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Abstract

This thesis presents four research papers on two topics within the field
of spintronics. Three of the papers present theoretical models concerned
with the topics of spin wave mode-dependent spin pumping, spin trans-
fer, and spin Hall effects in ferromagnetic insulator-normal metal layered
structures. The fourth paper details results from experiments investigat-
ing the training and recovery of the exchange bias effect in a metallic spin
valve structure.

Paper I addresses the enhancement of the Gilbert damping that oc-
curs due to the spin pumping effect from a precessing magnetization. We
studied a ferromagnetic insulator in contact with a normal metal that is
assumed to act as a perfect spin sink. In this paper we showed for the first
time that the higher excited spin wave modes in the insulator film has
twice as strong renormalization of the Gilbert damping as the uniform
mode. We also show that the Gilbert damping renormalization for an
easy-axis surface anisotropy-induced surface-localized spin wave mode
can be an order of magnitude stronger than for the uniform mode.

Paper II extends the formalism of Paper I to a system consisting of a
ferromagnetic insulator-normal metal-ferromagnetic insulator stack. We
compute the Gilbert damping renormalization spectrum for both sym-
metric and antisymmetric film thickness configurations, and show that
the modes are either acoustically or optically coupled across the metallic
spacer layer. The acoustic and optical modes experience a different renor-
malization of the Gilbert damping, depending on the thickness ratio of the
two insulator films, the nonlocal dipole-dipole interactions through the
in-plane wave number, as well as the spin relaxation properties and con-
ductivity of the metallic spacer layer. We also discuss how an easy-axis
surface anisotropy can induce surface modes that are robust to thickness
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mismatches of the two insulator films.

Paper III is a sequel to Paper I, and presents a more accurate model
of the eigenmodes and their Gilbert damping renormalization in the bi-
layer system. In this paper we take the effect of spin back flow from the
normal metal into account. The different permutations of the field config-
uration and the surface-anisotropy types are adressed, and measures for
the alternating and direct inverse spin Hall effect are presented.

Paper IV presents findings related to the training effect in an exchange-
biased metallic spin valve structure. High rate field sweeps were executed
while performing magnetoresistive measurements on the valve. The mea-
surements show reduced coercive field as a function of sweep iteration
number. Upon pausing the field sweeps, the coercive field was shown to
recover towards its initial state at a speed depending on the sweep rate,
sweep number and the rest interval length in a logarithmic fashion.
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Preface

This thesis is submitted in partial fulfillment to the requirements of the
degree of Philosophiae Doctor (Ph.D.) at the Norwegian University of Science
and Technology (NTNU). During my time as a Ph.D. student I have done
obligatory coursework consisting of four courses at 7.5 study points each,
the total being equivalent to one semester. Three of the four courses were
Ph.D.-level courses, while one was a Master level course. In total one
quarter of the first four years were spent performing teaching duties in
student labs for the courses: Measurement Techniques, Instrumentation,
and Physics. The latter for non-physics students. During the 2011 fall
semester I lectured, as well as prepared and corrected exams, for the un-
dergrad course “Physics 2”.

I started out in Erik Wahlstrom’s Scanning Tunneling Microscopy group,
were I worked in close collaboration with Magne Saxegaard on his scan-
ning tunneling microscope purpose-built for point contact measurements. !
There, I mainly spent my time focusing on instrumentation electronics
and software design for the experemental setup. After 9 monthsIchanged
fields from Wahlstrom'’s experimental group to Arne Brataas” spintronics
theory group. As part of Brataas’ spintronics group, I have focused my at-
tention on the phenomenon of mode dependent spin pumping, spin trans-
fer and spin Hall effects in ferromagnetic insulator-normal metal layered
structures.

The work was mostly performed at the Department of Physics, NTNU,
with the exception of two semesters I spent as a guest in Gerrit E.W. Bauer’s
group in the Theoretical Physics research group at the Kavli Institute of
Nano Science at Delft University of Technology, the Netherlands.

The outline of the thesis is as follows: Chapter 1 sets the stage for
this thesis by taking a look at the current state of electronics and by in-
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troducing the reader to the appropriate sub field of physics; Chapter 2
recapitulates some core concepts related to magnetism in condensed mat-
ter; Chapter 3 focuses on the details of spin wave dynamics in thin-film
ferromagnetic insulators; while Chapter 4 presents a review of the main
findings of the four scientific papers this thesis is built around. Some of
the implementation details that are not discussed directly in the papers
can also be found in this chapter.

This thesis uses Gaussian centimetre-gram—second (cgs) units through-
out. Using a system of units other than Systéme international d’unités (SI) is
becoming increasingly difficult to justify these days. Nevertheless, most
journal articles and treaties on magnetism from the previous century that
I have read as a part of working on this thesis were written in Gaussian
units. cgs units were common in works on magnetism because of the ad-
vantage offered by having all Maxwellian fields share the same basic units.
This removes some of the complexity hidden in the units of the constants
#o and g( in the SI system of units. It is my personal opinion that the Gaus-
sian form of Maxwell’s equations, and most equations derived from those
equations, are the easiest to work with. A nice summary of unit systems
in relation to Maxwell’s equations can be found within Jackson?.

Being a Ph.D. student has been an interesting and sometimes very chal-
lenging endeavor. The immense joy when calculations give results and pa-
pers are published stand in deep contrast to sign errors, dead ends, and
the sometimes grueling months inbetween the minor successes. It might
be that the process of finalizing a body of work the size of a thesis makes
you vulnerable to an academic equivalent of the “Stockholm syndrome”;
all the hardships seem to be overshadowed by the nostalgia towards that
time when you invested all your efforts into solving a hard problem and
succeeded.

As a “senior” Ph.D. student I hope that I have been helpful to those
that started after me; both through discussions regarding spintronics and
by readily providing my own notes on the subject with them. I also hope
that this thesis can be of use too someone trying to get into the field of
spintronics and spin dynamics.

André Kapelrud
Trondheim, Norway
July 24,2017
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1 Introduction

1.1 The Current State of Electronics

The first commercially available microprocessor, the 4-bit Intel 4004, was
released in 1971 by the Intel Corporation® and within a few years several
companies were producing microprocessors at affordable rates. This lead
to the era of the personal computer (PC), starting in the mid 1970s.

As a baseline, consider that some of the early PCs featured micropro-
cessors from the beginning Intel 8-bit microprocessor range. The Intel
8080, released in 1974, had a 2 MHz clock frequency, 4500 on-chip tran-
sistors and a line width of 6 um (about an order of magnitude smaller
than the breadth of the human hair). Contrast this to the 8080’s succes-
sor, the Intel 8086 released in 1978. It had an initial clock frequency of 5
Mhz, 29000 transistors and a 3 pm feature size. At the heart of this ex-
treme development was Intel Co-founder Gordon E. Moore, who in 1965
had made the observation that the complexity for minimum cost was dou-
bling every year*”. The later emendation that the number of components
per chip was expected to double every other year® has since proven to be
a remarkable accurate prediction. It is aptly know as “Moore’s law”.

For the first four decades this trend was driven almost solely by the
continued minituarization of the transistor and the resulting increased
clock frequency. By the mid 2000s the frequency had hit 3.8 GHz with
Intel’s Pentium 4 line of microprocessors.” With an end-of-line feature
size of 65nm, the Pentium 4 architecture was troubled with very high heat
output, nearing 100W when stressed.

This lead to the introduction of multi core microprocessors, where the
focus turned from “race car”-like raw speed to parallel computing for in-
creased performance. The Intel Core 2 line of processors had from two to
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1. INTRODUCTION

six on-chip cores that could be utilized for parallelization.

Adding several slower clocked computation cores to the microproces-
sor die have given us the benefit of still being able to uphold Moore’s
law with respect to the transistor count. However, the addition of more
cores have put greater demands on the software programmer, in that par-
allel data algorithms cannot rely on data being synchronized across cores.
Some software problems are also not easily parellelizable, so there isn’t
always beneficial to add more cores to a processor. At this time of writ-
ing (spring 2017) the number of cores in consumer level microprocessors
are seldom over 8, with most models having 2 or 4 cores. 7 The fabrication
process used in commercial production sits currently at 14 nm,® with com-
panies soon to be pushing to 10nm processes.” The minituarization of the
transistor is expected to end somewhere around 5 nm, where the tran-
sistor’s gate has become so narrow that quantum mechanical tunneling
becomes a major issue.

The goal of having biennual doubling of performance are now pur-
sued differently from what is was in earlier decades. Currently, the semi-
conductor industry are trying to uphold Moore’s law not only by minituar-
ization and by adding more cores, but also by large architectural changes
in the design of processors. A nonexhaustive list of such additional changes
include:” less heat dissipation per transistor through advanced material
design, making it possible to increase the lateral transistor density; more
efficient macrostructures in the chips, leading to shortening of transmis-
sion lines between computation blocks; more dedicated function blocks
embedded within the chip, decreasing the number of clock cycles spent
per instruction; higher and faster cache levels and more efficient memory
caching; faster peripherals, like faster random access memory (RAM) and
hard drives.

The advent of the PC in the mid 1970s and the extreme improvement
of the underlying technology has truly changed the way people work, are
entertained and how we interact with each other. Over the last decades
we have seen yearly leaps in performance and continued miniaturization
of electronics, not only for the PC, but also for embedded electronics. The
hand held devices of today all rely on battery powered multi-core proces-
sors with such a high performance one could only dream of just a decade
ago. This has facilitated huge changes in our daily lives and on modern



1.2. Spintronics

society as a whole.

In a way, the technology of today feeds its own progress, as a dou-
bling of performance leads to increased potential applications and chance
of new discoveries. The modern day physicist can utilize the new gained
performance to investigate bigger and /or more complex systems. Hence,
it should be argued that it is in Physics” best interest that researchers fo-
cus on improving solid state computing technology. As discussed above,
the feature size of the transistors are likely to hit a limit in the near future.
However, this comes as no surprise to our community where thousands
of researchers have for already decades been working hard on finding and
engineering new technology. One such field of research is in spin trans-
port electronics, better known as spintronics, where we seek to gain control
over the intrinsic spin of particles, both in isolation from and in combina-
tion with manipulating the electronic charge of them.

1.2 Spintronics

The orbital moment of particles is analogous to the orbital moment of a
planet around a star, and the intrinsic spin of particles can conceptually
be compared to a planet’s rotation about itself. However, the quantum
nature of particles dictate that the intrinsic spin is itself quantized. %" Ele-
mentary particles are spin-%, meaning that the projection of the spin along
a chosen measurement direction can take two values, usually referred to
as “spin up” and “spin down”. Manipulating the spins of individual par-
ticles is certainly possible, but in this thesis I will focus on what happens
when multiple spins correlate.

The spin of localized electrons in a material can interact with neigh-
bouring spins through the quantum mechanical exchange interaction orig-
inating from the Pauli exclusion principle.!1/12 In some materials the ex-
change interaction favors parallel alignment of the spins, resulting in a
spontaneous breaking of symmetry. This is what we call ferromagnetism.
From quantum mechanics we also know that the spin of a particle couples
with magnetic fields, i.e. the particle spin has an assosciated magnetic
moment. If the spins in a material align spontaneously, then the result-
ing nonzero total magnetic moment per unit volume is what we call the
magnetization of the system. It is this magnetization we are interrested
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in manipulating, either directly by externally applied classical magnetic
fields or by using some more novel effects from spintronics.

The birth of spintronics can arguably be attributed to the discovery of
the Giant Magnetoresistance (GMR) effect. GMR was discovered indepen-
dently by Fert!3 and Griinberg!4, for which they both were awarded the
Nobel prize in Physics in 2007. The turnaround time from initial discov-
ery in 1988 to commercial application in 1997, in the form of read heads in
magnetic disc drives, was almost shockingly short.1> Even though solid
state drives (SSDs) based on conventional electronics have more or less
taken over the consumer market for storage, disc drives are still impor-
tant in storing large collections of data. This is because of the data density
and the non-volatility of such drives.

The GMR effect occurs in spin valve structures, i.e. ferromagnet (FM)-
normal metal (NM)—ferromagnet stacks. If one of the ferromagnets is en-
gineered to be more rigid than the other layer, by means of exchange pin-
ning to an adjoining antiferromagnet via the exchange bias effect1® or be-
cause of it having a larger coercive field than the other FM, the magnetiza-
tions in the ferromagnets can be made to align or dealign by applying an
external magnetic field. When electrons pass through the stack they will
be spin polarized by the spin-split band structure in the ferromagnets. If
the two ferromagnets are antialigned, the electrons are more likely to scat-
ter when crossing the interface from the NM into the second FM. Relative
to the aligned case this causes an increased electrical resistance across the
spin valve. Another refinement of the GMR effect include the use of an in-
sulating layer sandwitched inbetween the ferromagnets, creating what is
known as magnetic tunnel junctions and where the magnetoresistive effect
is suitable named the funnel magnetoresistance.!

The spin transfer torque (STT) effect was independently predicted by
Slonczewski 8 and Berger 1. If a spin polarized current enters a FM with
the electron spins noncollinear to the magnetization direction in the FM,
the electron spins will start to precess around the equilibrium direction.
Within a short material characteristic spin coherence length the spins will
have dephased with one another.?’ Hence, the spin component perpen-
dicular to the FM’s equilibrium magnetization direction is effectively ab-

IThe TMR effect was actually discovered before the GMR effect, but was forgotten
until the early 90s. "
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sorbed. This acts as a net torque on the magnetization. If the spin polar-
ized current is strong enough, the torque will make the FM’s magnetiza-
tion precess with a larger cone angle around its equilibrium direction, and
eventually switch into the opposite direction.?! One demonstrated appli-
cation of STT is in switching the magnetization state of the less rigid (free)
layer in a spin valve by passing a current through the structure. This cre-
ates the possibility of using a spin valve as a memory device, where the
alignment of the free and fixed layer can be thought of as a classical bit.
RAM technology based on STT, so-called STT-MRAM, is currently one
of the fastest RAM technologies out there, both in achieveable read and
write bandwidths.”

It was later understood that there is an inverse to the STT effect; when a
precessing FM is brought into contact with a NM, electrons that are either
travelling through the FM, or are reflected off an FM-NM interface, pick
up and carry away angular momentum from the FM. This effect is known
as spin pumping (SP).?2726 One of the side effects of spin pumping is the
induced enhancement of the damping of the magnetization’s precessional
motion. This effect is well studied for the case of uniform magnetization
within the FM.?%23 If the magnetization within the FM is spatially and /or
time dependent the effect of SP can be harder to predict, and this is one
of the main topics of this thesis.

Magnonics

In the field of Magnonics,?” dynamic excitations of the magnetization around
the equilibrium are studied. If such an excitation is phase-coherent in the
FM we call it a spin wave (SW)?8. The characteristics of spin waves de-
pend on several factors: the shape of the FM, any applied external mag-
netic fields (static or dynamic), long range magnetic dipolar interactions,
local material properties and interfacial interactions with other materials
(like STT and SP described above). All these properties combine to create
spectra of spin wave eigenmodes within the ferromagnet.?’ The field of
magnonics is not new in itself, as there was alot of activity in the 1950s
through 1980s, but activity within this field of research picked up again
as the spintronic effects were discovered.

Probably the most common material in use in the study of magnonics
is the ferromagnetic insulator (FI) yttrium-iron-garnet (YIG), which is a syn-
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thetic crystal in the garnet family. The main reasons for the widespread
use of YIG is because of its low intrinsic damping, orders of magnitude
weaker than in metallic ferromagnets. Another remarkable property is
that when YIG is put in contact with a normal metal, the local magneti-
zation dynamics close to the interface couple to the spins of conduction
electrons in the NM that are reflecting off of the FI-NM interface.?” There
has been renewed interrest in magnonics because of this discovery. It
was shown experimentally that a travelling spin wave can be excited at
one location using STT and detected somewhere else using the SP effect;
the intermediate signal carried by a pure spin-wave signal with no trans-
ported charge carriers. This creates opportunities for isolating charge and
spin, and possibly also for creating new devices based on pure spin-wave
technology.



2 Magnetism in Solids

This chapter focuses on some prerequisites for discussing magnonics and
spin wave dynamics in layered structures. Both relations from classical
and quantum physics are needed, as the semiclassical models used in later
chapters lean heavily on these basic concepts.

2.1 Relations from Classical Electrodynamics

We recall that classical electrodynamics are governed by Maxwell’s equa-

tions 231
V-B =0 VxH= + !
. , TJ —=r o
10B ’
V.-D=4r VXE=— ——
or x cot’

where B is the magnetic field, H is the free magnetic field, E is the electric
field, D is the electric displacement field, and J is the free electric current
density. The H- and D fields are defined through the relations

B=H+47M, D =E+4nrP, (2.2)

where M is the material’s magnetization and P is the electric polarization
of the medium. I will defer discussing the electric field until Sec. 2.5.4.

The magnetic dipole moment is a pseudovector classically defined with
the help of the free current density

1
n= f ke J(r) dr (2.3)

where c is the speed of light and r is the position vector. The simplest
example is a current loop, giving p = %, where |A| is the enclosed area

9
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of the loop, the direction A = A/|A] is normal to the loop plane given by
the right hand rule from the current’s circulation direction, and I is the
circulating current’s magnitude.

Most often, it is more appropriate to work with the dipole moment
density, the magnetization, given by

1
M(r) = 51 x J(1), (2.4)

which is the term under the integral sign in Eq. (2.3),
A magnetic moment in a magnetic field, B, experiences a torque

oL
T:W:yxB, (2.5)
where L is the assosciated classical angular momentum. This torque is
acting to align the magnetic moment with the field. The force experienced
by a dipole moment p in a field is given by F = V(p - B), so the potential
energy of a dipole moment in a magnetic field is given by

Now, the dipole field, B; = B;(r), emanating from a dipole moment itself
is given by

which together with Eq. (2.6) implies that a magnetization experiences a
non-local dipole-dipole interaction between different points in the mag-
netized body. This is explored in greater detail in Sec. 2.5.2 as well as in
Chapter 3.

2.1.1 Free Energy

The Helmbholtz free energy of a system is the Legendre transform of the in-
ternal energy of the system F = U(S,p) — TS, where S is the entropy and
T is the temperature.3? Through the definitions in Egs. (2.3) and (2.4), the
free energy density is a function of the system’s magnetization. Thus, the
total free energy of the system becomes a functional of the magnetization,
written as F = F[M]. Because of Egs. (2.6) and (2.2), the classical H-field
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can be extracted from the total free energy functional by means of a vari-
ational derivative

_ O0F;M]
H=-" 2.8)

This fundamental relation comes in handy when discussing the different
effective field contributions in a dynamic, magnetized system in Sec. 2.5.

2.1.2 Boundary Conditions

Integrating Maxwell’s equations over a small pillbox volume straddling
an interface and letting the pillbox thickness across the interface tend to
zero provides the boundary conditions required by the equations. For
magnetic fields these are

H|=H),  Bf=B3, (2.9)

where the indices denote the two sides of the interface, L (]|) denotes the
field component perpendicular (parallel) to the interface, and the B; fields
are given by Eq. (2.2).

2.2 Relations from Quantum Mechanics

An object moving around some point of reference is said to have orbital
angular momentum wrt. to that point. Elementary particles also have
an intrinsic angular momentum known as spin, 9110 of which the classical
analog is an object’s spin about its own center of mass. A typical classical
example is the earth revolving around the sun (orbital) while at the same
time rotating about itself (spin).

Let us recapitulate some key concepts learned in elementary quantum
mechanics.333*. Quantum mechanics tells us that the spin angular mo-
mentum of particles is S = #y/s(s + 1), where # is the reduced Planck
constant, and where the spin quantum number, s, must be a half integer:
s=0, %, 1, %, ... determined by the type of particle. Measuring the spin of
a particle along any given direction gives us the spin component S; = hm,
where mg € {—s,—s+1,...,5s —1,s}. In a cartesian basis, {S;}, the commu-
tator relation between individual spin components is given by

[Si,S'] = ihgi]'kSk (210)

11
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where ¢;;; is the antisymmetric Levi-Civita tensor.

Like in the classical case (see Eq. (2.5)), a quantum mechanical angular
momentum is accompanied by a magnetic dipolar moment. For the a free
electron, the dipole moment is simply proportional to the spin

_ e 8slusl _ eh
s =—7S= 7 S, |,”B|—2mec

) (2.11)

where e is the elementary charge, m, is the electron mass, and c is the
speed of light, and g5 =~ 2 is the electron’s g-factor. For an electron in an
atomic orbital both spin and orbital angular momentum contribute. The
dipole moment assosciated with the orbital angular momentum is

_ 8wl
WL = h

L (2.12)

where we typically have g; = 1. The dipole moment assosciated with the
total angular momentum, J] = L + S, becomes

B _g;lptBl ~ § N ss+1) =I(l+1)
W= 8 x g G+

(2.13)

where g; is known as the Landé g-factor which is found using perturba-
tion theory. s, [ and j are the quantum numbers assosciated with the spin,
orbital and total angular momentum operators.

2.3 Atomic Magnetic Moments

Some materials have large magnetic moments, and thus interact strongly
with magnetic fields. If the angular momentum of each atom in the bulk
structure of a material does not interact with one another, the material
would exhibit paramagnetic behaviour.3> Upon applying an external mag-
netic field, each atom’s dipole moment aligns with the field direction, but
the magnetic order disappears when turning of the field due to thermal
fluctuations.

Good examples of atomic elements with a finite dipole moment can
be found among the transition metals, where the 3d atomic orbitals con-
tribute to the angular momentum. An Fe?" ion, with its 24 electrons, has
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aband filling of 15?252 2p®3s? 3p® 34°. The 3d subshell has quantum num-
ber n = 3 and orbital quantum number / = 2 with the azimuthal quantum
number m; € {—2,-1,0,1,2}. These 5 orbitals give 2(2/+1) = 10 different
single electron states. Considering that there are (}2) = 210 possible ways
of putting 6 electrons into the 10 different states, the question becomes:
what spin state do these electrons organize them into in the ground state?
Applying Hund’s rules to the case of Fe?*, we find:

1. Maximize the total spin angular momentum, S. 5 electrons fill
into different orbitals so as to align their spins. The sixth electron
must have opposite spin because of Pauli’s exclusion principle. The
total spin of the ground state becomes S;,; =5 - % - % =2

2. Maximize the total orbital angular momentum, L. From the first
rule, we know that 5 of the electrons occupy all the different m;
states. Their orbital angular momentum sums to zero. The total
orbital angular momentum is thus maximized by having the sixth

electron occupy the m; = 2 orbital with spin down m = —%. Thus,
L = 2, designated as D (from the word “diffuse”) in spectroscopic
notation.

3. The subshell is more than half-filled, so Hund’s 3rd rule dictate that
the total argular momentum should be maximized, giving | = L +
S=4.

Hence, the ground state of an Fe** ion is ZSatl]; = 5D,. Using these

quantum numbers the dipole moment of a single Fe*" ion, using Eq. (2.13)
becomes y; = 6.7ug. This is only applicable to an isolated ion, and not
correct for metallic Fe. When several Fe atoms combine to form a crystal
structure the outer orbitals form metallic bonds with electrons in neigh-
bouring atoms. These electrons become part of the conduction band and
are shared in the crystal. In metallic Fe the orbital angular momentum of
the 3d electrons is quenched by the crystal field of the surrrounding Fe
atoms. The dipole moment per ion in bulk Fe is therefore lower in value
than for a single Fe atom. It is found by experiment to be i ~ 2.2p.

If the magnetization of a material is proportional to the applied field,
we say that the material exhibits linear susceptibility, where the suscepti-

13
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bility is defined through the relation
M = yH. (2.14)

Because individual moments must fight thermal fluctuations it was ex-
pected that the susceptibility should diminish at increasing temperature.
Pierre Curie showed us that the susceptibility of a paramagnetic material
is inverse proportional to the temperature, y = C/T (known as Curie’s
law), with C being Curie’s constant. For non-interacting dipole moments
in a paramagnetic material with total angular momentum quantum num-
ber | in a weak magnetic field (high temperature), the Curie constant is
approximately given by

C AN pp)* ] + 1)

% (2.15)

where kg is Boltzmann’s constant, N is the number of (atomic) dipoles and
g7 is the Landé g-factor from Eq. (2.13).3%34

2.4 Ferromagnetism

Adding an intrinsic molecular field to the magnetic B field when deriving
Eq. (2.15), leads to the Curie-Weiss law

C

X=F oy (2.16)

where O is the Weiss critical temperature. This relation describes ferro-
magnetic materials in the paramagnetic region above the ferromagnet’s
symmetry breaking phase transition. In real ferromagnets the critical
temperature, the Curie temperature T, of the phase transition have been
shown to be lower than the theoretical predictions following Curie-Weiss
law.

Below the critical temperature a ferromagnet spontaneously develops
magnetic order, even with no externally applied field. In a ferromagnetic
material, localized spins align with neighbouring spins to form magnetic
Weiss domains.>®2 When an external magnetic field is applied the bound-
aries between the domains, the domain walls, move in such a way that the
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field aligned domains grow in size while the others shrink. The result is
that the apparent susceptibility of ferromagnetic materials is much larger
than it is for pure paramagnetic materials. Because of the spontaneous
order existing in ferromagnets even with no externally applied field, they
exhibit memory in the form of hysteresis when switching the direction of
the applied field from one direction to another. The coercive field is the
field strength required to demagnetize a ferromagnet when the ferromag-
net has already reached its saturation magnetization.

We will now have a look at the mechanism that is normally attributed
to causing magnetic ordering, the electrostatic exchange interaction.

241 Magnetic Order Due to Exchange Interactions

The symmetry of wave functions under coordinate exchange of two elec-
trons’ with overlapping orbitals were first considered by Heisenberg!!
and Dirac'?. To understand how such a coordinate exchange can lead
to magnetic order, consider an example system of two interacting atoms
with two electrons, the simplest example being the H,-molecule. The to-
tal Hamiltonian of the system can be modelled as

H=H, + H, + Hiy, (2.17)

where M, describes the interaction between the atoms, and /{; is the sin-
gle atoms” Hamiltonian when they are separate from eachother. In the
following we neglect the effect of the interaction Hamiltonian on the in-
dividual spatial wavefunctions, ¢, and ¢,, and assume that they are un-
changed. If one electron is located at the coordinate r; and the other at
15, the total spatial wave function can be described as either symmetric or
antisymmetric with regards to interchange of the two electrons’ positions
(r; & rp). We define

1
Ps(rq,1p) = E[gol(rl)goz(rz) + @1(1)@o(r)], (symmetric) (2.18a)

1
Pa(ry, 12) = —[@1(r))Pa(r) — @1(r2)Po(r1)].  (antisymmetric)

V2

(2.18b)

15
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Similarly, the spin state of the system can be either antisymmetric or sym-
metric,

A1
1 1
X1l

where x;, denotes a total spin state with electron 1 having spin up (1) and
electron 2 having spin down (1), etc.. Thus, the triplet (T) states {xs} have
total spin number S = s; + s, = 1 while the singlet (S) state y4 has total
spin number S = 0.3

Pauli’s exclusion principle demands for a fermionic system that the
total wave function, ¥ = ¢(rq, 1,)x, of the system must be antisymmetric
upon interchange of the two eletrons’ state. Thus, combining the singlet
and triplet states with the opposite symmetric spatial wavefunction give
the possible total wave functions Y5 = ¢5x4 with assosciated energy ¢ =
eggand Y1 = g xs with e = er.

The total spin operator S = S + S, gives

S?Ys =0
S2Yr = h2S(S + 1)¥p = 212 ¥y (2.20)
Thus the Hamiltonian in Eq. (2.17) can be written as
M =g+ 082 (221)
—eg + STZ;;S (S2+S, +28,-S,)
:3£TZ i gTh_Z‘gss1 .S, (2.22)

where we have used the fact that electrons have spin quantum numbers
51="5, = 1.

Aside from the constant energy level term in Eq. (2.22), we see that
the interesting physics stemming from the direct exchange is contained
within the spin—spin interaction term. This term is the exchange Hamil-
tonian of the system, and is usually written as

Hex =—JS1-Sy, (2.23)
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where | > 0 favors parallel alignment of the two electron spins, while
J < 0 favors antialigned spins. | depend on the interaction Hamiltonian,
Hie and the overlap and specific details of the atomic orbitals contained
in @1 and ¢,.

