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Abstract 

Salmon lice (Lepeophtheirus salmonis) have been an increasing problem for the Norwegian 

aquaculture industry in recent years, and several chemicals have been used by the industry 

to get rid of the louse. However, resistance and reduced sensitivity towards a large quantity 

of these has resulted in a blooming interest for the use of wrasse as a biological method of 

sea louse control. The ballan wrasse (Labrus bergylta) is considered the most promising 

species for aquaculture, but problems with poor survival, growth and skeletal deformities 

suggest that a suboptimal first feeding practice may be used. 

At present, commercial farmers first feed the ballan wrasse larvae on enriched rotifers from 4 

to approximately 30 dph, followed by Artemia sp. until weaning on formulated feed is 

successful. Copepods are considered the natural prey of most marine fish larvae, and 

usually a greater larval growth, survival and development are observed when they are used 

as first feed instead of rotifers. This has been attributed to the copepods high fraction of 

essential fatty acids in their polar lipid fraction, in addition to their great amounts of protein 

and free amino acids. The present study was conducted to evaluate the effect of using 

intensively reared copepods (Acartia tonsa naupliii) as early live feed for the ballan wrasse 

larvae on the larval growth and survival, and early organ growth and development, compared 

to using rotifers (Brachionus ibericus). Four different feeding regimes were used, varying in 

the live feed provided during the first 30 days. Larvae from the “Copepod”-treatment were fed 

exclusively with A. tonsa during this period.  Larvae from the “Cop7”-treatment were fed A. 

tonsa from 4 to 10 dph, with a transition to enriched rotifers. Fish larvae from the “RotMG”-

treatment were fed enriched rotifers the whole period, while the “RotChl”-treatment had a diet 

consisting of unenriched rotifers. All treatments had a transition to Artemia from 24-30 dph, 

and were weaned to formulated feed from 40-50 dph. 

Results from the present study indicated that intensively reared A. tonsa was more suitable 

as early live feed for ballan wrasse larvae compared to enriched or unenriched rotifers. 

Increased growth rates were obtained while feeding the larvae with copepods, and it resulted 

in larvae with significantly higher dry weight at the end of the experimental period (61 dph). 

No difference in larval growth was observed when feeding with enriched or unenriched 

rotifers, however larvae fed unenriched rotifers had a significantly lower survival than larvae 

from all other treatments. Higher organ volume growth rates were observed when copepods 

were used as feed, and the organ volumes were found to relate to the larval standard length. 

At 21 dph, the Copepod larvae had a significantly higher proportion of musculature than 

larvae from the other treatments, and the intestine appeared to be more developed and 

mature.  
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Abbreviations 
 

ARA   Arachidonic acid (20:4n-6) 

CNS   Umbrella term for the nervous tissue of brain and spinal cord 

Cop7 larvae Larvae fed Acartia tonsa from 4-10 dph with a transition to enriched rotifers up 

to 30 dph 

Copepod larvae  Larvae fed Acartia tonsa as first feed up to 30 dph 

DHA   Docosahexaenoic acid (22:6n-3) 

Dph   Days post hatch 

DW   Dry weight (mg/larvae) 

DWI   Daily weight increase 

EFA   Essential fatty acid 

EPA   Eicosapentaenoic acid (20:5n-3) 

FAA   Free amino acids, not bound to proteins 

g   Allometric growth coefficient 

HE staining Hematoxylin and eosin tissue stain, colours basic structures red or pink and 

acidic structures purplish blue 

MH Myotome height, measured perpendicular to the axial skeleton right behind 

the anus 

PFA   Paraformaldehyde, fixative 

PL   Phospholipid  

PUFA   Polyunsaturated fatty acid, fatty acid with two or more double bonds 

RotChl larvae  Larvae fed unenriched rotifers as first feed up to 30 dph 

RotMG larvae  Larvae fed enriched rotifers as first feed up to 30 dph 

RV   Relative volume, % of total tissue volume 

SGR   Specific growth rate 

SGRT    Specific growth rate of tissue volume 

SL Standard length, measured from the tip of the upper lip to the end of the 

vertebrae 

TAG   Triacylglycerid 

VT    Tissue volume 
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1. Introduction 

1.1 Ballan wrasse in aquaculture 

Salmon lice (Lepeophtheirus salmonis) have been an increasing problem for the Norwegian 

aquaculture industry in recent years. Costello (2009) reported that sea lice control had an 

estimated cost of €131 million for Norway’s salmonid farming industry in 2008. Also other 

countries have recorded financial loss caused by sea lice infestation, and in 2008 a total loss 

of €305 million was estimated for several countries (including Norway) where sea lice were 

reported as a problem (Costello, 2009). The greatest costs were caused by the purchase of 

parasiticides, equipment and labour, while reduced fish growth and food conversion 

efficiency came in second and third (Johnson et al., 2004 ;  Costello, 2009).  

The salmon louse is a caligid copepod that is an ectoparasite of salmonids in seawater. They 

are carried by the water current into the sea cages, where they settle and reproduce on 

salmonids. A stress response, caused by increased blood levels of cortisol and glucose, has 

been recorded both at high and low levels of salmon louse infections on Atlantic salmon 

(Grimnes & Jakobsen, 1996 ;  Nolan et al., 1999 ;  Bowers et al., 2000). The preadult and 

adult stages set off the response, and prolonged infections with large numbers of lice can 

develop into chronic stress which amongst others leads to increased susceptibility of 

secondary infections (Mustafa et al., 2000). They also cause lesions, anaemia and 

osmoregulatory failure (Grimnes & Jakobsen, 1996 ;  Wagner & McKinley, 2004 ;  Wagner et 

al., 2008), and is known to cause fish death when appearing on fish in large numbers 

(Grimnes & Jakobsen, 1996). Since the 1980s, several chemicals have been used by the 

aquaculture industry to get rid of the louse problem. However, resistance and reduced 

sensitivity have been observed among a large quantity of these, e.g. organophosphates 

(Jones et al., 1992), pyretoides (Sevatdal & Horsberg, 2003), and emamectin benzoate 

(Slice) (Lees et al., 2008). This has resulted in a blooming interest for using wrasse 

(Labridae) as a biological method of sea louse control, meant to keep the sea louse 

population inside the cages at a minimum. 

Cleaning activity among north temperate wrasse species was first reported in 1973 (Potts, 

1973), and the use of wrasse as a delousing agent in  Norway was initiated by the Institute of 

Marine Research in the late 80’s (Espeland et al., 2010). However, the amount used has 

been relatively low up until recent years. According to numbers from the Norwegian 

Directorate of Fisheries (updated 01.12.2011), 1-2 million individuals per year were used by 

the Norwegian aquaculture industry in the productions of salmonids between 2001 and 2008. 

This number increased to 4.9 millions in 2009, and 11 million by the end of 2010. The 

wrasses are wild caught and a mixture of different species. The quality is known to vary 
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depending on catch method and transportation time (Kvenseth et al., 2003b ;  Grøntvedt, 

2011). An increased interest has developed towards rearing of wrasse (Treasurer, 2002 ;  

Skiftesvik & Bjelland, 2003) to establish a year round supply of cleaner fish of good quality 

and the right size(Skiftesvik & Bjelland, 2003 ;  Espeland et al., 2010). The number estimates 

of the wrasse population along the Norwegian coast are uncertain, and the increasing 

catches for use in the aquaculture industry may put a strain on the wild population (Skiftesvik 

& Bjelland, 2003 ;  Nodland, 2009). Ballan wrasse (Labrus bergylta) is considered the most 

promising species for aquaculture (Kvenseth et al., 2003a ;  Ottesen et al., 2008 ;  Kvenseth 

& Øien, 2009), and commercial producers have started to appear on the Norwegian marked, 

e.g. Marine Harvest Labrus and Nordland leppefisk. It is found to be an effective cleaner of 

louse from larger salmon (3-7 kg) and to have a big appetite (Ottesen et al., 2008). In 

addition it is active at lower temperatures than other wrasse species (Kvenseth & Øien, 2009 

;  Skiftesvik, 2009). 

As with the production of other marine fish, the first feeding period is considered a 

bottleneck. The larvae are small and need a feed of adequate size and nutritional 

composition. While affecting both growth rate, survival and stress tolerance (Coutteau et al., 

1997), the diet is also known to affect the skeletal development, and malnutrition increase 

the occurrence of e.g. scoliosis, lordosis and jaw deformations in marine fish (Cahu et al., 

2003). Poor survival, growth and skeletal deformities are normal problems in the intensive 

cultivation of ballan wrasse (Grøntvedt, 2010 ;  Helland et al., 2012), suggesting that a 

suboptimal first feeding practice is being used, not fulfilling the larval dietary requirements. 

 

1.2 Nutritional requirements of marine fish larvae  

Proteins are important for the developing fish larvae as growth primarily is an increase in 

body muscle mass by protein synthesis and accretion, and it make up between 60 and 80 % 

of the larval dry weight (Kjørsvik et al., 2004). Specific growth rates during the larval phase 

can be high, and a daily rate close to 30 % has been measured for the Atlantic cod (Gadus 

morhua) reared at 14 ⁰C (Otterlei et al., 1999). Amino acids are the building blocks of 

proteins, and they are also considered a major energy source during larval development 

(Fyhn, 1989 ;  Finn & Fyhn, 1995 ;  Rønnestad et al., 1999 ;  Rønnestad et al., 2003). They 

are provided through the diet incorporated in proteins and as free amino acids (FAA), with 

especially the FAA being rapidly and efficiently absorbed by fish larvae (Rust et al., 1993 ;  

Rønnestad et al., 2000 ;  Applebaum & Rønnestad, 2004). The protein and FAA amount may 

vary depending on the live feed organism, life stage and rearing conditions of the live feed 

(Helland et al., 2003 ;  Olsen, 2004 ;  van der Meeren et al., 2008). Proteins are quantitatively 
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the most important dietary component. However, having the right amount and composition of 

lipids are an equally important part of the larval diet (Rainuzzo et al., 1997 ;  Sargent et al., 

1999 ;  Olsen et al., 2004). 

Lipids are grouped as either neutral or polar, depending on their polarity. Storage lipids as 

triacylglycerids (TAG) and wax esters (WE) are neutral lipids and function as a major source 

of energy. Phospholipids (PL) are polar lipids, and besides serving as a source of energy, 

they are important structural and functional components of cell membranes and brain and 

eye tissue (Sargent et al., 1993 ;  Watanabe & Kiron, 1994 ;  Furuita et al., 1998 ;  Sargent et 

al., 2002). The larval PL biosynthesis does not take place at a sufficient rate to meet the PL 

requirement in the fast growing larvae (Geurden et al., 1995 ;  Tocher et al., 2008). A 

sufficient supply of PL through the diet is therefore important, and the larval stages are 

sensitive towards PL deficiency and require higher levels of dietary PL than juveniles 

(Geurden et al., 1995 ;  Coutteau et al., 1997). Compared to TAG the PLs are more easily 

digested (Olsen et al., 1991 ;  Tocher et al., 2008), and their presence may enhance 

digestion of other lipids in addition to being a key component of the lipoproteins transporting 

nutrients after uptake by the enterocytes (Coutteau et al., 1997 ;  Tocher et al., 2008).  

The PLs and neutral lipids are composed of fatty acids, e.g. n-3 polyunsaturated fatty acids 

(PUFA), some of which are essential to ensure optimal larval growth and development 

(Watanabe & Kiron, 1994 ;  Furuita et al., 1998 ;  Izquierdo et al., 2000 ;  Evjemo et al., 

2003). Since these essential fatty acids (EFAs) cannot be synthesized by the fish larvae de 

novo, they need to be provided through the diet (Bell et al., 2003). The PUFAs 

docosahexaenoic acid (22:6n-3; DHA), eicosapentaenoic acid (20:5n-3; EPA) and 

arachidonic acid (20:4n-6; ARA) are considered as the most important EFAs for marine fish 

larvae (Sargent et al., 1999 ;  Bell et al., 2003). They can be supplied as part of the PLs, or 

incorporated in the neutral lipid fraction. In addition to dietary PLs having a positive effect on 

growth, survival and development in itself (Coutteau et al., 1997 ;  Tocher et al., 2008 ;  Cahu 

et al., 2009), the EFAs are more beneficial and readily digested when incorporated in the PL-

fraction as opposed to the neutral lipid fraction (Izquierdo et al., 2000 ;  Gisbert et al., 2005 ;  

Kjørsvik et al., 2009 ;  Wold et al., 2009). Studies on Atlantic cod found that incorporation of 

the EFA in the PL-fraction lead to better larval growth, more developed digestive organs, 

earlier ossification and increased levels of DHA in the tissue (Kjørsvik et al., 2009 ;  Wold et 

al., 2009). The amount and ratio of which the EFAs are provided is also of great importance, 

with a varying optimum from species to species (Sargent et al., 1999). Commonly, the 

demand is greater during larval stage compared to juveniles and adults (Coutteau et al., 

1997).  
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There is little information available regarding the protein and lipid requirements of ballan 

wrasse.  It has an altrical development (Balon, 1979), with the intestine being a straight, 

undifferentiated tube and lacking a stomach at time of first feeding (Dunaevskaya, 2010). 

This is a common feature among other marine fish larvae (e.g. Atlantic cod (Kjørsvik et al., 

1991), Atlantic halibut (Hippoglossus hippoglossus) (Luizi et al., 1999), turbot (Scophthalmus 

maximus) (Segner et al., 1994), Senegalese sole (Solea senegalensis) (Ribeiro et al., 1999), 

common dentex (Dentex dentex) (Santamaria et al., 2004)). The need for nutrition and 

dietary restrictions is likely similar to other marine fish larvae with altrical development of the 

digestive system, which emphasises the need for proteins and lipids that are easily digestible 

at time of first feeding. Recent studies has discovered that ballan wrasse lacks a stomach 

also as an adult (Hamre & Sæle, 2011), which needs to be taken into consideration when 

developing formulated feed further. 

 

1.3 What is the optimal first feed for ballan wrasse larvae? 

Live feed is commonly used in first feeding of marine fish larvae (Conceicao et al., 2010), 

and are the preferred choice by larvae when presented in combination with inert diets (Le 

Ruyet et al., 1993 ;  Fernández-Díaz et al., 1994 ;  Conceicao et al., 2010). The movement of 

the live feed keeps it suspended in the water column and may help to stimulate feeding 

behaviour. Also, the high water content (normally above 80%) and availability in varying 

sizes make them appealing and ideal as feed in early stages of rearing of marine fish larvae 

(Turingan et al., 2005 ;  Conceicao et al., 2010). The most commonly used live feed is 

rotifers (Brachionus sp.) and brine shrimp (Artemia sp.), due to the existence of standardized 

cost-effective protocols for their mass production (Lubzens, 1987 ;  Sorgeloos et al., 2001 ;  

Southgate, 2003 ;  Conceicao et al., 2010). These species are also used as first feed in the 

cultivation of ballan wrasse (Skiftesvik et al., 2011). Exogenous feeding occurs from 4 dph, 

where up to approximately 30 dph the ballan wrasse larva is fed rotifers. This is followed by 

Artemia until weaning on formulated feed is successful. Rotifers and Artemia do not fulfil the 

fish larval requirements for EFAs, and are therefore enriched to get a more proper nutritional 

quality (Lubzens, 1987 ;  Evjemo & Olsen, 1997 ;  Øie et al., 1997 ;  Sorgeloos et al., 2001 ;  

Conceicao et al., 2010). When enriched the EFAs are incorporated into the neutral lipid 

fraction (Rainuzzo et al., 1994a ;  Rainuzzo et al., 1994b ;  Nerhus, 2007), where they are 

less available to the fish larvae (Izquierdo et al., 2000 ;  Gisbert et al., 2005 ;  Kjørsvik et al., 

2009 ;  Wold et al., 2009). The skeletal deformities and low survival obtained when first 

feeding ballan wrasse larvae on rotifers and Artemia (Grøntvedt, 2010 ;  Helland et al., 2012) 

suggests that the current first feeding practice is suboptimal and may be improved further.  
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Naturally harvested or intensively reared copepods have proven to be suitable as live prey 

for marine fish larvae, often resulting in better growth, pigmentation and survival compared to 

feeding with rotifers and Artemia (Næss et al., 1995 ;  Evjemo & Olsen, 1997 ;  Luizi et al., 

1999 ;  Shields et al., 1999 ;  Imsland et al., 2006 ;  Eidsvik, 2010 ;  Koedijk et al., 2010 ;  

Busch et al., 2011 ;  Kortner et al., 2011). When harvested from the wild there are seasonal 

variances of the catch, resulting in an unpredictable supply of copepod species and biomass. 

