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Spin Pumping and Enhanced Gilbert Damping in Thin Magnetic Insulator Films

André Kapelrud and Arne Brataas

Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
(Received 20 March 2013; published 27 August 2013; publisher error corrected 5 September 2013)

Precessing magnetization in a thin-film magnetic insulator pumps spins into adjacent metals; however,

this phenomenon is not quantitatively understood. We present a theory for the dependence of spin

pumping on the transverse mode number and in-plane wave vector. For long-wavelength spin waves, the

enhanced Gilbert damping for the transverse mode volume waves is twice that of the macrospin mode, and

for surface modes, the enhancement can be ten or more times stronger. Spin pumping is negligible for

short-wavelength exchange spin waves. We corroborate our analytical theory with numerical calculations

in agreement with recent experimental results.

DOI: 10.1103/PhysRevLett.111.097602 PACS numbers: 76.50.+g, 75.30.Ds, 75.70.�i, 75.76.+j

Metallic spintronics have been tremendously successful
in creating devices that both fulfill significant market needs
and challenge our understanding of spin transport in ma-
terials. Topics that are currently of great interest are spin
transfer and spin pumping [1–3], spin Hall effects [4], and
combinations thereof for use in nonvolatile memory, oscil-
lator circuits, and spin wave logic devices. A recent ex-
perimental demonstration showing that spin transfer and
spin pumping can be as effective in magnetic insulators as
in metallic ferromagnetic systems was surprising and has
initiated a new field of inquiry [5].

In magnetic insulators, no moving charges are present,
and in some cases, the dissipative losses associated with
the magnetization dynamics are exceptionally low.
Nevertheless, when a magnetic insulator is placed in con-
tact with a normal metal, magnetization dynamics induce
spin pumping, which in turn causes angular momentum to
be dumped to the metal’s itinerant electron system.
Because of this nonlocal interaction, the magnetization
losses become enhanced. Careful experimental investiga-
tions of spin pumping and the associated enhanced
magnetization dissipation were recently performed, dem-
onstrating that the dynamic coupling between the magne-
tization dynamics in magnetic insulators and spin currents
in adjacent normal metals is strong. Importantly, in mag-
netic insulators, an exceptionally low intrinsic damping
combined with good material control has enabled the
study of spin pumping for a much larger range of wave
vectors than has previously been obtained in metallic
ferromagnets [5–14].

In thin-film ferromagnets, the magnetization dynamics
are strongly affected by the long-range dipolar interaction,
which has both static and spatiotemporal contributions.
This yields different types of spin waves. When the in-
plane wavelength is comparable to the film thickness or
greater, the long-range dipolar interaction causes the sepa-
ration of the spin-wave modes into three classes depending
on the relative orientation of the applied external field, in
relation to the film normal, and the spin-wave propagation

direction [15–20]. These spin waves are classified accord-

ing to their dispersion and transverse magnetization distri-

bution as forward volume magnetostatic spin waves

(FVMSWs) when the external field is out of plane, back-

ward volume magnetostatic spin waves (BVMSWs) when

the external field is in-plane and along the direction of

propagation, and magnetostatic surface waves (MSSWs)

when the external field is in-plane but perpendicular to the

direction of propagation. In volume waves, the magnetic

excitation is spatially distributed across the entire film,

while surface modes are localized near one of the surfaces.

‘‘Backward’’ waves have a frequency dispersion with a

negative group velocity for some wavelengths. While these

spin waves have been studied in great detail over the last

decades, the effect of an adjacent normal metal on these

waves has only recently been investigated.
Experimentally, it has been observed that spin pumping

differs for FVMSWs, BVMSWs, and MSSWs and that it
depends on the spin-wave wavelength [6,8,9,12–14].
Recent experiments [8] have demonstrated that the mag-
netization dissipation is larger for surface spin waves in
which the excitation amplitude is localized at the magnetic
insulator–normal-metal interface. To utilize spin pumping
from thin-film magnetic insulators into adjacent normal
metals, a coherent theoretical picture of these experimental
findings must be developed and understood, which is the
aim of our work.
In this Letter, we present a theory for energy dissipation

from spin-wave excitations in a ferromagnetic insulator
(FI) thin film via spin pumping when the ferromagnetic
insulator layer is in contact with a normal metal (NM). To
this end, consider a thin-film magnetic insulator of thick-
ness L on an insulating substrate with a normal metal
capping (see Figure 1). We consider a normal metal such
as Pt at equilibrium, where there is rapid spin relaxation
and no back flow of spin currents to the magnetic insulator.
The normal metal is then a perfect spin sink and remains in
equilibrium even though spins are pumped into it.

PRL 111, 097602 (2013) P HY S I CA L R EV I EW LE T T ER S
week ending

30 AUGUST 2013

0031-9007=13=111(9)=097602(5) 097602-1 � 2013 American Physical Society



The magnetization dynamics are described by the
Landau-Lifshitz-Gilbert (LLG) equation [21] with a torque
originating from the FI-NM interfacial spin pumping [22]

_M ¼ ��M�Heff þ �

MS

M� _Mþ �sp; (1)

where � is the Gilbert damping coefficient, MS is the
saturation magnetization, � is the gyromagnetic ratio,
Heff is the effective field including the external field,
exchange energy, surface anisotropy energy, and static
and dynamic demagnetization fields.

Spin pumping through interfaces between magnetic
insulators and normal metals gives rise to a spin-pumping
induced torque that is described as [2]

�sp ¼ �@2

2e2M2
S

g?�
�
�� L

2

�
M� _M; (2)

where g? is the transverse spin (‘‘mixing’’) conductance
per unit area at the FI-NM interface, and e is the electron
charge. We disregard the imaginary part of the mixing
conductance because this part has been found to be small
at FI-NM interfaces [12]. In addition, the imaginary part is
qualitatively less important and only renormalizes the
gyromagnetic ratio.

Assuming only uniform magnetic excitations, ‘‘macro-
spin’’ excitations, the effect of spin pumping on the mag-
netization dissipation is well known [2,3]. Spin pumping
leads to enhanced Gilbert damping, �! �þ��macro,
which is proportional to the FI-NM cross section because
more spin current is then pumped out, but inversely pro-
portional to the volume of the ferromagnet that controls the
total magnetic moment,

��macro ¼ �@

4�LMS

h

e2
g?: (3)

Thus, the enhanced Gilbert damping due to spin pumping
is inversely proportional to the film thickness L and

is important for thin-film ferromagnets. However, a
‘‘macrospin’’ excitation, or the ferromagnetic resonance
(FMR) mode, is only one out of many types of magnetic
excitations in thin films. The effect of spin pumping on the
other modes is not known, and we provide the first ana-
lytical results for this important question, which is further
supported and complemented by numerical calculations.
We consider weak magnetic excitations around a homo-

genous magnetic ground state pointing along the direction
of the internal fieldHi ¼ Hiẑ, which is the combination of
the external applied field and the static demagnetizing field

[19]. We may then expandM ¼ MSẑþmQ;xyð�Þeið!t�Q�Þ,
wheremQ;xy � ẑ ¼ 0, jmQ;xyj � MS, and Q is the in-plane

wave number in the � direction. The angle � between the
film normal and ẑ and the in-plane projected angle 	

between ẑ and �̂ are shown in Figure 1.
Following the linearization approach of the LLG equa-

tion (1) as in Ref. [19], we arrive at a two-dimensional
integro-differential equation of the dynamic magnetization
(in the xy plane) in the film’s transverse coordinate �,

�
i
!

!M

� �1

1 �

 !
þ1

�
!H

!M

þ8�
�2A

!2
M

�
Q2� d2

d�2

���
mQ;xyð�Þ

¼
Z L=2

�ðL=2Þ
d�0Ĝxyð���0ÞmQ;xyð�0Þ; (4)

where ! is the spin-wave eigenfrequency, A is the ex-

change stiffness, !H ¼ �Hi, !M ¼ 4��MS, and Ĝxy is

the dipole-dipole field interaction tensor, which fulfills the
boundary conditions resulting from Maxwell’s equations
(see Ref. [23]).
The eigensystem must be supplemented by boundary

conditions that account for spin pumping and surface
anisotropy. These boundary conditions are obtained by
integrating Eq. (1) over the interface [24] and expanding
to the lowest order in the dynamic magnetization. When an
out-of-plane easy axis surface anisotropy is present, the
boundary conditions are�
L
@

@�
þ i!
þ LKs

A
cosð2�Þ

�
mQ;xð�Þj�¼L=2 ¼ 0; (5a)�

L
@

@�
þ i!
þ LKs

A
cos2ð�Þ

�
mQ;yð�Þj�¼L=2 ¼ 0; (5b)

where Ks is the surface anisotropy energy with units
erg cm�2 and 
 ¼ L@2g?=4Ae2 is a parameter relating
the exchange stiffness and the spin mixing conductance
(½
� ¼ s). The boundary condition at the magnetic
insulator–substrate interface might also be affected by
surface anisotropy. Since our focus is on spin pumping at
the other surface, we disregard this complication as a first
approximation and set 
! 0 at � ¼ �L=2.
A mathematical challenge induced by spin pumping

arises because the second term in the linearized boundary
condition (5) is proportional to the eigenvalue ! such that

L 2

L 2

NM

FI

SUB

FIG. 1 (color online). (a) A thin-film magnetic insulator of
thickness L in its coordinate system; � is the normal axis, the
infinite �� plane is coplanar with the interfaces, and the spin
waves propagate along the � axis. The internal field and satura-
tion magnetization are along the z axis. The y axis is always kept
in-plane, and the x axis is selected such that the x, y, and z axes
form a right-handed coordinate system. (b) A cross section
showing the material stack.
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the eigenfunctions cannot simply be expanded in the set of
eigenfunctions obtained when there is no spin-pumping or
dipolar interaction. Instead, we follow an alternative ana-
lytical route for small and large wave vectors. Furthermore,
we numerically determine the eigenmodes with a custom-
tailored technique, where we discretize the differential
equation (4), include the spin-pumping boundary condi-
tions (5), and transform the resulting equations into an
eigenvalue problem in ! [25].

Let us now outline how we obtain analytical results for
small QL� 1 and large QL� 1 wave vectors. First, we
consider the case of vanishing surface anisotropy and
compute the renormalization of the Gilbert damping for
the resulting modes. Next, we demonstrate that the surface
anisotropy creates a surface wave with a comparably large
enhancement of the Gilbert component.

WhenQL� 1, the convolution integral on the right-hand
side of Eq. (4) only contains the homogeneous demagneti-
zation field. The magnetization is then a transverse standing
wave mQ;xyðeik� þ e�ik�þ	Þ, where k is a transverse wave

number,	 is a phase determined by the boundary condition
at the lower interface, and the two-dimensional coefficient
vectormQ;xy allows for elliptical polarization in the xy plane.

By employing exchange-only boundary conditions [24]
at the lower interface and using Eq. (5) with Ks ¼ 0 on the
upper interface, the transverse wave number k is deter-
mined by kL tankL ¼ i!
. Together with the bulk disper-
sion relation ! ¼ !ðkÞ, calculated from Eq. (4), this
expression allows us to calculate the magnetic excitation
dispersion relation parameterized by the film thickness, the
Gilbert damping �, and the transverse conductance g?.

When spin pumping is weak, !
 is small, and the
solutions of the transcendental equation can be expanded
around the solutions obtained when there is no spin pump-
ing, kL ¼ n�, where n is an integer. When n � 0, we
expand to first order in kL and obtain kL � n�þ
i!
=ðn�Þ. When n ¼ 0, we must perform a second-order
expansion in terms of kL around 0, which results in
ðkLÞ2 � i!
. Using these relations in turn to eliminate k
from the bulk dispersion relation while maintaining our
linear approximation in small terms and solving for !, we
obtain complex eigenvalues, where the imaginary part is
proportional to a renormalized Gilbert damping parameter,
�	 ¼ �þ ��. When n ¼ 0, our results agree with the
spin-pumping enhanced Gilbert damping of the
macrospin (FMR) mode derived in Ref. [2] [see Eq. (3)],
��0 ¼ ��macro. When n � 0, we compute

��n ¼ 2��macro: (6)

These new results indicate that all higher transverse
volume modes have an enhanced magnetization dissipa-
tion that is twice that of the macrospin mode. Thus,
counterintuitively, with the exception of the macrospin
mode, increasingly higher-order standing-wave transverse

spin-wave modes have precisely the same enhanced
Gilbert damping.
Next, let us discuss spin pumping for surface waves

induced by the presence of surface anisotropy. When
Ks � 0, the lowest volume excitation mode develops into
a spatially localized surface wave. Expanding the expres-
sion for the localized wave to the highest order in LKs=A,
we determine after some algebra that the resulting
enhancement of the Gilbert damping is

��n¼0¼ �@Ks
4�MsA

h

e2
g?

!H

!M

�
!H

!M

þ1

2
� K2

s

4�M2
sA

��1
: (7)

Comparing Eqs. (7) and (6), we see that for large surface
anisotropy LKs=A� 1, the spin-pumping-induced
enhanced Gilbert damping is independent of L. This result
occurs because a large surface anisotropy induces a surface
wave with a decay length A=Ks, which replaces the actual
physical thickness L as the effective thickness of the
magnetic excitations, i.e., for surface waves L! A=Ks
in the expression for the enhanced Gilbert damping of
Eq. (3). This replacement implies that the enhanced
Gilbert damping is much larger for surface waves because
the effective magnetic volume decreases. For typical val-
ues of A and Ks, we obtain an effective length A=Ks 

10 nm. Compared with the film thicknesses used in recent
experiments, this value corresponds to a tenfold or greater
increase in the enhancement of the Gilbert damping. In
contrast, for the volume modes (n � 0), we note from
Eq. (5) that the dynamic magnetization will decrease at
the FI-NM interface due to the surface anisotropy; hence,
�� decreases compared with the results of Eq. (6).
Finally, we can also demonstrate that for large wave

vectors QL� 1, the excitation energy mostly arises
from the in-plane (longitudinal) magnetization texture gra-
dient. Consequently, spin pumping, which pumps energy
out of the magnetic system due to the transverse gradient of
the magnetization texture, is much less effective and
decays as 1=ðQLÞ2 with respect to Eq. (3).
To complement our analytical study, we numerically

computed the eigenfrequencies !nðQÞ. The energy is
determined by the real part of !nðQÞ, while Im!nðQÞ
determines the dissipation rate and hence the spin-pumping
contribution. Recent experiments [6,11,13,14] on control-
ling and optimizing the ferrimagnetic insulator yttrium
iron garnet (YIG) have estimated that the mixing conduc-
tances of both YIG-Au and YIG-Pt bilayers are in the range
of g?h=e2 
 0:02–3:43� 1015 cm�2. We use g?h=e2 ¼
1:2� 1014 cm�2 from Ref. [6] in this work. All of our
results can be linearly rescaled with other values of the
mixing conductance. In the following section, we also
use A ¼ 2:9� 10�8 erg=cm, Ks ¼ 0:05 erg=cm2, L ¼
100 nm, 4�MS ¼ 1750 G, and � ¼ 3� 10�4.
To distinguish the spin-pumping contribution �� from

the magnetization dissipation due to intrinsic Gilbert
damping �, we first compute the eigenvalues, !d, with
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intrinsic Gilbert damping, � � 0, and no spin pumping,
g? ¼ 0. Second, we compute the eigenvalues !sp with

dissipation arising from spin pumping only, � ¼ 0 and
g? � 0. Because Im!d / �, we define a measure of the
spin-pumping-induced effective Gilbert damping as
�� ¼ � Im!sp=Im!d.

We first consider the case of no surface anisotropy.
Figure 2 shows the spin-pumping-enhanced Gilbert damp-
ing �� as a function of the product of the in-plane wave
vector and the film thickness QL in the MSSW geometry.
In the long-wavelength limit, QL� 1, the numerical
result agrees precisely with our analytical results of
Eq. (5). The enhanced Gilbert damping of all higher trans-
verse modes is exactly twice that of the macrospin mode.
In the dipole-exchange regime, for intermediate values of
QL, the dipolar interaction causes a small asymmetry in
the eigenvectors for positive and negative eigenfrequencies
because modes traveling in opposite directions have differ-
ent magnitudes of precession near the FI-NM interface
[26], and spin pumping from these modes therefore differ.

This phenomenon also explains why the enhanced damp-
ing, ��, splits into different branches in this regime, as
shown in Fig. 2. For exchange spin waves, QL� 1, the
exchange interaction dominates the dipolar interaction and
removes mode asymmetries. We also see that ��! 0 for
large QL, in accordance with our analytical theory.
Figure 3 shows �� for the BVMSW geometry. The

eight first modes are presented; however, as no substantial
asymmetry exists between eigenmodes traveling in differ-
ent directions, the modes have the same pairwise renor-
malization of �. This symmetry occurs because the
direction of the internal field coincides with the direction
of propagation. As in the previous case, the dipolar inter-
action causes a slight shift in the eigenvectors in the
intermediate QL regime, thereby altering �� from that
of Eq. (5).
Figure 4 shows �� for the MSSW geometry but with

surface anisotropy at the FI-NM interface. As expected
from our analytical results, surface anisotropy induces
two localized surface modes with a tenfold larger enhance-
ment of �� compared with the volume modes. The hori-
zontal dashed line in Figure 4 indicates the analytical result
for the enhanced Gilbert damping of the n � 0 modes
when Ks ¼ 0. For the volume modes, it is clear that the
eigenvectors have a lower magnitude closer to the FI-NM
interface and that �� is lower compared with the case of
Ks ¼ 0, which is consistent with our analytical analysis.
Our results also agree with recent experiments. Sandweg

et al. [8] found that spin pumping is significantly higher for
surface spin waves compared with volume spin-wave
modes. In addition, in Ref. [9], exchange waves were
observed to be less efficient at pumping spins than dipolar
spin waves, which is consistent with our results.
Furthermore, our results are consistent with the theoretical
finding that spin-transfer torques preferentially excite sur-
face spin waves with a critical current inversely propor-
tional to the penetration depth [27].

10 6 10 4 0.01 1 100
QL

1

2

3

4

5
10 4

L 2 0 L 2

m

FIG. 2 (color online). �� versus wave vector for the MSSW
geometry (� ¼ 	 ¼ �=2) for the four lowest eigenvalues. Inset:
magnitudes of eigenvectors (in arbitrary units) across the film at
QL ¼ 1:5.

10 6 10 4 0.01 1 100
QL

1

2

3

4
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0.1 1 10
0.0
0.5
1.0
1.5
2.0
2.5

R
e

M

L 2 0 L 2

m

FIG. 3 (color online). �� versus wave vector for the BVMSW
geometry (� ¼ �=2 and 	 ¼ 0). Left inset: Magnitude of ei-
genvectors (in arbitrary units) across the film when QL ¼ 1:5.
Right inset: the real part of the dispersion relation for the same
modes.

