) for mine

countermeasures and other unmanned operations at sea. The USV is under develop-

ment at FFI in Horten, and is at the current time able to follow a simple waypoint plan

and to navigate around nearby obstacles. It is 10.9 meters long and driven by two vec-

torized Hamilton water-jet engines of 225 horse powers each, which allows for fast and

flexible maneuvering.

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Illustration of the USV Odin during a fictitious mine search and neutralization mission
working together with the AUVs Hugin and Munin. Photo adapted from FFI.

One of the future goals is for the USV to carry and perform launch and recovery of

the AUVs Hugin and Munin to further reduce the need for human intervention during

mine countermeasures. Hence, the USV is given the suitable name Odin, after the Norse

god who accompanied the ravens Hugin and Munin and received the information they

collected from all over Midgard. An illustration of how Odin is planned to work with the

AUVs can be seen in Figure 1.1.

In the summer of 2016, Kongsberg Maritime, in cooperation with FFI, facilitated a

student summer project called Survey Explorer. The goal of the project was to develop

a control system and integrate the necessary sensors on a small USV to perform au-

tonomous seabed mapping. This was achieved with great success, and the USV will

continue to function as a development platform for future student summer projects.

The USV was given the name Jolner, and can be seen in Figure 1.2. In the future, Jolner

might be introduced to the market as a cheaper, less advanced version of Odin.

1.2. MOTIVATION 3

Figure 1.2: The student team working on Jolner throughout the Survey Explorer summer project of
2016. From the left: Jørgen Apeland, Even Ødegaard, Rune Nordmo, Mariusz Eivind Grøtte, Peder
Aaby, Kjetil Børs-Lind. Courtesy of Kongsberg Gruppen.

1.2 Motivation

For a USV to be able to navigate autonomously at sea in a fail safe manner, it has to use

a variety of sensors to analyze its own current state and to interpret the surrounding

environment. Information from these sensors are used to identify obstacles and other

vessels, and to estimate its own position and orientation. Based on this, the USV should

plan a safe route avoiding obstacles, while following the range of traffic rules that apply

at sea.

Under development of autonomous vehicles such as Odin, it is practical to perform

verification tests as often as possible, verifying that the control system of the vehicle

works as intended. As Odin currently is considered a working prototype and already is

capable of tracking waypoints and avoiding obstacles, there is a need to continuously

verify that these functionalities are maintained during further development.

It is however both expensive and time-consuming to perform the verification tests

4 CHAPTER 1. INTRODUCTION

Figure 1.3: Illustration of a HIL simulator setup for an autonomous vessel. Adapted from Ødegaard
(2017).

on the actual vessel at sea. This forms an incentive to develop a computerized simulator

to test the control system in a fictitious environment.

1.2.1 Hardware-In-the-Loop Simulations

A Hardware-In-the-Loop (HIL) simulator simulates the behavior of a complex real-time

system and allows embedded hardware, the hardware-in-the-loop, to interact with this

simulation. See Skjetne and Egeland (2005) for definitions related to HIL simulations

in marine control systems. The goal is for the hardware in the loop to experience no

difference from the real world, so that it will sense and act like it would if the simulation

was real. An illustration of this concept can be seen in Figure 1.3.

For the developers of Odin, this kind of simulator can be useful as the verification

tests can be applied directly to the control system by simulating the dynamics of the

USV in a realistic ocean environment. Simulated sensor data can be be fed to the USV,

and by analyzing the resulting inputs to the engines, one can see what the control sys-

tem chooses to do. Hence, errors in the software of the USV can be exposed prior to

launch.

The HIL simulations can also be integrated in automatic tests of software under

development. By running short test scenarios automatically every time the developers

make changes to the current code, errors can be detected and addressed at an early

stage.

1.3. PROBLEM FORMULATION AND CONTRIBUTION 5

Another benefit of HIL simulations is the possibility of testing failure scenarios in

a safe environment. Pushing the control system to the limits might be dangerous if

performed at sea, but if the testing takes place safely on land with the control system

decoupled from the physical actuators, one can test a variety of dangerous scenarios

with no risk of damage.

1.3 Problem Formulation and Contribution

This project is divided in two master theses and aims to result in a functional proto-

type of a HIL simulator platform for two different USVs, Odin and Jolner. The simulator

should provide an artificial ocean environment including realistic weather conditions,

obstacles and active agents. The software of the simulator should be divided in two

separate, standalone software modules: the Dynamics simulator and the Surroundings

simulator. Additionally, a graphical user interface (GUI) should be developed to visual-

ize and interact with the simulations. Ødegaard (2017) will cover the simulation of the

dynamics of the USVs, while this thesis will focus on simulation of the USV’s surround-

ings and the GUI. Specifically, this thesis will cover:

• Investigation of the sensors used on Odin for analysis of the nearby surroundings.

• Conceptual investigation of a planned Target Detection Module (TDM) on-board

Odin using sensor fusion of an Automatic Identification System (AIS), radar and

Light Detection and Ranging (LiDAR) sensors.

• Development of a standalone simulator of the ocean surroundings with obstacles

and other vessels. The simulator should be modular and initialized by configura-

tion files, so that users of the simulator need minimal knowledge of the underly-

ing code.

• Simulation of sensor data influenced by measurement noise, based on the sur-

roundings of the USV. The desired simulated sensor data in the first prototype of

the HIL simulator are the data from AIS and the preprocessed data from the TDM.

• Development of a simple, standalone graphical user interface (GUI) to visualize

the simulations. The GUI should include real-time plotting of important param-

6 CHAPTER 1. INTRODUCTION

eters, a live 2D map of the area of operation and a 3D visualization of the USV in

the simulated dynamic environment.

1.4 Outline of the Report

This report is divided in 8 chapters, as summarized below:

• Chapter 2 presents the sensor systems used on Odin, and discusses the mode

of operation, data format and limitations of the sensors that are relevant for this

thesis.

• Chapter 3 considers the TDM and the associated sensor fusion of AIS, radar and

LiDAR. A basic fusion algorithm is applied to artificial data from these sensors to

make an educated guess of the accuracy one can expect from the TDM.

• Chapter 4 discusses which simulation scenarios that will be the most useful to

implement in the first prototype of the HIL Simulator, in regards to the current

development stage of Odin’s control system. Which objects to include in the sim-

ulations, as well as the behavior of other simulated vessels, are also discussed

here.

• Chapter 5 presents the software and APIs that form the foundation in the imple-

mentation of the HIL Simulator.

• Chapter 6 documents the implementation of the HIL Simulator and provides

package, class and message diagrams of the resulting software. Message formats

and configurations files are also documented here.

• Chapter 7 demonstrates the HIL Simulator in action. An open sea scenario with

presence of icebergs and two other vessels are simulated, with Odin navigating in

the simulation using thrust inputs logged from a real mission. The performances

of the simulated TDM and AIS are inspected.

• Chapter 8 concludes the thesis and provides recommendations for further work.

Chapter 2

Sensors

During operations at sea, the Unmanned Surface Vehicle (USV) will use a variety of sen-

sors to interpret the nearby ocean environment and to measure its own dynamic state.

Data from a wind sensor, an Inertial Measurement Unit (IMU) and a Global Positioning

System (GPS) is a direct result from the simulation of the USV’s dynamics. Hence, data

from these sensors are produced in the Dynamics simulator. For situational awareness,

the USV will utilize an Automatic Identification System (AIS) transceiver, a radar and

a LiDAR. This chapter will discuss the details and limitations of these sensors so that

realistic behavior can be simulated in the HIL Simulator. Only the AIS will be used di-

rectly by the control system of Odin, and hence, a more thorough discussion of the data

format of the AIS transceiver will be made.

7

8 CHAPTER 2. SENSORS

2.1 Sensors Used on Odin

A variety of sensors constitutes the eyes and ears of Odin, and are vital for the USV to

be able to navigate in a collision free manner between waypoints and obstacles. An il-

lustration of some of the most important sensors for navigation can be seen in Figure

2.1. Some sensors monitor the internal states of the vessel, such as the GPS and the

IMU measuring the acceleration and angular rate of the USV. These sensors are called

proprioceptive sensors. To analyze the nearby surroundings, the USV relies on extero-

ceptive sensors. This section will briefly go through the various sensors of Odin relevant

for this thesis. The proprioceptive and exteroceptive sensors of Odin relevant for the

implementation of the HIL Simulator are summarized in Table 2.1.

Figure 2.1: Illustration of some of the sensors used on Odin. The satellites along with a receiver on-
board Odin constitutes the GPS. The radar transmits radio waves, illustrated as pink sine curves,
in a certain direction and measures the reflected signal. Similarly, the LiDAR uses laser beams to
measure the distance to nearby objects. With the use of AIS, nearby ships and vessels can share
navigational data as illustrated with the radio transmission of data between Odin and a cruise
ship.

2.1. SENSORS USED ON ODIN 9

Table 2.1: The proprioceptive and exteroceptive sensors of Odin relevant for the implementation of
the HIL Simulator.

Proprioceptive Exteroceptive

IMU (AIS)

Seapath Radar

LiDAR

Wind sensor

2.1.1 Proprioceptive Sensors

The proprioceptive sensors of Odin relevant for the implementation of the HIL Simu-

lator are an Inertial Measurement Unit (IMU) and a Global Positioning System (GPS). A

GPS collects position reports from orbiting satellites and measures the time delay of the

updates to estimate its own global position. As a matter of fact, the GPS used on Odin is

part of a bigger sensor system called Seapath 130, delivered by Kongsberg Seatex. The

Seapath 130 uses 2 GPSs at a distance from each other to calculate the vessel’s heading

relative to North in addition to position and speed. The IMU uses a combination of ac-

celerometers and gyroscopes to measure the acceleration and angular rate of the USV.

The combination of the IMU and Seapath yields an accurate estimate of the USV’s po-

sition, attitude, heading and speed. As data from the IMU and Seapath are based on the

kinematic dynamics of the USV, these sensors are simulated in the Dynamics simulator

and described in detail in Ødegaard (2017).

2.1.2 Exteroceptive Sensors

Exteroceptive sensors on Odin are, by definition, highly relevant for the simulation of

the surrounding ocean environment in the HIL Simulator. An Automatic Identifica-

tion System (AIS) transceiver will collect navigational data from nearby vessels that also

utilize AIS. As AIS considers an entire protocol of maritime information sharing, AIS

by itself can not be considered a sensor. However, for the purpose of Odin and the

HIL Simulator, it is convenient to refer to the AIS transceiver as a sensor, as the output

is used to gain information of nearby vessels. A radar and a LiDAR both measure the

10 CHAPTER 2. SENSORS

Figure 2.2: Network layout of the different computers and sensors on-board Odin. Courtesy of
Kongsberg Maritime.

bearing and distance to objects close to the USV and will, in combination with the AIS,

provide detailed information of nearby obstacles and ship traffic. The key properties,

mode of operation and limitations of the AIS, radar and LiDAR will be discussed further

in sections 2.2 - 2.4.

A wind sensor gives information of the relative direction and speed of the surround-

ing wind, which can be used as feed-forward to the control system to compensate for

external forces resulting from wind. As there is a strong two-way dependency between

the relative wind and the kinematics of the USV, this sensor is simulated in the Dynam-

ics simulator and accounted for in Ødegaard (2017).

2.2. AUTOMATIC IDENTIFICATION SYSTEM (AIS) 11

2.1.3 The Network of Sensors on-board Odin

The data from the proprioceptive and exteroceptive sensors are processed in comput-

ers on-board Odin. The sensors and their associated computers are connected in a net-

work as illustrated in Figure 2.2. For transmission of data between the different sensors

and computers, it is planned to utilize a framework called ROS, which provides simple

and robust message handling between modules. ROS and the framework it provides are

investigated further in Chapter 5.

In the network of Figure 2.2, the Navigation computer interprets the data from the

sensors regarding the dynamic motion and position of the USV. The processed data is

passed further to the control system, which runs on Autonomy computer. The Sensor fu-

sion computer will combine data from the AIS, radar and LiDAR to identify and estimate

the status of nearby obstacles and traffic. The sensor fusion of these sensor systems is

investigated further in Chapter 3.

Note that data from the AIS is received by both Sensor fusion computer and Auton-

omy computer. This is because the information received from the AIS, in addition to

being used as supplementary information about objects detected by the radar and Li-

DAR, is used by the control system for path planning in regards to the rules of traffic

that apply at sea.

2.2 Automatic Identification System (AIS)

AIS is a widespread technology and protocol to share navigational data between vessels

at sea. Standardized data packets are broadcast from vessels or structures at sea using

VHF radio signals (U.S. Coast Guard Navigation Center (2016b)). The packets contain

a unique vessel ID number and information about position, heading and navigational

status, among others (U.S. Coast Guard Navigation Center (2016a)). Vessels with an AIS

receiver can collect data from all the nearby traffic, and satellites in orbit can continu-

ally collect data from all around the world to form a worldwide overview of the current

marine traffic as seen in Figure 2.3.

12 CHAPTER 2. SENSORS

Figure 2.3: Live overview ship traffic utilizing AIS. Courtesy of www.marinetraffic.com.

2.2.1 The AIS Data Packet

The AIS transceiver to be used on Odin is not yet decided, but the output from such

a transceiver is universal and defined by a strict protocol. An AIS receiver outputs the

data packets received from other ships as ASCII strings following the NMEA 0183 or

NMEA 2000 data format (SiRF (2005)). The data strings contain different fields of data

segregated by commas. An example of a typical AIS Class A position report could be:

!AIVDM,1,1,,A,10000001AKPgsTbR0T:;Ka9MP6AP,0*40

• Field 1 ("!AIVDM"): The first field classifies the data packet as being sent from

another ship or from your own vessel. AIVDM packets describes messages from

other ships, while AIVDO packets contains information about the mother ship.

• Field 2 ("1"): Total number of AIS packets to deliver this specific data payload.

