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Abstract

A general modelling framework for optimization of multiphase flow networks with discrete de-
cision variables is presented. The framework is expressed with the graph, and special attention is
given to the convexity properties of the resulting programming formulation. Nonlinear pressure
and temperature relations are modelled using multivariate splines and a special mixed-integer
nonlinear programming (MINLP) formulation with spline constraints results. A global solution
method is devised by combining the framework with a spline-compatible MINLP solver, recently
presented in the literature. The solver is able to globally solve the nonconvex optimization prob-
lem. The new solution method is benchmarked with several local optimization methods on a set
of three realistic subsea production optimization cases provided by the oil company BP.

Keywords: nonlinear flow networks, petroleum production optimization, mixed-integer
nonlinear programming, branch-and-bound, splines.

1. Introduction

Multiphase flow networks appear in many application areas. In this paper we are particularly
interested in multiphase flow networks for subsea oil and gas production. Such networks consist
of wells, collection systems, pipelines, and in some cases processing units such as pumps and
separators. In recent years real-time data capture and storage capabilities have become an indus-
try standard, thus paving the way for the use of model-based techniques to improve operations.
In practice, the use of model-based methods translates into advisory systems for production engi-
neers. Such systems use real-time data in combination with calibrated mathematical models and
optimization to improve economics of an oil field by increasing oil throughput. It can be hard to
measure the true value of model-based advisory systems since they have impact on profit, cost of
operating, HSE and operating risk, and possibly other non-economic values. This may explain
why operators tend to prefer maximization of hydrocarbons (oil and gas): hydrocarbon produc-
tion can be measured, and sometimes must be measured to conform with legislation and fiscal
systems. Some claims to a production increase in the range from 1-4% due to use of model-based
tools can be found in the literature (Stenhouse et al., 2010; Teixeira et al., 2013). In the latter
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testimonial, a 1.2% production increase on a medium size offshore production vessel is claimed,
amounting to $35mill per year. Thus, the economic potential is clearly significant. Despite this,
real-time decision support tools as alluded to above are rarely used in the upstream petroleum
industries.

Two key reasons for limited use are lack of tools for model maintenance, and robust and
efficient solvers, respectively. First, models must be updated periodically due to the time-varying
nature of the production system; in particular, reservoir conditions change with time due to reser-
voir pressure decline and changing fluid compositions. Second, the optimization problem itself
is hard to solve since models are nonlinear and often available only as black box calculators.
In fact, oil and gas production systems are typically modelled in proprietary process simulators,
not offering gradient information. Thus, there are several factors that contribute to long solution
times, including the following: a lack of analytical derivatives, computational expensive evalu-
ations of the process simulator, and slow IO operations in the communication between process
simulator and optimization solver. It may be added that different parts of the flow network, in
particular well models and pipeline models, may be available in different simulator applications,
thus complicating matters even more. Moreover, decision variables are both continuous and dis-
crete. Thus, we are faced with mixed-integer nonlinear (MINLP) problems that may include
black-box constraints. Long solution times prevent efficient use of decision support tools and
break the natural workflow of the production engineers. When it takes several hours to arrive at
an optimization the result is often “out of date” before it is available to the them.

This paper suggests a methodology to overcome the challenges related to the optimization
part as presented above. This is done in three steps. First, we adapt a well known, graph-
based modelling scheme to oil and gas networks. Second, we propose the use of spline-based
surrogate models to represent the nonlinear parts of the system. This implies that models, which
are available as proprietary (black-box) simulators, explicit model equations or look-up tables,
are approximated with splines through a sampling and interpolation scheme. By performing
this substitution for each item of equipment in the network a priori optimization, the solver can
be decoupled from the process simulator during the optimization run, resulting in a considerable
reduction in solution times. Third, we introduce a global branch-and-bound based MINLP solver
that exploits the facts that all nonlinearities are described by splines and takes advantage of the
structural properties of oil and gas networks. In order to evaluate our approach it was deemed
necessary to use a comprehensive and realistic test bench rather than simplistic cases. Thus, three
industrial cases are used where all relevant models and constraints are included.

The remainder of this paper is organized as follows. A short description of the production
optimization problem for subsea production systems is given in Section 2. A brief report on
recent works on this topic follows in Section 3. A new mathematical programming framework
for optimizing general flow networks is derived in detail in Section 4. In Section 5, we give a
description of B-splines, which are used as surrogate models for the nonlinear functions in the
problem formulation presented in Section 4. The solution method is presented in Section 6 and
benchmarked on several realistic cases in Section 7. Finally, some concluding remarks are given
in Section 8.

2. Problem description

Consider the subsea production system illustrated in Figure 1, consisting of reservoirs, wells,
manifolds, flowlines, risers, and separators. The system is built to allow a safe and efficient
transportation of reservoir fluid to the surface. At the surface the fluid is separated before it
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is further treated in processing facilities. The fluid flow through the system is controlled with
valves, e.g. chokes (adjustable valves) and manifold valves (on/off valves). The valve settings
decide the production and operational status of the wells: that is, the flow rate of each well, the
routing of the flows through the network, and the allocation of lift gas.

Figure 1: A subsea production system with two daisy-chained manifolds.

The daily production optimization problem is the search for valve settings that maximize the
production of oil (or profit) while respecting physical laws and operational constraints. Phys-
ical laws that must be abided include: mass, momentum, and energy conservation laws; and
well inflow relations. Some physical laws may be empirically modelled because of their high
complexity. For example, pipeline pressure drops are often modelled with the empirical Beggs
and Brill correlation (Beggs et al., 1973). Typical operational constraints may include: upper
and lower rate constraints; draw-down (minimum) pressure constraints; oil, gas, and water han-
dling capacity constraints; upper bound on gas-lift availability; and number of allowed routing
changes. The operational constraints are typically provided by the user to be in accordance with
the current production plan.

A requirement for solving the daily production optimization problem, and for it to provide
applicable and optimal solutions, is that an accurate model of the production system is available.
The model should accurately predict flow rates for any valve setting in the search space of in-
terest. To reduce the modelling effort, we present a mathematical programming framework that
includes the above-mentioned physical laws and operational constraints of a generic production
system. The flexible framework, presented in the next section, allows for modelling of most
common subsea production system topologies.

3. Previous work

Network flow and design problems lie in the intersection of several domains, including: op-
erations research, applied mathematics, engineering, and computer science (Ahuja et al., 1993).
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A diverse set of problems can be formulated as network problems, for example: optimization
of urban public transportation networks (Mandl, 1980), train routing and scheduling (Cordeau
et al., 1998), and design of optimal water distribution systems (Alperovits and Shamir, 1977).

The recent works of Luathep et al. (2011) and Raghunathan (2013) look at global optimiza-
tion of the network design problem using a MILP and MINLP approach, respectively. These
methods have features similar to the method presented later in this paper. For instance, the graph
is used as a modelling tool, convex formulations are obtained by using the big-M relaxation,
nonlinear relations are approximated with piecewise functions, and a MILP or MINLP problem
is solved using a specialized solver.

In the following we provide a brief report on works that address the petroleum production
optimization problem described in Section 2. To the authors’ knowledge, the works of Kosmidis
et al. (Kosmidis et al., 2004, 2005) were the first to address well oil rate allocation, gas lift
allocation, and well routing with a single problem formulation. In these works the complete
production optimization problem is posed as a MINLP problem.1 Many earlier works have con-
sidered optimization of individual network components, for instance optimal gas lift allocation
on a well basis (Wang, 2003; Rashid et al., 2012). A survey on these early works is provided
by Kosmidis et al. (2005) and Bieker et al. (2007). From 2006 and onwards, several works have
emerged that build on the contributions of Kosmidis et al. (2005) or use a similar approach, see
for example Martin et al. (2006); Misener et al. (2009); Gunnerud and Foss (2010); Codas and
Camponogara (2012). These works use piecewise linear formulations to approximate nonlinear
relations in the network such as nonlinear pressure drop functions. This modelling approach
results in a MILP that scales poorly when nonseparable functions of four or more variables are
approximated (Misener and Floudas, 2010; Vielma et al., 2010; Vielma and Nemhauser, 2011).
This may be one reason for the relatively simple formulations used in these works. For example,
temperatures are not considered and pressure drops are modelled as functions of flow rates only.
Interestingly, the MINLP formulation of Kosmidis et al. (2005) did include linear temperature
drop models. A computational analysis of different multidimensional piecewise linear models
was recently provided by Silva and Camponogara (2014). The analysis shows that SOS2 mod-
els and MILP models with a logarithmic number of binary variables have the best performance.
These formulations may allow modelling of (nonseparable) functions of four or five variables,
for which separation to multiple lower-dimensional functions is not possible.

The spline-based approach presented in this paper can be viewed as an alternative to the
piecewise linear approaches mentioned above. The approach to be presented results in a global
NLP problem (MINLP if routing is included). The main difference is that the solver must branch
on continuous variables, instead of SOS2 or binary variables as is the case in the MILP ap-
proaches. The approach allows us to accurately approximate nonlinear functions in up to five
variables. This enables us to model pressure and temperature drops as functions of flow rates,
pressure, and temperature.

4. Multiphase flow network modelling

In this section we present a general mathematical programming formulation for multiphase
flow networks. The goal is to achieve a formulation that is as simple as possible, while capturing

1The problem is also referred to as the daily well scheduling problem in the literature.
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important physics with sufficient accuracy. This goal reflects our desire to obtain a problem
formulation that we can solve in reasonable time to get applicable solutions.

The problem formulation is based on the following assumptions:

A1. The system operates at steady-state conditions.
A2. Continuous and differentiable multiphase pressure drop and temperature drop models.
A3. The thermodynamics can be modelled under the assumptions in Section 4.3.
A4. No uncertainty is considered in the model structure or its parameters.

An argument for assumption A1 follows: The daily production optimization problem has a
horizon spanning several hours to one day. In general, the fluid dynamics in the network (wells
and pipelines) have time constants in the order of minutes, and will appear instant on this horizon.
Similarly, the dynamics at the system boundaries appear constant on this horizon: the reservoir
dynamics have time constants in the order of weeks to months, and the surface facility dynamics
have time constants in the order of seconds to minutes. One may note that there are exceptions
where A1 does not hold, examples include dynamic phenomena like slugging or casing-heading
instability which are highly influential on the production and act in the relevant horizon of hours.

Assumption A2 ensures continuous and differentiable constraint functions, which is a pre-
requisite for most gradient-based optimization solvers. As will be discussed, spline surrogate
models have these properties by construction, even when the function they approximate do not.
Assumption A4 is included since uncertainty is not structurally treated in the proposed frame-
work.