10 4 0.001 0.01 0.1 1 10 100
QL

5

10

15

20

25

10 4

L 2 0 L 2

m

FIG. 4 (color online). �� versus wave vector for the MSSW
geometry (� ¼ 	 ¼ �=2) with surface anisotropy added at the
interface. Inset: magnitudes of eigenvectors (in arbitrary units)
across the film.
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In conclusion, we have analyzed how spin pumping
causes a wave-vector-dependent enhancement of the
Gilbert damping in thin magnetic insulators in contact
with normal metals. In the long-wavelength limit, our
analytical results demonstrate that the enhancement of
the Gilbert damping for all higher-order volumetric modes
is twice as large as that of a macrospin excitation.
Importantly, surface anisotropy-pinned modes have a
Gilbert renormalization that is significantly and linearly
enhanced by the ratio LKs=A.

A. Kapelrud would like to thank G. E.W. Bauer for
his hospitality at TU Delft. This work was supported by
EU-ICT-7 Contract No. 257159 ‘‘MACALO.’’
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Spin waves in ferromagnetic insulators coupled via a normal metal
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Herein, we study spin-wave dispersion and dissipation in a ferromagnetic insulator–normal metal–
ferromagnetic insulator system. Long-range dynamic coupling because of spin pumping and spin transfer
lead to collective magnetic excitations in the two thin-film ferromagnets. In addition, the dynamic dipolar
field contributes to the interlayer coupling. By solving the Landau-Lifshitz-Gilbert-Slonczewski equation for
macrospin excitations and the exchange-dipole volume as well as surface spin waves, we compute the effect of
the dynamic coupling on the resonance frequencies and linewidths of the various modes. The long-wavelength
modes may couple acoustically or optically. In the absence of spin-memory loss in the normal metal, the
spin-pumping-induced Gilbert damping enhancement of the acoustic mode vanishes, whereas the optical mode
acquires a significant Gilbert damping enhancement, comparable to that of a system attached to a perfect spin
sink. The dynamic coupling is reduced for short-wavelength spin waves, and there is no synchronization. For
intermediate wavelengths, the coupling can be increased by the dipolar field such that the modes in the two
ferromagnetic insulators can couple despite possible small frequency asymmetries. The surface waves induced
by an easy-axis surface anisotropy exhibit much greater Gilbert damping enhancement. These modes also may
acoustically or optically couple, but they are unaffected by thickness asymmetries.

DOI: 10.1103/PhysRevB.90.094418 PACS number(s): 76.50.+g, 75.30.Ds, 75.70.−i, 75.76.+j

I. INTRODUCTION

The dynamic magnetic properties of thin-film ferromagnets
have been extensively studied for several decades [1,2].
Thin-film ferromagnets exhibit a rich variety of spin-wave
modes because of the intricate interplay among the exchange
and dipole interactions and the material anisotropies. In
ferromagnetic insulators (FIs), these modes are especially
visible; the absence of disturbing electric currents leads to
a clear separation of the magnetic behavior. Furthermore,
the dissipation rates in insulators are orders of magnitude
lower than those in their metallic counterparts; these low
dissipation rates enable superior control of traveling spin
waves and facilitate the design of magnonic devices [3].
In spintronics, there has long been considerable interest
in giant magnetoresistance, spin-transfer torques, and spin
pumping in hybrid systems of normal metals and metallic
ferromagnets (MFs) [4–7]. The experimental demonstration
that spin transfer and spin pumping are also active in normal
metals in contact with insulating ferromagnets has generated
a renewed interest in and refocused attention on insulating
ferromagnets, of which yttrium iron garnet (YIG) continues
to be the prime example [8–19]. In ferromagnetic insulators,
current-induced spin-transfer torques from a neighboring
normal metal (NM) that exhibits out-of-equilibrium spin ac-
cumulation may manipulate the magnetization of the insulator
and excite spin waves [8,20,21,22]. The out-of-equilibrium
spin accumulation of the normal metal may be induced via
the spin Hall effect or by currents passing through other
adjacent conducting ferromagnets. Conversely, excited spin
waves pump spins into adjacent NMs, and this spin current
may be measured in terms of the inverse spin Hall voltages or
by other conducting ferromagnets [8–14]. The magnetic state
may also be measured via the spin Hall magnetoresistance

*hans.skarsvag@ntnu.no

[16–19,24,25]. Because of these developments, magnetic
information in ferromagnetic insulators may be electrically
injected, manipulated, and detected. Importantly, an FI-based
spintronic device may efficiently transport electric information
carried by spin waves over long distances [15] without any
excessive heating. The spin-wave decay length can be as
long as centimeters in YIG films [23]. These properties make
FI-NM systems ideal devices for the exploration of novel
spintronic phenomena and possibly also important for future
spintronic applications. Magnonic devices also offer advan-
tages such as rapid spin-wave propagation, frequencies ranging
from GHz to THz, and the feasibility of creating spin-wave
logic devices and magnonic crystals with tailored spin-wave
dispersions [26]. To utilize the desirable properties of FI-NM
systems, such as the exceptionally low magnetization-damping
rate of FIs, it is necessary to understand how the magnetization
dynamics couple to spin transport in adjacent normal metals.
The effective damping of the uniform magnetic mode of a
thin-film FI is known to significantly increase when the FI is
placed in contact with an NM. This damping enhancement
is caused by the loss of angular momentum through spin
pumping [27–31]. Recent theoretical work has also predicted
the manner in which the Gilbert damping for other spin-wave
modes should become renormalized [32]. For long-wavelength
spin waves, the Gilbert damping enhancement is twice as
large for transverse volume waves as for the macrospin mode,
and for surface modes, the enhancement can be ten times
stronger or more. Spin pumping has been demonstrated, both
experimentally [9] and theoretically [32], to be suppressed
for short-wavelength exchange spin waves. A natural next
step is to investigate the magnetization dynamics of more
complicated FI-NM heterostructures. In ferromagnetic metals,
it is known that spin pumping and spin-transfer torques
generate a long-range dynamic interaction between magnetic
films separated by normal-metal layers [33]. The effect of this
long-range dynamic interaction on homogeneous macrospin
excitations can be measured by ferromagnetic resonance. The
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combined effects of spin pumping and spin-transfer torque lead
to an appreciable increase in the resonant linewidth when the
resonance fields of the two films are far apart and to a dramatic
narrowing of the linewidth when the resonant fields approach
each other [33]. This behavior occurs because the excitations
in the two films couple acoustically (in phase) or optically
(out of phase). We will demonstrate that similar, though richer
because of the complex magnetic modes, phenomena exist
in magnetic insulators. In the present paper, we investigate
the magnetization dynamics in a thin-film stack consisting
of two FIs that are in contact via an NM. The macrospin
dynamics in a similar system with metallic ferromagnets
have been studied both theoretically and experimentally [33].
We expand on that work by focusing on inhomogeneous
magnetization excitations in FIs. For long-wavelength spin
waves traveling in-plane in a ferromagnetic thin film, the
frequency as a function of the in-plane wave number Q

strongly depends on the direction of the external magnetic
field with respect to the propagation direction. If the external
field is in-plane and the spin waves are traveling parallel
to this direction, the waves have a negative group velocity.
Because the magnetization precession amplitudes are usually
evenly distributed across the film in this geometry, these
modes are known as backward volume magnetostatic spin
waves (BVMSW). Similarly, spin waves that correspond to
out-of-plane external fields are known as forward volume
magnetostatic spin waves (FVMSW); i.e., the group velocity is
positive, and the precession amplitudes are evenly distributed
across the film. When the external field is in-plane and
perpendicular to the propagation direction, the precession
amplitudes of the spin waves become inhomogeneous across
the film, experiencing localization to one of the interfaces.
These spin waves are thus known as magnetostatic surface
spin waves (MSSW) [34,35]. When two ferromagnetic films
are coupled via a normal metal, the spin waves in the two films
become coupled through two different mechanisms. First,
the dynamic, nonlocal dipole-dipole interaction causes an
interlayer coupling to arise that is independent of the properties
of the normal metal. This coupling is weaker for larger
thicknesses of the normal metal. Second, spin pumping from
one ferromagnetic insulator induces a spin accumulation in the
normal metal, which in turn gives rise to a spin-transfer torque
on the other ferromagnetic insulator, and vice versa. In contrast
to the static exchange coupling [36], this dynamic coupling is
rather long-ranged and is limited only by the spin-diffusion
length. This type of coupling is known to strongly couple
the macrospin modes. When two ferromagnetic films become
coupled, the characterization of the spin waves in terms of
FVMSW, BVMSW, and MSSW still holds, but the dispersion
relations are modified. It is also clear that the damping
renormalization caused by spin pumping into the NM may
differ greatly from that in a simpler FI|N bilayer system. To
understand this phenomenon, we perform a detailed analytical
and numerical analysis of a trilayer system, with the hope that
our findings may be used as a guide for experimentalists. This
paper is organized as follows. Section II introduces the model.
The details of the dynamic dipolar field are discussed, and
the boundary conditions associated with spin pumping and
spin transfer at the FI|N interfaces are calculated. Section III
provides the analytical solutions of these equations in the

dN 2 L2

dN 2

dN 2

dN 2 L1

N

FI2

FI1

SUB

(a) (b)

FIG. 1. (Color online) (a) A cross section of the FI1|N|FI2
heterostructure. The ferromagnetic insulators FI1 and FI2 are in
contact via the normal metal N. The transverse coordinate ξ is
indicated along with the thicknesses L1, dN, and L2 of FI1, N, and
FI2, respectively. (b) The coordinate system of the internal field (blue)
with respect to the coordinate system of the FI1| N|FI2 structure (red).
θ denotes the angle between the film normal and the internal field,
and φ is the angle between the in-plane component of the magnetic
field and the in-plane wave vector.

long-wavelength regime dominated by the dynamic coupling
attributable to spin pumping and spin transfer. To create a more
complete picture of the dynamic behavior of this system, we
perform a numerical analysis for the entire spin-wave spectrum
of this system, which is presented in Sec. IV. We conclude our
work in Sec. V.

II. EQUATIONS OF MOTION

Consider a thin-film heterostructure composed of two
ferromagnetic insulators (FI1 and FI2) that are in electrical
contact via an NM layer. The ferromagnetic insulators FI1 and
FI2 may have different thicknesses and material properties.
We denote the thicknesses by L1, dN, and L2 for the FI1,
NM, and FI2 layers, respectively [see Fig. 1(a)]. The in-plane
coordinates are ζ,η, and the transverse coordinate is ξ [see
Fig. 1(b)]. We will first discuss the magnetization dynamics in
isolated FIs and will then incorporate the spin-memory losses
and the coupling between the FIs via spin currents passing
through the NM.

A. Magnetization dynamics in isolated FIs

The magnetization dynamics in the ferromagnetic insula-
tors can be described using the Landau-Lifshitz-Gilbert (LLG)
equation,

Ṁi = −γ Mi × Heff + αMi × Ṁi , (1)

where Mi is the unit vector in the direction of the magnetization
in layer i = 1,2, γ is the gyromagnetic ratio, α is the
dimensionless damping parameter, and Heff is the space-time-
dependent effective magnetic field. The effective magnetic
field is

Heff = Hint + hex + hd + hsurface, (2)

where Hint is the internal field attributable to an external
magnetic field and the static demagnetization field, hex =
2A∇2M/MS is the exchange field (A is the exchange constant),
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N

m1,Q

FI1

m2,Q

FI2

e

e

FIG. 2. (Color online) Two coupled spin waves with amplitude
m1Q in ferromagnet FI1 and amplitude m2Q in ferromagnet FI2. The
spin waves inject a spin current into the normal metal (NM) via spin
pumping. In the NM, the spins diffuse and partially relax, inducing
a spin accumulation therein. In turn, the spin accumulation causes
spin-transfer torques to arise on FI1 and FI2. The combined effect of
spin transfer and spin pumping leads to a dynamic exchange coupling
that, together with the dynamic demagnetization field, couples the
spin waves in the two FIs.

hd is the dynamic demagnetization field, and

hsurface = 2KS

MS

(Mi · n̂)δ(ξ − ξi)n̂ (3)

is the surface anisotropy field located at the FI|N interfaces. In
this work, hsurface is assumed to exist only at the FI|N interfaces
and not at the interfaces between the FIs and the substrate or
vacuum. It is straightforward to generalize the discussion to
include these surface anisotropies as well. We consider two
scenarios: one with an surface anisotropy (KS �= 0) and one
with no surface anisotropy (KS = 0). Note that a negative value
of KS ∼ −0.03 erg/cm2, which implies an easy-plane surface
anisotropy, has also been observed for sputtered YIG|Au
bilayers [37]. In general, the effective field Heff may differ
in the two FIs. We assume the two FIs consist of the same
material and consider external fields that are either in-plane or
out-of-plane. Furthermore, we consider devices in which the
internal magnetic fields in the two FI layers are aligned and of
equal magnitude. In equilibrium, the magnetization inside the
FIs is oriented along the internal magnetic field, Mi = M0.
In the linear response regime, Mi = M0 + mi , where the
first-order correction mi is small and perpendicular to M0.
The magnetization vanishes outside of the FIs. Because the
system is translationally invariant in the η and ζ directions,
we may, without loss of generality, assume that m consists of
plane waves traveling in the ζ direction (see Fig. 2),

mi(ζ,η,ξ ) = miQ(ξ )ei(ωt−Qζ ). (4)

Linearizing Maxwell’s equations in mi implies that the
dynamic dipolar field must be of the same form,

hd(ζ,η,ξ ) = hdQ(ξ )ei(ωt−Qζ ). (5)

Furthermore, the total dipolar field (the sum of the static and
the dynamic dipolar fields) must satisfy Maxwell’s equations,
which, in the magnetostatic limit, are

∇ · (hd + 4πMSm) = 0, (6a)

∇ × hd = 0, (6b)

with the boundary equations

(hd + 4πMSm)⊥,in = (hd)⊥,out, (7a)

(hd)‖,in = (hd)‖,out, (7b)

where the subscript in (out) denotes the value on the FI
(NM, vacuum or substrate) side of the FI interface and ⊥
(‖) denotes the component(s) perpendicular (parallel) to the
FI-NM interfaces. Solving Maxwell’s equations (6) with the
boundary conditions of Eq. (7) yields [34]

hdQ(ξ ) = 4πMS

∫
dξ ′Ĝ(ξ − ξ ′)mQ(ξ ′), (8)

where Ĝ(r − r′) is a 3×3 matrix acting on m in the (η,ζ,ξ )
basis,

Ĝ(ξ ) =
⎛⎝GP(ξ ) − δ(ξ ) 0 −iGQ(ξ )

0 0 0
−iGQ(ξ ) 0 −GP(ξ )

⎞⎠ . (9)

Here, GP(ξ ) = Qe−Q|ξ |/2, and GQ(ξ ) = −sgn(ξ )GP. Note
that the dynamic dipolar field of Eq. (8) accounts for
both the interlayer and intralayer dipole-dipole couplings
because the magnetization varies across the two magnetic
insulator bilayers and vanishes outside these materials. It is
now convenient to perform a transformation from the ζ -η-ξ
coordinate system defined by the sample geometry to the x-y-z
coordinate system defined by the internal field [see Fig. 1(b)].
In the linear response regime, the dynamic magnetization mi

lies in the x-y plane, and the linearized equations of motion
become [34]{

iω

(
α −1
1 α

)
+ 1

(
ωH + 2A

MS

[
Q2 − d2

dξ 2

])}
miQxy(ξ )

=
2∑

i=1

∫
dξ ′Ĝxy(ξ − ξ ′)miQxy(ξ ′). (10)

Here, miQxy = (miQx,miQy) is the Fourier transform of the
dynamic component of the magnetization in the x-y plane and
Ĝxy(ξ ) is the 2×2 matrix that results from rotating Ĝ(ξ ) into
the x-y-z coordinate system (see Appendix A), considering
only the xx, xy, yx, and yy components.

B. Boundary conditions and spin accumulation

The linearized equations of motion (10) must be supple-
mented with boundary conditions for the dynamic magnetiza-
tion at the FI|N interfaces. A precessing magnetization at the
FI|N boundaries injects a spin-polarized current, jSP, into the
NM, an effect known as spin pumping [8,29–31]. The emitted
spin currents at the lower and upper interfaces (i = 1,2) in
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units of charge current per area are

jSP
i = �

e
g⊥Mi × Ṁi

∣∣∣∣
ξ=ξi

, (11)

where ξi = ∓dN/2 at the lower and upper interfaces, respec-
tively, and g⊥ is the real part of the transverse spin-mixing
conductance per unit area [38]. We disregard the imaginary
part of the spin-mixing conductance because it has been
found to be small at FI|N interfaces [39]. The reciprocal
effect of spin pumping is spin transfer into the FIs because
of a spin accumulation μS in the NM. In the normal metal
at the lower and upper interfaces (i = 1,2), the associated
spin-accumulation-induced spin current is

jST
i = −1

e
g⊥Mi × (Mi × μS)

∣∣∣∣
ξ=ξi

. (12)

The signs of the pumped and spin-accumulation-induced spin
currents in Eqs. (11) and (12) were chosen such that they are
positive when there is a flow of spins from the NM toward the
FIs. The pumped and spin-accumulation-induced spin currents

of Eqs. (11) and (12) lead to magnetic torques acting on the
FI interfaces. The torques that correspond to the spin pumping
and spin transfer localized at the FI|N interfaces are

τ SP
i = γ �

2

2e2MS

g⊥δ(ξ − ξi)Mi × Ṁi , (13a)

τ ST
i = − γ �

2e2MS

g⊥Mi × (Mi × μS)δ(ξ − ξi), (13b)

respectively. In the presence of spin currents to and from
the normal metal, the magnetization dynamics in the FIs
is then governed by the modified Landau-Lifshitz-Gilbert-
Slonczewski (LLGS) equation,

Ṁ = −γ Mi × Heff + αMi × Ṁi +
∑
i=1,2

τ SP
i + τ ST

i . (14)

By integrating Eq. (14) over the FI|N interfaces and the
interfaces between the FI and vacuum/substrate, we find that
mi must satisfy the boundary conditions [21,32]

(
±Li

dmi

dξ
+ χi

[
ṁi − 1

�
M0 × μ

]
+ LiKS

A
cos(2θ )mi

)
x

∣∣∣∣
ξ=∓dN/2

= 0, (15a)(
±Li

dmi

dξ
+ χi

[
ṁi − 1

�
M0 × μ

]
+ LiKs

A
cos2(θ )mi

)
y

∣∣∣∣∣
ξ=∓dN/2

= 0, (15b)

dm1

dξ

∣∣∣∣
ξ=−dN/2−L1

= 0,
dm2

dξ

∣∣∣∣
ξ=dN/2+L2

= 0. (15c)

Here, we have introduced the time scale χi =
Li�

2g⊥/4Ae2. The subscripts x and y in Eqs. (15a) and (15b)
denote the x and y components, respectively. In our ex-
pressions for the boundary conditions (15), we have also
accounted for the possibility of a surface anisotropy arising
from the effective field described by Eq. (3), where KS >

0 indicates an easy-axis surface anisotropy (EASA). The
boundary conditions of Eq. (15), in combination with the
transport equations in the NM, which we will discuss next,
determine the spin accumulation in the NM and the subsequent
torques caused by spin transfer. In the normal metal, the
spins diffuse, creating a spatially dependent spin-accumulation
potential μQ, and they relax on the spin-diffusion length
scale lsf . The spin accumulation for an FI|N|FI system has
been calculated in the macrospin model [40]. The result of
this calculation can be directly generalized to the present
situation of spatially inhomogeneous spin waves by replacing
the macrospin magnetization in each layer with the interface
magnetization and substituting the spin-diffusion length with
a wave-vector-dependent effective spin-diffusion length lsf →
l̃sf(Q) such that

μQ = −�

2
M0 × {[ṁQ(ξ1) + ṁQ(ξ2)]
1 (ξ )

− [ṁQ(ξ1) − ṁQ(ξ2)]
2 (ξ )}. (16)

See Appendix B for the details of the functions 
1 and 
2.
The effective spin-diffusion length is determined by Fourier-
transforming the spin-diffusion equation (see Appendix C):

l̃sf = lsf/
√

1 + (Qlsf)2. (17)

We thus have all the necessary equations to describe the linear
response dynamics of spin waves in the FI1| N|FI2 system. We
now provide analytical solutions of the spin-wave modes in the
long-wavelength limit and then complement these solutions
with an extensive numerical analysis that is valid for any
wavelength.