In addition, there is a possibility of transferring diseases and parasites from the copepods to 

the reared fish larvae (van der Meeren & Naas, 1997). Effort has been put into developing 

intensive rearing of copepods for use in start feeding of marine fish fry (Støttrup, 2000 ;  

Ajiboye et al., 2011 ;  Drillet et al., 2011), and the calanoid copepod Acartia tonsa fed a 

monoalgal diet of Rhodomonas baltica has been successfully used in first feeding 

experiment with the result of increased growth, survival and higher quality for Atlantic cod 

larvae (Eidsvik, 2010 ;  Hansen, 2011 ;  Norheim, 2011). However, the upscale of copepod 

cultures to commercial levels is still a challenge (Ajiboye et al., 2011). They are considered 

the natural prey of many species of fish larvae (Hunter, 1981), and information about their 

nutritional value is important when making improvements of live feed enrichment emulsion or 

formulated feed used during larval and early juvenile stages in marine fish culture (Evjemo & 

Olsen, 1997 ;  Hamre et al., 2008 ;  van der Meeren et al., 2008).  

Copepods are naturally rich in both DHA and EPA incorporated in their PLs (Evjemo & 

Olsen, 1997 ;  Evjemo et al., 2003 ;  Drillet et al., 2006 ;  van der Meeren et al., 2008 ;  

Overrein et al., 2010), making it easy accessible for marine fish larvae with an immature 

digestive system. They have also been found to have a higher protein and FAA content than 

rotifers and Artemia (Næss et al., 1995 ;  Evjemo et al., 2003 ;  Helland et al., 2003 ;  van der 

Meeren et al., 2008). The digestive system of fish larvae has initially a high assimilation 

capacity towards FAA and a low protein digestibility which increases as the proteolytic 

capacity matures (Rønnestad et al., 2000 ;  Cahu & Zambonino Infante, 2001 ;  Rønnestad 

et al., 2003 ;  Applebaum & Rønnestad, 2004). According to this, feeding ballan wrasse 

larvae with copepods will result in a higher dietary amount of both proteins and FAA, in 

addition to providing a more beneficial fatty acid supply than first feeding with rotifers. This 

may have a positive effect on larval growth, survival and development. The diet has also 

been known to impact the tissue structure of different digestive organs (Fontagne et al., 1998 

;  Wold et al., 2008 ;  Wold et al., 2009), development of an efficient brush border (Cahu & 

Zambonino Infante, 2001) and fatty acid composition in different body tissue (Bell et al., 1995 

;  Shields et al., 1999 ;  Kjørsvik et al., 2009), which emphasises the importance of right 

nutrition early in larval development. 
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1.4 Early organ development and allometric growth 

At time of hatching, many marine fish larvae have immature organs and nutrition is provided 

endogenously through the yolk sac (Osse et al., 1997 ;  Yufera & Darias, 2007). The main 

organs and organ systems become functional by the time of first feeding, and differentiate 

during the larval stage and metamorphosis (Falk-Petersen, 2005 ;  Yufera & Darias, 2007). 

During this period, the larva directs the available resources into developing those organs 

most needed to enhance further growth and survival, and the organ differentiation has to 

take place over a relatively short period of time (Osse & van den Boogaart, 2004). After 

opening of the mouth, a quick growth and differentiation of the digestive organs is necessary 

to reinforce the digestion and nutrient absorption (Yufera & Darias, 2007). This has been 

recorded for turbot (Psetta maxima) and common dentex (Dentex dentex) , where the 

digestive organs increased in volume at a relative faster rate than the other organs observed 

before switching to exclusive exogenous feeding occurred (Sala et al., 2005). This priority of 

growth is a common feature in larval development, and the resulting unequal growth of the 

different systems is called allometric growth (Alami-Durante, 1990 ;  Osse & van den 

Boogaart, 2004 ;  Sala et al., 2005). Allometric growth of outer structures also occurs during 

larval development, and a higher growth rate of the head and tail region, as opposed to the 

trunk, is a common feature (Fuiman, 1983 ;  Osse et al., 1997 ;  van Snik et al., 1997 ;  Peña 

& Dumas, 2009). This results in an increased ability to capture prey, in addition to being 

beneficial when escaping predators and reducing the energy expenditure during locomotion 

(Osse et al., 1997). Generally, there is a much greater amount of allometry within a fish 

during its early life than later, representing more sharp changes during the larval period. 

However, through adulthood, the fish growth becomes more isometric. The growth then 

inflicts no change on the structures or organs proportion relative to each other (Fuiman & 

Higgs, 1997). Few reports are available on the growth pattern of internal organs, and they 

are often limited to a single organ group.  Information about the growth of these structures 

may help in understanding critical points throughout the early development of the fish larvae 

(Sala et al., 2005). Nutrition is one of the extrinsic factors regulating growth (Osse & van den 

Boogaart, 2004), and different nutritional requirements may occur during different periods of 

fish larval development. 
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1.5 Aim of study 

If aquaculture of ballan wrasse is to be successful, the fish produced need to be of good 

quality and have a high rate of growth and survival. The present study was conducted to 

evaluate the effect of using intensively reared copepods (Acartia tonsa nauplii) as early live 

feed for the ballan wrasse larvae on the larval growth and survival, and early organ growth 

and development, compared to using rotifers (Brachionus ibericus). Copepods were fed to 

the larvae for a short-term period from 4 to 10 dph followed by enriched rotifers up to 30 dph, 

or for the whole period from 4 to 30 dph. The larvae fed rotifers received either enriched or 

unenriched rotifers through the whole period from 4 to 30 dph. All treatments had a transition 

to Artemia from 24-30 dph, and were weaned to formulated feed from 40-50 dph. The 

experiment lasted up to 61 dph. 

Hypothesis: Copepods are more suitable than rotifers as first feed for the ballan wrasse 

larvae, increasing the larval growth and survival and resulting in better organ growth and 

development. 

The allometric growth and nutritional effect on the volume of nine different organs was 

evaluated; intestine, liver, pancreas, heart, gills, muscle, central nervous system (brain + 

spinal cord), eye and notochord. The histological analysis was performed on 4, 8 and 21 

days old larvae to evaluate the direct effects of the live feed on the development, and a 

special focus was given to the tissue structure and development of organs associated with 

digestion. Analysis was performed on light microscopy sections. Histology was used as a tool 

to describe the development of the digestive organs while stereology was used to determine 

organ volumes in addition to the total larval volume.   
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2. Materials and methods 

2.1 The start feeding experiment 

The first feeding experiment was performed on ballan wrasse larvae (Labrus bergylta). Four 

different feeding regimes were used (table 2.1), and there were three replicates of each 

treatment. The treatments varied in type of live feed provided during the first 30 days. Larvae 

from the “Copepod”-treatment were fed exclusively with Acartia tonsa nauplii.  Larvae from 

the “Cop7”-treatment were fed A. tonsa nauplii from 4 to 10 dph, with a transition to rotifers 

(Brachionus ibericus, Cayman) enriched on Multigain (BioMar AS, Norway) (table 2.2). Fish 

larvae from the “RotMG”-treatment were fed enriched rotifers the whole period, while the 

“RotChl”-treatment had a diet consisting of unenriched rotifers.  

A. tonsa nauplii (stage NIII-V, 170-210µm) and B. Ibericus (adult lorica length: 180 µm) are 

equivalent in size (Nesse, 2010 ;  Penglase et al., 2010 ;  Alver et al., 2011), resulting in a 

similar biomass being available to the fish regardless of feeding regime. Addition of live feed 

started at day 4 post hatch. Rotifers and copepods were fed manually to the fish larvae three 

times a day (8AM, 16PM and 23PM) at a density of 12 000 L-1 until 19 days post hatch (dph). 

Thereafter, the fish larva were fed manually three times a day (9AM, 3PM and 9PM) and 

once a day (3AM) by a Storvik feeding robot (Storvik Aqua AS, Norway), and the feed 

density was increased to 17 500 L-1 in the tanks fed enriched rotifers. This adjustment was 

based on food density calculations by an automatic counter with water intake located 

approximately 10 cm below the surface (Alver et al., 2007 ;  Alver et al., 2011), where the 

measurements suggested that less food was available to the fish larvae in these tanks. The 

robots feed reservoirs were filled each evening at 9PM. All treatments had a co-feeding 

period with Artemia franciscana from 24 to 30 dph, before being fed Artemia exclusively up to 

40 dph. The doses were adjusted to the fish larval appetite, keeping the food density at 3000 

L-1. Weaning to formulated feed (Nofima, Appendix 1) occurred between 40 and 50 dph, and 

the formulated feed was distributed by the feeding robot. After weaning (from 51 dph), the 

fish larvae were fed formulated feed (10 g per tank day-1) once every 30 minutes (feed size 

300-600 µm) before this was increased to once every 15 minutes (feed size 600-800 µm). 

The experiment was terminated 61 dph. 
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Table 2.1 

Experimental setup and parameters for the start feeding experiment of ballan wrasse larvae. Sampling dates for different measurements are listed at the 

below the different parameters. Dph = days post hatch. 

 

 

Table 2.2 

Overview of age, stage and proportion of nauplii fed to the Cop7 and Copepod treatments at different days post hatch (dph) 

Cop7 treatment   Copepod treatment 

DPH 4-7 8 9 10 11 12-23 

  

4-9 10 11 12-23 

Copepod nauplii (%) 100 67 67 100 33 0 100 100 100 100 

Rotifers (%) 0 33 33 0 67 100 0 0 0 0 

Age of nauplii (days) 3 3 3 3 4 - 3 4 4 5 

Stage of nauplii III-IV - III – IV  V (180 μm) 

Dph 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34-39 40 41 42 43 44 45 46 47 48 49 50 51-60 61

Day degrees 12 24 36 48 60 73 86 99 112 125 138 152 166 180 195 210 225 240 255 270 285 300 316 332 348 364 380 396 412 428 444 460 476 492-572 588 604 620 636 652 668 684 700 716 732 748 764-908 924

Water exchange rate

Temperature (°C)

Clay (g tank
-1 

day
-1

)

Sieve 

Copepod

3 tanks

Cop7

3 tanks

RotMG

3 tanks

RotChl

3 tanks

Sampling

CN/Dry weight X X X X X X X X X X X

Mortality X X X X X X X X X X X X X X X X X X X

SL / MH X X X X X X

Histology X X X

12 13 14 15

2 times day-1

Copepods Rotifers (enriched with Multigain)

Rotifers (enriched with multigain)

Rotifers (not enriched)

Artemia (enriched with Multigain)

Artemia (enriched with Multigain)

8 times day-16 times day-1

16

20 25 0

4 times day-1

0 5 10 13.33 16.7

Artemia (enriched with Multigain)

200 μm 500 μm 750 μm

Artemia (enriched with Multigain)

Formulated feed (Nofima)

Formulated feed (Nofima)

Formulated feed (Nofima)

Formulated feed (Nofima)

Copepods



Materials and methods 

11 
 

2.2 Larval rearing 

The ballan wrasse larvae (2 dph) were supplied from Marine Harvest LABRUS (Øygarden) 

and distributed at an estimated density of 8400 fish larvae per tank (100 litres). The water 

exchange rate was gradually increased from two times a day at 2 dph to eight times a day on 

30 dph. Temperature and O2-concentration was measured daily (Traceable ® VWR ® Digital 

Thermometer, VWR, USA; pH/mV-meter, WTW ph 315i, Germany), the O2-level was kept 

above 80 % and the temperature was gradually increased from 12 to 16 ⁰C (table 2.1). Until 

4 dph, the fish tanks were kept in darkness, after which the larvae were reared in continuous 

illumination (daylight fluorescent tubes, Philips MASTER TL-D 90 Graphica, 18W/965). From 

the day of first feeding (4dph), clay (Vingerling K148, Sibelco, Germany) was mixed with 

water and added to each tank (Tøndel, 2009 ;  Attramadal et al., 2012) continuously using a 

peristaltic pump. The amount was gradually increased from an addition of 5 grams clay day-1 

to each tank, to 25 grams clay day-1 by 30 dph (table 2.1). Clay was added until the end of 

weaning period. 

Sea water (34 ppt) was treated with a sand filter and filtered through a 1 µm mesh before 

being heated and microbially matured based on descriptions from Skjermo et al. (1997). 

During the maturation process, the water was continuously treated with a degasser and a 1 

µm filter, before being ready to enter the larval rearing tanks. 

Dead fish and debris was removed by siphoning the bottom every second or third day from 

13 dph, and every day from the beginning of dry feed period (40 dph).  Each tank was 

aerated at the bottom of the cone and equipped with a surface skimmer. The water outlet 

was situated in the tank middle, and the sieve was cleaned daily from the beginning of dry 

feed period. Mesh size on the sieve were increased from 200 µm at the beginning of the 

experiment, to 750 µm at the end of the experiment (table 2.1).  
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2.3 Live feed production 

2.3.1 Cultivation and harvesting of microalgae (Rhodomonas baltica) 

Plexiglas cylinders containing 160 and 200 litres (40 cm in diameter) were used to grow 

Rhodomonas baltica (Clone NIVA 5/9 Cryptophycea: Pyrenomonadales), in addition to 300 

litre plastic bags in periods of increased production. The cylinders were washed, chlorinated 

(10-15% NaOCl, 0.25 ml per litre, no aeration, >5 hours) and dechlorinated (Na2S2O3, 3 gram 

per 100 litres, aeration, >5 hours) between cultivation (Hoff & Snell, 1987). Prior to usage, 

the sea water (34ppt) was treated with a sand filter, heated to 20 ⁰C and filtered through a 1 

µm mesh, before chlorinating and dechlorating it. The pH was kept between 7.5 and 8.5 

(pH/mV-meter, WTW ph 315i, Germany) and air with an addition of 1-2% CO2 was added. 

The cultures were continuously illuminated by 6 fluorescent tubes (GE Polylux XL 830 F58W) 

on three different sides, and the light intensity inside an empty cylinder was measured to 400 

µEinstein m-2 s-1. 

Algae provided from intermediate cultures (10 L round laboratory glass flasks, 2-3 x 106 cells 

mL-1) was used when starting a new culture, and constituted a minimum 10 % of the total 

volume in the cylinder. 1 ml Conwy medium (modified from Walne (1974), Appendix 2) was 

added per litre sea water. After reaching the stationary phase (approximate cell density of 1.2 

mill ml-1 in the cylinders and 800 000 ml-1 in the plastic bags), the cultures were run as 

continuous cultures with 40-50% of the volume was harvested daily. 1 ml Conwy medium 

was added per litre sea water when diluting the culture, and they were run for two weeks 

after reaching stationary phase.   

 

2.3.2 Cultivation of copepods (Acartia tonsa) 

Egg production 

Acartia tonsa (clone DFH.AT1) was cultivated under constant light in two cylindrical tanks 

(1000 and 1600 litres), with flow through of sea water (sand filtered, heated to 20 ⁰C and 

filtered through 1 µm mesh) at a water exchange rate of once per day. Temperature and 

oxygen saturation were measured daily (pH/mV-meter, WTW ph 315i, Germany), and the 

oxygen saturation was kept above 60 % and the temperature held at 19-22 ⁰C. Pure oxygen 

was added when the oxygen level dropped below 80 %. Between each production cycle the 

tanks were cleaned and disinfected using Virkon S (Lilleborg Profesjonell, Ski) in the 1000L-

tank and 70 % ethanol in the 1600L-tank. 
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Rhodomonas was fed continuously (Nesse, 2010) at an amount keeping the cell 

concentration at 15-30 000 cells ml-1 (measured by a Meckman MultisizerTM3 Coulter 

Counter®, capillary diameter 100 µm, considering all particles with a diameter in the range 

5.5-9.5 µm as algal cells) (Skogstad, 2010). The sieve covering the outlet was cleaned daily, 

and eggs were collected once each day by siphoning along a harvesting arm. The water 

containing the eggs was first filtered through a 120 µm sieve to eliminate dead Acartia and 

other waste, and thereafter filtered through a 64 µm sieve to collect the eggs. The eggs were 

cleaned with salt water and transferred to NUNC EasyFlasksTM (Nunc A/S, Denmark) for 

storing in sea water at 2 ⁰C (SANYO Pharmaceutical Refrigerator MPR-311D (H), Japan). 