A directed graph G = (N,E), with nodes N and edges E, is used to represent the flow network
(Ahuja et al., 1993). A node in N represents a junction or simply a point of interest in the
network. An edge in E connects two nodes and represents a pipe segment (e.g. a wellbore,
jumper, flowline, or riser), a valve (e.g. a production choke or manifold valve), or any item of
equipment (e.g. a subsea multiphase pump). Valves represent special edges since they can be
closed to disjoint the neighbouring nodes. To make this distinction clear we introduce a subset
of edges, Ed, that represent the valves. An edge in Ed is referred to as a discrete edge since it
has two states: it is either open or closed. Associated with each discrete edge is a binary variable
which is used to model the switching between the open and closed state. The discrete edges are
used to route the flow through the network by restricting flow through certain valves. All other
edges (E\Ed) represent pipes or equipment.

Table 1 gives the various sets used to describe the flow network. Some utility sets that sim-
plify the notation are given in Table 2. In the rest of this paper the terms graph, network, and
system are used interchangeably.

The following requirements are placed on the graph structure:

R1. A source node i ∈ Nsrc has zero entering edges and one leaving edge, i.e. Ein
i = ∅ and

|Eout
i | = 1.

R2. A sink node i ∈ Nsnk has zero leaving edges, i.e. Eout
i = ∅.

R3. An internal node i ∈ Nint has one or more leaving edges. It may have more than one leaving
edges iff all of them are discrete edges and at most one of them can be open at any time.

The first and second requirement follow the normal definition of source and sink nodes.
The additional requirement that a source node may have only one leaving edge is made without
loss of generality (an equivalent graph fulfilling this requirement can always be obtained by
adding nodes). The third requirement on the internal nodes is needed because splitting of fluids
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Table 1: Sets

Set Description

N Set of nodes in the network.
Nsrc Set of source nodes in the network. Nsrc ⊂ N.
Nsnk Set of sink nodes in the network. Nsnk ⊂ N.
Nint Set of internal nodes in the network. Nint = N\{Nsrc ∪ Nsnk}.
E Set of edges in the network. An edge e = (i, j) connects node i to node j, where

i, j ∈ N.
Ed Set of discrete edges that can be open or closed. Ed ⊂ E.
S Set of flow phases in the network. For three-phase petroleum flow the phases are

denoted S = {oil, gas,wat}, where oil denotes the hydrocarbon liquid phase, gas the
hydrocarbon gas phase, and wat the water liquid phase. A compositional model may
have more than three phases/components.

is not modelled; this simplifying requirement is commonly applied in works on flow network
modelling (Codas et al., 2012). This requirement is enforced by manifold routing constraints, to
be presented later in this section.

The sets Esrc and Esnk in Table 2 are cut-sets. A cut-set is a set of edges that, if removed,
partitions the graph nodes into two disconnected subsets. These sets are useful because the net
flow through the graph can be measured as the net flow over the edges in a cut-set.

Table 2: Utility sets

Set Description

Ein
i Set of edges entering node i, i.e. Ein

i = {e : e = ( j, i) ∈ E}.
Eout

i Set of edges leaving node i, i.e. Eout
i = {e : e = (i, j) ∈ E}.

Esrc Set of edges leaving a source node in Nsrc, i.e. Esrc =
⋃

i∈Nsrc
Eout

i .

Esnk Set of edges entering sink node in Nsnk, i.e. Esnk =
⋃

i∈Nsnk
Ein

i .

Nd Set of nodes with discrete leaving edges, i.e. Nd = {i : i ∈ N,Eout
i ⊂ Ed} ⊂ N.

The variables of the problem, listed in Table 3, are related to the nodes and edges of the graph.
The flow rates are given as mass flow rates or as volumetric flow rates in standard conditions.
In the latter case, the flow rates must be properly scaled with the phases’ standard condition
densities, denoted with ρs for s ∈ S. For brevity, the phase flow rates on an edge e ∈ E are
collectively denoted qe, that is, with an oil, gas, and water phase, qe = [qe,oil, qe,gas, qe,wat]T.
Furthermore, we denote all the flow rates, pressures, and pressure drops in the network with q,
p, and ∆p, respectively. We use the same notation for vectors containing the temperature and
enthalpy variables.

With the network topology represented by the graph, and the variables and parameters as-
sociated with the nodes and edges, the flow network is modelled by placing control volumes
around each node and edge. In each control volume mass, momentum, and energy conservation
laws are enforced. In the following, we present the equations/constraints for the conservation
laws, as well as some operational constraints. Together with an objective, they form the basis
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Table 3: Variables

Variable Description

pi Pressure at node i ∈ N.
∆pe Pressure drop over edge e = (i, j) ∈ E, e.g. ∆pe = pi − p j.
te Temperature of fluid entering edge e ∈ E.
∆te Temperature drop over edge e ∈ E. The fluid leaving e has a temperature of te−∆te.
he Enthalpy of fluid entering edge e ∈ E.
∆he Enthalpy drop over edge e ∈ E. The fluid leaving e has an enthalpy of he − ∆he.
qe,s Flow rate of phase s ∈ S on edge e ∈ E.
ye Binary variable associated with an edge e ∈ Ed. If ye = 1 the edge is open,

allowing a nonzero flow; otherwise, ye = 0 and the edge is closed with zero flow.

Table 4: Parameters

Parameter Description

qL
e,s, q

U
e,s Lower and upper bound, respectively, for flow rate qe,s of phase s ∈ S on edge

e ∈ E. It is assumed that 0 ≤ qL
e,s ≤ qU

e,s.
pL

i , pU
i Lower and upper bound, respectively, for pressure pi in node i ∈ N. It is assumed

that 0 ≤ pL
i ≤ pU

i .
tL
e , t

U
e Lower and upper bound, respectively, for temperature ti on edge e ∈ E. It is

assumed that 0 ≤ tL
e ≤ tU

e .

of the proposed mathematical programming problem formulation, or framework, for production
optimization. The complete formulation is given towards the end of this section.

4.1. Mass balances
In steady-state, the mass flow into a node must equal the mass flow out of it, i.e., there is

no accumulation of fluid in the node (or in the network). Using the sets Ein
i and Eout

i , the mass
balances for the nodes may be expressed as:∑

e∈Ein
i

qe,s −
∑

e∈Eout
i

qe,s = 0, ∀s ∈ S, i ∈ Nint. (1)

Note that the mass balances are defined only for the internal nodes in the network (Nint).
Since a source (sink) node have leaving (entering) edges only, its mass balance would enforce
zero net flow out (in) of the node. Hence, source and sink nodes are excluded from Eq. (1).

4.2. Momentum balances
The multiphase flows in the network are driven by the node pressures (potentials) pi. The

pressure drop over an edge e = (i, j) is defined as ∆pe , pi − p j, and relates the two node pres-
sures pi and p j. For edges e ∈ Ed that represent choke or on/off valves, ∆pe is a free/adjustable
variable as discussed in Appendix A. For edges e ∈ E\Ed that represent pipes, ∆pe is given
by some pressure drop correlation ∆pe = fe(qe, pi, te). The function fe(·) maps the upstream
conditions (flow rates, pressure, and temperature) to the pressure drop ∆pe. When it is more

7



convenient to express fe in terms of the downstream pressure, pi can simply be replaced with p j.
The pressure drops in the network are modelled with the following constraints:

∆pe = fe(qe, pi, te), ∀e ∈ E\Ed. (2)

Notice that Eq. (2) does not apply to edges with an adjustable pressure drop (Ed). A pressure
correlation may be insensitive to temperature for certain flow conditions, e.g. liquid dominated
flows. In this case the correlation can be simplified to ∆pe = fe(qe, pi) without any significant
loss of accuracy. Another special case occurs for edges representing short pipes with negligible
pressure drop, i.e. with fe(·) ≈ 0, giving ∆pe = pi − p j ≈ 0. In the rest of this paper fe(·) will be
used to denote the pressure correlation of edge e, even if fe(·) = 0.

For a discrete edge e ∈ Ed, the momentum balance needs to be deactivated when the edge is
closed. This logic is accurately expressed by the following disjunction:[

ye = 0
]
∨

[
ye = 1

∆pe = pi − p j

]
. (3)

The disjunction in Eq. (3) can be interpreted as follows: if an edge e is closed (ye = 0), then
there is no direct relation between the pressures in the adjacent nodes i and j (the node pressures
may still be indirectly related through other paths in the network); if the edge is open (ye = 1),
then the two pressures must satisfy the relation ∆pe = pi − p j, where ∆pe is given by fe(·) in Eq.
(2).

Although the disjunction in Eq. (3) captures the desired logic for the momentum balance
its form is not widely supported by commercial solvers. A straightforward way to deal with the
disjunction without using logical expressions is to approximate it with

ye(pi − p j − ∆pe) = 0. (4)

This formulation introduces an additional (and undesired) nonlinearity to the problem through
the multiplication with ye. This nonlinearity can be relaxed using linear big-M constraints.2

Notice that the pressures pi and p j are constrained to 0 ≤ pL
i ≤ pi ≤ pU

i and 0 ≤ pL
j ≤ p j ≤ pU

j .
In practice pL

j and pU
j may be inferred from pL

i and pU
i , and the image of fe(·). These bounds

imply that −Me ≤ pi − p j − ∆pe ≤ Me, where Me = (pU
i − pL

i ) + (pU
j − pL

j ). Using Me, the
disjunction in Eq. (3) may be approximated with the big-M constraints

−Me(1 − ye) ≤ pi − p j − ∆pe ≤ Me(1 − ye). (5)

For ye = 1, Eq. (5) yields 0 ≤ pi − p j − ∆pe ≤ 0, and the constraint ∆pe = pi − p j in Eq. (3)
is retrieved. For ye = 0, Eq. (5) yields two constraints which are inactive in the feasible set:
e.g., the inactive constraints allow ∆pe to take on any value in [(pL

i − pU
j ), (pU

i − pL
j )], effectively

disconnecting pi and p j. Thus, the relaxation do not alter the optimal solution of the problem.
A drawback with using big-M constraints is that they often produce a weak relaxation of the
disjunction.3 However, reasonably tight values for Me can easily be derived from the pressure
drop functions. Thus, we accept Eq. (5) as an alternative model to Eq. (3) and use it to model
the momentum balances. Before proceeding, we note that the same big-M constraints were used
by Codas et al. (2012). We also note that an alternative relaxation could have been achieved by
using a convex hull formulation (Grossmann, 2002).