• Field 3 ("1"): The packet number of this specific package.

• Field 4 (empty): Sequential message ID if the message contains several sentences.

• Field 5 ("A"): AIS radio channel code, corresponding to different VHF radio fre-

quencies.

www.marinetraffic.com

2.2. AUTOMATIC IDENTIFICATION SYSTEM (AIS) 13

• Field 6 ("10000001AKPgsTbR0T:;Ka9MP6AP"): Data payload bit vector rep-

resented as a chain of 6-bit characters. How to interpret and also how to make the

data payload is described further below.

• Field 7 ("0"): Number of fill bits to achieve the 6-bit encoding. The number (could

be 0 - 5) tells how many least significant bits to ignore from the data payload bit

vector.

• Field 8 ("40"): The last field, separated by the *-symbol, is the NMEA 0183 data-

integrity checksum used to verify that the data packet was received correctly.

Several online AIS decoders exist, providing tools to interpret AIS messages. One

of them is available at https://rl.se/aivdm, where the user can paste a raw AIS

string and receive the underlying data in a readable format.

2.2.2 The Data Payload

The data payload contains a strictly defined AIS message containing important infor-

mation about a vessel’s navigational status. There are several types of AIS messages,

each defined by a strict protocol. An overview of current AIS messages and a thorough

description of the protocols can be found in E. S. Raymond (2016). As an example, a

Class A position report message contains 168 bits and is sent every 2 to 10 seconds by

larger vessels at sea while underway. The bit vector of 168 bits contains different fields of

data such as a unique Maritime Mobile Service Identity (MMSI) number, the ship’s cur-

rent longitude and latitude, course over ground (COG), speed over ground (SOG), track,

navigation status, etc.. The data fields of the Class A position report are accounted for

in Table 6 in E. S. Raymond (2016). Other AIS messages and their protocols can also be

found here.

To generate artificial AIS data packets from simulated ships and vessels one must

acquire or define the relevant information and assign it accordingly to the different data

fields in the payload. The data payload must then be encapsulated in a proper AIS

packet as described in Section 2.2.1 and the checksum must be calculated and added

to the data string.

https://rl.se/aivdm

14 CHAPTER 2. SENSORS

2.2.3 Limitations of AIS

The limitations of the AIS are discussed in Chapter 5.2.2 in Børs-Lind (2017). It is as-

sumed that the VHF radio signals used for AIS transmissions will reach further than

the size of the simulated map area under all conditions. The accuracy of the estimated

states in the AIS data packets, such as position, COG and SOG, are however limited by

the transmitting ship’s navigation system. There will always be small errors, and this

must be taken into account when implementing an AIS transmission from a simulated

ship or vessel. In Chapter 5.2.1 in Børs-Lind (2017) it is described how the stochastic

nature of sensor noise can be modeled as a slowly varying bias added with zero-mean

white noise. It is suggested that noise modeled in such a fashion is applied to the esti-

mated states in the AIS transmissions of simulated ships and vessels.

Because the AIS receiver relies on the other vessels’ transmissions of navigational

data, one can not trust the information obtained from an AIS receiver any more than

one trusts the equipment and intentions of the other vessels. AIS transmissions can

easily be jammed, the data can be intentionally corrupted to confuse nearby traffic,

or the navigation system of the transmitter can suffer from malfunctions. Because of

this, a collision avoidance system should never solely rely upon data obtained from an

AIS receiver. Decisions in regards to collision avoidance should primarily be based on

visual aids and radar data.

2.3 Radar

Figure 2.4: Simrad Broadband 4G
radar used on Odin. Courtesy of Sim-
rad.

The radar used on Odin is a Simrad Broadband

4G with characteristics as described in Børs-Lind

(2017). As the radar will not be simulated directly,

the details of the data format and how to generate

realistic readings are omitted. More important for

this project is which states are actually measured,

the accuracy of the information obtained and the

limitations of the radar itself.

By firing a short radio beam in a known direction and measuring the reflected echo

2.3. RADAR 15

signal, the radar can estimate the position of an object relative to the radar. Monitoring

the object over time, the radar can also estimate the speed and course of the object. By

measuring the power of the reflected signal, the radar can also estimate a measure of

size. The measure of size is usually annotated as the radar cross section (RCS), which if

interpreted in a literal sense means the cross sectional area of the object as seen from

the radar. The RCS is highly dependent on the shape, orientation and material of object,

and it might appear both smaller and bigger than it actually is based on these factors.

2.3.1 Limitations of the Radar

A radar does however have some limitations, as was discussed in more detail in Børs-

Lind (2017). The key properties and limitations to keep in mind during development of

the HIL Simulator are listed below:

• The line of sight to an object must be free of other obstacles for the object to

be detected. That is to say, if Object 1 is behind Object 2, Object 1 will not be

detected. This phenomena is called radar shadow and is illustrated in Figure 2.5.

• An object will only be detected if it is inside the minimum and maximum detec-

tion range of the radar. The power of the radio signal, curvature of the earth and

the time it takes for the reflected radio signal to return are important factors that

influence the range of the radar. According to SIMRAD (2012), the Simrad Broad-

band 4G has a range of 200ft to 32 nautical miles (ca. 61m - 59km) at minimum

sweep rate. If operating at maximum sweep rate the range of the radar decreases

to 1 nautical mile (1.852km).

• The sweep rate of the radar will affect the frequency at which information about

tracked objects are updated. For the radar used on Odin the sweep rate is mode

dependent with the option of 24/36/48RPM (0.4/0.6/0.8Hz) (SIMRAD (2012)).

• The weather conditions will affect the radar range. During heavy rain the range

will decrease as the reflected radio signal will be contaminated by reflected noise

from the rain drops.

• The probability of detecting an object is dependent on the current RCS of the

object. If shaped and oriented in a certain way, an object might not be detected at

16 CHAPTER 2. SENSORS

Figure 2.5: Illustration of radar shadow. Objects behind other objects relative to the radar will not
be detected. Courtesy of http://www.ibiblio.org.

all, a property that is exploited in the development of "stealthy" military aircrafts

and vessels.

For the purpose of the HIL Simulator it is desirable to be able to test the USV dur-

ing different conditions, e.g. heavy rain, which might influence the performance of the

radar. The developers of Odin might however want to manually set the operation mode

and error parameters of the radar, so instead of designing predefined weather condi-

tions it is suggested to design the software in such a way that these parameters easily

can be manipulated individually. As for the radar cross section and the probability of

detection, it is suggested that all objects that are inside the radar range and outside the

radar shadow are detected by the radar system. This is in accordance with the needs of

the development team of Kongsberg Maritime and FFI, as simulating objects that the

USV can’t see has no purpose in regards to testing of the USV’s performance.

2.4 LiDAR

A LiDAR works in a similar way as the radar by firing laser beams and measuring the

time it takes for the light to return. The range of the LiDAR is smaller but the accuracy

is beyond what can be achieved by a radar. As discussed in Børs-Lind (2017), the LiDAR

used on Odin will be the Velodyne HDL-32E. The LiDAR can be seen in Figure 2.6. At

short range, this will be the main contributor in detection of nearby targets. As the

information from the LiDAR also will be filtered through the sensor fusion of AIS, radar

and LiDAR, the details of the hardware and data format are omitted.

http://www.ibiblio.org.

2.4. LIDAR 17

Figure 2.7: Example of how a LiDAR can be used for 3D mapping of a harbor. Source: http:
//agrg.cogs.nscc.ca/node/234.

Figure 2.6: The Velodyne HDL-32E LiDAR used on Odin. Courtesy of Velodyne.

The data from the LiDAR is processed by a dedicated processing unit, which still

is under development. It is however assumed that the output from this unit will be a

list of detected objects with information about position and size, and that the data will

arrive at the same rate as the sweep rate of the LiDAR. The limitations of the LiDAR must

however still be discussed to be able to implement a realistic sensor fusion.

2.4.1 Limitations of the LiDAR

As the LiDAR is similar to the radar in its mode of operation, the LiDAR will suffer from

similar limitations in regards the requirement of direct line of sight, detection range,

http://agrg.cogs.nscc.ca/node/234
http://agrg.cogs.nscc.ca/node/234

18 CHAPTER 2. SENSORS

sweep rate, weather conditions and cross section of the object. The key properties of

the LiDAR used on Odin are listed below (Velodyne (2017)):

• Up to 100m range, however heavily affected by weather conditions such as rain,

fog or snow.

• Accuracy of ±2cm in estimated distance to an object, and and an angular accu-

racy of 0.1°- 0.4°.

• Sweep rate of 5-20Hz.

As with the radar, it is suggested that these parameters should be easily accessible

for the users of the HIL Simulator, so that they can test the USV’s performance under

different conditions

2.5 Modeling of Sensor Noise

The AIS, radar and LiDAR will all suffer from the presence of noise, which needs to be

taken into account when aiming to generate realistic sensor data in a simulated envi-

ronment. The conceptual modeling of sensors influenced by noise was discussed in

Section 5.2.1 in Børs-Lind (2017). It was suggested to model the noise as a slowly drift-

ing bias added with zero-mean white noise with a certain stochastic distribution such

as the Gaussian distribution. A measured one-dimensional signal including noise can

hence be modeled as shown in (2.1 - 2.3):

ḃ =−T −1
b b +wb (2.1)

e = b +wm (2.2)

xm = x +e, (2.3)

where b is the slowly drifting bias, Tb is the time constant of the stabilizing bias feed-

back, xm is the measured signal, x is the true value and wb and wm are uncorrelated

white noise. Intuitively, the variance of wb will influence how fast the biases devi-

ate, while the time constants of Tb affects the strength of which the biases are pulled

2.5. MODELING OF SENSOR NOISE 19

back to zero. The variances of wm correspond to the scattering of the sensor measure-

ments. The navigation data from simulated ships utilizing AIS will be influenced by

minor noise that can be modeled in this fashion.

Errors in measurements from the radar and LiDAR will grow proportionally with

greater distance between the USV and the object. To preserve this property in the HIL

simulations it is suggested to multiply the error e in 2.3 by an increasing function f (d)

where d is the distance between the USV and the object:

xm = x + f (d)e (2.4)

f (d) = kd , (2.5)

where k is a positive constant.

20 CHAPTER 2. SENSORS

Chapter 3

Sensor Fusion in a Target

Detection Module

Data from the AIS, radar and LiDAR are processed in a dedicated computer on-board

Odin, which will combine the data in a sensor fusion algorithm to analyze the surround-

ing environment above the surface and identify objects the USV needs to avoid. This

computer is referred to as the Target Detection Module (TDM), and it is decided to sim-

ulate the output from this module in the HIL Simulator. The TDM of Odin is still under

development, so the format of the output is at the current time not decided. This chap-

ter will however aim to make a qualified guess in regards to this format and discuss how

to implement a realistic simulated TDM in the HIL Simulator. A basic sensor fusion al-

gorithm called Simple Fusion will be investigated and applied to simulated data from

AIS, radar and LiDAR to attain an idea of the accuracy one can expect from a fusion of

these sensor systems.

21

22 CHAPTER 3. SENSOR FUSION IN A TARGET DETECTION MODULE

Figure 3.1: Conceptual illustration of the sensor fusion of AIS, Radar and LiDAR in a Target Detec-
tion Module (TDM).

3.1 The Target Detection Module (TDM)

The Target Detection Module (TDM) on Odin corresponds to the Sensor fusion com-

puter in the network layout of the different hardware components seen in Figure 2.2.

The control system is running on the Autonomy computer. The aim of the TDM is to

produce standardized detected target messages sent to the USV’s control system as seen

in Figure 3.1. The TDM will also output a layered 2D map combining data from the AIS,

radar and LiDAR meant for advanced path planning, but this is planned to be imple-

mented at a later stage. In the early development stages, the control system of Odin will

only respond to the detected target messages. Hence, there is no use in simulating the

layered 2D map in the first prototype of the HIL Simulator.

As the primary goal for the first prototype of the HIL Simulator is to be able to test

the USV’s control system, it is considered sufficient to simulate only the data output

from the TDM, and not the raw data from the Radar and LiDAR. The AIS is however

also planned to be used directly by the control system to aid in path planning based

on COLREGs1, and must hence still be simulated in its raw format. A more thorough

discussion of the reasons for this decision can be found in Børs-Lind (2017), and the

decision is also encouraged by Kongsberg Maritime.

1COLREGs = International Regulations for Preventing Collisions at Sea

3.1. THE TARGET DETECTION MODULE (TDM) 23

3.1.1 The TDM Data Format

The TDM will combine data from the AIS, Radar and LiDAR to form an overview of

nearby obstacles and traffic. Examples of obstacles can be ice bergs or buoys. A discus-

sion of different kinds of maritime traffic can be found in Chapter 3 of Børs-Lind (2017).

For simplicity the traffic was classified in 3 groups: ships, vessels and boats, each with

different characteristics in regards to size, average speed, turning radius, degree of un-

predictability and the active use of AIS. The TDM will aim to identify obstacles and traf-

fic and estimate the position, size, speed over ground (SOG) and course over ground

(COG) of these objects. The output from the TDM will be data packets which contain

this information along with a unique ID for each detected object. Unfortunately, the

TDM on-board Odin is still under development, so the exact data format of the output

from this module is still unclear. A qualified guess in regards to this format can however

still be made.

It is known that the ROS framework will be used for information sharing in the net-

work of sensors and processing units on-board Odin. It is therefore a fair assumption

that the data format of the TDM output is based on ROS messages, for example one

ROS message for each detected object containing information about the object’s given

ID, position, COG, SOG and size. A descriptive keyword is also likely to be included in

the message to separate between different types of objects. Such a keyword can be an

enumeration number or a short string, e.g. "vessel" or "land". For readability, it is of the

author’s personal preference to use a descriptive string.

The TDM and the control system need to agree on a protocol for message type and

the different data fields. For the HIL Simulator to be useful for the developers of Odin in

the future it is important that the format of the ROS messages from the simulated TDM

can be easily changed in accordance to their preference.