 

Production of copepod nauplii for feed 

Based on the calculated hatching success (Appendix 3), the needed amount of eggs was 

collected from the refrigerated NUNC flasks, rinsed with sea water, and transferred to 100 

litre tanks for hatching (gentle aeration, 19-22 ⁰C) at a maximum density of 120 nauplii ml-

1.They were kept there for three days, changing 50 % of the water daily. The nauplii were fed 

Rhodomonas (10-30 000 cells ml-1). From 4 dph the nauplii were transferred to, and stored 

in, a 300 litre reservoir. The density was estimated upon transferring by stirring the water 

column, collecting a small water sample and fixating it with fytofix (Lugol’s solution). The 

amount of nauplii in 3 ml of the sample was counted and used to estimate the density. Before 

transferring to the larval tanks, the nauplii were concentrated. 

 

2.3.3 Cultivation, harvesting and enrichment of rotifers (Brachionus ibericus, Cayman) 

Brachionus ibericus (Cayman) was cultivated in four tanks with conical bottoms (250 litres) in 

sea water (34 ppt) at a temperature of 19-23 ⁰C (measured with a Traceable ® VWR ® 

Digital Thermometer). The water exchange rate was kept at 1-1.5 times a day, and the 

oxygen level above 80 %. Washing of the cultures, followed by transfers to clean tanks, 

occurred once a week.  

DHA Chlorella (Chlorella industry co. Ltd, Japan) was fed to the rotifers (feed ratio of 2.5 ml 

per million rotifers day-1) continuously. Dilution (25-40%) of the cultures occurred at densities 

above 750 ml-1, and debris was removed daily by flushing for 5 seconds from an outlet at the 

bottom of the cone. Culture density and egg ratio was measured daily by counting the 

number in 12 samples (each 50 µl), and cancelling the highest and lowest count. Short-time 

enrichment before feeding to fish larvae (0.15 g Multigain (Biomar) per million rotifers) was 

done once a day for two hours, with a maximum density of 400 ml-1. Enriched rotifers were 
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stored at 8 ⁰C prior to usage (maximum 24 hours). Before being fed to the fish larvae, both 

unenriched and enriched rotifers were concentrated and washed using a sieve. A loss of 20 

% during transfer and cleaning was estimated. 

 

2.3.4 Cultivation of Artemia sp. 

Prior to decapsulation, the Artemia franciscana cysts (EG ® INVE Aquaculture, Belgium) 

were hydrated in fresh water (4.9 litre water for 450-500g cysts, 15-25 ⁰C) with heavy 

aeration for one hour. The cysts were decapsulated according to Sorgeloos et al. (1977), 

weighed and transferred to a refrigerator for storage (max 6 days). 

Two days prior to feeding, the necessary amount of decapsualted cysts was put up for 

hatching in sea water (25-28 ⁰C, pH 8-8.5) with a maximum density of 2 g cysts liter-1. Heavy 

aeration was kept at all times to keep the O2-level above 2.5 mg litre-1(Hoff & Snell, 1987). 

After 24 hours, the hatched Artemia was washed and concentrated using an Artemia-washer, 

before transferring them to new tanks (100-300 nauplii per ml). During the next 24 hours 

enrichment of the Artemia occurred twice (10g Multigain (Biomar) per 60 litre), before they 

were washed and concentrated (200 ml-1), and stored in a cool area (8 ⁰C, maximum 20 

hours (Evjemo et al., 2001)). The amount of Artemia needed was estimated before each 

feeding, and concentrated in as small a volume as possible. 

 

2.4 Larval sampling and fixation 

Larvae were randomly sampled and anesthetized using tricaine methanesulfonate (MS-222 

Finquel®, Agent Chemical Laboratories Inc., USA) before rinsing them in distilled water and 

treating them further. Up to 4 dph all larvae were treated identical, and it was not 

distinguished between treatments at samples from 2 and 4 dph.  

For measurements of standard length (SL) and myotome height (MH), and for the 

histological analyses, the collected fish larvae were fixated in 4% paraformaldehyde (PFA) in 

phosphate buffered saline (pH 7.4, Apotekproduksjon AS; Norway) and stored cold (4 ⁰C) in 

glass vials. 
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2.5 Larval survival and growth 

2.5.1 Dry weight and daily weight increase 

Samples for dry weight (DW) were collected on 11 different days: 2, 4, 8, 12, 15 and 21 dph 

(n = 12 from each tank), 28 dph (n = 24 from each tank), 33, 40 and 47 dph (n = 30 from 

each tank), and 61 dph (n = 50 from each tank). Larvae from 2 to 28 dph were analyzed for 

carbon content by using an Elemental combustion analyzer (Costech Analytical 

Technologies Inc., USA) using acetanilide as standard (analyses conducted by Marthe 

Schei, SINTEF), and the result was used to determine the larval dry weight according to 

equation 2.1 (Reitan et al., 1993).  

                                    [2.1] 

Larvae from 33 to 61 dph were transferred to individual, pre-weighed capsules and dried at 

60 ⁰C for a minimum of 24 hours, after which they were weighed (Mettler-Toledo microgram 

balance UMX2 automated-s ultra-microbalance, and UM3 precision single-pan balance, 

Switzerland). Specific growth rate (SGR) and daily weight increase (%DWI) was further 

calculated using equations according to Ricker (1958) (equation 2.2 and equation 2.3), 

where W1 and W2 are the dry weight at time t1 and t2 respectively.  

             

    
         

     
                [2.2] 

 

                          [2.3] 

 

 

 

 

 

 

 

 



Materials and methods 

16 
 

2.5.2 Standard length and myotome height 

Measurements of standard length (SL) and myotome height (MH) were performed on fish 

larvae from 6 different days: 4, 8 and 21 dph (n = 12 from each treatment) and 28, 39 and 58 

dph (n = 30 from each treatment). The measurements were performed with the software 

CAST 2 (Olympus Inc., Denmark) on pictures of the fish larvae taken through a stereo 

microscope (Leica M205C, Leica Microsystems, Germany; Nikon digital sight DS-SM, Nikon 

Corporation, Japan). SL was measured from the tip of the upper lip to the end of the 

vertebrae pre flexion and to the peduncle (root of the caudal fin) post flexion. MH was 

measured perpendicular to the axial skeleton, right behind the anus (figure 2.1).   

 

 

Figure 2.1 
Ballan wrasse larvae 15 days post hatch. The standard length was measured from the tip of the upper 
lip to the end of the notochord (horizontal line) while the myotome height was measured perpendicular 
to the axial skeleton right behind the anus (vertical line).  

 

 

2.5.3 Survival 

Estimated number of fish larvae at the beginning of the experiment was 8400 per tank (100 

L). All sampling was registered, and from 13 dph dead fish were regularly counted and 

removed. The data was corrected for sampled larvae and larvae accidentally removed during 

cleaning of tanks. The mortality from 2-13 dph was assumed to be linear. At the end of the 

experiment, all fish larvae were counted. 
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2.6 Histology 

Histological analysis was performed with a light microscope on larvae from 4 (n = 6), 8 and 

21 dph (n = 6 per treatment). The fish larvae were embedded in paraffin (Tissue-Tek® III 

Embedding wax, Sakura, UK) (Appendix 4), cut into 4 µm thick longitudinal sections (Jung  

Autocut 2055, Leica Microsystems, Germany), and stained with Mayer’s hemalum solution 

(Merck, Germany) and Eosin Y-solution 0.5% aqueous (Merck, Germany) (HE-staining, 

Appendix 5).  

 

2.6.1 Stereological analysis with LM 

Sections were studied using a Zeiss Axioskop 2 plus microscope (Zeiss Inc., Germany) 

equipped with a JVC TK-C1381 colour video camera (JVC, Japan). Volume was estimated 

by the Cavalieri method (figure 2.2, modified from Howard and Reed (1998)) using CAST 2 

(Olympus Inc., Denmark) to apply a point grid (Jørgen et al., 1981 ;  Michel & Cruzorive, 

1988 ;  Mayhew, 1991 ;  Howard & Reed, 1998). The tissue volume (VT) of ten different 

organs was determined: eye, muscle, intestine, liver, central nervous tissue (CNS) (brain + 

spinal cord), notochord, heart, gills, pancreas and “other” tissues, consisting of all tissues not 

covered by the previous categories (e.g. cartilage, kidney, fin fold, oesophagus and swim 

bladder). Together these 10 categories covered all different tissue throughout the fish larvae, 

and the whole tissue volume of the fish would function as the reference volume (Howard & 

Reed, 1998). When the point grid was applied, points touching any tissue were registered as 

hits in its respective category. Points not touching any tissue or touching the lumen of the 

buccopharyngeal cavity, digestive tract and swim bladder, were not registered as hits (Sala 

et al., 2005).  

On 4 dph every third section was analysed (on average 26 sections per larvae) at 16x 

magnification, using 144 points in each grid. On 8 dph every fourth section was analysed (on 

average 24 sections per larvae) at 10x magnification, using 144 points in each grid. On 21 

dph every fifth section was analysed (on average 34 section per larvae) at 4x magnification, 

using 196 points in each grid. Each point represented and area of 3230.51 µm2, 8356.48 µm2 

and 34597.96 µm2 at 4, 8 and 21 dph respectively. The distance between each section 

studied was determined making sure that every organ would be represented in at least five 

studied sections if developed at the time of interest. Volume (V) was calculated from V = 

∑A(E+C), where A represented the summation of the measured area in the section, E the 

thickness of the section and C the distance between the measured sections.  

Pictures were taken with a Nikon digital sight DS-SM camera (Nikon Corporation, Japan). 
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Figure 2.2 
In the Cavalieri method a series of parallel sections is cut through the object. Cross sections at a fixed 
distance, T, are studied by randomly applying a point grid. A known areal is connected with each point, 
and the areal of tissue in a section is determined by counting the number of points hitting the tissue 
and multiplying with the point area. The volume is determined by multiplying the tissue areal in a 
section with the section thickness and T. The figure is modified from Howard and Reed (1998). 

 
 
 

2.7 Analysis of nutritional value of live feed organisms 

Samples of Acartia tonsa, rotifers (enriched on Multigain and unenriched) and enriched 

Artemia (Multigain) were collected. A sieve was used to rinse the samples with distilled 

water, before giving them a quick dry on a paper cloth and transferring them (approximately 

10 ml) into individual sampling tubes. The samples were immediately stored at -80 ⁰C and 

freeze dried, before being shipped off for further analysis (table 2.3). Analyses were 

performed under supervision of Annbjørg Bøkevoll at NIFES using accredited methods: acid 

hydrolysis to determine the total amount of fat (principle after EU/EØS RD 98/64 part B), 

Dumas’ method for estimation of nitrogen amount, and generation of methyl esters prior to 

GLC analysis to determine the fatty acid composition.   

Table 2.3 
Analyses of the nutritional value of different live feed used in the first feeding of ballan wrasse larvae. 
The amount of protein and lipids are measured in grams per 100 gram larval dry weight, and the % 
value of different essential fatty acids is from the total amount of lipids. 
 

  Protein 
g/100g 

DW 

Lipids       
g/100g 

DW 

DHA     
% 

EPA    
% 

ARA   
% 

DHA:EPA 
ratio   

Acartia tonsa 67.8 8.8 22.4 4.2 0.8 5.3 

Rotifers, unenriched 44.4 11.9 14.4 8.5 0.9 1.7 

Rotifers, enriched on Multigain 42.3 11.6 19.8 6.5 0.9 3.0 

Artemia, enriched on Multigain 34.9 27.6 21.5 5.3 2.5 4.0 
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2.8 Statistical analysis of data 

Arc sine transformation was performed before statistical testing of percentage values and 

volume fraction values. A Shapiro-Wilk-test was used to test for normality of data (P<0.05), 

while a Levene test was used to test for homogeneity of variance (p = 0.05). All data were 

normally distributed, and difference of means was tested using One-way ANOVA (p = 0.05) 

followed by the post-hoc-tests Student-Newman-Keuls if there were homogeneity of variance 

and Dunnett T3 if there were not. Pearson correlation test (p = 0.01, 2-tailed) was used to 

test for correlation. Statistical analysis and graphs were performed with the software PASW 

Statistics v 19.0 (SPSS Inc., USA) for PC, with exception of allometric growth determination 

which were made in SigmaPlot 11.0 (Systad Software Inc., USA 2010). Tables were made in 

Microsoft Office Excel 2007. 

Allometric growth was described as a power function of total tissue volume (VT) using non-

transformed data: y = aVT
g ; where y is the measured character (organ volume), a the 

intercept, and g the growth coefficient (Fuiman, 1983). A growth coefficient of 1 indicates 

isometric growth, while one greater or less than 1 indicates positive or negative allometric 

growth respectively when comparing volume to volume. When comparing volume to standard 

length, a growth coefficient of 3 equals isometric growth (Gisbert, 1999). Linear regressions 

were performed on log-transformed data in the statistical program SigmaPlot 11.0 (Systad 

Software Inc., USA 2010) by using the least squares method. These were further used to 

determine inflexion points in the development and the allometric growth functions (points 

where the growth coefficient changes). Inflexion points were determined by repeatedly 

plotting linear regressions in both directions from consecutive points in areas with possible 

changes in the growth coefficient. A t-test was performed to determine in which of these 

points the difference was significant. If the difference was significant in several points for the 

same inflection point, the one with the highest t-value was used (Müller & Videler, 1996 ;  van 

Snik et al., 1997). The t-value was determined by equation 2.4, where g1 and g2 are the slope 

in equation 1 and 2 respectively, SD1 and SD2 is the standard deviation sample pre and post 

the inflection point (1 and 2 respectively), and n1 and n2 the sample size pre and post the 

inflection point (1 and 2 respectively). 

    
        

  
   

 

  
 
   

 

  
 

          [2.4] 

Correlation coefficients of the linear relationship describing the growth was determined with a 

Pearson correlation test (p = 0.05, 2-tailed). 
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3. Results 

3.1 General observations 

Fish larvae fed copepods looked bigger and stronger than the fish larvae that only were fed 

rotifers. In addition, they appeared more quick, being difficult to catch during sampling. The 

pigmentation was more prominent and had a yellow tint the period copepods were supplied 

through the diet. The RotChl-larvae had very little pigmentation up until they were fed 

Artemia. Throughout the whole period they reacted more slowly, which made them easier to 

sample. In tanks where the density appeared high, the larvae gathered in clusters, 

regardless of treatment. This behaviour appeared from the Artemia period. 

Fish larvae in one replica of the Copepod-treatment (Copepod 1) experienced high mortality 

and poor growth when compared to the other Copepod-larvae. The larval DW in Copepod 1 

was significantly different from the two other replicates from 21 dph to the end of the 

experiment. It also deviated from the other treatments later in the experiment, having the 

lowest growth observed of all the tanks at 61 dph. A difference in total day degrees did not 

account for this variance. Values from this tank were omitted from the mean values of growth 

and survival (overview of survival, DW, %DWI and day degrees for the individual tanks in 

Appendix 6, 7, 8 and 9 respectively). Due to mixing of replicates during histological sampling, 

there was no way of omitting larvae from this tank from the histological analysis.  

 

3.2 Larval survival and growth 

3.2.1 Dry weight 

The dry weight (DW) was significantly higher for Copepod- and Cop7-larvae at 8 and 12 dph 

compared to RotMG- and RotChl-larvae (figure 3.1). From 15 to 33 dph, larvae from the 

Copepod treatment continued having a significantly higher DW than larvae from the other 

treatments. A slower growth was observed for the Cop7 larvae after switching from copepods 

to rotifers, and while the DW of the Cop7 larvae still was higher than the other rotifer fed 

larvae at 21 dph, this difference was only significant between the Cop 7 and RotMG larvae. A 

slower growth was also observed for the Copepod-larvae from 33 to 40 dph (figure 3.2), 

which is after switching feed from copepods to Artemia. At 40 and 47 dph there were no 

differences between larvae from any of the treatments, but at 61 dph the Copepod- and 

Cop7-larval DW was significantly higher than the RotMG- and RotChl-larval DW. RotMG- 

and RotChl-larvae had similar growth throughout the experiment. 
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Figure 3.1 
Mean dry weight (mg/larvae) of ballan wrasse larvae. Measurements were made on day 2, 4, 8, 12, 
15, 21 (n = 36 for each treatment, except for the Copepod treatment where n = 24) and 27 post hatch 
(n = 72 for each treatment, except for the Copepod treatment where n = 48), and significant 
differences are denoted by letters a to c. The dotted line indicates the start of co-feeding with Artemia. 