2The big-M constraints can easily be derived by applying McCormick’s relaxation of bilinear terms to Eq. (4).
3In theory it is possible to let Me → ∞ and still obtain a valid relaxation. This will however give an increasingly poor

relaxation and produce ill-conditioned systems of equations in the solver, causing numerical problems.
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4.3. Energy balances
The thermodynamic potentials (enthalpies), he, of the fluids in the network are modelled

using the temperature variables te. At the source nodes, fluid enters the network with a specified
temperature (typically close to the reservoir temperature). As the fluid flows through the network,
its temperature changes due to mixing with other fluids and energy loss through the pipe walls
to the surroundings. In the following we will assume that the mixing happens at the nodes, and
the energy loss occurs at the edges (pipes). To simplify the modelling we make the following
assumptions:

• Instant mixing. At any point in the network all fluid phases are assumed to have the same
temperature.

• No work is done by the system. However, the model can easily be extended to include
energy generation or loss through work, allowing for active components such as pumps
and compressors.

• The heat transfer between the system and its surroundings may be completely determined
from internal states. Consequently, the heat transfer properties and surrounding tempera-
tures are assumed to be constant.

• The enthalpy is equal to the internal energy of a fluid, that is, no pV-work is done. This
assumption is reasonable for a stationary process without fluid accumulation.

• Constant heat capacities cs for all phases s ∈ S.

Regarding the last assumption above: In general, the heat capacity of a fluid is a function
of pressure and temperature, i.e. cs = cs(pi, te). In practice, this relation is available in a com-
positional PVT model or a black oil model (Aziz and Settari, 1979). To simplify the model we
assume cs to be constant in this work. This simplification is reasonable for liquids, but may give
rise to large errors for gases. However, in the enthalpy calculations below, the contribution from
gas is generally much smaller than that of liquids, mitigating the erroneous heat capacity of gas.
According to the above assumptions, we next present the equations in the thermodynamic model.

The temperature drop over the edges are modelled as

∆te = ge(qe, pi, te), ∀e ∈ E. (6)

The relation gives the temperature change due to heat transfer through the pipe walls to the sur-
roundings. In short, insulated, non-restrictive pipes the temperature drop can usually be ignored
by setting ∆te = 0.

The enthalpy of the fluid entering edge e, and the change in enthalpy across edge e, are
calculated as

he = te
∑
s∈S

cs · qe,s, ∀e ∈ E,

∆he = ∆te
∑
s∈S

cs · qe,s, ∀e ∈ E,
(7)

where cs is the constant heat capacity of fluid s ∈ S.4 As previously mentioned, nonlinear heat
capacities on the form cs(pi, te) may be used in Eq. (7) to increase the accuracy of the model.
However, for liquid dominated flow the contribution to enthalpy from gas is relatively small.

4In Eq. (7) the heat capacities cs are given in [J/kg K], the rates qe,s in [kg/s], the temperatures te and ∆te in [K], and
the enthalpies he and ∆he in [J/s] = [W].
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Similar to the mass balances, we enforce an energy balance at each internal node (conjunc-
tion) in the network. With the enthalpy variables available the energy balances are easily ex-
pressed as: ∑

e∈Ein
i

(he − ∆he) =
∑

e∈Eout
i

he, ∀i ∈ Nint. (8)

Note that the downstream enthalpies (he − ∆he) are used in the left-hand side of Eq. (8) to
summarize the energy entering the node. According to the assumptions, the energy balances
above are correct if: 1) no work is performed, 2) no heat is added, and 3) that the net change in
kinetic and potential energy is zero.

The inclusion of the above energy model may increase the accuracy of the overall problem
formulation. However, the increased accuracy comes at the cost of a computational heavier
formulation since 3|E| nonconvex constraints (nonlinear equality constraints) are added to the
problem. One upside with the energy model is that it does not involve any binary routing vari-
ables. To see why, consider the case when a discrete edge is closed (ye = 0). The flow rate is
then forced to zero, which in turn forces the enthalpy on the edge to zero. Consequently, it does
not contribute to the energy balance in Eq. (8). Thus, there is no need to involve binary variables
in the energy balances.

4.4. Flow routing

Flows can be routed through certain parts of the network by opening and closing discrete
edges: closing a discrete edge forces its mass flow to zero. This behaviour is expressed by
combining the binary variable ye with the lower (qL

e,s) and upper (qU
e,s) bounds on the flow rate as:

yeqL
e,s ≤ qe,s ≤ yeqU

e,s, ∀s ∈ S, e ∈ Ed. (9)

Note that Eq. (9) may force the flow rates qe to zero. Thus, the domains of the nonlinear
functions fe(·) and ge(·) should contain qe = 0; otherwise, ye = 0 =⇒ qe = 0 is infeasible.

Depending on the network topology, some binary variables may be redundant. For example,
the mass balance of a node with one entering and one leaving discrete edge will enforce equal
flow rates. Thus, closing any one edge will force the flow rate on the other edge to zero. In this
case one discrete edge (a single binary variable) is sufficient to model the on/off logic.

In general, the discrete edges may be configured to model any routing problem. Next we
discuss a common routing configuration called a manifold.

4.4.1. The manifold: a special routing structure
A manifold is a collection of pipes and on/off valves designed so that its inlets can be routed

to its outlets in various configurations, possibly by commingling the inlet streams. In a graph,
the analogue to a manifold is a set of discrete edges connected as shown in Figure 2.

A normal operational constraint on subsea manifolds is that an inlet stream can be routed to
at most one of the outlets. This constraint enforces requirement R2; that a node may have at most
one open outlet. The manifold routing constraints are easily expressed with the binary variables
of the discrete edges as ∑

e∈Eout
i

ye ≤ 1, ∀i ∈ Nd, (10)
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Figure 2: A manifold modelled with discrete edges (dashed lines). The manifold can route each of the three inlet streams
to any of the three outlets.

where Nd are nodes with discrete leaving edges.5 The constraints in Eq. (10) allow flow to none
or one of the edges leaving a node. Routing to zero edges forces the phase flow rates to zero via
the mass balances in Eq. (1) and flow routing constraints in Eq. (9). If the inlet stream is required
to flow to exactly one outlet the inequality in Eq. (10) is replaced with equality.

A manifold with 9 discrete edges configured as in Figure 2 has a total of 29 = 512 possible
routing combinations. The cut in Eq. (10) reduces the number of feasible routing combinations
to 26 = 64. A quick way to calculate the number of feasible combinations is to find the number
of feasible combinations for each node, which is n + 1 for a node with n discrete leaving edges,
and then multiply these numbers together. As calculated above we obtain n + 1 = 4 for all three
nodes, and 4 · 4 · 4 = 43 = 26 = 64 feasible combinations.

Note that a manifold is constructed to minimize pressure loss across its pipes and valves,
hence the pressure drop over the discrete edges may be fixed to zero.

4.5. Boundary conditions
To obtain a well-posed flow network problem it is necessary to specify boundary conditions

for the network. The boundary conditions are usually related to the source and sink nodes, and
specify the interaction between the network and its neighbouring systems. Next we discuss a few
upstream and downstream boundary conditions, commonly used in models of subsea petroleum
production networks.

4.5.1. Upstream boundary conditions
At a source node i ∈ Nsrc we assume that the following relation between the pressure pi and

flow rates qe exists:
ζi,s(qe, pi) = 0, ∀s ∈ S, i ∈ Nsrc, (11)

where ζi,s : R|S|+1 → R, and e = (i, j) is the (only) edge leaving source node i.
A common class of inflow rate boundary conditions in subsea production networks is the

inflow performance relationship (IPR). It describes the mass flow from the reservoir into the

5The constraint in Eq. (10) is redundant for nodes with only one discrete leaving edge: the constraint would be
ye ≤ 1, which is always true. These redundant constraints can easily be omitted by altering Eq. (10) to apply only to
nodes i ∈ { j : j ∈ Nd, |Eout

j | > 1}. However, to keep the notation simple the manifold routing constraint is applied to all

nodes in Nd.
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well as a function of the measured bottom-hole pressure (also known as draw-down pressure).
Wells without bottom-hole pressure sensors are usually modelled with a well performance curve
(WPC), relating the flow rate to the wellhead pressure.

Two widely used IPRs are the linear (straight line) IPR and Vogel’s quadratic IPR (Ahmed
et al., 2006). With a linear IPR, a well i ∈ Nsrc can be modelled with the linear constraints:

qe,oil = ci,PI(pi,res − pi),
qe,gas = ci,GOR · qe,oil,

qe,wat =
ci,WCT

100 − ci,WCT
· qe,oil.

(12)

There are four constants in Eq. (12) that characterizes a well: the reservoir block pressure pi,res
(which is considered constant according to assumption A1), the productivity index ci,PI, the gas-
oil ratio ci,GOR ≥ 0, and the water cut ci,WCT ∈ [0, 100).

The linear model in Eq. (12) does not hold for all reservoirs. For instance, it does not hold
for reservoirs with a thin oil rim overlaid by a large gas cap, where wells are subject to gas
coning. In coning wells, the gas rate varies nonlinearly with the oil flow rate, and Eq. (12)
should be substituted with nonlinear relations. These relations may be generated from near-well
simulations performed by a reservoir simulator (Mjaavatten et al., 2008).

When temperatures are included in the model, it is customary to assume that the temperature
of the entering fluid is constant and equal to the reservoir temperature, that is

te = const., e ∈ Esrc. (13)

Reasonably accurate inflow models is a prerequisite for an accurate network model. This
part of the model is, however, hard to calibrate. In practise, experiments need to be performed
to collect data for inflow model calibration. This usually involves disruptive well testing, where
a single well is routed to a test header to allow the measuring of flow rates over a time span of
hours.

4.5.2. Downstream boundary conditions
In line with Assumption A1 it is reasonable to assume a constant downstream (separator)

pressure when modelling a subsea production system. The constraints are easily expressed as:

pi = const., i ∈ Nsnk, (14)

where a constant pressure is specified for the sink (separator) nodes.

4.6. Operational constraints

In daily production optimization the production engineers must consider many operational
constraints. To obtain solutions with practical value these constraints must be included in the
optimization problem. Here we mention two very common operational constraints: namely the
capacity and draw-down constraint.

12



4.6.1. Capacity constraints
In daily production optimization, the topside separator is typically considered to be the down-

stream boundary of the network. Hence, the amount of fluid entering the separator must honour
the water and gas handling capacity of the downstream process facility. The capacity constraints
on the total production of gas and water are easily expressed by cut sets (here we have used the
set of sink edges Esnk): ∑

e∈Esnk

qe,gas ≤ Cgas and
∑

e∈Esnk

qe,wat ≤ Cwat, (15)

where the total gas (water) flowing into the separator/sink nodes is limited by the gas (water)
handling capacity Cgas (Cwat).

