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Abstract
In optimal control of uncertain systems, lack of crucial information about the sys-
tem can lead to unacceptable performance like the violation of constraints. In
these, or similar situations where it is important to reduce uncertainty quickly, ex-
citation can be used for learning purposes. The optimal balance between learning
and control is achieved with dual control. This concept was introduced over sev-
enty years ago and is still relevant. It has been shown that dynamic programming
(DP) can be used to solve these problems, along with a number of approximate
methods. Analytical solution of the problems are in most cases impossible and it
is therefore necessary to solve them numerically.

The purpose of this thesis is to provide an overview of adaptive optimal control
problems (AOCP) and the use of DP for solving them. The method is explored
through several illustrating examples and the dual control algorithm is evaluated
through computer simulations. The main examples considered are a simple integra-
tor problem with unknown gains, and a minimum-time problem with an unknown
breaking coefficient. The unknown parameters and noise in the systems are mod-
elled as stochastic variables with known statistical distributions that are utilized
by the dual controller.

It is shown how the different AOCP can be formulated, and the DP algorithms
can be implemented. Different noise model assumptions are evaluated to see how
this can affect the problem. Numerical experiments assess the capabilities of typ-
ical hardware configurations and parallelization options explore the possibility of
reduced runtime. Results from simulations certainly demonstrate how the dual con-
troller manage to both control the process and learn about it simultaneously. The
controller is also compared to a certainty equivalent (CE) and cautious controller
to further emphasize the advantages it has to these heuristic, adaptive controllers.
Despite the well-known problems related to the curse of dimensionality, it is shown
that it is possible to solve the given AOCP using DP with a desired accuracy,
within reasonable time.
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Sammendrag

I optimal regulering av usikre systemer kan mangel p̊a essensiell informasjon om
systemet lede til uakseptabel oppførsel, som brudd p̊a begrensninger. I slike situ-
asjoner hvor det er nødvendig å redusere usikkerheten umiddelbart, kan det være
fordelaktig å bruke eksitasjon for å lære mer om systemet før det er for sent. Den
optimale balansen mellom læring og regulering oppn̊as med dual regulering. Dette
konseptet ble introdusert for over sytti år siden, men er fortsett like aktuelt i dag.
Det har blitt vist at dynamisk programmering kan brukes for å løse denne typen
problemer, ved siden av en mengde metoder som baserer seg p̊a approksimasjoner
og tilnærminger. Analytisk løsning av problemene er i de fleste tilfeller umulig og
det er derfor nødvendig å løse de numerisk.

Form̊alet med denne oppgaven er å gi en oversikt over adaptive, optimale regu-
leringsproblemer og bruken av dynamisk programmering for å løse de. Metoden
blir utforsket gjennom noen illustrerende eksempler og den duale regulatoren blir
evaluert gjennom datasimuleringer. Eksemplene som blir benyttet er et enkelt
integrator problem hvor avstanden fra en gitt referanseverdi skal minimeres og
et minimum-tid problem. Begge problemene kan ha ukjente parametere og støy
som kan modelleres som stokastiske variabler. Kjennskap til deres sannsynlighets-
fordelinger kan dermed brukes av den duale regulatoren til å forbedre regulerin-
gen.

Det blir vist hvordan de adaptive, optimale reguleringsproblemene kan formuleres
og hvordan algoritmene for dynamisk programmering kan implementeres. Ulike an-
takelser omkring sannsynlighetsfordelingene blir evaluert for å se hvordan det kan
p̊avirke problemet. De numeriske eksperimentene viser hvilke muligheter vi har
for å løse denne typen problemer med dagens datamaskiner, og parallellisering blir
utforsket for å se p̊a muligheten for å redusere kjøretiden. Resultater fra simulerin-
gene demonstrerer tydelig hvordan regulatoren evner å b̊ade regulere prosessene og
å lære om de. Den duale regulatoren blir ogs̊a sammenliknet med en CE regulator
og en forsiktig regulator for å framheve dens fordeler relativt til disse heuristiske,
adaptive regulatorene. Til tross for velkjente skaleringsproblemer relatert til dy-
namisk programmering, vises det her at det for enkle systemer er mulig å oppn̊a
resultater med relativt god nøyaktighet innen rimelig tid.
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Chapter 1
Introduction

Adaptive optimal control problems involve optimal control of an uncertain system.
In real-life control problems we rarely posses complete knowledge of the systems.
More often we have to deal with uncertainties related to the system models, or
unknown influence from the environment. In these situations we have to make
choices without knowing exactly how these decisions will affect our system. Since
the early 1950s, there have been a lot of research on adaptive control. Åström
and Wittenmark (2013) loosely defines an adaptive controller as a controller that
has adjustable controller parameters and a method for adjusting them. Some of
the earliest and most well-known heuristic, adaptive controllers are the model ref-
erence adaptive controller (MRAC) and the self-tuning controller (STC). These
controllers use parameter estimates as if they are the true ones and do not take
action to influence the uncertainty related to the estimates. Therefore, we can say
that the controllers are based on the certainty equivalence principle. A different
adaptive controller that do take parameter uncertainties into account is the cau-
tious controller. It does however not try to reduce this uncertainty. All of these
controllers therefore have some limitations, and are in general not optimal.

As an attempt to design adaptive control laws to optimal control problems, a
different approach was later proposed. Through the use of nonlinear stochastic
control theory, an interesting class of controllers was developed, that balanced the
use of control and excitation, defined through the principle of dual control. The
main difference between these controllers and the ordinary adaptive controllers is
the modelling of the unknown parameters as stochastic variables. This makes it
possible for the controller to exploit the knowledge of the uncertainty related to
the system.

The term dual refers to the dual goals of the controller. These are to control the
process in an optimal way at the same time as it should work actively to learn
about the system to reduce the uncertainty. An optimal decision will consequently
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Optimal Control
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Figure 1.1: The optimal control family tree from Diehl and ESAT-SCD (2011).

rely upon both current data and expected future data resulting from the current
decision. As Heirung et al. (2017) argue, these goals are not conflicting, but rather
complementary when the uncertainty is relevant for the decision making. This does
not however imply that the optimal course of action is to always use the control
for learning. In some situations, where for instance the uncertainty does not affect
the decision (or it is very low), experimentation will not be optimal. This means
that a dual control problem needs to possess the ability to use the control input
for the purpose of learning, but that it is not necessarily utilized. Bar-Shalom and
Tse (1974) describe this dual effect as a property that allows the control to affect
both the state itself and the uncertainty related to it. If the control cannot affect
the uncertainty, the system is neutral.

The approach with dual control was first developed by Feldbaum (1960), but it is
not the only method used for uncertainty reduction. It can also be achieved with
non-dual methods. Two standard approaches are passive learning and dedicated
experiments. The first corresponds to learning as a side effect of normal operating
conditions as is the case with the ordinary CE adaptive controllers. For the second
approach, it is achieved through customized experiments that are carried out as
a separate process. However, as Heirung (2016) defines in his doctoral thesis, the
dual control signal is the optimal control if the system possesses the dual effect and
the uncertainty is decision relevant.

A general optimal control problem concerns identification of the optimal decisions
to be made over a given control horizon. What characterizes an optimal decision is
that it minimizes (maximizes) a specified objective while possibly satisfying some
given constraints. This objective will depend on the purpose of the control. It can
for instance be to keep the output of a given system as close as possible to a reference
value, or to reach a given end state in minimum time. Typically there will be some
natural constraints on the available input and the states of the system.

There are different approaches for solving optimal control problems. Diehl and
ESAT-SCD (2011) divide them into the three main classes seen in Figure 1.1. The
first is the Hamilton-Jacobi-Bellman (HJB) equation or dynamic programming ap-
proach. This is based on the principle of optimality, which says that any subarc of
an optimal trajectory is also optimal, as defined by Bellman (1954). The second
approach is indirect methods. This involves deriving a boundary value problem
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and then solving this numerically. For this reason it is often referred to as ”first
optimize, then discretize”. The well known calculus of variations and the Pon-
tryagin Maximum Principle belong to this class. Lastly, we have direct methods.
They are based on transforming an infinite optimal control problem into a finite
dimensional nonlinear programming problem that is solved. In this thesis, we will
mainly be concerned with dynamic programming, since this is shown by Feldbaum
(1960) to give a conceptually simple, optimal solution to the AOCP.

Despite the method of dual control being known since the 1960s, and a great deal
of research being conducted, there are still a lot to be learned. Due to the known
difficulties related to the optimal solution obtained with dynamic programming,
there have not been a huge development on the area. At the moment there seem
to be more resources used on the field of approximate methods, either in the form
of approximations of the optimal solution or by reformulation of the problem (Lee
and Lee (2009); Heirung et al. (2015)). This will be briefly presented later in the
thesis.

Åström and Helmersson (1986) did however solve a dual control problem with
one unknown parameter with DP. This thesis will revisit the problem and recreate
their solution. Moreover, it will look at a different formulation of the problem and
the extension to two unknown parameters. A minimum-time dual control problem
with a double integrator with one unknown parameter will also be investigated.
Through these examples we want to evaluate the DP approach to dual control to
further understand the principles, and learn about both the strengths and limita-
tions. The problems are implemented and solved numerically, and the behaviour
of the dual controllers are evaluated primarily through computer simulations. For
comparison, simple CE and cautious controllers will also be implemented and com-
pared to the dual controllers.

Multiple experiments will be conducted to asses the capabilities of typical hard-
ware configurations in the context of AOCP and DP for the examples, and to see
what can be achieved with today’s equipment. A method for parallelization will
also be implemented to analyse the possibility of reducing the computation time
for the algorithms. The impact of different noise descriptions on the minimum-
time problem is also studied. We want to see past the Gaussian assumption on
the system, and investigate the effect of applying noise from a uniform probability
distribution. Moreover, we want to see if it is possible to use customized algorithms
for uniformly distributed uncertainty. Based on the note by Servi and Ho (1981),
a nonlinear recursive parameter estimation algorithm for a one dimensional system
with uniformly distributed noise and parameter is derived. This is further explored
in relation to the dual controller.

3



1.1 Structure of the Thesis

The rest of the thesis is organized as follows. First we will present some background
that is necessary for solving the adaptive optimal control problems. Chapter 2 gives
a short presentation of dynamic programming. Here the principle of optimality is
used to derive the Bellman equation and interpolation is introduced. Chapter 3
shows how a general AOCP is formulated mathematically and how it can be solved
with DP. Different methods for estimating the unknown parameters are derived
and quadrature formulas for calculating the approximated cost is given. Then
the two applications will be presented. The first, described in Chapter 4, is a
continuation of the integrator problem in Åström and Helmersson (1986), while
the second presented in Chapter 5 is a minimum-time optimal control problem
with an unknown breaking coefficient. Chapter 6 presents the testing environment
for these examples, while the results and a discussion of the findings are given in
Chapter 7. Finally, Chapter 8 concludes the thesis and gives some suggestions for
future work.
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Chapter 2
Dynamic Programming

In this chapter the principles of dynamic programming will be presented. We will
look at the Bellman equation built from the principle of optimality and introduce
interpolation as a useful aid. At last, a short presentation of approximate meth-
ods is given. All this is necessary to understand how dynamic programming can
be used to solve the adaptive optimal control problems we will encounter later.
The derivation in this chapter is partly based on what was written in my project
report.