Extending this to a many-body system with more than two electrons

and atomic nuclei is highly non-trivial. Nevertheless, the Heisenberg Hamil-

tonian®’,

1
H=-3 > JijSi-S;, (2.24)
ij

which sums doubly over all possible electron spin pairs, gives good in-
sight into how magnetic order can be achieved in a bulk material. Fur-
ther details on the extension from the simple two-atom system to a gen-
eral many-body system is beyond the scope of this thesis. However, it
should be noted that in many materials the direct exchange mechanism
in Egs. (2.23) and (2.24) is not enough to explain the magnetic order alone.
For the metallic transition elements like Fe, Ni, Co, the Stoner band model
is usually employed for the intinerant electrons. The density of states for
spin up and spin down species electrons is shifted with respect to one an-
other.®® In other crystaline materials, indirect exchange effects can also be
responsible, of which the most prominent examples are:

* The Ruderman—Kittel-Kasuya—Yosida (RKKY) interaction, which oc-
curs in metallic systems where the conduction electrons become
spin polarized through the dipole-dipole interaction at one location
and carries net angular momentum to another distant site. %%

¢ The double exchange interaction, where intermediate non-magnetic
atoms or ions, effectively transmit a spin from one higher valency
ion to another smaller valency ion of the same element.*’

¢ The Superexchange interaction, which is similar to the double ex-
change, but where the ions on either side of the non-magnetic ion
have the same valency.*'"* This result in antiferromagnetic cou-
pling of the spins across the mediating ion.

17
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The ferromagnetic insulator Yttrium-Iron-Garnet

As mentioned in Chapter 1, the ferromagnetic insulator that is most often
used in magnonics is Yttrium-Iron-Garnet (YIG), Y3Fe, (FeOy);. YIG is
a complicated synthetic crystal with 160 atoms per unit cell (24 Y, 16+24
Fe and 96 O), where Fe>" ions occupy two different coordination sites; 16
in octahedral and 24 in tetrahedral sites.*>*8 Because the magnetic mo-
ment of YIG originates from the Fe>* ions we need to know the ground
state of the ions. Fe>' ions have a structure close to that of Fe; the first
two electrons are removed from the orbitals with the highest quantum
number 7, i.e. the 4s orbitals, and the third electron is taken from a 3d
orbital. The ground state is altered slightly from the case of Fe?* ions
shown above to 6Ss,,. The Fe>* ions on different coordination sites cou-
ple through the superexchange interaction, meaning that the spins in the
two coordination sites antialign to one another. What is important here
is that for every two ions in the octahedral site there are three ions on
tetrahedral coordination sites with antialigned spins. Thus the theoreti-
cally expected magnetic moment per unit cell of YIG should be equal to
eight Fe>™ ions, which due to the ground state being an S-state (L = 0) the
dipole moment is given from the total spin ] = S;; = 5/2. Using Eq. (2.11),
we find ptyig = 8-5up = 40up, i.e. the dipole moment per unit cell, where
we have used ¢g = 2.%° Because of the finite magnetic moment of the YIG
unit cell, and the localized magnetic moments, it is usually modelled as a
ferromagnet with cubic symmetry.

2.5 Precessional Motion and the
Landau-Lifshitz-Gilbert Equation

Consider the classical model of a charged object having angular momen-
tum J. Using Eq. (2.5) and the classical analogue to Eq. (2.13), u; = -],
we find the equation of motion to be

d
LY (2.25)

which describes right-handed precessional motion around the axis of B.
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Now, consider a magnetic moment originating from spin angular mo-
mentum alone, e.g. from atomic moments where the electrons in the
atomic orbitals organize into a state with total orbital momentum equal to
zero. If this moment is subjected to a free magnetic field, H. The Zeeman
energy gives us the Hamiltonian

H=-pn-H=9S-H, (2.26)

where Eq. (2.11) was used to express the dipole moment using the spin
observable, S. Efhrenfest’s theorem states that the time derivative of the
expectation value of a quantum mechanical operator O is given by

4Oy [00\ i

Assuming the moment is in a steady state, (dS/dt) = 0, we find

a(s j
= =Ly HS).

dt
= — 1(S) x H, (2.28)

where Eq. (2.10) was used to write out and simplify the commutator. We
see that Ehrenfest’s theorem maintains that the expectation value of our
quantum mechanical observable, S, obeys the same equation as the clas-
sical system in Eq. (2.25).

If we take the leap and imagine several spins exchange coupled in a
volume, we can define our magnetization tobe M = —y > A8/ U, where
U is the volume of the distribution of moments, the dynamics of the expec-
tation value of S in Eq. (2.28) now becomes the equation of motion (EOM)
for the bulk magnetization,

aM
— = —yM x H. (2.29)
dt
This equation implies that d;(M - H) = 0 as well as oM? =0, meaning
that the magnetization precesses around the H field with constant angle
and constant length (see Figure 2.1).
In a real crystal, the magnetization will interact with the lattice vibra-
tions in the crystal structure, resulting in a dissipation channel. One of

19
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Figure 2.1: The magnetization M precesses around the H field.

the ways of modelling and adding such dissipation to Eq. (2.29) is by en-
suring that the magnetization will approach H over time. This is exactly

what Landau and Lifshitz> did by adding the term A;1\2 (H-H-M)M)

that points from M to H to the EOM, where A is the LL bdamping parame-
ter and M is the saturation magnetization. Using the vector triple prod-
uct identity the damping term is cast into a more modern format and the
EOM becomes

aM A
W:_’YMXH_Z\TgMX(MXH)' (2.30)
This equation is known as the Landau—Lifshitz (LL) equation.

A more rigorous approach was later employed by Gilbert®!>2 who
added a Rayleigh dissipation term to the Lagrange equations describing
Eq. (2.29). He showed that such a term would renormalize the H field in

the EOM,
a dM

YM, dt’
where « is the dimensionless Gilbert damping parameter. a is a mate-
rial dependent relaxation parameter, usually in the order of & ~ 1072
for metallic ferromagnets, while being exceptionally small in YIG, ay;g ~
3-10%

Inserting Eq. (2.31) into Eq. (2.29) gives us the Landau—Lifshitz—Gilbert
(LLG) equation

H-H- (2.31)

M MxH+ M ™M (2.32)
T M, ar '
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which describes damped precessional motion around the field, as shown
in Figure 2.2.

Figure 2.2: The magnetization M precesses around the effective field Hg
as described by the LLG equation. The magnetization spirals in towards
the equilibrium direction of the H field, keeping 9,M? = 0.

Extending Eq. (2.8) to a system where the total free energy of the sys-
tem contains other terms besides the potential energy term in Eq. (2.6)
that depend on the magnetization, gives us a definition of the effective
field that is seen by the magnetization

B O0F[M]

Mot = =5

(2.33)

In a ferromagnetic system, typical contributions to the magnetization de-
pendent part of the free energy are

FIM] = fd(fd(M> Lo (M) + £ (M) + £, (M) dr,  (2.34)

where f; = —M-H, is the non-constant part of the Zeeman energy density
(see Eq. (2.6) and Eq. (2.2)) from an externally applied field H,, f, is the
magnetocrystalline anisotropy energy density, f., is the exchange energy
density, and fy;, is the self energy density due to dipole-dipole interac-
tions within the ferromagnet.

Let us discuss these different energy contributions and calculate the
corresponding contributions to the effective field.

21
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2.5.1 Exchange Energy

The exchange energy between spins in a periodic crystal structure is given
by the Heisenberg Hamiltonian of Eq. (2.24), which can be rewritten to the
form M = Y, Fey ; where
1
Fex,i = _Si ' Z E]ijsjr (235)
92

is the exchange energy felt by one spin on site i due to the spins on sites j,
and J;; is the exchange coupling strength. Here, (j) indicates that we have
limited the sum over j to be a summation over only the nearest neighbors
for each site i. Using Eq. (2.11) we find that

Fex,i =—W- BeXI Bex = % Z]l]]"l] (236)
27 G

where B, is the effective exchange field due to all the neighboring spins
j, which is the same for all sites i given that J; = J.

Because the exchange interaction works to align the neighbouring spins,
in the continuum limit each p; in B, can be considered part of a slowly
varying semiclassical vector field, W = n). The sum over all the mo-
ments becomes ) o HIy) = > gy (T + 8;), where §; is the distance from
a site i to the nearest spins at site j. Expanding this expression to 2nd or-
der in §;, and summing over all the nearest neighbors, it can be shown
that the exchange field is of the form*’

B, = %VZM + 471AM (2.37)
ex Msz 7 .

where A, with units [A] = erg/cm, is known as the exchange stiffness,
which depends on the crystal symmetry, exchange coupling strength, |
and the g-factor through the gyromagnetic ratio . The second term is
akin to the Weiss molecular field. The dimensionless constant A is left
unspecified, as the second term in Eq. (2.37) will not contribute to the
effective exchange field, H,,, and it therefore does not affect the EOM. As
the interspin distance is small, the total contribution to the free energy
from the exchange interactions becomes

F, =- fu M - B,, dr, (2.38)
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and the effective field can be extracted by inserting Eq. (2.37) into Eq. (2.38)
and comparing with Egs. (2.6) and (2.8), or formally by taking the func-
tional derivative of Eq. (2.38) with respect to M. Either way, the exchange
field contribution to the effective field is

2A
H. = —V2M. 2.39
x = 31 (2.39)

The free energy contribution from the exchange field is usually written
in another form;* performing integration by parts on Eq. (2.38) over the
total volume U, we get

A
Fex = fu M2 ;NMk(r))zdr, (2.40)

where the summation is over the 3 cartesian components, and where we
have omitted writing out the boundary terms as they don’t contribute
to the effective field. To minimize the exchange energy, the curvature of

Figure 2.3: A spin wave propagating through a chain of spins.

the semiclassical field must be minimized. Excitations above the perfectly
parallel ground state must therefore be small local deviations from equi-
librium, or a spin wave if you will (see Figure 2.3 for an illustration).

23
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2.5.2 The dipole-dipole Self Energy

The self energy is a direct result of Maxwell’s equations and the dipole-
dipole interactions. The magnetic field emanating from a magnetic dipole
was given in Eq. (2.7). In the continuum limit, the magnetization in a
ferromagnet is a semiclassical vector field, M = M(r), and the total self
energy of the magnetization due to nonlocal dipole-dipole interactions
becomes

3 3(M(r) - (r—1")) (M) - (' — 1))  M(x) - M(r')
dep - _J.f[ |1'—I"|5 - |I'—I"|3

] drdr’.
1]
(2.41)

Using Eq. (2.33), we find that the dipole-dipole field is given by

B M) - (r—1"))(x'—1r) M(') ,
Hyyp = ja 3 T - r,|3]dr, (2.42)

which in general can be compactly written as

dep = 47T fu G — )M dr, (2.43)

where G is the 2nd rank dipole-dipole tensorial Green’s function.%->> I
leave the tensor unspecified for now, but will come back to it in the next
chapter.

2.5.3 Magnetocrystaline Anisotropy Energy

The magnetocroystaline anisotropy depends on the crystal symmetry, and
is often written out in power series of direction cosines wrt. the symme-
try axes.’® In YIG, the magnetocrystaline anisotropy energy is negligible,
specifically if the crystal is grown along the 111 crystal direction®”. For
completeness sake I list the simplest anisotropies that are occur in the lit-
erature:

Kyp M-¢,
faup = — (1 ~ M ) (2.44)
(M- ¢&,)?
faua = Kua (1 — —M; ) (2.45)
S
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where f, yp expresses unidirectional anisotropy with preferred direction
along e;, while f, ;4 is uniaxial anisotropy with an easy axis along &,. Let-
ting Kya < 0 changes €, into a hard axis, giving easy plane anisotropy
(except for an energy shift).

2.5.4 Maxwell’s Equations in The Magnetostatic
approximation

Solving the LLG equation in an infinite ferromagnet in the presence of an
external field and neglecting the Gilbert damping term, any anisotropies
and the exchange interaction, we expect the magnetization to precess around
the magnetic field. Hence we write the magnetization in the ferromagnet
as M = M; + m and assume that the H field will be similar of a similar
form, H = H, + h. Here, M|[H,, and m = m(t) describes the precession
around the static external field H,. h = h(#) results from m and is the
dynamic field due to dipole-dipole interactions in the ferromagnet.

Assuming that m can be described by a plane wave, m o e/(«!=k1),
and that [m| « M, we linearize the LLG equation in the dynamic fields,
finding

—iwm = —yZ x (M;h — H,m), (2.46)

where Z = H,/H, is the direction of the static field. Solving this equation
for the small signal dynamic field m it is trivial to show that m o h, mean-

ing that the total field can be written as M = ) - H, with the susceptibility
tensor given by

W Wiy iwwy,
A (wiH—-w?)  4An(w¥—w?)
x 4wy —w?) AT (wh—w?) ok 247
0 0 1

where wy; = 4t yM, and wy = yYH,. The denominator, wlz_l — w? is the

resonance condition of the ferromagnet. This result is the basis for the ex-
perimental technique ferromagnetic resonance where a ferromagnetic sam-
ple is placed inside a resonance cavity and driven into precession around
an externally applied field by tuning of the external field strength.

With the plane wave ansatz above, the susceptibility from Eq. (2.47),
assuming no free currents (because we are dealing with a ferromagnetic
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insulator) and assuming isotropic permittivity D = ¢E, the Fourier trans-
formed version of Maxwell’s equations, lead to wave equations for the H
and E fields in the fourier components k. It is outside the scope of this
thesis to calculate and list all the bulk solutions, but it can be shown?’
that the wave number k must fulfill certain conditions depending on the
relative orientation of k with respect to the equilibrium direction of the
externally applied field. For the two limiting geometries of k || H, and
k L H,, each dispersion relation w = w(k) splits into two branches; one
that is asymtotically linear in k and one that converges to a constant.

Because the linearly assymptotic branch has a much higher frequency,
and hence a higher excitation energy, than the other branch as k grows,
certain simplifications can be made. From the Fourier transformed ver-
sion of Maxwell’s equations it can be shown that for the branch with low-
estenergy E(k) ~ k=2 ask grows, thus going quickly to zero. With this ob-
servation, we know that we only need to solve Maxwell’s equations with
E = 0 if we are only interested in the dispersion that is the lowest in en-
ergy. In this limit, Maxwell’s equations simplifies to

V-(H+47M) =0, VxH=0, (2.48)

which is known as the magnetostatic approximation.

With all the fundamental bulk properties now in place, the following
chapter turns our attention to what changes need to be made when transla-
tional symmetry is broken, i.e. when we introduce interfaces and surfaces
into the system.



3 Spin Waves in Thin-film
Structures

When moving from a bulk ferromagnetic system into a thin-film ferro-
magnetic structure certain finite size effects appear. In this chapter I will
discuss how the finite transverse size of the thin film changes the equa-
tions set to be solved. An important part of this is how the dipole-dipole
tensor introduced in Sec. 2.5.2 is calculated for a thin film in the magneto-
static approximation (see Sec. 2.5.4).

When introducing interfaces for a precessing ferromagnet the LLG
equation itself demands that certain boundary conditions are fulfilled.
This amounts to conservation of spin angular momentum at the inter-
faces. Because of this, the spintronic interface effects of spin pumping
and spin transfer torque starts to affect the dynamics of the ferromagnet.
After having dealt with the dipole-dipole tensor, these interface torques
will be explored and finally the appropriate boundary conditions will be
determined.

3.1 Thin film magnetization dynamics

In Chapter 2.5 we found the equation of motion for a magnetization in a
bulk ferromagnet. Let us now focus on what happens if we break transla-
tional symmetry in one direction. Consider an insulating ferromagnetic
thin-film of thickness L, where by “thin” we mean the order of um and
smaller.

The natural coordinate system of the film (see Figure 3.1) is chosen to
be such that € is the film’s outward normal while 7j and  define the plane
of the film. {#{ form aright handed coordinate system. We take the origin
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to be in the middle of the film, and choose ¢ = —L/2 to be the location of
the substrate interface, while ¢ = L/2 is the location of the normal metal
interface. Let us further set the thickness of the normal metal capping
layer to be d thick.

Figure 3.1: An illustration of a thin NM layer (in yellow) stacked on top of
an FI film (in blue), where the natural coordinate axes of the stack geom-
etry is overlayed on top. Here € is the film normal, while  is the internal
field axis. y is always kept in-plane, regardless of the value of 6, while x
tilts out-of-plane when 6 # 0.

Let us apply an external magnetic field, forming an angle 6, with the
film normal ¢ and a projected angle ¢ with the in plane { axis. It is then
parametrized by the two angles as

H, = H,(cos 6,& + sin 8, cos ¢ + sin 6, sin ¢i}). (3.1)

Assuming that the external field is strong, such that the magnetization,
M = M(x, t) in the continuum limit, is close to saturation. Hence,

M(r, t) = Mg + m(x, t), (3.2)

where m - M = 0, and where we have |m| < M.

The logical question to ask next is: in which direction does the static
magnetization, M, point? Through the dipole-dipole interactions the
external field will induce a static demagnetization field in the ferromagnet.
LetH; = H;z, with H; > 0, be the field inside the ferromagnet, and assume
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that it forms an angle 6 with the & axis. The boundary conditions required
by Maxwell’s equations (see Eq. (2.9)) gives>*

H,cos 6, = (H; + 4tM;) cos 0, (3.3a)

H,sin6, = H; sin 6. (3.3b)

Hence, for 6, = 7t/2 (in-plane applied external field), H; = H, and 0 = 6,,
meaning that there is no shape anisotropy in this geometry. For 6, = 0
(perpendicularly applied external field) § = arccos(H,/(47wM;)) when
H, < 47M; and 6 = 0 otherwise. Ensuring that the applied field is large
enough so that we get the latter case, we find that H; = H, — 47wM;. For
the general case of intermediate angles, 6, € (0, 77/2), the internal field
forms an angle 6 > 6, with the film normal, and both the direction and
angle must be calculated from the equations above.

The dynamic magnetization component m(r, t) is in the transverse xy
plane. As can be seen in Figure 3.1, we keep the y axis confined to the 1{
plane. For 6 = ¢ = 0 the directions are y = #j and X = —{; for 6 = 71/2 we
have x = ¢ while § = 7j for ¢ = 0 or § = — for ¢ = 77/2." The transforma-
tion between the two coordinate systems is found in Appendix A.

3.1.1 In-plane Spin Waves in the Linear Response Regime

Let us refine our assumption about the dynamic magnetization m from
Eq. (3.2) to include a plane wave moving along the { direction,

m(r, t) = mg (&) el (wt=Q0) (3.4)

where Q is the in-plane wave number, w is the frequency of the wave, and
m, is independent of { and . The vector part can be written as

m,(§) = Xo(§)X + Yq(4)y, 3.5)

where X and Y, are related to one another through the LLG equation
throughout the bulk material, and through appropriate boundary condi-
tions at any interfaces.

IKalinikos’ choice of axes labels is a bit untraditional and hard to grasp at first. The
power comes from not having to deal with the confusion that often occurs when different

authors use both marked, x'y’z’, and unmarked coordinate systems, xyz, and the choice
of the axes in relation to the film changes between every journal article on the topic.
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3.1.2 The Dynamic Demagnetization Field

As we have already accounted for the static demagnetization field by em-
bedding it in the internal field, we need only focus on the shape of the dy-
namic field stemming from the dipole-dipole interaction (see 2.5.2). The
general form of the effective field contribution from this interaction was
given in Eq. (2.42). This result can be refined by taking the thin-film ge-
ometry into account as well as the simplifications of Maxwell’s equations
in the magnetostatic approximation (see 2.5.4. We follow the approach of
Kalinikos*®>*, and assume that the induced field is of the same shape as
m, h,(r,t) = ho({) - e!(@t=Q8) Maxwell’s equations give

V- (h; +4mm) =0, Vxh; =0, (inside) (3.6a)
V-h,; =0, Vxh; =0. (outside) (3.6b)

Because the field in Eq. (2.7) goes quickly to zero when moving away from
a dipole, the dipole—dipole effective field must also decay away from the
ferromagnetic film. Thus, limg_, +oohg = 0.

Writing m and h; in the {7 coordinate basis, Eq. (3.6) leads to the set
of coupled differential equations

o,y =0, (3.7a)
i dho¢
hQ,{f —67, (37b)
dh dm
Qs . : Q8
? — lQhQ/g =47 (lQmQ,g - ?) P (37C)

where the first equation is obvious when considering the translational
symmetry along the 77-axis. Eliminating h,  from Eq. (3.7c) using Eq. (3.7b)
gives a second order differential equation for hg - that is readily solved
by the use of Green’s functions. Similar to Eq. (2.43), the result can be
summarized as

hoge (@) =47 [ G@E =8 moe@)dg, (3.8)
where the 2nd rank tensor g is given by

- G'(G—¢H =8¢ =¢) 0 —iGoC—¢N
G@E—¢)= 0 0 0 . (39
~iGRE-¢) 0 -GP(E-2)
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with the functions G” and GX are given by

GP(E - =9e Qg-=¢l (3.10a)
GR(E& -2 =sgn<f§ - -GP@-2). (3.10b)

The dipole-dipole field can be transformed into the xyz-coordinate sys-
tem by using the rotation matrix from Eq. A.4

ho(8) =T -hg &,z (3) (3.11)
=47 [ A T-GE@ =) T T mg () (3.12)
=4 [ g G @ - ) mo(@), (3.13)

where the transformed (j-tensor is given by

g<xy2> :T-g~T—1:T-g-TT

- saGee = CpS20Ge + 5¢5Gec =S 59955 +54C0C00cc
GV = —S<p599§§ + S(PC(P‘:@%@E , (PQ”CC
secoGee —S0coCp Gz + ¢ (55— ¢5) Ger  —SpC0Ger — SpS0ce et
Sacozz —SecaCelec + g (55— <) Gec
—S¢Coljec — SgSecplct (3.14)
oGz + 520000z + C455G¢¢

where I have used the notation s, = sin(x) and ¢, = cos(x). Because g is

a symmetric tensor and T is an affine transformation we see that g“‘yz) is
also symmetric. Because m is limited to the xy plane in the linear response
regime, only the upper left 2x2 part of the tensor in Eq. (3.14), given by

(xyZ) (xyz) )

O(xy) — Xy
g 4 ( (xyz) (xyz)

yx vy
( 5Gee — cp520Ges + 55Gcc  —5¢50Get 5y Ceggg), (3.15)
s 59955“ oCoGce splee

will enter into a linearized equation of motion.

31



3. SpiN WavEs IN THIN-FILM STRUCTURES

32

Spin Wave Dynamics in Different Field Geometries

Taking the directional dependence of the dipole—dipole tensor in Eq. (3.15)
into account, it is not surprising that the magnetization dynamics in a thin-
film ferromagnet is strongly dependent on the relative orientation of the
internal field H; with respect to the in-plane wave propagation direction
. The three main geometries consists of the # = 0 geometry and the
two in-plane (6 = 71/2) geometries where ¢ = 0 or ¢ = 7/2 (see Fig-
ure 3.2),5458-63

(@) (b) ©

Figure 3.2: Internal field direction, Z (green arrow), in relation to the wave
propagation direction { and the film normal . The three limiting geome-
triesare:a) @ = 0;b) 0 = r/2and ¢ =0;¢) 0 = ¢ = 71/2.

Traditionally, these spin wave classes are characterized by the appear-
ance of the transverse mode profiles m = m(¢) and the characteristics
of the group velocity, vy = dw(Q)/0Q, calculated from the dispersion
relations. Volume modes are modes where m,($) is spatially distributed
across the entire film, while surface modes are modes that are localized near
a film interface. Forward modes have positive group velocity, and backward
modes have negative group velocity for some values of QL. Combining
these traits, we arrive at the naming of the common mode geometries:

o Forward Volume Magnetostatic Waves (FVMSWs) appear in the per-
pendicular (¢ = 0) geometry (see Figure 3.2a).

* Backward Volume Magnetostatic Waves (BVMSWs) appear in the in-
plane (60 = 71/2) collinear (¢ = 0) geometry (see Figure 3.2b).



3.2. Interface Effects

* Magnetostatic Surface Waves (MSSWs) appear in the in-plane (6 =
71/2) transverse (¢ = 71/2) geometry (see Figure 3.2¢c).

3.2 Interface Effects

As described in the introduction (see Sec. 1.2), when a ferromagnet is put
in contact with a normal metal, angular momentum can be transferred
too and from the ferromagnet. These interface effects then appear on the
right hand side of the LLG equation (see Eq. (2.32)) as additional interface
localized torques.

3.2.1 Spin Accumulations and Spin Transfer Torque

A build up of a non-equilibrium spin accumulation in the ferromagnet’s ad-
joining normal metal can transfer angular momentum into the ferromag-
net. The mechanism for the generation of the spin accumulation can for
instance be the spin Hall effect,%® where spin—orbit interactions causes a
spin imbalance to develop perpendicularly to the electron current direc-
tion.

As was done by Brataas et al.?’, let us define the spin accumulation
to be half the difference in chemical potential for spin up and spin down
electrons in the normal metal material.

1
p =5 (W —p'), (3.16)

where the exponent ’(s)’ is to distinguish the spin accumulation from the
total chemical potential. The spin polarization axis, §, is used to make
the spin accumulation into a vector p® = u®)s. In the same way that
the local voltage is related to the potential energy, eV(© (¢’ is for charge),
where e is the electron charge, we can define the voltage due to the spin
accumulation tobe V© = u® /e = (u' — ')/ (2e). The electrical potential
as seen by spin up or spin down electrons is then given by V' = V(@) 4 V()
and Vi = v© _ )

If a spin accumulation exists in a normal metal in contact with a ferro-
magnet, a spin current develops across the interface, which will excert a
torque on the dynamic magnetization only if it is transverse to the magne-
tization. The transferred spin current can thus be decomposed into two
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transverse parts, and written as

Istt —

—ZeMsz [2G1R>M X (M X (V(S)g)) + 2GS_I>(M x (V(S)§))] , (317)

where GiR) and G(f) are the real and imaginary part of the spin mixing
conductance that describes the coupling of the spins over the interface.?%2
It has been found that Gim > G(lL) .57 As such, the following only uses the
real part, denoted as G, = GiR).

Eq. (3.17) is basicly a conductance times a directional voltage (from
the spin accumulation) converted from charge current to spin angular mo-
mentum current (spin current) by the factor #1/2e. Take notice of the pref-
actor 2 associated with the spin mixing conductance, which stems from
the fact that the spin accumulation in Eq. (3.16) is defined as half the dif-
ference in chemical potential.

With the transferred spin current density

h
jott & sty A = _mglM x (M xu®), (3.18)

where A is the interface area so thatg, = G, /A is the spin mixing conduc-
tance per unit area, the torque on the magnetization in the ferromagnetic
insulator due to the transferred spin current becomes

vh
e2M?

T = 10(¢ — &)™ = — §10(C =M x (Mxpul®), (319

where ¢; is the ¢ coordinate of the spin active interface.

3.2.2 Spin Pumping

It was discovered 872 and later quantitatively explained >~2° that if a dy-
namic ferromagnetic material is put in contact with a normal metal, the
magnetization dynamics will exert a torque on the spins of electrons in the
immediate vicinity of the magnet. In linear response, it can be shown that
the spin pumping effect is the inverse of the spin transfer torque. These
are related through what is known as the Onsager reciprocity relations.?

Both a scattering formalism and a dynamic magnetic susceptibility for-
malism can be used to describe the resulting pumped spin current.”374
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i*F

FI

NM

Figure 3.3: The precessing magnetization in the ferromagnetic insulator
causes a spin current, j°P, to be injected into the normal att the interface.

These formalisms give the same result and are thus equivalent. As the
electrons are carried away from the ferromagnet-normal metal interface,
the electrons spin with respect to each other, causing them to dephase.
This is seen as an overall loss of angular momentum from the ferromag-
net, and we say that a spin current is pumped from the ferromagnet (see
Figure 3.3). The spin current density is given by

'SP—L an—M (3.20)
= 202 M52 81 of ' :

This loss of angular momentum from the ferromagnet can be described
as an extra dissipation torque acting on the magnetization. It is similar to
the Gilbert term in the LLG equation (see Sec. 2.5), and is to be added to
the right hand side of Eq. (2.32). The torque acting on the magnetization
in a ferromagnetic insulator is due to the interfacial spin pumping, and is

written as 2 5
07 M
Tsp = mgﬂs(é‘ —CIMx —-, (3.21)

where g, is the spin mixing conductance per area, and ¢; is the ¢ coordi-
nate of the spin active interface.
Spin Accumulation Induced by a Pumped Spin Current

The pumped AC spin current is a 1st order quantity in the dynamic mag-
netization, thus proportional to M,z x aa_l? at the interface. The AC spin
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accumulation that is generated in the normal metal due to the spin pump-
. . . . A
ing is thus guaranteed to lie in the xy plane. Let m; = R { %_ﬂé:é} be

the time derivative of the dynamic magnetization at the interface. With
m; = |my| and m; = m;/|m,|, the AC spin accumulation can be written as

PRG = Mg (2 x 1), (3.22)
where yfé = u/(fé(gf, Z, 1.