4.6.2. Draw-down constraints
A draw-down constraint is a lower limit on the bottom hole pressure of a well. The constraint

prevents operation at pressures and thereby rates that potentially can damage the well and near-
well reservoir. Let i ∈ N be a node representing the bottom hole of a well. Then a draw-down
constraint on i is expressed with the bounds on pi: i.e., pL

i ≤ pi ≤ pU
i , where the lower bound pL

i
specifies the draw-down limit.

4.7. Objective function

As discussed in the introduction, the main objective when optimizing a petroleum network is
typically the maximization of oil production. This objective is easily expressed by summing the
oil rates of all edges in a cut set. Two obvious cut sets are the edges leaving a source node (Esrc)
or the edges entering a sink node (Esnk). Below we express the objective function using the latter.

maximize z =
∑

e∈Esnk

qe,oil, (16)

Sometimes it makes sense to include contributions to the cost of operating in the objective
function; for example the cost of utilizing gas lift or processing produced water. In this frame-
work it is straightforward to include these in the objective.

4.8. Flow network: a MINLP formulation

With the complete flow network modelled, the daily production optimization problem is
posed as the following mixed-integer nonlinear programming problem:
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maximize
y,q,p,∆p,t,∆t,h,∆h

z =
∑

e∈Esnk

qe,oil

subject to
∑
e∈Ein

i

qe,s −
∑

e∈Eout
i

qe,s = 0, ∀s ∈ S, i ∈ Nint

∆pe = fe(qe, pi, te), ∀e ∈ E\Ed

∆pe = pi − p j, ∀e ∈ E\Ed

− Me(1 − ye) ≤ pi − p j − ∆pe ≤ Me(1 − ye), ∀e ∈ Ed

∆te = ge(qe, pi, te), ∀e ∈ E

he = te
∑
s∈S

cs · qe,s, ∀e ∈ E

∆he = ∆te
∑
s∈S

cs · qe,s, ∀e ∈ E∑
e∈Ein

i

(he − ∆he) =
∑

e∈Eout
i

he, ∀i ∈ Nint

∑
e∈Eout

i

ye ≤ 1, ∀i ∈ Nd

yeqL
e,s ≤ qe,s ≤ yeqU

e,s, ∀s ∈ S, e ∈ Ed

qL
e,s ≤ qe,s ≤ qU

e,s, ∀s ∈ S, e ∈ E\Ed

pL
i ≤ pi ≤ pU

i , ∀i ∈ N

tL
e ≤ te ≤ tU

e , ∀e ∈ E
ζi,s(qe, pi) = 0, ∀s ∈ S, i ∈ Nsrc

pi = const., ∀i ∈ Nsnk

te = const., ∀e ∈ Esrc

ye ∈ {0, 1}, ∀e ∈ Ed

(P)

In the rest of this work we denote an optimal value of P by z∗, obtained at an optimal solution
(x∗, y∗), where x is a vector containing all the continuous variables in P. Notice that the problem
is nonconvex due to the integer variables and the nonlinear equality constraints Eqs. (2), (6), (7),
and (11). Consequently, we cannot expect to find a global optimum, unless the problem is solved
with a global solver.

The formulation in P can be used to model any nonlinear flow network under Assumptions
A1-A4, and topology requirements R1-R3. For problems not requiring an accurate energy model,
a cruder model can be obtained by removing from P the temperature and enthalpy variables, as
well as the constraints for energy conservation. This will remove 3|E| nonconvex constraints,
simplifying the problem considerably. For a subsea production network, the framework allows
for modelling of gas lifted wells and complex multi-branch wells by the addition of nodes and
edges.

A key property of P, which may not present itself immediately, is that the integer variables
participate in linear constraints only. This is an advantageous property since the discrete logic
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may be exclusively handled by the solver. In some cases the nonlinearities are represented by
process simulators without the capacity to handle discrete logic.

Another important aspect of the formulation is that it does not contain functions of more
than |S| + 2 variables (rates, pressure, and temperature). This allows the nonlinear functions to
be replaced with approximations/surrogates of low dimension. In Section 5 we show how the
nonlinear functions f (·) may be approximated with spline surrogate models. As will become
clear later in Section 6, this allows us to solve P to global optimality with a spline-compatible
solver.

Before continuing, we would like to remark on the fact that choke openings are not directly
computed in P. Chokes are usually modelled with nonlinear Cv curves, relating the choke open-
ing and the differential pressure over the choke. To avoid the additional nonlinearity of the Cv
curves when optimizing, the choke are represented by a differential pressure variable (∆pe). The
choke openings are back-calculated from the optimal differential pressures after solving P.

5. Spline surrogate models

In this section we give a brief introduction to function approximation with splines. Our pur-
pose is to motivate the use of splines as surrogates for the nonlinear functions in the optimization
problem, P. We will use a light notation and represent the splines as basis splines, or B-splines.
For a detailed treatment of B-splines we refer the reader to the literature on spline theory; cf. the
textbooks of Piegl and Tiller (1997) and Schumaker (2007).

5.1. Univariate and multivariate B-splines

A spline is a piecewise polynomial function which possesses a required degree of smoothness
at the points where the polynomial pieces connect (which are called knots). First we consider the
univariate B-spline, denoted as

φp(x) = cTbp(x), (17)

where c ∈ Rn is a vector of n coefficients and bp ∈ Rn is a vector of n B-spline basis functions.
The basis functions in bp are (overlapping) p-th degree polynomial pieces in the variables x; see
Figure 3 for an illustration. They are recursively constructed from a nondecreasing sequence of
n + p + 1 real numbers t1 ≤ . . . ≤ tn+p+1 known as knots. These numbers are often collected in a
vector t = {ti}

n+p+1
i=1 , called the knot vector. Note that with our notation the dependence of bp, and

φp, on t is implied. We refer the reader to the literature for a description of the relation between
the knots and the basis functions.

The B-spline φp is a linear combination of basis functions and consequently a piecewise
polynomial with degree p. An important property of the B-spline is that it has local support,
meaning that at most p + 1 basis functions are nonzero at a point x. This, in addition to several
other advantageous properties, allow fast and numerically stable methods for manipulation and
evaluation of splines; see for example De Boor (1972) and Cox (1972).

The B-spline generalizes nicely to the multivariate case. A degree p B-spline in the variables
x ∈ Rd may be compactly written as

φp(x) = cTBp(x), (18)

where Bp ∈ RN is a vector of N multivariate B-spline basis functions of degree p. The multi-
variate basis functions are obtained by taking the tensor product of univariate basis functions,
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Figure 3: Illustration of the univariate, cubic B-spline basis functions b3 = [bi,3]5
i=1 for the knot vector t =

{0, 1, 2, 3, 4, 5, 6, 7, 8} (marked with asterisks on the x-axis). The cubic B-spline φ3(x) = cTb3(x), with coefficients
cT = [11111], is also shown.

i.e.

Bp(x) = b1
p(x1) ⊗ . . . ⊗ bd

p(xd) =

d⊗
i=1

bi
p(xi), (19)

where ⊗ denotes the Kronecker product.6 The Kronecker product produces a vector Bp that
contains all possible combinations of the univariate bases: this results in a total of N = n1 · · · nd

multivariate basis functions, where ni is the number of univariate basis functions in bi
p(xi) in

variable xi. Each basis function vector bi
p in Eq. (19) is parametrized by its own knot vector

ti. Note that a multivariate basis function is a product of d degree p univariate basis functions,
making it a multivariate, piecewise polynomial of degree dp.7 The domain of φ(x) is considered
to be the box X = X1 × · · · × Xd, where Xi is the interval supported by at least one basis function
in bi

p(xi). Consequently, φ(x) = 0,∀x < X.
Most properties of the univariate B-spline carry over to the multivariate case. For example,

the multivariate B-spline also enjoys local support and have fast algorithms for manipulation
and evaluation (although their implementation require extra care to exploit sparsity patterns).
The multivariate B-spline is a powerful modelling and approximation tool, as is testified by the
numerous computer-aided design tools that use it. A broad application follows from the fact

6In the literature the multivariate B-spline is often referred to as tensor product B-spline since the basis functions are
constructed using the tensor product.

7To ease the notation in Eqs. (18) and (19) we have assumed that all univariate basis functions vectors bi
p are of the

same degree p. This assumption can easily be removed without any consequences.
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Figure 4: Illustration of the univariate, cubic B-spline basis functions b1
3 = [b1

i,3]5
i=1 and b2

3 = [b2
i,3]5

i=1 for the knot vectors
t1 = t2 = {0, 1, 2, 3, 4, 5, 6, 7, 8}. Bivariate, cubic basis functions are constructed by Bp = b1

3⊗b2
3. The grey box x ∈ [6, 7]2

is supported by the following bivariate basis functions: [b1
4,3b1

4,3] ⊗ [b1
4,3b1

4,3] = [b1
4,3b2

4,3, b
1
4,3b2

4,3, b
1
5,3b2

4,3, b
1
5,3b2

4,3, ].

that the B-spline may represent any piecewise polynomial function exactly, that is, without any
approximation error. Models containing non-polynomial functions, such as the transcendental
functions, may only be approximated by a B-spline. The approximation error can then be con-
trolled by changing the density of the samples. In the next section we show how to approximate
a function that has been sampled on a grid with a B-spline.

5.2. Function approximation with B-splines

Let any function f : Rd → R be sampled on a regular grid to yield m data points {xi, yi}mi=1,
where f (xi) = yi. Using only these data points a B-spline that approximates f is constructed.
Several approximation methods exist and they are usually categorized as being interpolating or
smoothing. Among the interpolating methods the widely used cubic spline interpolation is most
common. There are especially three reasons for the popularity of cubic spline interpolation: 1) it
is fast to compute, 2) it offers a high degree of smoothness, and 3) it is a good approximation to
a broad class of functions.

An interpolation method computes a B-spline that interpolates f at all of the m data points.
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Figure 5: A bivariate, cubic B-spline constructed from the basis functions in Figure 4 and the coefficients c = 125, where
125 ∈ R25 is a vector of 5 × 5 = 25 ones.

Mathematically, the following linear system is solved for the coefficients c:[
Bp(x1) Bp(x2) . . . Bp(xm)

]T︸                                ︷︷                                ︸
Bc

c = y (20)

In Eq. (20) y = [yi]m
i=1 and Bc ∈ Rm×N is the so-called B-spline collocation matrix: the matrix

where row i corresponds to the vector of basis functions Bp(xi) evaluated at sample xi. It is
customary to select a knot vector that gives a square collocation matrix (N = m). An example of
such a knot vector is the free end conditions knot vector for cubic spline interpolation (p = 3):

tF = { x1, . . . , x1︸     ︷︷     ︸
p+1 repetitions

, x3, . . . , xm−2, xm, . . . , xm︸      ︷︷      ︸
p+1 repetitions

}.

