
Exact Statistical Inference in Parametric
Models
Methods for Constructing Confidence

Intervals and Confidence Regions Based on

Conditional Parametric Bootstrap and Data

Depth

Audun Sektnan

Master of Science in Physics and Mathematics

Supervisor: Bo Henry Lindqvist, IMF

Department of Mathematical Sciences

Submission date: June 2017

Norwegian University of Science and Technology



 



i

Problem Description

• Study methods for generating approximate and exact confidence intervals and confidence

regions for parametric models with one or more unknown parameters, using:

– Conditional parametric bootstrapping

– Methods based on data depth
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gamma distribution
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Abstract

In this Master’s thesis we investigate approaches for constructing approximate and exact con-

fidence intervals and regions in parametric models. A supposedly exact method, called condi-

tional parametric bootstrap, is used to generate confidence intervals for the parameters in the

gamma distribution. However, simulation studies are carried out that question the correctness

of this method. More precisely, the scale parameter seems to obtain a higher coverage proba-

bility than expected. The results are compared to approximate intervals using the more familiar

bootstrap methods.

Next, we look at a concept called data depth, and apply it on two-dimensional distributions and

data sets. This can be used to order multidimensional data, and here we analyze some of the

well known types of depths. These different types are then used, in combination with methods

from the conditional parametric bootstrap, to construct approximate confidence regions for the

parameters in the gamma distribution. The coverage probabilities are analyzed, and we observe

how one can obtain close to exact confidence regions just by adjusting a simulation parameter

in the algorithm.
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Sammendrag

I denne masteroppgaven undersøker vi måter å konstruere tilnærmede og eksakte konfidensin-

tervall og konfidensområder i parametriske modeller. En antatt eksakt metode, kalt ”condi-

tional parametric bootstrap”, brukes til å generere konfidensintervaller for parametrene i gam-

mafordelingen. Simuleringsstudier gjennomføres som derimot setter spørsmålstegn ved hvor

korrekt denne metoden er. Mer presist så ser det ut til at skalaparameteren oppnår en for høy

andel av simuleringene innenfor konfidensintervallet, ut fra det som er forventet verdi. Resul-

tatene sammenlignes med tilnærmede intervaller funnet ved bruk at de mer kjente bootstrap-

metodene.

Deretter ser vi på et konsept kalt datadybde, og anvender det på todimensjonale fordelinger og

datasett. Dette kan brukes til å ordne multidimensjonale data, og her analyserer vi noen av de

mer kjente dybdetypene. Disse ulike dybdene brukes så, i kombinasjon med metoder fra ”con-

ditional parametric bootstrap”, til å konstruere tilnærmede konfidensområder for parametrene

i gammafordelingen. Andelen av simuleringene som faller innenfor konfidensområdet analy-

seres, og vi observerer at en kan oppnå et nesten eksakt konfidensområde bare ved å justere på

en simuleringsparameter i algoritmen.
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Chapter 1

Introduction

In statistics, parametric models denote families of probability distributions that are character-

ized by one or more model parameters. When doing statistical inference, one often assumes a

particular model and tries to estimate the corresponding parameters using some data sample.

This only makes sense if the model assumption is approximately correct, which often can be

tested to some degree by various methods. Under the assumption of a particular parametric

model, one has that there exists some true, but unknown, values for the model parameters. To

assess the accuracy of an estimated parameter value, it is common to construct a confidence in-

terval, which is a range of values that has a certain probability of containing the true parameter

value.

The gamma distribution is a general and well known family of continuous distributions. It has,

among others, both the exponential distribution and the chi squared distribution as special

cases, and can take a variety of different shapes depending on the values of the two parame-

ters that characterize the distribution. One common application is in the analysis of waiting

times, following from the fact that waiting times between events in a Poisson process actually

are gamma distributed. It has also been used in the prediction of rainfall, for instance in (Husak

et al., 2007).

The distribution derives its name from the gamma function that appears in the normalization

constant of the probability density function (see definitions and details in Section 2.1). It turns
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2 Chapter 1. Introduction

out that this function, which is defined in terms of an integral, makes it somewhat tricky to

compute the maximum likelihood estimators for the parameters, and also to construct exact

confidence intervals.

A quite general method for constructing exact confidence intervals is introduced in (Lillegard

and Engen, 1999). There they denote it as ”conditional parametric bootstrapping”, and this

method is applicable on many parametric models. In this thesis we start by going over some

statistical theory in Chapter 2 that we will use later, before we in Chapter 3 investigate how the

conditional parametric bootstrap method works. At the end of this chapter we apply it on the

gamma distribution, and study the correctness of the algorithm. Next, we will take a different

approach to the inference in parametric models with two parameters, namely to look at confi-

dence regions inR2 constructed using a concept called data depth. Various types of such depths

are introduced in Chapter 4, where we also study how one can use this to generate what we will

denote as ”probability regions”. The shapes and correctness are investigated at the end of the

chapter, before we in Chapter 5 use a combination of this method and conditional parametric

bootstrap to construct various confidence regions for the two parameters in the gamma distri-

bution.

All the simulations and programming are done in R.



Chapter 2

Theory

Here we present some theory we will make use of later.

2.1 Gamma Distribution

The density of a gamma distributed variable is

fX (x) = 1

Γ(α)βα
xα−1e−

x
β , 0 < x <∞, α> 0, β> 0, (2.1)

where α and β are the shape and scale parameters, respectively (see for instance (Casella and

Berger, 2002), Chapter 3, page 99). Here Γ(α) is the gamma function, defined as

Γ(α) =
∫ ∞

0
xα−1e−xd x.

Assuming a random sample x = (x1, . . . , xn), the likelihood function can be written as

L(α,β) =
(

1

Γ(α)βα

)n
(

n∏
i=1

xi

)α−1

e−
1
β

∑n
i=1 xi . (2.2)

The maximum likelihood estimates for α and β are found by finding the maximum of this func-

tion, or alternatively the log-likelihood function. The solutions cannot be written explicitly, but

3



4 Chapter 2. Theory

can be found numerically, using for instance the function fitdistr from the library MASS in R.

The equations to solve are the following:

ln(α)−ψ0(α)+ c = 0,

β= 1

nα

n∑
i=1

xi ,

where ψ0(α) is the digamma function,

ψ0(α) = d

dα
ln(Γ(α)),

and

c = ln

((∏n
i=1 xi

)1/n

1
n

∑n
i=1 xi

)
.

2.2 Exact Confidence Intervals

Consider a random sample X = (X1, X2, . . . , Xn), where each sample point is drawn from a known

probability distribution fX (x;θ) with an unknown one-dimensional parameter θ. Often the goal

is to estimate the parameter θ by calculating some statistic θ̂ from the random sample. The

next step could be to calculate an interval [a,b] where you are quite certain (confident) that the

true parameter θ lies, and this is called a confidence interval. The coverage probability is the

probability that the real value θ is inside the confidence interval (see (Casella and Berger, 2002),

Chapter 9, page 418). The nominal coverage probability (see (Hall, 1992), Chapter 1, page 12)

is the desired probability for the real parameter θ to be inside the interval [a,b], and often used

values for this are 0.90, 0.95 or 0.99. In an exact confidence interval we have that the nominal

and true coverage probabilities are equal.

Such exact confidence intervals are usually difficult to obtain for complex distributions, but can

be found for some of the simpler ones. One general approach to finding such intervals is to find a

variable, called a pivot, that is a function of both the parameter θ and the random sample X with

a known distribution independent of θ. In the case of the univariate normal distribution, X ∼
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N(µ,σ2), there exists exact confidence intervals for both µ (with σ2 either known or unknown)

and σ2 (with µ either known or unknown), see for instance (Ross, 2009), Chapter 7.3, page 242-

243, 248 and 253-254. The case for σ2 when µ is known is very similar to when µ is unknown,

only replace n−1 with n in the chi-squared quantile, and use µ instead of X̄ in the calculation of

S2.

It is also possible to calculate an exact confidence interval for the parameterλ in the exponential

distribution, by noting that

2λ
n∑

i=1
Xi ∼χ2

2n .

(see for instance (Ross, 2009), Chapter 7.6, page 267). Hence, a (1−α)100% exact confidence

interval is  χ2
2n,1−α

2

2
∑n

i=1 xi
,
χ2

2n,α2

2
∑n

i=1 xi

 ,

where χ2n,α2
and χ2n,1−α

2
are quantiles in the chi-squared distribution with 2n degrees of free-

dom.

Such exact confidence intervals are generally difficult to find, and so one often use some method

to generate confidence intervals with coverage probability approximately equal to the nominal

coverage probability.

Estimators can be evaluated using two criterias

• Is the estimator biased or unbiased?

• How small is the variance?

In a similar way one can evaluate a confidence interval by

• Is the true coverage probability equal to the nominal coverage probability?

• How small is the length of the confidence interval?
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2.3 Bootstrap Confidence Intervals

Bootstrapping is a relatively easy way to make approximate confidence intervals when the dis-

tribution F is unknown, and was introduced in (Efron, 1979). The idea is to draw samples from

some distribution F∗ that approximates the true distribution F , and use many such resamples,

or bootstrap samples, to make inference on the distribution of some statistic. A popular choice

for the approximated distribution is the empirical distribution. Assuming a random sample

x = (x1, . . . , xn), the empirical distribution F∗ puts a uniform probability 1
n on each of the sample

points. This is what is called ”the bootstrap method for the one-sample problem” in the paper

by Efron. The empirical distribution will be a poor approximation of the true distribution F if n

is small, but will get better as n increases, and will converge to the correct distribution F when

n goes to infinity.

If the statistic is an estimator for some distribution parameter, one can use many such bootstrap

samples to calculate an approximate confidence interval for the parameter. This can be done

by calculating the value T (x∗) of the statistic using many samples x∗ = (
x∗

1 , . . . , x∗
n

)
drawn from

the empirical distribution F∗, sorting these values, and then discarding α
2 of the values in either

end. One then ends up with a two-sided approximate (1−α)% confidence interval, which is a

type of non-parametric bootstrap confidence interval, because the resampling is done from the

non-parametric empirical distribution.

Similarly, one can construct a parametric bootstrap confidence interval by resampling from the

actual distribution F with parameters estimated from the random sample x = (x1, . . . , xn). In

this case one must assume that the data comes from a known (parametric) distribution F . For

instance, assuming that F is the gamma distribution, one estimates the parameters α̂ and β̂ from

the data, and use these values to generate new bootstrap samples from Gamma
(
α̂, β̂

)
.