III. ANALYTIC SOLUTIONS FOR THE SPIN
WAVE SPECTRUM

The effect that the exchange and dipolar fields have on the
spin-wave spectrum depends on the in-plane wave number Q.
When QLi 
 1, the dipolar field dominates over the exchange
field. In the opposite regime, when QLi � 1, the exchange
field dominates over the dipolar field. The intermediate regime
is the dipole-exchange regime. Another length scale is set
by the spin-diffusion length. When Qlsf � 1, the effective
spin-relaxation length l̃sf of Eq. (17) becomes small, and
the NM acts as a perfect spin sink. In this case, only the
relatively short-ranged dipolar field couples the FIs. We
therefore focus our attention on the dipole-dominated regime,

094418-4



SPIN WAVES IN FERROMAGNETIC INSULATORS . . . PHYSICAL REVIEW B 90, 094418 (2014)

in which the interchange of spin information between the two FIs remains active. In the limit QLi 
 1, the magnetization is
homogeneous in the in-plane direction. We may then use the ansatz that the deviation from equilibrium is a sum of transverse
traveling waves. Using the boundary conditions on the outer boundaries of the stack, Eq. (15c), we find

miQxy(ξ ) =
(

Xi

Yi

)
cos

{
ki

[
ξ ±

(
Li + dN

2

)]}
, (18)

where i = 1 when ξ is inside FI1 and i = 2 when ξ is inside FI2. k1 and k2 are the out-of-plane wave vectors of the lower and
upper films, respectively. The eigenfrequencies of Eq. (10) depend on ki . To first order in the damping parameter α, we have

ω(ki) = ωM

[
±
√(

ωH

ωM

+ A

2πM2
S

k2
i

)(
ωH

ωM

+ A

2πM2
S

k2
i + sin2 θ

)
+ iα

(
ωH

ωM

+ A

2πM2
S

k2
i + 1

2
sin2 θ

)]
. (19)

We can, without loss of generality, consider only those
frequencies that have a positive real part. The eigenfrequency
ω is a characteristic feature of the entire system, so we must
require ω(k1) = ω(k2), which implies that k1 = ±k2. We will
discuss the cases of symmetric (L1 = L2) and asymmetric
(L1 �= L2) geometries separately.

A. Symmetric FI films without surface anisotropy

Consider a symmetric system in which the FIs are of
identical thickness and material properties. We assume that
the effect of surface anisotropy is negligible, which is the case
for thin films and/or weak surface anisotropy energies such that
|KS |L/A 
 1, where L = L1 = L2. The other two boundary
conditions, (15a) and (15b), couple the amplitude vectors
(X1 Y1)T and (X2 Y2)T of Eq. (18). A nontrivial solution
implies that the determinant containing the coefficients of the
resulting 4 × 4 matrix equation vanishes. Solving the secular
equation, we find the following constraints on k,

iχAωA = kL tan(kL), (20a)

iχOωO = kL tan(kL), (20b)

where

χA = χ

(
1 −

[
1 + 2g⊥lsf

σ
tanh(dN/2lsf)

]−1 )
, (21a)

χO = χ

(
1 −

[
1 + 2g⊥lsf

σ
coth(dN/2lsf)

]−1 )
, (21b)

and χ = L�
2g⊥/4Ae2. The two solutions correspond to

a symmetric mode (acoustic) and an antisymmetric mode
(optical). This result can be understood in terms of the
eigenvectors that correspond to the eigenvalues of Eqs. (20),
which are m1 = +m2 and m1 = −m2 for the acoustic and
optical modes, respectively. Typically, because spin pumping
only weakly affects the magnetization dynamics, the time
scale χ that is proportional to the mixing conductance g⊥
is much smaller than the FMR precession period. In this limit,
kL tan(kL) 
 1. This result allows us to expand the secular
equations (20) around kL = nπ , where n is an integral number,
which yields

iχνων,n ≈ (kL + πn)kL, (22)

where ν = A,O. This result can be reinserted into the bulk dis-
persion relation of Eq. (19), from which we can determine the
renormalization of the Gilbert damping coefficient attributable

to spin pumping, �α. We define

�α = α(Im[ω(SP)] − Im[ω(0)])/Im[ω(0)] (23)

as a measure of the spin-pumping-enhanced Gilbert damping,
where ω(0) and ω(SP) are the frequencies of the same system
without and with spin pumping, respectively. Similar to the
case of a single-layer ferromagnetic insulator [32], we find
that all higher transverse volume modes exhibit an enhanced
magnetization dissipation that is twice that of the macrospin
mode. The enhancement of the Gilbert damping for the
macrospin mode (n = 0) is

�αν,macro = γ �
2g⊥

2LMSe2

χν

χ
, (24)

and for the other modes, we obtain

�αν,n�=0 = 2�αν,macro. (25)

Compared with single-FI systems, the additional feature of
systems with two FIs is that the spin-pumping-enhanced
Gilbert damping differs significantly between the acoustic
and optical modes via the mode-dependent ratio χν/χ . This
phenomenon has been explored both experimentally and
theoretically in Ref. [33] for the macrospin modes n = 0 when
there is no loss of spin transfer between the FIs, lsf → ∞. Our
results represented by Eqs. (24) and (25) are generalizations
of these results for the case of other transverse volume modes
and account for spin-memory loss. Furthermore, in Sec. IV, we
present the numerical results for the various spin-wave modes
when the in-plane momentum Q is finite. When the NM is a
perfect spin sink, there is no transfer of spins between the two
FIs, and we recover the result for a single FI|N system with
vanishing back flow, χν → χ [32]. Naturally, in this case, the
FI| N|FI system acts as two independent FI|N systems with
respect to magnetization dissipation. The dynamic interlayer
dipole coupling is negligible in the limit that is considered
in this section (QL 
 1). In the opposite regime, when the
NM film is much thinner than the spin-diffusion length and
the spin conductivity of the NM is sufficiently large such that
g⊥dN/σ 
 1, then χA → 0 and χO → χ . This result implies
that for the optical mode, the damping is the same as for
a single FI in contact with a perfect spin sink, even though
the spin-diffusion length is very large. The reason for this
phenomenon is that when the optical mode is excited, the
magnetizations of the two films oscillate out of phase such
that one layer acts as a perfect spin sink for the other layer.
By contrast, there is no enhancement of the Gilbert damping
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coefficient for the acoustic mode; when the film is very thin and
the magnetizations of the two layers are in phase, there is no net
spin flow or loss in the NM film and no spin-transfer-induced
losses in the ferromagnets. Finally, when the NM is a poor
conductor despite exhibiting low spin-memory loss such that
g⊥dN/σ � (lsf/dN) � 1, then χν → 0 because there is no
exchange of spin information. For the macrospin modes in
the absence of spin-memory loss, these results are in exact
agreement with Ref. [33]. Beyond these results, we find that
regardless of how much spin memory is lost, it is also the
case that in trilayer systems, all higher transverse modes
experience a doubling of the spin-pumping-induced damping.
Furthermore, these modes can still be classified as optical and
acoustic modes with different damping coefficients.

B. Symmetric films with surface anisotropy

Magnetic surface anisotropy is important when the spin-
orbit interaction at the interfaces is strong. In this case, the
excited mode with the lowest energy becomes inhomogeneous
in the transverse direction. We first consider the FVMSW
geometry before discussing the general case. A finite KS

introduces new terms into the boundary condition (15). For
the ansatz

miQxy(ξ ) =
(

Xi cos[kξ ± k(L + dN/2)]

Yi cos[kξ ± k(L + dN/2)]

)
, (26)

the boundary equation (15b) is satisfied, and Eqs. (15a)
and (15b) yield

iχνων + LKS

A
= kL tan(kL) , (27a)

iχνων + LKS

A
= kL tan(kL) , (27b)

where ν continues to denote an acoustic (A) or optical (O)
mode, ν = A,O. Depending on the sign of KS and the
angle θ , the resulting solutions for k can become complex,
which implies that the modes are evanescent. For a negative
anisotropy constant and a thick FIs −LKS/A � 1, we find
that κ = ik = −KS/A − iχνων/L, such that

miQxy(ξ ) =
(

Xi cosh[κξ ± κ(L + dN/2)]
Yi cosh[κξ ± κ(L + dN/2)]

)
. (28)

The dynamic part of the magnetization is exponentially
localized at the FI|N surfaces. Following the same procedure
as in Sec. III A for the KS = 0 case, we insert this solution into
the dispersion relation (19) and extract the renormalization of
the effective Gilbert damping:

�αSA,FVMSW
ν = γ �

2g⊥
2LMSe2

χν

χ
2
KSL

A
. (29)

This Gilbert damping enhancement may become orders of
magnitude larger than the �αmacro of Eq. (24). For thick films,
�αmacro ∼ L−1, whereas �αSA,FVMSW

ν reaches a constant
value that is inversely proportional to the localization length
at the FI|N interface. Note that for large surface anisotropy,
the equilibrium magnetization is no longer oriented along
the external field, and Eq. (29) for �α becomes invalid.
For in-plane field geometries (BVMSW and MSSW), an

easy axis surface anisotropy (KS > 0) leads to a similar
localization. For in-plane static magnetization, only one of
the two dynamic components points out-of-plane, thereby
introducing an asymmetry between the two components in
the boundary conditions. Thus, the ansatz of Eq. (26) has to be
modified, resulting in a surface localization that is governed by
the length scale A/KS but with a geometric renormalization
that is attributable to the component asymmetry. This aspect
has been treated in Refs. [22,41] for a FI|N bilayer system.
For m1 = ±m2, the boundary conditions (15) take the same
form as the corresponding equations for the bilayer, except for
a renormalized factor χ → χν . The effective mode-dependent
damping that is induced by spin pumping for any geometry
and an arbitrary value of KS is then

�αSA
ν = χν

χ
�αFI|N(spin sink). (30)

In this way, this result for �α is considered relative to
the equivalent FI|N(spin sink) bilayer system. Thus, the
effect of the coupling of the layers is clearly evident in the
renormalization factor χν/χ , where χ = A,O [see Eq. (21)].

Exciting the acoustic modes require a torque which acts
symmetrically on the two layers. This can be achieved with a
radio strip antenna. Conversely, excitation of the optical modes
require an antisymmetric torque. We suggest that this can
be achieved by the use of spin torque FMR (ST-FMR), where
an ac spin current is induced via the spin Hall effect, by
applying an ac charge current. The resulting spin Hall induced
torque acts with opposite sign on the two layers [40]. By letting
a strip of the NM spacer consist of a high spin Hall angle NM
(e.g., Pt or Ta), finite Q optical modes can be excited.

C. Asymmetric FI films

Let us now consider an asymmetric system in which
L1 �= L2. In this configuration, we will first consider KS = 0,
but we will also comment on the case of a finite KS at the
end of the section. Because the analytical expressions for
the eigenfrequencies and damping coefficients are lengthy,
we focus on the most interesting case: that in which the
spin-relaxation rate is slow. As in the case of the symmetric
films, the dispersion relation of Eq. (10) dictates that the wave
numbers in the two layers must be the same. To satisfy the
boundary equations (15), we construct the ansatz

miQxy(ξ ) =
(

Xi cos[kξ ± k(L + dN/2)]

Yi cos[kξ ± k(L + dN/2)]

)
. (31)

The difference between this ansatz and that for the symmetric
case represented by Eq. (26) is that the magnitudes of the
amplitudes, Xi and Yi , of the two layers, i = 1,2, that appear in
Eq. (31) no longer have to be equal to each other. When the two
ferromagnets FI(L1) and FI(L2) are completely disconnected,
the transverse wave vectors must be equivalent to standing
waves, qn,1 = πn/L1 and qm,2 = πm/L2 in the two films,
respectively, where n and m may be any integral numbers.
Because spin pumping is weak, the eigenfrequencies of the
coupled system are close to the eigenfrequencies of the isolated
FIs. This finding implies that the wave vector k of the coupled
system is close to either qn,1 or qm,2. The solutions of the
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linearized equations of motion are then

k = kn,1 = qn,1 + δkn,1 or (32a)

k = km,2 = qm,2 + δkm,2, (32b)

where δkn,1 and δkm,2 are small corrections attributable to spin
pumping and spin transfer, respectively. Here, the indices 1 and
2 represent the different modes rather than the layers. However,
one should still expect that mode 1 (2) is predominantly
localized in film 1 (2). In this manner, we map the solutions
of the wave vectors in the coupled system to the solutions of
the wave vectors in the isolated FIs. Next, we will present
solutions that correspond to the qn,1 of Eq. (32a). The other
family of solutions, corresponding to qm,2, is determined by
interchanging L1 ↔ L2 and making the replacement n → m.
Inserting Eq. (32a) into the boundary conditions of Eq. (15) and
linearizing the resulting expression in the weak spin-pumping-
induced coupling, we find, for the macrospin modes,

iωχ̃
A,O
1,macro = (L1δk0,1)2, (33)

where

χ̃A
1,macro ≈ 1

2

dN

lsf

σ

g⊥lsf

L1

L1 + L2
χ1, (34a)

χ̃O
1,macro ≈ 1

2

L1 + L2

L2
χ1. (34b)

Here, χ1 = L1�
2g⊥/4Ae2. Inserting this parameter into

the dispersion relation of Eq. (19), we obtain the following
damping renormalizations:

�αA
macro = γ �

2g⊥
2MSe2

1

2

dN

lsf

σ

g⊥lsf

1

L1 + L2
, (35a)

�αO
macro = γ �

2g⊥
2MSe2

1

2

(
1

L1
+ 1

L2

)
. (35b)

These two solutions correspond to an acoustic mode and
an optical mode, respectively. The corresponding eigenvectors
are m1 = m2 for the acoustic mode and L1m1 = −L2m2 for
the optical mode. As in the symmetric case, the damping
enhancement of the acoustic mode vanishes in the thin-NM
limit. In this limit, the behavior of the acoustic mode resembles
that of a single FI of thickness L1 + L2. The total thickness
determines the leading-order contribution of the damping
renormalization. The optical mode, however, experiences
substantial damping enhancement. For this mode, the damping
renormalization is the average of two separate FIs that are in
contact with a perfect spin sink. The cause of this result is
as follows. When there is no spin-memory loss in the NM,
half of the spins that are pumped out from one side return and
rectify half of the angular-momentum loss attributable to spin
pumping. Because the magnetization precessions of the two
films are completely out of phase, the other half of the spin
current causes a dissipative torque on the opposite layer. In
effect, spin pumping leads to a loss of angular momentum,
and the net sum of the spin pumping across the NM and the
back flow is zero. The total dissipation is not affected by spin
transfer, and thus, the result resembles a system in which the
NM is a perfect spin sink. For the higher excited transverse
modes, there are two scenarios, which we treat separately.

(I) The allowed wave number for one layer matches a wave
number for the other layer. Then, for some integer n > 0,
qn,1 = qm,2 for some integer m. In this case, we expect a
coupling of the two layers. (II) The allowed wave number
for one layer does not match any of the wave numbers for
the other layer, and thus, for some integer n > 0, we have
qn,1 �= qm,2 for all integers m. We then expect that the two
layers will not couple. (I) In this case, we find two solutions
that correspond to acoustic and optical modes. These modes
behave very much like the macrospin modes; however, as in
the symmetric case, the damping renormalization is greater by
a factor of 2:

�α
A,O
n�=0 = 2�αA,O

macro, case I. (36)

The eigenvectors of these coupled modes have the same form
as for the macrospin modes, such that m1 = m2 and L1m1 =
−L2m2 for the acoustic and optical modes, respectively. (II)
In this case, the two layers are completely decoupled. To the
leading order in dN/lsf , we find

�αn�=0 = γ �
2g⊥

2L1MSe2
, case II, (37)

for all modes that correspond to excitations in FI1. The
damping renormalization is thus half that of the FI(L1)|N(lsf =
0) system [32]. This result can be explained by the zero loss
of spin memory in the NM. Although half of the spins are lost
to the static FI2, half of the spins return and rectify half of
the dissipation attributable to spin pumping. The amplitudes
of these modes are strongly suppressed in FI2 (or FI1, upon
the interchange of FI1 ↔ FI2), such that |m2|/|m1| ∼ ωχ2.
Finally, let us discuss the case in which surface anisotropy is
present. In the limit |KS |Li/A � 1, the excitation energies
of the surface modes are independent of the FI thicknesses.
However, the surface modes do not behave like the macrospin
modes for the asymmetric stack. The excitation volume of
these modes is determined by the decay length A/KS in
accordance with Eq. (28). This finding is in contrast to the
result for the macrospin modes, where the excitation volume
spans the entire FI. Thus, the surface modes couple in the same
manner as in the symmetric case. When the surface anisotropy
can be well controlled experimentally, the coupling of the
surface modes becomes robust to thickness variations. When
surface anisotropy is present, the higher excited transverse
modes have thickness-dependent frequencies; i.e., these modes
behave similarly to the n > 0 modes in the KS = 0 case.

IV. NUMERICAL RESULTS

When the spin-wave wavelength becomes comparable to
the film thickness, the dipolar field becomes a complicated
function of the wavelength. We study the properties of the
system in this regime by numerically solving the linearized
equations of motion (10) with the boundary conditions (15).
We use the method presented in Ref. [32], which solves the
spin-wave excitation spectrum for an FI|N system, and extend
this approach to the present trilayer system. The physical
parameters used in the numerical calculations are listed in
Table I. We investigate two geometries: (I) the BVMSW
geometry, in which the spin wave propagates parallel to the
external field, and (II) the MSSW geometry, in which the spin
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TABLE I. Physical parameters used in the numerical calculations.