Notice that the second and second last knot is omitted from tF to give N = m. For square Bc, the
conditions under which Bc is invertible are known as the Schoenberg-Whitney nesting conditions:
ti < xi < ti+p+1 for i = 1, 2, . . . ,m, allowing xi = ti only if ti = ti+p < ti+p+1. These conditions
are fulfilled for t = tF . When Bc is square and invertible, the B-spline coefficients can readily be
computed by solving Bcc = y.

The m ×m linear system in Eq. (20) can be solved efficiently by a sparse solver on a modern
desktop computer for m ≤ 100, 000. For example, when approximating a function in 5 variables
this practical limit allows a discretization with 10 values in each variables, resulting in a grid of
105 = 100, 000 sample points. For a “well-behaving”, low-dimensional function such as a well
lift curve, 100,000 samples is more than enough to achieve an accurate approximation. In this
work we have utilized the SPLINTER library for function approximation (Grimstad et al., 2015b).

18



Before we illustrate cubic spline interpolation in the next subsection, we point out that the ap-
proximation error of a spline can be made arbitrarily small for continuous functions by increasing
the sampling density. Furthermore, the approximation error is dependant on the knot placement.
Optimal knot placement, however, is a difficult and largely unresolved problem, particularly for
multivariate B-splines (Natali and Pinto, 2009). Luckily, when samples are taken on a regular
grid the knots can be set equal to the sample points as in tF .8 With scattered (irregular) sample
points it is not trivial to select the knot vectors. In either case, the problem of where to place the
sample points still remains and is highly dependant on the function to be approximated.

5.3. An example: Beggs and Brill approximated with a B-spline
Figure 6 shows the Beggs and Brill pressure drop correlation for a slightly inclined pipe.

With the given parameters, the correlation includes three different flow regimes on the domain.
By inspecting the figure one may observe several bends in the correlation; the groove between
the segregated and transition flow regime is conspicuous.

Figure 6: Beggs and Brill pressure drop correlation for a 1 degree inclined, 1000 meter long, 12 inch pipe. The water-cut
is fixed at 10% and the outlet pressure is 30 bar. As indicated, three different flow regimes occur as the oil rate increases.
The overlaying grid shows the sample points used to build the spline approximations.

The 20x20 grid in Figure 6 shows the m = 400 points where the correlation was sampled.
From these points two approximations are constructed: a linear spline (p = 1) and a cubic spline
(p = 3). The approximation error of the two splines are plotted in Figure 7.

By inspecting the figure we see that qualitatively the approximation errors of the two in-
terpolating splines are similar. The error increases along the diagonal grooves/bends where the

8By default, SPLINTER computes the knots by applying a moving average filter with window size p + 2 to the
sample points. With equidistant samples this filter produces the knot vector tF .
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(a) (b)

Figure 7: The approximation error of the linear spline (a) and the cubic spline (b) interpolating the Beggs and Brill
pressure drop correlation on the equidistant 20x20 grid in Figure 6.

rectangular grid fails to capture the geometry. The most notable difference between the two
splines are the ripples in Figure 7a. The ripples show that the linear spline fails to capture the
curvature between the grid lines; this effect is not present to the same degree in Figure 7b.

To quantitatively compare the interpolating splines we measure the relative approximation
error with εrel,2 = ||1 − φ(x)/ f (x)||2,X and εabs,∞ = || f (x) − φ(x)||∞,X for x ∈ X, where || · ||p,X
denotes the Lp-norm on the domain X. The errors for the two splines are given in Table 5.

Table 5: Spline approximation errors.

εrel,2 εabs,∞

Linear spline 0.0044 1.1193
Cubic spline 0.0039 1.0545

6. Solution method

In this section we present the proposed method for solving P. The main assumption is that
all the nonlinear functions in P are B-spline functions on the form in Eq. (18), that is, we
assume that fe(·), ge(·), and ζi,s(qe, pi) are B-spline functions. The bilinear terms in the enthalpy
constraints in Eq. (7) may also be represented exactly with splines.9 With this assumption
problem P falls into the category of spline-constrained MINLP problems, which may be solved to
global optimality by the spline-compatible optimization framework CENSO (Convex ENvelopes
for Spline Optimization), recently presented by Grimstad and Sandnes (2014). CENSO is publicly
available as open-source C++ code (Grimstad et al., 2015a). A description of the algorithm
is given in the next section. Please note that without loss of generality we assume P to be a
minimization problem in this description. After the description, we present two improvements
that may speed up the algorithm when solving production optimization problems.

9A spline may represent a bilinear term exactly. In fact, the convex hull relaxation of the B-spline is identical to the
McCormick relaxation for bilinear terms (Grimstad and Sandnes, 2014).
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6.1. Description of CENSO

CENSO is a framework for optimization with spline constraints. It contains a spatial branch-
and-bound (sBB) algorithm that partitions the problem domain by branching on continuous vari-
ables as well as integer variables; this produces subproblems Pk of P. Spline (equality) con-
straints are generally nonlinear, thus non-convex, and must be relaxed during the solution pro-
cess. CENSO employs lifted polyhedral sets to relax spline constraints, producing relaxed LP
subproblems, denoted Rk.

Let ẑk denote the solution to Pk and z̄k the solution to Rk. The fact that ẑk ≥ z̄k is used to
process the search domain. The current best feasible solution found, known as the incumbent, is
denoted zu. The algorithm described next, terminates when it has proved that there cannot exist
a solution better than zu − ε (where ε > 0 is a small number). This is known as ε-convergence.

The schematic in Figure 8 describes the sBB algorithm in CENSO. From the top: the algo-
rithm is initialized by adding P to the list of problems L, and setting the upper bound on P to
zu = ∞. The algorithm then enters a loop which terminates when L is empty. Upon termina-
tion there are two possible outcomes: a global optimum has been found (ε-convergence) or the
problem is infeasible.

The first step inside the loop is to select and remove from L the next subproblem Pk to be
processed. The sBB in CENSO uses a simple best-bound-first policy, selecting the subproblem
with the lowest lower bound z̄k (inherited from its parent node).

After selection, bounds tightening techniques are applied to Pk. The purpose of these tech-
niques is to reduce the domain of Pk and hence to accelerate the exploration of the search space.
These methods may also prove Pk infeasible, in which case it is fathomed.

Next, the convex relaxation Rk is generated and solved to get z̄k. By default, the convex
relaxation is solved by Gurobi (Gurobi Optimization, Inc., 2014). With the lower bound on Pk

three fathoming rules are checked: (i) z̄k ≥ zu, (ii) z̄k = ∞ (Rk infeasible), and (iii) zu − z̄k ≤ ε
(converged). If any of (i)–(iii) are true, the node is fathomed as it may not contain a solution
better than zu − ε.

If the subproblem cannot be fathomed its domain needs further processing. First, the in-
cumbent is updated by checking if the solution to Rk is feasible to Pk. To further improve the
incumbent an NLP or MINLP solver may be used to find a feasible solution of Pk that is better
than zu. This heuristic is not required, but may speed up the convergence of the search.

Finally, at the end of the loop a continuous or integer branching variable is selected for Pk.
This variable is then branched on to create two new partitions Pk− and Pk+. The two partitions
are added to the list L, completing one iteration of the loop. Note that after one loop iteration
the list size |L| is either decremented by one (if Pk fathomed) or incremented by one (if Pk is
branched on). If the list is empty, the search terminates with the optimal solution zu.

6.2. Branching variables and bounds tightening

A requirement for the sBB algorithm to converge to a global optimum is that it may branch
on all complicating variables. In a MINLP problem, the complicating variables are the integer
variables and any continuous variable that participates nonlinearly in a nonconvex constraint.
For problem P, the complicating variables are y and xc, where xc = [xi]i∈Ic are the complicating
continuous variables. The index set Ic is given so that {xi : i ∈ Ic} = {qe, pi, te,∆te : e = (i, j) ∈
E}. Note that xc does not contain the variables ∆pe, he, and ∆he since they participate linearly in
all constraints (the reader can verify this by looking at P).
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Figure 8: The spatial bound-and-bound algorithm in CENSO.

A continuous branching variable, like an integer branching variable, must be branched on a
finite number of times to ensure ε-convergence. However, the required number of branches may
be large depending on the value of ε and the convergence rate of the convex relaxations. At any
rate, it is highly desirable to keep the number of continuous branching variables at a minimum.

Problem P has a relatively large number of nonconvex constraints and, as a result, xc contains
most of the continuous variables. From computational experience, we know that branching on
all of the variables in xc is detrimental to the efficiency of the algorithm, even for small network
problems. To alleviate the computational load we employ so-called bounds tightening.10

Bounds tightening (BT) are techniques that reduce the variable bounds [xL, xU] of a problem
without removing its optimal point. BT techniques with this property are said to be valid or to

10Techniques that use the constraints to reduce the variable bounds have several names in the literature, including:
bounds tightening, range reduction, and interval analysis.
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produce valid inequalities. BT will shrink the feasible set of the primal problem and its convex
relaxation. In some cases it may also prove a problem infeasible. All BT techniques utilize the
constraints to, in some way, reduce the variable bounds.

Let us illustrate the advantage of bounds tightening with a simple example: Let x1 ∈ [xL
1 , x

U
1 ]

and x2 ∈ [xL
2 , x

U
2 ] be continuous branching variables, related via the constraint x1 − x2 = 0.

Bounds tightening will propagate the variable bounds through the constraint and ensure that
x1, x2 ∈ [max{xL

1 , x
L
2 },min{xU

1 , x
U
2 }]. Thus, when bounds tightening is applied, it is sufficient to

branch on one of the two variables: e.g. branching on x1 will reduce the feasible range of x2, and
vice versa.

Immediately, we understand that if we branch on the variables associated with the degree of
freedom in P, bounds tightening will ensure diminishing bounds on the remaining (branching)
variables. Let x̄c = [pi]e=(i, j)∈Ed be the |Ed| free, continuous variables in P (according to the
DOF analysis in Appendix A). Then, it is sufficient to branch on y and x̄c. It is clear that
x̄c ∈ R|E

d | ⊂ xc ∈ R(|S|+3)|E|. To be more precise, with bounds tightening the number of continuous
branching variables is reduced from (|S|+3)|E| to |Ed|. The reduction in the number of continuous
branching variables limits the tree size and accelerates the solution time of the sBB algorithm,
even when accounting for the additional computational load of the bounds tightening techniques.
Next, we briefly describe the bounds tightening capabilities of CENSO.