Similar to what was done in this project, I will in my thesis work with discrete
systems where decisions are made in stages. Dynamic programming is a method
that can be used for these kinds of optimization problems. The continuous coun-
terpart is the Hamilton-Jacobi-Bellman equation. Dynamic programming is based
on dividing a complex system into simpler subproblems which are easier to solve.
The concept is simple, but it rarely produces nice analytical solutions. Therefore,
the problems are rather solved numerically and results from calculations at each
stage of the algorithm are stored in a table to avoid recalculation. Often we deal
with continuous systems that are approximated in a discrete space. Due to this
approximation, the method will produce a globally optimal solution only on the
discrete approximation of the space. If there are multiple solutions giving the same

Figure 2.1: Illustrating the principle of optimality through optimal path calculation
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optimal value, it will return one of these.

The method is based on the principle of optimality as Bellman defined in the fol-
lowing way (Bellman, 1954)

Definition 1. An optimal policy has the property that whatever the initial state
and initial decision are, the remaining decisions must constitute an optimal policy
with regard to the state resulting from the first decision.

As illustrated in Figure 2.1, this means that if you have an optimal path from a to c
and this goes through b, then you also know that there is no better way to get from
b to c. If that had been the case, there would also have been a better way to get
from a to c. A simple proof by contradiction can be found in Kirk (1967).

When this principle holds, it is not necessary to search over all possible solutions.
The clear advantage is seen in the comparison between dynamic programming and
direct enumeration in Kirk (2012), Section 3.9. Here, it is investigated what will
happen when the number of stages N in the process is increased. The result is
that the growth in direct enumeration is exponential, while it is linear for dynamic
programming. Unfortunately, DP also has a serious drawback known as the curse
of dimensionality, that prevents us from using it in larger problems. This is based
on the fact that the problem size grows exponentially with the number of states x
and control inputs u. If we have m control inputs and n states that are described
by dm and dn discrete point respectively, we get dmm×dnn possibilities at each stage.
Hence, the grids used to represent the states and control inputs greatly affect the
run time. How many discrete points we use is therefore a trade-off between how
accurate the solution will be, and how much time it takes to solve the problem and
how much memory we need.

2.1 The Dynamic Programming Algorithm

Solving an optimal control problem with dynamic programming involves finding
the optimal control at each stage to minimize the total cost over all stages. This is
done by considering both the immediate cost and the future cost resulting from the
decision. By using the principle of optimality stated earlier, the DP-algorithm can
be defined. Bertsekas (2005) gives a good description of the algorithm. It is built
on the idea that we can start at the last stage and move backward in time. At each
stage calculating the optimal control by minimizing a specified cost function where
the results from the previous stage is used during each calculation. For a deter-
ministic system, the future cost resulting from a decision can be found by a simple
table lookup and possibly interpolation. When there are uncertainties however,
we cannot know precisely what will be the next state of the system. Therefore,
calculating the cost to go for a stochastic system is more complicated.

There are especially two methods used for optimization with uncertainties. The
first is based on finding the expected value, while the second method considers

6



Figure 2.2: Illustration of cubic vs. linear interpolation

worst-case situations (Shapiro et al., 2013). Here we will use the first method and
formulate the DP-algorithm as an expected value. The result of the optimal control
problem will be the control sequence u∗ that is most likely to give the minimum
cost. A typical optimal control objective is mathematically stated as

V (x(t), t) = min
u(k), k=t,...,N−1

E[

N−1∑
k=t

F (x(k + 1), u(k))] (2.1)

with value function V equal to the total cost over the given time horizon, state x,
control input u and stage cost F . The relationship between x(t+ 1), x(t) and u(t)
is described through a known dynamic system equation and the cost at the last
stage V (x(N), N) is also assumed known.

By applying the principle of optimality to the sum in this value function, we can
find that

V (x(t), t) = min
u(k), k=t,...,N−1

E[F (x(t+ 1), u(t)) + V (x(t+ 1), t+ 1)] (2.2)

This is known as the Bellman equation. To find the optimal control to be applied
at each stage from x(0), you have to start the algorithm at t = N −1 and calculate
V (x(N − 1, N − 1)), and go all the way back to V (x(0), 0). At each stage checking
all possible inputs at all possible states to get a complete list containing optimal
inputs to apply at a certain time, depending on the state you are in.

2.2 Interpolation

When dealing with continuous systems, the states and control inputs have to be
sampled at distinct values before DP can be used. In the simplest examples, the
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values can be carefully selected to avoid ending up at a value for x(k + 1) in
between the sampled values. For other problems it may not be a good idea to
sample that often considering shortage in time or memory. More distinct values
means that there will be more calculations and values to be stored and this may
not be desirable. On the other hand it may happen that one is to calculate the cost
of applying a control input and the next state is not one of the states considered
one step earlier. It is in these situations that interpolation can be used.

There are different interpolation methods. When choosing the method to use, one
have to decide if it is important to save memory and computation time or to get
a smooth result. Two common methods are linear and cubic interpolation. Out of
these two, linear uses the least memory and has the fastest computation time and
cubic gives a smoother curve. An example with the two methods can be seen in
Figure 2.2. Here we have sampled a sine function at 11 different time instances and
tried to recreate it by using interpolation. For this function it is clear that cubic
interpolation gives a result that is very similar to the original function. However,
in certain situations it may be superfluous.

When implementing the DP algorithm in MATLAB, the function griddedInter-
polant (MathWorks, a) can be used. It takes the grid and corresponding sample
values as inputs and optionally the interpolation (and extrapolation) method. With
linear interpolation, the function value is found as

f(x) = f(x0) +
f(x1)− f(x0)

x1 − x0
(x− x0) (2.3)

where the goal is to find the function value at a value of x that is not a point in the
grid, given the values f(x0) and f(x1) at the closest lower x0 and upper x1.

2.3 Approximate Dynamic Programming

The application of approximate dynamic programming (ADP) may often be neces-
sary in practice. Approximate schemes are available to overcome challenges related
to the curse of dimensionality, or unavailable or difficult models that makes it hard
to compute expectation values. The importance is especially evident in situations
where you are dealing with time sensitive on-line calculations. There are several
approaches to ADP. One important idea is that a system can learn about its own
behaviour through simulation forward in time. The classical approach is based
on replacing the value function with an approximation. The approximation can be
improved through parameter adjustment based on results from the simulation. The
approximate function is not easy to derive and should depend on the problem at
hand. Another possibility is to adjust the parameters of the input policy directly.
Typically, the ADP methods save computation time and memory by exploring only
a subset of the space. See Bertsekas (2011) or Powell (2011) for an orientation on
some different methods.
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Chapter 3
The Adaptive Optimal Control
Problem

In this chapter the AOCP will be formulated mathematically. Methods for esti-
mating the parameters in linear systems influenced by noise that is both normally
and uniformly distributed will be presented. Further, it is shown how the problem
can be solved numerically with DP. In the end, different approximated techniques
to dual control will be discussed. Parts of this chapter is a continuation of what
was written in my project.

3.1 Problem Formulation

In this thesis, I look at adaptive optimal control problems for systems with uncer-
tainty related to the model parameters and not the model structure. This parame-
ter uncertainty will be described through statistical distributions and it is assumed
that it can be reduced by manipulation of the system input. The optimal control
problem (OCP) in discrete time can generally be stated mathematically as

min
u(k), k=t,...,N−1

E[

N−1∑
k=t

F (x(k + 1), u(k))|γ(t)] (3.1a)

x(t+ 1) = f(x(t), u(t), θ(t), v(t)) (3.1b)

θ(t+ 1) = g(θ(t), e(t)) (3.1c)

with x, u and θ being the states, control inputs and parameters, respectively. e
and v are independent random variables with known probability distributions. F
is the stage cost and the total cost is calculated as an expectation E[·] with respect
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Figure 3.1: Block diagram of an adaptive optimal regulator from Chapter 7 in Åström
and Wittenmark (2013), Figure 7.1

to the random variables, conditioned on recorded data γ. Initial conditions are
assumed to be known along with bounds on variables. The control horizon N can
either be a known constant, or a decision variable. The problem consists of finding
the optimal control sequence u∗ that minimizes the objective (3.1a) for the system
described by (3.1b) and (3.1c).

The control problem is said to be adaptive, since there also will be a way to estimate
and update the parameters θ. Methods for parameter estimation will be shown in
Section 3.2. The parameters will behave as states in the resulting system and it is
therefore nonlinear. In this thesis we will assume that the system (3.1b) is linear
in the parameters and can be expressed as

x(t+ 1) = φT (t)θ(t) + v(t) (3.2)

where φ is an m-dimensional vector with known functions of the measured input u
and output x and parameters

θ(t) = [θ1(t), . . . , θm(t)]T (3.3)

We will also assume that the parameters are constant and write

θ(t+ 1) = θ(t) = θ (3.4)

Since it rarely is possible to model their variation in practice, this can be a fair
assumption in many situations.

To simplify the structure of the dual control problem, we introduce a hyperstate
ξ(t), similar to what Åström and Wittenmark (2013) have done. This hyperstate is
fed back to the controller. It can contain the states, control inputs and statistical
moments describing the system at time t. The resulting structure can be seen in
Figure 3.1. This is similar to the ordinary STC, except for the statistical moments.
They add more complexity to the problem.
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3.2 Parameter Estimation

When the parameters are unknown, we need a way to estimate them. For our
system (3.2), we want to find a recursive estimate of the unknown parameter θ.
There are multiple methods available, and the most appropriate method will de-
pend on the system and the specific uncertainty assumptions. It is unquestionably
most common to assume a Gaussian distribution for the uncertain parameters and
noise. The reason for this is that many real life systems fits this distribution and
also that it can simplify calculations considerably in certain situations, as we will
see shortly. In this section we will look at parameter estimation for both the Gaus-
sian and uniformly distributed variables. The different uncertainty descriptions
lead to different methods to estimate the parameters, and also calculation of the
expected cost to go in the resulting Bellman equation. Later we want to investi-
gate the effect of different uncertainty descriptions on a dual control problem and
in particular robustness towards possible errors in the noise assumptions.

3.2.1 Parameter Estimation with Gaussian Random Vari-
ables

When the uncertainty in the system is Gaussian, we can use the well-known recur-
sive least squares method (Ioannou and Sun, 2012). The idea behind the method
is to fit a mathematical model to observed data by minimizing the sum of squares
between the observed and computed data. When the sequence of random vari-
ables, v(t) in (3.2) is Gaussian with zero mean and variance R, the estimate can
be described by the following system of equations

θ̂(t) = θ̂(t− 1) +K(t)(x(t)− φT (t)θ̂(t− 1)) (3.5a)

K(t) = P (t− 1)φ(t)(R+ φT (t)P (t− 1)φ(t))−1 (3.5b)

P (t) = (I −K(t)φT (t))P (t− 1) (3.5c)

where θ̂(t) is the current parameter estimate. This can be interpreted as a Kalman
filter for the process described by (3.2) and (3.4) and it minimizes the variance for
the given system (Brown and Hwang, 2012).

When we assume that the parameters θ can be described by a Gaussian conditional
distribution given γ(t), we find (Åström and Wittenmark, 2013)

E[θ|γ(t)] = θ̂(t)

E[(θ − θ̂(t))(θ − θ̂(t)T )|γ(t)] = P (t)
(3.6)

where θ̂(t) is the conditional mean and P (t) the conditional covariance at time t.
Furthermore, we can derive that the conditional distribution of x(t+ 1) from (3.2),
given γ(t) is Gaussian with conditional mean and covariance given by

µx = E[x(t+ 1)|γ(t)] = φT (t)θ̂(t)

σ2
x = E[(x(t+ 1)− x̂(t))2|γ(t)] = R+ φT (t)P (t)φ(t)

(3.7)
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This is a neat property that can simplify the problem significantly.