The pumped DC spin current is proportional to m x aa—‘;‘, but in the
complex notation used earlier m = icwm so that this cross product appears
to zero. We must therefore be careful and calculate the physical, real spin
current R{m} x % = R{m} x R{m}. With Eq. (3.5), we find

JR{m}
ot

R{m} x =
¢=Gi

b ~ _
25 [3{XQIR (Yo} — R{XQ}IYo}lz—ze 2HHR (W), (3.23)
i.e. parallel to My = Mz, and independent of the { coordinate. The DC
spin accumulation due to spin pumping can thus be written as
nS = ul)z, (3.24)
where }4](3% = }1](3% (¢,t),and y](js)c is assumed to be a second order quantity
in the dynamic magnetization.
The total induced spin accumulation in the normal metal due to spin
pumping from the ferromagnetic insulator becomes

My = Hae + Bpes (325)

where the total spin accumulation must be proportional to M x d;M.

3.2.3 Spin Diffusion
The spin diffusion in the normal metal follows

ou's (s)
—”Sp = sz}‘é;) - ”Sp ’
Tsf

- (3.26)
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where 7 is the spin flip time in the normal metal.?> We have neglected
a term corresponding to precession of the spin accumulation around the
external field. The precession frequency is close to yvH,, depending on
the demagnetization field. Here H, is the applied external field. If spin
flip processes are much faster than the precession period, we can neglect
the left hand side as well as any precession terms, giving the simplified
equation

Vi ® B uéif [Ty (3.27)
where I = /Dt is the characteristic spin-flip relaxation length of the

normal metal layer. Inserting the spin accumulation, to second order in
the dynamic magnetization gives

(V2 =128 = (V2 —132) [ @ x i) + p522] = 0, (3.28)

so that by collecting vector components and using that yfé o 7% stem-
ming from the dynamic magnetization’s {-dependence, we get the two
differential equations

> > (s) -2..(8)
<_E) 22 + _852) Hac =I5 Hac (3.292)
> (s) 2.,(8)
272 ~5HDe lSf Hies (3.29b)

which both can be written as

9 (s) 2,,(s)
ér2],1 = lsf]y] (3.30)
where the index j is either 'AC” or 'DC’, with [pc = I and [gac =

I (1+ 12 Qz) ? which is the effective AC spin diffusion length.
Applymg Ohm’s law, j = ¢'E, in the normal metal, where ¢ is the con-
ductivity in the normal metal, the spin current along the ¢ axis becomes

ho a}i(s)
T2 98

(&) ~ (3.31)
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This spin current must disappear at the free surface of the normal metal,
so that j© (% +d ) = 0. Solving Eq. (3.30) with this boundary condition

gives
(s) _ (S)sinh(% [ﬁ B (If + d)])

where y;.,so) = y;s) (¢ = L/2) is time dependent, but depends on the ¢
coordinate only in the case of j = AC. This function must be determined
from spin current conservation at the spin active interface. Combining the
spin current from spin pumping (see Eq. (3.20)) with the back flowing spin
current due to the spin pumping induced spin accumulation (i.e. a spin
transfer, see Eq. (3.18)), the spin current balance at the interface becomes

" ngaMJr " Mx(Mx (S))]
2e2M2° T ot M2t g P
ho opd ()
o 55;6 , (3.33)
€ ¢=L/2
where ©
ho oW’ ho AR
— @ a—g = E coth (X) ,u]',sosi/ (3.34)
&=L/2

is found using Eq. (3.32).

Using the equations above and the fact that uéf’,) o M x d;M, which is
perpendicular to M, it is straight forward to show that the spin transfer
torque from the spin back flow has the same form as the spin pumping
torque. Thus, by solving Eq. (3.33) it is found that the presence of the
spin back flow from the adjacent normal metal layer renormalizes the spin
mixing conductance, giving

yh? L om
Tsp + Tof = mgﬂs (C - 5) My x =, (3.35)
where
5 2 {1 [1+ 7 th( a )T} (3.36)
= — —) CO . .
fL=8s 2¢, Iss ac Ist.ac
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This renormalization becomes significant if the spin mixing conductance
becomes large compared to o/ lsf, Ac, and should in such cases be accounted
for when estimating the spin mixing conductance from ferromagnetic res-
onance experiments.

3.3 LLG Boundary Conditions

Following the proceedure of Rado and Weertman 7>, we integrate the equa-

tion of motion in Eq. (2.32), with the added torques from spin pumping
and spin back flow, over a small pill box volume straddling one of the
interfaces (one ¢;)

—f [ “Sana—+7Mx(H +hd)]

2A h2 Jm
_ it ve! 5 S(F — EYM x O
fdpbdr[ Mx<M2V M) 262M52gl5((§ M x == |,

where we have used Eq. (3.2) to be able to write the time derivatives in the
equation of motion using the dynamic magnetization component. Letting
the thickness of the pill box go to zero, the volume integral on the left hand
side will disappear, leaving only the volume integral over the torques due
to the exchange interaction and the spin pumping

2A h? om
— = y2 —
fupb dr [ M x (Mgv M) > 2M2gl(5(§ GIMx == | =0. (3.37)
Writing out the cross product in the first term
M x V2M =E(M,V>M; — M;V2M,) + §{(M;V*Mz — MzV>M7)+
+ LMgV2M,, — M, V>Mp),

and applying Green'’s theorem 7

J, 2V [fv2g = gv*f] = | dsa-[fVg —gVf], (3.38)

the first integrand in Eq. (3.37) becomes

componentwise,

24 ) 24, M
_ATSszpbdr[Mva fds[ ]

871
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where dS = dSh is the surface element vector pointing out of the pill

box volume, so that %—“: is the derivative normal to the pillbox surface.

Eq. (3.37) now becomes

2

2A oM h
0=—-— ASM x — dS———=&, |M
M? Lpb ot Sid ZezMssz [ X

8m]
ot e=¢,

where Sg, is the whole surface of the pillbox, whereas Sy;q is the cross
sectional surface area of the pill box at { = ¢;. The first term gives a
measure of the continuity of the magnetization across the interface. Since
the magnetization is assumed to be zero outside the ferromagnet, only the
pillbox lid with normal into the film will contribute. Letting the pill box
thickness go to zero, we are left with

is |+ 24 [M —aM] P [M am] 0, (3.39)
R X X — =Y, .

Siia — M2 a¢ t=¢, 202M2 81 ot £=¢,

Assuming this holds for any pill box shape, we arrive at

+ 24 [Mx 8M] + i g
T Y oSt
=g 2e- M

[anm] —0 (3.40)
M3 % = '

which is the exchange-pumping boundary condition.

3.3.1 Surface anisotropy

We choose a surface anisotropy with an easy axis pointing along the di-
rection fi. The free energy contribution is then given as

F, = fdrKs [1 - (l\f\ésﬁ)zl 5(¢-¢), (3.41)

where K;is the surface anisotropy energy density of the interface, which
is assumed to be a constant. By letting K become negative, we achieve
a hard-axis/easy-plane surface anisotropy. Using Eq. (2.33) the contribu-
tion from the surface anisotropy energy to the effective field becomes

2K, ) A
H, = ve (M-f)5(¢—¢)n. (3.42)
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Following the approach of Sec. 3.3, the total boundary condition (includ-
ing exchange, spin pumping and surface anisotropy) becomes

2AM M 2K o e+ e ] g
9 M2 n n 22Mzgl ot -

¢=¢G

(3.43)
Because the surface anisotropy depends on the relative orientation of M
and n, the components X and Y, in m will experience different bound-
ary conditions in certain geometries. This was explored in more detail in
the scientific papers contained within this thesis. The approach and the
results are reiterated over in the next chapter.
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4 Summary of Scientific Papers

This chapter goes into some of the details of Paper I through IV,””% with
one section per paper. Due to the similarity of the formalism used in the
first three papers, most of the details is presented in Sec. 4.1.

The fourth paper is related to work I did in the beginning of my time
as a Ph.D. student, back when I was collaborating with Erik Wahlstrom.
It was on a different topic than the main work described in this thesis and
therefore only a brief summary is given in Sec. 4.4.

4.1 Spin-pumping and Enhanced Gilbert Damping
in Thin Magnetic Insulator Films

At the time we started working on Paper I,/ the experimental demon-
stration that spin transfer and spin pumping could be as effective in mag-
netic insulators as in metallic ferromagnetic systems were rather surpris-
ing.? Because of the low intrinsic damping found in ferromagnetic in-
sulators such as YIG, the prospect of utilizing spin pumping and spin
transfer in such systems resulted in frenetic activity within the commu-
nity, 30:81-86;67;87-89

When a ferromagnetic insulator is brought in contact with a normal
metal the magnetization dynamics of the ferromagnet induces spin pump-
ing of angular momentum into the intinerant electron system of the nor-
mal metal. It was experimentally observed that spin pumping in such a
system was dependent on the system geometry, field configuration (see
Sec. 3.1) and the excited mode profiles of the spin waves in the system. 81:838467:88,89
Sandweg et al. 3 demonstrated that the dissipation was larger for modes
localized at the ferromagnetic insulator-normal metal interface.
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Our goal was to combine the lessons learned from older research on
the topic of spin wave dynamics (see Sec. 3.1.2) with the new observations
of spin pumping in such systems. As stated in Paper I, 77 we wanted to
present a coherent theoretical picture of the experimental findings at the
time.

41.1 Solution Method

In Paper I we solved the linearized LLG equation in a ferromagnetic insulator—

normal metal bilayer system. The interface was assumed to be spin active
through the spin pumping effect. We added the spin pumping torque of
Eq. (3.21) to the right side of the LLG equation (see Eq. (2.32). The effects
of the spin back flow from the normal metal was not included, and we
assumed that the normal metal would act as a perfect spin sink.

We assumed that the magnetization was close to saturation, M;, and
precessing around the equilibrium direction of the internal field, H;, (see
Sec. 3.1). Using that jm| « My, the equation of motion was linearized in
the dynamic magnetization, giving

L w (o -1 d?
i () (et [ ] meto -

fgdg GO (& - Emp(E), (4.1)

N

where mg, is described in Sec. 3.1.1, I is the unit matrix, wy; = 47wyM,,
wy = YH;, and Q/ny ) is the dipole-dipole interaction tensor described in
Sec. 3.1.2.

When QL is large, the exchange interaction dominates over the dipole—
dipole interactions, such that the right hand side of Eq. (4.1) can be ne-
glected, and the bulk equation of motion turns into a simple eigenvalue
problem. Because the identity matrix of the second term commutes with
the time evolution matrix, (% 7/ )_1, the eigenvectors are given by (1 —i)T
and (17T, provided that @ « 1. These are circularly polarized eigenvec-
tors, with the corresponding eigenvalues i + 1. The total eigenfrequency
of the exchange dominated spin wave problem is then determined by ex-
change operator.
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When the dipole-dipole interactions are important, the problem be-
comes much more complicated. It is easy to see that the time evolution
matrix described above does not commute with the dipole—-dipole tensor
g("y ). In this situation the modes are not likely to be circularly polarized.
Because the bulk equation still describes a precessing motion around the
equilibrium direction, the dynamic magnetization must be elliptically po-
larized.

However, these results are only valid when ignoring the boundary con-
ditions imposed by the film geometry. To solve the thin film problem the
boundary conditions in Eq. (3.43) must be solved simultaneously with
Eq. (4.1). Choosing the surface anisotropy axis in Eq. (3.41) to be the thin
film’s normal axis, i.e. A = é, and linearizing Eq. (3.43), we found that the
linearized boundary condition at the spin-active interface was given by

LK,

( 8(3 +iwxy + — 1 cos(2(9)>mQx(§)L__ 0, (4.2a)
LK,

( 8§ +iwx + Tcos (9))mQy 5)‘ i =0, (4.2b)

L
2

where xy = Lhg, /4Ae?. For simplicy we assumed that the substrate inter-
face (the spin-inactive interface) had no surface anisotropy, so that this
boundary condition was simply dzmg(¢ = —L/2) = 0.

There are two challenges introduced by these boundary conditions.
Firstly, the surface anisotropy breaks the symmetry between the x and y
components, unless 8 = 0 (perpendicular field geometry). Secondly, and
most importantly, the system eigenfrequency, w, appears in the boundary
conditions because of the spin pumping effect. This equation system can
be solved when there is no spin pumping (i.e. ¢, = 0) by expanding
m, (&) into the eigenfunctions of the exchange operator (the second term
in Eq. (4.1)).>* The eigenvalue problem corresponding to the exchange
operator forms a 2-dimensional Sturm Liouville problem*° ensuring that
there exists a complete set of eigenfunctions. However, when g, > 0 and
the eigenvalue appears in the boundary conditions such expansions are
not possible anymore.

We opted to first solve the equation system in the limit of QL « 1.
In this limit, only the é-function in Q\gg (see Eq. (3.9)) is important, which
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corresponds with the existence of a dynamic demagnetization field across
the film thickness. This demagnetization field is similar to the static de-
magnetization field that is baked into the internal field H;.

Because of the exchange operators, the eigenvectors become transverse
standing waves across the film thickness

mg = mg ., (eikg + e_ik‘f“P) , (4.3)

where mg ., is some, in general, elliptically polarized coefficient vector.
Furthermore, ¢ is trivially determined by the substrate boundary condi-
tion.

If there is no surface anisotropy at the spin-active interface, then the
boundary conditions in Eq. (4.2) reduces to the equation

kLtan(kL) = iwy. (4.4)

Eq. (4.3) inserted into Eq. (4.1) gives the equation

w _ [ wy A Wiy A 5 )
— = —+ k)| — + kZ + 6 |+
Wy J (wM 27tM2 ) ( wy - 2M2 -

. [ wy A, sin? 0
+ — + k= + , (45
“"(wM 2702 2 ) &Y

which together with Eq. (4.4) forms a system of two equations for w and
k.

Solving this system in the weak pumping limit, i.e. wy < 1, the fre-
quency dependent imaginary parts of k? are found to renormalize the
Gilbert damping, &« — a + Aa. As expected, the ground state macrospin
mode with k =~ 0 reproduces the result of Tserkovnyak et al.?®> with

h2
n = &, (4.6)
2LM,e?
while the higher lying volume modes, characterized by their n internal nodes
across the film thickness, were shown to exhibit twice the renormalization
of the Gilbert damping. This was one of the major new results of Paper I.
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To model the problem with easy axis surface anisotropy, K; > 0, we
introduced two wave numbers, k, and ky, one for each component of mg,.
With this ansatz the boundary conditions became

LK

ke Ltan (kL) = iwy + 75 cos(26), (4.7a)
LK

k,Ltan (k,L) = iwy + 75 cos2(0). (4.7b)

where we further assumed that we had an in-plane applied field. Only

the macrospin mode is significantly changed by the addition of the sur-
face anisotropy. It is transformed into a surface mode localized at the
spin-active interface. By solving Eqs. (4.7) together with the bulk equation
of motion it was possible to calculate the renormalization of the Gilbert
damping in the weak pumping limit. We found that for large values of
LK, /A the renormalization for the surface mode was

YKy b wy [wy 1 K?

Aa,_y = —g I ZH
fn=0 47TMsAezgle wpy o 2 4nMZA

. @8)
which was the second major new result of Paper I.

4.1.2 Numerical Calculations for Intermediate values of QL

We developed a numerical code for calculating the Gilbert damping renor-
malizations for the transverse modes at intermediate in-plane wavenum-
bers, QL. I will in the following illustrate how Eq. (4.1) and Eq. (4.2) can
be shaped into a matrix eigenvalue problem through discretization using
finite difference methods. Let m, ; be a one dimensional column vector
of height 2n where the first n rows correspond to X5 (&) and rows n + 1
through 2n correspond to Y5(¢) of Eq. (3.5) evaluated at the discretized
points §; = —=L/2 + (i —1)ALwithi=1,2,..,nand AL=L/(n —1).

Discretized boundary conditions

We employed the pumping-exchange boundary condition (see Eq.(4.2))
at the upper interface (i = 1), and the pure-exchange boundary condition

47



4. SUMMARY OF SCIENTIFIC PAPERS

48

at the lower interface (i = 1). For each component of mg the boundary
conditions can be written as

bllml +bhmy + ...+ blm,, =0 (4.9a)
bimy + bSmy + ... + byym, =0, (4.9b)

where m; is either X5 (g;) or Y5(g;), and bf- are the discretization coeffi-
cients for the substrate side (spin in-active interface) and b} are the dis-
cretization coefficients for the normal metal (spin-active) interface for the
corresponding component of m,. If a first or second derivative is approx-
imated with a finite difference stencil using N + 1 nodes, the truncation
error scale like O (ALN) for central difference stencils and like O (ALN=1)
for skew stencils.”?2 By choosing skew stencils for the derivatives in the
boundary conditions in Eq. (4.2) the first N + 1 coefficients in the vector
b’ becomes nonzero while the last N + 1 coefficients in the vector b* are
nonzero.!

Solving the equation set in Eq. (4.9b) for the two boundary points 1,
and m,,, we have

-1
(m1>:(bll bfa) .(—blzm—l'm%"—l) (4.10)
0 R U B W

wheremy,.,,_; is the discretized vector of a component of mg (¢;) evaluated
at the discretized pointsi = 2,3, ...,n—1, and blz’,_‘;_l is the corresponding
coefficients from the boundary conditions. The boundary condition on
one side of the film will not include the other interface point unless n =
N + 1 exactly. Generally, we are going to need to choose nn > N so that we
can safely assume that b/, = b} = 0. Our equation for m; and m,, is then

simplified to
1
(””1) _(% %), <_b12;n—1 'mz;n—1> - (4.11)
m, 0 é —=b3., 1 My,
From Eq. (4.2) we find that
1 1

. r 412
by, cﬁ +d +iwy (4.12)

Tt is also possible to use N + 1 nodes for the central difference stencil and N +2 nodes
for the skew stencils.
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where c is a coefficient stemming from the discretization of the first deriva-
tive in the boundary condition, and d = LK,/A is a dimensionless “pin-
ning” parameter due to the surface anisotropy at the interface. Expanding
this expression to second order in the small quantity AL/L, we find

1 1AL ' AL\? AL\®
_:‘__M(T) +O<T> , (4.13)

which has a term linear in the eigenfrequency w. This equation also shows
that our method can not be used with a discretization scheme using less
than 3 + 2 = 5 nodes, which ensures that the skew stencils are of the
same order in AL as the equation above. For the discretization of the bulk
equation we must therefore choose a 4th order method (see the discussion
above concerning central difference stencils).

Finite Difference Stencils

The 4th order central difference stencils with truncation error O (AL4) are
given by

o (G) fiso+8fi1—8fi1—fio
oF 12AL ’ (4.14a)
I*f (&) - —firo +16f;,1 —30f; + 16fi1 —fi (4.14b)
9E2 12AL2 / '

which can be found by Taylor expanding f (¢;) for the five points centered
around ¢; up to fourth order in AL/L and solving the equation set for the
first 4 derivatives f’, f”, f® and f*® .91

The second derivative in the linearized LLG equation (see Eq.(4.1))
can now be represented by a sparse band matrix, but some extra care
is needed for the endpoints: we either have to include ghost points out-
side the domain, or use increasingly skew stencils when approaching the
edges. These stencils have truncation error O (AL?) and can be found in
a similar manner to the central difference stencils described above.
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The totally skew stencils employed in solving the discretized bound-
ary condition, are

of (G1) _—25f1 + 48f, — 36f3 + 16/, — 3f5

oax 12AL (4.152)
af(érn) ~3fn—4 - 16fn—3 + 36fn—2 - 48fn—1 + 25fn
oc = 12AL ’ (4.15b)

which were found in a similar manner to the central difference stencils
above.

Convolution Quadrature and The dipole-dipole Tensor

A convolution integral of the form

b
y(x) = j_af (x —x")g(x") dx’ (4.16)

can be discretized into a sum

i =y() AL+ Y f(x—x) - wig(x)), (4.17)
j=1

where w; are the quadrature’s weighting coefficients, which are chosen to
be some 4th order extended formula e.g. the extended Simpson’s rule.?

The function evaluations of f becomes
fxi—xp) =f(G—j)-AL), (4.18)

Thus, with i,j = 1,2, ..., n, the function f will be evaluated at 2n — 1 points
to get the whole y(x;) vector. The convolution quadrature now looks like
a vector product between two vectors:

w181
Yi =AL- (fiiq fico o fizn)- w25g2
Wn&n
81
==AL-(wifi_1 Wofi o .. Wufi,)- 8:2
&
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wy o - 0 el
Vi =AL(fin fig o fin)| . S g:z (4.19)
0 0 - w, 8n

Hence, the whole discretized convolution integral, y;, can be written as

fo fa1 o fioa wy; 0 - 0 81
yi=aL-| o Joo S| )0 W e 0 R g0
fn—l fn—Z fO 0 0 e Wy 8n

This relation allows us to write the dipole-dipole integral as a 2n x 2n
matrix operator acting on the magnetization vector mg 4. The four n x n
sub-blocks of this operator correspond to each of the four tensor elements
i

With the dipole-dipole convolution integral as a matrix operator it is
easy to see that the discretized version of the linearized bulk LLG equa-
tion (4.1) becomes a matrix eigenvalue problem. The next hurdle to tackle
was how to embed the w dependent spin pumping boundary conditions
within this eigenvalue formulation.

Reduction of the System Matrices Using Boundary Conditions

We are were now in a position to reduce our 2n x 2n matrix eigenvalue
problem to a (2n — 4) x (2n — 4) eigenvalue problem by using our solved
boundary condition (see Eq. (4.11)).

All terms from Eq. (4.1) that are independent of w can be represented
by one large system matrix, given by

G, W G, -W w 12 A Y2 A
Sbulk:AL( xx xy )_(_H+8n_ 2)1 + 81 —-Xp,,
Gy W G, -W Wiy w3, Q) T w2, 2

(4.21)
where ALG;; - W represents 1 x n sub blocks of the total dipole-dipole con-
volution matrix, with W being the diagonal quadrature weighting matrix;
I, is a 2n x 2n identity matrix and Xj,, is the transverse derivative band
matrix.
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For each of the four n x n sub-blocks in SP"* we must eliminate the
top and bottom rows so that we do not overdetermine our problem. This
is because we have two boundary conditions for each component that we
discretized and solved for the edge points in the previous section. We are
now left with 4 sub blocks of size (n —2) x n. The leftmost and rightmost
column of these sub blocks can be eliminated using our solved boundary
conditions from Eq. (4.11).

This can best described as taking an outer product between the outer
columns of each sub block of S with the corresponding coefficient
vector in the solved boundary condition and adding this to the internal
(n —2) x (n —2) part of the block. The reduced system matrix” sub blocks
S* become

blz- -1 b%' -1
5 = S5+ S5 (-2 s o (- ) 6
1 n

where Sll.’/}?lk is the ith row and jth column of SP"¥, and the notation S?;}bin1ax/j
corresponds to picking out the rows from i,,;, to i,,,, of the jth column
vector.

So far, we have reduced our system matrix’s size from 2n x 2n down to
(2n —4) x (2n — 4) by embedding the boundary conditions in the interior
points. In the process we introduced terms proportional to w into the in-
ternals of S* from the exchange-pumping boundary condition. We now
split the reduced system matrix into two parts, letting S* = S + 2P, so
that our discretized equation of motion with embedded boundary condi-
tions become

S-m?

5 (4.23)

=~ (D-P) m:
d= WM( ) ma g
whichis a (2n—4) x (2n—4) complex eigenvalue problem over the interior
points of the domain, ¢; fori = 2,3, ..., n—1, and where D is the discretized
version of the time evolution matrix, ( i;?‘ z_le ) m, ,is the reduced column
vector corresponding to the interior points. The Gilbert damping renor-
malization can now be found for each eigenvector by comparing J{w} as

obtained by solving (4.23) for both the cases g, =0and g, # 0.
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4.2 Spin Waves In Ferromagnetic Insulators
Coupled via a Normal Metal

In Paper 117® the formalism of Paper I (see Sec. 4.1) was extended to a
trilayer system where a normal metal of thickness dy; was sandwitched
inbetween two ferromagnetic insulator layers of thicknesses L and L.

The equation of motion is the same as Eq. (4.1), except the dipole—
dipole interaction integral where the integration was extended to encom-
pass both insulator films. This can be viewed as each film having a dipole
self energy as well as interlayer dipole energy. The linearized equation of
motion for the trilayer system becomes

. W -1 42
[l@ (i‘ N ) +I(@ + 87 ‘UM [Q2 dgz])]mi’Q(g) =
Z f_w A& GOV (& - Em, o(&), (4.24)
i=1

where the dynamic magnetization vector has acquired an additional in-
dex, i, indicating which film we are looking at; and the integration has
been extended to infinity. This works if 1, 5 = 0 in film 2, and vice versa.

With a trilayer system, we had to account for the spin pumping hap-
pening at each FI|NM interface as well as the spin transfer from the spin
pumping induced spin accumulation in the NM layer. Because the spin
accumulation depends on the dynamics at both FI | NM interfaces, the ef-
fect of the spin back flow presented in Sec. 3.2.3 is too simplistic for this
system. The spin accumulation becomes

h
ng = —5M; x {[mg (&) + mg (&) ]T1(8) — [mg (&) —mg (&) T8},
(4.25)
where ¢; is the location of the FI | NM interfaces, and where I';(¢) describes
the shape of the spin accumulation across the interface.

In the case of equal thickness of the two FI films, L; = L, = L, the 4
spin-active boundary conditions can be solved in a manner similar to the
method described in Sec. 4.1.1. The result is that the renormalization of
the Gilbert damping is dependent on the symmetry of magnetization in
the two films; the dynamic magnetization in the two FI films can couple
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either acoustically (symmetric about the NM) or optically (antisymmetric
about the NM). In Paper 1178 this is described as a renormalization of the
X parameter, but to stay true to Sec. 4.1.1, it might be better to view it as
a renormalization of the mixing conductance. The result was a scaling of
the results found in the bilayer system in Paper I, Ax — Aar,, where the
scaling r,, is given by

_ 29 Iy v\

ra = {1 — |:1 + - tanh Tsf ’ (426a)
_ 2g L dy -

ro = {1 — |:1 + T coth st P (426b)

for the acoustic and optical modes respectively. These two differ signifi-
cantly when the NM thickness, dy;, becomes comparable to the spin diffu-
sion length, [;;. In that case the tanh goes to zero, while the coth blows up.
The result is that the spin pumping for the acoustic mode is completely
quenched while the optical modes starts acting like two independent bi-
layer systems in contact with perfect spin sinks.

For unequal thicknesses of the two FI films, L; # L,, the results are
more complicated. In the article we discuss the slow relaxation case, which
can be summarized as.: The uniform mode splits into acoustic and optical
configurations as before, but the renormalization of the Gilbert damping
becomes

_ 7h2gj_ dy o 1

Ay = — , 4.27
4 2Mge? 2l g ls Ly + Lo (4.272)
kg 111
Axo =3\ L + L) (4.27b)

For the higher excited volume modes the transverse wave numbers in the
two films can either be integer multiples of one another or not. The latter
decouples the two films, so that half the pumped spin current is returned
to the original location. This causes the volume modes to experience half
the damping renormalization of that of a bilayer film in contact with a
perfect spin sink. The first case causes the renormalization to be twice
that given in Eq. (4.27b).
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By investigating the presence of surface anisotropy in the unequal
thickness scenario, we found that the double film surface mode is robust
to the thickness variations of the two FI films. This is because in each film
the length scale is given by A/K,, which determines the effective volume
of the magnetization dynamics.

4.2.1 Updating the Numerical Code for Trilayers

The main principle behind the numerical code is much the same as it was
for the bilayer system in Paper I, albeit more complicated and harder to
debug. The ¢ axis is discretized into 17 points in the first FI layer and
1, points in the second FI layer. This defines the point spacings AL; =
L;/(n; — 1) in the two films. The total magnetization vector is discretized
into a 2(ny + n,) sized column vector, schematically described as m =
(X1 X2 Y7 Y;) r X; and Y; are the x and y components of the dynamic
magnetization in layer i.

The four boundary conditions, per magnetization component, can be

written in a discretized form similar to the formalism used in Sec. 4.1.2
(see Eq. (4.9b))

b/ .m; =0, (4.28a)
bl*.my +a?>!-m, =0, (4.28b)
b -m, +a'”?-m; =0, (4.28¢)

b%* -m, =0, (4.28d)

where the b vectors stem from the local surface torque, while the a vec-
tors represent the interlayer coupling torque originating from the oppo-
site film. The m; vector is the discretized column vector of either the
x or y component. Because both the spin pumping torque and the spin
transfer torque only act at the interface points the exterior parts are zero,

152  _ a2-1 _ ; o 1-2 A
a;.,1_1 = a5,, = 0. Thus, I rename the important coefficients a =

a}qu and a>~! £ 4371, These are related to the spin accumulation distri-
bution functions I'; (¢) and I'; (¢) in Eq. (4.25).