6.2.1. Bounds tightening techniques in CENSO
CENSO employs the following BT techniques for MINLP problems: the reduced-cost BT

(RCBT), originally introduced for MILP problems (Ryoo and Sahinidis, 1996; Belotti et al.,
2009); and feasibility-based BT (FBBT) (Messine, 2004; Belotti et al., 2010). These are compu-
tationally cheap techniques that perform tightening by propagating variable bounds through the
constraints. They can be solved at any node in the sBB tree, but generally produce shallow cuts.
To improve upon the BT capabilities of CENSO we implement the optimality-based BT (OBBT)
technique used by Zamora and Grossmann (1999) and Sahinidis (2003).

With OBBT a relaxed problem Rk is solved with the objective to minimize or maximize one
variable. This is done for each complicating variable in xc. Let F(Rk) represent the (convex)
feasible region of Rk. Then the convex problems solved by the OBBT are

minimize
x

{±xi : x ∈ F(Rk), z ≤ zu} , i ∈ Ic. (21)

Let x̃L
i and x̃U

i be the solutions for the two objectives in Eq. (21) for variable xi. Then the new
bounds on xi are [xL

i , x
U
i ] ∩ [x̃L

i , x̃
U
i ]. If any of the problems in Eq. (21) are infeasible, problem

Rk must be infeasible and can therefore be fathomed.
The OBBT requires the solution of 2|Ic| convex NLPs or LPs; when all nonlinearities of P

are represented with B-splines the relaxed problems Rk are LP problems. The OBBT may be run
iteratively to achieve a greater tightening of the bounds: tighter variable bounds produce tighter
convex relaxations, which in turn produce tighter variable bounds. Running OBBT iteratively
is expensive and yields diminishing returns. However, it may greatly reduce the size of the BB
tree. Therefore, it is typically used on every subproblem down to a certain depth, and to a limited
extent deeper in the BB tree.

6.3. Primal heuristic
At the root node of the sBB tree, the MINLP solver BONMIN (Bonami et al., 2008) is evoked

to search for a feasible solution to P. If successful, the (primal) feasible solution, being an upper
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bound on the solution of P, may help in cutting large portions of the sBB tree. BONMIN is a
heuristic in this setting since it is used to find a local optimum to the nonconvex problem P.

7. Case studies

In this section we present a benchmark study of the solution methods in Table 6. The study
includes three realistic production optimization cases from two BP operated subsea production
systems, referred to as BP subsea production system 1 and 2, from here on. Note that these cases
do not necessarily correspond to the normal operation of the production system. The cases are
based on models implemented in the GAP software from Petroleum Experts (Petroleum Experts
Ltd., 2014). The GAP models serve as reference models when comparing solutions generated
from the four different solution methods.

The four solution methods in Table 6 may be described as follows. The first is a traditional
approach where a proprietary gradient-based multi-start NLP solver treats the GAP model as a
black-box model, calculating gradients by finite differences. The three other methods formu-
late problem P by approximating the nonlinear relations in the production system models with
splines. Problem P is then solved using IPOPT, BONMIN, and CENSO, respectively. The branch-
and-bound-based MINLP solvers BONMIN and CENSO may solve problem P with discrete edges
(discrete variables). The proprietary solver and IPOPT, being NLP solvers, cannot handle discrete
variables.

Table 6: Solution methods.

Solver Type Routing Global Model

Proprietary solver NLP No No GAP
IPOPT (Wächter and Biegler, 2006) NLP No No P
BONMIN (Bonami et al., 2008) MINLP* Yes No P
CENSO (Grimstad and Sandnes, 2014) MINLP** Yes Yes P

*Convex MINLPs, **Spline constrained MINLPs.

CENSO solves problem P to global optimality and provides an optimality certificate with the
solution, i.e. the optimality gap is less than ε upon termination. Solving a MINLP problem
to global optimality is considerably harder, and more time consuming, than attempting a local
solve. To illustrate the difference, the cases were solved to local optimality using BONMIN.
To improve BONMIN’s chances of finding good solutions of the nonconvex problems it was
configured with the following options: algorithm set to “B-BB” (standard branch-and-bound
mode), num resolve at root set to 10, and num resolve at node set to 2. This allows BONMIN
to solve the nonconvex subproblems in the BB tree from several starting points; the starting
points are naively drawn from a uniform distribution limited by the variable bounds. All other
options were left at their default values.

There are a few key differences between the solution methods described above that compli-
cates comparison of the methods. First of all, the proprietary solver and IPOPT cannot handle
discrete variables. Thus, we include them in the comparison only when all discrete decisions are
fixed. Second, the proprietary method solves a different model/optimization problem than the
other methods since it uses the GAP model directly. To achieve a somewhat fair comparison, the
optimal solutions are compared by evaluating GAP at the optimal valve settings.
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The three last methods in Table 6 were run on a laptop computer equipped with an Intel 2.7
GHz dual-core processor and 8 GB of RAM memory. The proprietary solver was run on another
computer with favourable performance.

Note that the reported solution times do not include the time it took to build the splines in P.
The timings for building the splines are reported at the end of this section.

7.1. Case 1: Production optimization of BP subsea production system 1
In this case we consider the subsea production system depicted in Figure 9. The production

system consists of 10 wells, 4 daisy-chained manifolds, 4 flowlines and 1 riser. The system is
modelled with three fluid phases, i.e. S = {oil, gas,wat}.
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Figure 9: Topology of BP subsea production system 1.

As shown in the figure (Node 25), lift gas can be injected into the riser base to increase
production by lowering the density of the fluid column. This is achieved by modelling Node 25
with the rate boundary conditions qe,oil = 0 and qe,wat = 0. The amount of lift gas injected into the
riser is given by qe,gas ∈ [0, 20] mmscf/d. To simplify the model, the lift gas is assumed to have
the same composition as the produced gas. The total gas production is limited to 340 mmscf/d,
which is the gas handling capacity of the downstream processing facilities.

The wells are modelled by connecting three nodes {i, j, k} with two edges, (i, j) and ( j, k).
In this configuration, depicted in Figure 10, the nodes are labeled as follows: bottomhole (i),

25



Figure 10: A well modelled with three nodes and two edges.

wellhead ( j), and manifold (k). The bottomhole node (i) is a source node with no incoming
edges. The inflow from the reservoir to the well is modelled by a nonlinear IPR (a piecewise
function composed of a straight line and Vogel’s equation), with a fixed GOR and WCT. The well
parameters are listed in Table 7. The pressure drop over the wellbore, edge (i, j), is described by
a nonlinear lift curve f(i, j) relating the flow rates q(i, j) to the wellhead pressure p j. The choke is
described by the edge ( j, k), with a related pressure drop ∆p( j,k).

Table 7: Well parameters.

Well PI (rank #) GOR (scf/STB) WCT (%) pL
i (bara)

1 6 1100 15 190
2 3 800 25 200
3 4 800 40 110
4 1 800 55 120
5 10 600 55 120
6* 2 700 50 0
7* 8 700 25 0
8 5 700 30 210
9 7 700 0 210
10 9 800 0 170

* Well is offline. ** Values are rounded for commercial reasons.

The system is modelled without any energy considerations, i.e., temperature and enthalpy
variables, and related constraints, are not included in the problem formulation P. This reduces
the number of nonconvex constraints and (complicating) variables, and hence the complexity of
the problem.

We divide Case 1 into two parts. In Case 1.1 and Case 1.2 the nonlinearities are represented
with linear and cubic interpolating splines, respectively. The interpolating splines are constructed
by solving Eq. (20), with degree p = 1 for Case 1.1 and p = 3 for Case 1.2. Since the case
includes discrete edges (binary variables) it is only solved with BONMIN and CENSO.

The results for the cases are reported in Table 8. Evidently, the cases are solved efficiently by
both solvers. The solution time of CENSO is strictly higher than that of BONMIN, as is it must
be since it runs BONMIN as a primal heuristic. The number of iterations used by CENSO is kept
low by intensive bounds tightening, while BONMIN terminates with the global optimum after
examining the root node only; i.e. it uses 0 iterations in both cases. However, BONMIN does not
terminate with an optimality certificate, like CENSO.

Notice that the optimal value of the two cases differ with almost 1 mSTB/d. The difference is
due to the linear and cubic spline interpolation of the pressure drop curves since the pressure drop
curves have a positive curvature (convex-like curves). This curvature is captured by the cubic
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Table 8: Results for Case 1.

Case, Solver Iterations (#) Time (sec) z∗ (mSTB/d)

Case 1.1 (linear splines)
BONMIN 0 2 77.483
CENSO 9 56 77.483

Case 1.2 (cubic splines)
BONMIN 0 5 78.381
CENSO 17 191 78.381

spline, but is over-estimated by the linear spline (piecewise linear) interpolation. Consequently,
the higher pressure drop causes a lower production for a fixed separator pressure. The two
optimal solutions do however give the same optimal valve settings.

The 11 active constraints at the optimal solution are listed in Table B.15. The case has 10
wells, and one additional source node for gas lift, giving 11 DOF (when all binary variables are
fixed). Hence, there are 11 active constraints at the optimal solution (in addition to 10 fixed
binary variables).

At the optimal solution Well 4-7 are offline. Well 6 and 7 are set offline. Well 4 and 5 have a
WCT above 50% and it is not unexpected that they are offline at the optimal solution. All online
wells operate at the minimum choke differential pressure, meaning that the system is pressure
constrained – the gas capacity constraint is not active and maximum gas lift is used.

To investigate the approximation error of problem P to the GAP model we insert the optimal
valve settings into GAP and record the pressures and rates it predicts. The relative errors between
the variables in GAP and Case 1.2 (cubic splines) are reported in Table 9. Most of the errors are
below 1%, which is satisfactory. We do observe some propagation of error along the flowlines,
and for the riser the pressure loss error is almost 4%. This may be improved upon by sampling
the flowline pressure drop more densely, and accepting a higher computation time.

7.2. Case 2 and 3: Production optimization of BP subsea production system 2

In these cases we consider the production system drawn in Figure 11. The system has 13
wells, 5 flowlines, and 2 risers. Four of the wells can be routed to either of the risers. The
two risers are named as follows: edge (48, 51) is the east (E) riser and edge (50, 51) is the west
(W) riser. We refer to the flow path 44 → 46 → 48 → 51 as the E loop and the flow path
45→ 47→ 49→ 50→ 51 as the W loop.