3.2.2 Parameter Estimation with Uniform Random Vari-
ables

It is less common to assume a uniform probability distribution for the parameters.
When the parameters and noise are uniformly distributed, the state x(t+ 1) does
not have the same conditional distribution as θ and v, as was the case with the
Gaussian distribution. This makes the problem a bit more intricate, but we will
look at a possible method for parameter estimation for the simple problem we are
studying in this thesis. Refer Appendix A to view the basis for the statistical
calculations in this section.

Recursive estimation of a parameter with a uniform probability distributions is not
as straightforward as with the Gaussian distribution described earlier. However,
when we only have noise in the state and the parameter is constant, we know that
the posterior distribution of the parameter conditioned on the observations is also
uniformly distributed (Servi and Ho, 1981). The main difference in this case is that
the update equations will be non-linear. The Kalman filter that is optimal for the
Gaussian system is also the best minimum variance linear estimate for the system
corrupted by uniformly distributed noise.

For our system made up of (3.2) and (3.4), we assume a uniform a priori probability
distribution for θ

fθ(θ) =

{
1

bθ−aθ aθ ≤ θ ≤ bθ,
0 else

(3.8)

and the noise v(t) is uniformly distributed according to

fv(v(t)) =

{
1

2rv
−rv ≤ v(t) ≤ rv,

0 else
(3.9)

From these known probability distributions, the uniform a posterior probability
distribution of θ conditioned on the observations, fθ(θ|γ(t)), can be found. A
proof on the uniformity assumption of this distribution can be found in Servi and
Ho (1981). With this knowledge of the posterior distribution of the parameter,

update equations for an estimate of θ̂ can be found.

The posterior distribution of the parameter will have conditional mean and covari-
ance

E[θ|γ(t)] = θ̂(t)

E[(θ − θ̂(t))(θ − θ̂(t)T )|γ(t)] = P (t)
(3.10)

where the conditional expectation will represent the current estimate of the param-
eter. An algorithm that updates the current estimate at each time instant can be
found. For our simple system with a constant parameter, we have a disturbance v
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that is uniformly distributed in [−rv, rv] and an a priori knowledge that θ will be in

the interval [aθ, bθ]. Equivalently we can have a priori information of the mean θ̂(0)

and covariance P (0) of θ. This means that θ ∈ [θ̂(0)−
√

3P (0), θ̂(0)+
√

3P (0)] is all
the information we have about the parameter initially. When we receive a new mea-
surement of x(t) at time t, we can use it to improve the estimate of θ̂. This can be
done by noting that θ also has to lie in the set [φ−1(t)(x(t)−rv), φ−1(t)(x(t)+rv)].
Using the fact that the centre of the intersection of the two sets equals the condi-
tional expectation of θ, we can find the minimum error variance estimate.

Let Θ(t) denote the set containing θ(t) consistent with the observations of x up
until time t and the a priori knowledge

Θ(t) := [aθ(t), bθ(t)] = [θ̂(t)−
√

3P (t), θ̂(t) +
√

3P (t)] (3.11)

where the last part comes from the knowledge of a uniform a posteriori conditional
distribution of θ. Let X(t) denote the set containing θ(t) consistent only with the
latest observation x(t)

X(t) := [φ−1(t)(x(t)− rv), φ−1(t)(x(t) + rv)] (3.12)

Then we can find an update of Θ(t) from the intersection of the previous set Θ(t−1)
and the set X(t) obtained from the measurement of x at time t.

Θ(t) = Θ(t− 1) ∩X(t)

= [θ̂(t− 1)−
√

3P (t− 1), θ̂(t− 1) +
√

3P (t− 1)] ∩
[φ−1(t)(x(t)− rv), φ−1(t)(x(t) + rv)]

(3.13)

Further, the intersection of the two sets can be found from

Θ(t) = [max(θ̂(t− 1)−
√

3P (t− 1),

φ−1(t)(x(t)− rv)),min(θ̂(t− 1) +
√

3P (t− 1), φ−1(t)(x(t) + rv))]

= [aθ(t), bθ(t)]

(3.14)

which results in the following parameter estimate

θ̂(t) =
bθ(t) + aθ(t)

2
(3.15)

and variance

P (t) =
(bθ(t)− aθ(t))2

12
(3.16)

This means that the interval θ can be in, is narrowed down as new measurements
become available. If we assume for our simple system in (3.2) and (3.4), that θ = 1,
φ(t) = 1, v(t) ∈ [−1, 1] and a priori information about θ is Θ(0) = [0, 4]. Now, if
you for instance get a measurement x(1) = 0, then you know that θ will be in the
set X(1) = [−1, 1]. Since you also know that θ has to be larger than zero from Θ(0),
you can find the new interval as Θ(1) = [0, 1]. If you next receive a measurement
x(2) = 2, you can find that X(2) = [1, 3]. This results in Θ(2) = [1, 1] and therefore
nothing more can be learned about the parameter. If you had observed x(2) = 1
on the other hand, you would not have been able to improve Θ.
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Example: Comparison of Non-linear Algorithm and Kalman Filter for
Uniformly Distributed Variables

As mentioned earlier, the Kalman filter is the best minimum variance linear esti-
mate independent of the noise distribution. It is however not guaranteed to mini-
mize the variance if the noise is not Gaussian. The non-linear algorithm outlined
above on the other hand, will minimize the variance for the simple system given
here. Figure 3.2 shows the result from one simulation of the two different methods
for the system

θ(t+ 1) = θ(t) = θ

x(t+ 1) = φ(t)θ + v(t)
(3.17)

with random noise v uniformly distributed according to (3.9) and a priori distri-
bution of θ from (3.8). The parameter estimation for the non-linear algorithm is
found from (3.15) and (3.16), while the parameter estimation with the Kalman
filter is found from (3.5), where R is the variance of v. In the simulation, we have

θ = 1, φ(t) = 1, aθ(0) = 0, bθ(0) = 4, θ̂(0) = 2, P (0) = 4
3 , rv = 1 and R = 1

3 .
It can be seen from the figure that the non-linear method appears to be superior
to the linear in this simulation. Furthermore, it can be seen from Figure 3.3 that
the method produces a mean result that has a lower variance than the Kalman
filter. Here the algorithms are simulated thousand times and the figure shows the
calculated mean at each time t of the estimation error squared and covariance for
the two methods. The blue and black lines represent the non-linear algorithm,
while the red and magenta lines show the results for the Kalman filter. The figure
also shows that the difference between the two algorithms increases along with the
strength of the noise signal. From these simulations, it is clear that the Kalman
filter is a good approximation when the system is under the influence of uniformly
distributed noise, but also that it is possible to achieve even better results.

3.3 Solving the AOCP with Dynamic Program-
ming

As described earlier, the solution to the AOCP made up of (3.1) and the parameter
estimation for θ, can be found through the concept of dual control. Feldbaum
(1960) showed that the theoretical solution to this dual control problem could be
derived with dynamic programming as defined by Bellman. In this section, we will
show how this can be done. Since the resulting expression rarely has an analytical
solution, it will be necessary to discretize the value function in the variables of the
hyperspace and use a quadrature formula to evaluate the integral.

To derive the Bellman equation for the AOCP, we define the value function from
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Figure 3.2: Example of parameter estimation with uniform noise: non-linear algorithm
vs. Kalman filter in one simulation

Figure 3.3: Mean estimation error and covariance: non-linear algorithm vs. Kalman
filter for uniform noise
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the objective function (3.1a) to be

V (ξ(t), t) = min
u(k), k=t,...,N−1

E[

N−1∑
k=t

F (x(k + 1), u(k))|γ(t)] (3.18)

This can be interpreted as the minimum expected loss from the current time t to
the end of the control horizon (N), given measurements up until time t. These
measurements are expressed by γ. The value function depends on the hyperstate
and current time. If we reformulate the expression on the right-hand side to ob-
tain

V (ξ(t), t) = min
u(k), k=t,...,N−1

E[F (x(t+ 1), u(t)) +

N−1∑
k=t+1

F (x(k + 1), u(k))|γ(t)],

(3.19)
we can use the principle of optimality to derive the Bellman equation

V (ξ(t), t) = min
u(k), k=t,...,N−1

E[F (x(t+ 1), u(t)) + V (ξ(t+ 1), t+ 1)|γ(t)] (3.20)

Here, the optimal solution gives the optimal control inputs u∗ that minimize the
expected loss over the control horizon. One of the greatest difficulties with this
expression is the unknown next hyperstate ξ(t + 1). The first expression on the
right-hand side will depend on the objective of the minimization, while the second
part requires some more consideration.

The recursive Bellman equation (3.20) is very computationally expensive to resolve.
Analytical evaluation of the expression is in most cases impossible. The numerical
solution will typically involve approximating the continuous space by a discrete
space and iterating through all possible values in this grid. The algorithm will
start at the last stage N and then move backward until reaching the initial stage.
At each stage identifying the optimal control inputs at each possible combination
of state values, that minimizes the expected loss. We have implicit knowledge of
future information from calculations done in previous steps of the recursion. This
future information is however not exact, since the discrete approximation only
considers distinct values in the grid. This implies that the accuracy of the solution
is limited by the discretization, but the distance between the points in the grid can
not be too small, since this will lead to a large amount of calculations and memory
needed.

Due to great limitations in computational power, the method was less useful in prac-
tice when it was first introduced by Feldbaum. Some decades after the dual control
problem was derived however, it was revisited again by Åström and Helmersson
(1986). At this time the authors decided to give computation of dual control laws a
new chance with the current available computer power. They successfully solved a
simple integrator problem with unknown gain numerically with dynamic program-
ming. We will look more carefully at this problem later in this thesis.
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3.3.1 Calculation of Expected Cost to go

In order to calculate the expected cost to go in (3.20), we have to use the probability
function for the random variable and this will lead to an integral that needs to be
approximated. This can be done with a number of different quadrature formulas,
as for instance the well known Simpson’s rule. In this subsection we will show some
other methods that can simplify the approximations for the problems with the two
specific uncertainty descriptions (Zarowski, 2004).

Gaussian Random Variables

When we are working with a Gaussian distribution, we can find the expression for
the conditional expectation of the cost to go from

E[V (ξ(t+ 1), t+ 1)|γ(t)] =

∫ ∞
−∞

V (ξ(t+ 1), t+ 1)
1√

2σ2
xπ
e
− (x−µx)2

2σ2x dx (3.21)

With mean µx and variance σ2
x from (3.7). The resulting integral must be approx-

imated for numerical solution. This can be done with a quadrature formula, like
the Gauss-Hermite quadrature. This method requires that we first do a change of
variables to get it on standard form. We set y = x−µx√

2σx
and find

E[V (ξ(t+ 1), t+ 1)|γ(t)] =

∫ ∞
−∞

1√
π
e−y

2

V (ξ(t+ 1), t+ 1)dy (3.22)

with x = y
√

2σx + µx. This can be approximated as

E[V (ξ(t+ 1), t+ 1)|γ(t)] ≈ 1√
π

n∑
i=1

w(i)V (ξ(t+ 1), t+ 1) (3.23)

with

w(i) =
2n−1n!