Based on the above discussion, the suggested output from the simulated TDM is

periodic ROS messages with information about the detected objects. As long as an ob-

ject is detected and stored in the TDM, a ROS message will be sent periodically with

the most recently updated information of the object at the current time. The suggested

ROS message structure for this purpose is illustrated in Table 3.1.

24 CHAPTER 3. SENSOR FUSION IN A TARGET DETECTION MODULE

Table 3.1: Suggested structure of a detected object ROS message.

Data Type Variable Name Unit

int ID -

string Descriptor -

float Longitude [deg]

float Latitude [deg]

float COG [deg]

float SOG [m/s]

float CrossSection [m2]

3.1.2 Limitations of the TDM

In a computer-generated ocean environment it would be easy to simulate a perfect

TDM that detects all the simulated objects with perfect precision. This would how-

ever not be the case during real operation as the AIS, Radar and LiDAR all suffer from

inevitable imperfections. The limitations of all the relevant sensors as well as a discus-

sion of conceptual modeling of sensor noise are discussed in detail in Chapter 5.2 in

Børs-Lind (2017). Based on this it is assumed that the simulated TDM will have the

following properties:

• Obstacles such as smaller boats, ice bergs and buoys will not be detected if they

are not visible to the Radar and LiDAR.

• Ships and vessels that utilize AIS will always be detected as the AIS range is as-

sumed to be greater than the simulated map. The navigational parameters re-

ceived in the AIS data packets from other simulated ships and vessels will suffer

from small inaccuracies.

• Inaccuracies in regards to position, COG, SOG and size of objects that don’t utilize

AIS are growing with larger distance to said object.

• Inaccuracies are stochastic by nature as described in Section 2.5.

3.2. SENSOR FUSION EXAMPLE USING KALMAN FILTERS 25

3.2 Sensor Fusion Example Using Kalman Filters

Intuitively, having two uncorrelated sensors measuring the same state should make it

possible to produce a better estimate of the state than either one of the sensors could

produce by itself. A lot of research has been made aiming to develop effective algo-

rithms to combine data from different sensors. Kazimierski (2013) investigates some of

the popular methods for fusion of data from an AIS receiver and a radar tracking system.

Given the knowledge of the characteristics of the AIS, radar and LiDAR used on Odin, it

would be interesting to implement a simple sensor fusion algorithm to investigate what

accuracy one can expect from the TDM.

One of the most popular methods described in Kazimierski (2013) is simply called

the Simple Fusion Algorithm, which calculates a weighted average of the elementary

estimates of the Kalman filtered data from AIS and radar. Which weights to apply to the

different estimates are calculated from the covariance matrix P of the respective Kalman

filters. Using the P matrices renders it possible to put more weight on the estimates with

low variance. The fused estimate is generated using the following formula:

x̂ = (P−1
a +P−1

r)−1(P−1
a x̂a +P−1

r x̂r), (3.1)

where Pa and Pr are the covariance matrices of the estimates from AIS and radar, re-

spectively, using regular Kalman filters. Similarly, x̂a and x̂r are the estimated states

from AIS and radar. The Simple Fusion algorithm is easily expandable to also utilize

measurements from a LiDAR by including Pl and x̂l in (3.1):

x̂ = (P−1
a +P−1

r +P−1
l)−1(P−1

a x̂a +P−1
r x̂r +P−1

l x̂l). (3.2)

3.2.1 Kinematic Model of Tracked Object

To apply the Kalman filters to the tracking data from AIS, radar and LiDAR, one must ob-

tain a mathematical model of the dynamics of the tracked object. As discussed Section

3.1.1, the TDM aims to track an object’s position, COG, SOG and cross section. Based on

26 CHAPTER 3. SENSOR FUSION IN A TARGET DETECTION MODULE

this, a simple 3DOF kinematic model of a detected object to track is suggested below:

ẋdo = f(xdo) (3.3)

where

xdo =



φ

λ

ψ

u

r

α


, f(xdo) =



kφusi n(ψ)

kλucos(ψ)

r

b1

b2

0,


(3.4)

where φ, λ and ψ are the target’s longitude, latitude and heading, respectively. r and

u are the heading rate (ROT) and speed (SOG), while α is the cross section of the ob-

ject, which is assumed constant. kφ and kλ transforms the speed measured in [m/s]

to longitude and latitude degrees per second, and can be assumed constant in the area

of operation, unless the USV is fairly close to the South or North Pole. Note that the

change in ROT and SOG are unknown to the observer, and hence modeled as slowly

varying biases as discussed in Section 2.5.

The radar and LiDAR will only measure the position and cross section of an object,

while the data from AIS will contain information about position, heading, speed and

rate of turn (ROT):

ya =



φa

λa

ψa

ua

ra


, yr =


φr

λr

αr

 , yl =


φl

λl

αl

 (3.5)

where ya, yr and yl are the measured data from AIS, radar and LiDAR, respectively.

3.2. SENSOR FUSION EXAMPLE USING KALMAN FILTERS 27

Figure 3.2: The steps of discrete-time Kalman filtering, visualized as the famous Kalman loop.
Source: Brown and Hwang (1997).

3.2.2 The Extended Kalman Filter (EKF) Applied to Tracked Object

It is assumed that the reader is familiar with basic linear estimation theory and Kalman

filtering. The Kalman filter combines measurements from sensors and knowledge of the

dynamics and stochastic properties of the process to produce an optimal estimate of

the relevant states. Figure 3.2 visualizes the discrete-time Kalman filter algorithm, and

the theory behind it can be found in Brown and Hwang (1997). If the process contains

the following properties (ref. Brown and Hwang (1997)):

• the process noise and measurement noise are white and Gaussian,

• the initial state is Gaussian.

• the system is linear,

• the system is observable,

the Kalman filter is asymptotically stable and the optimal state estimator with mini-

mum variance. From (3.3) it is unfortunately clear that the process we aim to estimate

is not linear, so the basic linear Kalman filter can not be used for the purpose of esti-

mating the states of a tracked object.

The Extended Kalman Filter (EKF) is an extension of the linear Kalman Filter and

can be applied to nonlinear systems by linearizing about the estimated current states

28 CHAPTER 3. SENSOR FUSION IN A TARGET DETECTION MODULE

Figure 3.3: The Extended Kalman Filter algorithm presented in Fossen (2011).

and covariance. This has been proven very effective, and the EKF is widely used in state

estimation of nonlinear processes. Fossen (2011) gives a brief introduction to the EKF,

and the modified equations of the standard Kalman filter are summarized in Figure 3.3.

Before we can apply the filters, we must consider the presence of noise in both the

process and the measurements. Noise as discussed in Section 2.5 are assumed to in-

fluence all the measured states from the AIS, radar and LiDAR. With this in mind, a

complete model of the tracked object is suggested below:

ẋ = f(x)+wx

ya = Hax+wya

yr = Hrx+wyr

yl = Hlx+wyl,

(3.6)

where

x =



φ

λ

ψ

u

r

α

b1

...

b13



, f(x) =



kφusi n(ψ)

kλucos(ψ)

r

b1

b2

0

−T −1
1 b1

...

−T −1
13 b13



. (3.7)

3.2. SENSOR FUSION EXAMPLE USING KALMAN FILTERS 29

In (3.6), wx and wy are vectors of Gaussian white noise. Only the biases are affected by

wx. A total of 13 independent biases as described in Section 2.5 are necessary: b1 and

b2 to model the rate of change in u and r, b3−b7 for biases in AIS data, b8−b10 for biases

in radar data and b11 −b13 for biases in LiDAR data.

EKFs as described in Figure 3.3 were applied to simulated data from AIS, radar and

LiDAR in the case of tracking an object moving at constant speed with slowly varying

heading. Noise was added to the measurements based on the specifications of each

sensor discussed in sections 2.2.3, 2.3.1 and 2.4.1. The process and measurement noise

covariance matrices Q and R were tuned accordingly. For simplicity, the update rates of

the sensors were kept equal and synchronized at 0.5Hz.

3.2.3 Results From Simple Fusion Algorithm

5 minutes of AIS, radar and LiDAR data with appropriate levels of noise was constructed

from an artificial vessel in MATLAB. The vessel was designed to move at a constant

speed of 5m/s with a slowly oscillating heading. The Simple Fusion algorithm sum-

marized in (3.2) was applied to the estimates from the EKF’s described in Section 3.2.2.

The estimated speed, heading and position from AIS, radar and LiDAR are visualized in

Figure 3.4 together with the resulting estimate from the sensor fusion. The deviations

from the true states are plotted in Figure 3.5. The resulting standard deviations of the

errors from true states after 50s of stabilization time are summarized in Table 3.2.

The AIS and radar was designed to give the least credible measurements. This is re-

flected in the plots as the AIS and radar consistently give the highest error and variance

in the different state estimates. The Kalman filtered LiDAR data yields good estimates

in all states as the precision of the LiDAR is superior to the other sensors. The AIS is

however the only system that directly measures the heading of the tracked object. The

output of the Kalman filtered AIS data will hence give the most reliable estimate in re-

gards to heading along with the LiDAR, who also clearly is able to estimate this state

with great accuracy.

From the state plots in Figure 3.4 and the error plots in Figure 3.5, it seems that the

estimated states of the sensor fusion consistently follows the best estimates of the other

sensors. In Table 3.2 it is indeed confirmed that the sensor fusion outperforms the other

30 CHAPTER 3. SENSOR FUSION IN A TARGET DETECTION MODULE

Table 3.2: Resulting steady state standard deviations of errors from true values in the Kalman fil-
tered data from AIS, radar and LiDAR, as well as standard deviations of the output from the Simple
Fusion algorithm. The first 50 seconds of data were excluded from the calculation to give the filters
some time to reach steady state.

σφ [m] σλ [m] σψ [deg] σu [m
s] σα [m2]

AIS 2.315 1.499 3.240 0.013 0.000

Radar 0.863 2.414 4.839 0.018 0.024

LiDAR 0.807 2.426 4.066 0.008 0.013

Simple Fusion 0.795 1.562 3.002 0.005 0.003

sensors in the estimation of every individual state.

3.2. SENSOR FUSION EXAMPLE USING KALMAN FILTERS 31

Figure 3.4: Plots of the estimated speed, heading and position of a tracked object using Extended
Kalman filters on data from AIS, radar and LiDAR (blue, orange and green, respectively). Red is the
result from the weighted average calculated from the Simple Fusion algorithm.

32 CHAPTER 3. SENSOR FUSION IN A TARGET DETECTION MODULE

Figure 3.5: Plots of the errors in speed, heading and position in the estimates of a tracked object
using Extended Kalman filters on data from AIS, radar and LiDAR (blue, orange and green, respec-
tively). Red is the error of the estimates from the Simple Fusion algorithm.

3.2.4 Simple Fusion Algorithm as Inspiration for Simulated TDM

As the developers of Odin’s software is likely to use a more sophisticated fusion algo-

rithm than the Simple Fusion, the real TDM will probably perform even better than the

3.2. SENSOR FUSION EXAMPLE USING KALMAN FILTERS 33

results presented in Section 3.2.3. The performance of the sensor fusion in this sim-

ulation can hence be used as a conservative inspiration in the implementation of the

simulated TDM in the HIL Simulator.

34 CHAPTER 3. SENSOR FUSION IN A TARGET DETECTION MODULE

Chapter 4

Simulation Scenarios and Objects

This chapter will discuss which scenarios that are the most useful to simulate for proper

testing of the USV’s collision avoidance system and what kind of objects it is necessary

to include in these simulation. An open sea scenario with fixed obstacles and moving

ships is suggested, as they challenge the collision avoidance system of Odin on a suiting

level in regards to the current development stage. Emphasis will be put on the fact that

the development of Odin’s control system still is in the early stages, so that advanced

simulation scenarios with complex traffic and terrain is unnecessary in the first proto-

type of the HIL Simulator. Finally, a short discussion will be made concerning the digital

representation of land and complex shapes in 2D.

35

36 CHAPTER 4. SIMULATION SCENARIOS AND OBJECTS

4.1 Simulation Scenarios

Several simulation scenarios for testing of the USV’s performance was suggested and

discussed in Børs-Lind (2017). The scenarios were generalized as 3 different cases with

increasing complexity in regards to traffic and obstacles:

• The Open Sea scenario

• The Near Shore scenario

• The Busy Port scenario

The busy port scenario is characterized by the presence of many obstacles and heavy

traffic from both larger vessels and smaller leisure boats. The traffic is relatively unpre-

dictable, which challenges the intelligence of the USV’s collision avoidance systems.

The traffic is less heavy and more predictable in the near shore scenario. Here, the

vessels and boats are further apart and more likely to go in a straight line from A to B

while following simple traffic rules of the sea. Operations near land require the USV to

be able to navigate around complex shapes, possibly under presence of leisure boats

with somewhat unpredictable behavior.

Figure 4.1: Illustration of a real world open sea scenario. Courtesy of www.alamy.com

The open sea scenario, as illustrated in Figure 4.1, takes place far away from the

coast line, with a few obstacles representing ice bergs or small islands as well as larger

www.alamy.com

4.2. FIXED OBSTACLES 37

Figure 4.2: Lone iceberg in the Atlantic Ocean. Courtesy of www.airphotona.com

ships moving predictably from A to B. This was considered to be the simplest scenario

to implement in the HIL Simulator, and also the most useful for testing of the early

versions of the USV’s control system. The USV’s ability to maneuver correctly and ef-

ficiently in open water as well as simple collision avoidance can be tested in this sce-

nario, which is sufficient for verification purposes in the early development phases of

the USV’s control system. It is hence suggested to implement this scenario as the first

prototype of the HIL Simulator.

Useful simulation objects such as ships and fixed obstacles are needed for imple-

mentation of this scenario, which will be discussed further in the next sections.