Constant Value Units

g⊥ 3.4 × 1015a cm−2 e2/h

σ 5.4 × 1017b s−1

4πMS 1750c G
A 3.7 × 10−7c erg/cm
Hint 0.58 × 4πMS

α 3 × 10−4c

KS 0, 0.05d erg/cm2

aReference [42].
bReference [43].
cReference [35].
dReported to be in the range of 0.1–0.01 erg/cm2 in Ref. [21].

wave propagates perpendicular to the external field. To calcu-
late the renormalization of the Gilbert damping, we perform
one computation without spin pumping and one computation
with spin pumping, in which the intrinsic Gilbert damp-
ing is excluded. Numerically, the renormalization can then
be determined by calculating �α = αIm[ω(SP)]α=0/Im[ω(0)],
where ω(0) is the eigenfrequency obtained for the computation
without spin pumping and ω(SP) is the frequency obtained for
the computation with spin pumping [32].

A. BVMSW

Let us first discuss the BVMSW geometry. The coupling
of the uniform modes in the two films is robust; it is not
sensitive to possible thickness asymmetries. In contrast, at
Q = 0, the sensitivity to the ratio between the thickness
and the rather weak dynamic coupling attributable to spin
pumping implies that the coupling of the higher transverse
modes in the two bilayers is fragile. Small asymmetries in
the thicknesses destroy the coupling. This effect can best
be observed through the renormalization of the damping.
However, we will demonstrate that a finite wave number Q

can compensate for this effect such that the higher transverse
modes also become coupled. To explicitly demonstrate this
result, we numerically compute the real and imaginary parts of
the eigenfrequencies of a slightly asymmetric system, FI(100
nm)|N(50 nm)|FI(101 nm) with lsf = 350 nm. The asymmetry
between the thicknesses of the ferromagnetic insulators is only
1%. The surface anisotropy is considered to be small compared
with the ratio Li/A, and we set KS = 0. In Fig. 3, the numerical
results for the effective Gilbert damping, the dispersion of
the modes, and the relative phase and amplitude between the
magnetizations in the two FIs are presented. As observed in
the relative phase results depicted in Fig. 3(c), the two uniform
modes in widely separated FIs split into an acoustic mode
and an optical mode when the bilayers are coupled via spin
pumping and spin transfer. Figure 3(a) also demonstrates that
the acoustic mode has a very low renormalization of the Gilbert
damping compared with the optical mode. Furthermore, there
is no phase difference between the two modes with a transverse
node (n = 1) in Fig. 3(a), which indicates that the modes
are decoupled. These n = 1 modes are strongly localized in
one of the two films; see Fig. 3(b). For small QL1, Fig. 3(a)
demonstrates that these modes have approximately the same

FIG. 3. (Color online) FI(100 nm)|N(50 nm)|FI(101 nm):
(a) Spin-pumping-enhanced Gilbert damping �α as a function
of QL1 of the uniform modes and the n = 1 modes; inset shows
the corresponding dispersion relation; (b) relative phase; and (c)
amplitude between the out-of-plane magnetizations along x at the
edges of FI1|N and FI2|N; the apparent discontinuity in the green
line in (c) results from defining the phase over the interval from −π

to π .

renormalization as the optical mode, which is in agreement
with the analytical results. Because the magnetization in the
layer with the smallest amplitude is only a response to the
spin current from the other layer, the phase difference is
π/2 [Fig. 3(b)]. When Q increases, the dipolar and exchange
interactions become more significant. The interlayer coupling
is then no longer attributable only to spin pumping but
is also caused by the long-range dipole-dipole interaction.
This additional contribution to the coupling is sufficient to
synchronize the n = 1 modes. The relative amplitude between
the two layers then becomes closer to 1 [see Fig. 3(b)]. Again,
we obtain an acoustic mode and an optical n = 1 mode, which
can be observed from the phase difference between the two
layers in Fig. 3(c). Comparing this system to a system without
spin pumping shows that the synchronization results primarily
from dipolar coupling (see Appendix D). The elements of the
dipole tensor in Eq. (8) exhibit a maximum at Q = 1/|ξ − ξ ′|.
This result implies that the interlayer coupling should be
maximal at Q ∼ 1/dN. This results agrees well with the
synchronization at QL1 � 1. The dipole coupling becomes
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weaker for larger Q, and the modes rapidly decouple because
of the reduced spin-pumping coupling, which can be attributed
to a decrease in the effective spin-diffusion length. In the large
QL1 limit, the exchange interaction becomes dominant. At
large Q, the frequency is dominated by the exchange energy,
such that ω ∼ ωM (Qlex)2. Spin pumping is proportional to
the frequency; thus, there is a frequency at which the spin
pumping term becomes the dominant term in the boundary
conditions of Eqs. (15). Spin pumping is then no longer purely
dissipative but also contributes a surface pinning term to the
energy. Thus, the dynamic part of the magnetization is forced
to zero at the FI|N boundaries, causing the renormalization
from the spin pumping to vanish for large QL1. We also note
that the dispersion relation depicted in the inset of Fig. 3(a)
reveals that the acoustic mode (blue line) exhibits a dip in
energy at lower QL1 than does the optical mode (red line).
We suggest that this feature can be understood as follows: The
shift in the position of the energy dip can be interpreted as
an increase in the effective FI thickness for the acoustic mode
with respect to that for the optical mode. When l̃sf is larger
than the NM thickness, the uniform mode behaves as if the
NM were absent and the two films were joined. This result
indicates that the dispersion relation for the acoustic mode
exhibits frequency behavior as a function of QL̃/2, where
the effective total thickness of the film is L̃ = L1 + L2. The
optical mode, however, “sees” the NM and thus behaves as
if L̃ = L1. Consequently, the dip in the dispersion occurs at
lower QL1 for the acoustic mode than for the optical mode.

B. MSSW

Finally, let us study the dynamic coupling of magnetostatic
surface spin waves (MSSWs). We now consider a perfectly
symmetric system, FI(1000 nm)|N(200 nm)|FI(1000 nm),
with lsf = 350 nm. For such thick films, surface anisotropies
may play an important role. We therefore discuss a case in
which we include a surface anisotropy of KS = 0.05 erg/cm2.
According to the analytical result presented in Sec. III A
the lowest-energy modes with QL1 
 1 are exponentially
localized at the FI|N surfaces. The n �= 0 modes are not as
strongly affected by the surface anisotropy, and the surface
characteristics are only moderately altered [32]. We now
compute the eigenfrequencies, ω, as a function of the wave
vector in the range 10−4 < QL1 < 103. In Fig. 4(a), we present
the real part of the frequency for the six lowest-energy modes
with a positive real part, and in Fig. 4(b), we present the corre-
sponding renormalizations of the Gilbert damping for the four
lowest-energy modes. The dispersion relations indicate that
the mode pairs that are degenerate at QL1 
 1 rapidly split
in energy when QL1 approaches 10−2. Strong anticrossings
can be observed between the n = 1 and n = 2 modes. Such
anticrossings are also present between the surface mode and
the n = 1 mode; they are almost too strong to be recognized as
anticrossings. The enhanced damping renormalizations exhibit
very different behavior for the different modes. We recognize
the large-�α mode of one pair as the surface optical mode
and the low-�α mode as the volume n = 1 acoustic mode.
Without EASA, the anticrossings in Fig. 4(a) would become
crossings. The lowest-energy modes at QL1 
 1 would then
cut straight through the other modes. In the case considered

FIG. 4. (Color online) FI(1000 nm)|N(200 nm)|FI(1000 nm),
lsf = 350 nm, KS = 0.05 erg/cm2: (a) The dispersion relation as
a function of QL1 for the six lowest positive-real-part modes.
(b) The renormalization of the damping attributable to spin pumping
for the four lowest modes with frequencies with positive real parts
as a function of QL1. At large QL1, the computation becomes
increasingly demanding, and the point density of the plot becomes
sparse. We have therefore individually marked the plotted points in
this region.

here, this behavior is now observed only as steep lines at
QL1 ∼ 0.05 and at QL1 ∼ 0.5. The difference in the energies
of the surface modes at QL1 ∼ 1 results from the difference in
the dipolar interaction between layers [see Eq. (8)]. When Q

is increased, the effective spin-diffusion length decreases [see
Eq. (17)], which reduces the spin-pumping-induced coupling
between the modes at large Q. When QL1 ∼ 100, the coupling
becomes so weak that the two FIs decouple. This phenomenon
can be observed from the behavior of �α in Fig. 4(b), where
the damping of the acoustic modes become the same as
for the optical modes. In the MSSW geometry, an isolated
FI has magnetostatic waves that are localized near one of
the two surfaces, depending on the direction of propagation
with respect to the internal field [35]. Asymmetries in the
excitation volume are therefore also expected for the trilayer
in this geometry. In Fig. 5, we present the eigenvectors of the
surface modes as functions of the transverse coordinate ξ for
increasing values of the wave vector Q. At QL1 = 0.5, the
modes have already begun to exhibit some asymmetry. Note
that the renormalization of the damping observed in Fig. 4(b) is
approximately one order of magnitude larger than the intrinsic
Gilbert damping for the optical mode and that the damping
of any one mode may vary by several orders of magnitude
as a function of QL1 [32]. Therefore, these effects should be
experimentally observable. The greatest damping occurs when
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FIG. 5. (Color online) FI(1000 nm)|N(200 nm)|FI(1000 nm),
lsf = 350 nm, KS = 0.05 erg/cm2: (a) and (b) present the real parts of
the x components of the out-of-equilibrium magnetization vectors for
the acoustic and optical surface modes, respectively, for several values
of QL1. For values of QL1 � 1, the modes decouple and become
localized in one of the two layers. For large values of QL1 ∼ 100,
the two modes are strongly localized at one of the two FI|N interfaces,
which correspond to the peaks in the damping that are apparent in
Fig. 4(b).

the two layers are completely decoupled; see Figs. 4(b) and 5.
Because the damping of the optical mode is equivalent to that
of a system with a perfect spin sink, one might expect that
the greatest damping should occur for this mode. However,
the large localization, which is achieved only at large QL1, in
combination with the vanishing of the effective spin-diffusion
length, leads to damping that is much greater than that of the
synchronized optical mode.

V. CONCLUSIONS

We investigated the dynamic coupling of spin-wave exci-
tations, which are present in single FI thin films, primarily
through spin pumping and spin transfer but also through the
dynamic demagnetization field created when two FI thin films
are in contact via an NM layer. Because of this coupling, the
modes are split into acoustical and optical excitations. When
the NM is thin compared with lsf , the renormalization of the
Gilbert damping vanishes for the acoustic modes, whereas for
the optical modes, the renormalization is equally as large as for
a single-FI|N system in which the NM is a perfect spin sink.
A spin wave pumps a spatially dependent spin current that
is determined by the wave number Q. When the wavelength
2π/Q is on the order of, or smaller than, the spin diffusion
length, spin currents of opposite sign diffuse into each
other and partially cancel each other out. Consequently, the

spin-memory loss is greater for short-wavelength spin currents.
This phenomenon leads to an effective spin-diffusion length
in the NM that decreases for increasing values of Q. Thus, the
dynamic coupling strength is reduced for short-wavelength
spin waves. At some critical value of Q, the coupling becomes
so weak that the acoustic- and optical-mode configurations
are lost in favor of modes that are localized in one of the
two FIs. At these values of Q, the interlayer dipole coupling
is also dominated by the intralayer exchange coupling. For
these high-wave-number modes, the system behaves similar
to two separate FI|N(lsf = 0) systems. When the two films
are of different thicknesses, the exchange energies of the
higher-order transverse n > 1 modes differ between the two
layers. Because of the relatively small coupling attributable
to spin pumping, the synchronization of these modes at
QL1 
 1 requires that the FI thicknesses be very similar.
A small asymmetry breaks the synchronization; however, for
larger QL1 ∼ 1, the modes can again become coupled through
interlayer dipole interaction. This coupling arises in addition
to the spin-pumping-induced coupling. At even larger Q, both
the dipolar- and spin-pumping-induced couplings are reduced.
Consequently, the modes of the two layers are desynchronized.
Depending on the quality of the interface between the FIs and
the strength of the spin-orbit coupling in the NM, additional
effective surface fields may be present because of surface
anisotropy energies. When surface anisotropy is present, the
lowest-energy modes are localized at the FI|N surfaces. These
modes couple in the same manner as the macrospin modes.
For films that are much thicker than the decay length A/KS ,
the energies of the surface modes do not depend on the
film thickness. Consequently, the coupling of these modes
is independent of the thickness of the two FIs. Similar to the
simpler FI|N system, the damping enhancement may attain
values as high as an order of magnitude larger than the
intrinsic Gilbert damping. However, in the trilayer system, the
presence of both acoustic and optical modes results in large
variations in the effective damping within the same physical
sample. Because of this wide range of effective damping,
which spans a difference in �α of several orders of magnitude
as a function of Q, we suggest that trilayer modes should be
measurable in an experimental setting. With more complicated
FI structures in mind, we believe that this work may serve as
a guide for experimentalists. The large variations in effective
damping for different modes make the magnetic properties of
the system detectable both with and without surface anisotropy.
For spin waves, dipole-dipole interactions assist spin pumping
in interlayer synchronization, which can be exploited in the
design of future spintronic devices.
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APPENDIX A: DIPOLE TENSOR

The dipole tensor in the ζηξ coordinate system, Ĝ(ξ ) from
Eq. (9), can be rotated in the xyz coordinate system using the
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rotation matrix

R =
⎛⎝sθ −cθ sθ −cθcφ

0 cφ −sφ

cθ sθ sφ sθ cφ

⎞⎠ , (A1)

where we have introduced the shorthand notation sθ ≡ sin θ , cθ ≡ cos θ , and so forth. Thus, we obtain the following result:

Ĝxyz = RĜRT

=

⎛⎜⎝ s2
θ Gξξ − cφs2θGξζ + c2

θ c
2
φGζζ −sφsθGξζ + sφcφcθGζζ sθ cθGξξ − sθ cθ c

2
φGζζ + cφ

(
s2
θ − c2

θ

)
Gξζ

−sφsθGξζ + sφcφcθGζζ s2
φGζζ −sφcθGξζ + sφsθ cφGζζ

sθ cθGξξ − sθ cθ c
2
φGζζ + cφ

(
s2
θ − c2

θ

)
Gξζ −sφcθGξζ + sφsθ cφGζζ c2

θGξξ + s2θ cφGξζ + c2
φs2

θ Gζζ

⎞⎟⎠ .

(A2)

As we are considering the linear response regime, the equilibrium magnetization should be orthogonal to the dynamic deviation,
mi · ẑ = 0. Thus, it is sufficient to retain only the xy part of Ĝxyz. Thus, we obtain the following result:

Ĝxy =
(

s2
θ Gξξ − cφs2θGξζ + c2

θ c
2
φGζζ −sφsθGξζ + sφcφcθGζζ

−sφsθGξζ + sφcφcθGζζ s2
φGζζ

)
. (A3)

APPENDIX B: SPIN ACCUMULATION

The functions 
1(ξ ) and 
2(ξ ) are taken directly from
Ref. [40] and modified to apply to the more complex magnetic
texture model. Thus, we obtain the following result:


1(ξ ) ≡ cosh(ξ/l̃sf)

cosh(ξ/l̃sf) + σ sinh(ξ/l̃sf)/2g⊥ l̃sf
,

(B1)


2(ξ ) ≡ sinh(ξ/l̃sf)

sinh(ξ/l̃sf) + σ cosh(ξ/l̃sf)/2g⊥ l̃sf
.

For Qlsf � 1, the effective spin diffusion length is shortened,

1 → 1 and 
2 → 0 at the FI|N interfaces.

APPENDIX C: EFFECTIVE SPIN DIFFUSION LENGTH

Diffusion in the NM can be described as follows:

∂tμS = D∇2μS − 1

τsf
μS, (C1)

where D is the diffusion constant, and τsf is the spin-flip
relaxation time. We assume that the FMR frequency is much
smaller than the electron traversal time, D/d2

N, and the spin-flip
relaxation rate, 1/τsf [40]. Thus, the left-hand side of Eq. (C1)
can be neglected. In linear response, the spin accumulation,
which is a direct consequence of spin pumping, must be
proportional to the rate of change of magnetization at the
FI|N interfaces. We perform the same Fourier transform, as on
the magnetization, such that μ ∼ exp{i(ωt − Qζ )}. The spin
diffusion equation then takes the form

∂2
ξ μS =

(
Q2 + 1

Dτsf

)
μS. (C2)

The spin diffusion length becomes lsf = √
Dτsf . We intro-

duce the effective spin diffusion length as follows: l̃sf =

lsf/
√

1 + (Qlsf)2 one gets

∂2
ξ μS = 1

l̃2
sf

μS. (C3)

APPENDIX D: SYNCHRONIZATION WITH VANISHING
SPIN PUMPING

We identify the relative contributions of spin pumping and
interlayer dipole coupling by considering the results of the
numerical calculation in Sec. IV A in the absence of spin
pumping and the associated coupling (g⊥ = 0). In Fig. 6,
we show the relative amplitude between the two layers for
the four lowest energy modes. The frequencies of the two
uniform modes are independent of the thickness and are
therefore synchronized even at Q → 0, where the interlayer
dipole coupling becomes small. Comparing this calculation
to the same calculation with spin pumping shows that the
synchronization observed at QL1 ∼ 1 primarily results from
dipole coupling.

FIG. 6. (Color online) FI(100 nm)|N(50 nm)|FI(101 nm),
BVMSW without spin pumping, showing relative amplitude of the
out-of-plane magnetizations along x at the edges of FI1|N and FI2|N
as functions of QL1; blue and yellow (red and green) lines show
acoustical (optical) modes.
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We theoretically consider the spin-wave mode- and wavelength-dependent enhancement of the Gilbert damping
in magnetic insulator–normal metal bilayers due to spin pumping as well as the enhancement’s relation to direct
and alternating inverse spin Hall voltages in the normal metal. In the long-wavelength limit, including long-range
dipole interactions, the ratio of the enhancement for transverse volume modes to that of the macrospin mode is
equal to two. With an out-of-plane magnetization, this ratio decreases with both an increasing surface anisotropic
energy and mode number. If the surface anisotropy induces a surface state, the enhancement can be an order of
magnitude larger than for the macrospin. With an in-plane magnetization, the induced dissipation enhancement
can be understood by mapping the anisotropy parameter to the out-of-plane case with anisotropy. For shorter
wavelengths, we compute the enhancement numerically and find good agreement with the analytical results in
the applicable limits. We also compute the induced direct- and alternating-current inverse spin Hall voltages and
relate these to the magnetic energy stored in the ferromagnet. Because the magnitude of the direct spin Hall
voltage is a measure of spin dissipation, it is directly proportional to the enhancement of Gilbert damping. The
alternating spin Hall voltage exhibits a similar in-plane wave-number dependence, and we demonstrate that it is
greatest for surface-localized modes.