√
π

n2[Hn−1(y(i))]2
(3.24)

and y(i) are the roots of the Hermite polynomial

Hn(y(i)) = (−1)ney
2 ∂n

∂yn
e−y

2

(3.25)

Uniform Random Variables

In the case with a Gaussian noise assumption, it was shown that a Gauss-Hermite
quadrature could be used to obtain points and weights. When the system (3.2) is
assumed to have both parameter θ and noise v with a uniform distribution, then
the state x(t+1) does not have a simple distribution with an obvious way to choose
points and weights. If however, either the parameters are known or there are no
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noise in the system, then the state will have a known uniform distribution. In this
case it will be sufficient to use a Gauss-Legendre quadrature to approximate the
integral, since there is no exponential term, only a constant probability density
function.

If we assume that the random variable X is in fact uniformly distributed, then the
integral (see Appendix A)

E[V (ξ(t+ 1), t+ 1)|γ(t)] =

∫ µx+σx
√

3

µx−σx
√

3

V (ξ(t+ 1), t+ 1)
1

2
√

3σ2
x

dx (3.26)

can be approximated with a Gauss-Legendre quadrature after a change of variables,
since this method is based on an interval [−1, 1]. We set x = σx

√
3y+ µx and find

that dx = σx
√

3dy. If this is put into (3.26), we get

E[V (ξ(t+ 1), t+ 1)|γ(t)] =
1

2

∫ 1

−1

V (ξ(t+ 1), t+ 1)dy (3.27)

The approximation is further found as

E[V (ξ(t+ 1), t+ 1)|γ(t)] ≈ 1

2

n∑
i=1

w(i)V (ξ(t+ 1), t+ 1) (3.28)

with

w(i) =
2

(1− x2(i))( ∂
∂xPn(x(i)))2

(3.29)

and y(i) are the roots of the Legendre polynomial

Pn(x) =
1

2nn!

∂n

∂yn
(y2 − 1)n (3.30)

If both the parameter is unknown and the system is corrupted by noise, the expec-
tation will be over a random variable with a non-uniform distribution. In Figure
3.4 the result from a simulation in MATLAB of two uniformly distributed random
variables X1 ∼ U(ax1

, bx1
) = U(1, 6) and X2 ∼ U(ax2

, bx2
) = U(2, 4) and their

sum is shown. From this it can be seen that the distribution of the sum of two
uniformly distributed variables has the shape of a trapeze. The most common ap-
proach to this problem is to treat the random variable X as if it had a Gaussian
distribution. Then the calculation can be done according to the procedure outlined
above. An alternative to this could be to manually choose points and weights from
the distribution of X.

The probability density function for a function X = X1 + X2, that is the sum of
two independent uniform random variables can be found as

fx(x) =

∫ ∞
−∞

fx1(x1)fx2(x2)dx1 =

∫ ∞
−∞

fx1(x1)fx2(x− x1)dx1 (3.31)
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Figure 3.4: Simulation of two uniformly distributed variables x1 and x2 and their sum.

and by inserting the probability density functions for fx1
and fx2

we find

fx(x) =

∫ bx

ax

1

(bx1
− ax1

)(bx2
− ax2

)
dx1 (3.32)

where

ax = max(ax1
, x− bx2

) (3.33)

and

bx = min(bx1 , x− ax2) (3.34)

Since the Gauss-Hermite approximation seems to produce an accurate result in
calculations however, we do not proceed to produce any similar points and weights.

3.4 Approximate Techniques to Dual Control

Despite the rapid increase in computational capacity, it is still challenging in gen-
eral to obtain the optimal solution with dynamic programming because of the
curse of dimensionality and difficult calculations of probability distributions. To
obtain the true dual solution with dynamic programming, we would need an infinite

19



amount of memory and computational power. This has inspired the development
of approximate methods.

Wittenmark (2002) proposes different approaches to derive what he refers to as
suboptimal dual controllers. These avoid the issues related to the solution with
dynamic programming, while dual features still remain. He suggests that they can
be constructed either by approximations of the optimal dual control problem or by
reformulating the problem. This can be achieved for example through approxima-
tions of the loss function or by adding a perturbation signal to a cautious controller
to increase learning. A different approach considers modification of the loss func-
tion. Here the idea is to add terms to the loss function that reflect the quality of the
parameter estimates. This can be done through the use of the covariance matrix
for instance, which can be seen as a measure of the parameter uncertainty.

Over the years there have been some attempts to produce controllers with per-
formance close to the optimal dual controller at a lower cost by the use of ADP.
Thompson and Cluett (2005) show how the dual control problem can be solved
without complete discretization of the hyperstate space or nested numerical inte-
gration. They do this by using a combination of iterative dynamic programming
and Monte Carlo methods. Lee and Lee (2009) present another method that solves
a stochastic optimal control problem with dynamic programming, but only ap-
proximately and within limited regions of the hyperstate space. Both approaches
illustrate the benefits of the approximated algorithms on the same simple integrator
example.

Another area with current development is dual control with model predictive con-
trol (MPC). Heirung et al. (2015) work on finding the exact solution to approxi-
mations of the dual control problem instead of finding approximations to the exact
problem as for instance is done with the ADP methods. They look at an MPC-
based approach to dual control with on-line experimental design. They present two
approaches on how to excite the plant to generate informative data. One where
the controller actively tries to reduce the error covariances, and the other where it
maximizes the information in the signals. The algorithms presented both reduce
parameter uncertainty and increase the information content of the closed-loop sig-
nals. Very recently it has also been proposed a different approach that avoids
heuristic additions to the cost function (Heirung et al., 2017).
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Chapter 4
Dual Control of an Integrator with
Unknown Gain

In this chapter we will present a problem similar to the one studied in Åström
and Helmersson (1986). This is a simple, yet nontrivial adaptive control problem,
consisting of a simple integrator with an unknown and constant parameter. Despite
the problem being known, it is interesting to see what is possible with today’s
computational resources. We will also extend the problem to include two unknown
and constant parameters. The AOCP for the problem will be formulated and the
solution with DP presented. In Chapter 6 it will be shown how the systems are
implemented and tested.

4.1 One Unknown Parameter

In this section the problem with one unknown parameter will be presented. Two
different formulations and their solution form will be given.

4.1.1 AOCP Formulation

The discrete-time system is described by

x(t+ 1) = x(t) + bu(t) + v(t) (4.1)

where x, u and v are output, control input and random noise with a known Gaus-
sian probability distribution with zero mean and variance R, respectively. b is a
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constant, unknown parameter with a known a priori probability distribution. The
purpose of the control is to minimize the expected cost given by

min
u(k), k=t,...,N−1

E[

N−1∑
k=t

x2(k + 1)|γ(t)] (4.2)

where γ denotes the observed outputs and inputs available at time t and N is a
known time horizon. There are no constraints specified on x and u. The goal is
to find the optimal control sequence u∗ that minimizes this cost function. This
corresponds to keeping the state at the reference value x(t) = 0. It can easily be
extended to include a desired non-zero reference r(t) by writing (x(k+ 1)− r(k))2

in the sum instead.

To get the system on familiar form (3.2), we set θ = b and φ(t) = u(t), to get

z(t) = x(t+ 1)− x(t) = φ(t)θ + v(t) (4.3)

If we combine (4.1) and (4.2), we get the following OCP

min
u(k), k=t,...,N−1

E[

N−1∑
k=t

x2(k + 1)|γ(t)]

x(t+ 1) = x(t) + φ(t)θ + v(t)

θ(t+ 1) = θ(t) = b

(4.4)

The hyperstate can be set to

ξ(t) = [x(t), θ̂(t), P (t)]T (4.5)

where θ̂(t) is the current estimate of θ or the conditional mean, and P (t) is the con-
ditional covariance. (3.5) is used to find the recursive parameter estimate.

Normalized Variables

The problem can be simplified by using normalized variables and recognizing that
the value function will not depend explicitly on the covariance P . This is done by
using the following new variables similar to Åström and Helmersson (1986).

η(t) =
x(t)√
R

(4.6)

β(t) =
θ̂(t)√
P (t)

(4.7)

ζ(t) =
1√
P (t)

(4.8)
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ν(t) =
u(t)

√
P (t)√
R

(4.9)

ε(t) =
z(t)− φ(t)θ̂(t)√
R+ φ2(t)P (t)

(4.10)

where η, ζ and β are state variables, ν is the control and ε is the normalized
innovation. ε will be a random variable with mean value equal the mean value for
the noise v, and variance one. Note that ζ is used instead of ξ to avoid confusion
with the hyperstate.

The problem can then conveniently be written as

min
u(k), k=t,...,N−1

E[

N−1∑
k=t

η2(k + 1)|γ(t)]

η(t+ 1) = η(t) + β(t)ν(t) +
√

1 + ν2(t)ε(t)

β(t+ 1) = β(t)
√

1 + ν2(t) + ν(t)ε(t)

ζ(t+ 1) = ζ(t)
√

1 + ν2(t)

(4.11)

with the hyperstate set to

ξn(t) = [η(t), β(t)]T (4.12)

Since the cost function does not depend explicitly on ζ, this variable is not included.
Åström and Helmersson (1986) show this by using induction.

The equations for η(t + 1), β(t + 1) and ζ(t + 1) are similar to equations (2.5),
(2.6) and (2.7) in Åström and Helmersson (1986). Note that there most likely is
a typo in their equation, where β(t + 1) is replaced by χ(t + 1). Similarly there
appear to be some error in their Bellman equation for the original variables in the
arguments of WT−1 in the integral. First, for y(t + 1), where I would suggest to

write y + b̂u +
√
σ2 + u2Pε instead. Second for b̂(t + 1), where I believe it should

be b̂+ uP√
σ2+u2P

ε.

4.1.2 Solving the AOCP with DP

In Section 3.3 it was shown how the solution to the AOCP can be found with DP.
Here we will show how this can be done for the given integrator problem. First it
can be noticed that if the parameter b in (4.1) is known and different from zero,
the problem has a simple minimum variance optimal solution given by

u∗(t) = −x(t)

b
(4.13)
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This means that the optimal cost when the parameter is known is just equal to the
sum of the noise squared.

V (ξ(t), t) = min
u(k), k=t,...,N−1

E[

N−1∑
k=t

x2(k + 1)|γ(t)] =

N−1∑
k=t

v2(k) (4.14)

If θ̂ is different from zero, the parameter in (4.13) can be changed with its estimate
to produce a simple certainty equivalence controller.

u∗ce(t) = −x(t)

θ̂
(4.15)

For the dual controller however, the optimal control can be identified from the
solution of the Bellman equation (3.20). Here the stage cost F equals the output
squared as seen in (4.2). This gives the following Bellman equation for this specific
problem

V (ξ(t), t) = min
u(k), k=t,...,N−1

E[x2(t+ 1) + V (ξ(t+ 1), t+ 1)|γ(t)] (4.16)

The first expression on the right side can be found from

E[x2(t+ 1)] = E[(x(t) + φ(t)θ + v(t))2]

= (x(t) + φ(t)θ̂(t))2 +R+ φ2(t)P (t)
(4.17)

where R is the variance of v and v is independent of φ, x and θ. The last expression
can be found from

E[V (ξ(t+ 1), t+ 1)|γ(t)] =

∫ ∞
−∞

V (ξ(t+ 1), t+ 1)fz(z)dz (4.18)

where fz(z) is the probability density function for the random variable Z in (4.3).
The calculation of this integral can be done as shown in Subsection 3.3.1. This will
lead to an expression on the form

E[V (ξ(t+ 1), t+ 1)|γ(t)] =

n∑
i=1

w(i)V (ξ(t+ 1), t+ 1)] (4.19)

Normalized Variables

For the normalized variables, the Bellman equation will be

V (ξn(t), t) = min
ν(k), k=t,...,N−1

E[η2(t+ 1) + V (ξn(t+ 1), t+ 1)|γ(t)] (4.20)

with
E[η2(t+ 1)] = E[(η(t) + β(t)ν(t) +

√
1 + ν2(t)ε(t))2]

= (η(t) + β(t)ν(t))2 + 1 + ν2(t)
(4.21)
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The last expression on the right side is calculated similar to the case with the
original variables. To avoid the need for P , the expectation is taken over the
random variable ε. This leads to the following expression

E[V (ξn(t+ 1), t+ 1)|γ(t)] =

∫ ∞
−∞

V (ξn(t+ 1), t+ 1)fε(ε)dε (4.22)

where ε is the random variable from (4.10).