2.4 Sufficiency

Consider a random sample X = (X1, X2, . . . , Xn) where each Xi is from a known probability dis-

tribution fX (x;θ) with an unknown parameter θ, possibly multidimensional. If the goal is to
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estimate θ or a function g (θ), one would calculate some statistic T (x) as an estimator, using the

realization x = (x1, x2, . . . , xn). These estimates might be equal for different realizations x and y,

and one might wonder if it is possible to summarize the data from the sample x in such a way

that no useful data is lost. This is the concept of sufficient statistics, which is defined as follows

(see (Casella and Berger, 2002), Chapter 6, page 272).

A statistic T (X) is a sufficient statistic for θ if the conditional distribution of the sample X given

the value of T (X) does not depend on θ.

A useful way of deciding if a particular statistic is indeed a sufficient statistic, is the Factorization

Theorem (see (Casella and Berger, 2002), Chapter 6, page 276):

Factorization Theorem: Let f (x;θ) denote the joint pdf or pmf of a sample X. A statistic T (X)

is a sufficient statistic for θ if and only if there exist functions g (t ;θ) and h(x) such that, for all

sample points x and all parameter points θ,

f (x;θ) = g (T (x);θ)h(x).
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Chapter 3

Conditional Parametric Bootstrapping

A method for generating exact confidence intervals is described in (Lillegard and Engen, 1999),

where they denote it as conditional parametric bootstrapping. This method works under quite

general conditions in the case of models with only one parameter, and also for models with

nuisance parameters. Confidence intervals are calculated for the parameters α and β in the

gamma distribution using simulations. Before doing this, we look at a simpler case example to

illustrate the method.

3.1 Bivariate Normal Distribution

The first example that is studied in (Lillegard and Engen, 1999) is the generation of an exact

confidence interval for the correlation coefficient ρ in the bivariate normal distribution. Here

we copy the approach, and the method works as follows. Let (X,Y) = (
(X1,Y1), . . . , (Xn ,Yn)

)
be a

random sample from the bivariate normal distribution, with the usual parametersµx , µy ,σx ,σy

and ρ. Such a random sample can be generated using samples of univariate and independent

random variables, U = (U1, . . . ,Un) and V = (V1, . . . ,Vn), from the standard normal distribution,

9
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Ui ,Vi ∼ N (0,1), using the following formulas

Xi =µx +σxUi ,

Yi =µy +σy
[
ρUi + (1−ρ2)1/2Vi

]
,

for i = 1, . . . ,n. Next, each (Xi ,Yi ) is transformed to the dependent random variables (Zi ,Wi ) to

get a distribution depending only on the single parameterρ, using the following equations:

Zi = Xi − X̄

Sx
= Ui −Ū

Su
, (3.1)

Wi = Yi − Ȳ

Sy
= ρ(Ui −Ū )+ (1−ρ2)1/2(Vi − V̄ )[

ρ2S2
u + (1−ρ2)S2

v +2ρ(1−ρ2)1/2ruv SuSv
]2 , (3.2)

for i = 1, . . . ,n. Here Sx , Sy , Su , Sv and ruv denotes the sample standard deviations and the

sample correlation.

The maximum-likelihood estimate of ρ is

ρ̂ = 1

n

n∑
i=1

Zi Wi . (3.3)

The main idea of the whole method is that, given a set of data values (x,y) = (x1, y1), . . . , (xn , yn),

we can think of these data as being constructed from values for (u,v) = (u1, v1), . . . , (un , vn) that

we do not know. We can, however, generate new values u∗ and v∗ that are from the same dis-

tribution as the true values u and v. The method is to keep the maximum-likelihood estimator

ρ̂ fixed, and to calculate what value of the parameter ρ that would give the same value for the

estimate ρ̂, using the new values of u∗ and v∗. Denoting this value ρ̃, this results in solving

ρ̂ = g (ρ̃;u∗,v∗) for ρ̃, where the function g (·) is defined as

g (ρ;U,V) = 1

n

n∑
i=1

[(
Ui −Ū

Su

)(
ρ(Ui −Ū )+ (1−ρ2)1/2(Vi − V̄ )[

ρ2S2
u + (1−ρ2)S2

v +2ρ(1−ρ2)1/2ruv SuSv
]2

)]
. (3.4)

This can be done uniquely since g (ρ;U,V) is increasing in ρ, which is stated, but not proved, in
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(Lillegard and Engen, 1999). The solution is

ρ̃ = kp
1+k2

,

where

k = Sv∗

Su∗

[
ρ̂− ru∗v∗

(
1− ρ̂2

1− r 2
u∗v∗

)1/2](
1− ρ̂2

1− r 2
u∗v∗

)−1/2

.

This way of generating values for ρ̃ is what they denote as conditional parametric bootstrapping

in (Lillegard and Engen, 1999).

Now, what is the relationship between the true value ρ and a value ρ̃ generated from this proce-

dure? In the paper they state that the rank of g (ρ;U,V) among the m generations of g (ρ;U∗,V∗)

is uniform on the integers {1,2, . . . ,m +1}, because (U∗,V∗) and (U,V) are from the same distri-

bution. Further, if g (t ;U,V) is an increasing function in t for any U,V, which the paper states

that is often the case, then we have the following relationship

{
ρ̃ < ρ}= {

g (ρ;U∗,V∗) > g (ρ;U,V)
}

. (3.5)

The reason for this is illustrated in Figure 3.1, which is a reconstructing of Fig. 1 in (Lillegard

and Engen, 1999). First, assume that g (ρ;U,V) > g (ρ;U∗,V∗), which is the case in the illustrating

plot, where the blue line is above the orange line at t = ρ. We know that the maximum like-

lihood estimator is obtained by computing ρ̂ = g (ρ;U,V). The value of ρ̃ is found by solving

ρ̂ = g (ρ̃;U∗,V∗) for ρ̃. Now the question is whether or not ρ̃ is to the left of ρ. But because the

blue line for g (t ;U∗,V∗) is above g (t ;U,V) at t = ρ, and that this function is non-decreasing, we

have that it cannot cross the horizontal line at ρ̂ on the y-axis to the right of t = ρ. The only

possible solution is the result in Equation (3.5), except for the possibility that g (ρ;U∗,V∗) > ρ̂ for

all values of t , but this is not investigated any further.

Looking pairwise at the true value of ρ and a simulated value ρ̃, we have from Equation (3.5) that

the events
{
ρ̃ < ρ}

and
{
ρ̃ > ρ}

both have the same probability of 0.5 of happening when values

for (u∗,v∗) are generated. Hence, when m values for ρ̃ are generated we have that the number
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Figure 3.1: Illustration used to explain Equation (3.5).

of points that are below (or above) the true value of ρ is uniform on the integers {0,1,2, . . . ,m},

and hence the rank of ρ among the m values generated for ρ̃ is uniform on {1,2, . . . ,m+1}.

Now, to get an exact confidence interval we use that ρ has an equal probability to be inside any

of the m+1 intervals between two successive numbers in the sorted list (ρ̃(1), . . . , ρ̃(m)), where we

also count the intervals
(−∞, ρ̃(1)

)
and

(
ρ̃(m),∞

)
. To construct a (1−α)100% confidence interval,

we can discard a proportion of α2 of the first intervals and α
2 of the last intervals in the sorted list.

The number of intervals k to remove on each side is then k = α
2 (m+1), which means that the end

points of the confidence interval is ρ̃(k) and ρ̃(m−k+1). For a given value of α, one must choose

m so that k is an integer. For instance, if α = 0.05, then the possible values are m = 40l −1 for

l ∈ {1,2, . . .}.

In summary, the algorithm is as follows:
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Algorithm 1 - Conditional parametric bootstrapping on the bivariate normal distribu-

tion

Input: A random sample (x,y), confidence level (1−γ) and number of simulations m.

1: Calculate ρ̂ from (x,y) using Equations (3.1), (3.2) and (3.3).

Iterate m times:

2: Generate U∗ and V∗ independently from the univariate standard normal distribu-

tion.

3: Solve ρ̂ = g (ρ̃;u∗,v∗) for ρ̃, where g (·) is defined in Equation (3.4).

End iteration

4: Sort the generated values: (ρ̃(1), . . . , ρ̃(m)).

5: Calculate k = γ
2 (m +1) and return the confidence interval

[
ρ̃(k), ρ̃(m−k+1)

]
.

Figure 3.2 shows that the mean coverage of the generated confidence intervals converges to the

desired value of 0.95. The left plot shows the coverage proportion as a function the logarithm

(with base 2) of the number of iterations, the middle plots shows how the corresponding error

decreases, while plot to the right shows the mean length of the generated confidence intervals.

Here the values n = 5, ρ = 0.5, µ= [5,10]T , σx = 2 and σy = 3 were used. The number of simula-

tions in the paper was 500, but this was almost 20 years ago, so here we can run the simulations

for 220 ≈ 1000000 iterations.

In the plot the the left in Figure 3.2 we have included an approximate 0.95 confidence interval

for each number of iterations, shown as vertical grey lines. This is to better evaluate the correct-

ness of the algorithm. The height is calculated by noting that, for a number of iterations m, the

number of values x inside the confidence interval will be binomially distributed with parame-

ters m and p = 0.95, if the confidence interval is indeed exact. Hence, we can use the normal

approximation x
m ∼ N

(
p, p(1−p)

m

)
, which will more than good enough for such large values of m

when p = 0.95.

Figure 3.3 shows the same plots in the case of n = 10, with the same parameter values as with

n = 5. Table 3.1 lists the final values for the coverage proportion and the mean length of the

confidence intervals, using the largest number of iterations. These values are similar to the ones
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Figure 3.2: Calculated coverage proportion (left), corresponding error (middle) and mean length
of confidence interval (right) of the correlation coefficient in the bivariate normal distribution,
using conditional parametric boostrapping. Here the logarithm has base 2 and the sample size
was n = 5 in each simulation.

listed in Table 1 in (Lillegard and Engen, 1999), but are of course closer to the desired coverage of

0.95, since the number of iterations is much larger. Looking at the two coverage proportion plots

to the left in Figure 3.2 and 3.3, it looks like the coverage proportions are converging to 0.95 for

both n = 5 and n = 10. Using the normal approximation described above, we calculate p-values

of 0.240 and 0.372 for n = 5 and n = 10, respectively, for the coverage values at 220 number of

iterations, using the null hypothesis that the true coverage probability is 95%. We conclude that

the method appears to be working fine in this example.