4.2 Fixed Obstacles

For the USV to have some simple objects to avoid in the simulations, it is suggested to

include the presence of fixed obstacles. Such obstacles can represent an iceberg, a buoy

or a small island. An example of an iceberg perfect for testing of simple collision avoid-

ance can be seen in Figure 4.2. Even though the icebergs drift with the ocean currents,

it is suggested to simplify their behavior to a stationary object. It is not considered ben-

eficial to implement drifting models at this early stage, but it might become useful for

future verification of the USV’s collision avoidance in polar waters.

www.airphotona.com

38 CHAPTER 4. SIMULATION SCENARIOS AND OBJECTS

As the goal of the first prototype of the HIL Simulator is to test the performance of

the USV’s early stage collision avoidance system, it is not considered necessary with

too complex shapes. It is sufficient for the control system of the USV to know the coor-

dinates and approximate size of the obstacle, so that it can plan to go around it with a

relatively large safety margin. Obstacles like these will obviously not utilize AIS, so these

objects can only be detected by the radar and LiDAR.

The fixed obstacles are by definition not able to move, and must hence stay at the

same place throughout the simulations. They can vary in size, but for convenience it is

suggested that they are modeled as discs with a constant radius.

4.3 Vessels

To test the performance of the USV’s collision avoidance system under presence of

moving vessels, it is suggested to include other ships in the simulations. This way, the

USV will have to act in accordance with the fact that not all obstacles will stay at the

same place throughout the mission. Examples of cargo ships that could be included in

the open sea scenario can be seen in Figure 4.3.

Including ships ships in the simulations also makes it possible to test the USV’s

handling of incoming AIS messages. As the ships normally utilize AIS, they might be

detected by both AIS, radar and LiDAR. The transmission of AIS data from the simu-

lated ships should be possible to switch off to verify the performance of the USV during

presence of "silent" moving obstacles and sudden loss of AIS signals.

It is advantageous for the scenario complexity to have the ships vary in size and

speed. As it is suggested to implement an open sea scenario, it is natural to design

the ships to move in straight lines as if they are underway to distant destinations. To

complicate the scenarios further, the ships can also be designed to follow a waypoint

plan, traveling from waypoint to waypoint. During turns between waypoints, the ships

should behave with fairly realistic kinematics, i.e. turning slowly from one heading to

another. Other than this, it is not considered necessary with complex dynamics such as

swaying and drifting because of external environmental forces. The ships should move

at constant speed, traveling in a straight line in the direction of the current heading.

4.4. REPRESENTATION OF LAND 39

Figure 4.3: Cargo ships. Courtesy of Mike Kelly, www.mpkelley.com

4.4 Representation of Land

For larger islands and land, a simple disc with constant radius is not sufficient to de-

scribe the object. It is not considered necessary by Kongsberg Maritime to include

obstacles this big and complex in the first prototype of the HIL Simulator, but future

versions should contain the possibility of simulating scenarios close to land.

A common way of defining large, complex shapes in 2D maps is through the use of

polygons, which can be represented as a vector of corner coordinates. An example of a

harbor represented as a polygon with corner coordinates can be seen in Figure 4.4. The

details of the edges can be improved by increasing the number of corner points in the

vector. A lot of research has been made worldwide to make this method more effective

in regards to processing time and number of corner points.

As the representation of land is not considered necessary in the first prototype of

the HIL Simulator, it is suggested to make this a low priority and rather include land and

complex shapes at a later stage when the control system of the USV is further developed.

Further research of methods to represent land and complex shapes is needed before

implementation in the HIL Simulator.

www.mpkelley.com

40 CHAPTER 4. SIMULATION SCENARIOS AND OBJECTS

Figure 4.4: Sælavika inner harbor in Horten, represented as a polygon with corner coordinates.

Chapter 5

Software and APIs for Use in the

HIL Simulator

The Robot Operating System (ROS) is used for information sharing in the network of

sensors and computers on-board Odin. To interface between the HIL Simulator and

Odin’s control system will hence be based upon ROS. Additionally, ROS provides sev-

eral features which are of interest in the implementation of the HIL Simulator, such as

the 3D visualization tool RViz. Qt is an application programming interface (API) that

provides robust tools for implementation of graphical computer programs, which is

particularly interesting in the implementation of the GUI.

This chapter will investigate these software frameworks and discuss some of the

tools that will be used in the implementation of the HIL Simulator. Finally, the pro-

gramming language for use in the implementation is decided, based on compatibility

with the different frameworks and the advantages of the languages of interest.

41

42 CHAPTER 5. SOFTWARE AND APIS FOR USE IN THE HIL SIMULATOR

5.1 Robot Operating System (ROS)

The Robot Operating System (ROS) is a result of collaborative development across re-

search labs all over the world and forms an open source framework for developing soft-

ware in robotics applications (ROS (2014)). In Section 2.1 in Børs-Lind (2017) the key

properties of ROS was briefly discussed, and it was decided that ROS could be a suitable

framework in development of the HIL Simulator. Particularly interesting were the sim-

ple and robust message handling between processes utilizing ROS. As the software con-

stituting the HIL Simulator is planned to consist of separate software modules running

asynchronously it is convenient to utilize a robust framework to manage the message

handling between modules. In addition to this, the network of sensors and computers

on-board Odin is planned to utilize ROS in their message handling.

ROS is restricted to Unix-based platforms, with Ubuntu being the preferred oper-

ating system (OS) of choice. It is therefore recommended that the HIL Simulator will

be developed in Linux Ubuntu. C++, Python and Lisp are supported languages. ROS is

licensed under the open source BSD license Free Software Foundation (2016).

5.1.1 ROS Packages

Software utilizing ROS is organized in ROS packages1. A ROS package is a directory that

can contain source and header files, configuration files, messages types and a build file,

among others. Every package must have a package manifest file calledpackage.xml2

which defines different properties of the package such as author, package name, ver-

sion number etc.. A ROS package can be created from the terminal using the catkin-

_create_pkg command.

The ROS packages might also have so called ROS nodes, which simply is a software

process that performs computations3. Several nodes can communicate using ROS top-

ics4. Topics are buses where nodes publish and receive ROS messages5. A node that

produces a certain type of data can publish the data as ROS messages on a dedicated

1http://wiki.ros.org/Packages
2http://wiki.ros.org/Manifest
3http://wiki.ros.org/Nodes
4http://wiki.ros.org/Topics
5http://wiki.ros.org/Messages

http://wiki.ros.org/Packages
http://wiki.ros.org/Manifest
http://wiki.ros.org/Nodes
http://wiki.ros.org/Topics
http://wiki.ros.org/Messages

5.1. ROBOT OPERATING SYSTEM (ROS) 43

topic. Nodes that are interested in this data can subscribe to the same topic. The struc-

ture of a ROS message is defined in a .msg file.

As a relevant example, the Surroundings simulator might be implemented as a ROS

package with several source- and header files, one of them being an executable contain-

ing the main()-function. The simulated sensors can publish their data on dedicated

topics, as will be the case in the real sensor network of Odin. In the HIL Simulation

setup, the control system of Odin will subscribe to these topics as it would during real

operation.

5.1.2 YAML Configuration Files

Configuration files can be used to add user defined parameters to the parameter server6

of ROS. The files are defined using YAML, a Unicode based data serialization language

particularly convenient for this purpose (Ben-Kiki et al. (2009)). Any ROS node in a

package can read from the parameter server. By including a .yaml file during launch

of a ROS package, one can define a range of parameters that the nodes can read. This

is considered very useful in regards to initialization of the HIL Simulator, as it enables

users with no knowledge of the underlying code to configure the simulations with im-

portant parameters.

5.1.3 3D Visualization Using RViz

RViz7 is a ROS package that provides a simple 3D visualization interface. Using ROS

messages one can spawn and define the position and orientation of basic shapes or

handmade 3D models in a rendered 3D environment. The 3D environment is visualized

in a separate RViz window with basic tools like zoom, orientation of the camera angle

and much more; perfect for easily visualizing a simulated environment including the

USV with obstacles and other simulated ships.

6http://wiki.ros.org/Parameter%20Server
7http://wiki.ros.org/rviz

http://wiki.ros.org/Parameter%20Server
http://wiki.ros.org/rviz

44 CHAPTER 5. SOFTWARE AND APIS FOR USE IN THE HIL SIMULATOR

Figure 5.1: A GUI for control and monitoring of Jolner developed using Qt in the Survey Explorer
summer project of 2016.

5.2 Qt

Qt is an application programming interface (API) for development of graphical com-

puter programs, but can also be used in non-graphical programs as a framework to

manage signal handling and threads in an intuitive manner. During the Survey Explorer

summer project of 2016, Qt was used to develop a GUI for control and monitoring of the

USV Jolner during operations at sea. The GUI can be seen in Figure 5.1.

Qt is available under the GNU LGPL (Free Software Foundation (2007)), which makes

Qt popular among developers of free software, but it can also be used in proprietary

software under a commercial license. C++ is the main supported programming lan-

guage along with Java, but other languages are also available through third party binders

such as PyQt8. The entire documentation of the Qt framework can be found in The Qt

Company Ltd. (2017).

Using the Qt API it is possible to make both simple and advanced graphical user

interfaces (GUI) to interact with a computer program. Qt gives intuitive and straight

forward methods to define a wide variety of widgets such as windows, buttons, and

labels, and the layout of the application can be designed using Qt Creator9, Qt’s own

cross-platform Integrated Development Environment (IDE). Qt Creator is a convenient

8https://wiki.python.org/moin/PyQt
9http://doc.qt.io/qtcreator/index.html

https://wiki.python.org/moin/PyQt
http://doc.qt.io/qtcreator/index.html

5.2. QT 45

Figure 5.2: Illustration of signals and slots in Qt. Courtesy of The Qt Company Ltd.

tool to play with different layouts, but widgets can also be defined directly from code,

and programs can be compiled using CMake directly from the terminal. The IDE is

however very useful to perform debugging of the application by running the program

in debugging mode.

5.2.1 Signals and Slots

As GUI applications by nature are required to respond to inputs in real-time, signal

handling is of great importance in a solid development framework. Whenever some

"unexpected" event happens, such as a button click, one usually wants the applica-

tion to run a function to perform an appropriate response. Traditionally this has been

achieved using callbacks, where a pointer to the function (the callback) is passed to the

processing function. Qt offers a different approach, using signals and slots10. A signal

emitted from one object can be connected to a slot in another object, causing the slot

to be called whenever the signal is emitted. A slot is just a normal function with the

additional property that it can be connected to a signal. The concept is illustrated in

Figure 5.2. As an example, the basic Qt class QTimer emits the signal timeout()

after a predefined amount of time. This signal can be connected to a slot to perform

computations at certain time intervals.

10http://doc.qt.io/qt-4.8/signalsandslots.html

http://doc.qt.io/qt-4.8/signalsandslots.html

46 CHAPTER 5. SOFTWARE AND APIS FOR USE IN THE HIL SIMULATOR

Figure 5.3: Example of a plot made with the QCustomPlot package.

5.2.2 Threads in Qt

Qt also offers methods to organize the code in separate threads. Using threads one can

have separate parts of an application running concurrently, which is convenient when

the application must perform time consuming computations or blocking operations

while still being reactive to real-time events. In Qt, one can let a user defined class

myClass inherit from the QThread class in the basic Qt library, which gives objects

ofmyClass the ability to have the overloadable functionvoid QThread::run()11

running from a separate thread.

The signals and slots discussed in Section 5.2.1 can only be handled using dedicated

Qt event loops. In the QThread class, the blocking function QThread::exec() will

enter such an event loop, where the exec() function will wait for and handle events

as they arrive in real-time. Because of this, Qt’s signals and slots will not work from an

std::thread12 in the standard C++ library, which would be the more traditional way

of managing threads in C++ software.

5.2.3 Parameter Plotting with QCustomPlot

QCustomPlot is a third party Qt widget available under GNU GPL for use with C++, and

contains functionality for creating advanced plots in Qt applications. An example of a

plot made with the QCustomPlot package is illustrated in Figure 5.3. Especially inter-

esting is the ability to make real-time graphs of time varying data and using curves to

plot the two dimensional position of an object on a map. QCustomPlot (2017) contains

11http://doc.qt.io/qt-4.8/qthread.html#run
12http://www.cplusplus.com/reference/thread/thread/

http://doc.qt.io/qt-4.8/qthread.html#run
http://www.cplusplus.com/reference/thread/thread/

5.3. CHOICE OF PROGRAMMING LANGUAGE 47

the full documentation of the widget. To use the widget in a Qt project the developer

must simply download the source and header file and include it in the project.

5.3 Choice of Programming Language

It is decided to use ROS and Qt in the implementation of the HIL Simulator, and it is

possible to use both Python and C++ with these frameworks. Python is arguably a more

high level programming language, relieving the programmer from the low level details

such as data types and memory allocation. On the other hand, in the case of artificial

AIS data, as discussed in Section 2.2.1, the format of the data packets are defined down

to each individual data bit. C++ provides robust functionalities for bitwise operations

and is hence considered a more suitable language for these kinds of arithmetics. C++

also provides more explicit control of concurrent threads. It is hence decided to use C++

in the implementation of the HIL Simulator.

48 CHAPTER 5. SOFTWARE AND APIS FOR USE IN THE HIL SIMULATOR

Chapter 6

Implementation of the HIL

Simulator

This chapter will go through the code design and implementation of the software that

constitutes the Surroundings simulator and the GUI. Packages, classes and ROS mes-

sages will be discussed in appropriate detail, to form an overview of the structure of

the code and dependencies between the software modules. Lastly, the configuration

files used to configure the simulations are presented, with information of how to prop-

erly initialize the Surroundings simulator with the desired obstacles, other vessels and

appropriate sensor noise.

49

50 CHAPTER 6. IMPLEMENTATION OF THE HIL SIMULATOR

6.1 The General HIL Simulator Software Architecture

The software of the HIL Simulator consists of 3 standalone software modules: the Dy-

namics simulator, the Surroundings simulator and the graphical user interface (GUI).