4.2 Two Unknown Parameters

In this section we will give the problem with two unknown parameters a short
presentation.

4.2.1 AOCP Formulation

The extension to two unknown parameters is simple. It leads to the discrete-time
system described by

x(t+ 1) = ax(t) + bu(t) + v(t) (4.23)

To get the system on familiar form (3.2), we set θ = [θ1, θ2]T = [a, b]T and
φ(t) = [x(t), u(t)]T , to get

z(t) = x(t+ 1) = φT (t)θ + v(t) (4.24)

When the uncertainty is Gaussian and the random variables are independent, we
still have a Gaussian conditional distribution with conditional mean and covariance
from (3.7).

The OCP is similar to (4.4)

min
u(k), k=t,...,N−1

E[

N−1∑
k=t

x2(k + 1)|γ(t)]

x(t+ 1) = φT (t)θ + v(t)

θ1(t+ 1) = θ1(t) = a

θ2(t+ 1) = θ2(t) = b

(4.25)

The hyperstate is still
ξ(t) = [x(t), θ̂(t), P (t)]T (4.26)

with θ̂(t) the conditional mean and P (t) is the conditional covariance. The main

difference is the dimension of the hyperstate. θ̂ now contains two variables, while
P contains three variables.
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4.2.2 Solving the AOCP with DP

The CE controller for two unknown parameters corresponding to (4.15) is

u∗ce = − θ̂1x(t)

θ̂2

(4.27)

The Bellman equation for the system is equal the system with one unknown pa-
rameter (4.16). The only difference in the solution is that the first expectation can
be written

E[x2(t+ 1)] = E[φT (t)θ + v(t)]

= (φT (t)θ̂)2 +R+ φT (t)P (t)φ(t)
(4.28)
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Chapter 5
Time-Optimal Dual Control of a
Cart System with an Unknown
Breaking Coefficient

Similar to the problem studied in the project report, we will investigate the use of
dual control on a time-optimal control problem. Here the focus will be on a system
with an unknown breaking coefficient. The problem to be studied is a time optimal
problem, since the cart shall be moved from one position x0 to a final predefined
position xf in minimum time tf . In this example the cart shall be stationary at
the end position and there are bounds on the control inputs. Only constant desired
end states are considered. An illustration of the problem can be seen in Figure 5.1.
Also, as it is shown here, only movement in one direction is considered.

Figure 5.1: Illustration of the Cart problem: Cart moves from position x0 to xf
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5.1 Cart Model

The cart system has the following simple model in continuous time

ẍ(t) = b1u1(t)− b2u2(t) + v(t) (5.1)

with x, v, u1 and u2 representing position, disturbance, gas and break, respectively.
b1 and b2 are constant coefficients. They can be either known or unknown. In this
thesis the system with known b1 and unknown b2 will be considered. By introducing
new variables for position x1 = x and velocity x2 = ẋ, this can be written on
standard form

ẋ1(t) = x2(t) (5.2a)

ẋ2(t) = b1u1(t)− b2u2(t) + v(t) (5.2b)

The disturbance v can for instance be drag. This can be modelled as

v(t) = cx2
2(t) + w(t) (5.3)

with a constant coefficient c and uncertainty w with expected value of zero. A
discrete approximation to the system can be found with Euler’s method to be

x1(t+ 1) = x1(t) + ∆tx2(t) (5.4a)

x2(t+ 1) = x2(t) + ∆t(b1u1(t)− b2u2(t) + v(t)) (5.4b)

where ∆t represents the time step between t and t+ 1.

5.2 The Optimal Control Problem

Minimum-time problems are well known optimal control problems. The goal of
these types of problems is to minimize the expected end time tf for when the
system reaches a given end state xf . This can be expressed by the following
objective function

min
u(k), k=t,...,N−1

E[

N−1∑
k=t

∆t] (5.5)

where tf = (N − 1) × ∆t. The problem can also be written on a more common
form, with a state in the objective function. This is done by augmenting a state
x3 to the system (5.4), with

x3(t+ 1) = x3(t) + ∆t (5.6)

and x3(0) = 0. Then we can find an objective written on Mayer-form (Diehl and
ESAT-SCD, 2011)

min
u(k), k=t,...,N−1

E[x3(N)] (5.7)
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In addition, the system usually has to satisfy some constraints on the states and
control inputs. We want to find the optimal control u∗ that minimizes the control
horizon N , while keeping the states and control within legal values. The solution
to the minimum-time problem in continuous time will be of type bang-bang control
when there are bounds on the input and no uncertainties in the system. The term
bang-bang control means that the control input will be at the maximal or minimal
values at all time. Therefore, the problem only consists of finding the switching
times. The most common way to solve these minimum-time problems is by the use
of Pontryain’s minimum principle (Kirk, 2012). The solution to the discrete-time
system however, is not necessarily bang-bang control even without uncertainties
in the system. This is because of the imperfections that comes with the discrete
sampling of the continuous state space.

The analytical solution to the bounded, deterministic cart problem was derived in
my project. Since the system consists of two states, we know that the control input
can shift at most one time. Below the result is given, with expressions for finding
the optimal final time tf and the switching time ts.

tf = ts(1 +
b1ū1

b2ū2
) (5.8)

ts =

√
2xf

b1ū1(1 + b1ū1

b2ū2
)

(5.9)

Where ū1 and ū2 are maximum gas and break, respectively. These equations can
also be used as guidelines for how the solution should look for a stochastic system,
but are not directly applicable.

As a motivation for using dual control, I described in my project the following
problem with non-dual control, similar to La et al. (2016). Figure 5.2 shows what
will happen in a situation where we have an uncertain breaking coefficient. Here we
have an initial estimate of b̂2 = 2, a known parameter b1 = 1, final position xf = 1
and maximum control input ū1 = ū2 = 1. By using the above formula for ts in
(5.9), we see that this will lead to a switching time of ts ≈ 1.15. When this time is
reached and the breaking period is initiated, the parameter can be estimated and
we will discover that it will not be possible to apply enough breaking to stop at the
desired end position xf . This will lead to unacceptable violation of the constraints.

5.3 AOCP Formulation

In this thesis we will be working with the stochastic, discrete time approximation
of the problem in (5.4) and (5.5), with b2 being an unknown constant. We want
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Figure 5.2: Illustration of non-dual control for cart system with unknown breaking
coefficient.
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to find an optimal control sequence u∗ that brings us to the end state as fast as
possible. The overall problem made up of (5.4) and (5.5) gives the OCP for the
cart system

min
u(k), k=t,...,N−1

E[

N−1∑
k=t

∆t]

x1(t+ 1) = x1(t) + ∆tx2(t)

x2(t+ 1) = x2(t) + ∆t(b1u1(t)− b2u2(t) + v(t))

θ(t+ 1) = θ(t) = b2

umin ≤u(t) ≤ umax
x(t0) = x0, x(tf ) = xf

(5.10)

Due to the uncertainties, we do not have complete knowledge of the process. There-
fore, we describe both the unknown parameter and the process by stochastic mod-
els. To get the system on the familiar form (3.2), we can set θ = b2, φ(t) = −u2(t)
and find

z(t) =
x2(t+ 1)− x2(t)

∆t
− b1u1(t) = φ(t)θ + v(t) (5.11)

z has conditional mean and covariance given by

µz = φ(t)θ̂(t)

σ2
z = R+ φ2(t)P (t)

(5.12)

where θ̂(t) is the current estimate of θ or the conditional mean, and P (t) is the
conditional covariance.

The hyperstate is set to
ξ(t) = [x(t), θ̂(t), P (t)]T (5.13)

The parameter estimation is done with one of the methods derived in Subsection
3.2, depending on the probability distributions for θ and v. For a Gaussian system
we will use the system of equations in (3.5), while for a uniform system we can also
use (3.15) and (3.16).

5.4 Solving the AOCP with DP

For this specific problem, the stage cost F is simply the time it takes to get from
where we are now and until the next stage. The only problem is that we do not
know exactly where this will be, due to the uncertain breaking coefficient and
noise that influences the system. This leads to the following value function from
(5.10)

V (ξ(t), t) = min
u(k), k=t,...,N−1

E[

N−1∑
k=t

∆t|γ(t)] (5.14)
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where γ(t) represents the measurements available at time t. The expectation is
conditioned on these measurements, and the corresponding Bellman equation can
be found by applying the principle of optimality

V (ξ(t), t) = min
u(k), k=t,...,N−1

E[∆t+ V (ξ(t+ 1), t+ 1)|γ(t)] (5.15)

This can be interpreted as the expected total time to get from hyperstate ξ at time
t, and is equal to the expected time it takes to get to the next hyperstate plus the
remaining time from this hyperstate and until the final state.

The last expression on the right side can be found from (Subsection 3.3.1)

E[V (ξ(t+ 1), t+ 1)|γ(t)] =

∫ ∞
−∞

V (ξ(t+ 1), t+ 1)fz(z)dz (5.16)

where fz(z) is the probability density function for the random variable Z in (5.11).
To calculate this expectation of the cost to go, we can use a quadrature formula as
described in Subsection 3.3.1. This will lead to an expression on the form

V (ξ(t), t) = min
u(k), k=t,...,N

E[∆t+

n∑
i=1

w(i)V (ξ(t+ 1), t+ 1)] (5.17)
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Chapter 6
Testing Environment

In this chapter it is shown how the dual controllers introduced in Chapter 4 and
5 were implemented and tested. First, the framework for the DP algorithms is
given and some related issues for the two examples discussed. Later, a method for
parallelization of the code is presented and in the end we go into more detail on
the goals for the numerical experiments and how they were conducted.

6.1 Implementation of the DP Algorithms

This section should provide a brief description of the implementation of the DP
algorithms. All implementations are done in MATLAB and executed on a computer
with specification given by Table 6.1.

Table 6.1: Computer specifications

Manufacturer Dell
Processor Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz
Installed memory (RAM) 32 GB

Prior to running the DP algorithm you need to choose the following system pa-
rameters:

• Grid for hyperstates in ξ

• Control law grid U

• Time horizon N

• Time step ∆t

• Variance R for the noise v
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A general pseudo code for the implementation can be seen below. Here V represents
the value function. It is a matrix containing the optimal costs. µ∗ is a matrix
containing the optimal control inputs. The size of the two matrices will depend on
the grids of hyperstates. The total number of loops will depend on the dimension
of the hyperstate. In the pseudo code x represents the states, θ̂ the parameter
estimates and P the covariance matrix. Each of these can have a dimension larger
than one, depending on the problem at hand. Therefore, each of the variables may
in practice correspond to multiple for-loops.

Pseudo code

for t = N − 1 : −∆t : 1 do
for all x do

for all θ̂ do
for all P do

for all u do Calculate expected cost J(ξ(t), t)
if J(ξ(t), t) < V (ξ(t), t) then

V (ξ(t), t) = J(ξ(t), t)
µ∗(ξ(t), t) = u

end if
end for

end for
end for

end for
end for

At each iteration in time, the optimal cost and control input are calculated for
each possible combination of the hyperstates. The calculation of the expected cost
J will involve the approximation of an integral and interpolation as described in
Chapter 2 and 3.