 

 

 

Figure 3.2 

Mean dry weight (mg/larvae) of ballan wrasse larvae. Measurements were made on day 2, 4, 8, 12, 

15, 21 (n = 36 for each treatment, except for the Copepod treatment where n=24), 27 (n = 72 for each 

treatment, except for the Copepod treatment where n=48), 33, 40, 47 (n=90 for each treatment, except 

for the Copepod treatment where n=60) and 61 post hatch (n=150 for each treatment, except for the 

Copepod treatment where n =100). The dotted line indicates the start of co-feeding with Artemia, and 

the transition to only feeding with Artemia. The dashed line indicates the start and stop of weaning. 

  

  

a 
a 
b 
b 
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3.2.2 Daily weight increase 

The period from 2 to 4 dph was represented by endogenous feeding, and the mean % daily 

weight increase (% DWI) was negative (figure 3.3). Copepods resulted in a higher mean % 

DWI than feeding with rotifers. Both Copepod- and Cop7-larvae had significantly higher % 

DWI than RotMG- and RotChl-larvae from 4 to 8 dph, and increased their weight by 15-16 % 

daily compared to 2-5 %. The Copepod-larvae continued having a significantly higher % DWI 

from 8 to 21 dph. Switching from copepods to another feed had a negative effect on the 

larval % DWI. The Cop7 larvae had a % DWI similar to the other rotifer fed larvae from 8 to 

21 dph, while it was significantly lower than the Copepod larvae which continued receiving 

copepods during this period. Also, a negative effect of switching from copepods to Artemia 

was observed for the Copepod larvae. During the Artemia phase the Cop7-, RotMG- and 

RotChl-larvae had a DWI of 16-18 %, which were significantly higher than the Copepod-

larvae DWI of 11 %. From 40 dph and to the end of the experiment, no significant difference 

in larval % DWI between the treatments was registered. The DWI for the whole experiment 

was approximately 10 % for larvae regardless of treatment.  

 

Figure 3.3 
A comparison of mean % daily weight increase (% DWI) for ballan wrasse larvae from four different 
start feeding regimes. The period from 2-4 dph was represented by endogenous feeding. From 4-10 
dph the Copepod- and Cop7-larvae received copepods while RotMG- and RotChl-larvae received 
enriched and unenriched rotifers. From 10-31 dph the Cop7 treatment switched live food from 
copepods to enriched rotifers, while the other treatments received the same live feed as they did 
previously. Artemia were distributed to all treatments from 24-40 dph, followed by a weaning period 
from 40-50 dph and a dry feed period from 50-61 dph. 
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3.2.3 Standard length and myotome height 

The average mean larval standard length (SL) at 4 dph was 3.9 mm, and ranged from 13.1 

mm in the RotChl treatment to 13.8 mm in the Cop7 treatment at the end of the experiment. 

At 8 dph there was a significant difference in SL between those larvae fed copepods and 

those fed enriched rotifers (figure 3.4). From 21 dph the Cop7 larvae were of equal length as 

the rotifer fed larvae, while the Copepod-larvae had a significantly higher mean SL than 

larvae from all other treatments at both 21 and 28 dph. At 39 dph a significant difference in 

SL were found only between Copepod larvae and RotChl larvae, and by 58 dph no difference 

in SL was detected between fish larvae from any of the treatments. 

The same tendency was observed for the mean myotome height (MH), where both Cop7 and 

Copepod larvae had a significantly higher MH at 8 dph than larvae fed rotifers (figure 3.5). 

Only the Copepod larvae were significantly different at 21 and 28 dph, where they had a 

higher MH than larvae from all the other treatments. The Copepod and the RotChl larvae 

differed significantly at 39 dph, while the mean larval MH was equal regardless of treatment 

at 58 dph. The average larval MH at 4 dph was 0.2 mm, while it at the end of the experiment 

ranged from 2.7 mm in the Copepod treatment to 3.0 mm in the RotChl treatment.  

The SL and MH were correlated (Pearsons correlation, p<0.01, 2-tailed) within the different 

treatments, with coefficients of 0.978, 0.970, 0.985 and 0.976 for the Copepod, Cop7, RotMG 

and RotChl larvae respectively. 
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Figure 3.4 
Ballan wrasse larval standard length (SL). Samples were taken at 4, 8 and 21dph (n=12 from each treatment), 
and 28, 39 and 58 dph (n=30 from each treatment, except the Copepod treatment where n = 20 on 28, 39 and 
58 dph and RotChl where n = 20 at 58 dph).   
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Figure 3.5 
Ballan wrasse larval myotome height (MH). Samples were taken at 4, 8 and 21dph (n=12 from each treatment), 
and 28, 39 and 58 dph (n=30 from each treatment, except the Copepod treatment where n = 20 on 28, 39 and 
58 dph and RotChl where n = 20 at 58 dph).   
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3.2.4 Survival 

The greatest mortality occurred prior to 13 dph in all the treatments, followed by a slow 

decrease in survival up to 61 dph (table 3.1). No mortality was registered post 40 dph for the 

RotChl larvae, however this was the treatment with the lowest overall survival throughout the 

whole period. A difference in survival was first detected at 24 dph, where the Cop7-treatment 

had a significantly higher survival than the RotChl-treatment (20% for Cop7 compared to 7% 

for RotChl). At the start of weaning period, both Copepod and Cop7 larvae had a significantly 

higher survival rate than RotChl larvae, and at the end of the experiment this was also true 

for RotMG-larvae. The survival at 61 dph was 5% in the RotChl treatment, about half the 

larval survival from the other treatments. It was no significant difference in survival between 

the larvae fed copepods and the larvae fed enriched rotifers. One of the RotChl replicates 

was ended by day 40 post hatch due to no fish being left. 

 

 

Table 3.1  

The mean percentage survival ± standard error for ballan wrasse larvae on selected days. The 
Estimated number larvae in each tank were 8400 at the beginning of the experiment. n = 3 per 
treatment, except for the Copepod treatment where n = 2. The different days were selected by when 
transition from one diet to another occurred. The period 24 to 31 dph was the transition from early live 
feed to Artemia, while weaning occurred from 40 to 51 dph. Significant differences are indicated by 
different letters. 
 

Dph Copepod Cop7 RotMG RotChl 

13 16 ± 2.6 24 ± 5.3 17 ± 2.7 12 ± 0.9 

24 14 ± 1.5
ab

 20 ± 4.1
a
 13 ± 1.6

ab
 7 ± 1.0

b
 

31 14 ± 1.6
ab

 18 ± 3.8
a
 12 ± 1.4

ab
 6 ± 0.9

b
 

40 13 ± 1.4
a
 16 ± 3.2

a
 11 ± 1.5

ab
 5 ± 0.6

b
 

51 13 ± 1.3
a
 15 ± 2.8

a
 10 ± 1.5

ab
 5 ± 0.6

b
 

61 11 ± 0.5
a
 12 ± 1.4

a
 10 ± 1.3

a
 5 ± 0.6

b
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3.3 Histology 

3.3.1 Structure of the digestive organs 

The mouth and anus was open by 4 dph, and the alimentary canal was differentiated into the 

buccal cavity, oesophagus, pre- and postvalvular intestine and rectum (figure 3.6 A, 

postvalvular intestine and rectum not shown). The yolk sac was connected to the lower, 

anterior part of the liver (figure 3.6 B), and the intestine was visible as a straight tube. No 

histological differences were observed between the pre- and postvalvular intestine: both 

regions were lined by a simple columnar epithelium with medial nuclei (prevalvular intestine 

in figure 3.6 C). Simple folds were present throughout the whole intestine. A large portion of 

yolk still remained. The pancreas was visible caudally to the liver as a continuous structure 

packed around the anterior part of the intestine, and basic zymogen granules (stained red) 

was present. Endocrine pancreatic tissue, islet of Langerhans, was observed in some larvae. 

The gall bladder was located between the liver and pancreas. Inflation of the swim bladder 

had not occurred, and it was connected to the dorsal wall of the oesophagus through a 

pneumatic duct (figure 3.7).  

 

    

Figure 3.6 
A: Ballan wrasse larva 4 dph stained with HE (4x magnification). The mouth and anus was open and 
the intestine (I) was a straight tube where folds had started to appear. The liver (L) and pancreas (P) 
were located below the oesophagus (O), and the swim bladder (SB) and pericardial cavity (PC) was 
visible. The notochord (N) passed straight through the body, enclosed by muscle (M) and nervous 
tissue from the brain and the spinal cord (CNS). B: Hepatocytes of the liver and the gall bladder (GB) 
(63x magnification). The yolk sac (Y) connected to the lower, anterior part of the liver. C: The 
prevalvular intestinal wall where the brush border was visible (small arrow) (100x magnification). 
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Figure 3.7 
The ballan wrasse (4 dph) had a pneumatic duct (PD) connecting the swim bladder (SB) to the dorsal, 
posterior part of the oesophagus (O). The swim bladder was not yet inflated. HE-staining, 63x 
magnification. Abbreviations: I, intestine; L, liver; P, pancreas. 
 

By 8 dph, thyroid follicles were observed in larvae from all treatments. They were located in 

the buccal cavity right beneath the cartilage of the lower jaw (figure 3.8 A). Mucus cells in the 

oesophagus had started to appear between 4 and 8 dph (figure 3.9 A). The intestinal wall 

appeared to be thicker than previously and with longer folds, this being more apparent in the 

Copepod and Cop7 larvae (figure 3.10 A - D). Supranuclear vesicles were prominent in the 

enterocytes of the postvalvular intestine, making it clearly distinguishable from the 

prevalvular intestine where none such vesicles were visible (figure 3.10). The yolk reserves 

were nearly depleted. Islet of Langerhans was observed in nearly all larvae (5 out of 6 of the 

Copepod and Cop7 larvae, and 4 out of 6 of the RotMG and RotChl larvae) in addition to the 

exocrine pancreatic tissue. The cytoplasm of the hepatocytes had a granular appearance 

indicating glycogen storage. There was observed a large variation in hepatocyte structure 

with regards to degree of vacuolisation and the size of the vacuoles (figure 3.11), but no 

relationship regarding SL or treatment was discovered. Also, no variation in hepatocyte 

structure within the same individual was observed. The swim bladder was inflated in 

approximately half of the fish larvae, and it appeared to occur independently of treatment.  
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Figure 3.8  
Early appearance of thyroid follicle below the lower jaw (A) in ballan wrasse larvae 8 dph, and more 
developed thyroid glands (B) at 21 dph (arrows). C: Cranial section of a ballan wrasse larvae 8 dph. 
All pictures are of larvae from the Copepod treatment. The square indicates the location of the thyroid. 
Sections are stained with HE, and pictures are taken at 63x (A), 14x (B) and 2.5x (C) magnification. 
Abbreviations: BC, buccal cavity; C, cartilage; CNS, nervous tissue from the brain and spinal cord; M, 
muscle tissue; PC, pericardial cavity. 
 

 

Figure 3.9 
Mucus cells (arrows) increased in numbers in the oesophagus (OE) of larval ballan wrasse from 8 (A) 
to 21 dph (B), and contained an acidic mass by 21 dph. The pictures are taken from approximately the 
same place at the oesophageal beginning, in larvae from the Cop7 treatment. Sections are stained 
with HE, 63x magnification (A) and 40x magnification (B). Abbreviations: L, liver; H, heart. 
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Figure 3.10 
Longitudinal sections comparing the pre- (left) and postvalvular (right) enterocytes of ballan wrasse 
larvae (8 dph) from the Copepod (A), Cop7 (B), RotMG (C) and RotChl (D) treatment. The different 
parts of the intestine were separated by a valve (arrow). Pictures were taken at the same 
magnification  (63x) and at approximately  same location in each  larva:  close to having  an  open  
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Figure 3.10 (cont.) 
passage from the pre- to the postvalvular intestine. The two parts had a different appearance, with 
supranuclear vesicles being prominent in the postvalvular part of the intestine (*). The enterocytes 
appeared to have increased more in height in the Copepod and Cop7 larvae compared to the RotMG 
and RotChl larvae, especially in the prevalvular intestine. Sections are stained with HE.  
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Figure 3.11  

Hepatocytes of the liver of ballan wrasse larvae (8 dph) illustrating a high degree of cytoplasmic 

vacuolisation (A) and a less amount of vacuolisation (B). There were large variations within the 

different treatments regarding the tissue structure of the hepatocytes. Both of the pictures are of larvae 

from the Copepod-treatment. The sections are stained with HE and taken at 63x magnification. Liver 

(L), gall bladder (GB) and pancreas (P) is visible. 

 

 

The thyroid glands were more developed and had increased in number by 21 dph (figure 3.8 

B), and vacuole-like spaces was present in the colloid. Acidic mucus cells had appeared in 

large numbers in the epithelium covering the floor and roof of the buccal cavity, in addition to 

having increased in number in the oesophagus (figure 3.9 B). A transition from straight to 

coiled intestine took place at a SL of about 5.4 mm, and the Copepod treatment were the 

only treatment where coiling had occurred in all larvae observed. The intestinal folds had 

increased in amount and length, and they occupied most of the intestinal lumen both pre- 

and postvalvular (figure 3.12). Supranuclear vesicles were present in the intestine, however 

in reduced numbers compared to what was observed earlier. They were located both pre- 

and postvalvular, with still a higher frequency in the postvalvular part. No difference between 

the treatments was detected regarding the amount of vesicles. The liver and pancreas 

appeared to have increased in size from 8 dph, and in the largest fish larvae (found mainly in 

the Copepod treatment) the pancreas had spread throughout the whole abdominal cavity, 

filling all “empty” spaces (figure 3.12). The variation previously observed in the liver tissue 

was not observed at 21 dph, the liver appearing similar in structure and degree of 

vacuolisation from individual to individual (figure 3.13). 
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Figure 3.12 

Ballan wrasse larvae 21 dph (Cop7 treatment). Coiling of the intestine has occurred, and the pancreas 

(P) has spread throughout the abdominal cavity. The intestinal folds have increased in amount and 

length, both pre- and postvalvular (valve marked by arrow). The section is stained with HE, 4x 

magnification. Abbreviations: CNS, nervous tissue of the brain and spinal cord; I, intestine; K, kidney; 

L, liver; M, muscle tissue; N, notochord; SB, swim bladder; UB, urinary bladder. 
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Figure 3.13 

Longitudinal section of liver (L), 

and endocrine (*) and exocrine 

(P) pancreatic tissue in ballan 

wrasse larvae 21 dph (Cop7 

treatment). HE staining, 63x 

magnification. 
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3.3.2 Organ growth 

At 4 dph the total mean volume of tissue (VT) in the fish larvae measured 0.075 ± 0.003 mm3 

(table 3.2). The larvae fed copepods more than doubled their total VT by 8 dph, and had 

significantly more tissue mass than the RotMG and RotChl larvae (figure 3.14). The specific 

growth rate of the whole larval VT (SGRT) between 4 and 8 dph was above 20 % daily for the 

ones fed copepods (table 3.3). This was about twice as high as the RotChl larvae, and over 

four times higher than the RotMG larvae. By 21 dph the Copepod larvae had a VT of 1.522 ± 

0.217 mm3 for the larva as a whole, which was significantly larger than the larvae fed rotifers 

(figure 3.14 and table 3.2). There was no significant difference in the total VT between the 

Cop7, RotMG and RotChl larvae at 21 dph, it being respectively 0.693, 0.592 and 0.683 

mm3. 

The intestine, liver and pancreas had a VT of respectively 0.0038, 0.0012 and 0.0005 mm3 at 

4 dph, and were, together with heart and gills, the smallest organs in the fish larvae (table 

3.2). Between 4 and 8 dph, the liver, pancreas, gills and heart were the organs increasing in 

volume the fastest, having a SGRT between 30 and 40 % for larvae fed copepods and close 

 

 

Figure 3.14 

Mean volume per larva of all tissue in ballan wrasse larvae at 4, 8 and 21 days post hatch. Significant 

differences between treatments are indicated by letters (n=6). Error bars: ±1 SE. 
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to 20 % for RotChl larvae (table 3.3). The RotMG larvae experienced less growth than larvae 

from the other treatments during this period, which resulted in lower SGRT values for these 

organ groups. The SGRT for the liver and pancreas was higher in the Copepod larvae from 8 

to 21 dph than in larvae from the other treatments, while the SGRT for intestine, heart and 

gills were similar for Copepod, RotMG and RotChl larvae. At 21 dph, the Copepod larvae had 

two to three times larger VT of intestine, liver and pancreas than larvae fed rotifers, however 

the difference was only significant for the intestine (table 3.2). The liver increased on average 

53 times and the pancreas 51 times in VT from 4 to 21 dph in larvae from the Copepod 

treatment. To compare, larvae fed rotifers increased the volume of the liver 14-18 times and 

the pancreas 12-14 times during the same period. The heart and gills were of significantly 

larger VT in the Copepod larvae than the larvae fed rotifers at 21 dph. The different organs 

SGRT were generally lower for the Cop7 larvae than for larvae from the other treatments 

after transition to enriched rotifers (table 3.3). 

