
Attacks on the Basic cMix Design: On the
Necessity of Commitments and Randomized

Partial Checking?

Herman Galteland1, Stig F. Mjølsnes2, and Ruxandra F. Olimid2

1 Department of Mathematical Sciences, NTNU, Norwegian University of Science
and Technology, Trondheim, Norway
herman.galteland@math.ntnu.no

2 Department of Information Security and Communication Technology, NTNU,
Norwegian University of Science and Technology, Trondheim, Norway

sfm@ntnu.no, ruxandra.olimid@ntnu.no

Abstract The cMix scheme was proposed by Chaum et al. in 2016 as the
first practical set of cryptographic protocols that offer sender-recipient
unlinkability at scale. The claim was that the cMix is secure unless all
nodes collude. We argue that their assertion does not hold for the basic
description of cMix, and we sustain our statement by two different types
of attacks: a tagging attack and an insider attack. For each one, we
discuss the settings that make the attack feasible, and then possible
countermeasures. By this, we highlight the necessity of implementing
additional commitments or mechanisms that have only been mentioned
as additional features.

Keywords: cryptographic protocols, sender-recipient unlinkability,
anonymity, mixnets, attacks

1 Introduction

1.1 cMix

The cMix protocol by Chaum et al. [1] is an improved mixing network [2] which
aims to provide an anonymous communication tool for its users at large scales.
The mixing should be such that no one is able to relate an output message to a
user input message, that is, no one is able to link a sender with a recipient. An
important advantage over its predecessors is that cMix performs expensive com-
putations (like public key encryption) during a precomputation phase, keeping
the real-time phase, which is in charge with actual message delivery, fast. The
protocol is a part of a larger system, called Privategrity, but its authors describe
cMix independently.

The authors of Ref. [1] claim that cMix is the first practical system that
provides sender-recipient unlinkability, unless all nodes collude. We argue that

? The final publication is available at Springer via http://dx.doi.org/

978-3-319-61273-7_22

their assertion does not hold for the basic description of the protocol (as given
in [1, Section 4] and we sustain our statement by two different types of attacks.
Each of them has its own effect on the design of the original protocol. By this,
we want to highlight the necessity of using additional commitment mechanisms,
whereas Ref. [1] mentions this as additional features.

1.2 Related Work

The cMix system is designed to be resistant to most of the usual mix network
attacks. This paper focuses on the cryptanalysis of cMix, and Subsection 2.2
introduces in detail the adversarial model from [1]. We present here a very brief
survey of proposed general attacks on anonymous overlay networks.

Tagging attacks are a potential threat to all mix networks [3]. An adversary
can put an identifier tag on an input message to the mix network and attempt to
recognize the tag in the output messages. If successful, the adversary can break
the anonymity of a specific sender. We show in Section 3 that cMix is vulnerable
to a tagging attack.

Replay attacks are attacks in which an adversary retransmits a valid mes-
sage several times, making it possible to analyze the outgoing traffic [4]. We do
not analyze replay attacks against cMix system, as they are eliminated by the
adversarial model (see Subsection 2.2).

Intersection attacks and statistical disclosure attacks use information ac-
quired by observing mix networks where the users can freely choose the mix
node for their messages (free mix nodes) [4–6]. In such systems different batches
can be distinguished since they come from different mix nodes. If a sender use
the same mix nodes for every message then the adversary can separate the routes
by analyzing the network flow.

Traffic analysis attacks is a family of attacks that observes the network
traffic in order to deduce informational patterns in communication and targets
connection-based systems. Unlike message-based systems like cMix, connection-
based systems use free mix nodes that do not batch and permute messages. By
counting packets [7] and timing communication [8] the adversary is able to distin-
guish between different paths in the (free) mix network. Contextual attacks [9]
(or traffic confirmation attacks [10], or intersection attacks [11]) analyze the
traffic when specific users and recipients use a protocol, their communication
pattern, and how many messages they send and receive.

The authors of cMix recognize that their proposal is potentially vulnerable
to attacks that make anonymous systems fail, like the broadband intersection
attacks, contextual attacks, or DoS (Denial of Service) [1].