Figure 3.3: Calculated coverage proportion (left), corresponding error (middle) and mean length
of confidence interval (right) of the correlation coefficient in the bivariate normal distribution,
using conditional parametric boostrapping. Here the logarithm has base 2 and the sample size
was n = 10 in each simulation.
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n Coverage proportion Mean length

5 0.95025 1.3598
10 0.94981 0.9695

Table 3.1: Simulated coverage proportions and mean length of confidence intervals, using con-
ditional parametric bootstrap on the bivariate normal distribution. Here the number of itera-
tions used is 220 ≈ 1000000.

3.2 Gamma Distribution

Now it’s time to apply the method above to the gamma distribution. This is also done in (Lille-

gard and Engen, 1999), although the details are not given. Here we implement a method that is

strongly motivated by the ideas and results in (Lindqvist and Taraldsen). Assume a random sam-

ple x = (x1, . . . , xn) from the gamma distribution with parameters α and β, as given by Equation

(2.1). Define two statistics as

T1(X) = 1

n

n∑
i=1

Xi , (3.6)

T2(X) =
(∏n

i=1 Xi
)1/n

1
n

∑n
i=1 Xi

. (3.7)

By looking at Equation (2.2) for the likelihood function of the gamma distribution, which is the

same expression as for the joint density of the random sample, it is clear from the Factorization

Theorem (see Section 2.4) that T1(X) and T2(X) are sufficient statistics. This can be seen by

writing the functions in the Factorization Theorem as

h(x) =
(

1

Γ(α)βα

)n

,

g (T1(x),T2(x);α,β) =
((∏n

i=1 Xi
)1/n

1
n

∑n
i=1 Xi

)n(α−1) (
1

n

n∑
i=1

Xi

)n(α−1)

e−
n
β

1
n

∑n
i=1 xi

= T1(x)n(α−1)T2(x)n(α−1)e−
n
βT2(X).

The conditional parametric bootstrap is here done by keeping the value of both T1 and T2 fixed,

in the same way as correlation coefficient ρ̂ was kept constant in the previous section.

Assume a random variable u is drawn from the uniform distribution from 0 to 1. Calculat-



16 Chapter 3. Conditional Parametric Bootstrapping

ing

χ(u;α,β) =βF−1(u;α,1), (3.8)

where F−1(u;α,β) is the inverse of the cumulative distribution function F (x;α,β) of the gamma

distribution with parameters α and β, we have by inversion that χ(u;α,1) ∼ Gamma(α,1), and

because β is a scale parameter, χ(u;α,β) ∼ Gamma(α,β). So a random sample x can be thought

of as having been generated in this way, with unknown values for the parameters α and β, and

the random vector u.

Now, Equations (3.6) and (3.7), which are functions of the random sample x, can also be thought

of as functions of the parameters α and β, and the random vector u, using Equation (3.8). This

gives the following equations:

g1(u,α,β) = β

n

n∑
i=1

F−1(ui ;α,1), (3.9)

g2(u,α) =
(∏n

i=1 F−1(ui ;α,1)
)1/n

1
n

∑n
i=1 F−1(ui ;α,1)

. (3.10)

In the conditional parametric bootstrap algorithm we need to solve the equations T1(x) = g1
(
u∗, α̃, β̃

)
and T2(x) = g2(u∗, α̃) for α̃ and β̃, given values for x and a simulated random vector u∗. Here

g2(u∗, α̃) is only a function of the first parameter α̃, and hence we can solve this equation for α̃

first, and use this solution to solve the second equation T1(x) = g1
(
u∗, α̃, β̃

)
for β̃. This solution

can easily be found explicitly for β̃.

In (Iliopoulos, 2016) it is shown that the function g2(u∗, α̃) is increasing in α̃ for all possible

values of the simulated random vector u∗. Hence, there is a maximum of one solution to the

equation T2(x) = g2(u∗, α̃). This solution is found in R by using the bisection method, which is

a numerical root-finding method that is relatively easy to implement. The algorithm starts by

specifying some initial values for two end points a and b and checks that T2(x)− g2(u∗, a) and

T2(x)− g2(u∗,b) are of opposite signs. It not, either a is divided by two or b is multiplied by two

until the signs are opposite. Then the bisection method works by calculating the function value

at the mid-point (a +b)/2. If this value is less than the tolerance level specified, which in our
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case was 10−8, then the algorithm is done, if not, the algorithm continues with (a +b)/2 as one

of the end-points, together with either a or b, depending on the signs of the calculated function

values.

The conditional parametric bootstrap algorithm for the gamma distribution can be summarized

as the following:

Algorithm 1 - Conditional parametric bootstrapping on the gamma distribution

Input: A random sample x, confidence level (1−γ) and number of simulations m.

1: Calculate T1(x) and T2(x) using Equations (3.6) and (3.7).

Iterate m times:

2: Generate U∗ = (U∗
1 , . . . ,U∗

n ), where each U∗
i is drawn independently from the uni-

form distribution between 0 and 1.

3: Solve T2(x) = g2(u∗, α̃) numerically for α̃ using Equations (3.7) and (3.10). This is

done using an implementation of the bisection method in R.

4: Solve T1(x) = g1(u∗, α̃, β̃) for β̃ using Equations (3.6) and (3.9), after inserting the

solution for α̃ in the previous step.

End iteration

4: Sort the generated values:
(
α̃(1), . . . , α̃(m)

)
and

(
β̃(1), . . . , β̃(m)

)
.

5: Calculate k = γ
2 (m + 1) and return the confidence intervals

[
α̃(k), α̃(m−k+1)

]
and[

β̃(k), β̃(m−k+1)
]
.

3.3 Results and Discussion

The algorithm described in the previous section was tested out on the same two examples as in

(Lillegard and Engen, 1999). The true value of the parameters was (α,β) = (0.5,1) in both cases,

while the number of data points in the random sample x was chosen to be n = 5 and n = 10.

The resulting convergence proportions after running the simulations 221 times for n = 5 and 220

times for n = 10, are shown in the last column of Table 3.2. The number of simulations m at each

iteration in the algorithm above, was chosen to be m = 199, corresponding to a cut-off value of
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k = 5. The confidence level used was (1−γ) = 0.95.

Table 3.2 also shows the results when using the parametric and non-parametric bootstrap meth-

ods, which are described in Section 2.3. Here the estimators used in both cases are the maximum

likelihood estimators, obtained using the fitdistr-function from the MASS-library in R. Repeated

calculations for the value of these estimators are done for 1000 bootstrap samples, and used to

calculate approximate 95%-confidence intervals. Clearly, these types of bootstrap methods pro-

vide confidence intervals with a coverage proportion that differs quite much from the nominal

coverage of 0.95. The main reason for this is the fact that the distribution F∗ is a poor approxi-

mation of the true distribution F for such small values of n. The conditional parametric boot-

strap works better, and the coverage proportions for both α and β are quite close to 95%. The

convergence of the coverage proportions are investigated below.

Table 3.2: Simulated coverage proportions of confidence intervals for the parameters in the
gamma distribution.

(n,α,β) Parameter Par. Boostrap Non-par. Bootstrap Conditional Par. Bootsrap

(5,0.5,1) α 0.739 0.616 0.95006
β 0.694 0.523 0.95111

(10,0.5,1) α 0.825 0.769 0.94965
β 0.804 0.718 0.95015

Table 3.3 shows the mean length of the confidence intervals. Clearly, the conditional paramet-

ric bootstrap algorithm generates confidence intervals that are much narrower than those pro-

duced by regular bootstrapping, especially for the smallest value n = 5. The results in Tables 3.2

and 3.3 can be compared with the results in Table 2.1 in (Lillegard and Engen, 1999).

The intervals from the non-parametric bootstrap are very wide, and this is because when n is

small there is a small probability of obtaining a sample x∗ of very similar values when doing

the bootstrap resampling from the empirical distribution. For instance, generating a random

sample of size n = 5 from the gamma distribution with parameters (α,β) = (0.5,1) gave in one
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case the following result:

x = [5.0468,0.2037,0.2016,0.0013,1.0310].

One possible resample of this could be

x∗ = [0.2037,0.2016,0.2037,0.2037,0.2037].

Calculating the maximum likelihood estimators for the parameters using this resample x∗ and

the fitdistr-function from the MASS-library in R, we get

α̂= 44 711.05

β̂= 219 922.98,

which is extremely far from the true values of α = 0.5 and β = 1. Although such resamples will

be quite rare, it is probably the effect of these that makes the confidence intervals so wide when

using non-parametric bootstrap on samples of size n = 5.

Table 3.3: Simulated mean lengths of confidence intervals for the parameters in the gamma
distribution.

(n,α,β) Parameter Par. Boostrap Non-par. Bootstrap Conditional Par. Bootsrap

(5,0.5,1) α 9.30 282.8 2.03
β 42.54 3555.2 8.30

(10,0.5,1) α 1.77 1.94 0.94
β 7.35 9.14 3.28

Figure 3.4 and 3.5 shows the coverage proportions for the confidence intervals of α and β, re-

spectively, in the case when n = 5. The vertical lines are here the same approximated 95% con-

fidence intervals for the coverage proportions used earlier in the case of the bivariate normal

distribution, under the assumption that the true coverage probability for this method is indeed

95%. Figures 3.6 and 3.7 shows similar plots, only now for the case of n = 10. Here the logarithm

used is in base 2. From these plots we can note the following:
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• The coverage proportion of the parameterα seems to be converging towards 95% for both

n = 5 and n = 10.

• The coverage proportion of the parameter β, however, is not converging to the nominal

coverage probability of 95%. This is most clear from the plot to the right in Figure 3.5,

where the last three points are far outside the vertical bars indicating the approximate

95% confidence intervals at each number of iterations. There are two plausible reasons

for this:

1. The numerical calculation of α̃ using the bisection method introduces some error

that effects the results.

2. The conditional parametric bootstrap is in fact not an exact method for this applica-

tion.

Because the values for α̃ are found numerically by itself, and then used in the equation that

computes β̃, it seems unlikely that a numerical inaccuracy would effect the coverage proportion

for β much more significantly than the coverage proportion for α. It can, however, not be ruled

out totally.

In (Lillegard and Engen, 1999) they state, when talking about the gamma distribution, that

”... the ordered bootstrap replicates produce intervals with the exact cover probability for each

parameter considered seperately.”. From the simulation studies done in this thesis is seems that

this statement might be wrong, and this is also suspected in (Lindqvist and Taraldsen).
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Figure 3.4: Convergence proportion for the confidence interval of alpha, as a function of the
logarithm (with base 2) of the number of iterations. Here the sample size is n = 5 and the true
values of the parameters are α= 0.5 and β= 1. The right plot zoomes in on the last 5 values.