For brevity we assign numbers to the wells so that well i represents the well with bottomhole
node index i, although the well consists of several edges and nodes. The wells are modelled
using a nonlinear IPR (a piecewise function composed of a straight line and Vogel’s equation),
with a fixed GOR and WCT. The well parameters are listed in Table 10. As in the previous case,
we model the system with three fluid phases, i.e. S = {oil, gas,wat}.

The network has a total of 17 discrete edges for routing and shutting in wells. To mimic the
current field operation wells 9, 10, and 13 are set offline. This leaves 214 = 16, 384 routing and
well status combinations. By considering the manifold routing constraints in Eq. (10) we find
that the number of feasible combinations is 26 · 34 = 5, 184.
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Table 9: Validation using GAP of solution from CENSO on Case 1.2.

Error (%)
Edge e qe,oil ∆pe p j

Wells
(1,11) 0.26 0.18 0.14
(2,12) 0.23 0.13 0.11
(3,13) 0.21 0.10 0.09
(4,14)* 0 0 0
(5,15)* 0 0 0
(6,16)* 0 0 0
(7,17)* 0 0 0
(8,18) 0.91 0.42 0.40
(9,19) 0.47 0.38 0.37
(10,20) 1.18 0.44 0.42

Flowlines
(21,22) 0.24 0.62 0.05
(22,23) 0.23 2.70 0.28
(23,24) 0.23 1.35 0.39
(24,26) 0.55 3.84 0.55
(26,27) 0.55 0.81 0**

* Edge is closed (well is offline) at the optimal solution.
** The separator pressure is fixed.

In addition to the common constraints described in Section 4, this case has two special con-
straints. Each riser has a maximum mix velocity constraint (the mix velocity is the sum of
the in-situ liquid and gas velocity). These constraints limit the erosion of the risers’ inner tube
coating due to high velocity sand particles. The mix velocity of riser e ∈ {(48, 51), (50, 51)} is
modelled as ve(qe, p j, te + ∆te) ≤ vU

e , where vU
e is the upper velocity limit. Notice that the down-

stream pressure p j and temperature te + ∆te are used since the velocity is calculated at the outlet,
where it invariably attains its maximum value. To accurately express these important constraints,
temperature and enthalpy variables are included in the formulation.

To benchmark how the model complexity added by the discrete decisions and temperature
variables affect the computation time, we solve Case 2 and 3 with the various configurations
described in Table 11. Note that in Case 2.1 and Case 3.1 the status and routing of the wells are
set to the state of the current field operation.

7.2.1. Case 2: Optimization without energy balances
In Case 2 problem P is solved without temperature and enthalpy variables (t,∆t,h,∆h), and

without the energy conservation constraints in Eqs. (6), (7), and (8). Since the riser mix velocity
constraints cannot be modelled without temperature variables, they are also excluded from the
problem. The nonlinear relations for pressure drop and boundary conditions are modelled with
cubic splines.

The results of Case 2 are reported in Table 12. Several interesting observations can be made
28



1

2

3

4

5

6

7

8

9

10

14

15

16

17

18

19

20

21

22

23

4846

36

38

50

5127

28

30

31

29

32

33

34

35

37

11 24

12 25

13 26

44

45

47

49

Figure 11: Topology of BP subsea production system 2.

from the results. First of all, it is clear that allowing wells to be shut in or re-routed may only
increase the optimal value. The optimal value of Case 2.2 is therefore higher than Case 2.1, but
lower than that of Case 2.3. Next, the local solvers seem to find good optimal solutions. In
fact, in all cases except Case 2.1, all solvers are able to locate the global optimum. This may be
attributed to the problem formulation in P, and the smoothness of the cubic splines. Finally, the
exponential increase in computation time becomes distinct when globally solving Case 2.3 with
CENSO.

In Case 2.3, CENSO finds the solution z∗ = 143.875 mSTB/d. This solution is verified by
running the GAP model with the optimal valve settings. This gives a production of 143.936
mSTB/d; a relative difference of 0.04%. Compared to the optimal solution from the proprietary
solver in Case 2.1, the increase in production is 0.56%.

The active constraints at the optimal solution of Case 2.3 are listed in Table B.16. As indi-
cated in the table, Well 3 is offline in the optimal solution. This is not surprising since it is a
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Table 10: Well parameters for Case 2 and 3.

Well i PI (rank #) GOR (scf/STB) WCT (%) pL
i (bara)

1 10 2400 45 280
2 5 900 0 190
3 8 4500 30 220
4 2 1500 65 0
5 3 1800 35 220
6 11 3300 0 210
7 6 2900 5 220
8 12 4200 0 220
9* 1 0 0 0
10* 7 0 0 0
11 9 900 20 200
12 4 900 0 200
13* 13 0 0 0

* Well is offline. ** Values are rounded for commercial reasons.

Table 11: Configurations in Case 2 and 3.

Case Well status Well routing Energy balances Riser velocity
constraints

Case 2.1 – – – –
Case 2.2 X – – –
Case 2.3 X X – –

Case 3.1 – – X X
Case 3.2 X – X X
Case 3.3 X X X X

Yes: X, No: –

weak producer and the well with the highest GOR. Well 8, having the second highest GOR, is
choked to hit the gas capacity constraint on the total gas production. The rest of the wells operate
at maximum capacity, i.e. at their draw-down pressure or minimum choke differential pressure.

7.2.2. Case 3: Optimization with energy balances
The full Problem P is solved with temperature and enthalpy variables. The previously de-

scribed riser mix velocity constraints are included in the problem formulation to guard against
solutions susceptible to high erosion rates.

Note that Case 3 includes all constraints of Case 2, in addition to the energy balances and
riser mix velocity constraints. Thus, the optimal values in Case 2 are necessarily lower bounds
on the optimal values in Case 3.

The results for Case 3 are presented in Table 13. In Case 3.1 IPOPT, BONMIN, and CENSO
finds the same (globally) optimal solution. The same solution is found by BONMIN and CENSO
in Case 3.2. As reported, CENSO requires more than 1 hour to find and certify a global optimum.
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Table 12: Results for Case 2.

Case, Solver Iterations (#) Time (sec) z∗ (mSTB/d)

Case 2.1
Proprietary solver – 9000 143.139
IPOPT 37 0.1 143.435
BONMIN 0* 5 143.435
CENSO 30 280 143.435

Case 2.2
BONMIN 761 44 143.763
CENSO 19 314 143.763

Case 2.3
BONMIN 4386 146 143.875
CENSO 89 1870 143.875

* Problem has no integer variables and is solved at the root node.

In Case 3.3, BONMIN fails to locate the same or a better optimum than Case 3.2 and 3.1. This
happens because BONMIN mistakenly cuts away the optimum during its search. By comparing
Case 3.1 and 3.2 we notice that, as in Case 2, the option to turn off wells does not seem to have
a large impact on the solution time.

CENSO finds the same optimal solution in all three cases, with the active constraints listed
in Table B.17. As indicated, Well 3 and 8 act as “swing producers” and are adjusted to hit the
E and W riser mix velocity constraint, respectively. Wells 9, 10, and 13 are shut in. The rest of
the wells operate at maximum capacity, i.e. in this particular case at their draw-down pressure
or minimum choke differential pressure. The results indicate that shutting in or re-routing wells
does not increase oil production since it is limited by the riser velocity constraints.

The optimal solution found by CENSO on Case 3.2 is 140.674 mSTB/d. This solution is ver-
ified by implementing the optimal valve settings in GAP, to give 140.650 mSTB/d. The relative
difference between these two solutions is -0.02%. It is not possible to assert the accuracy of
which P approximates the GAP model based on a single point; however, this may indicate that
the accuracy increases when temperatures are included in P.

Prior to solving Case 3.1, the best known solution was 136.400 mSTB/d, found by the propri-
etary solver. The solution located by IPOPT, BONMIN, and CENSO gives a production of 140.650
mSTB/d in GAP. The potential increase in production is 4.25 mSTB/d, or 3.12%.

7.3. Pre-computations: building B-splines

Before solving P, B-spline approximations must be built from the samples taken from the
nonlinear relations. In Table 14 we report the build times for various B-splines; the build time
of a B-spline is the time it takes to solve the linear system in Eq. (20). The examples include
the inflow curves, pressure drop relations, and temperature drop relations used in the cases pre-
sented previously. It is worth noting that a B-spline must be rebuilt only when the relation it
approximates changes.
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Table 13: Results for Case 3.

Case, Solver Iterations (#) Time (sec) z∗ (mSTB/d)

Case 3.1
Proprietary solver – 9000 136.400
IPOPT 124 0.6 140.674
BONMIN 0* 32 140.674
CENSO 59 2630 140.674

Case 3.2
BONMIN 2432 387 140.674
CENSO 11 3670 140.674

Case 3.3
BONMIN 16152 2328 140.462
CENSO 249 9000** 140.674

* Problem has no integer variables and is solved at the root node.
** CENSO was terminated after 9000 seconds with an optimality gap of 25.163 mSTB/d.

Table 14: B-spline build times.

Samples (#) Dimension (#) Degree (#) Time (sec)

24 1 1 96 × 10−6

24 1 3 127 × 10−6

3773 4 1 0.2
3773 4 3 21.7
9800 4 1 3.0
9800 4 3 590.0
5184 5 1 1.4
5184 5 3 93.3

8. Concluding remarks

A framework for production optimization of multiphase flow networks has been presented.
By modelling the network with a graph and the nonlinear relations in the network with B-
splines, a fast solution method based on the spline-compatible MINLP solver in CENSO was
devised. The solution method can solve problems formulated in the framework to global opti-
mality. To accelerate solution times, CENSO was augmented with a primal heuristic (BONMIN)
and an optimality-based bounds tightening technique from the literature. Together with a DOF
analysis, this allowed us to reduce the number of sBB tree branches considerably.

In addition to the theoretical contributions outlined above, we have performed a benchmark
study where the solution method is compared to several other nonlinear programming methods.
The study involves three realistic cases defined using two subsea production system models pro-
vided by BP. The findings are summarized below.
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• The formulation in P proved flexible and allowed us to model the cases in the benchmark
study. The formulation includes nonlinear energy balances to model the transportation of
energy with higher detail than previous works on petroleum production optimization. Fea-
tures such as daisy-chained manifolds, lift gas injection, routing, and velocity constraints
were easy to include.

• The B-spline surrogate models were sufficiently accurate to be used in production opti-
mization of real cases. Inflow performance curves, pressure and temperature drop correla-
tions, and velocity maps were successfully modelled with splines.

• CENSO was able to successfully solve several realistic cases to global optimality. How-
ever, as the solution time increases exponentially with the size of the problem (number of
complicating variables), we found that the global solution method was not viable for daily
production optimization of the largest case, namely Case 3.3.