Muscle and CNS were the two largest organs in the fish larva, with a VT of 0.0142 and 

0.0151 mm3 respectively at 4 dph (table 3.2). By 21 dph the Copepod larvae had on average 

increased their muscle VT to 0.3888 mm3, a 27 times increase from 4 dph. The Cop7 and 

RotMG larvae on average increased their muscle mass 8 times by 21 dph, while the RotChl 

larvae increased 11 times in muscle mass, ending up with a volume of muscle tissue of 

0.1217, 0.1182 and 0.1562 mm3 respectively. The SGRT of muscle and CNS were higher 

when the larvae were fed copepods, the difference being more prominent in the period from 

4 to 8 dph than from 8 to 21 dph (table 3.3). 

In general, the Copepod larvae had higher SGRT values for all the different organ types for 

the period 4 to 21 dph compared to Cop7, RotMG and RotChl larvae. The difference was 

most prominent for the intestine, liver, pancreas, muscle, heart and gills.  
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Table 3.2  

The mean volume per larvae of different organs ± standard error of ballan wrasse larvae for the different start feeding regimes on 4, 8 and 21 dph. Significant 

differences between treatments at the same sampling day are indicated by letters (n=6). CNS = brain + spinal cord 

 

      Volume of organ tissue (mm3) 

dph Treatment 
Total 

volume 
(mm

3
) 

Intestine Liver Pancreas Heart Gills Muscle CNS Eye Notochord Other 

4 All 
0.075 ± 
0.003 

0.0038 ± 
0.0003 

0.0012 ± 
0.0002 

0.0005 ± 
0.0001 

0.0004 ± 
0.0001 

0.0008 ± 
0.0001 

0.0142 ± 
0.0015 

0.0151 ± 
0.0005 

0.0062 ± 
0.0006 

0.0048 ± 
0.0006 

0.0275 ± 
0.0010 

8 

Copepod 
0.186 ± 

0.019
a
 

0.0112 ± 

0.0011
ab

 

0.0050 ± 
0.0007 

0.0018 ± 

0.0003
a
 

0.0013 ± 

0.0001
a
 

0.0035 ± 

0.0004
a
 

0.0402 ± 

0.0051
a
 

0.0295 ± 

0.0031
ac

 

0.0149 ± 

0.0011
a
 

0.0109 ± 

0.0011
ac

 

0.0681 ± 

0.0067
a
 

Cop7 
0.204 ± 

0.025
a
 

0.0135 ± 

0.0022
a
 

0.0063 ± 
0.0014 

0.0019 ± 

0.0004
ab

 

0.0012 ± 

0.0002
a
 

0.0030 ± 

0.0003
ab

 

0.0413 ± 

0.0059
a
 

0.0335 ± 

0.0038
a
 

0.0154 ± 

0.0011
a
 

0.0129 ± 

0.0008
a
 

0.0745 ± 

0.0096
a
 

RotMG 
0.095 ± 

0.016
b
 

0.0059 ± 

0.0015
b
 

0.0025 ± 
0.0009 

0.0006 ± 

0.0001
b
 

0.0005 ± 

0.0001
b
 

0.0022 ± 

0.0003
b
 

0.0195 ± 

0.0039
b
 

0.0164 ± 

0.0029
b
 

0.0090 ± 

0.0007
b
 

0.0071 ± 

0.0014
b
 

0.0316 ± 

0.0046
b
 

RotChl 
0.123 ± 

0.014
b
 

0.0072 ± 

0.0011
b
 

0.0033 ± 
0.0008 

0.0011 ± 

0.0001
ab

 

0.0008 ± 

0.0002
ab

 

0.0022 ± 

0.0002
b
 

0.0244 ± 

0.0032
b
 

0.0209 ± 

0.0023
bc

 

0.0115 ± 

0.0006
b
 

0.0085 ± 

0.0007
bc

 

0.0431 ± 

0.0047
b
 

21 

Copepod 
1.522 ± 

0.217
a
 

0.0848 ± 

0.0115
a
 

0.0638 ± 
0.0123 

0.0254 ± 
0.0052 

0.0135 ± 

0.0017
a
 

0.0389 ± 

0.0049
a
 

0.3888 ± 

0.0704
a
 

0.2293 ± 

0.0303
a
 

0.0933 ± 

0.0099
a
 

0.0452 ± 

0.0053
a
 

0.5389 ± 

0.0748
a
 

Cop7 
0.693 ± 

0.495
b
 

0.0433 ± 

0.0056
b
 

0.0220 ± 
0.0014 

0.0067 ± 
0.0008 

0.0058 ± 

0.0008
b
 

0.0157 ± 

0.0017
b
 

0.1217 ± 

0.0073
ab

 

0.1309 ± 

0.0108
b
 

0.0586 ± 

0.0055
b
 

0.0286 ± 

0.0034
b
 

0.2594 ± 

0.0181
b
 

RotMG 
0.592 ± 

0.114
b
 

0.0456 ± 

0.0090
b
 

0.0170 ± 
0.0037 

0.0061 ± 
0.0015 

0.0059 ± 

0.0010
b
 

0.0163 ± 

0.0046
b
 

0.1182 ± 

0.0239
b
 

0.1078 ± 

0.0226
b
 

0.0445 ± 

0.0083
b
 

0.0259 ± 

0.0039
b
 

0.2051 ± 

0.0418
b
 

RotChl 
0.683 ± 

0.114
b
 

0.0637 ± 

0.0129
ab

 

0.0203 ± 
0.0037 

0.0070 ± 
0.0014 

0.0068 ± 

0.0014
b
 

0.0181 ± 

0.0030
b
 

0.1562 ± 

0.0322
ab

 

0.1207 ± 

0.0187
b
 

0.0528 ± 

0.0067
b
 

0.0264 ± 

0.0025
b
 

0.2108 ± 

0.0350
b
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Table 3.3  

The daily specific tissue growth rate (% increase in tissue) of different organ systems in ballan wrasse larvae for the different start feeding regimes (n=6). 

Numbers are based on volume measurements from 4, 8 and 21 dph. CNS = brain + spinal cord 

    Specific growth rate of organ tissue (% day-1) 

Dph Treatment Total Intestine Liver Pancreas Heart Gills Muscle CNS Eye Notochord Other 

4-8 

Copepod 22.2 26.6 37.8 31.5 32.1 35.0 25.5 15.9 22.0 21.3 22.0 

Cop7 24.1 29.7 40.2 31.4 28.0 31.3 25.5 19.0 22.8 25.9 23.8 

RotMG 4.7 7.0 11.5 5.2 3.1 23.3 6.5 0.4 9.5 9.1 2.3 

RotChl 11.9 14.8 24.2 20.4 18.1 24.0 13.0 7.3 15.8 15.4 10.6 

8-21 

Copepod 16.0 15.4 19.0 20.0 17.6 18.6 17.2 15.8 14.0 10.9 15.8 

Cop7 9.7 9.4 11.0 10.4 12.2 12.7 8.8 10.6 10.2 5.9 9.9 

RotMG 13.4 16.2 16.8 16.2 19.8 13.8 13.5 13.9 11.8 10.2 13.9 

RotChl 12.7 16.1 14.5 13.5 16.1 15.5 13.5 13.1 11.4 8.6 11.7 

4-21 

Copepod 17.5 18.0 23.4 22.7 21.0 22.4 19.2 15.8 15.9 13.4 17.3 

Cop7 13.1 14.1 17.9 15.4 15.9 17.1 12.7 12.6 13.2 10.6 13.1 

RotMG 11.6 14.1 15.5 13.6 15.9 16.1 11.9 10.7 11.2 9.9 11.1 

RotChl 12.5 15.8 16.8 15.1 16.6 17.5 13.4 11.8 12.4 10.2 11.5 
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3.3.3 Relative volume of different organ systems 

The organs associated with digestion, intestine, liver and pancreas, made up a small 

proportion of the whole larval VT at 4 dph (figure 3.15 – 3.18). The intestine was 

proportionally the largest of them, with a relative volume (RV) (% of total VT) of 5.1 % (table 

3.4). By 21 dph, the intestine made up 5.6 and 6.2 % of Copepod and Cop7 larvae total VT 

respectively, which was a significantly smaller proportion than the 7.8 and 8.9 % of the 

RotMG and RotChl larvae. Larvae from all treatments had a significant increase in the 

relative liver volume from 4 to 21 dph (figure 3.15 – 3.18), which went from on average 

representing 1.5 % of the whole larval VT at 4 dph, to 4.1 % in the Copepod larvae and 3.2, 

2.8 and 3.0 % in the Cop7, RotMG and RotChl larvae on 21 dph (table 3.4). Copepod larvae 

had a significant increase in RV of pancreatic tissue from 8 to 21 dph, which was not 

observed in larvae from any of the other treatments (figure 3.15).  

A significant increase in RV of heart tissue was observed from 8 to 21 dph in all treatments 

(figure 3.15 – 3.18). At 8 dph it represented 0.5-0.7 % of the larval total VT, while the 

proportion had increased to 0.8-1.0 % for all treatments by 21 dph (table 3.4). The RV of gills 

increased in all treatments from 4 dph to 21 dph, representing 2.6 % of the Copepod, RotMG 

and RotChl larvae total VT and 2.2 % of the Cop7 larvae total VT at 21 dph. No significant 

difference in RV of heart and gills were observed between the treatments. 

Muscle and CNS were the two largest organ groups in the fish larvae at 4, 8 and 21 dph, 

making up the largest proportion of the total VT (table 3.4). The RV of nervous tissue was 

20.5 % at 4 dph, and had decreased significantly in all treatments by 8 dph (figure 3.15 – 

3.18). At 21 dph a significant difference in RV of nervous tissue was observed between 

Copepod larvae, where the CNS represented 15.3 % of the total VT, and Cop7, RotMG and 

RotChl larvae, where the CNS represented 18.8, 17.7 and 18.0 % of the total VT respectively 

(table 3.4). Close to 20 % of the larvae total VT was muscle tissue at 4, 8 and 21 dph, with 

exception of Copepod larvae at 21 dph: The proportion of musculature in the Copepod larvae 

increased significantly from 8 to 21 dph, and at 21 dph muscle tissue represented 24.9 % of 

the whole Copepod larvae VT which was a significantly higher proportion than in larvae from 

the other treatments (table 3.4).  

The eyes had a relative volume of 8.4 % at 4 dph (table 3.4). The RV stayed the same for 

larvae from the Cop7, RotMG and RotChl treatment up to 21 dph, while eye tissue at the 

same time on average represented 6.3 % of the Copepod larvae total VT. A significant 

decrease in relative volume of notochord was observed for larvae from all treatments from 8 

to 21 dph, representing respectively 3.1, 4.1, 4.7 and 4.3 % of the Copepod, Cop7, RotMG 

and RotChl larval total VT (figure 3.15 – 3.18).  
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Table 3.4  

The mean relative volume of organ tissue (% of the total volume of all body tissue) ± standard error for the different start feeding regimes of ballan wrasse at 

4, 8 and 21 dph. Significant differences between groups at the same sampling day are denoted by letters (n=6). CNS = brain + spinal cord  

    Mean relative volume of total volume (%) 

 Dph Treatment Intestine Liver Pancreas Heart Gills Muscle CNS Eye Notochord Other 

4 All 5.1 ± 0.3 1.5 ± 0.2 0.7 ± 0.1 0.5 ± 0.1 1.1 ± 0.1 18.8 ± 1.3 20.5 ± 1.2 8.4 ± 0.9 6.3 ± 0.6 37.0 ± 0.6 

8 

Copepod 6.0 ± 0.3 2.6 ± 0.1 0.9 ± 0.1 0.7 ± 0.0 1.9 ± 0.1 21.2 ± 0.6 15.8 ± 0.3 8.2 ± 0.4 5.9 ± 0.2 36.7 ± 0.7
a
 

Cop7 6.4 ± 0.4 2.9 ± 0.4 0.9 ± 0.1 0.6 ± 0.1 1.5 ± 0.1 19.9 ± 1.0 16.6 ± 0.3 7.9 ± 0.6 6.8 ± 0.8 36.6 ± 0.5
a
 

RotMG 5.8 ± 0.7 2.2 ± 0.5 0.7 ± 0.1 0.5 ± 0.1 2.5 ± 0.3 20.0 ± 0.7 17.1 ± 0.3 10.1 ± 0.8 7.4 ± 0.6 33.7 ± 0.9
b
 

RotChl 5.8 ± 0.4 2.5 ± 0.4 0.9 ± 0.1 0.6 ± 0.1 1.8 ± 0.1 19.5 ± 0.6 17.0 ± 0.5 9.7 ± 0.6 7.1 ± 0.4 35.1 ± 0.5
ab

 

21 

Copepod 5.6 ± 0.5
a
 4.1 ± 0.6 1.6 ± 0.2 0.9 ± 0.0 2.6 ± 0.1 24.9 ± 1.2

a
 15.3 ± 0.7

a
 6.3 ± 0.4 3.1 ± 0.3

a
 35.6 ± 0.6

a
 

Cop7 6.2 ± 0.6
a
 3.2 ± 0.3 1.0 ± 0.1 0.8 ± 0.1 2.2 ± 0.2 17.7 ± 0.4

b
 18.8 ± 0.5

b
 8.4 ± 0.4 4.1 ± 0.3

ab
 37.5 ± 0.8

a
 

RotMG 7.8 ± 0.5
b
 2.8 ± 0.1 1.0 ± 0.2 1.0 ± 0.1 2.6 ± 0.4 19.7 ± 0.8

bc
 17.7 ± 0.8

b
 8.1 ± 1.0 4.7 ± 0.4

b
 34.6 ± 1.1

a
 

RotChl 8.9 ± 0.6
b
 3.0 ± 0.2 1.0 ± 0.1 1.0 ± 0.1 2.6 ± 0.1 21.9 ± 1.3

c
 18.0 ± 0.5

b
 8.2 ± 0.6 4.3 ± 0.6

ab
 31.1 ± 0.9

b
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Figure 3.16  
The mean relative 
organ volume (% of 
the total volume of all 
body tissue) at 4, 8 
and 21 dph for larvae 
from the Cop7 
treatment. Significant 
differences between 
days are denoted by 
letters (n=6). Error 
bars: ± 1 SE. CNS = 
brain + spinal cord 

 

Figure 3. 15 
The mean relative 
organ volume (% of 
the total volume of all 
body tissue) at 4, 8 
and 21 dph for larvae 
from the Copepod 
treatment. Significant 
differences between 
days are denoted by 
letters (n=6). Error 
bars: ± 1 SE. CNS = 
brain + spinal cord 

 



Results 

41 
 

    

 

   

Figure 3.18  
The mean relative organ 
volume (% of the total 
volume of all body 
tissue) at 4, 8 and 21 
dph for larvae from the 
RotChl treatment. 
Significant differences 
between days are 
denoted by letters (n=6). 
Error bars: ± 1 SE. CNS 
= brain + spinal cord 

 

Figure 3.17  
The mean relative organ 
volume (% of the total 
volume of all body 
tissue) at 4, 8 and 21 
dph for larvae from the 
RotMG treatment. 
Significant differences 
between days are 
denoted by letters (n=6). 
Error bars: ± 1 SE. CNS 
= brain + spinal cord 
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3.3.4 Growth coefficients 

The total VT was correlated to the larval SL in all treatments (Pearsons correlation, p<0.01, 2-

tailed), and when trend lines were applied the relationship was the same for the different 

treatments (figure 3.19). The correlation of the total VT was also tested for all the organ 

groups with similar results (Appendix 10). Volume data from all the different treatments was 

therefore pooled for the calculation of growth coefficients.  

There was a positive allometric increase in total VT with increasing larval standard length with 

a growth coefficient (g) of 5.48. The log10-transformed data were following a linear 

relationship (figure 3.20).  