Figure 3.5: Convergence proportion for the confidence interval of beta, as a function of the loga-
rithm (with base 2) of the number of iterations. Here the sample size is n = 5 and the true values
of the parameters are α= 0.5 and β= 1. The right plot zoomes in on the last 5 values.
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Figure 3.6: Convergence proportion for the confidence interval of alpha, as a function of the
logarithm (with base 2) of the number of iterations. Here the sample size is n = 10 and the true
values of the parameters are α= 0.5 and β= 1. The right plot zoomes in on the last 5 values.

Figure 3.7: Convergence proportion for the confidence interval of beta, as a function of the log-
arithm (with base 2) of the number of iterations. Here the sample size is n = 10 and the true
values of the parameters are α= 0.5 and β= 1. The right plot zoomes in on the last 5 values.



Chapter 4

Probability Regions

Now we take a different approach to the inference of the parameters in the gamma distribution,

namely to look at one confidence region in R2 for both α and β simultaneously, instead of look-

ing at two confidence intervals in one dimension. To do this, it helps to have some notion of

how to order data in two dimensions. We start by looking briefly at the one-dimensional case,

with the usual ordering of values from smallest to largest.

In this chapter we will denote the regions and intervals constructed as ”probability regions”

or ”probability intervals”. They are in a sense prediction regions (or intervals), since they give a

likely region for the location of a new generated point, but the the probability for this point to be

inside the region is set before a random sample is drawn. This means that after such a random

sample is generated, the probability for the new point to be included in the region will depend

on the values of the actual data sample and not have the desired probability of covering this new

point. Prediction regions (and intervals) are more difficult to construct, because in that case you

want to have a certain probability for the new generated value to be included in the region, given

the actual values of the data sample. For the probability intervals and regions discussed here, all

we know is that there is a certain probability (or an approximate probability) for this generated

point to be inside the sample, before the random sample itself has been generated.

This seems to be a strange way of generating intervals and regions, but we will see in Chapter 5

that we can combine methods from Chapter 3 with such types of probability regions to construct

23



24 Chapter 4. Probability Regions

confidence regions for the parameters in the gamma distribution.

We will denote the desired probability for a future sample point to be inside the probability

region or interval, as the coverage probability level.

4.1 Order Statistics - One Dimension

Assume n random variables X1, . . . , Xn are independent and identically distributed from a con-

tinuous univariate probability distribution f (x), and that the ordered sample has the usual no-

tation

X(1), . . . , X(n).

If we generate one more random variable from the same distribution, Xn+1 ∼ f (x), indepen-

dent of the original values X1, . . . , Xn , then the placement of this value in the ordered sample of

size n + 1 will have probability 1
n+1 for all possible placements X(i ), i = 1, . . . ,n + 1. This is the

same as saying that Xn+1 is distributed uniformly among the n +1 intervals between the values

of X(1), . . . , X(n), where also the end intervals
(−∞, X(1)

)
and

(
X(n),∞

)
are included. This is illus-

trated in Figure 4.1, showing the location of five samples points and the possible intervals where

a new random variable might lie. Of course, the probability distribution for Xn+1 over these n+1

possible intervals will change if conditioned on the actual values x(1), . . . , x(n) generated.

Figure 4.1: An ordered sample of size 5 from a continuous probability distribution. The blue
arrows indicates the 6 intervals where a future sample point may lie.

This is tested for the following five different continuous univariate distributions:

• Xi ∼ N (µ,σ2) with µ= 2 and σ= 0.3.

• Xi ∼ Exp(β) with rate parameter β= 2.
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• Xi ∼ Unif[a,b] with a = 0 and b = 1.

• Xi ∼ Gamma(α,β) with shape parameter α= 3 and rate parameter β= 0.5.

• Xi =Ui cos(Θi ), where Ui ∼ Unif[0,1] andΘi ∼ Exp(β), with rate parameter β= 3, denoted

”Test5”.

In each case the sample size is n = 9, so that X10 should be uniformly distributed over the ten

possible intervals. Figure 4.2 shows the results after doing this for three different number of sim-

ulations; 100 (left), 10 000 (middle) and 1 000 000 (right). Each vertical bar shows the proportion

of times that the generated value x10 lies inside each of the ten possible interval from a sorted

random sample
(
x(1), . . . , x(9)

)
. It seems clear that in all five cases the proportion of times Xn+1

falls into each one of the 10 different intervals converges towards 1
10 , as it should.

Figure 4.2: Proportion of times x10 falls into each of the 10 different intervals from a sorted
random sample

(
x(1), . . . , x(9)

)
, for three different number of simulations. Here each vertical bar

shows the proportion of times that x10 falls in each of the 10 possible intervals, starting with(−∞, x(1)
)

at the bottom and ending with
(
x(9),∞

)
on the top. The sum of all proportions is of

course equal to 1 in all cases. The text under each bar shows what the underlying distribution is.
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4.2 Order Statistics - Two Dimensions

Now one might ask, is it possible to do something similar in two dimensions? More precisely,

if (X1,Y1), . . . , (Xn ,Yn) are independent and identically distributed from a continuous bivariate

probability distribution f (x, y), is it possible to partition the two-dimensional domain of the

random variables such that a new generation (Xn+1,Yn+1) have an equal probability to be inside

each of the areas from the partition? In the investigation of this we use two different bivariate

probability distributions:

• The bivariate normal distribution (X,Y) ∼ N2(µ,Σ), with parameters

µ=
5

3

 and Σ=
 σ2

x ρσxσy

ρσxσy σ2
y

=
 3 0.7

0.7 0.8

 . (4.1)

• The random vector (X,Y) with (Xi ,Yi ) = (Ui cos(Θi ),Ui sin(Θi )), i = 1, . . . ,n, where Ui ∼
Unif[0,1] and Θi ∼ Exp(β), with rate parameter β = 1.6. From here on denoted as the

"UnitCircle-distribution".

A contour plot of the density of the bivariate normal distribution is shown to the left in Figure

4.3, together with a plot of 200 000 generated values from the UnitCircle-distribution shown to

the right, to illustrate how that density looks. The UnitCircle-density is zero for all points outside

the unit circle, and have a quite complicated shape compared to the bivariate normal density.

For instance, the straight line from origo to (x, y) = (1,0) seperates a high-density region from

a low-density region. One might except that it in this case will be harder to construct sensible

probability regions with an approximately correct coverage probability, compared to when the

data sample is from the bivariate normal distribution.

One possibility might be that if one partitions the two-dimensional domain by drawing vertical

and horizontal lines through all the sample points, then all the regions generated will have an

equal probability of 1
(n+1)2 of containing the next value Xn+1. It turns out that this is not the case.

This was shown for the bivariate normal distribution and for the UnitCircle-distribution, but we

omit the details here.
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Figure 4.3: Left: A contour plot of the bivariate normal density. Right: A plot of 200 000 generated
values from the UnitCircle-distribution. The region inside the unit circle is colored in light blue,
and shows where the probability density function is non-zero.

A different approach is to find a way to sort the sample points, and construct a probability re-

gion using this sorted list. More precisely, define a function g : R2 → R and sort the values

of g (X1,Y1), . . . , g (Xn ,Yn). If the pairs (Xi ,Yi ) are independent and indentically distributed for

all i = 1, . . . ,n, then g (X1,Y1), . . . , g (Xn ,Yn) is just a sample of independent and identically dis-

tributed random variables, and hence the ordering of the sorted sample will be uniform, as was

stated in the previous section. For instance, one could choose the function g (x, y) = √
x2 + y2,

which is just the distance from origo. But, in general we have no way of knowing if the sample

points should lie close to origo or not. The probability region constructed using this approach

will in general be an annulus, because small and big values for the distance will be disregarded

(or just one of the two, if a one-sided probability interval of the sorted values is preferred). The

area of such a probability region will probably be much larger than what is necessary, depend-

ing on the distribution of the sample points, because the region might cover large regions where

the density of points is small. So this is not a good choice in general.

A sensible choice for the function g (x, y) should order the sample in such a way that the ”most

extreme” sample points will be either in the beginning or at the end of the sorted list. To do
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this, we must have some way of defining what ”most extreme” means in R2. Look for instance

at Figure 4.4, which shows an example of a random sample. Here it is clear that there is a dense

cloud in the middle, where most of the points lies, and that some outliers are located quite far

away from this ”center”, which is roughly what we mean by ”most extreme”. This is the notion

of data depth, which is a function that takes a data cloud (x1, y1), . . . , (xn , yn), or alternatively the

corresponding underlying distribution F in R2, and calculates a depth value that indicates how

”deep” the sample point is inside the data cloud. There are many different types of data depth,

and some of them will be discussed below.

In (Zuo and Serfling, 2000) they suggest what properties a depth function should have in gen-

eral, and many of the well known depth functions are classified according to this. The four key

properties proposed in the article are roughly the following:

¬ Affine invariance: The depth value at a particular point is independent on the underlying

coordinate system.

 Maximality av center: The depth function obtains its maximum at the center of the un-

derlying distribution F, if such a center exists.

® Monotonicity relative to deepest point: The depth decreases monotonically as you move

away from the deepest point (the point with the highest depth) along any straight line.

¯ Vanishing at infinity: The depth function approaches zero as you move infinitely away

from origo.

Note that these properties are for the depth function and doesn’t necessarily hold for the sample

depth function.

4.3 Depth Statistics

Here we introduce various depth functions. We will use D ...(x;F ) to denote the depth at point x,

where the data comes from some underlying distribution F , and SD ...(x;ω) to denote the sample

depth at point x with respect to the data cloudω= (ω1, . . . ,ωn).
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Figure 4.4: An example of a random sample in R2.

4.3.1 Mahalanobis Depth

One popular choice for data depth is the Mahalanobis depth, introduced in (Mahalanobis, 1936).