1.3 Results

We focus on the security analysis of the basic cMix description as described
in [1, Section 4], and show that it is susceptible to two attacks, which differ by
action type.

Tagging Attack. The cMix paper [1] introduces commitments [12] to overcome
tagging attacks. The paper states that “tagging attacks do not work before the
exit node”, and “if a tagging attack is detected, at least the last node should
be removed from the cascade” [1, Section 4.3]. Therefore the authors might be
aware of a possible attack that can be performed by the exit node. However, they
do not consider any prevention for this. We introduce a simple tagging attack
launched by the exit node. Although a prevention mechanism is immediate (by
adding an extra commitment) we consider it for completeness, as an example of
a possible tagging attack against the system. In personal communications, the
authors of cMix acknowledged that the actual design of the system adds the
additional commitment we refer to as a countermeasure [13].

Insider Attack. The cMix paper [1] claims that attacks are unsuccessful unless
all nodes collude. We contradict this by showing that the last node can break the
unlinkability, essentially by creating a mix network consisting of itself only. The
attack will succeed by the last node deviating from the protocol rules and choose
its own output. We argue that this attack remains undetected in the original ver-
sion of cMix, and becomes detectable only if additional checks like Randomized
Integrity Checking (RPC, see Subsection 2.3) are considered (suggested by the
authors of [1] as a special feature). We show the necessity of using randomized
partial checking (RPC). However, an inappropriate use of RPC could allow a
coalition of nodes (all except one) to link a large fraction of the senders to their
recipients.

1.4 Outline

Section 2 describes the cMix scheme and presents the adversarial model. The
two following sections contain our results: Section 3 describes a simple tag at-
tack similar to the tag attack described in the original cMix paper [1]. Section
4 presents the insider attack where the adversary controls the last node and
makes the overall mixing process independent of the preceding nodes. Section 6
concludes and indicates possible future research directions.

2 Preliminaries

2.1 cMix Description

Figure 1 describes the cMix protocol from [1]. We ignore the return steps, since
they are irrelevant for our attacks. Note that this does not restrict the applicabil-
ity of our results, since the same permutation is used for both forward and return
paths. Once the permutation is disclosed both directions of communication are
compromised.

cMix has two phases: a precomputation phase and a real-time phase. By
design, the heavy public key computations are performed in the precomputation
phase, which can be performed on separate hardware (for each node). Since

Table 1. Notations

Uj user j
M a batch of β messages M = (M1, . . . ,Mβ), each Mi sent by a distinct user
Ni node i from the set of n mix nodes {N1, . . . , Nn}
ei the share of node Ni of the secret key e
d the public key of the system, where d =

∏n
i=1 g

ei

E(·) a multi-party group-homomorphic encryption under the system public key d
πi a random permutation on a batch, applied by node Ni
Πi the composed permutation performed by all nodes from N1 to Ni
ki,j the derived secret key shared between node Ni and the sending user of slot j
ki the vector of derived secret keys shared between node Ni and all users in a

batch, i.e. ki = (ki,1, . . . , ki,β)
Kj the product of all shared keys for the sending user of slot j, i.e. Kj =

∏n
i=1 ki,j

ri, si random values of node Ni for the batch, where ri = (ri,1, . . . , ri,β), respec-
tively si = (si,1, . . . , si,β)

Ri,Si the direct product of the first i values, i.e. Ri =
∏i
j=1 rj , respectively Si =∏i

j=1 sj

the precomputation phase does not require any input from the users it can be
performed offline and while a batch is being filled up with messages.

The scheme consists of a sequence of n mix nodes that process β messages at
a time (a batch of messages); made simple, each node performs a permutation on
the input and blinds the output by multiplying it with a random value. The last
node Nn makes an exception, as it usually behaves differently from the other
nodes (see Figure 1).

Besides the last node there is another entity with a special role in the system
- the network handler - that interacts both with the users and the whole set of
nodes. The network handler receives messages from the users and arranges them
into batches; once a batch is full it is sent to the first node in the mix network.
After the last node performs its mixing it sends the batch back to the network
handler, which can then forward or broadcast the messages to the destination.
The mixing should be such that no one is able to relate an output message to a
user input message, that is, no one is able to link a sender with a recipient.