DOI: 10.1103/PhysRevB.95.214413

I. INTRODUCTION

In magnonics, one goal is to utilize spin-based systems for
interconnects and logic circuits [1]. In previous decades, the
focus was to gain control over these systems by exploiting
long-range dipole interactions in combination with geomet-
rical shaping. However, the complex nature of the nonlinear
magnetization dynamics persistently represents a challenge in
using geometrical shaping alone to realize a variety of desired
properties [1].

In magnonic systems, a unique class of materials consists
of magnetic insulators. Magnetic insulators are electrically
insulating, but localized magnetic moments couple to form
a long-range order. The prime example is yttrium iron garnet
(YIG). YIG is a complex crystal [2] in the Garnet family,
where Fe3+ ions at different sites in the unit cell contribute
to an overall ferrimagnetic ordering. What differentiates
YIG from other ferromagnetic (ferrimagnetic) systems is
its extremely low intrinsic damping. The Gilbert damping
parameter measured in YIG crystals is typically two orders
of magnitude smaller than that measured in conventional
metallic ferromagnets (Fe, Co, Ni, and alloys thereof).

The recent discovery that the spin waves in magnetic
insulators strongly couple to spin currents in adjacent normal
metals has reinvigorated the field of magnonics [3–12].
Although there are no mobile charge carriers in magnetic
insulators, spin currents flow via spin waves and can be
transferred to itinerant spin currents in normal metals via
spin transfer and spin pumping [13,14]. These interfacial
effects open new doors with respect to local excitation and
detection of spin waves in magnonic structures. Another key
element is that we can transfer knowledge from conventional
spintronics to magnonics, opening possibilities for novel
physics and technologies. Traditionally, spin-wave excitation
schemes have focused on the phenomenon of resonance or the
use of Ørsted fields from microstrip antennas.

A cornerstone for utilizing these systems is to establish a
good understanding of how the itinerant electrons in normal
metals couple across interfaces with spin-wave dynamics in
magnetic insulators. Good models for addressing uniform
(macrospin) magnetization that agrees well with experiments
have been previously developed [13–15]. We recently demon-
strated that for long-wavelength magnons the enhanced Gilbert
damping for the transverse volume modes is twice that of the
uniform mode, and for surface modes, the enhancement can be
more than ten times stronger. These results are consistent with
the theory of current-induced excitations of the magnetization
dynamics [16] because spin pumping and spin transfer are
related by Onsager reciprocity relations [17]. Moreover,
mode- and wave-vector-dependent spin pumping and spin Hall
voltages have been clearly observed experimentally [4].

In this paper, we extend our previous findings [18] in the
following four aspects. (i) We compute the influence of the
spin backflow on the enhanced spin dissipation. (ii) We also
compute the induced direct and alternating inverse spin Hall
voltages. We then relate these voltages to the enhanced Gilbert
damping and the relevant energies for the magnetization
dynamics. The induced voltages give additional information
about the spin-pumping process, which can also be directly
measured. (iii) We also provide additional information on
the effects of interfacial pinning of different types in various
field geometries. (iv) Finally, we explain in more detail how
the numerical analysis is conducted for a greater number of
in-plane wave numbers.

It was discovered [19–23] and later quantitatively explained
[13,15,24,25] that if a dynamic ferromagnetic material is put
in contact with a normal metal, the magnetization dynamics
will exert a torque on the spins of electrons in the immediate
vicinity of the magnet. This effect is known as spin pumping
(SP) [13,15,25]. As the electrons are carried away from the
ferromagnet-normal metal interface, the electrons spin with
respect to each other, causing an overall loss of angular
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momentum. The scattering formalism and a dynamic magnetic
susceptibility equivalently describe the resulting pumped spin
current [26,27]. The inverse effect, in which a spin-polarized
current can affect the magnetization of a ferromagnet, is called
spin-transfer torque (STT) [14,28,29].

The discovery that a precessing magnetization in magnetic
insulators [3], such as YIG, also pumps spins into an adjacent
metal layer was made possible by the fact that the mixing
conductance in YIG-normal metal systems is of such a size
that the extra dissipation of the magnetization due to the spin
pumping is of the same order of magnitude as the intrinsic
Gilbert damping. A consequence of this effect is that the
dissipation of the magnetization dynamics is enhanced relative
to that of a system in which the normal metal contact is
removed. The detection of the antiferromagnet-paramagnet
phase transition in CoO is a recent development of spin
pumping from YIG [30]. The CoO spacer layer is sandwiched
between YIG and a normal metal. Distinguishing the dynamics
in the antiferromagnet from the dynamics from the YIG-
normal metal system also requires a robust understanding of
the spin pumping properties of the YIG-normal metal bilayer
system.

This paper is organized in the following manner. Sec-
tion II presents the equation of motion for the magnetization
dynamics and the currents in the normal metal and the
appropriate boundary conditions, both for general nonlinear
excitations and in the fully linear response regime. In Sec. III,
we derive approximate solutions to the linearized problem,
demonstrating how the magnetization dissipation is enhanced
by the presence of an adjacent metal layer. Section IV presents
our numerical method and results. Finally, we summarize our
findings in Sec. V.

II. EQUATIONS OF MOTION

The equation of motion for the magnetization is given by
the Landau-Lifshitz-Gilbert equation [31] (presented here in
CGS units)

∂M
∂t

= −γ M × Heff + α

Ms

M × ∂M
∂t

, (1)

where γ = |gμB/h̄| is the magnitude of the gyromagnetic
ratio; g ≈ 2 is the Landé g-factor for the localized electrons
in the ferromagnetic insulator (FI), and α is the dimensionless
Gilbert damping parameter. In equilibrium, the magnitude of
the magnetization is assumed to be close to the saturation
magnetization Ms . The magnetization is directed along the z

axis in equilibrium. Out of equilibrium, we assume that we
have a small transverse dynamic magnetization component,
such that

M = M(r,t) = Ms + m(r,t) = Ms ẑ + m(r,t), (2)

where |m| 
 Ms and m · ẑ = 0. Furthermore, we assume that
the dynamic magnetization can be described by a plane wave
traveling along the in-plane ζ axis. In the (ξ,η,ζ ) coordinate
system (see Fig. 1), we have

m(r,t) = m(ξ,ζ,t) = mQ(ξ )ei(ωt−Qζ ), (3)

where ω is the harmonic angular frequency, Q is the in-plane
wave number, and mQ(ξ ) = XQ(ξ )x̂ + YQ(ξ )ŷ, where XQ and

(a) (b)

FIG. 1. (a) The coordinate system. ξ̂ is the film normal and ζ̂ is the
spin-wave propagation direction. ξηζ form a right-handed coordinate
system. The ẑ axis is the direction of the magnetization in equilibrium,
such that xy is the magnetization-precession plane. (b) The film stack
is in the normal direction.

YQ are complex functions. Note that m is independent of the η

coordinate due to translational invariance. The in-plane wave
number, Q, can be engineered by lateral dimensioning of the
sample in such a way as to induce standing waves in the film
plane [4,32].

Heff is the effective field, given as the functional derivative
of the free energy [31,33]

Heff(r,t) = − δU [M(r,t)]
δM(r,t)

= Hi + 2A

M2
s

∇2M(r,t)

+ 4π

∫ L
2

− L
2

dξ ′ Ĝxy(ξ − ξ ′)m(ξ ′,ζ,t), (4)

where Hi is the internal field, which is composed of the
applied external field and the static demagnetization field.
The direction of Hi defines the z axis (see Fig. 1). The
second term of Eq. (4) is the field, Hex , induced by the
exchange interaction (assuming cubic symmetry), where A is
the exchange stiffness parameter. The last term is the dynamic
field, hd (r,t), induced by dipole-dipole interactions, where
Ĝxy is the upper 2 × 2 part of the dipole-dipole tensorial
Green’s function Ĝξηζ in the magnetostatic approximation
(see Ref. [34]) rotated to the xyz coordinate system (see
Appendix for coordinate-transformation matrices) [35].

The effect of the dipolar interaction on the spin-wave
spectrum depends on the orientation of the internal field with
respect to both the interface normal of the thin film, ξ̂ , and the
in-plane spin-wave propagation direction, ζ̂ . Traditionally, the
three main configurations are the out-of-plane configuration
(θ = 0), in the forward volume magnetostatic wave (FVMSW)
geometry [see Fig. 2(a)]; the in-plane and parallel-to-ζ̂
configuration, in the backward volume magnetostatic wave
(BVMSW) geometry [see Fig. 2(b)]; and the in-plane and
perpendicular-to-ζ̂ configuration, in the magnetostatic surface
wave (MSSW) geometry [see Fig. 2(c)] [1,35–39]. Here,
the term “forward volume modes” denotes modes that have
positive group velocities for all values of QL, whereas
backward volume modes can have negative group velocities in
the range of QL, where both exchange and dipolar interactions
are significant. Volume modes are modes in which mQ(ξ ) is
distributed across the thickness of the entire film, whereas the
surface modes are localized more closely near an interface.
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FIG. 2. Laboratory field configurations, i.e., directions of ẑ (green arrow) in relation to film normal ξ̂ and the spin-wave propagation
direction ζ̂ , resulting in the different geometries: (a) FVMSW geometry, (b) BVMSW geometry, and (c) MSSW geometry.

A. Spin-pumping torque

We consider a ferromagnetic insulator (FI) in contact with
a normal metal (NM) (see Fig. 1). If the magnetization
in the FI close to the interface is precessing around the
effective field, electron spins in the NM reflected at the
interface will start to precess due to the local exchange
coupling to the magnetization in the FI. The reflected electrons
carry the angular momentum away from the interface, where
the spin information can get lost through dephasing of the
spins within a typical spin diffusion length lsf. This loss
of angular momentum manifests itself as an increased local
damping of the magnetization dynamics in the FI. The
magnetization dissipation due to the spin-pumping effect can
be taken into account by adding the local dissipation torque
[15],

τ sp = γ h̄2g⊥
2e2M2

s

δ

(
ξ − L

2

)
M(r,t) × ∂M(r,t)

∂t
, (5)

to the right-hand side (rhs) of Eq. (1). Here, g⊥ is the real part
of the spin-mixing conductance per area, and e is the electron
charge. We neglect the contribution from the imaginary part
of the mixing conductance, because this has been shown to
be significantly smaller than that of the real part, in addition
to affecting only the gyromagnetic ratio [15]. The spin-
current density pumped from the magnetization layer is thus
given by

j(s)
sp = − h̄2g⊥

2e2M2
s

[
M(r,t) × ∂M(r,t)

∂t

]
ξ=L/2

, (6)

in units of erg. Next, we will see how the spin pumping affects
the boundary conditions.

B. Spin-pumping boundary conditions

Following the procedure of Rado and Weertman [40], we
integrate Eq. (1) with the linear expansion of Eq. (2) over a
small pill-box volume straddling one of the interfaces of the FI.
Upon letting the pill box thickness tend to zero, only the sur-
face torques of the equation survive. Accounting for the
direction of the outward normal of the lid on the different
top and bottom interfaces, we arrive at the exchange-pumping
boundary condition(

2A

M2
s

M × ∂M
∂ξ

+ h̄2

2e2M2
s

g⊥M × ∂m
∂t

)
ξ=±L/2

= 0. (7)

There is no spin current pumped at the interface to the
insulating substrate; thus a similar derivation results in a
boundary condition that gives an unpinned magnetization,

∂M(r,t)
∂ξ

∣∣∣∣
ξ=−L/2

= 0. (8)

In the next section, we will generalize the boundary conditions
of Eq. (7) by also considering possible surface-anisotropy
energies.

1. Including surface anisotropy:

In the presence of surface anisotropy at an interface with
an easy-axis (EA) pointing along the direction n̂, the surface
free energy is

Us[M(r,t)] =
∫

dV Ks

[
1 −

(
M(r,t) · n̂

Ms

)2
]

δ(ξ − ξi),

(9)

where Ks is the surface-anisotropy energy density at the
interface, which is assumed to be constant; n̂ is the direction of
the anisotropy easy axis; and ξi is the transverse coordinate of
the interface. The contribution from the EA surface-anisotropy
energy to the effective field is determined by

Hs = −δUs[M(r,t)]
δM(r,t)

= 2Ks

M2
s

(M · n̂) δ(ξ − ξi)n̂.

However, if we have an easy-plane (EP) surface anisotropy
with n̂ being the direction of the hard axis, the effective field
is the same as that for the EA case, except for a change of sign
of Ks . We unify both cases by defining Ks > 0 to imply that
we have an EA surface anisotropy with its easy axis along n̂,
whereas Ks < 0 implies that we have an EP surface anisotropy
with its hard axis along n̂.

Following the approach from Sec. II B, the total bound-
ary condition, including exchange, pumping, and surface
anisotropy, becomes[

± 2A

M2
s

M × ∂M
∂ξ

− 2Ks

M2
s

(M · n̂)(M × n̂)

+ h̄2

2e2M2
s

g⊥M × ∂M
∂t

]
ξ=±L/2

= 0, (10)
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where the positive (negative) sign in front of the exchange term
indicates that the bulk FI is located below (above) the interface
coordinate.

C. Linearization

We linearize the equation of motion using Eq. (2) with
respect to the dynamic magnetization m. The linearized
equation of motion for the bulk magnetization, Eq. (1),
becomes [35]{
i

ω

ωM

(
α −1
1 α

)
+ 1

[
ωH

ωM

+ 8π
γ 2A

ω2
M

(
Q2 − d2

dξ 2

)]}
mQ(ξ )

=
∫ L

2

− L
2

dξ ′ Ĝxy(ξ − ξ ′)mQ(ξ ′), (11)

where ωH ≡ γHi , ωM ≡ 4πγMs , and 1 = (1 0
0 1).

Next, we linearize the boundary conditions of Eq. (10).
We choose the anisotropy axis to be perpendicular to the film
plane, n̂ = ξ̂ , which in the xyz coordinate system is given by
ξ̂ xyz = (sin θ,0, cos θ ), where θ is the angle between the z axis
and the film normal (see Fig. 1). The finite surface anisotropy
forces the magnetization to be either perpendicular or coplanar
with the film surface so that θ = 0,π/2,π . Linearizing to first
order in the dynamic magnetization, we arrive at the linearized
boundary conditions for the top interface:(

L
∂

∂ξ
+ i

ω

ωM

ρ + d cos(2θ )

)
mQ,x(ξ )|ξ= L

2
= 0, (12a)(

L
∂

∂ξ
+ i

ω

ωM

ρ + d cos2(θ )

)
mQ,y(ξ )|ξ= L

2
= 0, (12b)

where d ≡ LKs/A is the dimensionless surface-pinning pa-
rameter that relates the exchange to the surface anisotropy and
the film thickness and ρ ≡ ωMLh̄2g⊥/4Ae2 is a dimensionless
constant relating the exchange stiffness and the spin-mixing
conductance.

D. Spin accumulation in NM and spin backflow

The pumped spin current induces a spin accumulation,
μ(s) = μ(s)ŝ, in the normal metal. Here, ŝ is the spin-
polarization axis, and μ(s) = (μ↑ − μ↓)/2 is half of the
difference between chemical potentials for spin-up and spin-
down electrons in the NM.

As the spin accumulation is a direct consequence of the
spin dynamics in the FI [see Eq. (6)], the spin accumulation
cannot change faster than the magnetization dynamics at the
interface. Thus, assuming that spin-flip processes in the NM
are must faster than the typical precession frequency of the
magnetization in the FI [25], we can neglect the precession of
the spin accumulation around the applied field and any decay
in the NM. With this assumption, the spin-diffusion equation
∂μ(s)

∂t
= D∇2μ(s) − μ(s)

τsf
, where D is the spin-diffusion constant,

and τsf is the material-specific average spin-flip relaxation
time, becomes

μ(s) ≈ l2
sf∇2μ(s), (13)

where lsf ≡ √
τsfD is the average spin-flip relaxation length.

The spin accumulation results in a backflowing spin-current
density, given by

j(s)
bf (L/2) = h̄g⊥

e2M2
s

[M(r,t) × (M(r,t) × μ(s)(r,t))]ξ=L/2,

(14)

where the positive sign indicates flow from the NM into the
FI. This spin current creates an additional spin-transfer torque
on the magnetization at the interface:

τ bf = −γ h̄g⊥
e2M2

s

δ

(
ξ − L

2

)
M(r,t) × (M(r,t) × μ(s)). (15)

Because the spin accumulation is a direct result of the
pumped spin current, it must have the same orientation as
the M(r,t) × ∂tM(r,t) term in Eq. (5). That term is comprised
of two orthogonal components: the first-order term Ms ẑ × ṁ,
in the xy plane, and the second-order term m × ṁ, oriented
along ẑ. Because the magnetization is a real quantity, care
must be taken when evaluating the second-order term. Using
Eq. (3), the second-order pumped spin current is proportional
to

Re{m} × ∂tRe{m}|ξ=L/2

= e−2Im{ω}tRe{ω}ẑ[ImXQReYQ − ReXQImYQ],

(16)

which is a decaying direct-current (DC) term. This is in
contrast to the first-order term, which is an alternating-current
(AC) term. Thus we write the spin accumulation as

μ(s) = μ
(s)
AC(ẑ × m̂t ) + μ

(s)
DCẑ, (17)

where we have used the shorthand notation mt = ṁ(ξ = L/2),
such that m̂t = mt /|mt |, which in general is not parallel to
m but guaranteed to lie in the xy plane. Inserting Eq. (17)
into Eq. (13) gives one equation each for the AC and DC
components of the spin accumulation,

∂2μ
(s)
j

∂ξ 2
= l−2

sf,jμ
(s)
j , (18)

where j denotes either the AC or DC case and lsf,DC =
lsf while lsf,AC = lsf(1 + l2

sfQ
2)−1/2 because mt ∝ exp(i(ωt −

Qζ )). Equation (18) can be solved by demanding spin-current
conservation at the NM boundaries: at the free surface of
the NM, there can be no crossing spin current; thus the ξ

component of the spin-current density must vanish there,
∂ξμ

(s)
j |ξ=L/2+d = 0. Similarly, by applying conservation of

angular momentum at the FI-NM interface, the net spin-current
density crossing the interface, due to spin pumping and
backflow, must equal the spin current in the NM layer, giving[

− h̄2g⊥
2e2M2

s

M × ∂M
∂t

+ h̄g⊥
e2M2

s

M × (M × μ(s))

]
ξ=L/2

= − h̄σ

2e2
∂ξμ

(s)|ξ=L/2, (19)
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TABLE I. Typical values for the parameters used in the calcula-
tions [6,7,11,42,43].