A visualization of the architecture and information flow between the modules can be

seen in Figure 6.1.

The Dynamics simulator will calculate the motion of the USV with respect to the

weather conditions and the thruster inputs, and is accounted for in Ødegaard (2017).

Utilizing ROS, this module will periodically publish messages with data from the sim-

ulated GPS, wind sensor and the inertial measurement unit (IMU). The Surroundings

simulator will listen to the GPS messages to track the USV’s position in the simulations.

This information, combined with information about other simulated objects, is used

to generate appropriate sensor readings from the simulated Target Detection Module

(TDM). The control system of Odin will expect to receive detected target messages and

AIS data, and hence, the Surroundings simulator will publish the data from the TDM

and AIS on dedicated ROS topics.

For visualization purposes, the Surroundings simulator will also publish customized

ROS messages on a separate topic with detailed and accurate information about the

objects’ configurations in the simulated environment. For visualization in the first pro-

totype of the HIL Simulator, the GUI module will listen to these messages and use the

information to visualize the simulated environment in both a 2D map and a 3D view in

ROS/RViz. The GUI will also subscribe to the GPS messages from the Dynamics simu-

lator to put the USV on the map and to plot relevant parameters such as velocity and

heading. ROS messages to spawn simulation objects are sent from the GUI to the Sur-

roundings simulator.

6.2 The Surroundings simulator

The key responsibilities of the Surroundings simulator are to manage simulation ob-

jects such as ships and fixed obstacles around the USV and to generate appropriate

data from an artificial AIS and TDM. With this in mind, the architecture of the software

constituting the Surroundings simulator was designed as presented in the combined

6.2. THE SURROUNDINGS SIMULATOR 51

Figure 6.1: Simplified overview of the software constituting the HIL test platform. The software
modules colored in dark blue are considered in this report. Light blue is considered in Ødegaard
(2017).

package and class diagram in Figure 6.3. A diagram of the flow of ROS messages be-

tween modules can be seen in Figure 6.4. For readability purposes, the class descrip-

tions are omitted in these diagrams, but the package and class implementations are

further explained later in this section. The arrows used in the diagrams of this thesis are

52 CHAPTER 6. IMPLEMENTATION OF THE HIL SIMULATOR

Figure 6.2: Definitions of arrows used in the package, class and message diagrams of this thesis.

explained in Figure 6.2.

The main()-function of the Surroundings simulator is located in thesurround-

ings-package. To manage the simulation objects, an instance of the obstacle-

Manager-class is created. For simulation of sensors, an instance of the target-

DetectionModule-class is also created. Both classes contain run()-functions

which handle events such as timeouts and incoming ROS messages. The two objects

are run in separate threads as they need to do concurrent work.

An object of the obstacleManager-class will spawn and manage simulation ob-

jects such as ships and fixed obstacles. A configuration file with information about sim-

ulation objects to include in the simulation is read during initialization of this object.

The obstacleManager-object also subscribes to a dedicated ROS topic, and new

simulation objects can be spawned in real-time by passing appropriate messages to

this topic. The various simulation objects for use in the simulations are defined in the

simObjects-package.

The targetDetection-package contains the functionality to simulate a credi-

ble TDM. An object of the targetDetectionModule-class will subscribe to inter-

nal position updates from the simulation objects and use this to generate appropriate

detected object messages. Functionalities needed to generate these messages with ap-

propriate inaccuracies are assembled in the detectedObject-class.

Several classes and packages depend on the navData-package. This package con-

tain the navData-class, which is used to store and organize navigational data for AIS

purposes. AIS data packets can be extracted directly from objects of this class through

a dedicated member function.

6.2. THE SURROUNDINGS SIMULATOR 53

Figure 6.3: Combined package and class diagram describing the general structure and dependen-
cies between packages and classes within the Surroundings simulator.

54 CHAPTER 6. IMPLEMENTATION OF THE HIL SIMULATOR

Figure 6.4: Message diagram describing the flow of ROS messages in the Surroundings simulator.

6.2. THE SURROUNDINGS SIMULATOR 55

6.2.1 Package: obstacleManager.h

Figure 6.5: Class description of the obstacle-
Manager-class.

The obstacleManager-

package contains only the

obstacleManager-class,

and the purpose is to manage the

simulation objects throughout

the simulations. The package is

summarized in Figure 6.5. In-

stances of this class are meant to

run continuously to monitor and

manage the simulated objects.

Therefore, the class is designed to

be run as a separate thread using

the QThread framework.

The spawn_obstacles() member function will attempt to find information

about obstacles to include in the simulation from the ROS parameter list. A .yaml

configuration file with this information should be included in the .launch-file that

launches the HIL Simulator. The details of the configuration file are discussed in detail

later in this chapter. Instances of the obstacleManager-class subscribes to the ROS

topic /simObject/command, which can be used to spawn new objects in real-time

through the use of the associated obstacleCmd message type.

The simulation objects are run as separate processes as they also need to do their

work concurrently. A pointer to each object is stored in a dynamically allocated array.

6.2.2 Simulation Objects

The simObjects-package contain class declarations for several simulation objects

and is described in the class diagram of Figure 6.6. The purpose of the package is

to provide classes that form different simulation objects for use in the simulations.

The classes are designed to run independently through a run()-function using the

QThread framework.

56 CHAPTER 6. IMPLEMENTATION OF THE HIL SIMULATOR

simObjects::simObject

The base class is the simObject-class, which contain the basic properties and func-

tionality for all objects to exist in a simulation. The class contains the virtual function

run(), which has no declaration in the base class. simObject is hence an abstract

class and can not be instantiated directly.

Figure 6.6: Class diagram of the simObject-classes declared in the simObjects-package.

All simulation objects will periodically broadcast their position, orientation and

size, both for visualization purposes, and for simulation of sensors that track the ob-

6.2. THE SURROUNDINGS SIMULATOR 57

jects throughout the simulation. Hence, they need to store their 3DOF orientation η

(eta in the class diagram) in the simulated environment. The base class takes care of

the periodic position reports. The position reports are broadcast along with an object

descriptor and a unique ID, so that the receiver will know what and who sent the report.

It is the responsibility of any derived class to define an appropriate object descriptor

and ID.

simObjects::fixedObstacle

The subclass fixedObstacle is the simplest of the simulation objects. It does not

move, so the run()-function does nothing but wait, while the position reports are au-

tomatically published.

simObjects::aisUser

For simulation of objects that utilize AIS, a dedicated aisUser-class is derived from

the basic simObject. aisUser is also an abstract class as it does not implement

the run()-function, but it contains all the necessary functionality to broadcast arti-

ficial AIS data packets. Classes that derive from aisUser can broadcast periodic AIS

ROS messages by running the protected initiate_AIS_broadcast()-function.

The broadcasting of AIS messages can be switched off with the AISenabled member

variable. AIS ROS messages of type simulator_messages::AIS are published to

the sensors/ais-topic.

To contaminate the AIS messages by appropriate inaccuracies, the get_esti-

mated_nav_parameters()-function will add small errors to the true values as de-

scribed in Section 2.5. The bias and white noise parameters are defined in a .yaml

configuration file launched with ROS and interpreted in the read_AIS_config()-

function.

simObjects::ship

Currently, the only simulation object that derives from aisUser is the ship-class.

Several other classes might be useful in the future as the simulations become more ad-

vanced, such as other vessels with different characteristics, lighthouses or oil platforms.

58 CHAPTER 6. IMPLEMENTATION OF THE HIL SIMULATOR

The ship class is designed to move between waypoints in a straight line with constant

speed. The speed of the ship is set in the constructor function of the class. New way-

points are easily added through the add_waypoint()-function, and the simulated

ship will move to the waypoints in the added order. When changing heading, as is usu-

ally the case when a new waypoint is active, the heading of the ship is slowly changed

through a regular discrete-time low-pass filter until the heading equals the bearing to

the active waypoint. Because it derives from aisUser, the ship will periodically pub-

lish AIS messages throughout the simulation.

Figure 6.7: Class diagram of the targetDetection-package. Some of the functions and pa-
rameters are generalized to save space.

6.2. THE SURROUNDINGS SIMULATOR 59

6.2.3 Simulation of the Target Detection Module

The purpose of the targetDetection-package described in Figure 6.7 is to provide

functionality to simulate a realistic Target Detection Module (TDM) based on the USV’s

and simulated objects’ positions in the simulated environment. The mode of operation

and the suggested data output of the TDM was discussed in Chapter 3.

targetDetection::targetDetectionModule

The information and functionalities needed to simulate the TDM are assembled in the

targetDetectionModule-class. Instances of this class are designed to run con-

tinuously using the member function run() utilizing the QThread framework. The

run()-function will subscribe to GPS data from the USV, AIS messages and position

reports from simulated objects and evaluate whether these objects will be detected by

the TDM. The limitations of the AIS, radar and LiDAR are taken into account in this

evaluation.

An object that transmits AIS messages will always be detected if it is inside the AIS

range defined in the configuration files. If the object is inside the radar or LiDAR range,

the object will be detected by these sensors only if it is directly visible from the USV. That

is to say, objects in the radar shadow will not be detected. Whether an object is in the

radar shadow of another object is calculated in the is_visible()-function, which

estimates the associated radar shadow of each single object in the simulation to inves-

tigate if a specific object is within visibility. The estimated radar shadow is illustrated in

Figure 6.8.

If within detectability, the object will be stored in the detectedTargets-map.

Once they are no longer within detectability, they will be removed from the map. The

targetDetectionModule-object will periodically publish detected object mes-

sages and publish them on the ROS topic sensors/target_detection with the

publish_detected_targets()-function. The detected object messages are ex-

tracted from instances of the detectedObject-class, which is documented below.

60 CHAPTER 6. IMPLEMENTATION OF THE HIL SIMULATOR

Figure 6.8: Illustration of the implementation of radar shadow in the simulator. Object 2 will not
be detected by the radar or LiDAR because it exists in the radar shadow of Object 1.

targetDetection::detectedObject

Information and convenient functions of a detected object are collected in a dedicated

detectedObject-class. This class stores the navigational data of the detected object

and makes sure that each object is assigned a unique target ID.

Based on the navigational data of the object, artificial radar and LiDAR measure-

ments are made if the object is detectable by these sensors on Odin, and noise as de-

fined in (2.4) is added to the measurements. The owner of an instance of this class will

manually set the AIS data associated with the detected object, and the data obtained

from AIS is already influenced by noise. Extended Kalman filters are applied to the arti-

ficial data from AIS, radar and LiDAR, individually, and the Simple Fusion algorithm is

used to compute the weighted average of the output from the Kalman filters. The out-

put from the Simple Fusion is used to define the data of detected object ROS messages.

Detected object ROS messages of typesimulator_messages::detectedTar-

get can be extracted directly from instances of the detectedObject-class through

the make_DT_msg()-function. The messages have the same structure as suggested

in Table 3.1.

The error parameters of the measurements from radar and LiDAR are read from

the ROS parameter list, so a .yaml configuration file with this information should be

included during launch of the HIL Simulator. The format of the error parameter list is

discussed later in this chapter.

6.2. THE SURROUNDINGS SIMULATOR 61

Figure 6.9: Class description of the navData-class.

6.2.4 Navigational Data

Several packages depend on the navData-package, which is a generalized interface

for easy handling of navigational data. All data needed in a standard AIS message are

stored as member variables of the navData-class. Enumeration types are included in

the package to simplify the declaration of data fields such as navigation status, position

accuracy and the Special Maneuver Indicator (SMI), all accounted for in E. S. Raymond

(2016).

A basic AIS Class A position report, as described in Section 2.2.1, can easily be ex-

tracted from objects of this class using the public member functionget_AIS_class-

_A_position_report(). The AIS message obtained from this function is complete

and valid with the NMEA 0183 data-integrity checksum. A ROS message containing the

raw AIS message as well as the included data represented as individual data fields can

also be obtained using the function get_AIS_ros_msg(). The ROS message is ac-

counted for later in this chapter.

62 CHAPTER 6. IMPLEMENTATION OF THE HIL SIMULATOR

6.3 The Graphical User Interface (GUI)

Using Qt, a Graphical User Interface (GUI) was developed to visualize the simulations.

It serves only as a visualization tool for proof of concept purposes, and it is likely that

the developers of Odin will visualize the simulations through the use of visualization

tools already developed for mission control of the AUV Hugin, by Kongsberg Maritime.

The GUI was designed to be a standalone module, independent from both the Dy-

namics and the Surroundings simulator. Apart from being able to request new obstacles

at specified positions, the GUI does nothing but visualizing the simulation data already

available on the various ROS topics. As the main product of this master’s thesis is the

Surroundings simulator, only superficial details of the software constituting the GUI

will be accounted for here. A combined package and class diagram of the GUI software

can be found in Figure 6.10. Similarly, a message diagram describing the flow of ROS

messages related to the GUI can be found in Figure 6.11.

6.3.1 The Main Window

The main()-function of the GUI will create an object of class MainWindow. This ob-

ject will open and initialize the GUI window. The window will contain real-time plots,

visualizing data from the simulations such as speed and heading of the USV. It will also

have a 2D map of of the simulation as seen from above and a "Spawn new obstacles"-

interface. The main window also owns a position update handler, an object of type

posUpdateHandler, listening to ROS messages with information about the position

and orientation of objects in the simulations.

6.3.2 Real-Time Plots

The realTimePlot-package contains a class to easily create a real-time plot widget

using the Qt framework. The plot can be initialized with title and labels, and the values

of the plot can be updated through a dedicated member function. The time axis will

scroll automatically as the time goes by.

6.3. THE GRAPHICAL USER INTERFACE (GUI) 63

Figure 6.10: Combined package and class diagram describing the general structure and dependen-
cies between packages in the GUI module.

64 CHAPTER 6. IMPLEMENTATION OF THE HIL SIMULATOR

Figure 6.11: Message diagram describing the flow of ROS messages in the GUI module.