The Mahalanobis depth at point x that has an underlying distribution F , is defined as

Dmal(x;F ) = [
1+ (x −µF )TΣ−1

F (x −µF )
]−1

,

where µF and ΣF is the mean vector and covariance matrix of F, respectively. See for instance

(Liu and Singh, 1997). The sample version of the Mahalanobis depth at point x with respect to a

set of data pointsω= (ω1, . . . ,ωn) is defined as

SDmal(x;ω) = [
1+ (x − ω̄)T Σ̂−1

ω (x − ω̄)
]−1

, (4.2)

where ω̄ is the mean of ω and Σ̂ω is the empirical covariance matrix. In our case both x and

the ωi ’s will be in R2. The range of this function goes from 0 (for points infinitely away from

the mean) and up to 1 (for a points exactly at the mean). Figure 4.5 illustrates what the sample

Mahalanobis depth looks like for data generated from the bivariate normal distribution, with

parameters given by Equation (4.1). The left plot shows a data set of size n = 5, while the right

plot shows a data set of size n = 15. In both cases we observe that the depth obtains its highest
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value around the center of the data cluster, and gradually decrease as we move away from this

center. The contours of the Mahalanobis depth will always be ellipses (see details below).

Figure 4.5: Illustration of the sample Mahalanobis depth, using data generated from the bivari-
ate normal distribution, with sample sizes n = 5 (left) and n = 15 (right). A dark color corre-
sponds to a larger value of the depth.

4.3.2 Simplicial Depth

The simplicial depth of a point x with respect to a distribution F was introduced in (Liu, 1990),

which use the concept of a simplex. If we restrict ourselves to R2, then a simplex is simply a

triangle. The simplicial depth Dsim(x;F ) of a point x is then the probability that x will fall inside

the triangle made up by three independent sample points X1, X2, X3 from a distribution F . This

can be written as

Dsim(x;F ) = PF (x ∈∆(X1, X2, X3)),
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where∆(·) denotes the set of numbers inside the triangle (the closed set). The sample simplicial

depth SDsim(x,ω) of a point x with respect to a data cloudω= (ω1, ...,ωn), is defined as

SDsim(x,ω) = 1(n
3

) ∑
1≤i< j<k≤n

I
(
x ∈∆(ωi ,ω j ,ωk )

)
,

which is just the proportion of all possible triangles, formed by the cloud of points, that contains

x. Note that the edges, and therefore also the vertices, of the triangle are always included in the

set ∆(·), meaning that ω1,ω2,ω3 are all counted as being in the triangle ∆(ω1,ω2,ω3). Figure

4.6 illustrates what the sample simplicial depth looks like for data generated from the bivariate

normal distribution, by drawing and coloring all the
(n

3

)
possible triangles for a sample of size

n = 5 at the left and a sample of size n = 15 to the right. Note that these data samples are the

same ones used in Figure 4.5 for the illustration of the sample Mahalanobis depth. Darker color

means higher value for the depth. It is clear that the depth is highest around the "center" of the

data cloud, and that the depth is zero for all points outside the convex hull of all sample points

(the definition of a convex hull is presented later in Section 4.4.3). Also notice that the picture

looks more complicated for higher values of n. This is simply because the number of triangles

is much larger. This number,
(n

3

)
, is approximately equal to n3

6 when n is large, and so it grows

quite rapidly.

4.3.3 Adjusting the Simplicial Depth

If F is an absolutely continuous probability distribution, then the simplicial depth Dsim(x;F ) will

be a continuous function (see (Liu, 1990), Theorem 2). The sample version SDsim(x;ω) will of

course not be a continuous function. It turns out that the sample simplicial depth at ωa , where

ωa is one of the sample points ω1, . . . ,ωn used to calculate SDsim(x;ω), has a value that differs

some from the depth values of surrounding points. To see this, one can divide the calculation of

the depth value at point ωa into two parts: the first consisting of triangles that do not use ωa as

one of the three vertices of the triangle, and the second where ωa is one the three vertices. We
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Figure 4.6: Illustration of the sample simplicial depth, using data generated from the bivariate
normal distribution, with sample sizes n = 5 (left) and n = 15 (right). A dark color means that
many triangles include that area, corresponding to a larger value of the depth. When n = 5 there
are 10 unique triangles, while when n = 15 there are 455 unique triangles.

can write this as

SDsim(ωa ;ω) = 1(n
3

)
 ∑

1≤i< j<k≤n
i , j ,k 6=a

I
(
ωa ∈∆(ωi ,ω j ,ωk )

)+ ∑
1≤i< j<k≤n

i , j ork=a

I
(
ωa ∈∆(ωi ,ω j ,ωk )

) . (4.3)

The indicator function in the last term will be equal to one for all the terms in the sum, since

∆(·) is a closed set. The number of triangles formed by ωa as one of the vertices is
(n−1

2

)
, and so

we can, after some calculations, write

SDsim(ωa ;ω) = 1(n
3

) ∑
1≤i< j<k≤n

i , j ,k 6=a

I
(
ωa ∈∆(ωi ,ω j ,ωk )

)+ 3

n
. (4.4)

Here 3
n is the proportion of triangles that has ωa as one of the vertices.

Now, if we look at a point that lies close toωa , how is the depth at this point calculated? Let’s say

this new point isωa+ε, where ε is a two-dimensional vector, and |ε| is small (since n is finite, the

simplicial depth will be a constant value inside a finite number of areas, and so |ε| can be chosen

to be small enough so that the depth value is constant for all vectorsωa +ηwhen η has the same
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direction as ε and 0 < |η| ≤ |ε|). The depth at ωa + ε will, with this choice of ε, have the same

value for the first term in Equation (4.4), where the sum is over all the triangles not composed

of ωa as one of the three vertices. The second term, however, will almost certainly be different.

Among all the triangles that involves ωa , only some of them will cover ωa +ε. The effect of this

is illustrated in Figure 4.7, which shows the sample simplicial depth for two different samples

of size 5. The depth at points outside the shaded areas are 0. The simplicial depth at the five

sample points are printed in purple. These values are actually larger than the depth values at

all other points in R2, and doesn’t really represent well the depth at surrounding regions. The

values printed in green will be explained below.

Figure 4.7: Sample simplicial depth for two data sets of size 5. More shading corresponds to a
higher depth. The depth value at the sample points are printed in purple, while adjusted values
are printed in green.

Is there any way to adjust the simplicial depth at sample points in such a way that it better

represents the depth at points surrounding it? In Figure 4.8 we have zoomed in on a sample

point ωa , shown in blue. The degree of shading of the areas around indicates the values of the

depth, just like in the previous figure. All the lines originating from ωa is connected to some

other sample points. It is clear that no matter what direction ε has, the new point ωa +ε will be

outside many of the triangles formed by ωa as one of the vertices.

How many triangles can we expect to be covering the pointωa+ε? This will of course depend on

the distribution of the sample points. Let’s look at a simplified case where all the directions to the

n−1 other sample points are uniformly distributed between 0 and 2π. For any two sample points
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Figure 4.8: A sample pointωa shown in blue, with shading around that corresponds to the value
of the sample simplicial depth. The lines originating from ωa are connected to other sample
points. The green point shows a point ωa +ε, that lies a small distance |ε| away from ωa .

ωi and ω j , we then have that the angle between the line from ωa to ωi and the line from ωa to

ω j , is uniformly distributed between 0 and π. Here we always choose the angle that is less than

or equal to π, because this is the value of the corresponding angle in the triangle ∆(ωa ,ωi ,ω j )

formed by the three points ωa , ωi and ω j . If the direction of ωa +ε is drawn from the uniform

distribution between 0 and 2π, it follows that this point has a probability of 1
4 of being between

the two lines, or equivalently being inside the triangle ∆(ωa ,ωi ,ω j ). Note that we here assume

that |ε| is so small that the first term in Equation (4.3) is constant for all possible directions of

ε. Denote Vi j as the binary random variable that is equal to 1 if ωa + ε is inside ∆(ωa ,ωi ,ω j ),

and 0 if it’s not. Define V as the random variable that counts the total number of triangles, with

ωa as one of the vertices, containing the point ωa +ε. We can then compute the expected value

as

E [V ] = E

[
n−1∑
i=1

n−1∑
j=i+1

Vi j

]

=
n−1∑
i=1

n−1∑
j=i+1

E
[
Vi j

]
=

n−1∑
i=1

n−1∑
j=i+1

P
(
Vi j = 1

)
=

n−1∑
i=1

n−1∑
j=i+1

1

4

= 1

4

(
2

n −1

)
.
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Hence, the expected number of triangles is 1
4 times the total number of triangles. This expected

value will of course be a bit different if the sample points around ωa have a more complicated

distribution.

Here we propose to adjust the sample depth value at the sample points ω = (ω1, . . . ,ωn) to get

a value that better corresponds to the depth values at the surrounding regions. We do this by

multiplying the second term in Equation (4.4) by 1
4 , and denote this as the adjusted sample

simplicial depth. We then get the adjusted depth of

SDsia(ωa ;ω) = 1(n
3

) ∑
1≤i< j<k≤n

i , j ,k 6=a

I
(
ωa ∈∆(ωi ,ω j ,ωk )

)+ 3

4n
, (4.5)

at sample points ωa . If x is not in ω = (ω1, . . . ,ωn), the adjusted sample simplicial depth is the

same as the sample simplicial depth. If we now return to Figure 4.7, we can see the effect of

this. The values printed in green are the values for the adjusted sample simplicial depth at the

five sample points. Comparing these with the values for the sample simplicial depths, printed

in purple, we see that the new values corresponds better to the depth values in the regions sur-

rounding the points. This is further illustrated in Figure 4.9, where an approximate 75% proba-

bility region is drawn for a data sample of size 99 (the details of how these regions are calculated

are described later in Section 4.4). The 74 sample points that have a depth higher than the cut-off

value is plotted as a purple circle, while the 25 sample points that have a lower depth is plotted

as green triangles. The probability region constructed using the simplicial depth clearly shows

that many of the sample points with a depth higher than the cut-off value are located outside the

region. This means that the neighbourhood of these points have depth-values below the cut-off

point, so the simplicial depth value at the sample point doesn’t really represent well the depth

values in the neighbourhood. Using the adjusted simplicial depth, as shown in the plot to the

right, generates a probability region that better corresponds to the depth values at the sample

points. Note also that the region is larger in the case of the adjusted simplicial depth, simply

because the cut-off value will be a constant lower than in the case of the simplicial depth.
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Figure 4.9: Two approximate 75% probability regions constructed for a data sample of size 99,
using the simplicial depth (left) and the adjusted simplicial depth (right). The purple circles
shows the sample points which have a depth value above (or equal) to the cut-off value, while
the green triangles show the points which have a depth value lower than the cut-off value.