Parameter Value Unit

A 3.66 × 10−7 erg cm−1

α 3 × 10−4 –
Ks 0.05 erg cm−2

g⊥ 8.18 × 1022 cm−1 s−1

γ 1.76 × 107 G−1 s−1

4πMs 1750 G
σ 8.45 × 1016 s−1

d 50 nm
lsf 7.7 nm
� 0.1 –

where σ is the conductivity of the NM. Using these boundary
conditions, we recover the solutions (see, e.g., Refs. [25,41])

μ
(s)
j = μ

(s)
j,0

sinh
(
l−1
sf,j [ξ − (L/2 + d)]

)
sinh

(− d
lsf,j

) , (20)

where μ
(s)
j,0 is time dependent and depends on the ζ coordinate

only in the AC case. We find that the AC and DC spin
accumulations μ

(s)
j,0 are given by

μ
(s)
AC,0 = − h̄

2

mt

Ms

[
1 + σ

2g⊥lsf,AC
coth

(
d

lsf,AC

)]−1

, (21)

μ
(s)
DC,0 = − lsfh̄

σM2
s

g̃⊥ tanh

(
d

lsf

)
ẑ · [m × ṁ]ξ=L/2, (22)

where g̃⊥ is a renormalized mixing conductance, which is
given by

g̃⊥ = g⊥

{
1 −

[
1 + σ

2g⊥lsf,AC
coth

(
d

lsf,AC

)]−1
}

. (23)

This scaling of g⊥ occurring in the DC spin accumulation
originates from the second-order spin backflow due to the AC
spin accumulation that is generated in the normal metal.

Adding both the spin-pumping and the backflow torques
to Eq. (1) and repeating the linearization procedure from
Sec. II C, we find that the AC spin accumulation renormalizes
the pure spin-mixing conductance. Thus the addition of the
backflow torque can be accounted for by replacing g⊥ with g̃⊥
in the boundary conditions of Eq. (12), making the boundary
conditions Q-dependent in the process.

Using the values from Table I, which are based on typical
values for a YIG-Pt bilayer system, we obtain g̃⊥/g⊥ ∼
0.4 for QL 
 1, whereas g̃⊥/g⊥ → 1 for large values of
QL. Thus AC backflow is significant for long-wavelength
modes and should be considered when estimating g⊥ from
the linewidth broadening in ferromagnetic resonance (FMR)
experiments [11].

E. Inverse spin Hall effect

The inverse spin Hall effect (ISHE) converts a spin
current in the NM to an electric potential through the
spin-orbit coupling in the NM. For a spin current in the ξ̂

direction, the ISHE electric field in the NM layer is EISHE =
−e−1�〈(∂ξμ

(s)) × ξ̂〉ξ , where � is the dimensionless spin-
Hall angle, and 〈·〉ξ is a spatial average across the NM layer,
i.e., for ξ ∈ (L/2,L/2 + d). Using the previously calculated
spin accumulation, we find that the AC electric field is

EAC
ISHE = − �

h̄

2deMs

[
1 + σ

2g⊥lsf,AC
coth

(
d

lsf,AC

)]−1

× [−η̂(−mt,y cos θ cos φ + mt,x sin φ)

+ ζ̂ (−mt,x cos φ − mt,y cos θ sin φ)], (24)

where

mt,i = −[ImωRemi + ReωImmi]ξ=L/2, (25)

and i = x,y. For BVMSW (θ = π/2,φ = 0) modes, the AC
field points along ζ̂ , whereas for MSSW (θ = φ = π/2)
modes, it points along η̂ (i.e., in plane, but transverse to ζ ;
see Fig. 1). Notice that for both BVMSW and MSSW mode
geometries, only the x component of mt contributes to the
field. In contrast, for FVMSW (θ = 0) modes, the field points
somewhere in the ηζ plane, depending on the ratio of mt,x

to mt,y .
Similarly to the AC field, the DC ISHE electric field is given

by

EDC
ISHE = �

μ
(s)
DC,0

de
sin θ (η̂ cos φ − ζ̂ sin φ), (26)

which is perpendicular to the AC electric field and zero for the
FVMSW mode geometry.

The total time-averaged energy in the ferromagnet Etotal

(see, Morgenthaler [44]) is given by

〈Etotal〉T =
∫

ferrite
Re

[
−iπ

ω∗

ωM

(m × m∗)ẑ
]

dV, (27)

where the integral is taken over the volume of the ferromagnet.
Because the DC ISHE field is in-plane, the voltage mea-

sured per unit distance along the field direction, �̂ = η̂ cos φ −
ζ̂ sin φ, can be used to construct an estimate of the mode
efficiency. Taking the one-period time average of Eq. (26)
using Eq. (22) and normalizing it by Eq. (27) divided by the
in-plane surface area, A, we find an amplitude-independent
measure of the DC ISHE:

εDC =
〈
e�̂ · EDC

ISHE

〉
T

〈Etotal〉T /A

= −2γ�
lsfh̄

dσMs

g̃⊥ tanh

(
d

lsf

)
sin θ

×
Re

[−i ω∗
ωM

(m × m∗)ẑ
]
ξ=L/2∫ L/2

−L/2 Re
[−i ω∗

ωM
(m × m∗)ẑ

]
dξ

, (28)

given in units of cm, and where {·}∗ denotes complex
conjugation.

Similarly, the AC ISHE electric field, being time-varying,
will contribute a power density that, when normalized by the
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power density in the ferromagnet, becomes

εAC =
〈
σ
(
EAC

ISHE

)2〉
T

Re{ω}
2πAL

〈Etotal〉T

= πσ

Re{ω}
(

�h̄

2deMs

)2[
1 + σ

2g⊥lsf,AC
coth

(
d

lsf,AC

)]−2

× |mt,x |2 + cos2 θ |mt,y |2
1
L

∫ L/2
−L/2 Re

[−i ω∗
ωM

(m × m∗)ẑ
]
dξ

. (29)

To be able to calculate explicit realizations of the mode-
dependent equations (28) and (29), one will need to first
calculate the dispersion relation and mode profiles in the
ferromagnet.

III. SPIN-PUMPING THEORY FOR TRAVELLING
SPIN WAVES

Because the linearized boundary conditions [see Eqs. (12)]
explicitly depend on the eigenfrequency ω, we cannot apply the
method of expansion in the set of pure exchange spin waves,
as was performed by Kalinikos and Slavin [35]. Instead, we
analyze and solve the system directly for small values of QL,
whereas the dipole-dipole regime of QL ∼ 1 is explored using
numerical computations in Sec. IV.

A. Long-wavelength magnetostatic modes

When QL 
 1, Eq. (11) is simplified to{(
sin2 θ 0

0 0

)
+ i

ω

ωM

(
α −1
1 α

)
+ 1

[
ωH

ωM

− 8π
γ 2A

ω2
M

d2

dξ 2

]}
· mQ(ξ ) = 0, (30)

where the first-order matrix term describes the dipole-induced
shape anisotropy and stems from Ĝxy (see Ref. [35]). We make
the ansatz that the magnetization vector in Eq. (3) is composed
of plane waves, e.g., mQ(ξ ) ∝ eikξ . Inserting this ansatz into
Eq. (30) produces the dispersion relation(

ω

ωM

)2

=
(

ωH

ωM

+ λ2
exk

2 + iα
ω

ωM

)
×

(
ωH

ωM

+ λ2
exk

2 + sin2 θ + iα
ω

ωM

)
, (31)

where λex ≡
√

8πγ 2A/ω2
M is the exchange length. Keeping

only terms to first order in the small parameter α, we
arrive at

ω(k)

ωM

= ±
√(

ωH

ωM

+ λ2
exk

2

)(
ωH

ωM

+ λ2
exk

2 + sin2 θ

)

+ iα

(
ωH

ωM

+ λ2
exk

2 + sin2 θ

2

)
. (32)

The boundary conditions in Eq. (12) depend explicitly on
ω and k and give another equation k = k(ω) to be solved
simultaneously with Eq. (32). However, in the absence of spin

pumping, i.e., when the spin-mixing conductance vanishes,
g⊥ → 0, it is sufficient to insert the constant k solutions
from the boundary conditions into Eq. (32) to find the
eigenfrequencies.

Different wave vectors can give the same eigenfrequency.
It turns out that this is possible when ω(k) = ω(iκ), which has
a nontrivial solution relating κ to k:

λ2
exκ

2 = sin2 θ + λ2
exk

2 + 2
ωH

ωM

± i2αω(k)/ωM. (33)

With these findings, a general form of the magnetization
is

mQ(ξ ) =
(

1
r(k)

){[
C1 cos

[
k

(
ξ + L

2

)]
+ C2 sin

[
k

(
ξ + L

2

)]}
+

(
1

r(iκ)

)
×

{
C3 cosh

[
κ

(
ξ + L

2

)]
+ C4 sinh

(
κ

(
ξ + L

2

)]}
, (34)

where {Ci} are complex coefficients to be determined from
the boundary conditions, and where κ = κ(k) is given by
Eq. (33). The ratio between the transverse components of
the magnetization, r(k) = YQ/XQ, is determined from the
bulk equation of motion [see Eq. (30)] and is in linearized
form,

r(k)=−
α sin2 θ ± 2i

√(
ωH

ωM
+ λ2

exk
2
)(

ωH

ωM
+ λ2

exk
2 + sin2 θ

)
2
(

ωH

ωM
+ λ2

exk
2
) ,

(35)

implying elliptical polarization of mQ when θ �= 0.
Inserting Eq. (34) into Eq. (8) only leads to a solution when

k = 0, such that C2 = C4 = 0 in the general case. By solving
Eq. (12b) for C3, we find

C3

C1
= −

ωH

ωM
+ λ2

exk
2 + sin2 θ + iα ω

ωM

ωH

ωM
− λ2

exκ
2 + sin2 θ + iα ω

ωM

×
(
i ω

ωM
ρ̃ + d cos2 θ

)
cos(kL) − kL sin(kL)(

i ω
ωM

ρ̃ + d cos2 θ
)

cosh(κL) + κL sinh(κL)
,

(36)

where ρ̃ ≡ ρ|g⊥→g̃⊥ is the pumping parameter altered by
the AC spin backflow from the NM (see Sec. II D). C1 is
chosen to be the free parameter that parameterizes the dynamic
magnetization amplitude, which can be determined given a
particular excitation scheme. The linearization of Eq. (36) with
respect to α is straightforward, but the expression is lengthy;
we will therefore not show it here.

Inserting the ansatz with C2 = C4 = 0 and C3 given by
Eq. (36) into Eq. (12a) gives the second equation for k and ω

[the first is Eq. (32)]. In the general case, the number of terms
in this equation is very large; thus we describe it as

f (k,ω,α,ρ̃) = 0, (37)
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i.e., an equation that depends on the wave vector k, fre-
quency ω, Gilbert damping constant α, and the spin-pumping
parameter ρ̃.

Because both the bulk and interface-induced dissipation are
weak, α 
 1, ρ̃ 
 1, the wave vector is only slightly perturbed
with respect to a system without dissipation, i.e., k → k + δk

where λexδk 
 1. It is therefore sufficient to expand f up to
first order in these small quantities:

f (k,ω,0,0) + (ρ̃)
∂f

∂ρ̃

∣∣∣∣
0

+ α
∂f

∂α

∣∣∣∣
0

+ (λexδk)
∂f

∂(λexδk)

∣∣∣∣
0

≈ 0,

(38)

where the sub-index 0 means evaluation in a system without
dissipation, i.e., when (α,ρ̃,δk) = (0,0,0). By solving the sys-
tem of equations in the absence of dissipation, f (k,ω,0,0) = 0,
the dissipation-induced change in the wave vector δk is given
by

δk ≈ −
ρ̃

∂ f

∂ρ̃

∣∣
0 + α

∂f

∂α

∣∣
0

λex
∂ f

∂(λexδk)

∣∣
0

. (39)

In turn, this change in the wave vector should be inserted
into the dispersion relation of Eq. (31) to find the dissipation.
Inspecting Eq. (31), we note that δk-induced additional terms
proportional to ω are of the form (k + δk)2 − k2 ≈ 2kδk,
which renormalize the Gilbert-damping term iα ω

ωM
. Thus,

in Eq. (39), there are terms proportional to the frequency in
both terms in the numerator. We extract these terms ∝ i ω

ωM
by

differentiating with respect to ω and define the renormalization
of the Gilbert damping, i.e., α → α + �α, from spin pumping
as

�α = i2λexkωM∂ω(λexδk|α=0)

i2λexkωM∂ω(λexδk|ρ̃=0) − 1
, (40)

where ∂ω represents the derivative with respect to ω and k is the
solution to the zeroth-order equation. Note that in performing
a further local analysis around some point k0 in the k space of
Eq. (37), a series expansion of f around k0 must be performed
before evaluating Eqs. (39) and (40).

Equation (40) is generally valid, except when d = 0 and
kL → 0, which we discuss below. In the following section, we
will determine explicit solutions of the zeroth-order equation
for some key cases, and map out the spin-wave dispersion
relations and dissipation in the process.

B. No surface anisotropy (d = 0)

Let us first investigate the case of a vanishing surface
anisotropy. In this case, the zeroth-order expansion of Eq. (37)
has a simple form and is independent of the magnetization
angle θ . The equation to determine k is given by

kL tan(kL) = 0, (41)

with solutions k = nπ/L, where n ∈ Z. Similarly, the expres-
sion for δk is greatly simplified, δkn = i ω

ωM

ρ̃

nπ

λex
L

, n �= 0, such
that the mode-dependent Gilbert damping is

�αn = 2ρ̃

(
λex

L

)2

, n �= 0 . (42)

For the macrospin mode, when n = 0, the linear expansion in
δk becomes insufficient. This is because kL tan(kL) ∼ (kL)2

for kL → 0; thus we must expand the function f to second
order in the deviation δk around kL = 0. For d = 0, we find
that the boundary condition becomes δk2L2 = i ω

ωM
ρ̃λ2

ex, and
when inserted into Eq. (31), it immediately gives

�α0 = ρ̃

(
λex

L

)2

= 1

2
�αn, (43)

which is the macrospin renormalization factor found in
Ref. [15]. Using a different approach, our results in this
section reproduce our previous result that the renormalization
of the Gilbert damping for standing waves is twice the
renormalization of the Gilbert damping of the macrospin [18].
Next, we will obtain analytical results beyond the description
in Ref. [18] for the enhancement of the Gilbert damping in the
presence of surface anisotropy.

C. Including surface anisotropy (d �= 0)

In the presence of surface anisotropy, the out-of-plane and
in-plane field configurations must be treated separately. This
distinction is because the boundary condition (37) has different
forms for the two configurations in this scenario.

1. Out-of-plane magnetization

When the magnetization is out of plane, i.e., θ = 0, the
spin-wave excitations are circular and have a high degree
of symmetry. A simplification in this geometry is that the
coefficient C3 = 0. In the absence of dissipation, the boundary
condition (37) determining the wave vectors becomes

kL tan(kL) = d. (44)

Let us consider the effects of the two different anisotropies in
this geometry.

a. Easy-axis surface anisotropy (d > 0). When d ∼ 1 or
larger, the solutions of Eq. (44) are displaced from the
zeros of tan(kL), i.e., the solutions we found in the case of
no surface anisotropy, and towards the upper poles located
at kuL = (2n + 1)π/2, where n = 0,1,2, . . .. We therefore
expand f in Eq. (37) [and thus also in Eq. (44)] into a Laurent
series around the poles from the first negative order up to the
first positive order in kL to solve the boundary condition for
kL, giving

kL ≈ λex

L

3(1 + d) + 2(kuL)2 −
√

12(kuL)2 + 9(1 + d)2

2kuL
.

(45)

Using this result and the Laurent-series expansion for f in
Eqs. (39) and (40), we find the Gilbert-damping renormaliza-
tion term (α → α + �α

(oop)
EA,n ) and the ratio between the modes

�α
(oop)
EA,n

�α0
≈ 3(3(1 + d) + 2(kuL)2 −

√
12(kuL)2 + 9(1 + d)2)

× (
√

4(kuL)2 + 3(1 + d)2 − √
3(1 + d))

2(kuL)2
√

4(kuL)2 + 3(1 + d)2
. (46)

This ratio is plotted in Fig. 3 for n � 5. We see that the
ratio vanishes for large values of d. For small values of the
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FIG. 3. The ratio of enhanced Gilbert damping �αEA,n/�α0 in
a system with easy-axis surface anisotropy vs the enhanced Gilbert
damping of macrospin modes in systems with no surface anisotropy as
a function of surface-anisotropy energy. n refers to the mode number,
where n = 0 is the uniformlike mode. The dashed line represents the
ratio �αn/�α0 in the case of no surface anisotropy [see Eq. (42)].

anisotropy energy d, the approximate ratio exceeds the exact
result of the ratio we found in the limiting case of no surface
anisotropy [see Eq. (42)]. For moderate values of d ∼ 5,
the expansion around the upper poles is sufficient, but only
for the first few modes. This implies that moderate-strength
easy-axis surface anisotropy quenches spin pumping for the
lowest excited modes but does not affect modes with higher
transverse exchange energy.

b. Easy-plane surface anisotropy (d < 0). Easy-plane sur-
face anisotropy is represented by a negative surface anisotropy
d in Eq. (44). In this case, the boundary condition must
be treated separately for the uniformlike (n = 0) mode
and the higher excitations. When |d| > 1, we can obtain
a solution by expanding along the imaginary axis of kL.
This corresponds to expressing the boundary condition in the
form −ikL tanh(ikL) = −|d|, with the asymptotic behavior
kL ≈ −i|d|. Using the asymptotic form of the boundary
condition in Eq. (39) and calculating the renormalization
of the Gilbert damping using Eq. (40), we find that the
renormalization is α → α + �α

(oop)
EP,0 , where

�α
(oop)
EP,0

�α0
= 2|d|. (47)

Thus the Gilbert damping of the lowest mode is much enhanced
by increasing the surface anisotropy. The surface-anisotropy
mode is localized at the surface because it decays from the
spin-active interface and into the film. Because the effective
volume of the mode is reduced, spin pumping more strongly
causes dissipation out of the mode and into the normal metal.

For the higher modes (n > 0), the negative term on the
rhs of Eq. (44) forces the kL solutions closer to the negative,
lower poles of tan(kL), located at k(l)

n L = (2n − 1)π/2, where
n = 1, 2, 3, . . .. We repeat the procedure used for the EA case
by expanding f into a Laurent series around these lower poles,

FIG. 4. Plot of �α
(oop)
EP,n /�α0. The dashed line represents the ratio

�αn/�α0 in the case of no surface anisotropy [see Eq. (42)].

arriving at

kL ≈
3(1 − |d|) + 2

(
k(l)
n L

)2 +
√

12
(
k

(l)
n L

)2 + 9(1 − |d|)2

2k
(l)
n L

.