6.3. THE GRAPHICAL USER INTERFACE (GUI) 65

6.3.3 The Obstacle Control Panel

The obstacleInterface-package contains a class that represents a control panel

for control of obstacles. The initial goal of this panel was to provide advanced manipu-

lation options of objects in the simulations, such as adding, deleting and moving obsta-

cles around in the simulated environment. However, it became clear during the project

that not all of these functionalities were needed in the first prototype of the HIL Simu-

lator, as all included objects in the simulations will be defined beforehand in a configu-

ration file. Hence, the obstacle control panel at the current time only provides a button

for spawning of new objects at positions marked in the 2D map. This was convenient

throughout development of the HIL Simulator to easily spawn new objects in real-time.

6.3.4 The Position Update Handler

The posUpdateHandler runs as a separate process listening to ROS messages on

several topics. Specifically, it subscribes to messages from the GPS topic to visualize

the USV’s whereabouts, the detected target topic to illustrate the detected targets in

the simulated environment and the position update topic used by simulation objects

in the Surroundings simulator to broadcast their exact position and orientation at all

times. The posUpdateHandler uses this information to update the real-time plots

and the 2D map of the main window. It also owns an object representing an interface

to RViz, so that the information obtained also can be visualized in 3D.

6.3.5 The RViz Interface

To visualize the simulation in 3D, RViz was considered to be a suitable platform. The

package rvizInterface provides an interface to visualize the simulated objects in

RViz. Using member functions of the included class with the same name one can set

the position of the simulated objects as well as the detected targets. To ensure that the

Dynamics simulator works as a standalone package, the Dynamics simulator interfaces

with RViz on its own to set the position and orientation of the USV.

66 CHAPTER 6. IMPLEMENTATION OF THE HIL SIMULATOR

Table 6.1: Format of the obstacleCmd ROS message.

obstacleCmd.msg

Data Type Variable Name Unit

string cmdSpecifier -

string receiverID -

float64 x [deg]

float64 y [deg]

float64 psi [deg]

6.3.6 The 2D Map

To visualize the simulation in a 2D map, the satelliteView-package provides func-

tionality to setup a customized Qt widget to plot the position and heading of the USV

as well as other simulated objects, such as ships and fixed obstacles. The included class

satelliteView has member functions to set and update the position of objects on

the map, to mark positions with mouse clicks (for use by the obstacle interface to spawn

new obstacles) and to zoom in and out.

During development of the 3D visualization of the simulations, it became clear that

the 2D map became somewhat redundant as the same information became visible in

RViz, which is even more interactive and intuitive to use. The development of the 2D

map was hence put on hold, but was kept as a part of the GUI in its current form.

6.4 ROS Messages of the Surroundings simulator

The following section will go through the different ROS messages used in the simulation

of the USV Surroundings.

6.4.1 The Obstacle Command ROS Message

The command message obstacleCmd is primarily used for spawning of new simula-

tion objects. The cmdSpecifier-field is used to specify what kind of command the

message carries. Currently, the only command type in use is "spawn", but other possi-

ble command types could be "delete", "moveTo", etc.. All simulation objects subscribe

to the simObject/command-topic and wait for such messages. If the receiverID

6.4. ROS MESSAGES OF THE SURROUNDINGS SIMULATOR 67

matches the object’s own ID, the object will respond to the command. For message

types that specify a position and heading, as is the case with the "spawn"-command,

the position and heading are defined with the x, y and psi data fields. New com-

mand types can easily be implemented by manipulating the command_parser()-

function of thesimObject-class to also interpret messages of the new command spec-

ifier.

6.4.2 The Position Update ROS Message

All simulation objects defined by classes derived from simObject will periodically

broadcast their position and heading using the ROS message obstacleUpdate. This

message carries the position and heading, as well as the ID of the transmitting object.

The message descriptor data fieldmsgDescriptormakes it possible to define several

different update messages, such as position updates, waypoint reached etc.. The only

message type currently in use is the position update message, specified by the string

"posUpdate" in the msgDescriptor field. The objectDescriptor-field renders

it possible for the subscriber of these messages to separate between fixed obstacles

and vessels, which is of interest for visualization purposes in the GUI. Current posi-

tion, heading and size of the object are specified with the longitude, latitude,

heading and radius fields.
Table 6.2: Format of the obstacleUpdate ROS message.

obstacleUpdate.msg

Data Type Variable Name Unit

string msgDescriptor -

string objectDescriptor -

string objectID -

float64 radius [m]

float64 longitude [deg]

float64 latitude [deg]

float64 heading [deg]

68 CHAPTER 6. IMPLEMENTATION OF THE HIL SIMULATOR

Table 6.3: Format of the detectedTarget ROS message.

detectedTarget.msg

Data Type Variable Name Unit

int32 targetID -

string objectDescriptor -

float64 longitude [deg]

float64 latitude [deg]

float64 COG [deg]

float64 SOG [m/s]

float64 crossSection [m2]

6.4.3 The Detected Target ROS Message

The detected target message described in Table 6.3 is published from the simulated Tar-

get Detection Module (TDM) and has the same format as suggested in Table 3.1, with

the exception of the included objectDescriptor-field. This field is reserved for a

written classification of the object. Detected objects in the first prototype of the HIL

Simulator are classified as either vessels or fixed obstacles, but other future classifica-

tions could for example be buoys, ice bergs or leisure boats. It is reasonable to believe

that the real TDM will classify detected objects in such a manner, as the USV should

behave differently around larger vessels and simple buoys.

6.4.4 The AIS ROS Message

An AIS ROS message is broadcast periodically from all simulation objects defined by

classes derived from the aisUser-class. The messages contain navigational data as

included in a regular AIS Class A position report as well as the raw AIS message string

as described in the Section 2.2.1.

6.5. CONFIGURATION FILES 69

Table 6.4: Format of the AIS ROS message.

AIS.msg

Data Type Variable Name Unit

uint32 MMSI -

uint8 status -

float64 ROT [deg/min]

float64 SOG [knots]

uint8 positionAccuracy -

float64 longitude [deg]

float64 latitude [deg]

float64 COG [deg]

float64 track [deg]

uint8 hour [hr]

uint8 minute [min]

uint8 second [s]

uint8 SMI -

string raw_data -

6.5 Configuration Files

Configuration files of type .yaml can be included during launch of ROS, and may

contain declarations of parameters, which will be added to the ROS parameter server.

The parameters in the parameter server can be extracted from any ROS node handle

through the use of the function ros::NodeHandle::getParam(). For readability,

the configuration parameters of the Surroundings simulator in the HIL Simulator are

declared in 2 separate configuration files: one for obstacle parameters and one for sen-

sor sensor parameters. The files and their parameters are accounted for in this section.

6.5.1 Obstacle Parameters

The obstacle parameters needed for initialization of the simulation objects must com-

ply with the protocol described and exemplified in Listing 6.1.

70 CHAPTER 6. IMPLEMENTATION OF THE HIL SIMULATOR

The fixed obstacles included in the simulation must be defined in a map called

fixed_obstacles. Both keys and values in the map are of type string. The key

defines a temporary name of the object and is only used for readability purposes; the

name is not used in the simulation. The associated value is a string which defines the

radius and coordinate of the object. The radius field contain the radius in meters of

the obstacle, while the coordinate field gives the coordinate of the center point of the

object in decimal degrees. The resulting obstacle is represented as a solid disc with the

defined radius at the defined coordinate.

The ships included in the simulations are defined in a similar map called ships,

with the key being a string representing a temporary name of the ship. The value pa-

rameter is also a string, defining the length in meters, speed in knots and a vector of

waypoints in decimal degrees. The waypoints are added to the simulated ship’s way-

point vector in the same order. The first waypoint will be the starting position of the

ship.

The obstacle parameters of the default scenario of the HIL Simulator available ongi

thub.com/kjetilbl/hilsim are located in obstacle_params.yaml in the

environment/config-folder.

1 f ixed_obstacles : {

2 " obstacle_1 " : "RADIUS=30 COORD=10 ,4613435/59 ,444234 "

3 " obstacle_2 " : "RADIUS=25 COORD=10 ,4515451/59 ,434341 "

4 # add as many obstacles as preferred . . .

5 }

6

7 ships : {

8 " ship_1 " : "LENGTH=50 SpeedInKnots=19 WP=10 ,46715/59 ,44006 WP=10 ,46146/59 ,43564 "

9 " ship_2 " : "LENGTH=20 SpeedInKnots=21 WP=10 ,46146/59 ,43564 WP=10 ,46715/59 ,44006 "

10 # add as many ships as preferred . . .

11 }

Listing 6.1: Protocol of parameters for initializing simulation objects in the HIL Simulator.

6.5.2 Sensor Parameters

The sensor parameters define the noise conditions by which the AIS, radar and LiDAR

are influenced, as well as the limitations of each sensor system. The protocol of the pa-

github.com/kjetilbl/hilsim
github.com/kjetilbl/hilsim

6.5. CONFIGURATION FILES 71

rameters is exemplified in Listing 6.2. The ranges of each sensor system are defined in

meters, and will influence whether objects far away from the USV will be detected or

not. The error per distance gain is dimensionless and corresponds to k in (2.5). Com-

paring the parameters of Listing 6.2 to the sensor noise model in (2.1) - (2.3), the mea-

sure variances correspond to the variance of wm , the bias variances correspond to the

variance of wb and the bias time constants correspond to the time constants of Tb .

1 AIS_range_m : 10000

2 radar_range_m : 5000

3 lidar_range_m : 100

4 TDM_update_rate_Hz : 1

5 error_pr_distance_gain : 0.01

6

7 # Radar error parameters :

8 radar_position_measure_variance_m2 : 1

9 radar_radius_measure_variance_m2 : 5

10 radar_position_bias_variance_m2 : 0.5

11 radar_radius_bias_variance_m2 : 2

12 radar_position_bias_time_constant_sec : 10

13 radar_radius_bias_time_constant_sec : 5

14

15 # Similar parameters are defined for AIS and LiDAR . . .

Listing 6.2: Protocol of sensor parameters for initialization of the simulation.

72 CHAPTER 6. IMPLEMENTATION OF THE HIL SIMULATOR

Chapter 7

Running the HIL Simulator

In this chapter, the performance and functionalities of the first prototype of the HIL

Simulator are demonstrated by example. Emphasis is put on the Surroundings sim-

ulator and the GUI, which are the products of this thesis. An open sea scenario with

presence of icebergs and other vessels are simulated, with Odin navigating in the simu-

lated environment using predefined thrust commands logged from a real mission. Data

from the simulated TDM is visualized by the GUI using RViz, and data from the AIS is

printed to the Terminal for analysis of the performance of these sensor systems.

73

74 CHAPTER 7. RUNNING THE HIL SIMULATOR

7.1 Setting Up the Simulator

The simulator can be downloaded from github1 and should be installed on a computer

running the Linux Ubuntu operating system which has ROS installed. The details of

how to configure a ROS workspace and install the HIL Simulator can be found in Ap-

pendix A.

An important note is that the 3D models representing Odin and Jolner are confi-

dential. Users of the HIL Simulator must request the models from FFI or Kongsberg

Maritime, or use other 3D models to represent the target vehicle in the 3D visualization

of the simulation.

7.2 Simulating a Busy Open Sea Scenario

By example, this section will provide the details of how to configure a customized sim-

ulation scenario. As Odin’s control system currently is unable to receive information

from any of the sensors considered in this thesis, it is not useful for the control system

to interact with the simulation. A log file with thrust inputs from a real mission is hence

used to enable the USV to navigate in the simulated environment. Because of this, Odin

can be considered blind in this simulation, with no feedback from neither the propri-

oceptive or exteroceptive sensors. Nevertheless, the simulation will still visualize the

output from the sensors to illustrate what the control system would be able to see if it

was able to interpret this information.

Now, consider a mission where Odin will navigate at open sea, e.g. to search for

possible naval mines, during moderate weather conditions and under presence of sev-

eral icebergs. A support vessel is operating nearby, and an unrelated research ship is

passing by at cruise speed. To simulate this mission, one must define the configuration

parameters to create the desired obstacles, vessels and conditions of the scenario. The

parameters, as defined in the configuration files used in this simulation, can be found

in Appendix B.

The noise parameters of the sensors in use were inspired by the limitations of each

sensor, presented in sections 2.2-2.4. To visualize the behavior of the simulated sensors

1https://github.com/kjetilbl/hilsim

https://github.com/kjetilbl/hilsim

7.3. RUNNING THE SIMULATION 75

when influenced by noise, some of the parameters were tuned to yield a worse behavior

than what can be expected in a real scenario. Similarly, based on the dynamics of the

biases accounted for in Section 2.5, some of the bias parameters were also tuned to

give a behavior that visualizes the effect of sensor deviations. The wind was defined as

10m/s from the east, the current as 0.5m/s from the west, and the waves were defined

to have 2m significant wave height, coming from the east. The influence of the weather

parameters on the dynamics of the USV is accounted for in Ødegaard (2017).

A .launch file was created to initialize ROS with the configurations files summa-

rized in Appendix B, as well as starting the Surroundings, GUI and Dynamics simu-

lators. The configuration and launch files used in this example are included in the

"config"- and "launch"-folders of the Surroundings simulator, available on github.

7.3 Running the Simulation

Launching the .launch file from Terminal starts the simulation. The RViz and GUI

application windows appear as two separate windows which both illustrate the simu-

lation, as seen in figures 7.1 and 7.2, respectively. As expected, Odin now finds itself at

sea, surrounded by several obstacles and two other vessels as defined in the configura-

tion files. The two nearby vessels appear at their first waypoint and travel at constant

speed in a straight line to their next waypoint. The thrust input file feeds the Dynamics

simulator with thrust commands, which enables Odin to move around in the simulated

environment.