Before using the system each sender Uj must establish a private symmetric
key with each of the nodes Ni, which they use as a seed in a pseudorandom
generator to derive the secret keys ki,j . To blind a message Mj before it is
sent to the network handler, user Uj multiplies Mj with a key composed by
the derived keys shared with each of the nodes Kj =

∏n
i=1 ki,j . The network

handler arranges messages into a batch and sends it through the mix network.
Each node applies its permutation to the batch and the last node sends it back
to the network handler. The output is a permuted batch of messages.

During the mixing step of the precomputation phase each node performs
encryption under a public key of the system; the related private key is split across

Precomputation Phase

Step 1 (preprocessing). Each node Ni, 1 ≤ i ≤ n, selects a random ri, computes the
encryption E(r−1

i) and sends it to the network handler. The network handler computes
the product of all the received values, produces E(R−1

n) =
∏n
i=1E(r−1

i) and sends it to
the first node.

Step 2 (mixing). Each node Ni, 1 ≤ i ≤ n, computes πi(E(Πi−1(R−1
n) × S−1

i−1)) ×
E(s−1

i), where Π0 is the identity permutation and S−1
0 = 1. The last node sends the

vector of random components (i.e. the first component) of the ciphertext (x, c) =
E((Πn(Rn)× Sn)−1) to the other nodes and stores the vector of message components
(i.e. the second component) locally for the real-time phase.

Step 3 (postprocessing). Using the random component x, each node Ni, 1 ≤ i ≤ n,
computes its individual decryption share for (x, c) as Di(x) = x−ei , stores it locally
to use in the real-time phase and publicly commits to it.

Real-Time Phase

Step 0. Each user constructs its message MK−1
j (for slot j) by multiplying the message

Mj with the inverse of the key Kj and it sends it to the network handler, which collects
all messages and combines them to get a vector M×K−1.

Step 1 (preprocessing). Each node Ni, 1 ≤ i ≤ n, sends ki× ri to the network handler,
which uses them to compute M×Rn = M×K−1×

∏n
i=1ki × ri and sends the result

to N1.

Step 2 (mixing). Each node Ni, 1 ≤ i ≤ n, computes πi(Πi−1(M × Rn) × Si−1) ×
si, where Π0 is the identity permutation and S0 = 1. The last node Nn sends a
commitment to its message Πn(M×Rn)× Sn to every other node.

Step 3 (postprocessing). Each node Ni, 1 ≤ i ≤ n−1, sends its precomputed decryption
share for (x, c) = E((Πn(Rn)× Sn)−1) to the network handler, while the last node
Nn sends its decryption share multiplied by the value in the previous step and the
message component: Πn(M × Rn) × Sn × Dn(x) × c. Finally, the network handler
retrieves the permuted message as Πn(M) = Πn(M×Rn)× Sn ×

∏n
i=1Di(x)× c.

Figure 1. The cMix Protocol (forward path) [1]

all nodes in the network. The encryption scheme suggested by the authors of [1] is
the multi-party group-homomorphic encryption based on ElGamal [14] described
by Benaloh [15]. Moreover, all computations of the protocol are performed in a
prime order cyclic group G that satisfies the decisional Diffie-Hellman security
assumption. We denote by G∗ the set of nonidentity elements in G.

Refer to Figure 1 for the detailed self-contained description of the cMix pro-
cess, using the notation defined in Table 1.

2.2 Adversarial Model

The adversarial model in [1] assumes authenticated channels among the mix
nodes and between the network handler and each mix node. This implies that
the adversary can read, forward, and delete messages, but not modify, inject,
or replay messages without detection. The adversary can compromise the users
(up to all except two), and the mix nodes (up to all except one). Compromised
nodes can behave malicious but cautious, since the attacker aims to remain
undetected. Within this attacker model, the authors of cMix claim that the
output is unlinkable to the input, even if the adversary knows the set of senders
and the set of recipients for every batch of messages.

The security analysis in the Appendix A of the cMix paper assumes secure
authenticated channels for which the adversary cannot read the content, only
the length of a message. All our attacks hold under these stronger security as-
sumptions.