4.3.4 Tukey’s Depth

Tukey’s depth was introduced in (Tukey, 1975). If we restrict ourself to R2, we got the following

formula for the depth (Liu and Singh, 1997):

Dtuk(x;F ) = inf
E

{
P (E) : E is a closed half-space in R2and x ∈ E

}
,

where I (·) is the indicator function. The sample Tukey’s depth is given by

SDtuk(x;ω) = inf
E

{(
1

n

n∑
i=1

I (ωi ∈ E)

)
: E is a closed half-space in R2and x ∈ E

}
, (4.6)

Calculation of the depth at a point x boils down to drawing a straight line through x and count-

ing the number of points that lie on one side of the line. The depth is then the minimum value

obtained when this is done for all possible lines through x. The sample depth is illustrated in

Figure 4.10, where the two data sets are the same as in Figure 4.7.

The picture will of course be much more complicated when n is large. This can be seen in Figure

4.11, where the sample Tukey’s depth is plotted in R for a sample of size n = 35 from the bivariate
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Figure 4.10: Illustration of the sample Tukey’s depth for two data sets of size 5. More shading
corresponds to a higher depth. The depth value at the sample points are printed in purple.

normal distribution, with parameters given by Equation (4.1). From this plot we can notice two

things

• There are a finite number of possible depth values, which follows from the fact that the

sample Tukey’s depth works by counting points. The increase in depth value between

each jump is equal to 1
n , because one more point is counted in Equation (4.6).

• All the boundaries between these regions of different depth values consists of straight

lines. Actually, if one studies Figure 4.11 closely, one can notice that all these lines ac-

tually are a subset of all possible straight lines between the sample points (not necessarily

starting or ending at sample points).

4.3.5 Angle Depth

Here we try to introduce a new function for calculating a kind of sample depth of a points x

with respect to a data cloud ω = (ω1, . . . ,ωn) in R2. The idea is to look at all angles formed by

drawing straight lines from x to all the points in ω, and finding the maximum value θmax of all

the n angles between successive lines. The formula for the sample depth is then

SDang(x;ω) = 1− θmax

2π
.
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Figure 4.11: Illustration of the sample Tukey’s depth, using data of size n = 35 generated from
the bivariate normal distribution. A dark blue color corresponds to a high depth.

We denote this as the sample angle depth, even though we have not defined a corresponding

depth function Dang(x;F ). Figure 4.12 illustrates how the value of θmax is found for a sample of

size four, where the four angles are drawn as arcs. The largest angle, θmax, will here be the one

between ω1 and ω3.

Figure 4.12: Illustration of how the sample angle depth is calculated.

The idea is that points deep inside the data cloud will have a small value of θmax, because there

are other sample points in all directions around it. A point that lies on the outskirts of the data

cloud will have a big value for θmax, because they all lie in pretty much the same direction from
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this sample point. Figure 4.13 illustrates how the sample angle depth looks for random samples

of size n = 5 (left) and n = 15 (right) from the bivariate normal distribution. Note that these are

the same data samples that were used to illustrate the sample Mahalanobis depth in Figure 4.5

and the sample simplicial depth in Figure 4.6. There are several differences between these three

figures, but one thing to notice is that the sample angle depth obtains quite a large value in the

area between the three points furthest to the left in the case of n = 15, compared to the two other

sample depths.

Figure 4.13: Illustration of the sample angle depth, using data generated from the bivariate nor-
mal distribution, with sample sizes n = 5 (left) and n = 15 (right). A dark color corresponds to a
larger value of the depth.

4.4 Probability Region from Depth

Now it’s time to use the sample depths to construct approximate probability regions. The goal

is to use a random sample of size n from some distribution F to construct a region that has a

certain probability of containing a new generated value from F . Here we only want to discard

the points that are far away from the data cloud, and so it makes sense to construct a one-sided

probability interval where only the points with the lowest depth values are discarded. After these

points are removed, one needs to translate the boundary of the probability interval from the



40 Chapter 4. Probability Regions

one-dimensional point at some value SD(x;ω) = a, from now on called the cut-off value, to a

two-dimensional boundary curve. The probability region will be all points inside this curve, and

its shape and area will depend on what coverage probability level are chosen and which depth

function is used.

To calculate the boundary of the probability region in R, we calculate the sample depth value at

each point on a large grid, and then use the contourLines-function from the grDevices-library.

This function returns the vertices of the contour line. The grids used in the plots later are

1000x1000 in size.

In general, the algorithm for calculating the probability regions are as follows:

Algorithm 3 - Probability regions from data depth

Input: A random sample (x,y), coverage probability level (1−γ) and number of simula-

tions m.

1: Calculate the sample depth for each point in the data cloud (x,y).

2: Sort the data depths and find the cut-off value for the sample depth corresponding

to the desired coverage probability level of the interval.

3: Define a large regular grid over a region containing at least all the sample points,

and calculate the sample depth at each of these points.

4: Use the contourLines-function from the grDevices-library in R to calculate the

boundary of the probability region, using the sample depth values over the whole

grid and the calculated cut-off value. The probability region will be all points inside

this boundary.

Note that steps 3 and 4 will be a bit different when using the Tukey’s depth, and also for the case

when a convex hull is constructed instead of a contour line. This will be explained below.

Now we discuss how the different sample depths are calculated in R, and the shapes of the vari-

ous probability regions.
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4.4.1 Mahalanobis Depth

If the sample depth function is the Mahalanobis depth, then the boundary will always be an

ellipse. This is because the boundary satisfies

[
1+ (x − ω̄)T Σ̂−1

ω (x − ω̄)
]−1 = a, (4.7)

which can be interpreted as the contour g (x) = 1−a
a of the quadratic form

g (x) = (x − ω̄)T Σ̂−1
ω (x − ω̄).

This has the same form as the exponent in the kernel e
−1
2 (x−µ)TΣ−1(x−µ) of the bivariate normal

density X ∼ N2(µ,Σ), which we know have elliptic contours for any covariance matrix Σ. Hence,

the contours defined by Equation (4.7) are also ellipses for any empirical covariance matrix

Σ̂ω.

One can see from Figure 4.5 that the contour lines indeed will be ellipses. The calculation of the

Mahalanobis depth is implemented directly in R using Equation (4.2).

4.4.2 Simplicial and Adjusted Simplicial Depth

In general, the boundary curve will have a much more complicated shape than an ellipse. For

instance, the sample simplicial depth (and the adjusted one) will have a boundary curve that is

the union of many straight line segments. This is because the sample depth is defined in terms

of triangles. See for instance Figure 4.6.

A function for calculating the sample simplicial depth was implemented in R. However, there

exists a library called ”depth” in R containing a function with the same name, that can calculate

a variety of sample depths, including the simplicial depth. The performance of these two func-

tions was tested by calculating the sample depth at 100 sample points from a bivariate normal

distribution, as well as on 100 new points using the 100 first sample points as the data cloud ω.

Both functions gave the same sample depth at all 200 points, but the function from the depth-
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library was much faster (0.025 seconds versus 0.131 seconds for all the 200 points). This function

is based on (Rousseuw and Ruts, 1996), where they state that this algorithm runs in O (n logn)

time, while the function we have implemented here runs in O (n3), because the number of tri-

angles is approximately equal to n3

6 . Therefore, the function from the depth-library was used

in the calculations for the sample simplicial depth in R. This was also used to calculate the ad-

justed simplicial depth, only that 3
4

3
n were substracted from the value at sample points to get the

adjusted values correct at these points, see Equation (4.5)

4.4.3 Convex Hull

An alternative to the generally complicated shapes of the probability regions, is to construct a

convex hull of all (1−α)100% sample points that have a depth more than or equal to the bound-

ary value, as is done for the Tukey’s depth in (Yeh and Singh, 1997). The convex hull of a set

of points y = (y1, . . . , yn) in R2 is the intersection of all sets in R2 that contains y = (y1, . . . , yn)

(Bærentzen et al., 2012). How this looks is illustrated in Figure 4.14, where the convex hull of

two different data clouds are drawn. The boundary colored in orange is a union of straight line

segments. It is clear that these regions look "simpler" than some of the more irregular shapes

generated by the contour-function. It will also be much faster to calculate and plot, since there

is no need to ever calculate the depth at locations other than the sample points, see

Figure 4.14: Convex hulls of two data clouds of different sizes. The orange lines shows the
boundary of the convex hulls.

Here we choose to construct such a convex hull using the simplicial depth. Using the adjusted

simplicial depth would give the same results, since the ordering of the sample points by depth-

values are the same in both cases. This is because the adjusted simplicial depth subtracts the
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same constant 3
4

3
n from the simplicial depth values at each sample point, which can be seen

from comparing Equation (4.4) with Equation (4.5).

4.4.4 Tukey’s Depth

Because of the way Tukey’s depth is calculated in R2, as explained in Section 4.3.4, we have that

the boundary also in this case will be a union of straight line segments.

A function in R was made that calculates the sample Tukey’s depth, but this implementation

was very slow. Just as in the case of the simplicial depth, we used the function from the depth-

library in R to calculate the sample depths. The comparison of these functions on the same 200

points used for the simplicial depth, we obtained that all the 200 depth values for the Tukey’s

depth were equal, but that the function from the depth-library was much faster (0.024 seconds

versus over 2 minutes). The algorithm in this function is based on (Rousseuw and Ruts, 1996),

the same paper as for the simplicial depth. The library also have a function called ”isodepth”

which was used to compute the vertices of the contour line, instead of using a 1000x1000-sized

grid as described earlier.

4.4.5 Angle Depth

From the illustration in Figure 4.13 we would expect that the sample angle depth will give con-

fidence regions with quite erratic boundaries. This is also the case, as we will see later.

The function for calculating the sample angle depth is implemented in R, and calculates the

value by the following simple algorithm:
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Algorithm 4 - Sample angle depth

Input: A data cloudω= (ω1, . . . ,ωn) and a point x ∈R2.

1: Calculate the angles θ = (θ1, . . . ,θn) for each of the straight lines connecting x with

the n sample points (as in polar coordinates). Note that if x is one of the sample

points inω, then x is removed from the data cloud and we only look at the angles to

the n −1 other sample points.

2: Sort these angles, obtaining the sorted list
(
θ(1), . . . ,θ(n)

)
.

3: Calculate a vector of length n containing the difference between each consecutive

angle in this the sorted list, including the difference θ(1) −θ(n).

4: Find θmax as the maximum value of these n angle differences (or n −1 angle differ-

ences, if x is one of the sample points), and return SDang(x;ω) = 1− θmax
2π .