Solving the equation system for the edge points my, m,, , m, ., and
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My n,, we found

1 1,11 .
S 02, -1 " M2m, -1
my %,1
by 1u .m
m?’ll — bl'ub2'l—u14'2ﬂ2‘)l 2,'1’[1—1 2;”1_1
= o
mi’ll +1 —ﬂl_)z 111{ . m2 1
1,up2,1 2 251 2mn—1 S —
mn1+n2 bnlub1 _gl-252-1 1 1
0
0
_g2-1 2,1 ‘m
h,ll’uh%l—ul_’zazﬁl 2;1’[2—1 ”1'*'2;”1"'7/12_1
1
_ b 20 . (4.29)
LT g1-2g2-1 21,1 ny+2;mq +n,-1
1
1 2,u

b,217 2;1,—1 'mn1+2;n1+n2—1
2

This solution enables the reduction of the system from a 2(n; +n,) x2(n; +
n,) sized system and down to a (2(n1 + 15) —8) x (2(ny + n,) — 8) sized
complex eigenvalue problem, much the same as in the bilayer case. When
calculating the system matrix operator for the trilayer system, one has to
make sure that the dipole-dipole integral is written correctly such that
the moment interdistances take the NM thickness, dj;, into account.
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4.3 Spin Pumping, Dissipation, and Direct and
Alternating Inverse Spin Hall Effects in
Magnetic Insulator-Normal Metal Bilayers

Paper 1117 contains a more rigorous and extended calculation for the
FI| NM bilayer system: i) There were many permutations of the field con-
figuration and surface anisotropy types that were left unexplored in Paper
1,77, ii) we wanted to include the effects of a non-equilibrium spin accumu-
lation in the normal metal, in that the back flow of spin angular momen-
tum from the normal metal into the ferromagnetic insulator renormalizes
the spin mixing conductance. (see Sec. 3.2.3); iii) measures for the AC and
DC inverse spin Hall effects were also presented, which are related to the
energy in the ferromagnet.

One of the things I wanted to remedy was that the dual wave num-
ber approach described in Sec. 4.1.1 (see Eq. (4.7)) served nicely as a first
approximation, but it causes the calculated eigenmodes to slightly vio-
late the bulk equation of motion if the pinning parameter, d = LK /A,
becomes large in the in-plane geometry. The LLG equation demands pre-
cession, so that the two components, X5 (¢) and Y5 (¢) must have nodes
at the exact same coordinates within the film. If the boundary conditions
differ for the x and y component of m,, the magnetization must have one
dominant wavenumber in the bulk region, and then bend exponentially
close to the interface to match the boundary conditions. This is easiest
to show in the QL « 1 limit, when considering that the square of the
dispersion relation

YN (Y 212 i (YH 2 12 .2 LW
(WM) = <CUM + A&ks + zzwa)(wM + Agk” + sin” 6 + wcwM),
(4.30)
where A, = /8192A/ wzzw has a nontrivial degeneracy
w w N\, w w
(i +A2K2 4+ ia@)(ﬁ +A2k2 +sin 6 + ioc@) =
(ﬂ + A2, (ix)? + iaixw—H + /\gx(iic)z +sin? 0 + iocﬂ), (4.31)
WM Wy T Wpm Wy
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given by

A2 k2 = sin2 0 + A2k + 2Z—H + 2acw (k) [y, (4.32)
M

This makes it possible to write the dynamic magnetization as a sum of
both a transverse standing wave term (oscillatory) and an exponential
term. It is this exponential term that allows the magnetization compo-
nents to bend in opposite directions to meet the restrictions posed by the
surface anisotropy.

With this new form of the magnetization we were able to reduce the
four boundary conditions down to one generic equation. This bound-
ary condition can then be used for calculating the Gilbert damping renor-
malization in the weak pumping limit. With this we reproduced the un-
pinned, d = 0, results from Paper I as well as explored how surface anisotropies
of different types influence the modes in the different field geometries.
The main conclusions that were drawn were:

¢ An easy plane surface anisotropy causes a strongly localized surface
wave to appear in the FVMSW geometry, which has a high renor-
malization of the Gilbert damping. Because of the perpendicular
geometry, the DC spin accumulation does not induce an ISHE volt-
age in the normal metal, but the AC voltage exists and should be
detectable.

* An easy axis surface anisotropy causes a localized surface wave to
appear in the in-plane geometries. It is similar to the easy-plane re-
sult above, with the exception that the effective pinning parameter is
smaller. This case is the one we explored with the two-wavenumber
model in Paper L.

¢ All other modes are quenched to varying degrees by surface anisotropies.
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4.4 Training and recovery behaviors of exchange
bias in spin valves at high field sweep rates

Paper IV® is based on magnetoresistive measurements on a metallic spin
valve structure performed while doing external magnetic field sweeps.
The spin valve structure used a FeMn antiferromagnetic layer to pin the
magnetization of the Co layer through the exchange bias effect.%16:94

The exchange bias effect is an interface effect between an antiferro-
magnetic and a ferromagnet, where the uncompensated moments at the
boundary pins the ferromagnets equilibrium direction to that of the anti-
ferromagnet. The effect occurs for material combinations where the crit-
ical temperature of the antiferromagnet, the Néel temperature, is lower
than the Curie temperature of the ferrornagnet,16 and the structure is
cooled from above the Néel temperature in the presence of an applied
external field. The antiferromagnet aligns itself with the ferromagnet dur-
ing the cooling process due to the exchange interaction at the interface. If
the antiferromagnet has a strong enough anisotropy, then it maintains its
original alignment even during external field sweeps. The rigidity of the
antiferromagnet causes a shift of the hysteresis loop of the ferromagnet,
in that the antiferromagnet creates a biasing field through the exchange
interaction.

The measurements in Paper IV were conducted by high sweep rate
cycling of an externally applied magnetic field, while at the same time
measuring the magnetoresistance of the spin valve. The magnetic field
was ramped with a sawtooth shape, to produce a linear sweep rate. The
repeated sweeps caused the coercive field of the spin valve to diminish
for each cycle. This tendency is shown in the article to fit nicely to a the
logarithm of the sweep number, 7.

By performing N sweeps, then turning off the applied magnetic field
for a stop time ¢, before continuing with additional sweeps to check the
recovery rate. A quick recovery in the millisecond range of the exchange
bias strength was observed. This recovery was shown to be the quickest
for the highest sweep rate.
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A  Coordinate Transformations

The transformation for vectors from the ¢ film coordinate system to the
internal field xyz coordinate system described in Section 3.1 is given by
an affine transformation matrix T,

oy =T £y (A1)

for some arbitrary vector f. T is given by the concatenated rotation matri-
ces

T:Rz'Rl,

where R, is a rotation ¢ around the ¢-axis, and R, is a rotation 6 — %
around the new 7-axis/y-axis. Hence

1 0 0
R, = (O cos¢ —sin qb) , (A.2)
0 sing cos¢

cos(6 — %) 0 sin(f — %) sinf 0 —cosf

R, = 0 1 0 = 0 1 0 ,  (A3)
—sin(f — %) 0 cos(f — %) cosf® 0 sinf

so that

sinf 0 —cos@\ /1 0 0
T=| 0 1 0 0 cosp —sing (A4)

cosf 0 sind 0 sin¢g cos¢

(sin@ —cos fsin¢ —cos@cos¢)

0 cos ¢ —sin¢
cosf sinfsing¢ sin 0 cos ¢
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This transformation matrix consists of orthogonal transformations, so that
the inverse transformation, transforming xyz — ¢#{, is just the transpose

of T
sin 0 0 cos 6

T !=TT =| —cosfsing cos¢ sinfsing |. (A.5)
—cosfcos¢p —sing sin6cos¢
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Precessing magnetization in a thin-film magnetic insulator pumps spins into adjacent metals; however,
this phenomenon is not quantitatively understood. We present a theory for the dependence of spin
pumping on the transverse mode number and in-plane wave vector. For long-wavelength spin waves, the
enhanced Gilbert damping for the transverse mode volume waves is twice that of the macrospin mode, and
for surface modes, the enhancement can be ten or more times stronger. Spin pumping is negligible for
short-wavelength exchange spin waves. We corroborate our analytical theory with numerical calculations

in agreement with recent experimental results.
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Metallic spintronics have been tremendously successful
in creating devices that both fulfill significant market needs
and challenge our understanding of spin transport in ma-
terials. Topics that are currently of great interest are spin
transfer and spin pumping [1-3], spin Hall effects [4], and
combinations thereof for use in nonvolatile memory, oscil-
lator circuits, and spin wave logic devices. A recent ex-
perimental demonstration showing that spin transfer and
spin pumping can be as effective in magnetic insulators as
in metallic ferromagnetic systems was surprising and has
initiated a new field of inquiry [5].

In magnetic insulators, no moving charges are present,
and in some cases, the dissipative losses associated with
the magnetization dynamics are exceptionally low.
Nevertheless, when a magnetic insulator is placed in con-
tact with a normal metal, magnetization dynamics induce
spin pumping, which in turn causes angular momentum to
be dumped to the metal’s itinerant electron system.
Because of this nonlocal interaction, the magnetization
losses become enhanced. Careful experimental investiga-
tions of spin pumping and the associated enhanced
magnetization dissipation were recently performed, dem-
onstrating that the dynamic coupling between the magne-
tization dynamics in magnetic insulators and spin currents
in adjacent normal metals is strong. Importantly, in mag-
netic insulators, an exceptionally low intrinsic damping
combined with good material control has enabled the
study of spin pumping for a much larger range of wave
vectors than has previously been obtained in metallic
ferromagnets [5—14].

In thin-film ferromagnets, the magnetization dynamics
are strongly affected by the long-range dipolar interaction,
which has both static and spatiotemporal contributions.
This yields different types of spin waves. When the in-
plane wavelength is comparable to the film thickness or
greater, the long-range dipolar interaction causes the sepa-
ration of the spin-wave modes into three classes depending
on the relative orientation of the applied external field, in
relation to the film normal, and the spin-wave propagation

0031-9007/ 13 /111(9)/097602(5)
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direction [15-20]. These spin waves are classified accord-
ing to their dispersion and transverse magnetization distri-
bution as forward volume magnetostatic spin waves
(FVMSWs) when the external field is out of plane, back-
ward volume magnetostatic spin waves (BVMSWs) when
the external field is in-plane and along the direction of
propagation, and magnetostatic surface waves (MSSWs)
when the external field is in-plane but perpendicular to the
direction of propagation. In volume waves, the magnetic
excitation is spatially distributed across the entire film,
while surface modes are localized near one of the surfaces.
“Backward” waves have a frequency dispersion with a
negative group velocity for some wavelengths. While these
spin waves have been studied in great detail over the last
decades, the effect of an adjacent normal metal on these
waves has only recently been investigated.

Experimentally, it has been observed that spin pumping
differs for FVMSWs, BVMSWs, and MSSWs and that it
depends on the spin-wave wavelength [6,8,9,12—14].
Recent experiments [8] have demonstrated that the mag-
netization dissipation is larger for surface spin waves in
which the excitation amplitude is localized at the magnetic
insulator—normal-metal interface. To utilize spin pumping
from thin-film magnetic insulators into adjacent normal
metals, a coherent theoretical picture of these experimental
findings must be developed and understood, which is the
aim of our work.

In this Letter, we present a theory for energy dissipation
from spin-wave excitations in a ferromagnetic insulator
(FI) thin film via spin pumping when the ferromagnetic
insulator layer is in contact with a normal metal (NM). To
this end, consider a thin-film magnetic insulator of thick-
ness L on an insulating substrate with a normal metal
capping (see Figure 1). We consider a normal metal such
as Pt at equilibrium, where there is rapid spin relaxation
and no back flow of spin currents to the magnetic insulator.
The normal metal is then a perfect spin sink and remains in
equilibrium even though spins are pumped into it.

© 2013 American Physical Society
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(a) (b)

FIG. 1 (color online). (a) A thin-film magnetic insulator of
thickness L in its coordinate system; ¢ is the normal axis, the
infinite ¢ plane is coplanar with the interfaces, and the spin
waves propagate along the { axis. The internal field and satura-
tion magnetization are along the z axis. The y axis is always kept
in-plane, and the x axis is selected such that the x, y, and z axes
form a right-handed coordinate system. (b) A cross section
showing the material stack.

The magnetization dynamics are described by the
Landau-Lifshitz-Gilbert (LLG) equation [21] with a torque
originating from the FI-NM interfacial spin pumping [22]

M:—yMXHeH+MiMxM+75p, )
S

where « is the Gilbert damping coefficient, Mg is the
saturation magnetization, y is the gyromagnetic ratio,
H; is the effective field including the external field,
exchange energy, surface anisotropy energy, and static
and dynamic demagnetization fields.

Spin pumping through interfaces between magnetic
insulators and normal metals gives rise to a spin-pumping
induced torque that is described as [2]

n? L :

o :#M%gl(s(f—z)M X M, )
where g, is the transverse spin (“‘mixing’’) conductance
per unit area at the FI-NM interface, and e is the electron
charge. We disregard the imaginary part of the mixing
conductance because this part has been found to be small
at FI-NM interfaces [12]. In addition, the imaginary part is
qualitatively less important and only renormalizes the
gyromagnetic ratio.

Assuming only uniform magnetic excitations, ‘‘macro-
spin” excitations, the effect of spin pumping on the mag-
netization dissipation is well known [2,3]. Spin pumping
leads to enhanced Gilbert damping, o — a + A pacros
which is proportional to the FI-NM cross section because
more spin current is then pumped out, but inversely pro-
portional to the volume of the ferromagnet that controls the
total magnetic moment,

h h
4 2. 3)

Amero = om0 7
S

Thus, the enhanced Gilbert damping due to spin pumping
is inversely proportional to the film thickness L and

is important for thin-film ferromagnets. However, a
“macrospin’’ excitation, or the ferromagnetic resonance
(FMR) mode, is only one out of many types of magnetic
excitations in thin films. The effect of spin pumping on the
other modes is not known, and we provide the first ana-
lytical results for this important question, which is further
supported and complemented by numerical calculations.

We consider weak magnetic excitations around a homo-
genous magnetic ground state pointing along the direction
of the internal field H; = H,Z, which is the combination of
the external applied field and the static demagnetizing field
[19]. We may then expand M = M2 + m,y ,(£)e’ @~ 99,
where mg ., - Z = 0, [mg,,| < Mg, and Q is the in-plane
wave number in the { direction. The angle 6 between the
film normal and Z and the in-plane projected angle ¢
between Z and £ are shown in Figure 1.

Following the linearization approach of the LLG equa-
tion (1) as in Ref. [19], we arrive at a two-dimensional
integro-differential equation of the dynamic magnetization
(in the xy plane) in the film’s transverse coordinate &,

(s )zt e

= f”z 4G, (€~ ENmg,, (&) )
—(L/2) Y o ’

where w is the spin-wave eigenfrequency, A is the ex-
change stiffness, wy = yH;, wy = 47myMg, and ny is
the dipole-dipole field interaction tensor, which fulfills the
boundary conditions resulting from Maxwell’s equations
(see Ref. [23]).

The eigensystem must be supplemented by boundary
conditions that account for spin pumping and surface
anisotropy. These boundary conditions are obtained by
integrating Eq. (1) over the interface [24] and expanding
to the lowest order in the dynamic magnetization. When an
out-of-plane easy axis surface anisotropy is present, the
boundary conditions are

a LK,
(La_§ +ioy + n cos(20))mQ'x(§)|§:L/2 =0, (5a)

(Li iy + LK cosz(o))mQ,v(gn ee1p =0, (5b)

a& A ’
where K, is the surface anisotropy energy with units
ergem 2 and y = Lh?g, /4Ae” is a parameter relating
the exchange stiffness and the spin mixing conductance
([x]=s). The boundary condition at the magnetic
insulator—substrate interface might also be affected by
surface anisotropy. Since our focus is on spin pumping at
the other surface, we disregard this complication as a first
approximation and set y — O at £ = —L/2.

A mathematical challenge induced by spin pumping
arises because the second term in the linearized boundary
condition (5) is proportional to the eigenvalue w such that

097602-2
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the eigenfunctions cannot simply be expanded in the set of
eigenfunctions obtained when there is no spin-pumping or
dipolar interaction. Instead, we follow an alternative ana-
lytical route for small and large wave vectors. Furthermore,
we numerically determine the eigenmodes with a custom-
tailored technique, where we discretize the differential
equation (4), include the spin-pumping boundary condi-
tions (5), and transform the resulting equations into an
eigenvalue problem in w [25].

Let us now outline how we obtain analytical results for
small QL < 1 and large QL > 1 wave vectors. First, we
consider the case of vanishing surface anisotropy and
compute the renormalization of the Gilbert damping for
the resulting modes. Next, we demonstrate that the surface
anisotropy creates a surface wave with a comparably large
enhancement of the Gilbert component.

When QL < 1, the convolution integral on the right-hand
side of Eq. (4) only contains the homogeneous demagneti-
zation field. The magnetization is then a transverse standing
wave my, ., (e*¢ + =€+ ) where k is a transverse wave
number, ¢ is a phase determined by the boundary condition
at the lower interface, and the two-dimensional coefficient
vectormy, ., allows for elliptical polarization in the xy plane.

By employing exchange-only boundary conditions [24]
at the lower interface and using Eq. (5) with K; = 0 on the
upper interface, the transverse wave number k is deter-
mined by kL tankL = iw y. Together with the bulk disper-
sion relation w = w(k), calculated from Eq. (4), this
expression allows us to calculate the magnetic excitation
dispersion relation parameterized by the film thickness, the
Gilbert damping «, and the transverse conductance g | .

When spin pumping is weak, wy is small, and the
solutions of the transcendental equation can be expanded
around the solutions obtained when there is no spin pump-
ing, kL = nar, where n is an integer. When n # 0, we
expand to first order in kL and obtain kL = nm +
iwy/(nm). When n = 0, we must perform a second-order
expansion in terms of kL around 0, which results in
(kL)*> = iwy. Using these relations in turn to eliminate k
from the bulk dispersion relation while maintaining our
linear approximation in small terms and solving for w, we
obtain complex eigenvalues, where the imaginary part is
proportional to a renormalized Gilbert damping parameter,
a* = a + Aa. When n =0, our results agree with the
spin-pumping enhanced Gilbert damping of the
macrospin (FMR) mode derived in Ref. [2] [see Eq. (3)],
Aay = Adpueo- When n # 0, we compute

Aan = 2A amacro- (6)

These new results indicate that all higher transverse
volume modes have an enhanced magnetization dissipa-
tion that is twice that of the macrospin mode. Thus,
counterintuitively, with the exception of the macrospin
mode, increasingly higher-order standing-wave transverse

spin-wave modes have precisely the same enhanced
Gilbert damping.

Next, let us discuss spin pumping for surface waves
induced by the presence of surface anisotropy. When
K, # 0, the lowest volume excitation mode develops into
a spatially localized surface wave. Expanding the expres-
sion for the localized wave to the highest order in LK /A,
we determine after some algebra that the resulting
enhancement of the Gilbert damping is

K, h 1 K2 7!
Aan:0= Y K (&7 [ﬂ‘l' 5 ] (7)

ArM A2 oy Loy 2 4nMPA

Comparing Egs. (7) and (6), we see that for large surface
anisotropy LK /A > 1, the spin-pumping-induced
enhanced Gilbert damping is independent of L. This result
occurs because a large surface anisotropy induces a surface
wave with a decay length A/K|, which replaces the actual
physical thickness L as the effective thickness of the
magnetic excitations, i.e., for surface waves L — A/K,
in the expression for the enhanced Gilbert damping of
Eq. (3). This replacement implies that the enhanced
Gilbert damping is much larger for surface waves because
the effective magnetic volume decreases. For typical val-
ues of A and K, we obtain an effective length A/K, ~
10 nm. Compared with the film thicknesses used in recent
experiments, this value corresponds to a tenfold or greater
increase in the enhancement of the Gilbert damping. In
contrast, for the volume modes (n # 0), we note from
Eq. (5) that the dynamic magnetization will decrease at
the FI-NM interface due to the surface anisotropy; hence,
A« decreases compared with the results of Eq. (6).

Finally, we can also demonstrate that for large wave
vectors QL > 1, the excitation energy mostly arises
from the in-plane (longitudinal) magnetization texture gra-
dient. Consequently, spin pumping, which pumps energy
out of the magnetic system due to the transverse gradient of
the magnetization texture, is much less effective and
decays as 1/(QL)? with respect to Eq. (3).

To complement our analytical study, we numerically
computed the eigenfrequencies w,(Q). The energy is
determined by the real part of ,(Q), while Imw,(Q)
determines the dissipation rate and hence the spin-pumping
contribution. Recent experiments [6,11,13,14] on control-
ling and optimizing the ferrimagnetic insulator yttrium
iron garnet (YIG) have estimated that the mixing conduc-
tances of both YIG-Au and YIG-Pt bilayers are in the range
of g1 h/e? ~0.02-3.43 X 10 cm™2. We use g h/e®> =
1.2 X 10" cm™? from Ref. [6] in this work. All of our
results can be linearly rescaled with other values of the
mixing conductance. In the following section, we also
use A =29 X108 erg/cm, K, =0.05 erg/cm?, L =
100 nm, 47mMg = 1750 G, and @ = 3 X 1074,

To distinguish the spin-pumping contribution A« from
the magnetization dissipation due to intrinsic Gilbert
damping «, we first compute the eigenvalues, w,, with
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FIG. 2 (color online). A« versus wave vector for the MSSW
geometry (0 = ¢ = /2) for the four lowest eigenvalues. Inset:
magnitudes of eigenvectors (in arbitrary units) across the film at
QL = 1.5.

intrinsic Gilbert damping, o # 0, and no spin pumping,
g1 = 0. Second, we compute the eigenvalues wg, with
dissipation arising from spin pumping only, &« = 0 and
g1 # 0. Because Imw,; = «, we define a measure of the
spin-pumping-induced effective Gilbert damping as
Aa = almwy,/Imw,.

We first consider the case of no surface anisotropy.
Figure 2 shows the spin-pumping-enhanced Gilbert damp-
ing Aa as a function of the product of the in-plane wave
vector and the film thickness QL in the MSSW geometry.
In the long-wavelength limit, QL < 1, the numerical
result agrees precisely with our analytical results of
Eq. (5). The enhanced Gilbert damping of all higher trans-
verse modes is exactly twice that of the macrospin mode.
In the dipole-exchange regime, for intermediate values of
QL, the dipolar interaction causes a small asymmetry in
the eigenvectors for positive and negative eigenfrequencies
because modes traveling in opposite directions have differ-
ent magnitudes of precession near the FI-NM interface
[26], and spin pumping from these modes therefore differ.

W [=)}

m ()]
Re{wf wy}
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STELE0

4F  -L/2 0 L/2 Tol 1 10
|

N £
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1 F

107¢ 1074 0.01

FIG. 3 (color online). A« versus wave vector for the BVMSW
geometry (f = 7/2 and ¢ = 0). Left inset: Magnitude of ei-
genvectors (in arbitrary units) across the film when QL = L.5.
Right inset: the real part of the dispersion relation for the same
modes.

This phenomenon also explains why the enhanced damp-
ing, Aa, splits into different branches in this regime, as
shown in Fig. 2. For exchange spin waves, QL >> 1, the
exchange interaction dominates the dipolar interaction and
removes mode asymmetries. We also see that Aa — 0 for
large QL, in accordance with our analytical theory.

Figure 3 shows Aa for the BVMSW geometry. The
eight first modes are presented; however, as no substantial
asymmetry exists between eigenmodes traveling in differ-
ent directions, the modes have the same pairwise renor-
malization of «. This symmetry occurs because the
direction of the internal field coincides with the direction
of propagation. As in the previous case, the dipolar inter-
action causes a slight shift in the eigenvectors in the
intermediate QL regime, thereby altering A« from that
of Eq. (5).

Figure 4 shows Aa for the MSSW geometry but with
surface anisotropy at the FI-NM interface. As expected
from our analytical results, surface anisotropy induces
two localized surface modes with a tenfold larger enhance-
ment of Aa compared with the volume modes. The hori-
zontal dashed line in Figure 4 indicates the analytical result
for the enhanced Gilbert damping of the n # 0 modes
when K, = 0. For the volume modes, it is clear that the
eigenvectors have a lower magnitude closer to the FI-NM
interface and that A« is lower compared with the case of
K, = 0, which is consistent with our analytical analysis.

Our results also agree with recent experiments. Sandweg
et al. [8] found that spin pumping is significantly higher for
surface spin waves compared with volume spin-wave
modes. In addition, in Ref. [9], exchange waves were
observed to be less efficient at pumping spins than dipolar
spin waves, which is consistent with our results.
Furthermore, our results are consistent with the theoretical
finding that spin-transfer torques preferentially excite sur-
face spin waves with a critical current inversely propor-
tional to the penetration depth [27].

Aa (107%)

I
20f ;
< I
15¢ Tb\g !
- I
V4 I
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5t 3 :

L ____._

n n n I n 1 QL
1074 0.001 0.01 0.1 1 10 100

FIG. 4 (color online). A« versus wave vector for the MSSW
geometry (6 = ¢ = 7/2) with surface anisotropy added at the
interface. Inset: magnitudes of eigenvectors (in arbitrary units)
across the film.

097602-4



PRL 111, 097602 (2013)

PHYSICAL REVIEW LETTERS

week ending
30 AUGUST 2013

In conclusion, we have analyzed how spin pumping
causes a wave-vector-dependent enhancement of the
Gilbert damping in thin magnetic insulators in contact
with normal metals. In the long-wavelength limit, our
analytical results demonstrate that the enhancement of
the Gilbert damping for all higher-order volumetric modes
is twice as large as that of a macrospin excitation.
Importantly, surface anisotropy-pinned modes have a
Gilbert renormalization that is significantly and linearly
enhanced by the ratio LK, /A.

A. Kapelrud would like to thank G.E.W. Bauer for
his hospitality at TU Delft. This work was supported by
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Herein, we study spin-wave dispersion and dissipation in a ferromagnetic insulator-normal metal—
ferromagnetic insulator system. Long-range dynamic coupling because of spin pumping and spin transfer
lead to collective magnetic excitations in the two thin-film ferromagnets. In addition, the dynamic dipolar
field contributes to the interlayer coupling. By solving the Landau-Lifshitz-Gilbert-Slonczewski equation for
macrospin excitations and the exchange-dipole volume as well as surface spin waves, we compute the effect of
the dynamic coupling on the resonance frequencies and linewidths of the various modes. The long-wavelength
modes may couple acoustically or optically. In the absence of spin-memory loss in the normal metal, the
spin-pumping-induced Gilbert damping enhancement of the acoustic mode vanishes, whereas the optical mode
acquires a significant Gilbert damping enhancement, comparable to that of a system attached to a perfect spin
sink. The dynamic coupling is reduced for short-wavelength spin waves, and there is no synchronization. For
intermediate wavelengths, the coupling can be increased by the dipolar field such that the modes in the two
ferromagnetic insulators can couple despite possible small frequency asymmetries. The surface waves induced
by an easy-axis surface anisotropy exhibit much greater Gilbert damping enhancement. These modes also may

acoustically or optically couple, but they are unaffected by thickness asymmetries.