The implementation of the deterministic DP algorithm was compared to the explicit
solution to a linear quadratic control problem (Foss and Heirung, 2013) in my
project. This gave a good indication on the correctness of the algorithm.

6.2 Integrator Specifications

In this section some properties of the implementation of the DP algorithm for the
integrator system will be discussed. Due to symmetry properties for V and µ∗

in this problem, it is only necessary to store the values for one quadrant. V is
symmetric in the hyperstates, while µ∗ is antisymmetric.

As described earlier, the cost function does not depend explicitly on the covari-
ance for the system with one unknown parameter and it is therefore possible to
reduce the implementation with one loop with normalized variables. Hence, the
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implementation will differ slightly depending on if you want to use the normalized
variables or not. In terms of the normalized variables, you get a system consisting
of four loops. These are time, the two normalized hyperstates and control input, re-
spectively. For the original variables you will have the additional loop representing
covariance.

For the system with two unknown parameters in (4.25), the hyperstate is of di-
mension six. This corresponds to eight loops in the DP algorithm. One for time,
one for the state, two for the parameter estimates, three for the elements of the
symmetric covariance matrix and one for the control input.

Quadrature

As explained by Åström and Helmersson (1986), there are discontinuities in the
first derivative of the cost function V for η(t + 1) = x(t + 1) = 0 and β(t + 1) =
θ̂(t+1)√
P (t+1)

= 0. These points are

ε1(t) = −η(t) + β(t)ν(t)√
1 + ν2(t)

= − x(t) + θ̂(t)u(t)√
R+ u2(t)P (t)

(6.1)

and

ε2(t) = −β(t)

√
1 + ν2(t)

ν(t)
= −

θ̂(t)
√
R+ u2(t)P (t)

u(t)P (t)
(6.2)

This have to be considered when approximating the integral in (4.22) (or equiva-
lently for the original variables (4.18)). When there are discontinuities it is impor-
tant to have enough quadrature points around ε1 and ε2 to capture the true shape
of the function.

Since we only will look at Gaussian noise for this example, the approximation is
done with a Gauss-Hermite quadrature, as explained in Subsection 3.3.1.

Interpolation

As described in Section 2.2, interpolation has to be used in the DP algorithm.
The method used for this problem is cubic interpolation. The state variables are
transformed by the mapping x→ x

x+1 for the interpolation function. This is done
to be able to use a close grid in small values of the variables, and only a few large
values. The transformation makes this possible, while still obtaining a uniform grid
for interpolation that is in the interval [0, 1]. The grid sizes for the variables were
varied in the computations.

Note that if you are using MATLAB function griddedInterpolant, this is very ex-
pensive and therefore the function should be called as few times as possible. This
can be ensured by sending in a vector with all Hermite points in one call. This
is much faster than going through all points individually and is possible for this
problem.
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Initialization of Cost Matrix

For the integrator problem, the end conditions are simply

V (ξ(N), N) = 0 (6.3)

while all other stages are set to a large value.

6.3 Cart System Specifications

In this section some properties of the implementation of the DP algorithm for
the cart system will be discussed. This problem has two states and therefore one
more loop than the integrator system. The implementation of the DP algorithm
consequently consists of six for-loops. The time horizon N in the outermost loop
has to be set to a value that is larger than the optimal end time. This can be done
with an educated guess based on the solution from a deterministic problem. The
inner loops represent the hyperstates and the control input.

The Stopping Criteria

In the minimum-time problem, the goal is to minimize the end time tf . This
means that the control horizon N is an unknown optimization variable. Therefore,
it has to be set to a value larger than the optimal end time before running the
DP algorithm. For a deterministic minimum-time problem it is easy to obtain a
stopping criteria for the algorithm, since we then know with certainty that the first
iteration where the cost in the initial state is different from zero represents the
optimal end time.

For a stochastic problem on the other hand, it is not trivial to find the optimal
end time in a similar manner. It could be possible to rather describe this as a
probability p(y(k) = y(0) for the initial state being reached. However, this is
not straightforward. Therefore, we will only run the algorithm a few iterations
past what is expected to be the optimal stopping time tf . Then the system can
be simulated for different values of T ≤ N to find the value that gives the best
result.

Another possibility could be to check the current estimated cost from the initial
state at each iteration. Initially this will be equal to the maximum cost, but
eventually it will decrease. Perhaps it is possible to set a limit such that when the
cost is below this threshold, we can end the algorithm and assume that this N is
”good enough” by some measure.
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Initialization of Cost Matrix

For t < N , all elements in V are set to a large value. It is however not obvious
how to set the end conditions in the cost matrix. Nevertheless, it is clear that the
last stage should have a zero cost in the desired end state and larger costs in the
other elements. The simplest way to do this is to give all other elements the same
cost. This corresponds to initializing the last stage as

V (ξ(N), N) =

{
0 x(N) = xf

C else
(6.4)

where there is no cost when in the desired end state, and C is set to a number
larger than the maximum possible end time based on the given parameters. This is
also the method used for the deterministic system in my project. It does however
have some drawbacks when the system under consideration is stochastic.

Another possibility is to penalise the elements based on how far away they are from
the desired end state.

V (ξ(N), N) =

{
0 x(N) = xf

c(x1, x2, xf ) else
(6.5)

where c is a penalty function. This can be quadratic, linear or a combination of
both. The method is of course more complicated, but can have certain advantages.
If for instance it turns out that the cart is too far away from the end position to ever
reach it within the remaining time horizon, it might just give up if the cost is equal
at all other states. Here one could argue that the cart should try to get as close as
possible to the desired end state even if it can not reach it exactly. This problem
might be avoided by the use of a penalising function. In the calculations carried
out here, we will use a penalty function where only the neighbouring elements has
a reduced cost.

Handling Values Outside of the State Grid

When calculating the sum in the expected cost (5.17), you will at some points hit
values outside of the given grid for y2(t + 1) and θ(t + 1). Since the cart cannot
have a negative velocity, y2(t + 1) < 0 will be punished by a large cost. This is

also the case for θ̂(t + 1) < 0, since this will make the problem infeasible. Values
larger than the maximum chosen in the algorithm can be allowed, but some care
has to be taken. An increase in θ̂ will naturally result in a decrease in the expected
cost, since this will mean that the cart needs less time on breaking to reach a zero
velocity. Extrapolation in the direction of increasing θ̂ may therefore result in an
artificially low expected cost. This can for instant be avoided by using a larger grid
for θ̂, or choosing a different extrapolation method.
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6.4 Parallelization

Parallelization involves simultaneous execution of parts of the code. Dynamic pro-
gramming is well-suited for parallelization, since some of the calculations can be
carried out independently of each other. This can help reduce the time spent on
these calculations. How much the running time can be reduced depends on how
many parallel executions that are available and how much delay the transfer of
information between the processes introduce, among others. It will not be possible
to achieve a reduction to fifty percent of original run time by using two parallel
processes due to this aforementioned delay. There are however a lot of time to save
if there are many calculations to be done or if they require much computational
power each.

It is not uncommon to use parallelization in combination with dynamic program-
ming, due to the large number of calculations that needs to be conducted even
for a reasonably small problem. Maidens et al. (2016) show that the execution
speed of their dynamic programming algorithm is increased through paralleliza-
tion, but also that some care needs to be taken in the coordination of the parallel
processes.

6.4.1 Parallel for-Loops

In MATLAB parallelization can be achieved with the Parallel Computing Toolbox
and the parfor -loop (MathWorks, c). It works like the standard for-loop, except
that the different iterations can be done in parallel. This is achieved through the
use of so called workers in a parallel pool. They receive data from the client,
do most of the calculations and send the results back to the client. The workers
evaluate the iterations independently and in no particular order. If nothing else is
specified, all available workers will be used.

It is not allowed to use nested parfor-loops and it is not possible to calculate
the outer loop in parallel, since the iterations are not independent. If using an
inner loop, multiple parfor-loops will be created. We therefore use the second
outermost loop for parallelization. The main difference compared to the original
implementation presented as pseudo code above, is that the second for-loop is
replaced by a parfor statement. This does however introduce some difficulties. For
instance you have to iterate over integers, such that the iterations cannot be done
in steps ∆ that are not integer. Also, the index variable in a nested for-loop cannot
be used as part of an expression. It can only be used in plain form (e.g. Array(i,j)
and not Array(i,j+1)). This is also true for the for loops that are not parallel as
long as an one of the loops are parallel. Therefore, some reformulations might be
required.

To get even better performance, it is possible to use the Cloud with MATLAB
(MathWorks, b).
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6.5 Experiments

In order to evaluate the theory in practice, multiple experiments are conducted.
Here we will briefly present the tests that are done on each of the problems and the
motivation behind them. First, an overview will be given, and then each problem
will be presented briefly.

6.5.1 Overview

After choosing parameters and running the corresponding DP algorithms, we will
receive the optimal control inputs u∗(x(t), t) dependent on state and time. This
dual control law can then be used for testing.

Common Goals for the Experiments

Experiments are conducted with some variations, on both the examples introduced
in Chapter 4 and 5. The exact form of the experiments varies with the different
examples however, since they have different properties that we want to highlight.
There are nevertheless some common, overall goals for the numerical experiments.
These are as follows:

1. Evaluate different discretization accuracies and computation times.

2. Investigate if parallel for loops can speed up the computation time.

3. Evaluate the behaviour of the dual controller up against the CE controller.

The first item is accomplished by running the DP algorithms with different grids
and investigating the resulting control matrix, or simulating the systems. Timing
of both serial and parallel execution of the code is done in MATLAB, whereas
comparison to the CE controller is conducted through simulation. Both single
simulations to easier observe the difference in the control input and states, and
multiple simulations to obtain a mean performance of the different controllers are
performed.

Simulation

To simulate the systems with the dual control laws, at each time step a lookup in
the table is performed to extract the optimal control to apply to the system. In
these simulations, cubic interpolation is used. For the integrator system, the control
law will be independent of time t. For the cart system it will however depend on
time. The following parameters have to be chosen prior to simulation

• θ̂(0) - Initial estimate of θ

• P (0) - Initial variance of θ
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• x(0) - Initial state value

• N - Time horizon (Not necessarily the same as the one used in the DP
solution, but in the minimum-time problem it has to be equal or less.)

6.5.2 Integrator with One Unknown Parameter

The first problem to be studied is the integrator with one unknown parameter. The
main motivation for this problem, besides investigating the items stated above is
to:

1. Reproduce the dual controller from Åström and Helmersson (1986) and recre-
ate Figures 2 and 3 presented in the article.

2. Compare the dual controller found for the system with original variables to
the dual controller for the normalized system.

By showing that it is possible to obtain similar results as the one produced in the
article, the implementation done in the thesis can in many ways be verified. It also
makes it possible to compare the runtime then and now.

The DP algorithm is executed with different grid sizes from 16× 16 to 128× 128.
The number of iterations is also varied. The system is further simulated with
the dual control law found by the DP algorithm for T = 31. Moreover, a Monte
Carlo simulation is used to compare the performance of the dual controller to a CE
controller and a cautious controller. The CE control used is

uce(t) = −x(t)

θ̂(t)
(6.6)

while the cautious control is

ucautious(t) = − θ̂(t)x(t)

θ̂2(t) + P (t)
(6.7)

Only Gaussian noise and parameter uncertainty are considered. For this problem
it is not as interesting to look at faults in the noise assumptions, since it does not
impact the problem in the same way as it does for the minimum-time problem. All
calculations of the expected cost to go presented in this subsection are done with
n = 52 Hermite points in the interval [−2.5348, 2.5348]. This interval was chosen
after close observation of the expected cost to go calculation.