 

 

 

Figure 3.19  
The relationship between standard length (SL) and total volume of all tissue (mm3) in ballan wrasse 
larvae from four different start feeding regimes. The data are sampled on 4, 8 and 21 dph, and each 
point represents values from individual larvae. The correlation coefficients were 0.974, 0.958, 0.955 
and 0.971 for the Copepod-, Cop7-, RotMG- and RotChl-larvae respectively (Pearson correlation, 
p<0.01, 2-tailed). 
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A positive allometric growth was observed for the digestive organs from 4 dph (g > 1) (figure 

3.21 A-C). The intestine had a growth coefficient of 1.48, and a point of inflexion occurred 

when the fish larval VT reached 0.112 mm3, or a standard length of roughly 4.0 mm (table 

3.5). The standard length was estimated by using the equation y = 5.49*10-5x5.48 (figure 

3.20), where y is the VT (mm3) and x is the standard length of the ballan wrasse larvae. The 

inflexion point of the liver was also located around 4.0 mm (table 3.5), where it changed from 

having a highly positive allometric growth with a growth coefficient of 2.62, to a growth 

coefficient close to isometric (g = 1.13). The intestine had an isometric growth after reaching 

the inflexion point. The pancreatic tissue had a growth coefficient of 1.21 up to the VT of 

0.812 mm3, which equals approximately 5.8 mm. After this, the growth coefficient increased 

to 1.87, and the allometric growth became more positive. 
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Figure 3.20  

The relationship between the volume of all tissue and standard length in ballan wrasse larvae plotted 

on a logarithmic x- and y-axis, with each point representing values from individual larvae. Data from 

different treatments are pooled. A growth coefficient (g) of 5.48 indicates a positive allometric growth in 

volume (g > 3). Data collected from 4, 8 and 21 days old fish larvae. Correlation is tested with Pearson 

correlation test (p<0.05, 2-tailed). 
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Figure 3.21  

Allometric growth equations and relationship between the total volume of ballan wrasse and the 

volume of organs associated with digestion during early stages of development, plotted on logarithmic 

scales. Both the intestine (A), liver (B) and pancreas (C) had positive allometric growth in early stages, 

with growth coefficients of respectively 1.48, 2.62 and 1.21. Data from all treatments are pooled, each 

point is representing an individual larvae. Correlation is tested with Pearson correlation test (p<0.05, 2-

tailed). 

 

 

  Total tissue volume (mm3)

0.1 1 10

G
ill

 V
o
lu

m
e
 (

m
m

3
)

0.0001

0.001

0.01

0.1

y = 0.025x1.17

r2 = 0.94 : n = 54

Total tissue volume (mm3)

0.1 1 10

H
e
a
rt

 V
o
lu

m
e
 (

m
m

3
)

0.0001

0.001

0.01

0.1

y = 0.045x1.88

r2 = 0.57 : n = 14

y = 0.009x1.17

r2 = 0.91 : n = 36
y = 0.011x0.61

r2 = 0.96 : n = 6

 
Figure 3.22  

Allometric growth equations and relationship between the total volume of ballan wrasse and the 

volume of gills (A) and heart (B) during early stages of development, plotted on logarithmic scales. Gill 

development was constant and could be described by a linear function, while two inflexion points were 

detected for heart development. Data from all treatments are pooled, each point is representing an 

individual larvae. Correlation is tested with Pearson correlation test (p<0.05, 2-tailed). 
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Figure 3.23  

Allometric growth equations and relationship between the total volume of ballan wrasse and the 

volume of muscle tissue (A), nervous tissue (brain + spinal cord) (CNS) (B), notochord (C) and eye (D) 

during early stages of development, plotted on logarithmic scales. Data from all treatments are pooled, 

each point is representing an individual larvae. Correlation is tested with Pearson correlation test 

(p<0.05, 2-tailed). 

 

 

 

The gills had a slightly positive allometric growth (g = 1.17), which was constant throughout 

the whole period (figure 3.22 A). The heart had three growth periods with different growth 

coefficients (figure 3.22 B). During early development up to approximately 4.0 mm (table 

3.5), the larva had a highly positive allometric growth of heart tissue (g = 1.88). This was 

followed by a period of near isometric growth up to 6.0 mm, after which the growth became 

negatively allometric (g = 0.61). 

Both muscle growth and growth of the CNS was nearly isometric during the earliest period, 

with a growth coefficient of 1.04 and 0.98 respectively (figure 3.23 A and B). The point of 

inflexion for muscle growth occurred when the VT reached 0.6316 mm3, or approximately 5.5 

mm (table 3.5), after which there was a positive allometric growth (g = 1.38). The CNS had a 

negative allometric growth (g = 0.70) after the inflexion point around 5.6 mm. A highly 

A B 

C D 
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positive allometric growth of the notochord (g = 1.77) occurred from early on, but a negatively 

allometric growth (g = 0.66) takes place after the inflexion point is reached at approximately 

3.9 mm (figure 3.23 C and table 3.5). The eyes had a negatively allometric growth during the 

whole period, with a slightly negative growth (g = 0.91) first, followed by highly negative 

growth (g = 0.56) at a SL of about 5.6 mm (figure 3.23 D and table 3.5). 

 

 

Table 3.5  
Summary of inflexion points of different organs in ballan wrasse larva. The inflexion points are given 

for larval total volume of tissue (VT) (mm
3
) and SL (mm), and the growth coefficients (g) ± standard 

error (SE) and r
2
-values for the linear regressions used to determine g for the different organ groups 

are listed. The fish larva standard length (SL) at time of inflexion was determined by equation y = 

5.49*10
-5

x
5.48

, where y is the volume (mm
3
) and x is the SL (mm). A t-test was used to determine if the 

growth coefficients pre and post inflexion point (g1 and g2) were significantly different, and the 

correlation coefficient was determined for each line (Pearson correlation, p<0.05, 2-tailed). CNS = 

brain and spinal cord. 

 

 

Organ 
group 

Pre and 
post 

inflexion g ± SE r
2
 

VT: Point of 
inflexion 

(mm
3
) 

SL: Point of 
inflexion 

(mm) 

Significance 
between g1 
and g2 (2-

tailed) 

Notochord 
1 1.77 ± 0.448 0.61 

0.095 3.9 0.0000 
2 0.66 ± 0.029 0.93 

Liver 
1 2.62 ± 0.745 0.53 

0.103 4.0 0.0007 
2 1.13 ± 0.045 0.94 

Heart 

1 1.88 ± 0.471 0.57 
0.104                                 
1.007 

4.0                                  
6.0 

0.0241                              
0.0009 

2 1.17 ± 0.062 0.91 

3 0.61 ± 0.058 0.96 

Intestine 
1 1.48 ± 0.271 0.68 

0.112 4.0 0.0135 
2 1.01 ± 0.045 0.93 

Muscle 
1 1.04 ± 0.026 0.98 

0.632 5.5 0.0000 
2 1.38 ± 0.081 0.95 

CNS 
1 0.98 ± 0.025 0.98 

0.693 5.6 0.0000 
2 0.70 ± 0.050 0.93 

Eye 
1 0.91 ± 0.042 0.93 

0.693 5.6 0.0001 
2 0.56 ± 0.072 0.84 

Pancreas 
1 1.21 ± 0.055 0.92 

0.812 5.8 0.0004 
2 1.87 ± 0.281 0.83 

Gill 1 1.17 ± 0.040 0.94   
  

Not 
significant 
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4. Discussion 
 

4.1 Effects from first feeding ballan wrasse larvae with copepod nauplii 

on larval growth and mortality 

The present study found that using intensively cultivated copepods as feed for ballan wrasse 

larvae during the first feeding period resulted in increased somatic growth compared to 

feeding with rotifers. This was observed when copepods were supplied only for a short 

period of time (4-10 dph) at the beginning of exogenous feeding, and when fed up until the 

Artemia-phase (4-30 dph). An immediate effect on the DW was evident at 8 dph, which 

continued for as long as the copepods were supplied through the diet. This was reflected in 

significantly higher % DWI values for the Copepod and Cop7 larvae: E.g. their increase was 

close to 15 % daily for the period 4 to 8 dph, compared to 2-5 % for the ones fed rotifers. 

Feeding with copepod also affected the SL and MH resulting in longer and thicker larvae, 

and the DW at the end of the experiment was found to be significantly higher for both the 

Copepod and Cop7 larvae compared to RotMG and RotChl larvae. Few studies are available 

on ballan wrasse larvae to compare the growth obtained during this study. Dunaevskaya 

(2010) measured the increase of SL on ballan wrasse larvae fed enriched rotifers (Red 

pepper). Compared with her results the SL measurements was similar up to 21 dph for 

larvae fed unenriched and enriched rotifers and for the Cop7 larvae, while the Copepod 

larvae had a greater growth. After 21 dph, the growth observed during the present study was 

higher regardless of treatment. Even though a part of this can be due to higher average 

temperature in our experiment (15 ⁰C versus 14 ⁰C), the larvae from all treatments appear to 

have had a good growth through the experimental period compared to the growth observed 

in Dunaevskayas study. 

Increased larval somatic growth when feeding with copepods compared to other live feed 

has been reported for other species as well (Næss et al., 1995 ;  Shields et al., 1999 ;  

Evjemo et al., 2003 ;  Imsland et al., 2006 ;  Eidsvik, 2010 ;  Koedijk et al., 2010 ;  Busch et 

al., 2011 ;  Norheim, 2011). This has been attributed to a higher fraction of EFAs 

incorporated in the polar lipid fraction, and a greater amount of proteins and FAAs (Evjemo & 

Olsen, 1997 ;  Bell et al., 2003 ;  Evjemo et al., 2003 ;  Tocher et al., 2008 ;  van der Meeren 

et al., 2008). The superiority of dietary PLs is suggested to be caused by a greater ability to 

modulate phospholipase A2 expression than that of lipase in larval fish, which would give a 

more efficient capacity of utilizing PL than TAG (Cahu et al., 2009). Their presence is also 

found to enhance digestion of other lipids and to aid nutrient transport from the enterocytes 

by being a key component of lipoproteins (Coutteau et al., 1997 ;  Tocher et al., 2008). 

Furthermore, EFAs appear to be utilized better when provided through the polar lipid fraction. 
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This has been observed for Atlantic cod and European sea bass, where EFA supplied 

through the PLs resulted in increased somatic growth, more developed digestive organs, 

earlier ossification and increased levels of DHA in the tissue (Gisbert et al., 2005 ;  Kjørsvik 

et al., 2009 ;  Wold et al., 2009).  

Analysis of the live feed used in this experiment revealed a greater protein content in A. 

tonsa compared to the enriched and unenriched rotifers, and A. tonsa had the greatest 

amount of DHA and the largest DHA:EPA ratio. Based on observations from other studies 

(Evjemo & Olsen, 1997 ;  van der Meeren et al., 2008), it is likely that the EFAs were 

incorporated in the copepods PLs. In a parallel study of the metabolites in the ballan wrasse 

larvae and different live feed taking part in this first feed experiment, the A. tonsa was found 

to contain both high levels of taurine and trimethylamine N-oxide (TMAO) compared to 

nothing in B. Ibericus (Martin Almli, pers. comm., thesis in prep.). These metabolites were 

also found to be present in a greater amount in the larvae fed copepods. Taurine has been 

proposed to stimulate increased growth rates in larval fish (Conceicao et al., 2010 ;  Pinto et 

al., 2010), and providing TMAO through the diet had a positive effect on the growth 

performance of swine (Overland et al., 1999). The combination of higher levels of taurine and 

TMAO may, together with the greater amount of proteins and a more suitable FA 

composition, have contributed to the higher growth rates observed while copepods were fed 

to the larvae. While temperature is known to affect larval growth (Blaxter, 1991), the small 

difference in day degrees between the larval tanks are unlikely to have had an impact during 

this experiment. In addition, the rotifers and copepods used in the present study were of 

equal size (Nesse, 2010 ;  Penglase et al., 2010), which excludes an impact of difference in 

feed size affecting the growth (Busch et al., 2011). This leaves variation in the live feeds’ 

nutritional composition, combined with its ability to stimulate a feeding response, as a likely 

reason for the observed differences in growth.  

While feeding with copepods had a positive effect on the larval somatic growth, changing 

feed from copepods to either rotifers or Artemia had a short-term negative effect on the larval 

growth. After transition to the Artemia phase the Copepod larvae had a significantly lower % 

DWI value compared to larvae from the other treatments, and in the DW figures this could be 

seen as a flattening of the growth curves which was not observed to the same extent for the 

other treatments. When Cop7 larvae switched feed from copepods to enriched rotifers, a 

similar reduction in growth was observed. Together, these incidents resulted in a gradual 

smoothing of the growth differences between all four treatments, leaving no significant 

difference in DW to be detected between the treatments at 40 and 47 dph.  
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During transition to Artemia, the negative effect observed on growth was more prominent for 

the Copepod larvae than larvae from the other treatments. This indicates an easier transition 

from rotifers to Artemia than from copepods to Artemia. A longer time may be needed to 

adapt when changing from a food source of high quality to a source of lower quality than 

when changing the other way around, and the Copepod larvae may have had trouble 

accepting the new food. Previous studies on Atlantic cod has observed the same tendency, 

where a short period of dietary change (22-36 dph) affected larval growth positively if 

changed from enriched rotifers to natural zooplankton, and negatively if the prey type 

changed vice versa (Koedijk et al., 2010). Dutton (1992) observed that prior experience to a 

prey type improved feeding success when the same prey was subsequently encountered, 

and a prolonging of the weaning period has previously given positive results on the growth of 

seabass (Dicentrarchus labrax) and gilthead seabream (Sparus aurata) (Rosenlund et al., 

1997). This suggests that an increased co-feeding period of copepods and Artemia during 

this experiment could have reduced the negative growth effect of switching feed by giving the 

larvae a longer period to adapt. Another possibility could be to skip the Artemia phase, and 

feed the larvae with copepods up to weaning. 

After transition to formulated feed, higher growth rates were observed for Copepod and Cop7 

larvae compared to larvae from the other treatments. Although the growth rates were not 

significantly higher, it resulted in a significantly higher DW for the Copepod and Cop7 larvae 

at 61 dph. This may be caused by a positive long term growth effect from receiving copepods 

as early feed, leading to an increased ability of utilizing formulated feed later on. Early diet 

has been found to have an effect on long term growth in Atlantic cod (Imsland et al., 2006 ;  

Koedijk et al., 2010), where fish in the groups first fed on zooplankton were 12-14 % larger 

than those first fed on rotifers after 17 months (Imsland et al., 2006). Imsland et al. proposed 

that this could be due to differences in the digestive tract caused by early diet, affecting the 

feeding capacity of the larvae. The Copepod larvae were of larger size (SL) at the time of 

weaning, which could have made the transition to formulated feed easier and affected the 

growth positively compared to larvae with a smaller SL. However, the positive effect was also 

observed for the Cop7 larvae, which were of similar length as the RotMG and RotChl larvae 

at the time of weaning. This makes it unlikely that a difference in larval length could have 

caused the observed differences in growth between the treatments after the transition to 

formulated feed. It is also uncertain whether the improved growth observed for the Copepod 

and Cop7 larvae post weaning would persist, and further research needs to be done before 

any long term effects from feeding with copepods can be determined. 

Other studies have observed an improved growth in larvae fed enriched rotifers compared to 

larvae receiving unenriched rotifers (Øie et al., 1997 ;  Baker et al., 1998 ;  Copeman et al., 
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2002). This was however not detected during this experiment. The nutritional composition of 

rotifers may vary depending on growth rate, type of feed and feeding ratio, in addition to 

whether or not they are enriched and the enrichment composition and procedure (Øie et al., 

1994 ;  Øie et al., 1997 ;  Øie & Olsen, 1997 ;  Copeman et al., 2002). Compared to the 

rotifers used in the studies mentioned above (Øie et al., 1997 ;  Baker et al., 1998), the 

rotifers in the present study had a higher protein and a lower lipid content, both when 

enriched and not enriched. Furthermore, both the enriched and unenriched rotifers used in 

the present study had a similar total amount of lipids and proteins per 100 g DW. This may 

be a reason for the lack in growth difference observed between the RotMG and RotChl 

larvae, and why our study obtained other results than the studies mentioned above. In a 

similar first feeding experiment performed on Atlantic cod larvae, there were also found no 

difference in growth between those larvae fed enriched and those fed unenriched rotifers 

(Norheim, 2011). They used the same feed for their rotifer cultures (Brachionus ibericus) as 

during the present experiment (DHA Chlorella), and grew the cultures at similar densities. 

For Atlantic cod and ballan wrasse, this procedure may therefore obtain unenriched rotifers 

with a nutritional composition which is sufficient to sustain a larval growth similar as for larvae 

fed enriched rotifers. Even though the quantitative amounts of lipids and proteins were 

similar for the enriched and unenriched rotifers, the fatty acid content did vary with the 

enriched ones having a greater amount of EFAs and a higher DHA:EPA ratio. These EFA 

are located in the rotifers neutral lipid fraction (Rainuzzo et al., 1994a ;  Rainuzzo et al., 

1994b ;  Nerhus, 2007), and may not have been available in a sufficient amount to sustain 

higher growth rates for the RotMG larvae compared to the RotChl larvae.  