DOI: 10.1103/PhysRevB.90.094418

I. INTRODUCTION

The dynamic magnetic properties of thin-film ferromagnets
have been extensively studied for several decades [1,2].
Thin-film ferromagnets exhibit a rich variety of spin-wave
modes because of the intricate interplay among the exchange
and dipole interactions and the material anisotropies. In
ferromagnetic insulators (FIs), these modes are especially
visible; the absence of disturbing electric currents leads to
a clear separation of the magnetic behavior. Furthermore,
the dissipation rates in insulators are orders of magnitude
lower than those in their metallic counterparts; these low
dissipation rates enable superior control of traveling spin
waves and facilitate the design of magnonic devices [3].
In spintronics, there has long been considerable interest
in giant magnetoresistance, spin-transfer torques, and spin
pumping in hybrid systems of normal metals and metallic
ferromagnets (MFs) [4—7]. The experimental demonstration
that spin transfer and spin pumping are also active in normal
metals in contact with insulating ferromagnets has generated
a renewed interest in and refocused attention on insulating
ferromagnets, of which yttrium iron garnet (YIG) continues
to be the prime example [8—19]. In ferromagnetic insulators,
current-induced spin-transfer torques from a neighboring
normal metal (NM) that exhibits out-of-equilibrium spin ac-
cumulation may manipulate the magnetization of the insulator
and excite spin waves [8,20,21,22]. The out-of-equilibrium
spin accumulation of the normal metal may be induced via
the spin Hall effect or by currents passing through other
adjacent conducting ferromagnets. Conversely, excited spin
waves pump spins into adjacent NMs, and this spin current
may be measured in terms of the inverse spin Hall voltages or
by other conducting ferromagnets [8—14]. The magnetic state
may also be measured via the spin Hall magnetoresistance
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[16-19,24,25]. Because of these developments, magnetic
information in ferromagnetic insulators may be electrically
injected, manipulated, and detected. Importantly, an FI-based
spintronic device may efficiently transport electric information
carried by spin waves over long distances [15] without any
excessive heating. The spin-wave decay length can be as
long as centimeters in YIG films [23]. These properties make
FI-NM systems ideal devices for the exploration of novel
spintronic phenomena and possibly also important for future
spintronic applications. Magnonic devices also offer advan-
tages such as rapid spin-wave propagation, frequencies ranging
from GHz to THz, and the feasibility of creating spin-wave
logic devices and magnonic crystals with tailored spin-wave
dispersions [26]. To utilize the desirable properties of FI-NM
systems, such as the exceptionally low magnetization-damping
rate of Fls, it is necessary to understand how the magnetization
dynamics couple to spin transport in adjacent normal metals.
The effective damping of the uniform magnetic mode of a
thin-film FI is known to significantly increase when the FI is
placed in contact with an NM. This damping enhancement
is caused by the loss of angular momentum through spin
pumping [27-31]. Recent theoretical work has also predicted
the manner in which the Gilbert damping for other spin-wave
modes should become renormalized [32]. For long-wavelength
spin waves, the Gilbert damping enhancement is twice as
large for transverse volume waves as for the macrospin mode,
and for surface modes, the enhancement can be ten times
stronger or more. Spin pumping has been demonstrated, both
experimentally [9] and theoretically [32], to be suppressed
for short-wavelength exchange spin waves. A natural next
step is to investigate the magnetization dynamics of more
complicated FI-NM heterostructures. In ferromagnetic metals,
it is known that spin pumping and spin-transfer torques
generate a long-range dynamic interaction between magnetic
films separated by normal-metal layers [33]. The effect of this
long-range dynamic interaction on homogeneous macrospin
excitations can be measured by ferromagnetic resonance. The

©2014 American Physical Society
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combined effects of spin pumping and spin-transfer torque lead
to an appreciable increase in the resonant linewidth when the
resonance fields of the two films are far apart and to a dramatic
narrowing of the linewidth when the resonant fields approach
each other [33]. This behavior occurs because the excitations
in the two films couple acoustically (in phase) or optically
(out of phase). We will demonstrate that similar, though richer
because of the complex magnetic modes, phenomena exist
in magnetic insulators. In the present paper, we investigate
the magnetization dynamics in a thin-film stack consisting
of two FIs that are in contact via an NM. The macrospin
dynamics in a similar system with metallic ferromagnets
have been studied both theoretically and experimentally [33].
We expand on that work by focusing on inhomogeneous
magnetization excitations in FIs. For long-wavelength spin
waves traveling in-plane in a ferromagnetic thin film, the
frequency as a function of the in-plane wave number Q
strongly depends on the direction of the external magnetic
field with respect to the propagation direction. If the external
field is in-plane and the spin waves are traveling parallel
to this direction, the waves have a negative group velocity.
Because the magnetization precession amplitudes are usually
evenly distributed across the film in this geometry, these
modes are known as backward volume magnetostatic spin
waves (BVMSW). Similarly, spin waves that correspond to
out-of-plane external fields are known as forward volume
magnetostatic spin waves (FVMSW); i.e., the group velocity is
positive, and the precession amplitudes are evenly distributed
across the film. When the external field is in-plane and
perpendicular to the propagation direction, the precession
amplitudes of the spin waves become inhomogeneous across
the film, experiencing localization to one of the interfaces.
These spin waves are thus known as magnetostatic surface
spin waves (MSSW) [34,35]. When two ferromagnetic films
are coupled via a normal metal, the spin waves in the two films
become coupled through two different mechanisms. First,
the dynamic, nonlocal dipole-dipole interaction causes an
interlayer coupling to arise that is independent of the properties
of the normal metal. This coupling is weaker for larger
thicknesses of the normal metal. Second, spin pumping from
one ferromagnetic insulator induces a spin accumulation in the
normal metal, which in turn gives rise to a spin-transfer torque
on the other ferromagnetic insulator, and vice versa. In contrast
to the static exchange coupling [36], this dynamic coupling is
rather long-ranged and is limited only by the spin-diffusion
length. This type of coupling is known to strongly couple
the macrospin modes. When two ferromagnetic films become
coupled, the characterization of the spin waves in terms of
FVMSW, BVMSW, and MSSW still holds, but the dispersion
relations are modified. It is also clear that the damping
renormalization caused by spin pumping into the NM may
differ greatly from that in a simpler FI|N bilayer system. To
understand this phenomenon, we perform a detailed analytical
and numerical analysis of a trilayer system, with the hope that
our findings may be used as a guide for experimentalists. This
paper is organized as follows. Section II introduces the model.
The details of the dynamic dipolar field are discussed, and
the boundary conditions associated with spin pumping and
spin transfer at the FI|N interfaces are calculated. Section III
provides the analytical solutions of these equations in the
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FIG. 1. (Color online) (a) A cross section of the FII1|N|FI2
heterostructure. The ferromagnetic insulators FI1 and FI2 are in
contact via the normal metal N. The transverse coordinate & is
indicated along with the thicknesses L, dy, and L, of FI1, N, and
FI2, respectively. (b) The coordinate system of the internal field (blue)
with respect to the coordinate system of the FI1| N|FI2 structure (red).
6 denotes the angle between the film normal and the internal field,
and ¢ is the angle between the in-plane component of the magnetic
field and the in-plane wave vector.

long-wavelength regime dominated by the dynamic coupling
attributable to spin pumping and spin transfer. To create a more
complete picture of the dynamic behavior of this system, we
perform a numerical analysis for the entire spin-wave spectrum
of this system, which is presented in Sec. IV. We conclude our
work in Sec. V.

II. EQUATIONS OF MOTION

Consider a thin-film heterostructure composed of two
ferromagnetic insulators (FI1 and FI2) that are in electrical
contact via an NM layer. The ferromagnetic insulators FI1 and
FI2 may have different thicknesses and material properties.
We denote the thicknesses by L, dn, and L, for the FII,
NM, and FI2 layers, respectively [see Fig. 1(a)]. The in-plane
coordinates are ¢,n, and the transverse coordinate is & [see
Fig. 1(b)]. We will first discuss the magnetization dynamics in
isolated FIs and will then incorporate the spin-memory losses
and the coupling between the FIs via spin currents passing
through the NM.

A. Magnetization dynamics in isolated FIs

The magnetization dynamics in the ferromagnetic insula-
tors can be described using the Landau-Lifshitz-Gilbert (LLG)
equation,

M; = —yM; x Her + aM; x M, (1)

where M is the unit vector in the direction of the magnetization
in layer i = 1,2, y is the gyromagnetic ratio, o is the
dimensionless damping parameter, and He is the space-time-
dependent effective magnetic field. The effective magnetic
field is

Hegr = Hine + hex + hg + Bgurgace 2)

where Hj, is the internal field attributable to an external
magnetic field and the static demagnetization field, hex =
2AV?M/ My is the exchange field (A is the exchange constant),
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FIG. 2. (Color online) Two coupled spin waves with amplitude
m,,, in ferromagnet FI1 and amplitude m,, in ferromagnet FI2. The
spin waves inject a spin current into the normal metal (NM) via spin
pumping. In the NM, the spins diffuse and partially relax, inducing
a spin accumulation therein. In turn, the spin accumulation causes
spin-transfer torques to arise on FI1 and FI2. The combined effect of
spin transfer and spin pumping leads to a dynamic exchange coupling
that, together with the dynamic demagnetization field, couples the
spin waves in the two FIs.

hy is the dynamic demagnetization field, and

2K
Bgurtce = —S(M SR)SE — &) 3)

is the surface anisotropy field located at the FI|N interfaces. In
this work, hg,pce 1s assumed to exist only at the FI|N interfaces
and not at the interfaces between the FIs and the substrate or
vacuum. It is straightforward to generalize the discussion to
include these surface anisotropies as well. We consider two
scenarios: one with an surface anisotropy (Ks # 0) and one
with no surface anisotropy (K5 = 0). Note that a negative value
of Kg ~ —0.03 erg/cm?, which implies an easy-plane surface
anisotropy, has also been observed for sputtered YIG|Au
bilayers [37]. In general, the effective field H may differ
in the two FIs. We assume the two FIs consist of the same
material and consider external fields that are either in-plane or
out-of-plane. Furthermore, we consider devices in which the
internal magnetic fields in the two FI layers are aligned and of
equal magnitude. In equilibrium, the magnetization inside the
FIs is oriented along the internal magnetic field, M; = M.
In the linear response regime, M; = My + m;, where the
first-order correction m; is small and perpendicular to M.
The magnetization vanishes outside of the FIs. Because the
system is translationally invariant in the n and ¢ directions,
we may, without loss of generality, assume that m consists of
plane waves traveling in the ¢ direction (see Fig. 2),

m;(£.n.§) = mjg(§)e’ 9. )
Linearizing Maxwell’s equations in m; implies that the
dynamic dipolar field must be of the same form,

ha(¢,7,8) = hag(§)e @' ~2). (5)

PHYSICAL REVIEW B 90, 094418 (2014)

Furthermore, the total dipolar field (the sum of the static and
the dynamic dipolar fields) must satisfy Maxwell’s equations,
which, in the magnetostatic limit, are

V .(hg +4rMgm) = 0, (6a)
V x hg =0, (6b)

with the boundary equations

(hg + 4w Mgm), iy = (ha) L ous (7a)
(ha)j,in = (ha)y 0uts (7b)

where the subscript in (out) denotes the value on the FI
(NM, vacuum or substrate) side of the FI interface and L
(]|) denotes the component(s) perpendicular (parallel) to the
FI-NM interfaces. Solving Maxwell’s equations (6) with the
boundary conditions of Eq. (7) yields [34]

hgo(§) = 471M5/d$’é($ —&)mo(&"), ®)

where G(r — ') is a 3x3 matrix acting on m in the (n,¢,§)
basis,

. G —8©) 0 —iGU§)
GE) = 0 0 0 . 9)
—-iGUs) 0 —=G"®)

Here, GP(&) = Qe=2¢1/2, and G&) = —sgn(£)GP. Note
that the dynamic dipolar field of Eq. (8) accounts for
both the interlayer and intralayer dipole-dipole couplings
because the magnetization varies across the two magnetic
insulator bilayers and vanishes outside these materials. It is
now convenient to perform a transformation from the ¢-n-&
coordinate system defined by the sample geometry to the x-y-z
coordinate system defined by the internal field [see Fig. 1(b)].
In the linear response regime, the dynamic magnetization m;
lies in the x-y plane, and the linearized equations of motion
become [34]

_ 2A d?
folt 2)es(one [ merts
2
=y / &' Gy (& — £ )My g, (E). (10)
i=1

Here, m; g, = (m;g,,m;py) is the Fourier transform of the
dynamic component of the magnetization in the x-y plane and
gxy(g) is the 2x2 matrix that results from rotating G(S ) into
the x-y-z coordinate system (see Appendix A), considering
only the xx, xy, yx, and yy components.

B. Boundary conditions and spin accumulation

The linearized equations of motion (10) must be supple-
mented with boundary conditions for the dynamic magnetiza-
tion at the FI|N interfaces. A precessing magnetization at the
FI|N boundaries injects a spin-polarized current, j°, into the
NM, an effect known as spin pumping [8,29-31]. The emitted
spin currents at the lower and upper interfaces (i = 1,2) in
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units of charge current per area are

= oo an
€ £=5;
where & = Fdx/2 at the lower and upper interfaces, respec-
tively, and g, is the real part of the transverse spin-mixing
conductance per unit area [38]. We disregard the imaginary
part of the spin-mixing conductance because it has been
found to be small at FI|N interfaces [39]. The reciprocal
effect of spin pumping is spin transfer into the FlIs because
of a spin accumulation g in the NM. In the normal metal
at the lower and upper interfaces (i = 1,2), the associated
spin-accumulation-induced spin current is

iST 1
Ji = ——g1M; x (M; x pg) . (12)
¢ £=t,
The signs of the pumped and spin-accumulation-induced spin
currents in Egs. (11) and (12) were chosen such that they are
positive when there is a flow of spins from the NM toward the
FIs. The pumped and spin-accumulation-induced spin currents

J
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of Egs. (11) and (12) lead to magnetic torques acting on the
Fl interfaces. The torques that correspond to the spin pumping
and spin transfer localized at the FI|N interfaces are

2

sp_ Yh v

T = 202 M; g18(§ —&)M; x M;, (13a)
ST _ vh

7 = —TZMSgJ_Mi x (M; x pg)é(§ — &), (13b)

respectively. In the presence of spin currents to and from
the normal metal, the magnetization dynamics in the FIs
is then governed by the modified Landau-Lifshitz-Gilbert-
Slonczewski (LLGS) equation,

M=—yM; x Her +aM; x M; + Y 77 + 77, (14)
i=1,2

By integrating Eq. (14) over the FI|N interfaces and the
interfaces between the FI and vacuum/substrate, we find that
m; must satisfy the boundary conditions [21,32]

dm; . 1 LiKs
+Li— 4+ i |my — =My x |+ cos(260)m; =0, (15a)
d§ h x1E=TFdy/2
dm,- . 1 L,'KA\- 2
+Li— 4 xi |m; — =My X p | + —— cos™(0)m; =0, (15b)
d& h A N
S lE=TFdn/2
dm, dm,
=0, i— =0. (15¢)
d§ g1, A8 e gpprr,
[
Here, we have introduced the time scale yx; = See Appendix B for the details of the functions I'; and I'.

Lih%g, J4Ae®. The subscripts x and y in Egs. (15a) and (15b)
denote the x and y components, respectively. In our ex-
pressions for the boundary conditions (15), we have also
accounted for the possibility of a surface anisotropy arising
from the effective field described by Eq. (3), where Kg >
0 indicates an easy-axis surface anisotropy (EASA). The
boundary conditions of Eq. (15), in combination with the
transport equations in the NM, which we will discuss next,
determine the spin accumulation in the NM and the subsequent
torques caused by spin transfer. In the normal metal, the
spins diffuse, creating a spatially dependent spin-accumulation
potential pp, and they relax on the spin-diffusion length
scale [. The spin accumulation for an FI|N|FI system has
been calculated in the macrospin model [40]. The result of
this calculation can be directly generalized to the present
situation of spatially inhomogeneous spin waves by replacing
the macrospin magnetization in each layer with the interface
magnetization and substituting the spin-diffusion length with
a wave-vector-dependent effective spin-diffusion length [y —
I(Q) such that

,
ro = =3 My x {[mg () +mo (I (€)
— [ (&) — mg(E)ITs (6)). (16)

The effective spin-diffusion length is determined by Fourier-
transforming the spin-diffusion equation (see Appendix C):

Iy = Iy /V/1 + (Qlg)?. (17)

We thus have all the necessary equations to describe the linear
response dynamics of spin waves in the FI1| N|FI2 system. We
now provide analytical solutions of the spin-wave modes in the
long-wavelength limit and then complement these solutions
with an extensive numerical analysis that is valid for any
wavelength.

III. ANALYTIC SOLUTIONS FOR THE SPIN
WAVE SPECTRUM

The effect that the exchange and dipolar fields have on the
spin-wave spectrum depends on the in-plane wave number Q.
When QL; < 1, the dipolar field dominates over the exchange
field. In the opposite regime, when QL; >>> 1, the exchange
field dominates over the dipolar field. The intermediate regime
is the dipole-exchange regime. Another length scale is set
by the spin-diffusion length. When QI > 1, the effective
spin-relaxation length I of Eq. (17) becomes small, and
the NM acts as a perfect spin sink. In this case, only the
relatively short-ranged dipolar field couples the FIs. We
therefore focus our attention on the dipole-dominated regime,
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in which the interchange of spin information between the two Fls remains active. In the limit QL; < 1, the magnetization is
homogeneous in the in-plane direction. We may then use the ansatz that the deviation from equilibrium is a sum of transverse
traveling waves. Using the boundary conditions on the outer boundaries of the stack, Eq. (15¢), we find

Mg (6) = (’;) cos {k; [s & (L[ + %N)]} , (8)

where i = 1 when £ is inside FI1 and i = 2 when £ is inside FI2. k; and k, are the out-of-plane wave vectors of the lower and
upper films, respectively. The eigenfrequencies of Eq. (10) depend on k;. To first order in the damping parameter o, we have

We can, without loss of generality, consider only those
frequencies that have a positive real part. The eigenfrequency
w is a characteristic feature of the entire system, so we must
require w(k;) = w(ky), which implies that k; = k. We will
discuss the cases of symmetric (L; = L,) and asymmetric
(L # L,) geometries separately.

A. Symmetric FI films without surface anisotropy

Consider a symmetric system in which the FlIs are of
identical thickness and material properties. We assume that
the effect of surface anisotropy is negligible, which is the case
for thin films and/or weak surface anisotropy energies such that
|Ks|L/A < 1, where L = L = L,. The other two boundary
conditions, (15a) and (15b), couple the amplitude vectors
(X; YDTand (X, Y2)" of Eq. (18). A nontrivial solution
implies that the determinant containing the coefficients of the
resulting 4 x 4 matrix equation vanishes. Solving the secular
equation, we find the following constraints on &,

ixawa = kL tan(kL),
ixowo = kL tan(kL),

(20a)
(20b)

where

2811 -
YA = X(l - [1 T Mtanh(dN/zzbf)] > (21a)
(o2

2811y -
X0 :x(l - [1+£coth(dN/2lsf>] > (21b)
o

and x = Lh?g,/4Ae*. The two solutions correspond to
a symmetric mode (acoustic) and an antisymmetric mode
(optical). This result can be understood in terms of the
eigenvectors that correspond to the eigenvalues of Egs. (20),
which are m; = +m, and m; = —m, for the acoustic and
optical modes, respectively. Typically, because spin pumping
only weakly affects the magnetization dynamics, the time
scale y that is proportional to the mixing conductance g,
is much smaller than the FMR precession period. In this limit,
kL tan(kL) < 1. This result allows us to expand the secular
equations (20) around kL = n, where n is an integral number,
which yields

ixywy, ~ (kL + wn)kL, (22)

where v = A,O. This result can be reinserted into the bulk dis-
persion relation of Eq. (19), from which we can determine the
renormalization of the Gilbert damping coefficient attributable

Wy A Wy A . . (074 A
k) = + [ — ) —= k2 29 —
ki) wM[ \/(wM+2nM§ ’><wM+2nM§ i+ >+w‘( +

K+ lsinze)] 19)

oy 271M§ 2

[
to spin pumping, A«. We define

Aa = a(Im[o®”] — Im[0®])/Im[0?] (23)

as a measure of the spin-pumping-enhanced Gilbert damping,
where ©© and w®P) are the frequencies of the same system
without and with spin pumping, respectively. Similar to the
case of a single-layer ferromagnetic insulator [32], we find
that all higher transverse volume modes exhibit an enhanced
magnetization dissipation that is twice that of the macrospin
mode. The enhancement of the Gilbert damping for the
macrospin mode (n = 0) is

yhPgL x
AO‘v,macm = W?‘Js (24)
and for the other modes, we obtain
Aav,n#o = 2AOlu,macro‘ (25)

Compared with single-FI systems, the additional feature of
systems with two FIs is that the spin-pumping-enhanced
Gilbert damping differs significantly between the acoustic
and optical modes via the mode-dependent ratio x,/x. This
phenomenon has been explored both experimentally and
theoretically in Ref. [33] for the macrospin modes n = 0 when
there is no loss of spin transfer between the FIs, /iy — co. Our
results represented by Eqgs. (24) and (25) are generalizations
of these results for the case of other transverse volume modes
and account for spin-memory loss. Furthermore, in Sec. IV, we
present the numerical results for the various spin-wave modes
when the in-plane momentum Q is finite. When the NM is a
perfect spin sink, there is no transfer of spins between the two
FIs, and we recover the result for a single FI|N system with
vanishing back flow, x, — x [32]. Naturally, in this case, the
FI| N|FI system acts as two independent FI|N systems with
respect to magnetization dissipation. The dynamic interlayer
dipole coupling is negligible in the limit that is considered
in this section (QL < 1). In the opposite regime, when the
NM film is much thinner than the spin-diffusion length and
the spin conductivity of the NM is sufficiently large such that
gidn/o < 1, then xo — 0 and xo — x. This result implies
that for the optical mode, the damping is the same as for
a single FI in contact with a perfect spin sink, even though
the spin-diffusion length is very large. The reason for this
phenomenon is that when the optical mode is excited, the
magnetizations of the two films oscillate out of phase such
that one layer acts as a perfect spin sink for the other layer.
By contrast, there is no enhancement of the Gilbert damping
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coefficient for the acoustic mode; when the film is very thin and
the magnetizations of the two layers are in phase, there is no net
spin flow or loss in the NM film and no spin-transfer-induced
losses in the ferromagnets. Finally, when the NM is a poor
conductor despite exhibiting low spin-memory loss such that
grdn/o > (l¢/dn) > 1, then x, — O because there is no
exchange of spin information. For the macrospin modes in
the absence of spin-memory loss, these results are in exact
agreement with Ref. [33]. Beyond these results, we find that
regardless of how much spin memory is lost, it is also the
case that in trilayer systems, all higher transverse modes
experience a doubling of the spin-pumping-induced damping.
Furthermore, these modes can still be classified as optical and
acoustic modes with different damping coefficients.

B. Symmetric films with surface anisotropy

Magnetic surface anisotropy is important when the spin-
orbit interaction at the interfaces is strong. In this case, the
excited mode with the lowest energy becomes inhomogeneous
in the transverse direction. We first consider the FVMSW
geometry before discussing the general case. A finite K
introduces new terms into the boundary condition (15). For
the ansatz

X; cos[ké £ k(L + dN/2)]> oo

m; o, (§) = (Yi cos[ké & k(L + dx/2)]

the boundary equation (15b) is satisfied, and Eqs. (15a)
and (15b) yield

. LK
i Xy, + I - kL tan(kL), (27a)

. LKs

iy, + - = kL tan(kL), (27b)
where v continues to denote an acoustic (A) or optical (O)
mode, v =A,0. Depending on the sign of Kg and the
angle 0, the resulting solutions for k can become complex,
which implies that the modes are evanescent. For a negative
anisotropy constant and a thick FIs —LKgs/A > 1, we find
that k = ik = —Kg/A — i x,w,/L, such that

X, cosh[k& =+ x(L + dN/2>]>

mig.y(§) = (Yi cosh[k& = k(L + dn/2)] @8)

The dynamic part of the magnetization is exponentially
localized at the FI|N surfaces. Following the same procedure
asin Sec. III A for the Ky = 0 case, we insert this solution into
the dispersion relation (19) and extract the renormalization of
the effective Gilbert damping:

_ yPa Xv, KsL

AQSAFVMSW _ Xv
v 2LMge? x A

(29

This Gilbert damping enhancement may become orders of
magnitude larger than the Aoaero 0f Eq. (24). For thick films,
Alpaero ~ L1, whereas AaSAFYMSW reaches a constant
value that is inversely proportional to the localization length
at the FI|N interface. Note that for large surface anisotropy,
the equilibrium magnetization is no longer oriented along
the external field, and Eq. (29) for Aa becomes invalid.
For in-plane field geometries (BVMSW and MSSW), an
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easy axis surface anisotropy (Kg > 0) leads to a similar
localization. For in-plane static magnetization, only one of
the two dynamic components points out-of-plane, thereby
introducing an asymmetry between the two components in
the boundary conditions. Thus, the ansatz of Eq. (26) has to be
modified, resulting in a surface localization that is governed by
the length scale A/Kg but with a geometric renormalization
that is attributable to the component asymmetry. This aspect
has been treated in Refs. [22,41] for a FI|N bilayer system.
For m; = +m,, the boundary conditions (15) take the same
form as the corresponding equations for the bilayer, except for
arenormalized factor x — x,. The effective mode-dependent
damping that is induced by spin pumping for any geometry
and an arbitrary value of K is then

AaEA _ ﬁAaFnN(spin sink)_ 30)
X

In this way, this result for A« is considered relative to
the equivalent FI|N(spin sink) bilayer system. Thus, the
effect of the coupling of the layers is clearly evident in the
renormalization factor y,/x, where x = A,O [see Eq. (21)].
Exciting the acoustic modes require a torque which acts
symmetrically on the two layers. This can be achieved with a
radio strip antenna. Conversely, excitation of the optical modes
require an antisymmetric torque. We suggest that this can
be achieved by the use of spin torque FMR (ST-FMR), where
an ac spin current is induced via the spin Hall effect, by
applying an ac charge current. The resulting spin Hall induced
torque acts with opposite sign on the two layers [40]. By letting
a strip of the NM spacer consist of a high spin Hall angle NM

(e.g., Pt or Ta), finite Q optical modes can be excited.

C. Asymmetric FI films

Let us now consider an asymmetric system in which
L, # L,. In this configuration, we will first consider Kg = 0,
but we will also comment on the case of a finite Ky at the
end of the section. Because the analytical expressions for
the eigenfrequencies and damping coefficients are lengthy,
we focus on the most interesting case: that in which the
spin-relaxation rate is slow. As in the case of the symmetric
films, the dispersion relation of Eq. (10) dictates that the wave
numbers in the two layers must be the same. To satisfy the
boundary equations (15), we construct the ansatz

(X,- cos[k& % k(L + dx /2)])
m; o, (§) = . @D
Y; cos[k& £ k(L + dn/2)]

The difference between this ansatz and that for the symmetric
case represented by Eq. (26) is that the magnitudes of the
amplitudes, X; and Y;, of the two layers, i = 1,2, that appear in
Eq. (31) no longer have to be equal to each other. When the two
ferromagnets FI(L) and FI(L,) are completely disconnected,
the transverse wave vectors must be equivalent to standing
waves, ¢, 1 = nn/L; and g, 2 =mm/Ly in the two films,
respectively, where n and m may be any integral numbers.
Because spin pumping is weak, the eigenfrequencies of the
coupled system are close to the eigenfrequencies of the isolated
FIs. This finding implies that the wave vector k of the coupled
system is close to either g, or g, . The solutions of the
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linearized equations of motion are then

k= kn,l ={n,1 + Bkn.l or
k= km,Z =d4m,.2 + 8km,27

(32a)
(32b)

where 8k, and 6k, » are small corrections attributable to spin
pumping and spin transfer, respectively. Here, the indices 1 and
2 represent the different modes rather than the layers. However,
one should still expect that mode 1 (2) is predominantly
localized in film 1 (2). In this manner, we map the solutions
of the wave vectors in the coupled system to the solutions of
the wave vectors in the isolated FIs. Next, we will present
solutions that correspond to the g, ; of Eq. (32a). The other
family of solutions, corresponding to g, », is determined by
interchanging L; <> L, and making the replacement n — m.
Inserting Eq. (32a) into the boundary conditions of Eq. (15) and
linearizing the resulting expression in the weak spin-pumping-
induced coupling, we find, for the macrospin modes,

107 ero = (L18ko,1)%, (33)
where

~A ]dN (e Ll
Xlmacro ~ 57 X1
' 215 gily Ly + Lo

20 1L+ L
Xl,macm ~ ETXI'

(34a)

(34b)

Here, x; = Lih*g, /4Ae*. Inserting this parameter into
the dispersion relation of Eq. (19), we obtain the following
damping renormalizations:

_yhszldN o 1

Adr = e, B A —— 35
%macro 2Mge? 2 Iy g1l Ly + Lo (352)
yh*gi 1 (1 1
Ac® = ——+—). 35b
Umacro = S 2o\, T I, (35b)

These two solutions correspond to an acoustic mode and
an optical mode, respectively. The corresponding eigenvectors
are m; = my, for the acoustic mode and L m; = —L,m, for
the optical mode. As in the symmetric case, the damping
enhancement of the acoustic mode vanishes in the thin-NM
limit. In this limit, the behavior of the acoustic mode resembles
that of a single FI of thickness L; + L,. The total thickness
determines the leading-order contribution of the damping
renormalization. The optical mode, however, experiences
substantial damping enhancement. For this mode, the damping
renormalization is the average of two separate FIs that are in
contact with a perfect spin sink. The cause of this result is
as follows. When there is no spin-memory loss in the NM,
half of the spins that are pumped out from one side return and
rectify half of the angular-momentum loss attributable to spin
pumping. Because the magnetization precessions of the two
films are completely out of phase, the other half of the spin
current causes a dissipative torque on the opposite layer. In
effect, spin pumping leads to a loss of angular momentum,
and the net sum of the spin pumping across the NM and the
back flow is zero. The total dissipation is not affected by spin
transfer, and thus, the result resembles a system in which the
NM is a perfect spin sink. For the higher excited transverse
modes, there are two scenarios, which we treat separately.
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(I) The allowed wave number for one layer matches a wave
number for the other layer. Then, for some integer n > 0,
qn.1 = qm for some integer m. In this case, we expect a
coupling of the two layers. (II) The allowed wave number
for one layer does not match any of the wave numbers for
the other layer, and thus, for some integer n > 0, we have
qn.1 7 qm for all integers m. We then expect that the two
layers will not couple. (I) In this case, we find two solutions
that correspond to acoustic and optical modes. These modes
behave very much like the macrospin modes; however, as in
the symmetric case, the damping renormalization is greater by
a factor of 2:

A0 _ A0
Aan#() - 2AOlmacm’

case L. (36)

The eigenvectors of these coupled modes have the same form
as for the macrospin modes, such that m; = m, and L ;m; =
—L,m, for the acoustic and optical modes, respectively. (II)
In this case, the two layers are completely decoupled. To the
leading order in dy/ I, we find

yh*gL
2L1M562 ’

for all modes that correspond to excitations in FIl. The
damping renormalization is thus half that of the FI(L)|N(lys =
0) system [32]. This result can be explained by the zero loss
of spin memory in the NM. Although half of the spins are lost
to the static FI2, half of the spins return and rectify half of
the dissipation attributable to spin pumping. The amplitudes
of these modes are strongly suppressed in FI2 (or FI1, upon
the interchange of FI1 < FI2), such that |my|/|m;| ~ wyx,.
Finally, let us discuss the case in which surface anisotropy is
present. In the limit |[Kg|L;/A > 1, the excitation energies
of the surface modes are independent of the FI thicknesses.
However, the surface modes do not behave like the macrospin
modes for the asymmetric stack. The excitation volume of
these modes is determined by the decay length A/Kg in
accordance with Eq. (28). This finding is in contrast to the
result for the macrospin modes, where the excitation volume
spans the entire FI. Thus, the surface modes couple in the same
manner as in the symmetric case. When the surface anisotropy
can be well controlled experimentally, the coupling of the
surface modes becomes robust to thickness variations. When
surface anisotropy is present, the higher excited transverse
modes have thickness-dependent frequencies; i.e., these modes
behave similarly to the n > 0 modes in the Ky = 0 case.