6.5.3 Integrator with Two Unknown Parameters

The main motivation for the problem with two unknown parameters is to

1. Investigate the typical behaviour of the dual controller through simulation
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2. See how this problem differs from the one with one unknown parameter

The DP algorithm is run three iterations on a 16 × 16 × 16 grid in x, θ1 and θ2.
∆P = 0.25, Pii,max = 2, Pij,max = 1, ∆u = 0.2 and n = 14 Hermite points are
used in the calculation of the control law. The control law used in the simulation is
the one found by the DP algorithm for T = 3. The simulation is done with initial
values x(0) = 0, P (0) = [1 0; 0 1], θ̂(0) = [0.5 0.5]T , while a variance R = 1 was
chosen for the noise.

6.5.4 Cart System without Noise

The motivation behind the minimum-time problem with no noise is to

1. Show how the dual controller handles an unknown breaking coefficient.

The DP algorithms are run with n = 5 Hermite (or Legendre) points, and for all
simulations we have

• Desired end position x1(N) = 1

• Desired end velocity x2(N) = 0

• Initial position x1(0) = 0

• Initial velocity x2(0) = 0

When the noise v is set to zero, the only uncertainty in the system is the breaking
coefficient. The cart system is simulated with calculated dual control laws obtained
with two different methods. One where the a priori uncertainty of the parameter
is assumed to be Gaussian, and the parameter estimation from (3.5) is used along
with a Gauss-Hermite quadrature for approximation of the integral. The second
where the a priori uncertainty of the parameter is assumed to be uniform, and
the parameter estimation from (3.15) and (3.16) is used together with a Gauss-
Legendre quadrature for approximation of the integral. The grid used in the DP
algorithms for x1 × x2 × θ̂ × P are 12× 12× 17× 5.

The simulations are done with a few selected initial values for θ̂(0) to see how the
dual controller behaves in the different situations. Additionally, a comparison with
a CE controller is conducted.

6.5.5 Cart System with Noise

For the minimum-time problem with noise, the testing environment is mostly the
same as for the system without noise, except that v is different from zero. The
main motivation for this problem is to

1. See how the dual controller handles additional noise in the system.

2. See how different uncertainty descriptions can affect the solution.
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The DP algorithm is run with an expected noise component that is normally dis-
tributed with zero mean and variance R = 0.01. The a priori uncertainty of the
parameter is also assumed to be Gaussian, and the parameter estimation from (3.5)
is used along with a Gauss-Hermite quadrature for approximation of the integral.
To evaluate the resulting dual control laws, the system is simulated multiple times
to find the mean deviation from the desired end state. The noise applied in the sim-
ulations will first be drawn from a Gaussian distribution and then from a uniform
distribution.

The possibility of improving the performance of the dual controller by using the
nonlinear parameter estimation, as described in Subsection 3.2.2, is also investi-
gated.
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Chapter 7
Results and Discussion

In this chapter, the results will be presented and discussed. We will look at the
solutions obtained from the DP algorithms presented in Section 6.1 and show their
performance in the experiments introduced in Section 6.5.

All parallel calculations are done in MATLAB with four workers. This is maximum
for the quad-core computer. For the integrator problem, the interpolation method
used was cubic interpolation. This was chosen because it gave the best results for
the given resolution in the state variables. The interpolation method used for the
cart problem was linear interpolation. This was especially to avoid negative values
in the cost function when there were no noise in the system (this can happen
if you use cubic interpolation). Also, for the minimum-time problem, the two
interpolation methods produced very similar results.

7.1 Integrator with One Unknown Parameter

In this section the results for the integrator system with one unknown parameter
will be presented and discussed. First, it will be shown that the dual control laws
obtained for the integrator system with one unknown parameter are similar to
what Åström and Helmersson (1986) found, and some properties of the control law
will be discussed. Later, this will be used to compare with the results from the
system with the original variables. In the end the dual control law will be used in
simulations and its performance will be evaluated relative to a CE and cautious
controller.
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Figure 7.1: Integrator: Dual control laws ν(η = 0, β) for different time horizons T .

7.1.1 The Dual Control Law

The DP algorithm in normalized variables was first executed with a grid size of
16×16 in η and β to produce Figure 7.1. This shows a result similar to Figure 3 in
Åström and Helmersson (1986), except that here all values of T between 1 and 31
are used. The figure illustrates the different probing zones for the different values
of T . As can be seen here, the zone increases with the time horizon. For T = 1
there is no probing, for T = 2 there is probing for β in the interval [0, 0.3] and so
on. For a CE controller the control input will be zero everywhere when η = 0. The
figure also clearly shows that the dual control law is discontinuous. For large T
you can notice that the tail differs a little from Figure 3 in Åström and Helmersson
(1986). This is due to the resolution of the grid. In Figure 7.2 the same result is
shown as a surface plot. Here it is easy to see how the solution is also nonlinear
in time. For small T the input changes a lot in only one step. When T increases
however, you can see that there is little difference. As Åström and Helmersson
(1986) pointed out, the difference in the control policies for T = 100 and T = 31
is very small. They found that |ν100 − ν30| < 0.012 for all η and β. This is also
consistent with the results from the experiments conducted in this thesis.

As mentioned in Section 6.2, the number of Hermite points used is important due
to discontinuities. If the number of points is not sufficient, this can lead to a zigzag
pattern in ν(η, β), especially for large T . The results shown here are found with
n = 52 Hermite points in the interval [−2.5348, 2.5348]. The optimal number of
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Figure 7.2: Integrator: Surface plot of dual control laws ν(η = 0, β) for different time
horizons T .

points is not found, but the ones used in these calculations seem to be sufficient for
the given grid. Alternatively, you could divide the integration area into multiple
intervals as was done by Åström and Helmersson (1986). They used Simpson’s
algorithm to approximate the integral.

Another difficulty first observed by Åström and Helmersson (1986), is that when
calculating the integral in the expected cost to go, you use a set of points in the
state space and interpolate for the values between these. The resulting expected
cost with the given control ν is calculated as a weighted sum of discrete points.
When the control is varied, the set of points used is varied and consequently the
interpolation area can also change. This can lead to artificial local minima. To
minimize the impact of this, it may help to increase the resolution of the state grids.
Regardless, it is important to be aware of these difficulties for the solution to be
of a certain quality. Thorough investigation of both the problem and solution
is necessary to get a complete understanding of all the elements that affect the
problem.

Figure 7.3 is similar to Figure 2 in Åström and Helmersson (1986). To produce
this figure, the normalized variables η and β are represented by

η′ =
η

1 + η
(7.1)
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Figure 7.3: Integrator: Dual control laws for T = 31 (upper) and T = 3 (lower) found
with normalized variables.
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Figure 7.4: Integrator: Dual control laws for T = 3 with P = 1 (upper) and P = 0.25
(lower) found with original variables.
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β′ =
β2

1 + β2
(7.2)

while the control is scaled as

µ =
νβ

η
(7.3)

Figure 7.4 shows the result obtained with the original variables for two different
values of P and T = 3. The variables x and θ are represented by

x′ =
x

1 + x
(7.4)

θ′ =
θ̂2

1 + θ̂2
(7.5)

while the control is still the same. In original variables it is equal to

µ =
uθ̂

x
(7.6)

It can be noted that for P = 1 and R = 1, the two representations are identical.
The results shown in Figures 7.3 and 7.4 are found for a 64× 64 grid in η and β or
x and θ̂, respectively. Also, ∆ν = ∆u = 0.002 and ∆P = 0.25. The resolutions of
the grids were increased to remove numerical errors.

The reason Åström and Helmersson (1986) chose this representation was that CE

control is the plane µ = 1 and cautious control is the plane µ = β2

1+β2 . This
makes it easy to compare the dual controller to the two other controllers. It can
be observed from Figure 7.3 that the dual controller approaches the CE controller
when the parameter uncertainty represented by β is large. When the control error
η is large however, the dual controller agrees with a cautious controller.

If you compare the result for the normalized variables at T = 3 in Figure 7.3 with
the result for the original variables with P = 1 in Figure 7.4, you see that they are
not identical. A reason for this can be the coarse grid used for ∆P = 0.25. Despite
this, you see that they have a lot in common. It can also be seen that for P = 0.25,
the volume of the spike is less than for P = 1. When the variance is smaller, there
will be less probing.

We have seen that it is possible to achieve similar results both with and without
using normalized variables. For a system without normalization, the DP algorithm
will produce a control law that will also depend on P . By using the control policies
found for P = 1, you can produce almost identical results. The solution is how-
ever also dependent on the grid used for P , which therefore has to have a certain
resolution for the results to be adequate. This is apparent especially for higher T .
Both representations have some advantages. Clearly the greatest advantage with
the normalization is the independence of P , and consequently the shorter runtime
for the DP algorithm. In addition, it highlights the importance of the ratio of pa-
rameter estimate and variance. On the other hand it can be informative to study
the solution for different values of P , while keeping θ̂ constant.
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7.1.2 Simulation

To demonstrate the performance of the dual controller found, simulations are per-
formed. First, a typical example of a single simulation will be given. Later, the
results from a Monte Carlo approach that compares the controller with a CE con-
troller and a cautious controller will be shown.

Prior to the simulation, the DP algorithm was run on a 16× 16 grid. The control
law used in the simulation is from T = 31. The behaviour of the controller will
depend on which T the control law used in the simulation is calculated from. This
is especially the case for small T , as was shown in Figure 7.2. The control law used
in the simulations shown here is obtained with the DP algorithm for the system
with normalized variables. The same result would however be obtained by using
the dual control law for the system in original variables.

The system was simulated with the following set of variables: θ̂(0) = 1, P (0) = 4,
x(0) = 0, R = 1, N = 25. The result from the simulation can be seen in Figure
7.5. This shows the optimal control input and state simulated over the given time
horizon. You can see from the figure that the dual control is different from the CE
control at the beginning when the uncertainty is large, but very similar after about
five steps. This is approximately the same time as the uncertainty is approaching
zero.

Notice also that the control input is different from zero at time t = 0, even though
the state is zero (as was shown in Figure 7.1). In addition, it can be seen that
the dual controller not only excites the system to learn, but that it can be more
cautious than a CE controller if the uncertainty related to the parameter is large
and there are large control errors.

Monte Carlo Simulations

The system was simulated multiple times with the same initial values θ̂(0), P (0)

and x(0), and θ drawn from a Gaussian distribution with mean θ̂ and variance P .
Tables 7.1 and 7.2 show the mean cost for 10 000 simulations with a time horizon
N = 25. Table 7.1 shows how the mean cost varies for different values of P (0)

when θ̂(0) = 2 is constant. Table 7.2 on the other hand, shows how the mean cost

varies for different values of θ̂(0) when P (0) = 1 is constant.

Table 7.1: Integrator: Comparison of dual, CE and cautious controller. Mean cost over
10 000 simulations for θ̂(0) = 2.

P (0) 1 4 7 10
Dual 29 37 42 47
Cautious 30 48 53 58
CE 278 107 103 105

49



Figure 7.5: Integrator sim 1: System with one unknown parameter simulated with the
dual control law.
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Table 7.2: Integrator: Comparison of dual, CE and cautious controller. Mean cost over
10 000 simulations for P (0) = 1.