7.3.1 3D Visualization in RViz

The main feature of RViz is the ability to visualize the simulation in 3D, as illustrated in

Figure 7.3. The fixed obstacles are visualized as white cylinders representing icebergs,

with radius and position as defined in the configuration file. The vessels are represented

as 3D models of simple ships2, with lengths also as defined in the configuration file. A

model of Odin is used to visualize Odin’s position and attitude, with arrows connected

to the thrusters to visualize the direction and force of thrust. The arrows are visible

2The 3D models of the included ships are available for free at www.turbosquid.com

www.turbosquid.com

76 CHAPTER 7. RUNNING THE HIL SIMULATOR

Figure 7.1: The RViz window visualizing the simulation in 3D, with the control panel to the left
providing options to show and hide groups of simulation objects. Fixed obstacles, represented as
white cylinders, as well as a nearby vessel, are visible around Odin.

Figure 7.2: The GUI application window with real-time plots of the heading and velocity of Odin
and a 2D map giving an overview of the simulation.

in Figure 7.4, which also illustrates the representation of detected objects by the TDM.

The user can manipulate the 3D view in RViz with mouse movements to change the

7.3. RUNNING THE SIMULATION 77

view angle, zoom in and out and choose to hide or show different groups of objects in

the simulation.

Figure 7.3: Odin in the simulated environment, seen in the center of the figure, surrounded by
icebergs and other vessels.

The information in the detected object messages published by the simulated TDM

is visualized in RViz as partially transparent, orange discs with estimated information as

text hovering above the assumed position of the object. The sizes and positions of the

discs are defined by the estimated data in the associated messages. For detected vessels,

the discs are replaced by oblong ellipses, representing the estimated length of the vessel

and oriented to line up with the estimated heading. This is illustrated in figures 7.4 and

7.5. The visualization of detected objects can be turned on and off in the RViz control

panel to the left in Figure 7.1.

The track history of Odin can also be illustrated, as seen in Figure 7.5. A purple line

will appear, illustrating the path of Odin as the simulation evolves.

7.3.2 Visualization Using the GUI

The GUI provides a 2D map and plots of the velocity and heading of Odin, as a proof

of concept as to what one can visualize using real-time information obtained from the

simulation. To create new obstacles as the simulation goes, the user can click on the 2D

78 CHAPTER 7. RUNNING THE HIL SIMULATOR

Figure 7.4: Odin during simulation of the busy open sea scenario. Detected objects broadcast by the
simulated TDM are illustrated as partially transparent, orange discs, representing the estimated
size, position and heading of the object. A descriptive keyword, the object’s given ID, COG and
SOG are illustrated as text hovering above the estimated position of the detected object. Arrows
representing the angle and force of thrust are connected to Odin’s thrusters.

map at the desired position of the new obstacle. A blue circle will appear, as illustrated

in Figure 7.6, indicating that the position is marked. Several positions may be marked

at the same time. By clicking the "Spawn obstacles"-button, located in the center of

the application window illustrated in Figure 7.2, a request is sent to the Surroundings

simulator to create fixed obstacles at the marked positions.

7.4. PERFORMANCE OF THE SIMULATED TDM 79

Figure 7.5: The busy open sea scenario seen from above, illustrated in RViz. The path of Odin is
visible as a purple line.

7.4 Performance of the Simulated TDM

The output of the simulated TDM is visualized in RViz. The purpose of the simulated

TDM is not to be perfect, but to behave in accordance with the specifications and lim-

itations discussed in Section 3.1. By comparing detected objects relative to their true

counterparts, the performance of the simulated TDM can be visually inspected. Par-

tially transparent, orange discs and compact text are used to represent the information

of detected objects received from the detected object ROS topic.

As seen in Figure 7.7, the estimated size and position of the obstacle in the front

deviates from the true size and position of the associated iceberg. The inaccuracy is

80 CHAPTER 7. RUNNING THE HIL SIMULATOR

Figure 7.6: The 2D map included in the GUI. Green rectangles illustrate fixed obstacles, blue rect-
angles illustrate other simulated vessels. Odin is locked to the center of the map, represented by a
black rectangle. The tracks of Odin and other vessels are visible as blue lines. A mouse click on the
map will mark a position with a blue circle. By clicking the "Spawn obstacles"-button, a request to
create an obstacle at this position is sent to the Surroundings simulator.

modeled as in Section 2.5, with increasing errors with larger distance between the USV

and the obstacle. At close range, the LiDAR assists in the tracking of nearby objects,

which enables accurate estimations of these objects. In the case of a moving vessel

utilizing AIS, the AIS data is combined with the radar measurements, which enables

fairly accurate tracking of these vessels in regards to position, heading and speed.

The effect of radar shadow, as discussed in sections 2.3.1 and 6.2.3, is apparent in

7.5. PERFORMANCE OF SIMULATED AIS 81

Figure 7.7: Illustration of how the accuracy of the position and size estimates of detected objects
increases with the distance from the USV. Odin is barely visible in the top right corner of the picture
(red arrow). At this distance, only the radar is used for position estimates.

the simulated TDM. If an object is located behind another larger object as seen from

the USV, the radar will not detect this object. Figure 7.8 illustrates this effect, where an

iceberg is not detected by the TDM because it is located behind a larger vessel.

Based on the above mentioned observations, it is confirmed that the TDM behaves

in accordance with the properties listed in Section 3.1.2.

7.5 Performance of Simulated AIS

The vessels included in the simulation are simulated with the option of continuously

broadcasting AIS messages, with a few seconds between transmissions. Small errors

with parameters as defined in the configuration files are added to the navigational data.

The AIS data is received by the target USV through dedicated ROS messages as dis-

cussed in Section 6.4. By printing the raw AIS data string to the Terminal, one can verify

that the messages are valid. An example of an AIS string obtained from the simulation

is quoted below:

!AIVDM,1,1,,A,10000008AePgwGLR0eVIR7‘aP5‘l,0*55

82 CHAPTER 7. RUNNING THE HIL SIMULATOR

Figure 7.8: Illustration of the effect of radar shadow. When an object is located behind another
object relative to the USV, the radar will not detect the first object. This is the case in this situation,
where an iceberg is located behind a larger vessel. Hence, the iceberg is not detected by the TDM.

Using the online AIS decoder available on https://rl.se/aivdm, it is easily ver-

ified that the message is valid, containing a standard Class A position report as ac-

counted for in Section 2.2.1. Table 7.1 summarizes the relevant data as obtained from

the AIS message compared to the true values, obtained by printing the true data to the

Terminal. The deviations from the true states correspond nicely with the error vari-

ances defined in the configuration files, indicating that the production of artificial noise

works as intended. The Rate of Turn (ROT) obtained from the AIS message has an error

of 48 deg
mi n , which is a significant deviation compared to what one would expect from a

real AIS message. Recall, however, that the noise parameters were increased to demon-

strate their effect. As seen in Listing B.3, the measurement variance of the ROT of AIS

messages is set to 2000 (deg
mi n)2, and hence, a deviation of 48 deg

mi n can be considered

normal.

https://rl.se/aivdm

7.6. TRUE HIL SIMULATION OF MOTION CONTROL 83

Table 7.1: Comparison of navigational data obtained from a simulated AIS message compared to
their true associated values. The deviation in position corresponds to an error of approximately
3m.

Data Field From AIS data True Value Unit

Latitude 59.438762 59.438792 [deg]

Longitude 10.483597 10.483607 [deg]

Speed Over Ground 10.9 10 [knots]

Course Over Ground 244 243 [deg]

Rate of Turn 48 0 [deg/min]

7.6 True HIL Simulation of Motion Control

Although the control system of Odin currently is unable to receive data from the sensors

considered in this thesis, the control system was able to perform waypoint guidance in a

HIL setup against the Dynamics simulator alone. The trial is accounted for in Ødegaard

(2017), and provided promising results in regards to the model of Odin used in the Dy-

namics simulator. The results also show that the ROS interface between the simulator

and Odin works as expected.

As the Surroundings simulator is based upon the same ROS interface, it is expected

that the control system of Odin will be able to receive data from the simulated TDM

and AIS when the time is ready. The format of the ROS messages for these purposes is,

however, not yet decided. It is therefore likely that the format of the messages from the

simulated TDM and AIS must be configured in accordance with the decided protocol.

When the control system of Odin is ready to receive data from the TDM and AIS as

planned, it is hence expected that the Surroundings simulator in combination with the

Dynamics simulator will provide a complete and functional HIL setup.

84 CHAPTER 7. RUNNING THE HIL SIMULATOR

Chapter 8

Conclusion and Further Work

8.1 Conclusion

A standalone Surroundings simulator, simulating the surroundings of an unmanned

surface vehicle (USV), was developed. The simulator was built upon the Robotic Oper-

ating System (ROS), using ROS topics and messages to publish sensor data. Modularity

was preserved, decoupling the Surroundings simulator from the Dynamics simulator

accounted for in Ødegaard (2017). The two simulators, although decoupled, together

constitute the first functional prototype of a Hardware-In-the-Loop (HIL) Simulator for

the USVs Odin and Jolner developed by Kongsberg Maritime in cooperation with Nor-

wegian Defense Research Establishment (FFI). The simulator is customized for Odin,

with the Dynamics simulator providing the possibility of changing the simulated dy-

namics to a model that better fits Jolner.

The Surroundings simulator manages obstacles and other vessels in the surround-

ing environment of the USV. Information about these objects are used to generate artifi-

cial data and measurements from an Automatic Identification System (AIS) transceiver,

a radar and a Light Detection and Ranging (LiDAR) sensor. The radar and LiDAR mea-

surements are not published to the control system of the USV directly, but are combined

with the AIS data to generate detected object ROS messages from a fictitious target de-

tection module (TDM). This is as requested by Kongsberg Maritime, as it is how the

sensors are planned to be used on Odin. The measurements and data were combined

85

86 CHAPTER 8. CONCLUSION AND FURTHER WORK

using the Simple Fusion algorithm, which calculates an optimal weighted average of

the Kalman-filtered data from each sensor system. The algorithm was demonstrated by

an example in MATLAB with good results. Using this algorithm in the simulated TDM

was considered a conservative approach, as the algorithm of the real TDM is expected

to perform even better.

The data from the AIS transceiver is planned to be used by the control system of

Odin directly, and hence, simulated data from an AIS transceiver collecting AIS mes-

sages from nearby traffic is published on a dedicated ROS topic.

Configuration files launched with ROS initialize the simulations, which enables

users with no knowledge of the underlying code to easily launch customized simulation

scenarios. Editing the configuration files, the user can customize the range and sensor

noise of the AIS, radar and LiDAR and define obstacles and other vessels to include in

the simulation.

A graphical user interface (GUI) was developed, where the main feature is the ability

to visualize the simulations in 3D with ROS RViz. The GUI also provides real-time plots

of the heading and speed of the USV, a 2D map of the simulated area and functionality

to spawn new obstacles throughout the simulation.

The control system of Odin is still under development, and is currently not able to

receive any data from the TDM or AIS. Hence, the Surroundings simulator can not be

used in a HIL setup for testing of collision avoidance at the current time. The control

system is, however, able to receive and utilize data from the sensors used for motion

control. The Dynamics simulator interacted successfully with Odin’s control system in

a HIL simulation of a waypoint guidance mission in Ødegaard (2017). This indicates

that the ROS interface between the HIL Simulator and the control system of Odin is

working as intended. It is hence likely that the Surroundings simulator also will interact

correctly with the control system when the time comes, however with some modifica-

tions needed to the message formats and topics used for transmission of simulated AIS

and TDM data.

The functionality of the Surroundings simulator was demonstrated by an example,

where an open sea scenario with icebergs and other vessels was simulated. A model of

Odin navigated in the simulation using predefined thrust inputs logged from a real mis-

sion at sea. The simulation was visualized using the GUI. The output of the simulated

8.2. FURTHER WORK 87

TDM could be inspected in RViz, where the estimated position, size and orientation of

the detected objects were visualized in 3D. By analyzing simulated AIS messages and

the behavior of the detected objects, it was verified that the functionality of these sen-

sor systems was simulated in accordance with the specifications and requirements of

Kongsberg Maritime.

8.2 Further Work

For further work, it is recommended to consider the following aspects:

• When the control system of Odin is ready to receive data from the TDM and AIS,

the format of the ROS messages and topics used for transmission of data from

these sensor systems must be adapted to the decided protocol. The formats of

these messages are currently not known, but a qualified guess was used as a tem-

porary solution.

• Representation of coast lines and land to be included in the simulations.

• Rendering of raw data from radar and LiDAR based on the simulated surround-

ings of the USV.

• Including agents with varying degree of intelligent behavior in the simulated en-

vironment, such as vessels and boats that can react to their surroundings and

perform path planning based on COLREGs.

• Using data from genuine ship traffic, e.g. obtained from historic AIS data avail-

able online, to simulate traffic in the simulations.

• Implementation of failure scenarios.

88 CHAPTER 8. CONCLUSION AND FURTHER WORK

Appendices

89

Appendix A

Installation of the HIL Simulator

The following steps should be performed in order to get the simulator running for the

first time:

1. Install Ubuntu on the computer intended for simulation. (https://www.ub

untu.com/download/desktop/install-ubuntu-desktop).

2. Install the latest distribution of ROS for Ubuntu (http://wiki.ros.org/k

inetic/Installation/Ubuntu).

3. Open the terminal and create a ROS workspace:

1 $ mkdir −p ~/catkin_ws / src

2 $ cd ~/catkin_ws / src

4. Clone the HIL-simulator repository in to the src-folder:

1 $ g i t clone https : / / github .com/ k j e t i l b l / hilsim

5. Build the simulator_messages package first, as several simulator packages

depend on this package:

1 $ cd . . && catkin_make −−pkg simulator_messages

6. Build the workspace:

1 $ catkin_make

91

https://www.ubuntu.com/ download/desktop/install-ubuntu-desktop
https://www.ubuntu.com/ download/desktop/install-ubuntu-desktop
http://wiki.ros.org/kinetic/ Installation/Ubuntu
http://wiki.ros.org/kinetic/ Installation/Ubuntu

92 APPENDIX A. INSTALLATION OF THE HIL SIMULATOR

7. Source your new setup.*sh file:

1 $ source devel / setup . bash

8. Obtain the 3D models of Odin and/or Jolner. Copy these into /home in the com-

puter used for simulation.