Aoyzo = case II, (37)

IV. NUMERICAL RESULTS

When the spin-wave wavelength becomes comparable to
the film thickness, the dipolar field becomes a complicated
function of the wavelength. We study the properties of the
system in this regime by numerically solving the linearized
equations of motion (10) with the boundary conditions (15).
We use the method presented in Ref. [32], which solves the
spin-wave excitation spectrum for an FI|N system, and extend
this approach to the present trilayer system. The physical
parameters used in the numerical calculations are listed in
Table 1. We investigate two geometries: (I) the BVMSW
geometry, in which the spin wave propagates parallel to the
external field, and (I) the MSSW geometry, in which the spin
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TABLE I. Physical parameters used in the numerical calculations.

Constant Value Units
o 3.4 % 10'50 cm=2e2/ I
o 5.4 x 107" s7!
4w Mg 1750¢ G

A 3.7x 1077 erg/cm
Hy 0.58 x 47 Ms

o 3 x 1074

Ks 0, 0.05¢ erg/cm?

“Reference [42].
bReference [43].
“Reference [35].
dReported to be in the range of 0.1-0.01 erg/cm? in Ref. [21].

wave propagates perpendicular to the external field. To calcu-
late the renormalization of the Gilbert damping, we perform
one computation without spin pumping and one computation
with spin pumping, in which the intrinsic Gilbert damp-
ing is excluded. Numerically, the renormalization can then
be determined by calculating Aa = aIm[@SP],—o/Im[0®],
where »©) is the eigenfrequency obtained for the computation
without spin pumping and wSP is the frequency obtained for
the computation with spin pumping [32].

A. BVMSW

Let us first discuss the BVMSW geometry. The coupling
of the uniform modes in the two films is robust; it is not
sensitive to possible thickness asymmetries. In contrast, at
Q =0, the sensitivity to the ratio between the thickness
and the rather weak dynamic coupling attributable to spin
pumping implies that the coupling of the higher transverse
modes in the two bilayers is fragile. Small asymmetries in
the thicknesses destroy the coupling. This effect can best
be observed through the renormalization of the damping.
However, we will demonstrate that a finite wave number Q
can compensate for this effect such that the higher transverse
modes also become coupled. To explicitly demonstrate this
result, we numerically compute the real and imaginary parts of
the eigenfrequencies of a slightly asymmetric system, FI(100
nm)|N(50 nm)|FI(101 nm) with /i = 350 nm. The asymmetry
between the thicknesses of the ferromagnetic insulators is only
1%. The surface anisotropy is considered to be small compared
with theratio L; /A, and we set Ks = 0. InFig. 3, the numerical
results for the effective Gilbert damping, the dispersion of
the modes, and the relative phase and amplitude between the
magnetizations in the two Fls are presented. As observed in
the relative phase results depicted in Fig. 3(c), the two uniform
modes in widely separated Fls split into an acoustic mode
and an optical mode when the bilayers are coupled via spin
pumping and spin transfer. Figure 3(a) also demonstrates that
the acoustic mode has a very low renormalization of the Gilbert
damping compared with the optical mode. Furthermore, there
is no phase difference between the two modes with a transverse
node (n = 1) in Fig. 3(a), which indicates that the modes
are decoupled. These n = 1 modes are strongly localized in
one of the two films; see Fig. 3(b). For small QL,, Fig. 3(a)
demonstrates that these modes have approximately the same
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FIG. 3. (Color online) FI(100 nm)|N(50 nm)|FI(101 nm):

(a) Spin-pumping-enhanced Gilbert damping A« as a function
of QL of the uniform modes and the n = 1 modes; inset shows
the corresponding dispersion relation; (b) relative phase; and (c)
amplitude between the out-of-plane magnetizations along x at the
edges of FI1|N and FI2|N; the apparent discontinuity in the green
line in (c) results from defining the phase over the interval from —x
tom.

renormalization as the optical mode, which is in agreement
with the analytical results. Because the magnetization in the
layer with the smallest amplitude is only a response to the
spin current from the other layer, the phase difference is
/2 [Fig. 3(b)]. When Q increases, the dipolar and exchange
interactions become more significant. The interlayer coupling
is then no longer attributable only to spin pumping but
is also caused by the long-range dipole-dipole interaction.
This additional contribution to the coupling is sufficient to
synchronize the n = 1 modes. The relative amplitude between
the two layers then becomes closer to 1 [see Fig. 3(b)]. Again,
we obtain an acoustic mode and an optical n = 1 mode, which
can be observed from the phase difference between the two
layers in Fig. 3(c). Comparing this system to a system without
spin pumping shows that the synchronization results primarily
from dipolar coupling (see Appendix D). The elements of the
dipole tensor in Eq. (8) exhibit a maximumat Q = 1/|&§ — &'|.
This result implies that the interlayer coupling should be
maximal at Q ~ 1/dn. This results agrees well with the
synchronization at QL; = 1. The dipole coupling becomes
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weaker for larger Q, and the modes rapidly decouple because
of the reduced spin-pumping coupling, which can be attributed
to a decrease in the effective spin-diffusion length. In the large
QL limit, the exchange interaction becomes dominant. At
large Q, the frequency is dominated by the exchange energy,
such that  ~ @y (Qle)?. Spin pumping is proportional to
the frequency; thus, there is a frequency at which the spin
pumping term becomes the dominant term in the boundary
conditions of Egs. (15). Spin pumping is then no longer purely
dissipative but also contributes a surface pinning term to the
energy. Thus, the dynamic part of the magnetization is forced
to zero at the FI|N boundaries, causing the renormalization
from the spin pumping to vanish for large QL;. We also note
that the dispersion relation depicted in the inset of Fig. 3(a)
reveals that the acoustic mode (blue line) exhibits a dip in
energy at lower QL than does the optical mode (red line).
We suggest that this feature can be understood as follows: The
shift in the position of the energy dip can be interpreted as
an increase in the effective FI thickness for the acoustic mode
with respect to that for the optical mode. When I is larger
than the NM thickness, the uniform mode behaves as if the
NM were absent and the two films were joined. This result
indicates that the dispersion relation for the acoustic mode
exhibits frequency behavior as a function of QL /2, where
the effective total thickness of the film is L = L, + L,. The
optical mode, however, “sees” the NM and thus behaves as
if L = L. Consequently, the dip in the dispersion occurs at
lower QL for the acoustic mode than for the optical mode.

B. MSSW

Finally, let us study the dynamic coupling of magnetostatic
surface spin waves (MSSWs). We now consider a perfectly
symmetric system, FI(1000 nm)|N(200 nm)|FI(1000 nm),
with [y = 350 nm. For such thick films, surface anisotropies
may play an important role. We therefore discuss a case in
which we include a surface anisotropy of Ks = 0.05 erg/cm?.
According to the analytical result presented in Sec. III A
the lowest-energy modes with QL; < 1 are exponentially
localized at the FI|N surfaces. The n # 0 modes are not as
strongly affected by the surface anisotropy, and the surface
characteristics are only moderately altered [32]. We now
compute the eigenfrequencies, w, as a function of the wave
vectorintherange 107* < QL; < 103.InFig. 4(a), we present
the real part of the frequency for the six lowest-energy modes
with a positive real part, and in Fig. 4(b), we present the corre-
sponding renormalizations of the Gilbert damping for the four
lowest-energy modes. The dispersion relations indicate that
the mode pairs that are degenerate at QL < 1 rapidly split
in energy when QL approaches 1072, Strong anticrossings
can be observed between the n = 1 and n = 2 modes. Such
anticrossings are also present between the surface mode and
the n = 1 mode; they are almost too strong to be recognized as
anticrossings. The enhanced damping renormalizations exhibit
very different behavior for the different modes. We recognize
the large-Ao mode of one pair as the surface optical mode
and the low-A« mode as the volume n = 1 acoustic mode.
Without EASA, the anticrossings in Fig. 4(a) would become
crossings. The lowest-energy modes at QL < 1 would then
cut straight through the other modes. In the case considered
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FIG. 4. (Color online) FI(1000 nm)|N(200 nm)|FI(1000 nm),
I = 350 nm, Kg = 0.05erg/cm?: (a) The dispersion relation as
a function of QL for the six lowest positive-real-part modes.
(b) The renormalization of the damping attributable to spin pumping
for the four lowest modes with frequencies with positive real parts
as a function of QL,. At large QL,, the computation becomes
increasingly demanding, and the point density of the plot becomes
sparse. We have therefore individually marked the plotted points in
this region.

1000

here, this behavior is now observed only as steep lines at
QL ~0.05and at QL; ~ 0.5. The difference in the energies
of the surface modes at QL; ~ 1 results from the difference in
the dipolar interaction between layers [see Eq. (8)]. When Q
is increased, the effective spin-diffusion length decreases [see
Eq. (17)], which reduces the spin-pumping-induced coupling
between the modes at large Q. When Q L; ~ 100, the coupling
becomes so weak that the two FIs decouple. This phenomenon
can be observed from the behavior of A« in Fig. 4(b), where
the damping of the acoustic modes become the same as
for the optical modes. In the MSSW geometry, an isolated
FI has magnetostatic waves that are localized near one of
the two surfaces, depending on the direction of propagation
with respect to the internal field [35]. Asymmetries in the
excitation volume are therefore also expected for the trilayer
in this geometry. In Fig. 5, we present the eigenvectors of the
surface modes as functions of the transverse coordinate & for
increasing values of the wave vector Q. At QL; = 0.5, the
modes have already begun to exhibit some asymmetry. Note
that the renormalization of the damping observed in Fig. 4(b) is
approximately one order of magnitude larger than the intrinsic
Gilbert damping for the optical mode and that the damping
of any one mode may vary by several orders of magnitude
as a function of QL [32]. Therefore, these effects should be
experimentally observable. The greatest damping occurs when

094418-9



SKARSVAG, KAPELRUD, AND BRATAAS

4f Ac. Mode
(@) :
3t ; — QL;=0
S 2l i - QL;=0.5
= >
£ N\ — QL,=126
Q H N
: 17—
Opt. Mode
— QL,=0
@ - QLIZOS
B — QL,=126
&

Lo+dy/2

FIG. 5. (Color online) FI(1000 nm)|N(200 nm)|FI(1000 nm),
I = 350 nm, Ky = 0.05 erg/cm?: (a) and (b) present the real parts of
the x components of the out-of-equilibrium magnetization vectors for
the acoustic and optical surface modes, respectively, for several values
of QL,. For values of QL, 2 1, the modes decouple and become
localized in one of the two layers. For large values of QL; ~ 100,
the two modes are strongly localized at one of the two FI|N interfaces,
which correspond to the peaks in the damping that are apparent in
Fig. 4(b).

the two layers are completely decoupled; see Figs. 4(b) and 5.
Because the damping of the optical mode is equivalent to that
of a system with a perfect spin sink, one might expect that
the greatest damping should occur for this mode. However,
the large localization, which is achieved only at large Q L, in
combination with the vanishing of the effective spin-diffusion
length, leads to damping that is much greater than that of the
synchronized optical mode.

V. CONCLUSIONS

We investigated the dynamic coupling of spin-wave exci-
tations, which are present in single FI thin films, primarily
through spin pumping and spin transfer but also through the
dynamic demagnetization field created when two FI thin films
are in contact via an NM layer. Because of this coupling, the
modes are split into acoustical and optical excitations. When
the NM is thin compared with [, the renormalization of the
Gilbert damping vanishes for the acoustic modes, whereas for
the optical modes, the renormalization is equally as large as for
a single-FI|N system in which the NM is a perfect spin sink.
A spin wave pumps a spatially dependent spin current that
is determined by the wave number Q. When the wavelength
2m/Q is on the order of, or smaller than, the spin diffusion
length, spin currents of opposite sign diffuse into each
other and partially cancel each other out. Consequently, the

PHYSICAL REVIEW B 90, 094418 (2014)

spin-memory loss is greater for short-wavelength spin currents.
This phenomenon leads to an effective spin-diffusion length
in the NM that decreases for increasing values of Q. Thus, the
dynamic coupling strength is reduced for short-wavelength
spin waves. At some critical value of Q, the coupling becomes
so weak that the acoustic- and optical-mode configurations
are lost in favor of modes that are localized in one of the
two Fls. At these values of Q, the interlayer dipole coupling
is also dominated by the intralayer exchange coupling. For
these high-wave-number modes, the system behaves similar
to two separate FI|N(/i = 0) systems. When the two films
are of different thicknesses, the exchange energies of the
higher-order transverse n > 1 modes differ between the two
layers. Because of the relatively small coupling attributable
to spin pumping, the synchronization of these modes at
QL <« 1 requires that the FI thicknesses be very similar.
A small asymmetry breaks the synchronization; however, for
larger QL ~ 1, the modes can again become coupled through
interlayer dipole interaction. This coupling arises in addition
to the spin-pumping-induced coupling. At even larger Q, both
the dipolar- and spin-pumping-induced couplings are reduced.
Consequently, the modes of the two layers are desynchronized.
Depending on the quality of the interface between the FIs and
the strength of the spin-orbit coupling in the NM, additional
effective surface fields may be present because of surface
anisotropy energies. When surface anisotropy is present, the
lowest-energy modes are localized at the FI|N surfaces. These
modes couple in the same manner as the macrospin modes.
For films that are much thicker than the decay length A/Kjg,
the energies of the surface modes do not depend on the
film thickness. Consequently, the coupling of these modes
is independent of the thickness of the two Fls. Similar to the
simpler FI|N system, the damping enhancement may attain
values as high as an order of magnitude larger than the
intrinsic Gilbert damping. However, in the trilayer system, the
presence of both acoustic and optical modes results in large
variations in the effective damping within the same physical
sample. Because of this wide range of effective damping,
which spans a difference in A« of several orders of magnitude
as a function of Q, we suggest that trilayer modes should be
measurable in an experimental setting. With more complicated
FI structures in mind, we believe that this work may serve as
a guide for experimentalists. The large variations in effective
damping for different modes make the magnetic properties of
the system detectable both with and without surface anisotropy.
For spin waves, dipole-dipole interactions assist spin pumping
in interlayer synchronization, which can be exploited in the
design of future spintronic devices.
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APPENDIX A: DIPOLE TENSOR

The dipole tensor in the ¢ né coordinate system, G (&) from
Eq. (9), can be rotated in the xyz coordinate system using the
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rotation matrix

PHYSICAL REVIEW B 90, 094418 (2014)

So —CpSg —CyCyp
R = 0 Cop —Sp s (A] )
Cp SoS5¢ SoCy

where we have introduced the shorthand notation sy = sin6, ¢y = cos 6, and so forth. Thus, we obtain the following result:

RGRT

55Ges — cp520Ger + 53 Goe

—S¢SgGg{ + S¢C¢CeG{{
s9coGer — s9cocyGer + cp(s5 — ¢3) Gt

—S¢S0 GSC + SpCepCo GCC

—SpCo Gg{ + SpS0Co G{{

$9¢oGee — sacacyGer + co(s5 — ) Gee
Sdz)G{{ —S¢L‘9G§{ + S¢S9C¢G{{
cﬁGgg + 520¢4Ger + cing;{

(A2)

As we are considering the linear response regime, the equilibrium magnetization should be orthogonal to the dynamic deviation,
m; - 2 = 0. Thus, it is sufficient to retain only the xy part of §,,.. Thus, we obtain the following result:

G — 53Gss — 420G + ey Gy
* —8¢30Gec + 5pcpcoGec

APPENDIX B: SPIN ACCUMULATION

The functions I'j(§) and I'y(¢) are taken directly from
Ref. [40] and modified to apply to the more complex magnetic
texture model. Thus, we obtain the following result:

cosh(¢/1s)
rie) = —_—
cosh(€/L) + o sinh ¢ L/ 26l
P = sinh( /1)

sinh(& /L) + o cosh(€ /L) /2 1 L

For Qlg > 1, the effective spin diffusion length is shortened,
I't = 1 and I'; — 0 at the FI|N interfaces.

APPENDIX C: EFFECTIVE SPIN DIFFUSION LENGTH

Diffusion in the NM can be described as follows:

1
s =DVins — —ps, (CD)

Tsf

where D is the diffusion constant, and 7y is the spin-flip
relaxation time. We assume that the FMR frequency is much
smaller than the electron traversal time, D /d2, and the spin-flip
relaxation rate, 1/t [40]. Thus, the left-hand side of Eq. (C1)
can be neglected. In linear response, the spin accumulation,
which is a direct consequence of spin pumping, must be
proportional to the rate of change of magnetization at the
FI|N interfaces. We perform the same Fourier transform, as on
the magnetization, such that u ~ exp{i(wt — Q¢)}. The spin
diffusion equation then takes the form

1
Drgf Hs-

The spin diffusion length becomes [ = /Dty. We ir}tro-
duce the effective spin diffusion length as follows: [y =

Gnms = (Q2 + (€2

—5¢56 G +59CpcoGee
$2G : (A3)
$0cc
{
Is¢/+/1 4 (Ql)? one gets
P 1
Oghs = 5 s- (€3)
sf

APPENDIX D: SYNCHRONIZATION WITH VANISHING
SPIN PUMPING

‘We identify the relative contributions of spin pumping and
interlayer dipole coupling by considering the results of the
numerical calculation in Sec. IV A in the absence of spin
pumping and the associated coupling (g; = 0). In Fig. 6,
we show the relative amplitude between the two layers for
the four lowest energy modes. The frequencies of the two
uniform modes are independent of the thickness and are
therefore synchronized even at Q — 0, where the interlayer
dipole coupling becomes small. Comparing this calculation
to the same calculation with spin pumping shows that the
synchronization observed at QL; ~ 1 primarily results from
dipole coupling.

3 L
= n=1 Mode
O
Za
£
32 1 Uniform Modes
£

0 n=1 Mode

1074 1073 0.01 0.1 1 10
QL,
FIG. 6. (Color online) FI(100 nm)|N(50 nm)|FI(101 nm),

BVMSW without spin pumping, showing relative amplitude of the
out-of-plane magnetizations along x at the edges of FI1|N and FI2|N
as functions of QL;; blue and yellow (red and green) lines show
acoustical (optical) modes.
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‘We theoretically consider the spin-wave mode- and wavelength-dependent enhancement of the Gilbert damping
in magnetic insulator-normal metal bilayers due to spin pumping as well as the enhancement’s relation to direct
and alternating inverse spin Hall voltages in the normal metal. In the long-wavelength limit, including long-range
dipole interactions, the ratio of the enhancement for transverse volume modes to that of the macrospin mode is
equal to two. With an out-of-plane magnetization, this ratio decreases with both an increasing surface anisotropic
energy and mode number. If the surface anisotropy induces a surface state, the enhancement can be an order of
magnitude larger than for the macrospin. With an in-plane magnetization, the induced dissipation enhancement
can be understood by mapping the anisotropy parameter to the out-of-plane case with anisotropy. For shorter
wavelengths, we compute the enhancement numerically and find good agreement with the analytical results in
the applicable limits. We also compute the induced direct- and alternating-current inverse spin Hall voltages and
relate these to the magnetic energy stored in the ferromagnet. Because the magnitude of the direct spin Hall
voltage is a measure of spin dissipation, it is directly proportional to the enhancement of Gilbert damping. The
alternating spin Hall voltage exhibits a similar in-plane wave-number dependence, and we demonstrate that it is

greatest for surface-localized modes.

DOI: 10.1103/PhysRevB.95.214413

I. INTRODUCTION

In magnonics, one goal is to utilize spin-based systems for
interconnects and logic circuits [1]. In previous decades, the
focus was to gain control over these systems by exploiting
long-range dipole interactions in combination with geomet-
rical shaping. However, the complex nature of the nonlinear
magnetization dynamics persistently represents a challenge in
using geometrical shaping alone to realize a variety of desired
properties [1].

In magnonic systems, a unique class of materials consists
of magnetic insulators. Magnetic insulators are electrically
insulating, but localized magnetic moments couple to form
a long-range order. The prime example is yttrium iron garnet
(YIG). YIG is a complex crystal [2] in the Garnet family,
where Fe** ions at different sites in the unit cell contribute
to an overall ferrimagnetic ordering. What differentiates
YIG from other ferromagnetic (ferrimagnetic) systems is
its extremely low intrinsic damping. The Gilbert damping
parameter measured in YIG crystals is typically two orders
of magnitude smaller than that measured in conventional
metallic ferromagnets (Fe, Co, Ni, and alloys thereof).

The recent discovery that the spin waves in magnetic
insulators strongly couple to spin currents in adjacent normal
metals has reinvigorated the field of magnonics [3-12].
Although there are no mobile charge carriers in magnetic
insulators, spin currents flow via spin waves and can be
transferred to itinerant spin currents in normal metals via
spin transfer and spin pumping [13,14]. These interfacial
effects open new doors with respect to local excitation and
detection of spin waves in magnonic structures. Another key
element is that we can transfer knowledge from conventional
spintronics to magnonics, opening possibilities for novel
physics and technologies. Traditionally, spin-wave excitation
schemes have focused on the phenomenon of resonance or the
use of Prsted fields from microstrip antennas.

2469-9950/2017/95(21)/214413(14)
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A cornerstone for utilizing these systems is to establish a
good understanding of how the itinerant electrons in normal
metals couple across interfaces with spin-wave dynamics in
magnetic insulators. Good models for addressing uniform
(macrospin) magnetization that agrees well with experiments
have been previously developed [13—15]. We recently demon-
strated that for long-wavelength magnons the enhanced Gilbert
damping for the transverse volume modes is twice that of the
uniform mode, and for surface modes, the enhancement can be
more than ten times stronger. These results are consistent with
the theory of current-induced excitations of the magnetization
dynamics [16] because spin pumping and spin transfer are
related by Onsager reciprocity relations [17]. Moreover,
mode- and wave-vector-dependent spin pumping and spin Hall
voltages have been clearly observed experimentally [4].

In this paper, we extend our previous findings [18] in the
following four aspects. (i) We compute the influence of the
spin backflow on the enhanced spin dissipation. (ii) We also
compute the induced direct and alternating inverse spin Hall
voltages. We then relate these voltages to the enhanced Gilbert
damping and the relevant energies for the magnetization
dynamics. The induced voltages give additional information
about the spin-pumping process, which can also be directly
measured. (iii) We also provide additional information on
the effects of interfacial pinning of different types in various
field geometries. (iv) Finally, we explain in more detail how
the numerical analysis is conducted for a greater number of
in-plane wave numbers.

It was discovered [19-23] and later quantitatively explained
[13,15,24,25] that if a dynamic ferromagnetic material is put
in contact with a normal metal, the magnetization dynamics
will exert a torque on the spins of electrons in the immediate
vicinity of the magnet. This effect is known as spin pumping
(SP) [13,15,25]. As the electrons are carried away from the
ferromagnet-normal metal interface, the electrons spin with
respect to each other, causing an overall loss of angular

©2017 American Physical Society
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momentum. The scattering formalism and a dynamic magnetic
susceptibility equivalently describe the resulting pumped spin
current [26,27]. The inverse effect, in which a spin-polarized
current can affect the magnetization of a ferromagnet, is called
spin-transfer torque (STT) [14,28,29].

The discovery that a precessing magnetization in magnetic
insulators [3], such as YIG, also pumps spins into an adjacent
metal layer was made possible by the fact that the mixing
conductance in YIG-normal metal systems is of such a size
that the extra dissipation of the magnetization due to the spin
pumping is of the same order of magnitude as the intrinsic
Gilbert damping. A consequence of this effect is that the
dissipation of the magnetization dynamics is enhanced relative
to that of a system in which the normal metal contact is
removed. The detection of the antiferromagnet-paramagnet
phase transition in CoO is a recent development of spin
pumping from YIG [30]. The CoO spacer layer is sandwiched
between YIG and a normal metal. Distinguishing the dynamics
in the antiferromagnet from the dynamics from the YIG-
normal metal system also requires a robust understanding of
the spin pumping properties of the YIG-normal metal bilayer
system.

This paper is organized in the following manner. Sec-
tion II presents the equation of motion for the magnetization
dynamics and the currents in the normal metal and the
appropriate boundary conditions, both for general nonlinear
excitations and in the fully linear response regime. In Sec. III,
we derive approximate solutions to the linearized problem,
demonstrating how the magnetization dissipation is enhanced
by the presence of an adjacent metal layer. Section IV presents
our numerical method and results. Finally, we summarize our
findings in Sec. V.

II. EQUATIONS OF MOTION

The equation of motion for the magnetization is given by
the Landau-Lifshitz-Gilbert equation [31] (presented here in
CGS units)

oM o oM

UM xHeg+ —Mx 22, 1
yM x elt+Mx X5 (D)

ot
where y = |gup/h| is the magnitude of the gyromagnetic
ratio; g &~ 2 is the Landé g-factor for the localized electrons
in the ferromagnetic insulator (FI), and « is the dimensionless
Gilbert damping parameter. In equilibrium, the magnitude of
the magnetization is assumed to be close to the saturation
magnetization M. The magnetization is directed along the z
axis in equilibrium. Out of equilibrium, we assume that we
have a small transverse dynamic magnetization component,
such that

M = M(r,t) = M + m(r,t) = M,z + m(r,1), 2)

where |m| <« M; and m - Z = 0. Furthermore, we assume that
the dynamic magnetization can be described by a plane wave
traveling along the in-plane ¢ axis. In the (¢,7,¢) coordinate
system (see Fig. 1), we have

m(r,1) = m(§,5,1) = mo(§)e' 9, 3

where w is the harmonic angular frequency, Q is the in-plane
wave number, andmy(§) = X(£)X + Yo (§)y, where X o and
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FIG. 1. (a) The coordinate system. £ is the film normal and ¢ is the
spin-wave propagation direction. £ ¢ form a right-handed coordinate
system. The Z axis is the direction of the magnetization in equilibrium,
such that xy is the magnetization-precession plane. (b) The film stack
is in the normal direction.

Y are complex functions. Note that m is independent of the n
coordinate due to translational invariance. The in-plane wave
number, Q, can be engineered by lateral dimensioning of the
sample in such a way as to induce standing waves in the film
plane [4,32].

H, is the effective field, given as the functional derivative
of the free energy [31,33]

SU[M(r,1)]

Hegi(r,t) = — SM(r.D)

24 _,
=Hi + 3 VM)

Ty / L dE Gy —EmE L), @)

L
2

where H; is the internal field, which is composed of the
applied external field and the static demagnetization field.
The direction of H; defines the z axis (see Fig. 1). The
second term of Eq. (4) is the field, H,,, induced by the
exchange interaction (assuming cubic symmetry), where A is
the exchange stiffness parameter. The last term is the dynamic
1j§1d, h,(r,t), induced by dipole-dipole interactions, where
G,y is the upper 2 x 2 part of the dipole-dipole tensorial
Green’s function ?m in the magnetostatic approximation
(see Ref. [34]) rotated to the xyz coordinate system (see
Appendix for coordinate-transformation matrices) [35].