2.3 Features and Extensions

The cMix paper [1] dedicates a section to special features and extensions of
the system. It shortly discusses the utility of adding RPC (Randomized Integrity
Checking) to cMix, an integrity check mechanism introduced by Jacobsson, Juels
and Rivest [16], and further analyzed and developed in Refs. [17,18]. The usage
of RPC in the cMix system is that each node commits to a randomly chosen
permutation, publishes its input and output, and validates that it has followed
the protocol correctly by revealing a (large) fraction of its secret input/output
pairs, where these pairs are selected by the other nodes (or by a random oracle).
The cMix system protects the user’s privacy by putting nodes in pairs, such
that each node belongs to only one pair. Nodes in a pair reveal their secret
information such that none of the messages can be followed from the input of
the first node to the output of the second node.

3 The Tagging Attack

Our first attack is similar to the tag attack described in the cMix paper [1], but
it uses a different value to remove the tag. During the precomputation phase
the nodes compute the value (x, c) = E((Πn(Rn)×Sn)−1), where the last node
stores the vector of message components, c, locally and sends the vector of
random components, x, to all other nodes. Each node computes its decryption
share using x and commits to this value. Note that it is uncertain whether c is
being committed to or not in the description of the basic cMix protocol.

The authors of cMix introduce commitments to detect potential tagging at-
tacks exposing any attempt of using the decryption shares to remove the tag.
However, the commitments are independent of c, so it is possible to perform a
similar attack which uses c instead of Dn(x) to remove the tag. The downside is
that the adversary needs to corrupt the last node (which has access to c) and the

Goal: Tag a message Mj belonging to user Uj and recognize it in the permuted batch
of messages, linking the sender Uj to its recipient.

Step 1. The corrupted node Nn creates a tag vector t which consists of β − 1 ones
and one tag t ∈ G∗ in slot j (i.e. t = (1, . . . , 1, t, 1, . . . , 1)), computes kn× rn× t and
sends it to the network handler (Real-time Phase.Step 1).

Step 2. The network handler sends the set of all decryption shares {Di(x)|1 ≤ i < n}
to the last node (Real-time Phase.Step 3). Node Nn can retrieve the permuted messages
as Πn(M × t) = Πn(M ×Rn × t) × Sn ×

∏n
i=1Di(x) × c and recognize the tagged

message in slot j′.

Step 3. The corrupted node Nn creates the inverse tag vector t−1, which consists
of β − 1 ones and one tag t−1 ∈ G∗ in slot j′, computes c′ = c × t−1, and sends
Πn(M×Rn)× Sn ×Dn(x)× c′ to the network handler.

Figure 2. The Tagging Attack

network handler (under the assumption of secure authorized channels). Figure
2 describes the tag attack.

For the tag attack to be successful we need to assume that it is possible
to recognize valid messages in the output. To tag a message Mj the last node
creates a tag vector t = (1, . . . , t, . . . , 1), where t is in position j, multiply it with
the keys and random values kn × rn × t, and sends the result to the network
handler. The tag then goes though the mixnet attached to message Mj and
arrives at the last node as Πn−1(M×Rn × t)× Sn−1. Then the last node can
permute and do the computations according to the protocol, and publish its
commitment to the value Πn(M×Rn× t)×Sn. This triggers all other nodes to
send their decryption share to the network handler, which forwards them to Nn.
The last node can then retrieve the batch of permuted messages and find the
invalid message Mjt in slot j′ of the permuted batch. The last node creates the
inverse tag t−1, which has t−1 in slot j′, and replaces the message components
with the altered value c′ = c× t−1. The network handler then computes

Πn(M×Rn × t)× Sn × c′ ×
n∏
i=1

Di(x) =

Πn(M×Rn × t)×Sn × (Πn(Rn)×Sn)−1 × t−1 = Πn(M× t)× t−1 = Πn(M)

and delivers the permuted batch as normal. That is, the adversary has success-
fully linked a sender with a recipient without being detected.

To make this attack detectable, the last node should publish a commitment
to the vector of message components c in the Precomputation Phase.Step 3, or
the system should implement RPC as an integrity check mechanism. Although
prevention can be simply achieved by natural solutions like the ones mentioned,
we introduce the attack for completeness; it stands as an example of tagging

attack performed by the last node, a type of attack the authors of cMix seem
to be aware of (see [1], Section 4.2: “tagging attacks do not work before the exit
node” and “if a tagging attack is detected, at least the last node should be removed
from the cascade”).