(48)

Using this relation and the new lower-pole Laurent expansion
for f , Eqs. (39) and (40) give us the renormalization of the
Gilbert damping (α → α + �α

(oop)
EP,n ) and the ratio

�α
(oop)
EP,n

�α0
≈ 3(3(1 − |d|) + 2(kuL)2

+
√

12(kuL)2 + 9(1 − |d|)2)

× (
√

4(kuL)2 + 3(1 − |d|)2 + √
3(1 − |d|))

2(kuL)2
√

4(kuL)2 + 3(1 − |d|)2
.

(49)

This ratio is plotted in Fig. 4 from n = 1 up to n = 5. We see
that the ratio vanishes for large values of |d|. Similar to the
case of EA surface anisotropy, the approximation breaks down
for large n and/or small values of |d|.

Whereas the n = 0 mode exhibits a strong spin-pumping
enhanced dissipation in this field configuration, the DC ISHE
field vanishes when θ = 0 [see Eq. (26)]. This is one of the
reasons why this configuration is seldom used in experiments.
However, this configuration can lead to a significant AC ISHE,
and a similar AC signal was recently detected [12]. Because of
the strong dissipation enhancement, the EP surface anisotropy
induced localized mode in perpendicular magnetization geom-
etry could be important in future experimental work.

2. In-plane magnetization

We will now complete the discussion of the spin-pumping
enhanced Gilbert damping by treating the case in which the
magnetization is in plane (θ = π/2). For such systems, the
coefficient C3 �= 0, and the zeroth-order expansion of Eq. (37)
becomes

kL tan kL = −
d
(
(λexk)2 + ωH

ωM

)√
1 + (λexk)2 + 2 ωH

ωM√
1 + (λexk)2 + 2 ωH

ωM

(
1 + 2(λexk)2 + 2 ωH

ωM

) − d λex
L

(
1 + (λexk)2 + ωH

ωM

)
coth

(
L
λex

√
1 + (λexk)2 + 2 ωH

ωM

) . (50)
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For typical film thicknesses, of some hundred nanometers, we
have L/λex � 1 and (λexk)2 
 1 for the lowest eigenmodes.
Thus we take the asymptotic coth ∼ 1 and neglect the (λexk)2

terms, ridding the rhs of Eq. (50) of any k dependence.
Equation (50) now becomes similar to the out-of-plane case,

kL tan(kL) = deff, (51)

where

deff = −
d ωH

ωM

√
1 + 2 ωH

ωM(
1 + 2 ωH

ωM

)3/2 − d λex
L

(
1 + ωH

ωM

) . (52)

deff is positive if d < 0 and negative for d > 0 up to a critical
value dλex/L = λexKs/A = (1 + 2 ωH

ωM
)3/2

/(1 + ωH

ωM
), where

the denominator becomes zero. For negative d, |deff| < |d|,
whereas for positive d, |deff| is initially smaller than that of
|d| but quickly approaches the critical value. With the value
Ks from Table I, we have |deff| < |d|, independent of the
sign of d.

With this relation, we can calculate an approximate Gilbert
damping renormalization in both the EA and EP cases using the
EP and EA relations, respectively, obtained in the out-of-plane
configuration. Thus

�α
ip
EA,0 ≈ �α

oop
EP,0|d→deff = 2|deff|, (53)

�α
ip
EA,n ≈ �α

oop
EP,n|d→deff , (54)

�α
ip
EP,n ≈ �α

oop
EA,n|d→deff . (55)

To summarize this section regarding the enhancement of
Gilbert damping, we see that the enhancement can be very
strong for the surface modes because their effective sizes are
smaller than the thickness of the film. For all other modes,
the enhancement decreases with increasing magnitude of the
surface-anisotropy energy.

IV. NUMERICAL CALCULATIONS

The first step in the numerical method is to approximate
the equation of motion of Eq. (11) into by finite-size matrix
eigenvalue problem. We discretize the transverse coordinate
ξ on the interval [−L/2,L/2] into N points labeled by
j = 1, 2, . . . ,N , and characterize the transverse discrete solu-
tions of the dynamic magnetization vectors mQ by (mx,j ,my,j )
of size 2N .

We approximate the second-order derivative arising from
the exchange interaction using a nth-order central difference
method. For the n − 2 discretized points next to the boundaries,
we also use nth-order methods, using forward (backward)
difference schemes for the lower (upper) film boundary. This
strategy avoids the introduction of “ghost” points outside the
interval [−L/2,L/2] to satisfy the boundary conditions.

Thus the total operator acting on the magnetization on
the left-hand side of Eq. (11) becomes a sparse 2N × 2N

matrix operator. On the right-hand side of Eq. (11), we also
represent the convolution integral as a 2N × 2N dense matrix
operator, where each row is weighted according to the extended
integration formulas for closed integrals to nth order [45]. The
four N × N subblocks of this integration operator correspond

to the four tensor elements of Ĝxy . In the final discrete form,
we obtained a 2N × 2N ω-dependent matrix.

Next, the four boundary conditions (at the left and right
boundaries for the two components, mx and my) are used to
reduce the number of equations to 2N − 4. This is performed
by algebraically solving the discretized boundary conditions
with respect to the boundary points, i.e., by determining mi

where i ∈ {1,N,N + 1,2N} in terms of the magnetizations at
the interior points.

Finally, each (2N − 4) × (2N − 4) matrix is separated into
two parts: a term independent of the frequency ω and a term
proportional to ω. The dipole interaction causes the eigenvalue
problem to be non-Hermitian and therefore computationally
more demanding than a generalized eigenvalue problem. We
find the dispersion relation and magnetization vectors by
solving this eigenvalue problem. The resulting eigenvectors
are used to find the magnetization at the boundary by back-
substitution into the equations for the boundary conditions.

We are interested in finding the mode and wave-vector
dependence of the spin-pumping enhanced Gilbert damping.
To obtain this information numerically, we perform two
independent calculations of the (complex) eigenvalues. First,
we calculate the complex eigenvalues ωd when there is no
spin pumping, but dissipation occurs via the conventional
bulk Gilbert damping. Second, we calculate the complex
eigenvalues ωsp when spin pumping is active at the FI-NM
interface but there is no bulk Gilbert damping. A mode-
and wave-vector-dependent measure of the effective enhanced
Gilbert damping enhancement is then given by

�α = α
Imωsp

Imωd
. (56)

To ensure that we treat the same modes in the two independent
calculations, we check the convergence of the relative differ-
ence in the real part of the eigenvalues. Table I lists the values
for the different system parameters that are used throughout
this section.

Let us first discuss the renormalization of the Gilbert
damping when there is no surface anisotropy. We will present
the numerical results for the three main geometries described
in Sec. I and compare the results to the analytical results of
Sec. III A.

A. FVMSW (θ = 0)

Figure 5 shows the wave-vector dependent renormalization
of the Gilbert damping �α due to spin pumping at the FI-NM
interface in the FVMSW geometry. In this geometry, waves
traveling along ±ζ̂ have the same symmetry; thus each line
is doubly degenerate and corresponds to two waves of ±ω.
The “spikes” in the figure are due to degeneracies, i.e., mode
crossings, and upon inspection, these spikes can be observed
in the dispersion relation.

1. Easy-axis surface anisotropy (ξ̂ easy axis)

Figure 6 shows �αEA for the FVMSW geometry with an EA
surface anisotropy at the spin-active interface. As predicted in
Sec. III C 1a, all modes exhibit a decreased �α compared with
those in Eqs. (43) and (42). For small QL and the chosen
value of Ks (see Table I), the first four modes match the
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FIG. 5. �α vs wave vector for the FVMSW geometry of the
four smallest eigenvalues. (Top inset) Magnitudes of eigenvectors
(in arbitrary units) across the film at QL = 10. (Bottom inset)
Dispersion relation in the dipole-dipole active regime.

analytical result of Eq. (46), which is consistent with the plot
in Fig. 3. For even higher excited modes, the effect of the
EA surface anisotropy becomes weaker due to the increase in
transverse exchange energy. These modes (not shown in the
figure) approach the value of �αn.

2. Easy-plane surface anisotropy (ξ̂ hard axis)

Figure 7 shows �αEP for the FVMSW geometry with an
EP surface anisotropy. We see that the mode corresponding to
n = 0 has been promoted to a surface mode with a large �α,
which for small values of QL matches Eq. (47). For the higher
excited modes, we observe a decrease in �α compared to the
case with no surface anisotropy.

B. BVMSW (θ = π/2 and φ = 0)

Figure 8 shows the QL-dependent renormalization of the
Gilbert damping due to spin pumping at the FI-NM interface
in the BVMSW geometry. We see that the enhancement �α

FIG. 6. �αEA vs wave vector for the FVMSW geometry showing
the four smallest eigenvalues. The horizontal dashed lines indicate
solutions of Eq. (46). (Left inset) Magnitudes of eigenvectors (in
arbitrary units) across the film at QL = 5. (Right inset) Dispersion
relation in the dipole-dipole active regime.

(a)
(b)

(c)

FIG. 7. (a) �αEP vs wave vector for the FVMSW geometry,
showing the four smallest eigenvalues. The dashed lines represent
the analytic solutions from Sec. III C 1b. (b) Dispersion relation
in the dipole-dipole active regime. (c) Magnitude of eigenvectors
(in arbitrary units) across the film at QL = 5.

agrees with the analytic limits in Eqs. (43) and (42) for small
values of QL. For large values of QL, we are in the strong
exchange regime, in which the in-plane exchange energy
becomes large compared to all other energy contributions. This
in-plane exchange stiffness effectively quenches the coupling
to the normal metal layer, causing �α → 0 for large values
of QL.

Although Fig. 8 only appears to show the three first
eigenvalues and eigenvectors, it actually contains double
this amount. Because ẑ is parallel to the wave-propagation
direction ζ̂ in this geometry, there is no change in dipolar
energies, regardless of whether the wave travels in the +ζ̂

direction or in the −ζ̂ direction; thus, the Gilbert damping
is enhanced equally in both wave directions. A slight offset
from this configuration, taking either θ < π/2 or φ �= 0, would
result in a splitting of each line in Fig. 8 into two distinct lines.

Including surface anisotropy

Figure 9 shows both the EA and the EP surface-anisotropy
calculations in the BVMSW geometry. In the case of an EA

FIG. 8. �α vs wave vector for the BVMSW geometry (θ = π/2
and φ = 0) with Ks = 0, plotted for the four smallest eigenvalues.
(Left inset) Magnitudes of normalized eigenvectors across the film at
QL = 5. (Right inset) Dispersion relation in the dipole-dipole active
regime.
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(a) (b)

FIG. 9. (a) Dispersion relation vs wave vector for the BVMSW geometry (θ = π/2, φ = 0) for the four lowest eigenvalues in the case of
EA surface anisotropy. (b) Dispersion relation in the case of EP surface anisotropy. In both figures, the horizontal dashed lines mark the value
of �αn in the case of no surface anisotropy.

surface anisotropy, the mode corresponding to n = 0 gets
promoted to a surface mode, similarly to the case in which
there is EP surface anisotropy in the FVMSW geometry. The
increase in �α is much smaller for the same magnitude of
Ks , as explained in detail in Sec. III C. The higher modes,
corresponding to n > 0, exhibit increased quenching of the
Gilbert damping enhancement. In the case of EP surface
anisotropy, all modes exhibit quenched Gilbert damping
enhancement.

C. MSSW (θ = φ = π/2)

Figure 10 shows the QL-dependent renormalization of the
Gilbert damping due to spin pumping at the FI-NM interface
in the MSSW geometry. The computed eigenvalues agree with
Eqs. (43) and (42) for small values of QL. We see in the inset of
Fig. 10 that in this geometry, the macrospinlike mode behaves
as predicted by Damon and Eshbach [36], Eshbach and Damon
[37], cutting through the dispersion relations of the higher
excited modes for increasing values of QL in the dipole-dipole
regime. A prominent feature of this geometry is the manner
in which the modes with different signs of Re{ω} behave

differently due to the dipole-dipole interaction. This is because
the internal field direction (ẑ) is not parallel to the direction of
travel (ζ̂ ) of the spin wave. Hence, changing the sign of ω is
equivalent to inverting the externally applied field, changing
the xyz coordinate system in Fig. 1 from a right-handed
coordinate system to a left-handed system. In the middle
of the dipole regime, the lack of symmetry with respect to
propagation direction has different effects on the eigenvectors;
e.g., in the dipole-dipole active region the modes with positive
or negative Re{ω} experience an increased or decreased
magnitude of the dynamic magnetization, depending on the
value of QL, as shown in Figs. 10(e) and 10(f). This magnitude
difference creates different renormalizations of the Gilbert
damping, as the plot of �α(±) in Figs. 10(b) and 10(c) shows.

Including surface anisotropy

Figure 11 shows �α computed for modes in the MSSW
geometry with EA and EP surface anisotropies. We can clearly
see that for small QL an exponentially localized mode exists
in the EA case, and as predicted in Sec. III C, all the lowest-
energy modes have spin pumping quenched by EP surface

(a)

(b)

(c)

(d)

(e)

FIG. 10. Gilbert damping renormalization in the MSSW geometry. Subplots (a) and (b) show Gilbert damping renormalization �α

for modes with positive (negative) Re{ω}. The horizontal dashed lines represent the analytical values �α0 and �αn for small QL.
(c) Dispersion relation vs wave vector for the MSSW geometry (θ = φ = π/2) for the four smallest eigenvalues, colored pairwise in ±ω.
Subplot (d) [(e)] shows the magnitude of normalized eigenvectors (in arbitrary units) at QL = 3 across the film modes with positive [(negative)]
Re{ω}.

214413-11



ANDRÉ KAPELRUD AND ARNE BRATAAS PHYSICAL REVIEW B 95, 214413 (2017)

(a)

(b)

(c)

(d)

FIG. 11. (a) and (b) Gilbert damping renormalization from spin pumping in the MSSW geometry (θ = φ = π/2) for modes with
positive (negative) Re{ω} in the case of EA surface anisotropy. The four smallest eigenvalues are colored pairwise in ±ω across the plots.
(c) and (d) show the Gilbert damping renormalization in the case of EP surface anisotropy.

anisotropy. This is similar to the corresponding case in the
BVMSW geometry.

D. AC and DC ISHE

Figure 12 shows the DC and AC ISHE measures for the
BVMSW geometry corresponding to the data represented in
Fig. 8. In this geometry, the angular term, sin θ , in Eq. (28)
is to equal one, ensuring that the DC measure is nonzero.
This is not the case for all geometries because the DC electric
field vanishes in the FVMSW geometry. The mode-dependent
DC ISHE measure exhibits the same QL-dependence as
the spectrum of the Gilbert damping enhancement in all
geometries where sin θ �= 0. We have already presented the
renormalization of the Gilbert damping in the most general
cases above. Therefore we restrict ourselves to presenting
the simple case of the BVMSW geometry with no surface
anisotropy here.

The AC ISHE measure plotted in Fig. 12 exhibits a similar
QL dependence to the Gilbert damping renormalization (and
hence the DC ISHE measure), but with a slight variation
in the spectrum towards higher values of QL. Note that

(a)

(b)

FIG. 12. ISHE as a function of in-plane wave vector in the
BVMSW geometry with Ks = 0. (a) AC ISHE measure of Eq. (28)
and (b) DC ISHE measure of Eq. (28).

because Eq. (24) is nonzero for all values of θ , the AC effect
should be detectable in the FVMSW geometry. By comparing
the computed renormalization of the Gilbert damping for
the different geometries in the previous subsections, we see
that the strong renormalization of the n = 0 induced surface
mode that occurs in the FVMSW geometry with easy-plane
surface anisotropy (see Sec. IV A2 and Fig. 7) can have a
proportionally strong AC ISHE signal in the normal metal.

V. CONCLUSION

In conclusion, we have presented analytical and numerical
results for the spin-pumping-induced Gilbert damping and
direct- and alternating terms of the inverse spin-Hall effect.
In addition to the measures of the magnitudes of the DC and
AC ISHE, the effective Gilbert damping constants strongly
depend on the modes through the wave numbers of the excited
eigenvectors.

In the long-wavelength limit with no substantial surface
anisotropy, the spectrum is comprised of standing-wave
volume modes and a uniformlike (macrospin) mode. These
results are consistent with our previous findings [18]: in
the long-wavelength limit, the ratio between the enhanced
Gilbert damping for the higher volume modes and that of
the macrospin mode is equal to two. When there is significant
surface anisotropy, the uniform mode can be altered to become
a pure localized surface mode (in the out-of-plane geometry
and with EP surface anisotropy), a blend between a uniform
mode and a localized mode (in-plane geometries and EA
surface anisotropy), or quenched uniform modes (out-of-plane
field configuration and EA surface anisotropy, or in-plane
field configuration and EP surface anisotropy). The effective
Gilbert damping is strongly enhanced for the surface modes
but decreases with increasing surface-anisotropy energies for
all the other modes.

The presented measures for both the AC and DC inverse
spin-Hall effects are strongly correlated with the spin-pumping
renormalization of the Gilbert damping, with the DC effect
exhibiting the same QL dependency, whereas the AC effect
exhibits a slighthly different variation for higher values of
QL. Because the AC effect is nonzero in both in-plane and
out-of-plane geometries and because both EP and EA surface
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anisotropies induce surface-localized waves at the spin-active
interface, the AC ISHE can be potentially large for these
modes.
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APPENDIX: COORDINATE TRANSFORMS

The transformation for vectors from ξηζ to xyz coordinates
(see Fig. 1) is given by an affine transformation matrix T , so
that

f(xyz) = T · f(ξηζ ),

for some arbitrary vector f. Tensor-vector products are trans-
formed by inserting a unity tensor I = T−1T between the
tensor and vector and by left multiplication by the tensor T,
such that the tensor transforms as TĜT−1 for some tensor Ĝ
written in the ξηζ basis.