The effect of the dipolar interaction on the spin-wave
spectrum depends on the orientation of the internal field with
respect to both the interface normal of the thin film, é, and the
in-plane spin-wave propagation direction, ¢. Traditionally, the
three main configurations are the out-of-plane configuration
(6 = 0), in the forward volume magnetostatic wave (FVMSW)
geometry [see Fig. 2(a)]; the in-plane and parallel-to-¢
configuration, in the backward volume magnetostatic wave
(BVMSW) geometry [see Fig. 2(b)]; and the in-plane and
perpendicular-to-¢ configuration, in the magnetostatic surface
wave (MSSW) geometry [see Fig. 2(c)] [1,35-39]. Here,
the term “forward volume modes” denotes modes that have
positive group velocities for all values of QL, whereas
backward volume modes can have negative group velocities in
the range of Q L, where both exchange and dipolar interactions
are significant. Volume modes are modes in which my(§) is
distributed across the thickness of the entire film, whereas the
surface modes are localized more closely near an interface.
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©

FIG. 2. Laboratory field configurations, i.c., directions of Z (green arrow) in relation to film normal & and the spin-wave propagation
direction , resulting in the different geometries: (a) FVMSW geometry, (b) BVMSW geometry, and (c) MSSW geometry.

A. Spin-pumping torque

We consider a ferromagnetic insulator (FI) in contact with
a normal metal (NM) (see Fig. 1). If the magnetization
in the FI close to the interface is precessing around the
effective field, electron spins in the NM reflected at the
interface will start to precess due to the local exchange
coupling to the magnetization in the FI. The reflected electrons
carry the angular momentum away from the interface, where
the spin information can get lost through dephasing of the
spins within a typical spin diffusion length /. This loss
of angular momentum manifests itself as an increased local
damping of the magnetization dynamics in the FI. The
magnetization dissipation due to the spin-pumping effect can
be taken into account by adding the local dissipation torque
(151,

yhtg, L dM(r,1)
Ty = 262M?8<E — E M(r,t) x T, (5

to the right-hand side (rhs) of Eq. (1). Here, g, is the real part
of the spin-mixing conductance per area, and e is the electron
charge. We neglect the contribution from the imaginary part
of the mixing conductance, because this has been shown to
be significantly smaller than that of the real part, in addition
to affecting only the gyromagnetic ratio [15]. The spin-
current density pumped from the magnetization layer is thus
given by

_ Flsz

j(S) —
® = T2

[M(r,t) X (6)

dM(r,1) :|
CLA
in units of erg. Next, we will see how the spin pumping affects
the boundary conditions.

B. Spin-pumping boundary conditions

Following the procedure of Rado and Weertman [40], we
integrate Eq. (1) with the linear expansion of Eq. (2) over a
small pill-box volume straddling one of the interfaces of the FI.
Upon letting the pill box thickness tend to zero, only the sur-
face torques of the equation survive. Accounting for the
direction of the outward normal of the lid on the different
top and bottom interfaces, we arrive at the exchange-pumping
boundary condition

2A M R d
(—ZMX g Mx —m> 0. ()
M2 B T 28M ot )

There is no spin current pumped at the interface to the
insulating substrate; thus a similar derivation results in a
boundary condition that gives an unpinned magnetization,

IM(r,1)

=0. (8)
I PR

In the next section, we will generalize the boundary conditions
of Eq. (7) by also considering possible surface-anisotropy
energies.

1. Including surface anisotropy:

In the presence of surface anisotropy at an interface with
an easy-axis (EA) pointing along the direction fi, the surface
free energy is

M(r,) -7\ >
Us[M(r,1)] = /dV K| 1— (T) 3¢ — &),

®

where K; is the surface-anisotropy energy density at the
interface, which is assumed to be constant; i is the direction of
the anisotropy easy axis; and &; is the transverse coordinate of
the interface. The contribution from the EA surface-anisotropy
energy to the effective field is determined by

H, = —75%‘1&\4(“0] = 2K My - 20n,
(r,t) M;

However, if we have an easy-plane (EP) surface anisotropy
with i being the direction of the hard axis, the effective field
is the same as that for the EA case, except for a change of sign
of K. We unify both cases by defining K, > 0 to imply that
we have an EA surface anisotropy with its easy axis along A,
whereas K; < 0implies that we have an EP surface anisotropy
with its hard axis along fi.

Following the approach from Sec. II B, the total bound-
ary condition, including exchange, pumping, and surface
anisotropy, becomes

LA M 2K
M x — — -A)(M x fi
M; 0k M
P BM] 0 (10)
S a2 8LV X —— =,
2e*M? 0 Jeesrp
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where the positive (negative) sign in front of the exchange term
indicates that the bulk FI is located below (above) the interface
coordinate.

C. Linearization

We linearize the equation of motion using Eq. (2) with
respect to the dynamic magnetization m. The linearized
equation of motion for the bulk magnetization, Eq. (1),
becomes [35]

.0 (o YA( , d*
f (o) il wM (= i) |mee
= [ d€ Gute — hmoce), an

where wy = y H;, oy = 4wy M, and 1 = ((lJ (1)).

Next, we linearize the boundary conditions of Eq. (10).
We choose the anisotropy axis to be perpendicular to the film
plane, i = é , which in the xyz coordinate system is given by
‘;‘Xyz = (sin#,0, cos 0), where 6 is the angle between the z axis
and the film normal (see Fig. 1). The finite surface anisotropy
forces the magnetization to be either perpendicular or coplanar
with the film surface so that & = 0,77/2,7. Linearizing to first
order in the dynamic magnetization, we arrive at the linearized
boundary conditions for the top interface:

(L% + t—,o + dcos(26)>mgyx(g)|§:% =0, (12a)

<L% + t—p +d cos (0)>mQ,y($)|5:% =0, (12b)

whered = LK, /Aisthe dimensionless surface-pinning pa-
rameter that relates the exchange to the surface anisotropy and
the film thickness and p = wy, Lhi%g | /4Ae? is a dimensionless
constant relating the exchange stiffness and the spin-mixing
conductance.

D. Spin accumulation in NM and spin backflow

The pumped spin current induces a spin accumulation,
u® = p®3s, in the normal metal. Here, § is the spin-
polarization axis, and p® = (py — py)/2 is half of the
difference between chemical potentials for spin-up and spin-
down electrons in the NM.

As the spin accumulation is a direct consequence of the
spin dynamics in the FI [see Eq. (6)], the spin accumulation
cannot change faster than the magnetization dynamics at the
interface. Thus, assuming that spin-flip processes in the NM
are must faster than the typical precession frequency of the
magnetization in the FI [25], we can neglect the precession of
the spin accumulation around the applied field and any decay
in the NM. With this assumption the spin-diffusion equation
"s‘::] DV?u® — £~ where D is the spin-diffusion constant,
and 7y is the material- specific average spin-flip relaxation
time, becomes

r® ~ 2V, 13)

where Iy = /7D is the average spin-flip relaxation length.
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The spin accumulation results in a backflowing spin-current
density, given by

JD@/2) = SES MG x (M, 1) x w0 e 2,

(14)

2M2

where the positive sign indicates flow from the NM into the
FI. This spin current creates an additional spin-transfer torque
on the magnetization at the interface:

i L
Th = _Zzﬂié(S(g - z)M(r,r) x (M(r,1) x ). (15)

Because the spin accumulation is a direct result of the
pumped spin current, it must have the same orientation as
the M(r,?) x d,M(r,?) term in Eq. (5). That term is comprised
of two orthogonal components: the first-order term MZ x m,
in the xy plane, and the second-order term m x m, oriented
along Z. Because the magnetization is a real quantity, care
must be taken when evaluating the second-order term. Using
Eq. (3), the second-order pumped spin current is proportional
to

Re{m} x o;,Re{m}|:—; />
= ¢ M@l Re{w)z[ImX yReYy — ReXpImY,],
(16)
which is a decaying direct-current (DC) term. This is in

contrast to the first-order term, which is an alternating-current
(AC) term. Thus we write the spin accumulation as

RS = pie(® x o) + ppet, (17)

where we have used the shorthand notationm, = m(§ = L/2),
such that m, = m,/|m,|, which in general is not parallel to
m but guaranteed to lie in the xy plane. Inserting Eq. (17)
into Eq. (13) gives one equation each for the AC and DC
components of the spin accumulation,

62 (V)

-2
852 =Lgjh; (18)

where j denotes either the AC or DC case and [spc =
Ly while Iy ac = Ist(1 +123:0%)71/? because m, o exp(i(wt —
Q¢)). Equation (18) can be solved by demanding spin-current
conservation at the NM boundaries: at the free surface of
the NM, there can be no crossing spin current; thus the &
component of the spin-current density must vanish there,
¢ ;LEZY)|5=L/2M = 0. Similarly, biy applying conser.vation of
angular momentum at the FI-NM interface, the net spin-current
density crossing the interface, due to spin pumping and
backflow, must equal the spin current in the NM layer, giving

K2 oM h
|:— ZgJ'ZM + szzM x (M x [L(S))]
222M2° " ot &M i
ho
=5 235ﬂ()|s L/2> (19)
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TABLE I. Typical values for the parameters used in the calcula-
tions [6,7,11,42,43].

Parameter Value Unit
A 3.66 x 1077 ergem™!
o 3x 107 -
K, 0.05 ergcm 2
gL 8.18 x 107 cm~!s7!
y 1.76 x 107 G s
47 M, 1750 G

o 8.45 x 10'6 o

d 50 nm
Ls¢ 7.7 nm
® 0.1 -

where o is the conductivity of the NM. Using these boundary
conditions, we recover the solutions (see, e.g., Refs. [25,41])

¢ _ (o sinh (I51E — (L2 + )
R =Hio sinh (—%)

, (20)

where ,u% is time dependent and depends on the ¢ coordinate
only in the AC case. We find that the AC and DC spin

accumulations u% are given by

hm o d -

(s) t

n = ——— l+7coth< )i| , (21
ACO 2 M; |: 2g1lsac lstac

(s) _ quh
DC,0 O'MSZ

d .

g1 tanh (f)i Smoxmle_pp, (22)
sf

where g, is a renormalized mixing conductance, which is

given by

5 o d -1
gr=g1y1— |1+ z——coth . (23)
2g.1lstac Lst.ac

This scaling of g, occurring in the DC spin accumulation
originates from the second-order spin backflow due to the AC
spin accumulation that is generated in the normal metal.

Adding both the spin-pumping and the backflow torques
to Eq. (1) and repeating the linearization procedure from
Sec. II C, we find that the AC spin accumulation renormalizes
the pure spin-mixing conductance. Thus the addition of the
backflow torque can be accounted for by replacing g, with g,
in the boundary conditions of Eq. (12), making the boundary
conditions Q-dependent in the process.

Using the values from Table I, which are based on typical
values for a YIG-Pt bilayer system, we obtain g,/g; ~
0.4 for QL < 1, whereas g, /g, — 1 for large values of
QL. Thus AC backflow is significant for long-wavelength
modes and should be considered when estimating g, from
the linewidth broadening in ferromagnetic resonance (FMR)
experiments [11].

E. Inverse spin Hall effect

The inverse spin Hall effect (ISHE) converts a spin
current in the NM to an electric potential through the
spin-orbit coupling in the NM. For a spin current in the &
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direction, the ISHE electric field in the NM layer is Ejsyg =
—e*'@((ag;ds)) X E)g, where ® is the dimensionless spin-
Hall angle, and (-); is a spatial average across the NM layer,
ie., for &£ € (L/2,L/2 + d). Using the previously calculated
spin accumulation, we find that the AC electric field is

i [1+ o th( d )]‘1
CO
2deM, 2g .1 lsiac lstac

X [=#f(—=my,, cosB cos ¢ + m; . sin )

AC
Esye =—©

+ Z‘(—m,,x cos ¢ — my,y, cos O sin )], (24)
where
m;; = —[Imeem; + Rea)Imnzi]g:L/Q, (25)

and i = x,y. For BVMSW (0 = 7 /2,¢ = 0) modes, the AC
field points along &, whereas for MSSW (0 = ¢ = 7/2)
modes, it points along # (i.e., in plane, but transverse to ¢;
see Fig. 1). Notice that for both BVMSW and MSSW mode
geometries, only the x component of m, contributes to the
field. In contrast, for FVMSW (6 = 0) modes, the field points
somewhere in the n¢ plane, depending on the ratio of m; ,
to my y.

Similarly to the AC field, the DC ISHE electric field is given
by

(s)

"
DC DC,0
Egp = © de

sinf(fj cos ¢ — & sin @), (26)

which is perpendicular to the AC electric field and zero for the
FVMSW mode geometry.

The total time-averaged energy in the ferromagnet &gy
(see, Morgenthaler [44]) is given by

*

(Etotal) 7 = / Re[—in (m x m*)i] dv, 27
ferrite wpy

where the integral is taken over the volume of the ferromagnet.

Because the DC ISHE field is in-plane, the voltage mea-
sured per unit distance along the field direction, A = § cos ¢ —
fsin ¢, can be used to construct an estimate of the mode
efficiency. Taking the one-period time average of Eq. (26)
using Eq. (22) and normalizing it by Eq. (27) divided by the
in-plane surface area, A, we find an amplitude-independent
measure of the DC ISHE:

eA - ERfe),
<£lolal)T/-A
Ish d\ .
deMs g, tanh (Z) sin 6
Re[—i%(m x m*)i]S:L/2
X s
S, Re[—i 22 (m x m*)2] dé

D€ —

= -2y0

(28)

given in units of cm, and where {-}* denotes complex
conjugation.

Similarly, the AC ISHE electric field, being time-varying,
will contribute a power density that, when normalized by the
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power density in the ferromagnet, becomes

AC (‘7 (E%%E)z)r

T Relc
2:&2 <‘€total)T

To en \? o d -2
= 1+ — coth
Re{w} \ 2deM; 2g1 kA lstac

[m x |2 + cos’ glml,y|2

X .
L[5, Re[—i 22 (m x m*)z] de

(29)

To be able to calculate explicit realizations of the mode-
dependent equations (28) and (29), one will need to first
calculate the dispersion relation and mode profiles in the
ferromagnet.

III. SPIN-PUMPING THEORY FOR TRAVELLING
SPIN WAVES

Because the linearized boundary conditions [see Eqgs. (12)]
explicitly depend on the eigenfrequency w, we cannot apply the
method of expansion in the set of pure exchange spin waves,
as was performed by Kalinikos and Slavin [35]. Instead, we
analyze and solve the system directly for small values of QL,
whereas the dipole-dipole regime of QL ~ 1 is explored using
numerical computations in Sec. I'V.

A. Long-wavelength magnetostatic modes
When QL < 1, Eq. (11) is simplified to

sin?@ 0 il -1
0 0 wpm 1 o
2 2
wy y A d
+1| ——8r———|; - m =0, 30
[wM " d§2]} 0®) (30)
where the first-order matrix term describes the dipole-induced
shape anisotropy and stems from G, (see Ref. [35]). We make
the ansatz that the magnetization vector in Eq. (3) is composed
of plane waves, e.g., mo(&) o ¢/*¢. Inserting this ansatz into
Eq. (30) produces the dispersion relation

2
<1) _ (&H FALE +m1>
wpy wpyr wp
XGE+&#+MM+ME)’BD
wpm wpy

where Ao, = v/87y2A /wfu is the exchange length. Keeping
only terms to first order in the small parameter o, we
arrive at

=== \/(wH + xgxk2> (w—H +22.k% 4 sin? 9)
oy oy oy

w sin® 6
+—ia<gli4-kék2+-4447>. 32)
wp 2

The boundary conditions in Eq. (12) depend explicitly on
o and k and give another equation k = k(w) to be solved
simultaneously with Eq. (32). However, in the absence of spin
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pumping, i.e., when the spin-mixing conductance vanishes,
g1 — 0, it is sufficient to insert the constant k solutions
from the boundary conditions into Eq. (32) to find the
eigenfrequencies.

Different wave vectors can give the same eigenfrequency.
It turns out that this is possible when w(k) = w(ix), which has
a nontrivial solution relating « to k:

3242 = sin? 0 402K + 221 L iawk) /oy, (33)
wp

With these findings, a general form of the magnetization

wst= (el c-4)
s enls(e3) ]} ()
X {C3 cosh |:K<€ + %)]
+—C4ﬂnh<x(§+—%)}}, (34)

where {C;} are complex coefficients to be determined from
the boundary conditions, and where x = «(k) is given by
Eq. (33). The ratio between the transverse components of
the magnetization, r(k) = Yo/ X, is determined from the
bulk equation of motion [see Eq. (30)] and is in linearized
form,

@ Sin? 0 = 20 [ (2 + 32K (2 + 33K + sin? 6)
228 4+ 13k2)

rl)=—

5

(35)

implying elliptical polarization of my when 6 # 0.

Inserting Eq. (34) into Eq. (8) only leads to a solution when
k = 0, such that C, = C4 = 0 in the general case. By solving
Eq. (12b) for C3, we find

C; w—”+k§xk2+sin29+iaﬁ

wy

C. T 0w 2 2 4 gin? N
C Sl — Mgk +sin® 0 + i 2

(iﬁﬁ +d cos? 0) cos(kL) — kL sin(kL)
@%ﬁ+dm§®cmmuJ+Kme@m’
(36)

where § = plg, .z, is the pumping parameter altered by
the AC spin backflow from the NM (see Sec. IID). C; is
chosen to be the free parameter that parameterizes the dynamic
magnetization amplitude, which can be determined given a
particular excitation scheme. The linearization of Eq. (36) with
respect to « is straightforward, but the expression is lengthy;
we will therefore not show it here.

Inserting the ansatz with C, = C4 = 0 and C; given by
Eq. (36) into Eq. (12a) gives the second equation for k£ and w
[the first is Eq. (32)]. In the general case, the number of terms
in this equation is very large; thus we describe it as

flk,w,o,p) =0, (37)
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i.e., an equation that depends on the wave vector k, fre-
quency w, Gilbert damping constant «, and the spin-pumping
parameter p.

Because both the bulk and interface-induced dissipation are
weak, ¢ < 1, p <« 1, the wave vector is only slightly perturbed
with respect to a system without dissipation, i.e., k — k + 8k
where A8k < 1. It is therefore sufficient to expand f up to
first order in these small quantities:

af N
FITIRTS] a
(38)

9
flk,®,0,0) + (ﬁ)a—

+ a* ' + (hex0k) ———~

where the sub-index 0 means evaluation in a system without
dissipation, i.e., when (&, 5,6k) = (0,0,0). By solving the sys-
tem of equations in the absence of dissipation, f(k,»,0,0) =0,
the dissipation-induced change in the wave vector 8k is given
by

Tf| tag 5 |o

Sk~ — (39)

>

ex B(Auak) |o

In turn, this change in the wave vector should be inserted
into the dispersion relation of Eq. (31) to find the dissipation.
Inspecting Eq. (31), we note that §k-induced additional terms
proportional to w are of the form (k + 8k)> — k* ~ 2kdk,
which renormalize the Gilbert-damping term i >-. Thus,
in Eq. (39), there are terms proportional to the frequency in
both terms in the numerator. We extract these terms o< i @ by
differentiating with respect to @ and define the renormalization
of the Gilbert damping, i.e., « — o + Ac«, from spin pumping
as

_ iZAekaM aw()"exakla:0)
iZAexka)Maw()"exak‘ﬁ:()) -1 ’

(40)

where 9, represents the derivative with respect to w and k is the
solution to the zeroth-order equation. Note that in performing
a further local analysis around some point & in the k space of
Eq. (37), a series expansion of f around ky must be performed
before evaluating Egs. (39) and (40).

Equation (40) is generally valid, except when d = 0 and
kL — 0, which we discuss below. In the following section, we
will determine explicit solutions of the zeroth-order equation
for some key cases, and map out the spin-wave dispersion
relations and dissipation in the process.

B. No surface anisotropy (d = 0)

Let us first investigate the case of a vanishing surface
anisotropy. In this case, the zeroth-order expansion of Eq. (37)
has a simple form and is independent of the magnetization
angle 0. The equation to determine & is given by

kL tan(kL) = 0, (41)

with solutions k = nx /L, wheren € Z. Slmllarly, the expres-
sion for 8k is greatly simplified, 8k, = i -2 £ % 5 £ 0, such

wy nr L2

that the mode-dependent Gilbert damping is

A 2
Aw, = 2,3(%) ., n#0. (42)
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For the macrospin mode, when n = 0, the linear expansion in
8k becomes insufficient. This is because kL tan(kL) ~ (kL)?
for kL — 0; thus we must expand the function f to second
order in the deviation §k around kL = 0. For d = 0, we find

that the boundary condition becomes §k>L* = i P2, and
when inserted into Eq. (31), it immediately gives
(e 1
Aag = p(7> = 54, (43)

which is the macrospin renormalization factor found in
Ref. [15]. Using a different approach, our results in this
section reproduce our previous result that the renormalization
of the Gilbert damping for standing waves is twice the
renormalization of the Gilbert damping of the macrospin [18].
Next, we will obtain analytical results beyond the description
in Ref. [18] for the enhancement of the Gilbert damping in the
presence of surface anisotropy.

C. Including surface anisotropy (d # 0)

In the presence of surface anisotropy, the out-of-plane and
in-plane field configurations must be treated separately. This
distinction is because the boundary condition (37) has different
forms for the two configurations in this scenario.

1. Out-of-plane magnetization

When the magnetization is out of plane, i.e., 6 = 0, the
spin-wave excitations are circular and have a high degree
of symmetry. A simplification in this geometry is that the
coefficient C3 = 0. In the absence of dissipation, the boundary
condition (37) determining the wave vectors becomes

kLtan(kL) = d (44)

Let us consider the effects of the two different anisotropies in
this geometry.

a. Easy-axis surface anisotropy (d > 0). When d ~ 1 or
larger, the solutions of Eq. (44) are displaced from the
zeros of tan(kL), i.e., the solutions we found in the case of
no surface anisotropy, and towards the upper poles located
at k,L = (2n + 1) /2, where n =0,1,2,.... We therefore
expand f in Eq. (37) [and thus also in Eq. (44)] into a Laurent
series around the poles from the first negative order up to the
first positive order in kL to solve the boundary condition for
kL, giving

Jex 3L+ d) + 20k, LY — /12(k, L)* + 9(1 + d)?
L 2k, L :

kL ~

(45)

Using this result and the Laurent-series expansion for f in

Eqgs. (39) and (40), we find the Gilbert-damping renormaliza-

tion term (0 — o + Aa](_:o :f? ) and the ratio between the modes

(oop)
Aa EA n

V120, L +9(1 + d)?)

L WA LY +3(1+d) — V31 +d))
2k, L) /4k, L) + 30 +d)?

This ratio is plotted in Fig. 3 for n < 5. We see that the
ratio vanishes for large values of d. For small values of the

~33(1 4 d) + 2(k,L)* —

(46)
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Aagan [Aag

LK /A

FIG. 3. The ratio of enhanced Gilbert damping Aaga,/Aag in
a system with easy-axis surface anisotropy vs the enhanced Gilbert
damping of macrospin modes in systems with no surface anisotropy as
a function of surface-anisotropy energy. n refers to the mode number,
where n = 0 is the uniformlike mode. The dashed line represents the
ratio A,/ Aay in the case of no surface anisotropy [see Eq. (42)].

anisotropy energy d, the approximate ratio exceeds the exact
result of the ratio we found in the limiting case of no surface
anisotropy [see Eq. (42)]. For moderate values of d ~ 5,
the expansion around the upper poles is sufficient, but only
for the first few modes. This implies that moderate-strength
easy-axis surface anisotropy quenches spin pumping for the
lowest excited modes but does not affect modes with higher
transverse exchange energy.

b. Easy-plane surface anisotropy (d < 0). Easy-plane sur-
face anisotropy is represented by a negative surface anisotropy
d in Eq. (44). In this case, the boundary condition must
be treated separately for the uniformlike (n =0) mode
and the higher excitations. When |d| > 1, we can obtain
a solution by expanding along the imaginary axis of kL.
This corresponds to expressing the boundary condition in the
form —ikL tanh(ikL) = —|d|, with the asymptotic behavior
kL ~ —i|d|. Using the asymptotic form of the boundary
condition in Eq. (39) and calculating the renormalization
of the Gilbert damping using Eq. (40), we find that the

renormalization is @« — o + Aag;fg), where

izt

— =2ld|. (47)
AO[()

Thus the Gilbert damping of the lowest mode is much enhanced
by increasing the surface anisotropy. The surface-anisotropy
mode is localized at the surface because it decays from the
spin-active interface and into the film. Because the effective
volume of the mode is reduced, spin pumping more strongly
causes dissipation out of the mode and into the normal metal.
For the higher modes (n > 0), the negative term on the
rhs of Eq. (44) forces the kL solutions closer to the negative,
lower poles of tan(k L), located at kﬁl’)L = (2n — 1) /2, where
n=1,2,3,.... Werepeat the procedure used for the EA case
by expanding f into a Laurent series around these lower poles,

|

PHYSICAL REVIEW B 95, 214413 (2017)

Aagp,, [Aag

LIKl/A

FIG. 4. Plot of Aajys/ Ac. The dashed line represents the ratio
Aa, /Ay in the case of no surface anisotropy [see Eq. (42)].

arriving at

31— [d]) + 2(KOLY + 12(" L) + 91 — a2
b 2%PL '

(43)

Using this relation and the new lower-pole Laurent expansion

for f, Egs. (39) and (40) give us the renormalization of the
Gilbert damping (¢ — o + Aagf?) and the ratio
A (oop)

o
— B ~33(1 — |dI) + 20k, L)?
AO{()

+ 120k, L) +9(1 — |d])?)

(/40 L +3(1 — [d)? + /3(1 — |d]))
2k, L) /4k, LY +3(1 — [d]?

(49)

This ratio is plotted in Fig. 4 fromn = 1 up ton = 5. We see
that the ratio vanishes for large values of |d|. Similar to the
case of EA surface anisotropy, the approximation breaks down
for large n and/or small values of |d]|.

Whereas the n = 0 mode exhibits a strong spin-pumping
enhanced dissipation in this field configuration, the DC ISHE
field vanishes when 6 = 0 [see Eq. (26)]. This is one of the
reasons why this configuration is seldom used in experiments.
However, this configuration can lead to a significant AC ISHE,
and a similar AC signal was recently detected [12]. Because of
the strong dissipation enhancement, the EP surface anisotropy
induced localized mode in perpendicular magnetization geom-
etry could be important in future experimental work.

2. In-plane magnetization

We will now complete the discussion of the spin-pumping
enhanced Gilbert damping by treating the case in which the
magnetization is in plane (¢ = m/2). For such systems, the
coefficient C3 # 0, and the zeroth-order expansion of Eq. (37)
becomes

d((hexk)? + 22) 1+ (hexk)? + 222

kLtankL = —

[T+ exk)? 4 22 (1 4 20hexk)? + 222 ) — d % (1 4 (hexk)? + 22) coth (3 /1 + (hexk)? + 23—;).

(50)
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For typical film thicknesses, of some hundred nanometers, we
have L/Ae > 1 and (hexk)? < 1 for the lowest eigenmodes.
Thus we take the asymptotic coth ~ 1 and neglect the (Aexk)?
terms, ridding the rhs of Eq. (50) of any k dependence.
Equation (50) now becomes similar to the out-of-plane case,

kLtan(kL) = d, (K20
where
det /1+ 2et
doff = — - (52)

(1+222) _ gl (14 22

deg 1s positive if d < 0 and negative for d > 0 up to a critical
value dhex/L = AexKs/A = (1 + 2;*;73)3/2/(1 +22), where
the denominator becomes zero. For negative d, |de| < |d|,
whereas for positive d, |def| is initially smaller than that of
|d| but quickly approaches the critical value. With the value
K, from Table I, we have |dei| < |d|, independent of the
sign of d.

With this relation, we can calculate an approximate Gilbert
damping renormalization in both the EA and EP cases using the
EP and EA relations, respectively, obtained in the out-of-plane
configuration. Thus

P AP
Aagp g~ Adgpgla—dg = 2des], (53)
ip oop
AO‘EA,n ~ AO{EP.nld—’dew (54)
ip oop
Aogp, X Adgp pld—dg- (55)

To summarize this section regarding the enhancement of
Gilbert damping, we see that the enhancement can be very
strong for the surface modes because their effective sizes are
smaller than the thickness of the film. For all other modes,
the enhancement decreases with increasing magnitude of the
surface-anisotropy energy.

IV. NUMERICAL CALCULATIONS

The first step in the numerical method is to approximate
the equation of motion of Eq. (11) into by finite-size matrix
eigenvalue problem. We discretize the transverse coordinate
& on the interval [—L/2,L/2] into N points labeled by
j=1,2,...,N,and characterize the transverse discrete solu-
tions of the dynamic magnetization vectors mg by (my j,m, ;)
of size 2N.

We approximate the second-order derivative arising from
the exchange interaction using a nth-order central difference
method. For the n — 2 discretized points next to the boundaries,
we also use nth-order methods, using forward (backward)
difference schemes for the lower (upper) film boundary. This
strategy avoids the introduction of “ghost” points outside the
interval [—L/2,L /2] to satisfy the boundary conditions.