At the time of writing, the authors of cMix acknowledged that the actual
design of the system implements the countermeasure we refer to and commits
to the vector of message components c, as explained above [13].

4 The Insider Attack

Our second attack allows the last node to ignore all permutations introduced
by the previous nodes and perform the overall mixing process by itself. Hence,
the output of the real-time phase will be a batch of messages permuted with a
known permutation making it easy to link all senders and recipients. To succeed,
the adversary needs to corrupt the last node (which controls the output of the
mixing process) and the network handler (which knows the content of the values
E(R−1n) and M×Rn, under the assumption of secure authenticated channels).
Figure 3 describes the insider attack.

During Precomputation Phase.Step 1 the corrupted network handler computes
and sends E(R−1n) to the first and the last nodes. The honest nodes operates
as normal, where the last, dishonest, node discards the input it receives from
the previous node and chooses its own output. The last node draws a random
vector A = (A1, . . . , Aβ), encrypts the inverted values, E(A−1), and computes
πn(E(R−1n)×E(A−1)) = πn(E(R−1n ×A−1)). The last node publishes the random
components, that is x, of πn(E(R−1n ×A−1)) = (x, c) to the other nodes such
that they can prepare their decryption shares.

In Real-Time Phase.Step 1 the network handler sends M×Rn to the first and
the last nodes. In the mixing step the last node discards what it receives from
the previous node, selects its output πn(M×Rn×A), commits to this batch of
messages, and sends πn(M×Rn ×A)× c×Dn(x) to the network handler. As
the network handler receives the decryption shares from the other nodes it can
retrieve the permuted messages and forward them to the receivers:

πn(M×Rn×A)×c×
n∏
i=1

Di(x) = πn(M×Rn×A)×πn(R−1n ×A−1) = πn(M).

Note that the output batch is only permuted with the permutation πn, which is
known to the last node. Hence, the adversary can easily deanonymize all of the
senders by applying πn

−1 to the output.

The RPC mechanism ensures with high probability that each node follows
its instructions, hence, this will prevent the last node from deviating from the
protocol. Since our insider attack changes the entire batch, RPC will detect the
attack with overwhelming probability. This shows the necessity of implementing
RPC with cMix.

Goal: Perform the mixing process with only the last node using only a known per-
mutation to permute the batch of messages.

Step 1. The network handler computes and sends E(R−1
n) to the first and last node

(Precomputation Phase.Step 1). The last node discards the input it is given form the
previous node and publishes the component of random elements of πn(E(R−1

n ×A−1)),
for a random and invertible A (Precomputation Phase.Step 3).

Step 2. The network handler computes and sends M ×Rn to the first and last node
(Real-Time Phase.Step 1). The last node discards the input it is given form the previous
node, publishes a commitment to πn(M ×Rn ×A), and sends πn(M ×Rn ×A) ×
c×Dn(x) to the network handler (Real-Time Phase.Step 3).

Step 3. The network handler retrieves the permuted batch of messages as πn(M) =
πn(M ×Rn ×A) × πn(R−1

n ×A−1) and publishes it. The adversary can recover M
by applying πn

−1.

Figure 3. The Insider Attack

Notes on the RPC mechanism. RPC makes the nodes reveal a (large)
fraction of their secret information, which could break the anonymity of the users
[18]. As an example, let us assume that each node performs only one permutation
and proves the correctness of its output for this permutation. Further assume
that an adversary corrupts all except one, honest, node and therefore only needs
the permutation from this node to deanonymize the users. When using RPC,
the honest node would reveal information about its permutation. Hence, the
adversary can easily break the anonymity for a substantial portion of the users
using the information made public by the RPC mechanism.