While no growth difference was obtained between the RotMG and RotChl larvae, a 

difference in survival was detected. This indicates that the inadequate nutritional value of the 

unenriched rotifers may affect other measurements criteria more negatively than the somatic 

growth of the larvae. At 61 dph, the survival ranged from 10 to 12 % in the Copepod, Cop7 

and RotMG treatments, whereas a significantly lower survival was observed for the RotChl 

larvae compared to larvae from the other treatments, with only 5 % surviving to day 61 post 

hatch. The unenriched rotifers fed to the RotChl larvae were found to have the lowest 

amount of EFAs and DHA:EPA ratio of the analysed live feed. A deficiency in n-3 PUFA 

induces mortality (Izquierdo et al., 2000 ;  Cahu et al., 2009), and the nutritional composition 

of the live feed may therefore have contributed to the difference observed in survival, as well 

as for the growth difference observed when feeding copepods as opposed to rotifers. The 

Copepod larvae were also found to tolerate stress significantly better than RotChl larvae in a 

parallel study performed on larvae from the present experiment. Fewer larvae died from the 

stress inflicted at 29 dph, and the live feed quality was suggested as an important factor for 
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the difference observed in mortality (Sørøy, 2012). Similar results were also observed in a 

first feeding experiment on Atlantic cod, where the larval response to handling stress at 37 

and 58 dph was found to be affected by the treatment during the first 28 days, and not 

correlated to the SL. Larvae fed unenriched rotifers had the highest mortality after 24 hours 

followed by those fed enriched rotifers, while larvae fed copepods were the most hardy 

(Hansen, 2011). 

During the first feeding experiment, most of the mortality occurred prior to 13 dph in all 

treatments and only 12-25 % of the larvae survived up to this point. Other factors beside the 

diet may have contributed to this early mortality, which emphasises the importance of a 

proper rearing environment during the early stages of development. The microbial 

environment in the rearing tanks has been suggested to have a big effect on the early 

mortality and growth of marine fish larvae (Skjermo et al., 1997 ;  Alves et al., 1999 ;  

Skjermo & Vadstein, 1999). The specific immune system is still under development during 

the larval stage (Zapata et al., 2006), making the larvae vulnerable for infections. The poor 

results observed on survival and growth in the omitted Copepod parallel was visible from 

early on, which could point to a microbial infection. Other physical factors, such as heavy 

aeration or water flow, could also have contributed to an unfavourable rearing condition. 

 

4.2 The effect of early live feed on ballan wrasse larval organ growth and 

development 

No dietary effects were observed on the VT of the different organ tissues investigated, and 

the growth correlated to the larval SL. So even though the different live feed affected the 

larval rate of the growth, once larvae from the different treatments had reached the same 

size, the organs made up a similar proportion of total VT. In a study conducted by Wold et al. 

(Wold et al., 2009), the size of the liver and intestine of Atlantic cod was also found to relate 

to the larval size, and were not affected by different levels of neutral and polar lipids in the 

diet. The ontogeny of the ballan wrasse larval digestive system seemed to follow similar 

patterns as has been described previously in other marine fish species (Blaxter, 1988 ;  

Kjørsvik et al., 1991 ;  Segner et al., 1994 ;  Gisbert et al., 2004 ;  Santamaria et al., 2004), 

and little variation in the tissue structure was observed between the different treatments. The 

alimentary canal was differentiated into buccopharynx, oesophagus, pre- and postvalvular 

intestine and rectum at 4 dph, which was also observed by Dunaevskaya (2010). The 

presence of supranuclear vesicles in the postvalvular intestine of larvae from all treatments 

at 8 dph indicated that pinocytotic activity and intracellular protein digestion took place, and 

that exogenous feed uptake occurred in all the studied larvae (Govoni et al., 1986). The 
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density of vesicles appeared to be reduced from 8 to 21 dph regardless of treatment, which 

might be connected to a decreasing intracellular digestion with the development of increased 

brush border membrane enzyme activity (Zambonino Infante & Cahu, 2001).    

The measured results of VT at 4, 8 and 21 dph coincided well with the larval DW 

measurements at the same days. By 21 dph, the total VT of the Copepod larvae more than 

doubled that of larvae from the other treatments, and all organ groups investigated were of a 

larger volume.  The higher total VT observed for the larvae fed copepods was reflected by 

higher SGRT values, both for the larvae as a whole and for the different organ groups. This 

difference was greatest from 4 to 8 dph, where organs as the liver, pancreas, heart and gills 

increased at a daily SGRT between 30 and 40 % for larvae fed copepods. Osse and van den 

Boogaart (2004) proposed that the importance of the dietary and respiratory organs would 

result in them developing early, and that they would grow at a higher rate than the body as a 

whole. In accordance with this, the ballan wrasse larvae had a prioritised growth of the 

intestine, liver and heart at the transition to the mixed feeding period (both endo- and 

exogenous feeding), after which the growth became close to isometric, and positive 

allometric growth was also observed for the pancreatic tissue for the whole investigated 

period. Similar observations have previously been made for larvae of the common dentex 

and turbot, where the digestive organs had a fast relative growth during early development 

and the highest allometric growth coefficients of all organ systems studied (Sala et al., 2005). 

A prioritised volume increase of the pancreas and liver was also observed during early 

development of common carp larvae, where these organs, together with muscle tissue, were 

the only studied organs with positive growth coefficients (Alami-Durante, 1990).  

The pancreas exhibited initial positive allometry in ballan wrasse larvae, which became even 

more positive up to the point where the histological investigations ended (21 dph). This 

sudden increase in pancreatic growth could be seen in the sections as a spreading of the 

pancreas throughout the abdominal cavity in the largest larvae at 21 dph. Most of these 

larvae belonged to the Copepod treatment, and a significant increase in RV of the pancreas 

was observed in this treatment from 8 to 21 dph. This was not observed for any of the other 

treatments. Acidophilic pancreatic zymogen granules were present at 4 dph, indicating that 

the exocrine pancreas was functional prior to first feeding. This is a common feature among 

marine fish larvae (Zambonino Infante & Cahu, 2001 ;  Kjørsvik & Hoehne-Reitan, 2004), and 

has also been observed for ballan wrasse larvae previously (Dunaevskaya, 2010).  

Due to the ballan wrasse lacking a stomach both as a larvae and an adult (Hamre & Sæle, 

2011), protein hydrolysis into smaller units needs to be performed by alkaline proteases 

produced by the pancreas (Espe et al., 2001 ;  Kjørsvik & Hoehne-Reitan, 2004). It is 
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therefore likely that the alkaline protease activity will continue to play an important role in the 

protein digestion also after the ballan wrasse larvae have metamorphosed. In common 

dentex and turbot larvae, which develop a functional stomach during the larval phase, the 

allometric growth of pancreatic tissue became negative early in the larval development (Sala 

et al., 2005). For turbot, this change from positive to negative allometric growth was found to 

coincide with proliferation of the gastric glands (Sala et al., 2005). Larvae of common carp, 

which similar to the ballan wrasse larvae lack a stomach, were found to have a continuous 

positive allometric growth of pancreatic tissue through the investigated larval period (Alami-

Durante, 1990). Also, observation on the activity and production of alkaline proteases in 

whitefish coregonid hybrids (hybrids of Coregonus wartmani and C. Lavaretus), found that 

development of the stomach coincided with a lower activity and protease production. The 

stomachless roach (Rutilus rutilus) on the other hand were found to have a higher level of 

proteolytic activity (Lauff & Hofer, 1984). This emphasises the importance of pancreatic 

secretion in stomachless fish, and is likely the reason for the increased positive allometric 

growth observed when the ballan wrasse larvae reached a SL close to 5.8 mm. 

In the present study, histological sections from the prevalvular intestine showed that the 

intestinal wall of the RotMG and RotChl larvae appeared to have increased less in height and 

looked less developed at 8 dph, when compared to the Copepod and Cop7 larvae.  In 

addition, the intestinal folds appeared to be more developed in the larvae fed copepods. 

Measurements of the intestinal VT from 8 dph support this observation, with the intestine 

being of greater volume in the larvae fed copepods. Suboptimal diets have been known to 

affect the enterocytes of the intestine, leading to a reduced height of the intestinal wall 

(Theilacker & Watanabe, 1989 ;  Kjørsvik et al., 2011). However, it is likely that this 

difference in intestinal height and volume is due to the Copepod and Cop7 larvae being of 

greater size than the RotMG and RotChl larvae at the given time, rather a difference caused 

by the diet.  

A thickening and increased folding of the intestinal epithelium, which appeared to be greater 

for the larvae fed copepods, has been found to coincide with enhanced membrane enzyme 

activity (Zambonino Infante & Cahu, 2001). The Copepod larvae also had the greatest VT of 

intestine at 21 dph, and were the only treatment where all the larvae had a coiled intestine at 

this point. Coiling is caused by increased intestinal length, which would lead to an increased 

passage time of food (Blaxter, 1988). Together with the possibility of an enhanced 

membrane enzyme activity, this might imply that the digestive system matures at an earlier 

age in larvae fed copepods, caused by a more rapid larval growth. 
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The liver had a rapid growth from 4 to 8 dph in all treatments, and a significant increase in 

RV of liver was observed for Copepod, Cop7 and RotChl larvae for the same period. During 

histological investigations of the liver at 8 dph, a varying degree of vacuolisation and vacuole 

size was observed between different larvae. No apparent connections were discovered 

regarding the different treatments or the larval SL, however by 21 dph the difference in 

hepatocyte structure had disappeared. The period of mixed feeding and transition to 

exogenous food is a critical phase during fish larval development (Osse & van den Boogaart, 

2004), and the low survival registered at 13 dph in the present study indicate that the 

mortality was high for the ballan wrasse larvae during this period. It might have been an 

individual variance in the amount of feeding and how quickly energy storages were deposited 

in the larvae. Such a difference in larval energy storage status might have caused the 

varying structure observed. Glycogen deposition was present in the liver cytoplasm in larvae 

from all treatments at 8 dph. Fish larvae have a high ability to mobilize energy stored as 

glycogen, which is a polymer of glucose (Hamre, 2001). High larval growth rates have been 

connected with having larger glycogen deposits in Atlantic cod larvae fed rotifers (Høvde, 

2006). It was a tendency in the present study that the larvae with the greatest SL 

measurements at 8 dph, regardless of treatment, had among the largest degree of 

vacuolisation. These larvae would have had the highest growth rates, and according to the 

observations made by Høvde, this could indicate the presence of larger energy storages in 

these larvae.  

Organs as the CNS and eyes went from having slightly negative to highly negative allometric 

growth through the investigated period. Other studies have also observed this negative 

allometry of nervous tissue and eyes through the larval development (Alami-Durante, 1990 ;  

Sala et al., 2005) and in adult fish (Oikawa et al., 1992 ;  Schultz et al., 1999). Negative 

allometry of these organs is a well known feature in fish caused by the continuous growth 

throughout their lives (Kotrschal et al., 1998). Brain and eye tissue have a rapid development 

prior to hatching, and having highly developed sensory organs after hatching and at the time 

of first feeding is necessary for prey detection and capturing (Osse & van den Boogaart, 

1999). Benevent (1971) (article on French, cited through Alami-Durante, 1990) proposed that 

tissues with prioritised development in prenatal life would experience the lowest relative 

growth speed after birth, which is in accordance with what was observed for the ballan 

wrasse larvae. 

A high sensitivity towards the dietary EFA composition has been registered as nervous 

organs as the brain and eyes develop after hatching, and a deficiency has been found to 

effect the tissue development and larval vision (Bell et al., 1995 ;  Furuita et al., 1998 ;  

Sargent et al., 1999 ;  Shields et al., 1999). Feeding with zooplankton had a positive effect on 
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the number of rods in the retina of halibut larvae as opposed to feeding with Artemia (Shields 

et al., 1999), and larval herring (Clupea harengus) fed Artemia deficient in DHA experienced 

a loss of visual function resulting in less effective predation (Bell et al., 1995). Sørøy (2012) 

observed that ballan wrasse larvae from the present first feeding experiment were better 

predators and captured prey more efficiently if fed copepods during early development. 

Similar results have also been reported for Atlantic cod (Hansen, 2011). These findings may 

indicate that the first feed diet had an effect on the functionality of the sensory organs, or the 

interaction between these organs and the muscular tissue, which may inflict long term effects 

for the larvae. For a species where the intensive cultivation is dependent on the fish to be a 

good louse predator, determining whether the early diet has any long term effect on the 

ballan wrasse ability to capture prey should be of importance.  

Tissue of muscle and CNS represented the major proportion of the ballan wrasse larval body 

tissue at all days investigated. Muscle accounted for close to 20 % of the total larval VT at 4 

dph, as did also the nervous tissue. This is similar to what is reported for common dentex 

and common carp. For these species, an increase in proportion of muscle and a decrease in 

proportion of nervous tissue were observed with increasing body mass (Alami-Durante, 1990 

;  Sala et al., 2005). This was only observed for Copepod larvae during this study, which at 

21 dph also had a significantly higher proportion of musculature and a significantly lower 

proportion of CNS compared to larva from the other treatments. The smaller size of the 

larvae from the other treatments may have accounted for this not being observed. Muscle 

growth first reached a higher positive allometric growth at a later stage of the development, 

when the larvae reached a SL of approximately 5.5 mm. While common carp and common 

dentex had an allometric growth of muscle tissue which was constantly slightly positive (k = 

1.10) through the larval development (Alami-Durante, 1990 ;  Sala et al., 2005), the turbot 

was found to have a similar biphasic growth pattern as was observed for the ballan wrasse. 

The growth, which initially was negatively allometric, changed to being positively allometric at 

a volume close to 1.0 mm3 (Sala et al., 2005). This increased musculature growth were found 

to coincide with increased development of epiaxial and hypaxial musculature, resulting in a 

change in the growth pattern. In a parallel study on larvae from the same experiment, 

Copepod larvae were found to have a higher recruitment of muscle fibres, in addition to a 

larger degree of hyperplasia in existing fibres, compared to larvae from the other treatments 

at 21 dph (Martin Berg, pers. comm., thesis in prep.). The axial muscle cross section area 

(measured directly posterior to the gut) for the same day was found to be over twice as large 

for the Copepod larvae, and differed significantly from larvae from the other treatments. This 

is in accordance with the higher volume and muscle growth detected for the Copepod larvae 

during this study.                                            . 
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5. Conclusions 
Using intensively reared Acartia tonsa nauplii as early live feed for the ballan wrasse larvae 

resulted in increased larval growth rates while the copepods were supplied through the diet 

compared to feeding with enriched or unenriched rotifers. It also resulted in larvae with a 

significantly higher DW at the end of the experimental period. This was observed when 

copepods were supplied only for a short period of time (4-10 dph) at the beginning of 

exogenous feeding, and when fed exclusively up until the Artemia-phase (4-30 dph). Higher 

organ volume growth rates were observed when copepods were used as larval feed, and the 

organ volumes were found to relate to the larval SL and not to the first feed diet. The 

Copepod larvae had a significantly higher proportion of musculature than larvae from the 

other treatments at 21 dph, and the intestine appeared to be more developed and mature. 

No difference in larval growth was observed when feeding with enriched or unenriched 

rotifers. Larvae fed unenriched rotifers did however have a significantly lower survival than 

larvae from all other treatments.  

From these observations, copepods appear to have a nutritional composition more suited as 

early live feed for the rearing of ballan wrasse larvae compared to enriched and unenriched 

rotifers, resulting in increased larval somatic growth and organ growth, and earlier 

development and maturation of the intestine. Unenriched rotifers were the least suitable first 

feed, affecting the larval survival negatively. The higher DW observed for the Cop7 larvae at 

the end of the experiment indicate that feeding with copepods for a 7-days time period during 

early development may be sufficient to effect the growth positively. However, further 

research needs to be done to find a way to reduce the negative effect on growth observed 

when switching from copepods to another live feed. 

At present, the availability of copepods is not adequate to support the amount that would be 

needed for a large scale intensive cultivation of ballan wrasse. There is need for a large-

scale production of intensively cultured copepods, where the harvested eggs can be stored 

and shipped off to commercial buyers. The farmer could then hatch the needed amount in a 

similar manner as is common for the production of Artemia today. However, improvements of 

the A. tonsa culturing techniques must be made to make them more efficient, and a more 

predictable hatching rate is needed, before this can be commercially viable. 