T is given by the concatenated rotation matrices T = R2 ·
R1, where R1 is a rotation φ around the ξ axis, and R2 is a
rotation θ − π

2 around the new η axis/y axis. Hence

R1 =
⎛⎝1 0 0

0 cos φ − sin φ

0 sin φ cos φ

⎞⎠, (A1)

R2 =
⎛⎝sin θ 0 − cos θ

0 1 0
cos θ 0 sin θ

⎞⎠, (A2)

such that

T =
⎛⎝sin θ − cos θ sin φ − cos θ cos φ

0 cos φ − sin φ

cos θ sin θ sin φ sin θ cos φ

⎞⎠. (A3)

This transformation matrix consists of orthogonal transfor-
mations; thus the inverse transformation, which transforms
xyz → ξηζ , is just the transpose, T−1 = TT .
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a b s t r a c t

Training and recovery of exchange bias in FeNi/Cu/Co/FeMn spin valves have been studied by

magnetoresistance curves with field sweep rates from 1000 to 4800 Oe/s. It is found that training

and recovery of exchange field are proportional to the logarithm of the training cycles and recovery

time, respectively. These behaviors are explained within the model based on thermal activation. For the

field sweep rates of 1000, 2000 and 4000 Oe/s, the relaxation time of antiferromagnet spins are 61.4,

27.6, and 11.5 in the unit of ms, respectively, much shorter than the long relaxation time (� 102 s) in

conventional magnetometry measurements.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

The exchange bias (EB) effect in ferromagnetic/antiferromag-
netic systems has been intensely studied in the last decade
because of their physical complexity and important applications
[1,2]. The technological importance lies in the pinning effect of
the antiferromagnet (AFM) layers in which the hysteresis loop of
the ferromagnet (FM) can be shifted away from the origin point
by the amount of the exchange field (HE), and is usually accom-
panied with an enhanced coercivity (HC). Changes of HE and HC

are accordingly directly related to the spin configuration of the
AFM layer through the exchange coupling [3]. Among the variety
of effects related to the EB phenomenon, the training effect is an
important effect that reflects the AFM spin dynamic process
during repeated hysteresis loops. It is ascribed to that the spin
structure of the AFM layer deviates from its equilibrium config-
uration and approaches another equilibrium triggered by subse-
quent reversals of the FM magnetization. Nowadays, studies
of AFM spin dynamic behaviors with training effect in both
experiments and theories have been widely reported [4–13].
Because most of studies are limited to long timescales (41 s),
by the usually quite long measurement time in magnetometry
approaches, the relaxation time of AFM spin are usually reported
in second timescale (� 1022104 s) [4–6]. In contrast, at shorter
measurement timescales the relaxation time of exchange bias
system was demonstrated to cover a wide range (� 10�821011 s)

[15–18], which has been ascribed to the magnetization reversal
mechanism of FM layer [14]. Hence, the report only on AFM spin
dynamic behavior in the millisecond timescale is still sparse. In
addition, recently attempt frequencies up to 1012 Hz in AFM layer
have been reported [19], which indicated a much shorter relaxa-
tion timescale of AFM spin than earlier anticipated. Therefore, it is
necessary and interesting to study the AFM spin dynamic process
at short timescale (technologic importance o1 s).

In this paper, we have studied the EB training and recovery
behaviors at the millisecond timescale based on the electrical
transport measurements in FeNi/Cu/Co/FeMn spin valves. The
experiments show that at high field sweep rates recovery time
of exchange field after training procedures is three orders of
magnitude shorter than the values observed by usual magneto-
metry techniques, and the relaxation of magnetoresistance (MR)
is demonstrated in the millisecond timescale. These clearly
indicate that AFM spin dynamic behaviors can be studied and
resolved down to the millisecond timescale utilizing the ordinary
resistance measurements.

2. Experiment and results

The spin valves of Si (001)/Cu (10 nm)/Fe20Ni80 (3 nm)/Cu
(3 nm)/Co (3 nm)/FeMn (8 nm)/Ta (3 nm) were prepared by a
magnetron sputtering system. The base pressure was 2�10�5 Pa
and the Ar pressure was 0.3 Pa during the deposition. The 10 nm
Cu buffer layer was used to stimulate the fcc (1 1 1) preferred
growth of the FeMn layer in order to enhance the EB. A magnetic
field of 130 Oe was applied in the film plane during deposition
to induce the uniaxial anisotropy and thus the EB.
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Magnetoresistance (MR) measurements were performed to probe
the switching behaviors of the pinned layer for different subse-
quent hysteresis loops. The magnetic field was provided by home-
built Helmholtz coils, and MR was measured in real-time system
with 2 M/s sampling rate. To study training and recovery of the
EB, we first performed 40 consecutive MR measurements with a
fixed field sweep rate to characterize the training procedures.
Then we stopped the magnetic field sweep with an waiting time t.
Finally 10 consecutive MR measurements with the same field
sweep rate were measured in order to observe and confirm the EB
recovery. For each sweep rate, t varied from 0.1 to 10 s.

The spin valves and MR curves of the training and recovery
effects at the 1st, 40th and 41st cycles with the field sweep rate of
4000 Oe/s are displayed in Fig. 1(a). At large negative field the Co
and FeNi magnetizations are parallel and pointing down. When
the field is increased above the switch field of the Co layer, about
�110 Oe, the Co magnetization reverses and resistance switches
from low value (�1) to high value (þ1). When the field is further
increased above the switch field of the FeNi layer, about �15 Oe,
its magnetization reverses, the two magnetizations become
parallel once more but this time pointing up, and resistance
switches to low value (�1). If the field is then decreased, the
two magnetizations will remain parallel until the negative switch
field of the FeNi layer is reached at �25 Oe, when its magnetiza-
tion reverses and resistance switches to high value. When the
field is further reduced and reverses the Co magnetization, the
two magnetizations align in parallel, and resistance changes to its

low value. For all MR curves the hysteresis loops of the Co layer
are shifted and fully separated from the hysteresis loops of FeNi
layer due to the FeMn pinning effect, therefore the MR curves
directly reflect the switching behaviors of the Co and the FeNi
layers in detail [20]. Comparing the hysteresis loops of the Co
layer in the first, and 40th MR curves, the switching field of the
descent branch shifts more sharply than that of the ascent one,
demonstrating the asymmetric magnetization reversal. However,
after the magnetic field sweep is stopped for 1 s, a recovery is
observed in the 41st MR curve. It contrasts to the behavior in the
case of normally low field sweep rate, in which substantial
recovery was only observed after several hours of waiting time [4].
The HE is plotted as a function of cycles n in Fig. 1(b). The HE

gradually decreases with the cycle n, has an obvious resilience
after 1 s waiting time and finally decreases. For the training
procedure, the HE versus n is fitted by a linear functions of
1=

ffiffiffi
n

p
, e�0:06n and ln(n). It is found that the logarithm function

yields the best fit, except for initial point n¼1 [8,10].
To further study the recovery of the trained EB, we measured

the recovery rate R as a function of t at different field sweep rates,
where R¼ ½HEð41Þ�HEð40Þ�=½HEð1Þ�HEð40Þ� � 100ð%Þ. Fig. 2(a)
shows the dependence of R on t at different field sweep rates.
The R increases with the increasing t as a linear function of log(t).Waiting 1.0 second

A

Fig. 1. (a) The magnetoresistance curves used to map the training effect for FeNi/

Cu/Co/FeMn spin valve at the first, 40th and 41st (after 1 s waiting time) cycles

with the field sweep rate of 4000 Oe/s. The resistance is dependent on corre-

sponding magnetization configurations of FeNi (black left arrow) and Co (red right

arrow). (b) The exchange field HE as a function of the number of cycles n. The blue

dot, green dash dot and black dash lines are the fitted data with the 1=
ffiffiffi
n

p
, e�0:06n

and ln(n),respectively. (For interpretation of the references to color in this figure

caption, the reader is referred to the web version of this article.)

Fig. 2. (a) The recovery of HE as a function of the waiting time t with different

sweep rates. The solid lines display the linear fits of the ln(t). (b) The slope and the

offset values as a function of the field sweep rate. The solid lines are the linear fits

of the logarithm of the field sweep rate.
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More remarkably, for a fixed waiting time t, R correspondingly
increases with the increasing field sweep rate. This logarithm
behavior is in a good agreement with the previous experiments in
NiFe/FeMn system, while the recovery rate is several orders of
magnitude faster than the value in the low field sweep rate case
[4]. The slope and the intercept as a function of the field sweep
rate are shown in Fig. 2(b). The slope displays little change with
different field sweep rates whereas the intercept increases greatly
as the field sweep rate increases in approximate linear function of
the logarithm of the field sweep rate.

To investigate the dynamic behavior of the EB with high
resolution, we observed the evolution of MR after setting the
magnetic field from the positive saturation field to �210 Oe (the
point A in Fig. 1(a)) near the switch field. As shown in Fig. 3, MR
initially decreases sharply and then gradually reaches a constant.
The small fluctuations in the curves are caused by 50 Hz AC noise
in the amplifying circuit. Remarkably, a crossover of the normal-
ized MR from positive to negative has been observed, demon-
strating the reversal of the magnetization of the Co layer. It is
possible to link the time dependence of MR with the magnetic
viscosity in the Co/FeMn bilayers [7], in which the magnetization
of the pinned layer gradually reverses due to the thermally
activated process in Co/FeMn bilayers. Because the reversal
process in the EB at the first cycle consists in the single domain
wall motion [6], the change of MR here is proportional to the
amounts of the reversal magnetization in the pinned layer. Shown

as the solid line in Fig. 3, the evolutions of MR are described well
by a first order exponential decay. From fitting the data, we
extracted the relaxation times t which are 11.5, 27.6, and 61.4 ms
for the field sweep rate at 4000, 2000 and 1000 Oe/s, respectively.
This is again in contrast to the long relaxation time (� 800 s) in
the conventional approaches [6]. One can also note that the
relaxation time decreases with the increasing field sweep rate.

3. Discussion

The above results show that the recovery and relaxation of the
EB at high field sweep rates are faster than that earlier observed
[4–7]. Below we will interpret the experimental results in con-
ventional models for AFM and training effects.

Firstly we consider the change and magnitude of the relaxa-
tion time constants at different field sweep rates shown in Fig. 3.
The time constant for the relaxation can be described by an
ordinary Arrhenius law t¼ v�1

s expðEs=kBTÞ, where vs is the
attempting frequency and Es ¼ KV represents the AFM energy
barrier, K is the AFM anisotropy and V is the AFM grain volume.
According to the AFM grain volumes distribution, we can divide
the Es into three different categories [10]: (i) small Es (small grain
size), which follows the FM magnetization at the timescale of the
experiment. (ii) Medium energy Es (medium grain size) which
will determine the EB dynamics at the timescale we investigate.
(iii) Large Es (large grain size), which is a stable configuration over
the timescale of the experiment. Assuming a typical uniaxial
anisotropy constant of 1�106 erg/cm3 and vs to be 1�109 Hz,
then the average grain size of category (ii) is correspondingly
about 9 nm extension, based on the relaxation time in Fig. 3.
Accordingly, the relaxation time decreasing with the increasing
field sweep rate demonstrates an apparent increase in attempt
frequency vs.

The EB recovery and relaxation at high field sweep rates can
still be explained well with the model based on thermal activa-
tion [4,23]. As shown in Fig. 2(a), the logarithm time recovery
relationship indicates a thermally activated reversal process
involving the AFM spin configuration. To explain our data, the
activation energy spectrum model simply based on a two-level
system is adopted [23,24]. In our case the two level system
represents an individual AFM grain or domain switching from a
positive to a negative exchange energy with respect to the FM
layer. For the system with a wide energy barrier distribution, DHE

can be expressed in terms of the AFM activation energy spectrum
q(E): DHE ¼ qðEÞkBT lnðvstÞ, which is taken from Eq. (1) in Ref. [4].
According to the equation, the slope observed for all field rates in
Fig. 2(b) is a constant due to the same q(E), while the intercept
variation is mainly due to the different activated AFM energy
ranges and the time delay at the different field sweep rates.

Finally, for the training process HE is proportional to ln(n) at
high field sweep rates in Fig. 1(b), which can be compared to
the usual power law (1=

ffiffiffi
n

p
) and the exponential (e�an) relation-

ships. We model this through following Binek et al. [21,22].
At beginning, the equilibrium AFM interface magnetization is
defined SeAFM ¼ limn-1SAFMðnÞ. Each positive and negative devia-
tion dSn ¼ SAFMðnÞ�SeAFM of the AFM interface magnetization from
its equilibrium value will increase the total free energy F of the
system by DF. The relaxation of the system towards equilibrium is
determined by the Landau–Khalatnikov (LK) equation [25]:
x _SAFM ¼�@DF=@SAFM , where x is a phenomenological damping
constant and DF is the function of dS. In Binek’s model under
the assumption DFðdSÞ ¼DFð�dSÞ, a series expansion of DF up to
the fourth order in dS yields DF ¼ 1

2 aðdSÞ2þ1
4 bðdSÞ4þOðdSÞ6. Eval-

uating the free energy expression with a leading term of second

Fig. 3. The time dependence of the resistance after the external magnetic field is

swept to �210 Oe (point A in Fig. 1(a)) from positive saturation field with

different field sweep rates (a) 4000 Oe/s, (b) 2000 Oe/s, and (c) 1000 Oe/s. The

solid lines are fits to the first-order exponential decay.
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and fourth order in dS will result in the e�an [22] and 1=
ffiffiffi
n

p
[21]

evolution, respectively.
However, our understanding of the system is that we have a

nonvanishing odd order term. This is an effect of working
at a time scale where we also have substantial coupling at the
FM/AFM interface due to large grains that are too large to follow
the oscillating exchange coupling of the FM. Instead that portion
of the ensemble of grain will orient itself gradually according to
the mean coupling induced by the FM in a monotonic fashion.
Accordingly we also have to consider the expansion of DF from
first order of dS. We then assume dS : DF ¼ f ðnÞðdSÞ1þOðdSÞ2,
where the f(n) indicates that the change in the AFM interface
magnetization and dSn is dependent on the training procedures n.
By replacing _S with ½Sðnþ1Þ�SðnÞ�=l, with l being the relevant
experimental time constant and the free energy expression of
the first order into the LK equation, we obtain an implicit
sequence equation: x0ðSðnþ1Þ�SðnÞÞ ¼ �f ðnÞ, where x0 ¼ x=l. The
sum over N cycles of this equation with variable n yields
HEðNþ1ÞpSðNþ1Þ ¼ Sð1Þ�PN

n ¼ 1 f ðnÞ=x0.
Since we do not know the exact energy distribution F(V) of our

system, we make a first-order approximation assuming a constant
distribution of AFM grain volumes. An estimate of the change in
thermally activated part of the interface magnetization can be
found through: f ðnÞ ¼ R Vnþ 1

Vn
FðVÞ dV , using a thermally activated

grain volume Vn which is found through the Arrhenius expression
and a constant distribution in volume F(V) we find that f(n) will
follow a lnðnþ1Þ�lnðnÞ dependence, a logarithmic dependence of
the exchange bias. This approximation may only be valid at large
n when the overall reorientation due to the changed mean field
dominate over other training effects. We also note that the
training process HE is proportional to ln(n) has also been reported
at low field sweep rates [8], where the training speed is several
orders of magnitude slower than the values reported here.

In summary, for the AFM spins the relaxation time in the
millisecond timescale is demonstrated when the bilayers are
exposed to high field sweep rates. This behavior can be well
explained in terms of a time constrained thermal activation.
Our finding gives a new insight into the dynamic behavior of
the AFM spins.

Acknowledgments

We gratefully acknowledge helpful and fruitful discussions with
S.M. Zhou. The work was supported by the Norwegian Research

Council, Frinat project 171332. The author D.Z. Yang acknowledges
the funding supported by the National Natural Science Foundation
of China under Grand no. 11104122; the Fundamental Research
Funds for the Central Universities lzujbky-2011-51.

References

[1] J. Nogues, I.K. Schuller, Journal of Magnetism and Magnetic Materials 192
(1999) 203.

[2] A.E. Berkowitz, K. Takano, Journal of Magnetism and Magnetic Materials 200
(1999) 552.

[3] X.P. Qiu, D.Z. Yang, S.M. Zhou, R. Chantrell, K. O’Grady, U. Nowak, J. Du,
X.J. Bai, L. Sun, Physics Review Letters 101 (2008) 147207.

[4] J. Dho, C.W. Leung, M.G. Blamire, Journal of Applied Physics 99 (2006)
033910.

[5] P.A.A. van der Heijden, T.F.M.M. Maas, W.J.M. de Jonge, J.C.S. Kools,
F. Roozeboom, P.J. van der Zaag, Applied Physics Letters 72 (1998) 492.

[6] E. Pina, C. Prados, A. Hernando, Physical Review B 69 (2004) 052402.
[7] C. Leighton, I.K. Schuller, Physical Review B 63 (2001) 174419.
[8] C.Y. Hung, M. Mao, S. Funada, T. Schneider, L. Miloslavsky, M. Miller, C. Qian,

H.C. Hong, Journal of Applied Physics 87 (2000) 4915.
[9] M.J. Carey, N. Smith, B.A. Gurney, J.R. Childress, T. Lin, Journal of Applied

Physics 89 (2001) 6579.
[10] M.K. Chan, J.S. Parker, P.A. Crowell, C. Leighton, Physical Review B 77 (2008)

014420.
[11] T. Hughes, K. O’Grady, H. Laidler, R.W. Chantrell, Journal of Magnetism and

Magnetic Materials 235 (2001) 329.
[12] H.W. Xi, S. Franzen, S.N. Mao, R.M. White, Physical Review B 75 (2007)

014434.
[13] A.G. Biternas, R.W. Chantrell, U. Nowak, Physical Review B 82 (2010) 134426.
[14] B. Raquet, M.D. Ortega, M. Goiran, A.R. Fert, J.P. Redoules, R. Mamy,

J.C. Ousset, A. Sdaq, A. Khmou, Journal of Magnetism and Magnetic Materials
150 (1995) L5.

[15] F. Garcia, J. Moritz, F. Ernult, S. Auffret, B. Rodmacq, B. Dieny, J. Camarero,
Y. Pennec, S. Pizzini, J. Vogel, IEEE Transactions on Magnetics 38 (2002) 2730.

[16] J. Camarero, Y. Pennec, J. Vogel, M. Bonfim, S. Pizzini, M. Cartier, F. Ernult,
F. Fettar, B. Dieny, Physical Review B 64 (2001) 172402.

[17] A. M Goodman, K. O’Grady, H. Laidler, N.W. Owen, X. Portier, A.K. Petford-Long,
F. Cebollada, IEEE Transactions on Magnetics 37 (2001) 565.

[18] S. Sahoo, S. Plisetty, Ch. Binek, A. Berger, Journal of Applied Physics 101
(2007) 053902.

[19] G. Vallejo-Fernandez, N.P. Aley, J.N. Chapman, K. O’Grady, Applied Physics
Letters 97 (2010) 222505.

[20] J. Ventura, J.P. Araujo, J.B. Sousa, A. Veloso, P.P. Freitas, Physical Review B 77
(2008) 184404.

[21] Ch. Binek, Physical Review B 70 (2004) 014421.
[22] Ch. Binek, S. Polisetty, X. He, A. Berger, Physics Review Letters 96 (2006)

067201.
[23] E. Fulcomer, S.H. Charap, Journal of Applied Physics 43 (1972) 4190.
[24] M.R.J. Gibbs, J.E. Evetts, J.A. Leake, Journal of Materials Science 18 (1983) 278.
[25] G. Vizdrik, S. Ducharme, V.M. Fridkin, G. Yudin, Physical Review B 68 (2003)

094113.

D.Z. Yang et al. / Journal of Magnetism and Magnetic Materials 324 (2012) 3223–32263226