Even in the scenario where there are two honest nodes that are paired, the
adversary can get some information about the senders and receivers [18]. Nodes
in a pair reveal information such that no messages can be followed from the input
of the first node to the output of the second node in a pair. This means that

Ni

First mixing

Ni+1

Second mixing

Mj

}
3Mj

Figure 4. RPC: Two paired nodes revealing each separate half of their permutation.
Continuous lines means information is revealed and dashed lines means information is
not revealed

if a message, say Mj , is revealed by the first node, then it will not be revealed
by the second node (see Figure 4). Given enough rounds of cMix, an adversary
might eventually link senders and recipients that are frequently talking with
each other. Therefore, two honest nodes (a single pair) are usually not enough
to protect the anonymity of all users.

5 Rebuttal from the Authors of cMix

The authors of the original cMix paper [1] made the following rebuttal to the
initial submission of this paper:

[...]Galteland, Mjølsnes, and Olimid propose a tagging attack and an
insider attack against the cMix protocol, as described in the preliminary
cMix eprint [1]. But security mechanisms specified in this preliminary
cMix eprint prevent both attacks. In addition, alternative integrity mech-
anisms (e.g., trap messages) specified in the current cMix paper [19] pro-
vide additional ways to prevent these attacks. In particular, as presented
in the preliminary cMix eprint, Random Partial Checking (RPC) [17]
prevents both attacks.[...]

The tagging attack does not work because RPS prevents it, as ex-
plained in the preliminary cMix eprint [1, Section 7.3]. In addition, cMix
stops the attack by commitment: it commits to the value the Galteland
et al. allege makes the tagging attack possible. Our system design and
prototype implements this commitment, even though the original cMix
eprint does not mention this detail. Before reading the paper by Galte-
land et al., we were aware of this attack and of similar ones. After coming
across an earlier version of their paper [20], we contacted the authors to
inform them that our design and implementation included commitments
to prevent these types of attacks, which they do acknowledge. [...]

Despite some interesting features, the insider attack does not work
because RPC detects it, as Galteland et al. also acknowledge. The pre-
liminary cMix eprint [1, Section 7.3] prescribes using RPC. [...]

We disagree with their claim that we overlooked important details
underlying these alleged attacks. The attacks proposed by Galteland et
al. do not work: security mechanisms specified in the preliminary cMix
eprint prevent both attacks.

As a response to their remarks, both our attacks are valid under the basic
protocol description given in [1, Section 4]. The commitment mechanism required
to overcome the first attack is not used or referred to in the original paper, as
acknowledged in the authors’ response. Furthermore, the cMix paper describes
RPC as an extension, therefore usage of RPC can hardly be understood as
necessary [1]. We claim the necessity of RPC or an equivalent mechanism. RPC
is not included in the formal analysis, hence it is left outside the security theorems
and performance discussions, while we find that RPC is crucial for the security of
the system, and might introduce a significant performance penalty. The response

note informs us that proper security mechanisms protecting against the attacks
we have presented are used in their prototype and explained in a new paper, but
both of those are currently unavailable to us for inspection.

6 Conclusions

We demonstrate by examples that the cMix scheme, as it was initially defined in
its basic settings, would allow linkability between senders and recipients, hence
compromising the anonymity of the users. We describe the actions an adversary
could follow to succeed for both types of attacks (the tagging attack and the in-
sider attack). The attacks succeed in the secure authenticated channels settings,
and under the assumption that the adversary can corrupt the network handler.
This is a natural assumption that was also made by that the authors of cMix.

By discussing the attacks, we highlight the necessity of the use of commit-
ments and the RPC integrity mechanisms, which have only been mentioned as
additional features in cMix scheme, and where these mechanisms are not fully
included in the security proofs. However, the authors of cMix have expressed
that their demonstration software implements the commitment mechanism that
prevents our tagging attack.

This paper is restricted to a theoretical exposure of some attacks against the
cMix standalone set of cryptographic protocols. Future analysis work can include
experimental activities for practical attacks on real-world cMix implementations.
Of course, the scalability of performance, throughput, and latency are key issues.
An enterprising theoretical work would be to analyze the cMix security within
the context of the larger system Privategrity.

Acknowledgements. Herman Galteland is funded by Nasjonal sikkerhetsmyn-
dighet (NSM), www.nsm.stat.no.