 

.  
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Appendix 1 

Feed production and feed recipe 

The feed was produced at Nofima, Bergen, Norway. The ingredients were homogeneous 
mixed (Bjørn mixer) for a minimum of 20 minutes. The mixed ingredients were sieved 
through a sieve with a mesh opening of 0.6 mm (Allgaier 1200mm). The fraction with a 
particle size bigger than 0.6 mm was milled with a Retsch mill and thereby homogeneous 
mixed with the ingredients. The ingredient mixture was added 25 mg-kg etoxiquin (0,05 g FEQ 
500 per kg ingredient mixture). Etoxiquin was dissolved in 96 % ethanol and sprayed onto 
the mixture during continuous mixing. The feed was produced with a pilot scale twin-screw, 
co-rotating extruder (Wenger. The nozzle opening was 1.5 mm. After extrusion the diet was 
directly dried for 50-55minutes in a carousel dryer (GMBH) at 60 °C. Water content during 
drying was measured (HG 53 Halogen Moisture AnalyzerMettler Toledo). The feed was left 
overnight at ambient room temperature for cooling, before the feed was crushed/granulated 
on a Retsch mill and sieved (Allgaier) to the wanted particle sizes. The feed was packed in 
plastic bags and were stored at room temperature until transport. 
 
 
Table A 1. Nutritional composition of ballan wrasse formulated feed 

  % (DW) 

Protein  60.1 

Lipid 13.1 

Carbohydrates 14.8 

Ash 12.6 

 

Table A 2. Recipe for ballan wrasse formulated feed 

   % (WW) 

Fish meal LT a 47,162 

Shrimp mealb 24 

Wheatc 17,8 

Soy lecithind 3 

Cod Powdere 5 

Betafinf 1,5 

Vitamin mixg 0,31 

Mineral mixh 0,52 

Monosodiumphosphate (24% P)i 2 

Carop. Pink (10%)j 0,03 

Taurinek 0,2 
a
LT-Fishmeal, Karmsund Fiskemel AS, Norway  

b
Shrimp powder (7411), Seagarden AS, Avaldsnes Norway 

c
Wheat grain (510130), Norgesmøllene AS, Nesttun Norway. 

d
Soylecithin GMO powder (20022), Agrosom, Mölln Germany 

e
Cod fish powder, product code 0271, Seagarden, Avaldsnes Norway.  

f
Betafin S1, Danisco Animal Nutrition, Helsinki Finland. 
g
 D3 3000 IE

-kg
, E 160 mg

-kg
,  K3 20 mg

-kg
, C 500 mg

-kg
, B1 20 mg

-kg
, B2 30 mg

-kg
, B6 25 mg

-kg
, B12 5 

µg
-kg

, B5 60 mg
-kg

, Folic acid 10 mg
-kg

, Niacin 200 mg
-kg

, Biotin 1 mg
-kg

, 
h
Mn 30 mg

-kg
,, Mg 750 mg

-kg
, Fe 60 mg

-kg
, Zn mg

-kg
, 120 mg

-kg
, Cu 6 mg

-kg
, K 800 mg

-kg
, Se 0,3 mg

-kg
. 

i
BOLIFOR® MSP, Yara AS, Norway 
j
Carophyll Pink (10 %),DSM, Basel Switzerland. 
k
Taurine, Sigma Aldrich 
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Appendix 2 

Conwy medium 

The algae medium is slightly modified from Walne, with the difference being a smaller 

amount manganese chloride than in the original recipe: 

 

NaNO3 (Sodium Nitrate)     100.0gr 

Na-EDTA (EDTA disodium salt)    45.0gr 

H3BO3 (Boric Acid)      33.6gr 

NaH2PO4•2H
2
O (Sodium Phosphate, monobasic)  20.0gr 

FeCl
3
•6H

2
O (Ferric Chloride, 6–hydrate)   1.3gr 

MnCl2•4H
2
O (Manganous Chloride, 4–hydrate)  0.136gr 

Vitamin B1 (Thiamin HCl)     0.1gr 

Vitamin B12 (Cyanocobalamin)    0.05gr 

Trace Metal Solution *     1ml 

Distilled water         1 000ml  

(Note: use 1 ml Conwy medium/litre of seawater)  

 

 

Trace Metal Stock Solution *   

ZnCl
2 Zinc Chloride      2.1gr 

CoCl
2
•6H

2
O (Cobalt Chloride, 6–hydrate)   2.1gr 

(NH
4
)
6
Mo

7
O

24
•6H

2
O (Ammonium Molybdate, 4–hydrate) 2.1gr 

CuSO
4
•5H

2
O (Copper Sulphate)    2.0gr 

Distilled water100ml 

(Note: acidify with 1 M HCl until solution is clear) 
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Appendix 3  

Estimation of hatching success (Acartia tonsa eggs) and amount of eggs  

The hatching success of A. tonsa eggs stored cold (2 ⁰C, SANYO Pharmaceutical 

Refrigerator MPR-311D (H), Japan) was estimated one week prior to starting the experiment. 

The NUNC EasyFlaskTM NunclonTM cell culture bottles containing the eggs were shaken to 

get the eggs uniformly dispersed. By using a pipette, 50 µl of the sea water mixture were 

transferred to an eppendorph tube and diluted with sea water to 1 ml. 50 µl of this solution 

was further transferred from the eppendorph tube to a petri dish. The droplet were 

photographed with a stereo microscope (MZ-12.5, Leica Microsystems, Germany) equipped 

with a colour digital camera (DFW-SX900, Sony, Japan), and the number of eggs were 

counted. 10 mL sea water was added to the petri dish, before sealing it with parafilm and 

leaving the eggs to hatch for a period of 48 hours in constant light. After hatching, the tests 

were fixated using fytofix (Lugol’s solution) and the hatching rate determined by counting the 

number of nauplii in the sample. 

Each NUNC-flask was weighed. The volume (V) of sea water and eggs (cm3) inside each 

individual flask was determined by subtracting the weight (g) of an empty NUNC-flask (B0) 

from the weight (g) of a filled flask (B), and divide this by the density of sea water (1.028 

g/cm3) 

 V = (B - B0) / 1.028 

Number of eggs per cm3 (X) was found during the hatching test, and by multiplying this with 

V, number off eggs inside each NUNC-flask (N) was estimated 

 N = X * V 
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Appendix 4  

Paraffin embedding procedure 

Standard length and myotome height were determined before the fixated fish went through a 

sequential process preparing it for embedding, starting with dehydration (using an increasing 

alcohol percent) before treatment with Tissue-clear (Tissue-Tek ® Tissue-Clear ® Xylene 

Substitute, Sakura, UK) and hot paraffin (Tissue-Tek® III Embedding wax, Sakura, UK). This 

process was automated (Leica TP1020, Leica Industries, Germany) and lasted 16 hours. 

Paraffin wax were heated to keep it fluid (Leica EG1120, Leica Industries, Germany), and 

drained into a casting frame so that the bottom of the frame just were covered in paraffin. 

After positioning the fish correctly, the paraffin was cooled for a few seconds and hereby 

fixing the fish in its position. The frame was filled with more paraffin, covering the fish 

completely. Three fish were embedded in the same block, with fish number one orientated in 

the opposite direction from the others to keep them apart. 
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Appendix 5  

HE-staining procedure 

4 µm thick, longitudinal sections of ballan wrasse larvae (4, 8 and 21 dph)were stained with 

Mayer’s hemalum solution (Merck, Germany) and Eosin Y-solution 0.5% aqueous (Merck, 

Germany) (HE-staining). Hematoxylin stains acidic structures a purplish blue, while eosin is 

an acidic dye which stains basic structures red or pink. Before staining, the sections were 

dried vertically over night at 37 ⁰C.  

HE-staining sequence:  

Tissue-clear       5 min 

Tissue-clear      5 min 

100 % ethanol      2 min 

100 % ethanol      2 min 

70 % ethanol      2 min 

Distilled water      5 min 

Mayer’s Hematoxyline    3 min 

Running tap water     3 min 

Acid ethanol (1% HCl (12M) in 70% ethanol)  20 sec 

0.5% Eosin      2 min 

Tap water      dip 

Distilled water      dip 

70% ethanol      dip 

100% ethanol      30 sec 

100% ethanol      2 min 

Xylen       2 min 

Xylen       > 5 min 

 

Cover slips were applied with CytosealTM XYL (Richard Allan Scientific) and the sections 

were dried in a fume hood over night. 
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Appendix 6  

Survival per tank 

 

 

 

Table A 3. Measured survival for individual tanks at different days post hatch (dph). The 

numbers are corrected for sampled larvae and larvae accidentally removed during cleaning. 

     % Survival at dph                                

Treatment Tank 2 7 13 24 30 40 50 61 

Copepod 1 100.00 55.91 11.32 9.14 8.55 8.16 8.04 7.76 

Copepod 2 100.00 57.45 13.78 12.33 11.86 11.53 11.43 10.68 

Copepod 3 100.00 62.10 19.00 15.39 15.13 14.41 14.06 11.77 

Cop7 1 100.00 56.60 13.11 11.69 10.80 9.78 9.74 9.40 

Cop7 2 100.00 65.33 28.87 24.96 23.14 18.38 17.71 13.90 

Cop7 3 100.00 67.79 29.16 22.42 21.15 20.02 18.96 13.49 

RotMG 1 100.00 61.24 22.43 16.09 14.37 13.51 13.47 12.43 

RotMG 2 100.00 59.40 15.64 11.66 10.05 9.29 9.27 8.91 

RotMG 3 100.00 57.95 13.51 11.15 10.20 8.65 8.60 8.46 

RotChl  1 100.00 55.42 10.78 8.48 7.34 6.09 6.07 6.07 

RotChl 2 100.00 56.88 13.73 8.38 7.01 5.96 5.95 5.94 

RotChl 3 100.00 55.89 11.72 5.35 4.58 4.24 4.24 4.24 
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Appendix 7  

Mean dry weight table 
Table A4. Mean dry weight, standard error and n from each tank per sampling day  

Mean Dry weight (mg larva
-1
) 

Dph Treatment Tank Mean SE Total N Dph Treatment Tank Mean SE Total N 

2 All All 0.0442 0.0016 12 
      4 All All 0.0404 0.00139 12 
      

8 

Copepod 

1 .0728 .0032 12 

33 

Copepod 

1 2.4936 0.1941 30 

2 .0720 .0042 12 2 3.0184 0.2097 30 

3 .0762 .0055 12 3 2.7133 0.1886 30 

Cop7 

1 .0797 .0033 12 

Cop7 

1 3.0452 0.1456 30 

2 .0639 .0043 12 2 1.5953 0.1372 30 

3 .0715 .0042 12 3 1.7662 0.1466 30 

RotMG 

1 .0515 .0048 12 

RotMG 

1 1.9010 0.1404 30 

2 .0393 .0044 12 2 2.1472 0.1637 30 

4 .0417 .0040 12 4 1.9265 0.1167 30 

RotChl 

1 .0434 .0043 11 

RotChl 

1 1.4104 0.0796 30 

2 .0531 .0033 12 2 1.5326 0.1141 30 

3 .0517 .0053 12 3 1.5598 0.1571 30 

12 

Copepod 

1 .1395 .0130 11 

40 

Copepod 

1 3.8792 0.2471 30 

2 .1482 .0131 12 2 4.9983 0.3742 30 

3 .1837 .0091 12 3 4.7666 0.4201 30 

Cop7 

1 .1783 .0086 12 

Cop7 

1 4.9061 0.3827 30 

2 .1490 .0185 12 2 3.8585 0.2765 30 

3 .1281 .0138 12 3 4.0768 0.2860 30 

RotMG 

1 .0674 .0093 12 

RotMG 

1 4.1793 0.1997 30 

2 .0821 .0056 12 2 4.6395 0.2901 30 

4 .0834 .0069 12 4 5.0101 0.2452 29 

RotChl 

1 .0850 .0047 12 

RotChl 

1 4.7615 0.2233 30 

2 .0872 .0092 12 2 4.1584 0.2240 30 

3 .0815 .0110 12 3 4.8416 0.2321 22 

15 

Copepod 

1 .2179 .0211 12 

47 

Copepod 

1 7.3508 0.6550 30 

2 .2554 .0215 12 2 9.2463 0.8182 30 

3 .2840 .0259 11 3 8.3644 0.7993 30 

Cop7 

1 .2198 .0056 12 

Cop7 

1 10.9654 0.7002 30 

2 .1779 .0108 12 2 7.1279 0.6523 30 

3 .1757 .0167 12 3 6.7709 0.4328 30 

RotMG 

1 .1326 .0137 12 

RotMG 

1 7.1253 0.3696 30 

2 .1190 .0147 11 2 8.3293 0.4335 30 

4 .1005 .0126 12 4 7.0390 0.4243 30 

RotChl 

1 .1236 .0091 12 
RotChl 

1 7.9587 0.3552 30 

2 .1120 .0095 12 2 9.0823 0.4469 30 

3 .0924 .0090 12 

61 

Copepod 

1 7.7540 0.8175 50 

21 

Copepod 

1 .4417 .0557 12 2 19.5940 1.7326 50 

2 .6246 .0474 12 3 19.6780 1.4085 50 

3 .6832 .0465 12 

Cop7 

1 21.5200 1.7276 50 

Cop7 

1 .3471 .0247 12 2 12.0640 1.2437 50 

2 .2436 .0323 12 3 17.6620 1.1791 50 

3 .2313 .0215 12 

RotMG 

1 16.8380 1.4258 50 

RotMG 

1 .2630 .0296 12 2 11.1260 1.1131 50 

2 .1713 .0204 12 4 13.8918 0.8810 49 

4 .1859 .0227 12 
RotChl 

1 14.7220 1.1531 50 

RotChl 

1 .2364 .0279 11 2 11.1898 0.8785 49 

2 .2212 .0228 12 
      3 .1945 .0283 12 
      

27 

Copepod 

1 1.0103 .0942 24 
      2 1.2766 .0789 24 
      3 1.2227 .1071 24 
      

Cop7 

1 1.1754 .3014 24 
      2 .7766 .0423 24 
      3 .7570 .0678 24 
      

RotMG 

1 .7119 .0561 24 
      2 .7609 .0568 24 
      4 .7101 .0312 24 
      

RotChl 

1 .5563 .0322 24 
      2 .5754 .0511 24 
      3 .5720 .0429 24 
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Appendix 8  

Mean daily weight increase 
Table A5. Mean % daily weight increase (%DWI) per tank for specific intervals during the first feeding 

experiment  

Mean % daily weight increase per larvae 

Interval Treatment Tank %DWI Interval Treatment Tank %DWI 

2-4 dph All   -4.6         

4-8 dph 

Copepod 

1 15.9 

40-47 dph 

Copepod 

1 9.6 

2 15.5 2 9.2 

3 17.2 3 8.4 

Cop7 

1 18.5 

Cop7 

1 12.2 

2 12.1 2 9.2 

3 15.4 3 7.5 

RotMG 

1 6.2 

RotMG 

1 7.9 

2 -0.7 2 8.7 

3 0.8 3 5.0 

RotChl 

1 1.8 
RotChl 

1 7.6 

2 7.2 2 11.8 

3 6.4 

47-61 dph 

Copepod 

1 0.4 

8-21 dph 

Copepod 

1 14.9 2 5.5 

2 18.1 3 6.3 

3 18.4 

Cop7 

1 4.9 

Cop7 

1 12.0 2 3.8 

2 10.9 3 7.1 

3 9.5 

RotMG 

1 6.0 

RotMG 

1 13.4 2 2.2 

2 12.0 3 5.0 

3 12.2 
RotChl 

1 4.5 

RotChl 

1 13.9 2 1.5 

2 11.6 

2-61 dph 

Copepod 

1 9.1 

3 10.7 2 10.9 

21-40 dph 

Copepod 

1 12.1 3 10.9 

2 11.6 

Cop7 

1 11.1 

3 10.8 2 10.0 

Cop7 

1 15.0 3 10.7 

2 15.7 

RotMG 

1 10.5 

3 16.3 2 9.9 

RotMG 

1 15.7 3 10.2 

2 19.0 
RotChl 

1 10.3 

3 18.9 2 9.8 

RotChl 

1 17.1 

    2 16.7 

    3 18.4 
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Appendix 9  

Total day degree 

 

 

Table A6. Total amount of day degrees at the end of the experiment for individual tanks 

       Total  day  degrees  61  dph  (⁰C)      

Tank Copepod Cop7 RotMG RotChl 

1 924 926 917 905 

2 929 917 923 903 

3 939 940 900 906 
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Appendix 10  

Correlation of tissue volume and standard length 

 

Figure A7. Correlating between tissue volume of the varying organ groups and standard 

length for the Copepod, Cop7, RotMG and RotChl treatments 
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