• The local solvers IPOPT and BONMIN were able to successfully solve problems formulated
with P to local optimality. In all cases except one, they located the global optimum certified
by CENSO. This leads us to believe that the NLP relaxation of P is near convex in large
portions of the feasible region. We attribute the consistency of the results to the smoothness
and derivatives of the cubic B-splines, and to the linear participation of the integer variables
in P.

• The local and global solvers are complementary in the sense that the local solvers provide
fast results for complex problems and are thus suitable for daily production optimization.
CENSO, however, can be used to certify local solutions from time to time, and also globally
explore new production settings.

• In Case 3, the new methodology identified a potential increase in production of 4250 stan-
dard barrels of oil per day, or 3.12% more than the best, previously known solution. This
solution was verified in the GAP simulator.

We believe that the above findings illustrate what any proficient practitioner of mathematical
programming knows; that a “good” problem formulation is a requirement for fast solution times
and consistency across solvers.

The speed of the new method would allow for parameter sensitivity analysis and stochastic
optimization to include uncertainty in crucial model parameters (at least for small to moderately
sized problems). With such approaches it would be possible to generate not only an optimal
point, but an optimal operational plan for the user. This is an important step towards better
decision support systems.
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Appendix A. Degree-of-freedom analysis

Here we give a degree-of-freedom (DOF) analysis for problem P. We denote the DOF with
D, and calculate it as D = Dc + Dd, where Dc and Dd is the number of free continuous and binary
variables, respectively. It is straightforward to verify that Dd = |Ed| so we focus on calculating
Dc. We perform the analysis in two steps: first, we calculate the DOF for a network without
discrete edges, i.e. with Ed = ∅; second, we calculate the DOF for discrete edges.

First, we consider a network without discrete edges. According to the requirements all nodes,
except sink nodes, must have exactly one leaving edge. Consequently, for a network without
discrete edges the following must be true: |E| = |N| − |Nsnk|. This relation between the number of
edges and nodes is useful when we next attempt to eliminate variables with equality constraints.

To calculate Dc we first count the number of continuous variables to

q︷ ︸︸ ︷
|S| · |E|+

p︷︸︸︷
|N| +

∆p︷︸︸︷
|E| +

t︷︸︸︷
|E| +

∆t︷︸︸︷
|E| +

h︷︸︸︷
|E| +

∆h︷︸︸︷
|E| . (A.1)

A quick glance at Table 3 verifies these numbers. Remark that when we now attempt to eliminate
variables we must take care to count one elimination per constraint, and to only eliminate a
variable that participate in the constraint.

Starting with the flow rates q: we count equality constraints related to flow rates to |S| ·
|Nint| + |S| · |Nsrc|, which is the number of mass balances in Eq. (1) plus the number of rate
boundary conditions in Eq. (11), respectively. Using the relation |E| = |N| − |Nsnk| we find that
|Nint| + |Nsrc| = |N| − |Nsnk| = |E|. Thus, there are |S| · |E| variables, |S| · |E| constraints, and zero
DOF in the flow rates q.

We continue by counting 2(|E| − |Ed|) = 2|E| pressure drop constraints ∆pe = fe(·) and
∆pe = pi − p j (remembering that Ed = ∅). We also count |Nsnk| pressure boundary conditions.
In total we get 2|E| + |Nsnk| = 2|E| + |N| − |E| = |N| + |E| constraints, which is the same as the
number of pressure variables. Thus, we have zero DOF in the pressure variables p and ∆p.

In the same fashion we consider the 4|E| temperature and enthalpy variables. From Eqs. (6),
(7), and (8) we count 3|E|+ |Nint| constraints. We also have |Esrc| = |Nsrc| boundary constraints in
Eq. (13) on the temperature variables. The total number of constraints is 3|E| + |Nint| + |Nsrc| =

3|E| + |N| − |Nsnk| = 4|E|. Thus, we find no DOF in the variables t, ∆t, h, and ∆h.
We conclude the first step of the analysis by establishing that there is no degree of freedom

in P when Ed = ∅, i.e. D = Dc + Dd = 0.
In the second step of the analysis we let Ed , ∅, i.e. we allow discrete edges. We begin

by considering a node with one leaving discrete edge. The discrete edge does not have the
constraints ∆pe = fe(·) and ∆pe = pi − p j. However, when ye = 1, ∆pe = pi − p j is recovered
from the big-M constraint in Eq. (5). On the other hand, when ye = 0, the flow rates are forced
to zero (qe = 0) by the flow routing constraint in Eq. (9) (since we already have zero DOF
in the flow rates we may use the boundary constraint ζi,s(qe, pi) = 0 to fix one pressure). In
either case, one DOF remains. This DOF reflects different things for the two cases: for ye = 1,
∆pe is free, but it relates the node pressures pi and p j, affecting the flow rate qe; for ye = 0,
∆pe is free, but does not affect the flow rate since qe = 0 or the neighbouring pressures since
−Me ≤ pi − p j − ∆pe ≤ Me never become active. Note that there is a subtlety with the latter
case (ye = 0): since ∆pe cannot affect other variables it is not suited to be a branching variable
(more importantly, ∆pe is not a complicating variable in P). It is better to branch on pi, which is
a complicating variable that may affect other variables. We conclude that for each discrete edge
we get one DOF in the continuous variables, and in total Dc = |Ed|.
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Finally, we consider the special case where nodes may have multiple leaving discrete edges.
The only change in P is the addition of the inequality constraints for manifold routing in Eq.
(10). These constraints do not alter the DOF.

We conclude the analysis by establishing that Dc = |Ed| and Dd = |Ed|, giving D = 2|Ed|.
The DOF is associated with the discrete edges e ∈ Ed representing (choke) valves.

Appendix B. Case results

The active constraints at the optimal solution of some of the cases are reported in this ap-
pendix.

Table B.15: Active constraints at optimal solution of Case 1.

Well Online Active constraint Lower bound Upper bound Solution

1 Yes Choke ∆p (bar) 0 – 0
2 Yes Choke ∆p (bar) 0 – 0
3 Yes Choke ∆p (bar) 0 – 0
4 No Oil rate (mSTB/d) 0 – 0
5 No Oil rate (mSTB/d) 0 – 0
6 No Oil rate (mSTB/d) 0 – 0
7 No Oil rate (mSTB/d) 0 – 0
8 Yes Choke ∆p (bar) 0 – 0
9 Yes Choke ∆p (bar) 0 – 0
10 Yes Choke ∆p (bar) 0 – 0
– – Lift gas (mmSTB/d) 0 20 20
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Bonami, P., Biegler, L. T., Conn, A. R., Cornuéjols, G., Grossmann, I. E., Laird, C. D., Lee, J., Lodi, A., Margot, F.,
Sawaya, N., et al., 2008. An algorithmic framework for convex mixed integer nonlinear programs. Discrete Optimiza-
tion 5 (2), 186–204.

Codas, A., Camponogara, E., 2012. Mixed-integer linear optimization for optimal lift-gas allocation with well-separator
routing. European Journal of Operational Research 217 (1), 222–231.

Codas, A., Campos, S., Camponogara, E., Gunnerud, V., Sunjerga, S., 2012. Integrated production optimization of oil
fields with pressure and routing constraints: The Urucu field. Computers & Chemical Engineering 46, 178–189.

35



Table B.16: Active constraints for Case 2.3.

Well Online Active constraint Lower
bound

Upper
bound

Solution

E loop
1 Yes Draw-down pressure (bara) 283.0 – 283.0
2 Yes Choke ∆p (bar) 0.5 – 0.5
3 No Oil rate (mSTB/d) 0.0 – 0.0
5 Yes Choke ∆p (bar) 9.5 – 9.5
6 Yes Choke ∆p (bar) 10.0 – 10.0

W loop
4 Yes Choke ∆p (bar) 1.0 – 1.0
7 Yes Choke ∆p (bar) 5.0 – 5.0
8* Yes Total gas (mmscf/d) – 300.0 300.0
9 No Oil rate (mSTB/d) 0.0 – 0.0
10 No Oil rate (mSTB/d) 0.0 – 0.0
11 Yes Choke ∆p (bar) 5.5 – 5.5
12 Yes Fixed oil rate (mSTB/d) 4.4715 4.4715 4.4715
13 No Oil rate (mSTB/d) 0.0 – 0.0

* Well 8 is adjusted to hit the gas capacity constraint.

Cordeau, J.-F., Toth, P., Vigo, D., 1998. A survey of optimization models for train routing and scheduling. Transportation
science 32 (4), 380–404.

Cox, M. G., 1972. The numerical evaluation of B-splines. IMA Journal of Applied Mathematics 10 (2), 134–149.
De Boor, C., 1972. On calculating with B-splines. Journal of Approximation Theory 6 (1), 50–62.
Grimstad, B., Sandnes, A., 2014. Global optimization with spline constraints: A new branch-and-bound method based

on B-splines, submitted to an international journal.
Grimstad, B., et al., 2015a. CENSO: a framework for global optimization of nonconvex, possibly spline-constrained,

MINLP problems. http://github.com/bgrimstad/censo, accessed: 2015-05-16.
Grimstad, B., et al., 2015b. SPLINTER: a library for multivariate function approximation.

http://github.com/bgrimstad/splinter, accessed: 2015-05-16.
Grossmann, I. E., 2002. Review of nonlinear mixed-integer and disjunctive programming techniques. Optimization and

Engineering 3 (3), 227–252.
Gunnerud, V., Foss, B., 2010. Oil production optimizationa piecewise linear model, solved with two decomposition

strategies. Computers & Chemical Engineering 34 (11), 1803–1812.
Gurobi Optimization, Inc., 2014. Gurobi Optimizer Reference Manual. http://www.gurobi.com, accessed: 2014-10-

01.
Kosmidis, V. D., Perkins, J. D., Pistikopoulos, E. N., 2004. Optimization of well oil rate allocations in petroleum fields.

Industrial & Engineering Chemistry Research 43 (14), 3513–3527.
Kosmidis, V. D., Perkins, J. D., Pistikopoulos, E. N., 2005. A mixed integer optimization formulation for the well

scheduling problem on petroleum fields. Computers & Chemical Engineering 29 (7), 1523–1541.
Luathep, P., Sumalee, A., Lam, W. H., Li, Z.-C., Lo, H. K., 2011. Global optimization method for mixed transportation

network design problem: a mixed-integer linear programming approach. Transportation Research Part B: Method-
ological 45 (5), 808–827.

Mandl, C. E., 1980. Evaluation and optimization of urban public transportation networks. European Journal of Opera-
tional Research 5 (6), 396–404.
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