References

1. Chaum, D., Das, D., Javani, F., Kate, A., Krasnova, A., de Ruiter, J., Sher-
man, A.T.: cMix: Anonymization by high-performance scalable mixing. Cryptol-
ogy ePrint Archive, Report 2016/008 (2016) http://eprint.iacr.org/, version
20160530:183553 from May, 30 2016.

2. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM 24(2) (February 1981) 84–90

3. Goldschlag, D.M., Reed, M.G., Syverson, P.F.: Hiding routing information. In An-
derson, R., ed.: Proceedings of Information Hiding: First International Workshop,
Springer-Verlag, LNCS 1174 (May 1996) 137–150

4. Berthold, O., Pfitzmann, A., Standtke, R. In: The Disadvantages of Free MIX
Routes and How to Overcome Them. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2001) 30–45

5. Danezis, G., Diaz, C., Troncoso, C. In: Two-Sided Statistical Disclosure Attack.
Springer Berlin Heidelberg, Berlin, Heidelberg (2007) 30–44

6. Danezis, G., Serjantov, A. In: Statistical Disclosure or Intersection Attacks on
Anonymity Systems. Springer Berlin Heidelberg, Berlin, Heidelberg (2005) 293–
308

7. Serjantov, A., Sewell, P. In: Passive Attack Analysis for Connection-Based
Anonymity Systems. Springer Berlin Heidelberg, Berlin, Heidelberg (2003) 116–
131

8. Danezis, G. In: The Traffic Analysis of Continuous-Time Mixes. Springer Berlin
Heidelberg, Berlin, Heidelberg (2005) 35–50

9. Raymond, J.F.: Traffic analysis: Protocols, attacks, design issues, and open prob-
lems. In: International Workshop on Designing Privacy Enhancing Technologies:
Design Issues in Anonymity and Unobservability, New York, NY, USA, Springer-
Verlag New York, Inc. (2001) 10–29

10. Syverson, P.F., Goldschlag, D.M., Reed, M.G.: Anonymous connections and onion
routing. In: Proceedings of the 1997 IEEE Symposium on Security and Privacy.
SP ’97, Washington, DC, USA, IEEE Computer Society (1997) 44–54

11. Berthold, O., Langos, H. In: Dummy Traffic against Long Term Intersection At-
tacks. Springer Berlin Heidelberg, Berlin, Heidelberg (2003) 110–128

12. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge.
J. Comput. Syst. Sci. 37(2) (October 1988) 156–189

13. de Ruiter, J.: Personal communication in e-mail from July, 28 2016.
14. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete

logarithms. In: Proceedings of CRYPTO 84 on Advances in Cryptology, New York,
NY, USA, Springer-Verlag New York, Inc. (1985) 10–18

15. Benaloh, J.: Simple verifiable elections. In: Proceedings of the USENIX/Accurate
Electronic Voting Technology Workshop 2006 on Electronic Voting Technology
Workshop. EVT’06, Berkeley, CA, USA, USENIX Association (2006) 5–5

16. Jakobsson, M., Juels, A., Rivest, R.L.: Making mix nets robust for electronic voting
by randomized partial checking. In: Proceedings of the 11th USENIX Security
Symposium, Berkeley, CA, USA, USENIX Association (2002) 339–353

17. Khazaei, S., Wikström, D.: Randomized partial checking revisited. In: Proceedings
of the 13th International Conference on Topics in Cryptology. CT-RSA’13, Berlin,
Heidelberg, Springer-Verlag (2013) 115–128

18. Küsters, R., Truderung, T., Vogt, A.: Formal analysis of chaumian mix nets with
randomized partial checking. In: Proceedings of the 2014 IEEE Symposium on
Security and Privacy. SP ’14, Washington, DC, USA, IEEE Computer Society
(2014) 343–358

19. Chaum, D., Das, D., Javani, F., Kate, A., Krasnova, A., de Ruiter, J., Sherman,
A.T.: cMix: Mixing with minimal real-time asymmetric cryptographic operations.
submitted to Privacy Enhanced Technologies (PETS) 2016 (2016)

20. Galteland, H., Mjølsnes, S.F., Olimid, R.F.: Attacks on cmix - some small
overlooked details. Cryptology ePrint Archive, Report 2016/729 (2016) http:

//eprint.iacr.org/2016/729.