4.5 Plots of Probability Regions

What defines a good confidence region? If we look at confidence intervals, we generally want

them to be exact, meaning that the nominal coverage is equal to the true coverage, and that the

width of the interval is as small as possible. Similarly, when using confidence regions we want

them to be exact and to have as small area as possible. It’s also preferable if the region have

a simple shape, like a convex hull. We can say the same things about probability regions and

intervals.

The two data samples used to test the various probability regions are shown in Figure 4.15. One

data set is from the bivariate normal distribution, with parameters given by Equation (4.1), while

the other is from the UnitCircle-distribution, as defined earlier. Both samples are here of size

n = 999.

In Figure 4.16 the probability regions are plotted for different choices of the depth function,

using the data sample of size n = 999 from the bivariate normal distribution. The coverage

probability level was chosen to be (1−γ) = 0.95, and the grid used to calculate the boundary

is 1000x1000 in size. The area of each probability region is printed in the plots to the left. All
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Figure 4.15: Two data samples of size n = 999, one from the bivariate normal distribution (left),
and one from the UnitCircle-distribution (right).

the plots to the right are zoomed in versions of the plots to the left, where the portion of the

plot that are shown are indicated by a dotted square in the plot to the left. Similar plots for the

UnitCircle-density are shown in Figure 4.17.

From the plots of the various probability regions we notice the following

• When the data is from the bivariate normal distribution, we see that the regions look quite

similar, except for the smoothness of the boundary. We see that Mahalanobis, simplicial

convex hull and Tukey’s have quite simple boundaries, while the three other regions have

much more erratic boundaries. This is also the case when the data is generated from the

UnitCircle-distribution.

• The probability region generated using the adjusted simplicial depth in Figure 4.17 looks

a bit strange. Actually, the probability region stretches out to all the n = 999 sample points,

but it does not include these "outer" points. The same happens with the angle depth for

this underlying distribution, and almost also for the angle depth in Figure 4.16, although

four or five points are clearly separated from the region.
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Figure 4.16: Probability regions drawn for the different types of depth functions, using the data
sample from the bivariate normal distribution. The depth type is printed above the region, while
the corresponding area is printed below. The plots to the right shows a close-up version of the
regions, to get a better view of the shape of the boundary. The part of the probability region
that is zoomed in on is shown as a dotted box in the plots to the left. The green dot shows the
location of a new generation from the same distribution.
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Figure 4.17: Probability regions drawn for the different types of depth functions, using the data
sample from the UnitCircle-distribution. The depth type is printed above the region, while the
corresponding area is printed below. The plots to the right shows a close-up version of the re-
gions, to get a better view of the shape of the boundary. The part of the probability region that is
zoomed in on is shown as a dotted box in the plots to the left. The green dot shows the location
of a new generation from the same distribution.
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• With data from the normal distribution we observe that the area of the region is small-

est for the simplicial depth and largest for the angle depth. When the data is from the

UnitCircle-distribution we still have that the simplicial depth constructs a region with the

smallest area, but now the largest area belongs to the region from the Mahalanobis depth.

The reason for this is that Mahalanobis always creates an ellipse as the boundary, and this

is not a suitable shape for this type of underlying distribution. Clearly, much of this ellipse

is covering regions where there are no points at all.

4.6 Coverage of Probability Regions from Depth Statistics

Here we calculate the coverage proportion for each type of depth function, using a coverage

probability level of 0.95. This is done by generating a random sample of size n from either

the bivariate normal distribution, with parameters given by Equation (4.1), or the UnitCircle-

distribution. This is done a lot of times, up to 211 = 2 048 iterations where a new sample is

generated each time. At each iteration we calculate all the n sample depths, and check if the

sample depth of a new generation from the same distribution is inside the probability region.

This is the same as checking if the sample depth of this point is above or equal to the cut-off

value, meaning we never actually have to compute all the vertices in the boundary of the prob-

ability region. This saves a lot of computation time, because we do need to calculate the sample

depths at all the points in a 1000x1000-grid. The exception to this is of course the probability

region constructed using a convex hull, where we actually have to check if the point is inside

this polygon region. This is done using a function called pnt.in.poly from the SDMTools-library

in R, which simply checks if a point is inside a polygon defined by its vertices.

We do this for different sample sizes n to see get an idea of how many sample points is needed

to get an approximately correct coverage proportion of 0.95. The results of this is shown in

Figures 4.18 and 4.19, with the same vertical lines as in the plots in the previous chapter, showing

approximate 95% probability intervals for the coverage proportion, under the assumption that

the true coverage probability is 95%. Here the logarithm used is in base 2. From these figures we

note the following for the six different methods for constructing the regions:



Chapter 4. Probability Regions 49

• Using the Mahalanobis depth on the normal distribution seems to give correct coverage

even for small n. When the data is from the UnitCircle-distribution, however, we have

that the coverage proportion is a bit too low, and actually it doesn’t seem to improve sig-

nificantly when the sample size n is increased. As noted before, this is likely because of

the fact that the Mahalanobis depth constructs ellipses, which doesn’t work well with the

asymmetric UnitCircle-distribution.

• The calculation of coverage proportions using both the simplicial depth and the adjusted

simplicial depth gives similar results. Notice, however, that the coverage proportion is

closer to 0.95 for the adjusted one when using both n = 99 and n = 999 for both types of

underlying distributions (the plot from the simplicial depth have a different scale than the

rest).

• There seems to be a problem with the regions constructed using simplicial depth and a

convex hull, namely that the coverage proportion actually doesn’t stop at 95% when n is

increased, but continuous to rise past this value. This is of course not what we want, and

the reason might be the following: When n is large we have that the proportion of points

that lies furthest out (for instance all the vertices in the convex hull constructed from all

the sample points), is so large that the cut-off value actually is the sample depth values at

these points (or close to it). This was probably what we observed in the plot of the adjusted

simplicial region in Figure 4.17, where the cut-off value clearly is the same as the values

for the depth at the outer sample points. We are unsure of how this can be fixed to get

coverage proportions closer to 95%, it this is in fact possible using a convex hull.

• The Tukey’s depth gives coverage proportions that seems to approach 95% fairly fast as m

increases, altough a maybe bit slower in the case of the UnitCircle-distribution.

• The angle depth actually look really good, for some reason it seems that the coverage pro-

portions are close to 95% already at n = 99 for both types of underlying distributions used

here. Notice that the sample sizes n are smaller for the angle depth than for the rest in

Figure 4.18 and 4.19, which is simply because it takes such a long time to compute.
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Figure 4.18: Convergence proportion as a function of the logarithm (with base 2) of the number
of iterations, for probability regions using data from the bivariate normal distribution. Three
different values for the sample size n is used in each plot, and the coverage probability level is
(1−γ) = 0.95 in all cases. The vertical lines are the same approximated probability intervals as
used in earlier plots. Note that the scale on the y-axis is different for the simplicial depth.
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Figure 4.19: Convergence proportion as a function of the logarithm (with base 2) of the number
of iterations, for probability regions using data from the UnitCircle-distribution. Three different
values for the sample size n is used in each plot, and the coverage probability level is (1−γ) = 0.95
in all cases. The vertical lines are the same approximated probability intervals as used in earlier
plots. Note that the scale on the y-axis is different for the simplicial depth.
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Chapter 5

Confidence Regions for the Gamma

Distribution

In this chapter we apply the methods of the previous chapter to generate approximate con-

fidence regions the parameters in the gamma distribution. Values for α̃ and β̃ are generated

using the same steps as in Algorithm 2 in Chapter 3, but here we look at the distribution of these

values
(
α̃, β̃

)
in R2. It has been shown in (Lindqvist and Taraldsen) that the distribution of

(
α̃, β̃

)
is an exact two-dimensional confidence distribution of the true parameters (α,β). We look at

four different methods for constucting the approximate confidence regions:

• Using the Mahalanobis depth

• Using the adjusted simplicial depth

• Using the simplicial depth and constructing a convex hull.

• Using the Tukey’s depth.

The whole algorithm for this, including the steps to generate values for α̃ and β̃, are shown

below.

53
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Algorithm 5 - Confidence regions for the gamma distribution

Input: A random sample x, confidence level (1−γ) and number of simulations m.

1: Calculate T1(x) and T2(x) using Equations (3.6) and (3.7).

Iterate m times:

2: Generate U∗ = (U∗
1 , . . . ,U∗

n ), where each U∗
i is drawn independently from the uni-

form distribution between 0 and 1.

3: Solve T2(x) = g2(u∗, α̃) numerically for α̃ using Equations (3.7) and (3.10). This is

done using the ... function in R.

4: Solve T1(x) = g1(u∗, α̃, β̃) for β̃ using Equations (3.6) and (3.9), after inserting the

solution for α̃ in the previous step.

End iteration

5: Calculate the sample depth for each point in the data cloud
(
α̃, β̃

) =((
α̃1, β̃1

)
, . . . ,

(
α̃m , β̃m

))
.

6: Sort the data depths and find the cut-off value for the sample depth corresponding

to some desired level of the confidence interval.

7: Define a large regular grid over a region containing at least all the sample points,

and calculate the sample depth at each of these points.

8: Use the contourLines-function from the grDevices-library in R to calculate the

boundary of the confidence region, using the sample depth values over the whole

grid and the calculated cut-off value. The confidence region will be all points inside

this boundary.

Note that steps 7 and 8 will be a bit different when using the Tukey’s depth, and when a convex

hull is constructed instead of a contour line. This was also the case in Algorithm 3 in Section

4.4, and now we use the same method for these two exceptions. The details of this can be found

further down in Section 4.4.

Note that one is free to choose the number of simulations m in the above algorithm. Hence, if

the true coverage probability of the confidence region approaches the nominal coverage prob-

ability as m → ∞, one can choose m high enough to get approximately the desired coverage
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probability. We saw in Figure 4.18 and 4.19 that the coverage proportion for the most part got

closer to 95% as the sample size increased, and we will investige the same for the confidence

regions of (α,β) later in this chapter.

5.1 Results

The data sample we use in the plots later is

x = [3.0,3.1,2.7,4.5,4.1,9.2,3.3] . (5.1)

If we assume that the underlying distribution is the gamma distribution, we can compute the

maximum likelihood estimates for the parameters using the fitdistr-function from the MASS-

library in R. We then get the following estimates:

α̂= 5.88

β̂= 1.38

We would expect these values to be inside the confidence regions constructed later, and this is

also the case.

Figure 5.1 illustrates the distribution of
(
α̃, β̃

)
obtained after the first 4 steps in Algorithm 5

above, using the data set defined in Equation (5.1). Here 10 000 generations of
(
α̃, β̃

)
are plotted,

and this gives an idea of what the underlying density function looks like.