9. Set the desired parameters of the simulation in the configuration files located

in src/environment/config/. The default configuration files already in-

cluded in the folder configures an open sea scenario with presence of icebergs

and ships.

10. The simulator should now be ready for use. Test it by launching the open sea

scenario of Odin navigating using predefined actuator inputs:

1 $ roslaunch environment busy_open_sea_scenario . launch

Appendix B

Configuration Files of the Busy

Open Sea Scenario

This appendix includes the configuration parameters of the open sea scenario with

presence of icebergs and two vessels, simulated in Chapter 7. The parameters are de-

fined in .yaml configuration files located in src/environment/config/ in the

default HIL Simulator package available from https://github.com/kjetilbl/

hilsim.

93

src/environment/config/
https://github.com/kjetilbl/hilsim
https://github.com/kjetilbl/hilsim

94 APPENDIX B. CONFIGURATION FILES OF THE BUSY OPEN SEA SCENARIO

B.1 Sensor Parameters of the Dynamics Simulator

1 wind_speed : 10

2 wind_direction : 90

3 current_speed : 0.5

4 current_direction : 270

5 wave_height : 2

6 wave_direction : 90

7

8 dt : 0.05

9 gps_frequency : 20

10 mru_frequency : 100

11 imu_frequency : 100

12 speed_sensor_frequency : 20

13 wind_sensor_frequency : 50

14 s t a r t _ l a t i t u d e : 59.4377744115633

15 start_longitude : 10.4716511800410

Listing B.1: Parameters of the external forces and sensors regarding the dynamics of the target USV,

in this case Odin, during the open sea scenario.

B.2. OBSTACLES AND VESSELS 95

B.2 Obstacles and Vessels

1 f ixed_obstacles : {

2 " Iceberg_1 " : "RADIUS=15 COORD=10 ,470952/59 ,436573 " ,

3 " Iceberg_2 " : "RADIUS=15 COORD=10 ,469416/59 ,437963 " ,

4 " Iceberg_3 " : "RADIUS=15 COORD=10 ,468931/59 ,439197 " ,

5 " Iceberg_4 " : "RADIUS=15 COORD=10 ,474656/59 ,439714 " ,

6 " Iceberg_5 " : "RADIUS=15 COORD=10 ,477303/59 ,439172 " ,

7 " Iceberg_6 " : "RADIUS=15 COORD=10 ,474814/59 ,437146 " ,

8 " Iceberg_7 " : "RADIUS=15 COORD=10 ,480263/59 ,441991 " ,

9 " Iceberg_8 " : "RADIUS=15 COORD=10 ,474666/59 ,443562 " ,

10 " Iceberg_9 " : "RADIUS=15 COORD=10 ,467777/59 ,441583 " ,

11 " Iceberg_10 " : "RADIUS=15 COORD=10 ,483189/59 ,436865 " ,

12 " Iceberg_11 " : "RADIUS=15 COORD=10 ,481345/59 ,434604 " ,

13 " Iceberg_12 " : "RADIUS=15 COORD=10 ,465075/59 ,433254 " ,

14 " Iceberg_13 " : "RADIUS=15 COORD=10 ,472437/59 ,437849 " ,

15 " Iceberg_14 " : "RADIUS=15 COORD=10 ,472209/59 ,438807 " }

16

17 ships : {

18 " support_vessel " : "LENGTH=30 SpeedInKnots=1 WP=10 ,468943/59 ,440308 WP

=10 ,474462/59 ,440736 WP=10 ,480279/59 ,439919 WP=10 ,481580/59 ,437513 " ,

19 " research_ship " : "LENGTH=100 SpeedInKnots=10 WP=10 ,483932/59 ,438875 WP

=10 ,460502/59 ,432853 " }

Listing B.2: Configuration of simulation objects in the open sea scenario with icebergs and other

vessels.

96 APPENDIX B. CONFIGURATION FILES OF THE BUSY OPEN SEA SCENARIO

B.3 Sensor Parameters of the Surroundings Simulator

1 AIS_range_m : 10000

2 radar_range_m : 1852

3 lidar_range_m : 100

4 TDM_update_rate_Hz : 1

5 error_pr_distance_gain : 0.01

6

7 ## AIS error parameters

8 AIS_position_measure_variance_m2 : 5

9 AIS_COG_measure_variance_deg2 : 1

10 AIS_track_measure_variance_deg2 : 1

11 AIS_ROT_measure_variance_deg2_pr_min2 : 2000

12 AIS_SOG_measure_variance_knots2 : 0.5

13 AIS_position_bias_variance_m2 : 0.5

14 AIS_COG_bias_variance_deg2 : 0.5

15 AIS_track_bias_variance_deg2 : 0.5

16 AIS_ROT_bias_variance_deg2_pr_min2 : 500

17 AIS_SOG_bias_variance_knots2 : 0.1

18 AIS_position_bias_time_constant_sec : 20

19 AIS_COG_bias_time_constant_sec : 10

20 AIS_track_bias_time_constant_sec : 10

21 AIS_ROT_bias_time_constant_sec : 10

22 AIS_SOG_bias_time_constant_sec : 10

23

24 ## Radar error parameters

25 radar_position_measure_variance_m2 : 10

26 radar_radius_measure_variance_m2 : 20

27 radar_position_bias_variance_m2 : 0.5

28 radar_radius_bias_variance_m2 : 3

29 radar_position_bias_time_constant_sec : 10

30 radar_radius_bias_time_constant_sec : 5

31

32 ## LiDAR error parameters

33 lidar_position_measure_variance_m2 : 0.1

34 lidar_radius_measure_variance_m2 : 0.1

35 l idar_position_bias_variance_m2 : 0.1

36 l idar_radius_bias_variance_m2 : 0.1

37 l idar_position_bias_time_constant_sec : 0.1

B.3. SENSOR PARAMETERS OF THE SURROUNDINGS SIMULATOR 97

38 l idar_radius_bias_time_constant_sec : 1

Listing B.3: Noise parameters of AIS, radar and LiDAR in a simulation scenario with icebergs and

other vessels.

98 APPENDIX B. CONFIGURATION FILES OF THE BUSY OPEN SEA SCENARIO

Bibliography

Ben-Kiki, O., Evans, C., and döt Net, I. (2009). YAML Ain’t Markup Language (YAML™)

Version 1.2. http://yaml.org/spec/1.2/spec.pdf, Accessed: 23.06.2017.

Børs-Lind, K. S. (2017). Specification of Simulated Environment and User Interface for

HIL Testing of USV. Specialization Project Report, Norwegian University of Science

and Technology, Trondheim, Norway.

Brown, R. G. and Hwang, P. Y. C. (1997). Introduction to Random Signals and Applied

Kalman Filtering. John Wiley & Sons, Ltd, 3rd edition.

E. S. Raymond (2016). AIVDM/AIVDO protocol decoding. http://catb.org/gps

d/AIVDM.html, Accessed: 14.05.2017.

Fossen, T. I. (2011). Handbook of Marine Craft Hydrodynamics and Motion Control. John

Wiley & Sons, Ltd.

Free Software Foundation (2007). GNU Lesser General Public License. https://ww

w.gnu.org/licenses/lgpl.html, Accessed: 25.05.2017.

Free Software Foundation (2016). Modified BSD license. https://www.gnu.org/

licenses/license-list.html#ModifiedBSD, Accessed: 16.01.2017.

Kazimierski, W. (2013). Fusion of Data from AIS and Tracking Radar for the Needs of

ECDIS. Technical report, Maritime University of Szczecin, Poland.

Ødegaard, E. (2017). Prototype of HIL Test Platform for Autonomous USV - Simulation

of Vessel Dynamics. Master’s thesis, Norwegian University of Science and Technol-

ogy, Trondheim, Norway.

99

http://yaml.org/spec/1.2/spec.pdf
http://catb.org/gpsd/AIVDM.html
http://catb.org/gpsd/AIVDM.html
https://www.gnu.org/licenses/lgpl.html
https://www.gnu.org/licenses/lgpl.html
https://www.gnu.org/licenses/license-list.html#ModifiedBSD
https://www.gnu.org/licenses/license-list.html#ModifiedBSD

100 BIBLIOGRAPHY

QCustomPlot (2017). QCustomPlot 2.0.0-beta Documentation. http://www.qcus

tomplot.com/documentation/index.html, Accessed: 25.05.2017.

ROS (2014). ROS Introduction. http://wiki.ros.org/ROS/Introduction.

SIMRAD (2012). Simrad 4G Brochure. http://www.simrad-yachting.com/

Root/Brochures/SimradYachting/English/Simrad%204G%20Broch

ure-AMER.pdf, Accessed: 21.10.2016.

SiRF (2005). NMEA Reference Manual. SiRF Technologies, Inc.

Skjetne, R. and Egeland, O. (2005). Hardware-in-the-loop testing of marine control sys-

tems. Technical report, Marine Cybernetics, Trondheim, Norway.

The Qt Company Ltd. (2017). Qt Documentation. http://doc.qt.io/qt-5/re

ference-overview.html, Accessed: 25.05.2017.

U.S. Coast Guard Navigation Center (2016a). AIS Messages. http://www.navcen

.uscg.gov/?pageName=AISMessages, Accessed: 15.04.2017.

U.S. Coast Guard Navigation Center (2016b). How AIS Works. https://www.navc

en.uscg.gov/?pageName=AISworks, Accessed: 10.05.2017.

Velodyne (2017). Velodyne LiDAR HDL-32E Datasheet. http://velodynelidar.

com/docs/datasheet/97-0038_Rev%20K_%20HDL-32E_Datasheet_W

eb.pdf, Accessed: 03.06.2017.

http://www.qcustomplot.com/documentation/index.html
http://www.qcustomplot.com/documentation/index.html
http://wiki.ros.org/ROS/Introduction
http://www.simrad-yachting.com/Root/Brochures/SimradYachting/English/Simrad%204G%20Brochure-AMER.pdf
http://www.simrad-yachting.com/Root/Brochures/SimradYachting/English/Simrad%204G%20Brochure-AMER.pdf
http://www.simrad-yachting.com/Root/Brochures/SimradYachting/English/Simrad%204G%20Brochure-AMER.pdf
http://doc.qt.io/qt-5/reference-overview.html
http://doc.qt.io/qt-5/reference-overview.html
http://www.navcen.uscg.gov/?pageName=AISMessages
http://www.navcen.uscg.gov/?pageName=AISMessages
https://www.navcen.uscg.gov/?pageName=AISworks
https://www.navcen.uscg.gov/?pageName=AISworks
http://velodynelidar.com/docs/datasheet/97-0038_Rev%20K_%20HDL-32E_Datasheet_Web.pdf
http://velodynelidar.com/docs/datasheet/97-0038_Rev%20K_%20HDL-32E_Datasheet_Web.pdf
http://velodynelidar.com/docs/datasheet/97-0038_Rev%20K_%20HDL-32E_Datasheet_Web.pdf

	Preface
	Summary
	Sammendrag
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Background
	Motivation
	Hardware-In-the-Loop Simulations

	Problem Formulation and Contribution
	Outline of the Report

	Sensors
	Sensors Used on Odin
	Proprioceptive Sensors
	Exteroceptive Sensors
	The Network of Sensors on-board Odin

	Automatic Identification System (AIS)
	The AIS Data Packet
	The Data Payload
	Limitations of AIS

	Radar
	Limitations of the Radar

	LiDAR
	Limitations of the LiDAR

	Modeling of Sensor Noise

	Sensor Fusion in a Target Detection Module
	The Target Detection Module (TDM)
	The TDM Data Format
	Limitations of the TDM

	Sensor Fusion Example Using Kalman Filters
	Kinematic Model of Tracked Object
	The Extended Kalman Filter (EKF) Applied to Tracked Object
	Results From Simple Fusion Algorithm
	Simple Fusion Algorithm as Inspiration for Simulated TDM

	Simulation Scenarios and Objects
	Simulation Scenarios
	Fixed Obstacles
	Vessels
	Representation of Land

	Software and APIs for Use in the HIL Simulator
	Robot Operating System (ROS)
	ROS Packages
	YAML Configuration Files
	3D Visualization Using RViz

	Qt
	Signals and Slots
	Threads in Qt
	Parameter Plotting with QCustomPlot

	Choice of Programming Language

	Implementation of the HIL Simulator
	The General HIL Simulator Software Architecture
	The Surroundings simulator
	Package: obstacleManager.h
	Simulation Objects
	Simulation of the Target Detection Module
	Navigational Data

	The Graphical User Interface (GUI)
	The Main Window
	Real-Time Plots
	The Obstacle Control Panel
	The Position Update Handler
	The RViz Interface
	The 2D Map

	ROS Messages of the Surroundings simulator
	The Obstacle Command ROS Message
	The Position Update ROS Message
	The Detected Target ROS Message
	The AIS ROS Message

	Configuration Files
	Obstacle Parameters
	Sensor Parameters

	Running the HIL Simulator
	Setting Up the Simulator
	Simulating a Busy Open Sea Scenario
	Running the Simulation
	3D Visualization in RViz
	Visualization Using the GUI

	Performance of the Simulated TDM
	Performance of Simulated AIS
	True HIL Simulation of Motion Control

	Conclusion and Further Work
	Conclusion
	Further Work

	Appendices
	Installation of the HIL Simulator
	Configuration Files of the Busy Open Sea Scenario
	Sensor Parameters of the Dynamics Simulator
	Obstacles and Vessels
	Sensor Parameters of the Surroundings Simulator

	Bibliography