Thus the total operator acting on the magnetization on
the left-hand side of Eq. (11) becomes a sparse 2N x 2N
matrix operator. On the right-hand side of Eq. (11), we also
represent the convolution integral as a 2N x 2N dense matrix
operator, where each row is weighted according to the extended
integration formulas for closed integrals to nth order [45]. The
four N x N subblocks of this integration operator correspond

PHYSICAL REVIEW B 95, 214413 (2017)

to the four tensor elements of @‘ In the final discrete form,
we obtained a 2N x 2N w-dependent matrix.

Next, the four boundary conditions (at the left and right
boundaries for the two components, m, and m,) are used to
reduce the number of equations to 2N — 4. This is performed
by algebraically solving the discretized boundary conditions
with respect to the boundary points, i.e., by determining m;
where i € {I,N,N + 1,2N} in terms of the magnetizations at
the interior points.

Finally, each (2N — 4) x (2N — 4) matrix is separated into
two parts: a term independent of the frequency w and a term
proportional to w. The dipole interaction causes the eigenvalue
problem to be non-Hermitian and therefore computationally
more demanding than a generalized eigenvalue problem. We
find the dispersion relation and magnetization vectors by
solving this eigenvalue problem. The resulting eigenvectors
are used to find the magnetization at the boundary by back-
substitution into the equations for the boundary conditions.

We are interested in finding the mode and wave-vector
dependence of the spin-pumping enhanced Gilbert damping.
To obtain this information numerically, we perform two
independent calculations of the (complex) eigenvalues. First,
we calculate the complex eigenvalues wq when there is no
spin pumping, but dissipation occurs via the conventional
bulk Gilbert damping. Second, we calculate the complex
eigenvalues g, when spin pumping is active at the FI-NM
interface but there is no bulk Gilbert damping. A mode-
and wave-vector-dependent measure of the effective enhanced
Gilbert damping enhancement is then given by

Imawy
o—2,

Aa = (56)

IIIl(,z)d
To ensure that we treat the same modes in the two independent
calculations, we check the convergence of the relative differ-
ence in the real part of the eigenvalues. Table I lists the values
for the different system parameters that are used throughout
this section.

Let us first discuss the renormalization of the Gilbert
damping when there is no surface anisotropy. We will present
the numerical results for the three main geometries described
in Sec. I and compare the results to the analytical results of
Sec. IITA.

A. FVMSW (8 = 0)

Figure 5 shows the wave-vector dependent renormalization
of the Gilbert damping A« due to spin pumping at the FI-NM
interface in the FVMSW geometry. In this geometry, waves
traveling along +¢ have the same symmetry; thus each line
is doubly degenerate and corresponds to two waves of +w.
The “spikes” in the figure are due to degeneracies, i.e., mode
crossings, and upon inspection, these spikes can be observed
in the dispersion relation.

1. Easy-axis surface anisotropy (. é easy axis)

Figure 6 shows Aaga for the FVMSW geometry with an EA
surface anisotropy at the spin-active interface. As predicted in
Sec. III C la, all modes exhibit a decreased A« compared with
those in Egs. (43) and (42). For small QL and the chosen
value of K (see Table I), the first four modes match the
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Aa (1072)
030

025

Refw/ wy}

0.01 0.1 1 10 100

FIG. 5. Aa vs wave vector for the FVMSW geometry of the
four smallest eigenvalues. (Top inset) Magnitudes of eigenvectors
(in arbitrary units) across the film at QL = 10. (Bottom inset)
Dispersion relation in the dipole-dipole active regime.

analytical result of Eq. (46), which is consistent with the plot
in Fig. 3. For even higher excited modes, the effect of the
EA surface anisotropy becomes weaker due to the increase in
transverse exchange energy. These modes (not shown in the
figure) approach the value of Aw,,.

2. Easy-plane surface anisotropy (2 hard axis)

Figure 7 shows Aagp for the FVMSW geometry with an
EP surface anisotropy. We see that the mode corresponding to
n = 0 has been promoted to a surface mode with a large Ac,
which for small values of Q L matches Eq. (47). For the higher
excited modes, we observe a decrease in Ao compared to the
case with no surface anisotropy.

B. BVYMSW (0 = /2 and ¢ = 0)

Figure 8 shows the QL-dependent renormalization of the
Gilbert damping due to spin pumping at the FI-NM interface
in the BVMSW geometry. We see that the enhancement A«

Aa (1073) .
_ =
12r < 2 ggl
L E gm 3 o7
1.0 Z oe
0.8

0.6
0.4
0.2

0.01 0.1 1 10 100

FIG. 6. Aaga vs wave vector for the FVMSW geometry showing
the four smallest eigenvalues. The horizontal dashed lines indicate
solutions of Eq. (46). (Left inset) Magnitudes of eigenvectors (in
arbitrary units) across the film at QL = 5. (Right inset) Dispersion
relation in the dipole-dipole active regime.
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A (1073)

FIG. 7. (a) Aagp vs wave vector for the FVMSW geometry,
showing the four smallest eigenvalues. The dashed lines represent
the analytic solutions from Sec. IIIC 1b. (b) Dispersion relation
in the dipole-dipole active regime. (c) Magnitude of eigenvectors
(in arbitrary units) across the film at QL = 5.

agrees with the analytic limits in Eqgs. (43) and (42) for small
values of QL. For large values of QL, we are in the strong
exchange regime, in which the in-plane exchange energy
becomes large compared to all other energy contributions. This
in-plane exchange stiffness effectively quenches the coupling
to the normal metal layer, causing Ao — 0 for large values
of QL.

Although Fig. 8 only appears to show the three first
eigenvalues and eigenvectors, it actually contains double
this amount. Because 2 is parallel to the wave-propagation
direction ¢ in this geometry, there is no change in dipolar
energies, regardless of whether the wave travels in the +¢&
direction or in the —¢ direction; thus, the Gilbert damping
is enhanced equally in both wave directions. A slight offset
from this configuration, taking either 6 < /2 or ¢ # 0, would
result in a splitting of each line in Fig. 8 into two distinct lines.

Including surface anisotropy

Figure 9 shows both the EA and the EP surface-anisotropy
calculations in the BVMSW geometry. In the case of an EA

Aa (1073)
Lo 3 1121 ﬁ/
o N =/
08F +% 3%
- 2 07 . . 4
06 12 ¢ 2 ) 0.1 1 10

0.4

0.2

0.01 0.1 1 10 100

FIG. 8. Aa vs wave vector for the BVMSW geometry (6 = /2
and ¢ = 0) with K, = 0, plotted for the four smallest eigenvalues.
(Left inset) Magnitudes of normalized eigenvectors across the film at
QL = 5. (Right inset) Dispersion relation in the dipole-dipole active
regime.
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(b) Aa (10-3)

| —
s =

08f TE 208
2 0.7 L L f
0.6 _12 ¢ L2 0.1 1 10

1

e ———— 7'7W'
o.z-\\/
‘A

0.001 0.01

FIG. 9. (a) Dispersion relation vs wave vector for the BVMSW geometry (0 = /2, ¢ = 0) for the four lowest eigenvalues in the case of
EA surface anisotropy. (b) Dispersion relation in the case of EP surface anisotropy. In both figures, the horizontal dashed lines mark the value

of Aw, in the case of no surface anisotropy.

surface anisotropy, the mode corresponding to n =0 gets
promoted to a surface mode, similarly to the case in which
there is EP surface anisotropy in the FVMSW geometry. The
increase in A« is much smaller for the same magnitude of
K, as explained in detail in Sec. IIIC. The higher modes,
corresponding to n > 0, exhibit increased quenching of the
Gilbert damping enhancement. In the case of EP surface
anisotropy, all modes exhibit quenched Gilbert damping
enhancement.

C. MSSW (0 = ¢ = 7/2)

Figure 10 shows the QO L-dependent renormalization of the
Gilbert damping due to spin pumping at the FI-NM interface
in the MSSW geometry. The computed eigenvalues agree with
Egs. (43) and (42) for small values of Q L. We see in the inset of
Fig. 10 that in this geometry, the macrospinlike mode behaves
as predicted by Damon and Eshbach [36], Eshbach and Damon
[37], cutting through the dispersion relations of the higher
excited modes for increasing values of QL in the dipole-dipole
regime. A prominent feature of this geometry is the manner
in which the modes with different signs of Re{w} behave

(@)

At (1073)

(b)

A~ (1073)

QL

differently due to the dipole-dipole interaction. This is because
the internal field direction (Z) is not parallel to the direction of
travel (£) of the spin wave. Hence, changing the sign of w is
equivalent to inverting the externally applied field, changing
the xyz coordinate system in Fig. 1 from a right-handed
coordinate system to a left-handed system. In the middle
of the dipole regime, the lack of symmetry with respect to
propagation direction has different effects on the eigenvectors;
e.g., in the dipole-dipole active region the modes with positive
or negative Re{w} experience an increased or decreased
magnitude of the dynamic magnetization, depending on the
value of Q L, as shown in Figs. 10(e) and 10(f). This magnitude
difference creates different renormalizations of the Gilbert
damping, as the plot of Aa™® in Figs. 10(b) and 10(c) shows.

'

Incl

g surface opy

Figure 11 shows A« computed for modes in the MSSW
geometry with EA and EP surface anisotropies. We can clearly
see that for small QL an exponentially localized mode exists
in the EA case, and as predicted in Sec. IIIC, all the lowest-
energy modes have spin pumping quenched by EP surface

—
o
<

|Re( wf wy)

!

=4
o r

QL
100

o
2

01 1

=
=
19

[Im(€)~

0.5

>

Im(&)~

0.

L2 ¢ L/2

FIG. 10. Gilbert damping renormalization in the MSSW geometry. Subplots (a) and (b) show Gilbert damping renormalization Ao

for modes with positive (negative) Re{w}. The horizontal dashed

lines represent the analytical values A« and Aq, for small QL.

(c) Dispersion relation vs wave vector for the MSSW geometry (0 = ¢ = m/2) for the four smallest eigenvalues, colored pairwise in +w.
Subplot (d) [(e)] shows the magnitude of normalized eigenvectors (in arbitrary units) at Q L = 3 across the film modes with positive [(negative)]

Re{w}.
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FIG. 11. (a) and (b) Gilbert damping renormalization from spin pumping in the MSSW geometry (§ = ¢ = m/2) for modes with
positive (negative) Re{w} in the case of EA surface anisotropy. The four smallest eigenvalues are colored pairwise in +w across the plots.
(c) and (d) show the Gilbert damping renormalization in the case of EP surface anisotropy.

anisotropy. This is similar to the corresponding case in the
BVMSW geometry.

D. AC and DC ISHE

Figure 12 shows the DC and AC ISHE measures for the
BVMSW geometry corresponding to the data represented in
Fig. 8. In this geometry, the angular term, siné, in Eq. (28)
is to equal one, ensuring that the DC measure is nonzero.
This is not the case for all geometries because the DC electric
field vanishes in the FVMSW geometry. The mode-dependent
DC ISHE measure exhibits the same QL-dependence as
the spectrum of the Gilbert damping enhancement in all
geometries where sinf # 0. We have already presented the
renormalization of the Gilbert damping in the most general
cases above. Therefore we restrict ourselves to presenting
the simple case of the BVMSW geometry with no surface
anisotropy here.

The AC ISHE measure plotted in Fig. 12 exhibits a similar
QL dependence to the Gilbert damping renormalization (and
hence the DC ISHE measure), but with a slight variation
in the spectrum towards higher values of QL. Note that

(a) 06

05 A
04

€AC (10-4)

g 7
s T~

0.0

€€ (107° cm

0.01 0.1 1 10 100
QL
FIG. 12. ISHE as a function of in-plane wave vector in the

BVMSW geometry with K; = 0. (a) AC ISHE measure of Eq. (28)
and (b) DC ISHE measure of Eq. (28).

because Eq. (24) is nonzero for all values of 9, the AC effect
should be detectable in the FVMSW geometry. By comparing
the computed renormalization of the Gilbert damping for
the different geometries in the previous subsections, we see
that the strong renormalization of the n = 0 induced surface
mode that occurs in the FVMSW geometry with easy-plane
surface anisotropy (see Sec. IV A2 and Fig. 7) can have a
proportionally strong AC ISHE signal in the normal metal.

V. CONCLUSION

In conclusion, we have presented analytical and numerical
results for the spin-pumping-induced Gilbert damping and
direct- and alternating terms of the inverse spin-Hall effect.
In addition to the measures of the magnitudes of the DC and
AC ISHE, the effective Gilbert damping constants strongly
depend on the modes through the wave numbers of the excited
eigenvectors.

In the long-wavelength limit with no substantial surface
anisotropy, the spectrum is comprised of standing-wave
volume modes and a uniformlike (macrospin) mode. These
results are consistent with our previous findings [18]: in
the long-wavelength limit, the ratio between the enhanced
Gilbert damping for the higher volume modes and that of
the macrospin mode is equal to two. When there is significant
surface anisotropy, the uniform mode can be altered to become
a pure localized surface mode (in the out-of-plane geometry
and with EP surface anisotropy), a blend between a uniform
mode and a localized mode (in-plane geometries and EA
surface anisotropy), or quenched uniform modes (out-of-plane
field configuration and EA surface anisotropy, or in-plane
field configuration and EP surface anisotropy). The effective
Gilbert damping is strongly enhanced for the surface modes
but decreases with increasing surface-anisotropy energies for
all the other modes.

The presented measures for both the AC and DC inverse
spin-Hall effects are strongly correlated with the spin-pumping
renormalization of the Gilbert damping, with the DC effect
exhibiting the same QL dependency, whereas the AC effect
exhibits a slighthly different variation for higher values of
QL. Because the AC effect is nonzero in both in-plane and
out-of-plane geometries and because both EP and EA surface
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anisotropies induce surface-localized waves at the spin-active
interface, the AC ISHE can be potentially large for these
modes.
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APPENDIX: COORDINATE TRANSFORMS

The transformation for vectors from £n¢ to xyz coordinates
(see Fig. 1) is given by an affine transformation matrix 7', so
that

f(xyz) =T f(EUO’

for some arbitrary vector f. Tensor-vector products are trans-
formed by inserting a unity tensor I = T~!'T between the
tensor and vector and by left multiplication by the tensor T,
such that the tensor transforms as TGT ™! for some tensor G
written in the £n¢ basis.

PHYSICAL REVIEW B 95, 214413 (2017)

T is given by the concatenated rotation matrices T = R; -
R, where R; is a rotation ¢ around the & axis, and R, is a
rotation 6 — 5 around the new 7 axis/y axis. Hence

1 0 0
Ri=|0 cos¢p —sing]|, (A1)
0 sing  cos¢
sin@ 0 —cosé
R,=| O 1 0 , (A2)
cosf O sin 0
such that
sinf —cos@sing —cos6 cos¢
T=| 0 cos ¢ —sing¢ (A3)
cos 6 sin @ sin ¢ sin 6 cos ¢

This transformation matrix consists of orthogonal transfor-
mations; thus the inverse transformation, which transforms
xyz — &nc, is just the transpose, T~' = T7.
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Training and recovery of exchange bias in FeNi/Cu/Co/FeMn spin valves have been studied by
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27.6, and 11.5 in the unit of ms, respectively, much shorter than the long relaxation time ( ~ 10%s) in
conventional magnetometry measurements.
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1. Introduction

The exchange bias (EB) effect in ferromagnetic/antiferromag-
netic systems has been intensely studied in the last decade
because of their physical complexity and important applications
[1,2]. The technological importance lies in the pinning effect of
the antiferromagnet (AFM) layers in which the hysteresis loop of
the ferromagnet (FM) can be shifted away from the origin point
by the amount of the exchange field (Hg), and is usually accom-
panied with an enhanced coercivity (Hc). Changes of Hg and Hc
are accordingly directly related to the spin configuration of the
AFM layer through the exchange coupling [3]. Among the variety
of effects related to the EB phenomenon, the training effect is an
important effect that reflects the AFM spin dynamic process
during repeated hysteresis loops. It is ascribed to that the spin
structure of the AFM layer deviates from its equilibrium config-
uration and approaches another equilibrium triggered by subse-
quent reversals of the FM magnetization. Nowadays, studies
of AFM spin dynamic behaviors with training effect in both
experiments and theories have been widely reported [4-13].
Because most of studies are limited to long timescales (> 1s),
by the usually quite long measurement time in magnetometry
approaches, the relaxation time of AFM spin are usually reported
in second timescale (~10>—10%s) [4-6]. In contrast, at shorter
measurement timescales the relaxation time of exchange bias
system was demonstrated to cover a wide range (~10%-10"" s)

*Corresponding author at: Institutt for fysikk, NTNU, NO-7491 Trondheim,
Norway.
E-mail address: erik.wahlstrom@ntnu.no (E. Wahlstrém).
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[15-18], which has been ascribed to the magnetization reversal
mechanism of FM layer [14]. Hence, the report only on AFM spin
dynamic behavior in the millisecond timescale is still sparse. In
addition, recently attempt frequencies up to 10'? Hz in AFM layer
have been reported [19], which indicated a much shorter relaxa-
tion timescale of AFM spin than earlier anticipated. Therefore, it is
necessary and interesting to study the AFM spin dynamic process
at short timescale (technologic importance <1 s).

In this paper, we have studied the EB training and recovery
behaviors at the millisecond timescale based on the electrical
transport measurements in FeNi/Cu/Co/FeMn spin valves. The
experiments show that at high field sweep rates recovery time
of exchange field after training procedures is three orders of
magnitude shorter than the values observed by usual magneto-
metry techniques, and the relaxation of magnetoresistance (MR)
is demonstrated in the millisecond timescale. These clearly
indicate that AFM spin dynamic behaviors can be studied and
resolved down to the millisecond timescale utilizing the ordinary
resistance measurements.

2. Experiment and results

The spin valves of Si (001)/Cu (10 nm)/FeyoNige (3 nm)/Cu
(3 nm)/Co (3 nm)/FeMn (8 nm)/Ta (3 nm) were prepared by a
magnetron sputtering system. The base pressure was 2 x 10~° Pa
and the Ar pressure was 0.3 Pa during the deposition. The 10 nm
Cu buffer layer was used to stimulate the fcc (11 1) preferred
growth of the FeMn layer in order to enhance the EB. A magnetic
field of 130 Oe was applied in the film plane during deposition
to induce the wuniaxial anisotropy and thus the EB.
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Fig. 1. (a) The magnetoresistance curves used to map the training effect for FeNi/
Cu/Co/FeMn spin valve at the first, 40th and 41st (after 1 s waiting time) cycles
with the field sweep rate of 4000 Oe/s. The resistance is dependent on corre-
sponding magnetization configurations of FeNi (black left arrow) and Co (red right
arrow). (b) The exchange field Hg as a function of the number of cycles n. The blue
dot, green dash dot and black dash lines are the fitted data with the 1/./n, e~0-05"
and In(n),respectively. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this article.)

Magnetoresistance (MR) measurements were performed to probe
the switching behaviors of the pinned layer for different subse-
quent hysteresis loops. The magnetic field was provided by home-
built Helmholtz coils, and MR was measured in real-time system
with 2 M/s sampling rate. To study training and recovery of the
EB, we first performed 40 consecutive MR measurements with a
fixed field sweep rate to characterize the training procedures.
Then we stopped the magnetic field sweep with an waiting time t.
Finally 10 consecutive MR measurements with the same field
sweep rate were measured in order to observe and confirm the EB
recovery. For each sweep rate, t varied from 0.1 to 10s.

The spin valves and MR curves of the training and recovery
effects at the 1st, 40th and 41st cycles with the field sweep rate of
4000 Oe/s are displayed in Fig. 1(a). At large negative field the Co
and FeNi magnetizations are parallel and pointing down. When
the field is increased above the switch field of the Co layer, about
—110 Oe, the Co magnetization reverses and resistance switches
from low value (—1) to high value (+1). When the field is further
increased above the switch field of the FeNi layer, about —15 Oe,
its magnetization reverses, the two magnetizations become
parallel once more but this time pointing up, and resistance
switches to low value (—1). If the field is then decreased, the
two magnetizations will remain parallel until the negative switch
field of the FeNi layer is reached at —25 Oe, when its magnetiza-
tion reverses and resistance switches to high value. When the
field is further reduced and reverses the Co magnetization, the
two magnetizations align in parallel, and resistance changes to its

low value. For all MR curves the hysteresis loops of the Co layer
are shifted and fully separated from the hysteresis loops of FeNi
layer due to the FeMn pinning effect, therefore the MR curves
directly reflect the switching behaviors of the Co and the FeNi
layers in detail [20]. Comparing the hysteresis loops of the Co
layer in the first, and 40th MR curves, the switching field of the
descent branch shifts more sharply than that of the ascent one,
demonstrating the asymmetric magnetization reversal. However,
after the magnetic field sweep is stopped for 1s, a recovery is
observed in the 41st MR curve. It contrasts to the behavior in the
case of normally low field sweep rate, in which substantial
recovery was only observed after several hours of waiting time [4].
The Hg is plotted as a function of cycles n in Fig. 1(b). The Hg
gradually decreases with the cycle n, has an obvious resilience
after 1s waiting time and finally decreases. For the training
procedure, the Hg versus n is fitted by a linear functions of
1//n, 99" and In(n). It is found that the logarithm function
yields the best fit, except for initial point n=1 [8,10].

To further study the recovery of the trained EB, we measured
the recovery rate R as a function of t at different field sweep rates,
where R =[Hg(41)—Hg(40)]/[He(1)—Hg(40)] x 100(%). Fig. 2(a)
shows the dependence of R on t at different field sweep rates.
The R increases with the increasing t as a linear function of log(t).
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Fig. 2. (a) The recovery of Hg as a function of the waiting time t with different
sweep rates. The solid lines display the linear fits of the In(t). (b) The slope and the
offset values as a function of the field sweep rate. The solid lines are the linear fits
of the logarithm of the field sweep rate.
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More remarkably, for a fixed waiting time t, R correspondingly
increases with the increasing field sweep rate. This logarithm
behavior is in a good agreement with the previous experiments in
NiFe/FeMn system, while the recovery rate is several orders of
magnitude faster than the value in the low field sweep rate case
[4]. The slope and the intercept as a function of the field sweep
rate are shown in Fig. 2(b). The slope displays little change with
different field sweep rates whereas the intercept increases greatly
as the field sweep rate increases in approximate linear function of
the logarithm of the field sweep rate.

To investigate the dynamic behavior of the EB with high
resolution, we observed the evolution of MR after setting the
magnetic field from the positive saturation field to —210 Oe (the
point A in Fig. 1(a)) near the switch field. As shown in Fig. 3, MR
initially decreases sharply and then gradually reaches a constant.
The small fluctuations in the curves are caused by 50 Hz AC noise
in the amplifying circuit. Remarkably, a crossover of the normal-
ized MR from positive to negative has been observed, demon-
strating the reversal of the magnetization of the Co layer. It is
possible to link the time dependence of MR with the magnetic
viscosity in the Co/FeMn bilayers [7], in which the magnetization
of the pinned layer gradually reverses due to the thermally
activated process in Co/FeMn bilayers. Because the reversal
process in the EB at the first cycle consists in the single domain
wall motion [6], the change of MR here is proportional to the
amounts of the reversal magnetization in the pinned layer. Shown
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Fig. 3. The time dependence of the resistance after the external magnetic field is
swept to —2100e (point A in Fig. 1(a)) from positive saturation field with
different field sweep rates (a) 4000 Oe/s, (b) 2000 Oe/s, and (c) 1000 Oe/s. The
solid lines are fits to the first-order exponential decay.

as the solid line in Fig. 3, the evolutions of MR are described well
by a first order exponential decay. From fitting the data, we
extracted the relaxation times T which are 11.5, 27.6, and 61.4 ms
for the field sweep rate at 4000, 2000 and 1000 Oe/s, respectively.
This is again in contrast to the long relaxation time (~ 800 s) in
the conventional approaches [6]. One can also note that the
relaxation time decreases with the increasing field sweep rate.

3. Discussion

The above results show that the recovery and relaxation of the
EB at high field sweep rates are faster than that earlier observed
[4-7]. Below we will interpret the experimental results in con-
ventional models for AFM and training effects.

Firstly we consider the change and magnitude of the relaxa-
tion time constants at different field sweep rates shown in Fig. 3.
The time constant for the relaxation can be described by an
ordinary Arrhenius law t=v;" exp(E,;/ksT), where v, is the
attempting frequency and E, =KV represents the AFM energy
barrier, K is the AFM anisotropy and V is the AFM grain volume.
According to the AFM grain volumes distribution, we can divide
the E, into three different categories [10]: (i) small E, (small grain
size), which follows the FM magnetization at the timescale of the
experiment. (ii) Medium energy E, (medium grain size) which
will determine the EB dynamics at the timescale we investigate.
(iii) Large E, (large grain size), which is a stable configuration over
the timescale of the experiment. Assuming a typical uniaxial
anisotropy constant of 1x 10° erg/cm® and v, to be 1 x 10° Hz,
then the average grain size of category (ii) is correspondingly
about 9 nm extension, based on the relaxation time in Fig. 3.
Accordingly, the relaxation time decreasing with the increasing
field sweep rate demonstrates an apparent increase in attempt
frequency v,.

The EB recovery and relaxation at high field sweep rates can
still be explained well with the model based on thermal activa-
tion [4,23]. As shown in Fig. 2(a), the logarithm time recovery
relationship indicates a thermally activated reversal process
involving the AFM spin configuration. To explain our data, the
activation energy spectrum model simply based on a two-level
system is adopted [23,24]. In our case the two level system
represents an individual AFM grain or domain switching from a
positive to a negative exchange energy with respect to the FM
layer. For the system with a wide energy barrier distribution, AHg
can be expressed in terms of the AFM activation energy spectrum
q(E): AHg = q(E)ksT In(v4t), which is taken from Eq. (1) in Ref. [4].
According to the equation, the slope observed for all field rates in
Fig. 2(b) is a constant due to the same q(E), while the intercept
variation is mainly due to the different activated AFM energy
ranges and the time delay at the different field sweep rates.

Finally, for the training process Hg is proportional to In(n) at
high field sweep rates in Fig. 1(b), which can be compared to
the usual power law (1/4/n) and the exponential (e~*") relation-
ships. We model this through following Binek et al. [21,22].
At beginning, the equilibrium AFM interface magnetization is
defined Sjp = lim,_ ~Sarm (). Each positive and negative devia-
tion 6Sn = Sam(n)—Symy Of the AFM interface magnetization from
its equilibrium value will increase the total free energy F of the
system by AF. The relaxation of the system towards equilibrium is
determined by the Landau-Khalatnikov (LK) equation [25]:
§SAFM:—0AF/05AFM, where ¢ is a phenomenological damping
constant and AF is the function of 6S. In Binek’s model under
the assumption AF(6S) = AF(—0S), a series expansion of AF up to
the fourth order in JS yields AF :%a(55)2+% b(dS)* + 0(65)°. Eval-
uating the free energy expression with a leading term of second
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and fourth order in 6S will result in the e=*" [22] and 1/y/n [21]
evolution, respectively.

However, our understanding of the system is that we have a
nonvanishing odd order term. This is an effect of working
at a time scale where we also have substantial coupling at the
FM/AFM interface due to large grains that are too large to follow
the oscillating exchange coupling of the FM. Instead that portion
of the ensemble of grain will orient itself gradually according to
the mean coupling induced by the FM in a monotonic fashion.
Accordingly we also have to consider the expansion of AF from
first order of 8S. We then assume 8S: AF = f(n)(8S)' +0(3S)?,
where the f(n) indicates that the change in the AFM interface
magnetization and JS, is dependent on the training procedures n.
By replacing S with [S(n+1)—S(n)]/4, with . being the relevant
experimental time constant and the free energy expression of
the first order into the LK equation, we obtain an implicit
sequence equation: &'(S(n+1)-S(n)) = —f(n), where ¢ =¢/A. The
sum over N cycles of this equation with variable n yields
He(N+1)oc S(N+1) =S(1)— XN fay /&

Since we do not know the exact energy distribution F(V) of our
system, we make a first-order approximation assuming a constant
distribution of AFM grain volumes. An estimate of the change in
thermally activated part of the interface magnetization can be
found through: f(n) = _[VV;+' F(V) dV, using a thermally activated
grain volume V,, which is found through the Arrhenius expression
and a constant distribution in volume F(V) we find that f(n) will
follow a In(n+1)—In(n) dependence, a logarithmic dependence of
the exchange bias. This approximation may only be valid at large
n when the overall reorientation due to the changed mean field
dominate over other training effects. We also note that the
training process Hg is proportional to In(n) has also been reported
at low field sweep rates [8], where the training speed is several
orders of magnitude slower than the values reported here.

In summary, for the AFM spins the relaxation time in the
millisecond timescale is demonstrated when the bilayers are
exposed to high field sweep rates. This behavior can be well
explained in terms of a time constrained thermal activation.
Our finding gives a new insight into the dynamic behavior of
the AFM spins.
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