The four different types of confidence regions generated using the chosen depths or methods

listed above, are shown in Figure 5.2 and 5.3. Here each plot shows three confidence regions

generated for different confidence levels: 50% (green boundary), 75% (yellow boundary) and

95% (orange boundary). The number of generated sample points for
(
α̃, β̃

)
is 999, and the same

data cloud is used in each plot, so we can compare the shapes directly. A small part of each

confidence region is zoomed in and plotted in the upper left corner, to get closer look at how the

boundary behaves. The areas of the three regions are printed in the legend.
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Figure 5.1: Plot of 10 000 generated values for
(
α̃, β̃

)
.

From Figure 5.2 and 5.3 we note the following

• The Mahalanobis depth generates an elliptical boundary, as it should. We observe that

the 95%-confidence region extends far into the negative numbers in the bottom left cor-

ner. The parameter values of α and β are always positive, so it is not ideal to have such a

large portion covering a region that have zero probability of containing the true parameter

values. Because of this, it seems likely that the true coverage probability is below 95% in

this case, as will be investigated later.

• The adjusted simplicial depth generates a confidence region that better mimicks the un-

derlying distribution of
(
α̃, β̃

)
, at least there is no part that extends to negative values for

α and β. The boundary is quite erratic, at least in the upper right and bottom left corners.

In the zoomed in picture one can notice a couple of orange points from the boundary that

lies a small distance outside the region, but this is probably just because of some numer-

ical inaccuracies from calculating the border as a contour of function values calculated

over a large grid.

• The convex hull constructed using the simplicial depth creates confidence regions that

have quite simple shapes. One can say that it looks similar to the one from the adjusted
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simplicial depth, only now the boundary have become much less erratic.

• The confidence region generated using the Tukey’s depth looks very similiar to the previ-

ous one using a convex hull, only that there seems to be more vertices in the boundary,

see for instance the part that is zoomed in on.

There is not a huge difference in values for the area of the confidence regions generated using

the four different approaches. If we restrict ourselves to the ones with confidence level of 95%,

we see that the adjusted simplicial and the simplicial convex hull almost have the same area

(10.9 and 11.0, respectively), which makes sense since the reach or extension of these regions

should be quite similar. The Mahalanobis depth gives an area of 11.5, while the Tukey’s depth

constructs a region with the biggest area of 11.8.

5.2 Logarithmic Transformation

An alternative to constructing confidence regions directly from the data, is to use some transfor-

mation on the sample points. This can be useful if the transformed sample points seems to have

a more ”well behaved” distribution, for instance if the cloud have a shape similar to a random

sample from the bivariate distribution. Here we use the logarithmic transformation, meaning

that we calculate
(
ln(x), ln(y)

)
from the sample points (x,y), construct a confidence region in this

new log-log-space, and then transform this region back to the original space. This will generally

create a region that looks different from the one generated directly from the original data.

One thing to keep in mind is that the algorithm that generates the boundary of the confidence

regions in R, returns a finite set of vertices, where the boundary is given by straight lines between

these points. When transforming back from the log-log-space, straight lines will no longer be

straight lines in the original space. An example of this is shown in Figure 5.4. Here the left

plot shows a triangle in the log-log-space, while the right plot shows how this area looks after

transforming back to the original space. The dotted lines in the plot to the right shows how

the boundary would look if one just drew straight lines between the vertices. It is clear that

the exponential transformation generally curves the lines between the vertices, and hence this
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Figure 5.2: Plot of confidence regions constructed using the Mahalanobis depth (top) and the
adjusted simplicial depth (bottom). Three different confidence levels are used: 95% (red bor-
der), 75% (yellow border) and 50% (green border). The corresponding areas of the confidence
regions are listed in the legend. The rectangle in the upper left corner is a zoomed in picture of
the small rectangle in the bottom left corner.
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Figure 5.3: Plot of confidence regions constructed using the simplicial depth with convex hull
(top) and the Tukey’s depth (bottom). Three different confidence levels are used: 95% (red bor-
der), 75% (yellow border) and 50% (green border). The corresponding areas of the confidence
regions are listed in the legend. The rectangle in the upper left corner is a zoomed in picture of
the small rectangle in the bottom left corner.
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must be accounted for when doing the back-transformation of the confidence region. This is

especially important for the confidence regions constructed using a convex hull, since here the

number of vertices in the boundary can be quite small and the line segments quite long.

Figure 5.4: Illustration of how straight lines turns into curves under exponential transformation
of both the coordinates. The left plot shows a triangle in the log-log-space, while the right plot
shows how this region looks after using the exponential transformation on both coordinates
x and y . The dotted lines shows straight lines between the vertices in the original space, for
comparison.

The confidence regions constructed by using the log-log-transformation are shown in Figure 5.5

and 5.6.

• Clearly the Mahalanobis depth now gives a confidence region that is no longer an ellipse,

but has a a shape more similar to a balloon. The areas are in this case significantly larger

than when using the data sample directly. One thing to notice is that the confidence region

no longer spans into negative values for α and β. This reason for this is of course that the

exponential function is non-negative for all possible input values. We also observe that

almost all sample points outside the 95%-confidence region now lies towards the bottom

left corner, except one point in the upper right corner.

• The adjusted simplicial depth creates regions that have quite smooth boundaries, com-

pared to the earlier plot from using the data directly. It is quite erratic in the bottom left

corner though, as can be seen from the zoomed in window. Here we also see some orange
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points that lie outside the rest of the confidence region, for instance a small patch in the

upper right corner, but this is still probabily just some effects of the numerical calculations

of the boundaries.

• Both the convex hulls constructed using the simplicial depth and the regions constructed

using Tukey’s depth, look very similar to the ones plotted earlier in Figure 5.3. One can

observe that the vertices of the convex hulls after using logarithmic transformation is not

exactly the same sample points as when using the original data directly. It is also possible

to see that some of the lines now have some small curvature, for instance in the zoomed

in window for the simplicial convex hull, although they are very close to straight lines.

The values for the area of the confidence regions are quite similar to the ones calculated earlier

for the confidence regions using the original data directly. The exception is the Mahalanobis

depth, which gets a much larger area.

5.3 Coverage of Confidence Regions

Here we investigate what coverage proportions we obtain using Algorithm 5 with the four dif-

ferent methods mention above for generating confidence regions. This is done by drawing a

new sample of size n = 20 from the gamma distribution at each iteration, using true parameter

values of α= 3 and β= 5. For each new sample we generate m number of values for
(
α̃, β̃

)
, us-

ing steps 2-4 in Algorithm 5, before calculating sample depths and checking if the confidence

region covers the true parameter values. This is done by calculating the depth of the true pa-

rameter value (α,β) with respect to the data cloud
(
α̃, β̃

)
, and comparing this sorted values of

the depths calculated for all the points in
(
α̃, β̃

)
. The exception is for the simplicial convex hull,

where compute the vertices of the boundary and check it the true parameter values lies inside

this polygon, as we did in Section 4.6.

Algorithm 5 is quite slow compared to the earlier algorithms, because you first have to compute

the cloud of points
(
α̃, β̃

)
, and then use these points to calculate depths and look at confidence

regions. Hence, we test this algorithm for values of m = 39 and m = 99, where m is the number of
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Figure 5.5: Plot of confidence regions constructed using the Mahalanobis depth (top) and the
adjusted simplicial depth (bottom), after using the logarithmic transformation on the data sam-
ple and transforming the calculated region back to the original space. Three different confi-
dence levels are used: 95% (red border), 75% (yellow border) and 50% (green border). The cor-
responding areas of the confidence regions are listed in the legend. The rectangle in the upper
left corner is a zoomed in picture of the small rectangle in the bottom left corner.
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Figure 5.6: Plot of confidence regions constructed using the simplicial depth with convex hull
(top) and the Tukey’s depth (bottom), after using the logarithmic transformation on the data
sample and transforming the calculated region back to the original space. Three different con-
fidence levels are used: 95% (red border), 75% (yellow border) and 50% (green border). The
corresponding areas of the confidence regions are listed in the legend. The rectangle in the up-
per left corner is a zoomed in picture of the small rectangle in the bottom left corner.
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points in
(
α̃, β̃

)
. The results from this is shown in Figure 5.7. Here the logarithm used is in base

2, as before, and the largest number of iterations used in the plots is 211 = 2 048. The desired

confidence level is set to 95%.

The same is done using logarithmic transformation on
(
α̃, β̃

)
and checking if the true parameter

values are inside the confidence regions constructed by this alternative approach. The results

of this are shown in Figure 5.8.

Figure 5.7: Coverage proportions of confidence regions for the parameters in the gamma dis-
tribution, using Algorithm 5 with a desired confidence level of 95%. The logarithm used on the
x-axis has base 2.

5.4 Conclusion

Firstly, we observe from Figure 5.7 and 5.8 that the logarithmic transformation doesn’t really

affect how the coverage proportions. The shapes of the confidence regions, however, change

quite a lot in some cases, as can be seen from Figure 5.2 and 5.5. The Mahalanobis depth gives a

region that suits the distribution of the parameters better, since there is no extension to the neg-

ative numbers, although the area increases a lot. The regions constructed using the adjusted

simplicial depth obtains a more smooth boundary when using the logarithmic transformation,

but with almost no change in the area. We conclude by saying that the logarithmic transform
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Figure 5.8: Coverage proportions of confidence regions for the parameters in the gamma distri-
bution, using Algorithm 5 with a desired confidence level of 95%. Here the logarithmic trans-
form is used on

(
α̃, β̃

)
. The logarithm used on the x-axis has base 2.

doesn’t really help us much, and that it probably just adds unnecessary complexity to the algo-

rithm.

The Mahalanobis depth actually gives close to correct coverage proportions for such small val-

ues as n = 39 and n = 99. This is likely because the distribution of
(
α̃, β̃

)
, shown in Figure 5.1,

doesn’t differ too much from that of a bivariate normal distribution. The draw back is the shape

and area of the regions, as discussed earlier. It is also possible that the distribution of
(
α̃, β̃

)
will have a different kind of shape for data samples x, and that the ellipses generated using the

Mahalanobis depth will be a poor fit for the actual underlying distribution.

The confidence region that combines a good coverage proportion with a simple shape, is the one

generated using the Tukey’s depth. It is also relatively fast to compute, using the depth-library

in R described earlier. In total, this makes it a very attractive method for generating confidence

regions for the parameters in the gamma distribution.
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