θ̂(0) -4 -3 -1 1 3 4 7 10
Dual 26 26 32 32 26 26 25 25
Cautious 26 26 46 46 26 26 25 25
CE 26 30 103 103 42 26 25 25

Table 7.1 and 7.2 clearly show that the mean cost is large with the CE controller
compared to the two other controllers. It should also be noted that there are large
variations in the mean cost with this CE controller when the initial parameter
estimate is small relative to the initial variance. Therefore, the cost shown for the
CE controller will vary if the simulation is executed multiple times. The high costs
are due to estimates θ̂(t) ≈ 0. This leads to the CE controller applying a very high
control input to the system. Therefore, for small values of the parameter relative to
the variance, this CE controller is not the best choice. This is not a problem with
the dual or cautious controller. For a large parameter estimate |θ̂(0)| = 4 and a
low relative variance P (0) = 1, the three controllers have a very similar behaviour.

It can also be noted that the cost is symmetric in θ̂(0).

The clear advantage of the dual controller compared to the other two controllers
is apparent when the variance is large relative to the parameter estimate. This is
due to the experimentation conducted by the dual controller. There do however
exist more sophisticated heuristic adaptive controllers than the ones shown here,
that may have a better performance.

7.2 Integrator with Two Unknown Parameters

In this section, a simulation with the dual control law obtained for the integra-
tor system with two unknown parameters will be presented. Since this problem
requires significantly larger computation time than the system with one unknown
parameter, the DP algorithm was only executed N = 3 iterations.

The control law used in the simulation is from T = 3. The simulation was done
with initial values x(0) = 0, P (0) = [1 0; 0 1], θ̂(0) = [0.5 0.5]T , while the true
parameters were θ = [1 1.5]T . The noise has variance R = 1. Results from a
typical simulation can be found in Figure 7.6.

In general, the dual controller appears to be a lot more aggressive than the CE
controller for this problem. If the parameter uncertainty for one parameter is set
to zero however, the behaviour is exactly as the one found for the system with only
one unknown parameter. This can be said to verify parts of the dual controller
shown here. A reason for the controller using what might be an excessive amount
of control input, is that the uncertainty does not decrease enough. Moreover, when
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there are two unknown parameters, there is an extra term corresponding to the
covariance that is different from zero.

Since the extension to two unknown parameters means introducing three new hy-
perstates, the DP algorithm has an exponential increase in runtime. Therefore,
the grids used for this solution is coarser than for the system with one unknown
parameter. Furthermore, the number of Hermite points is much smaller. Since
the result is found only for T = 3, this might be sufficient. At least for a T of
this magnitude, it did not introduce any error to the system with one unknown
parameter.

7.3 Runtime for the DP Algorithms for the Inte-
grator System

This section will present the runtime for the DP algorithms and see how this varies
for the different versions of the integrator problem that we have looked at, and for
different sizes of the state grid.

Table 7.3 shows the runtime for one iteration of the DP algorithm for the integrator
system with original variables. Runtime for the systems with both one and two un-
known parameters are given. It can be seen that the reduction in runtime obtained
by parallel computations for the system with two unknown parameters is much
larger than for the system with one unknown parameter. By using parallelization
for this system, it is possible to achieve a runtime of almost one third of the serial
program. The reason for this is that there is a very large number of calculations
done for each worker, compared to the system with only one unknown parameter,
resulting from the three extra for-loops.

Table 7.3: Integrator: Runtime of DP algorithm for original variables with one and two
unknown parameters, respectively. Grids used are 16×16×9 and 16×16×16×9×9×5.
∆u = 0.2 and |umax| = 5.

Grid size 16× 16
One unknown Parallel 1.0 s

Serial 1.0 s
Two unknowns Parallel 3380 s

Serial 9331 s

Table 7.4 shows the result for different sizes of the grid for ν and β or x and θ̂ from
16× 16 to 128× 128. This is also for a single iteration of the algorithm.
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Figure 7.6: Integrator sim 2: System with two unknown parameters simulated with the
dual control law. (Dotted lines are true parameter values.)
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Table 7.4: Integrator: Runtime of DP Algorithms for different grid sizes. The result is
for a system with one unknown parameter. ∆ν = ∆u = 0.01, |umax| = 10 and 5 points is
used to represent P for the original variables.

Grid size 16× 16 32× 32 64× 64 128× 128
Normalized variables Parallel 3 s 11.5 s 44 s 173.5 s

Serial 4.5 s 17 s 67 s 274.5 s
Original variables Parallel 17.5 s 71.5 s 275 s 1127 s

Difference in runtime with and without normalized variables for one iteration is
naturally large, due to the extra variable in the system of original variables. The
grid for the extra variable also influences the runtime. Despite the grid for P being
relatively coarse in these calculations, the runtime for the system with the original
variables is much larger.

One iteration of the algorithm for a 64 × 64 grid in η and β for the normalized
system took just above 40 seconds. In comparison Åström (1983) documented that
their program required 180 CPU-hours for solving the problem for T = 30 on their
DEC VAX 11/780. This means that one iteration of the Bellman equation took 6
hours, which is about five hundred times as much as for our program. Clearly, it
has been a major development in the hardware since then.

The parallelization in the DP algorithms is done in η. This means that the number
of iterations for the workers increase with the grid size. From both Tables 7.3 and
7.4, we can see that the runtime is reduced with the parallel for loop. However, the
runtime is still more than half of the runtime compared to the program without
parallelization, even though there are four workers. A reason for this is that some
matrices are required as a whole in the inner loops. MATLAB then sends the entire
matrix to each worker, resulting in high data communication overhead. Despite of
this, there is definitely possible to reduce runtime by parallelization of the code.
There may also be possible to do this in a more sophisticated manner. Here we
have only used the built in function in MATLAB. It might be possible to do even
better with a custom made function for our system.

7.4 Cart System without Noise

In this section the results from the experiments with the dual controller for the
cart system without noise will be presented and discussed.

As mentioned in Section 6.3, it is not trivial to find the optimal stopping time for the
DP algorithm. Experimentation is therefore used to choose an end time tf . Table
7.5 illustrates the deviation from the desired end state when simulating the cart
system with the dual control law from two different values of the initial parameter
estimate, and with different end times. The deviation is defined as

εx := |x1(N)− x1f | (7.7)
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εv := |x2(N)− x2f | (7.8)

where x1f and x2f are the desired end position and end velocity, respectively.

The result shown here indicates that the optimal end time at least should be
tf ≥ 2.1. Since there are little or no improvement by simulating longer than this,
tf = 2.1 is chosen in the simulations shown here.

Table 7.5: Minimum-time: Deviation from desired end state for different values of tf
and θ̂(0), without noise. The result shown is for P (0) = 1 and θ = 1

θ̂(0) = 0.25 θ̂(0) = 2
tf = 2.0 εx = 0.08, εv = 0.16 εx = 0.37, εv = 0.93
tf = 2.1 εx = 0.02, εv = 0.02 εx = 0.02, εv = 0.03
tf = 2.2 εx = 0.01, εv = 0.03 εx = 0.02, εv = 0.03
tf = 2.3 εx = 0.02, εv = 0.03 εx = 0.02, εv = 0.03

The dual control laws obtained for the system with a uniform and Gaussian a
priori distribution for θ was used in the simulation. Both these approaches did, as
expected, produce the same result in the simulations. Figure 7.7 shows the result
from a simulation with initial estimate θ̂(0) = 2 and covariance P (0) = 1, and
Figure 7.8 shows the result from a simulation of the system with initial estimate
θ̂(0) = 0.25 and covariance P (0) = 1. Since there is no noise in the system, a
correct parameter estimate is found in both simulations within only one time step.
The deviation from the desired end state is, as shown in Table 7.5, εx = 0.02 and
εv = 0.03 in the first simulation and εx = 0.02 and εv = 0.02 in the second. It
should be noted however that due to the discretization used, there will be an error
of the same magnitude even for the deterministic system. A grid with a higher
resolution will decrease this error, but also increase runtime.

The discrete space approximation is also the main reason for the oscillations in the
input signals. This is especially apparent in Figure 7.7. The optimal control law
that the DP algorithm chooses, and which is shown here, is just one out of multiple
equally good solutions. Even though increasing the resolution of the grid used for
position x1 could decrease the deviation from the desired end position, it also
strengthens the need for a proper initialization of the cost matrix. If ∆x1 = 0.01
is used and x1(N) = 1.01 has the same cost as x1(N) = 0 for instance, this will
result in the cart having trouble reaching the final destination.

As can be seen from the figures, the dual controller introduces a nonzero input signal
u2 prior to the estimated switching times. For θ̂(0) = 0.25, this happens already
after one step. Since the cart has to have a nonzero velocity before breaking, it can
not break at t = 0. For θ̂(0) = 2 on the other hand, the breaking does not appear

until t = 0.9. This suggests that when the initial guess of the estimate θ̂(0) is small
relative to the initial variance P (0), the cart will break earlier and thereby decrease
the uncertainty related to the parameter faster. This is also intuitive, since a less
sensitive break is less likely to result in a large cost. When the initial estimate is
large however, the breaking will not begin until later, since the probability that
this may lead to a very small (or negative) velocity is too high. Negative velocity
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Figure 7.7: Cart sim 1: System without noise simulated with dual control law. Initial
estimate θ̂(0) = 2 and variance P (0) = 1.
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Figure 7.8: Cart sim 2: System without noise simulated with dual control law. Initial
estimate θ̂(0) = 0.25 and variance P (0) = 1.
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Figure 7.9: Cart: Dual control law u∗(y1 = 0, y2 = 0.1, θ̂, P = 1) at t = 0.1 for tf = 2.1

is impossible in practice, and is therefore represented as a high cost in the DP
algorithm.

As Figure 7.9 shows, there is a nonlinear relationship between the estimate and
the dual control law. At the second time step, the dual controller will add a
perturbation signal for θ̂ ≤ 0.75. These values for the parameter estimate also
correspond to expected end times tf > 2.1 calculated from (5.8) for a deterministic
system. The best course of action will also depend on how much time you want to
use. It can be possible to achieve a smaller deviation from the end state by using
longer time.

A CE controller would not have shown the same behaviour as the dual controller
that has been presented here. It would rather have started breaking after the
optimal switching time, as shown in Figure 5.2. In this example, the deviation
from the desired end state at time t = 2.1 is εx = 0.39 and εv = 0.3. Hence, the
dual controller clearly has some advantages over the simple CE controller for these
types of optimal control problems. It should also be noticed that the optimal end
time found with dual control can be larger than with a CE controller, but that the
end conditions should be better. Therefore one cannot necessarily only compare
the optimal end times found.

7.5 Cart System with Noise

This section will investigate how the dual controller can handle both Gaussian and
uniformly distributed disturbances in the system.

The result shown in Table 7.6 is obtained with the DP algorithm for a system that
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is assumed to have an unknown parameter and noise that are normally distributed.
The inclusion of normally distributed noise is properly handled by the dual con-
troller. The mean deviation from the end state is not much larger for this system
than the system without noise, and the behaviour is otherwise very similar to what
was shown in Figure 7.7 and 7.8 for the two different initial parameter estimates.
It can however be seen from the results that for this particular system, applying
noise from a different probability distribution can have a big impact. For tf = 2.1,
the mean error in position is six times as large for the system that has been applied
noise drawn from a uniform distribution.

The numbers in the parentheses show the resulting mean deviations if the nonlin-
ear parameter estimation is used in the simulations with the uniformly distributed
noise. This indicates that εx can be reduced with the nonlinear parameter es-
timation, even though the reduction is minimal. It can be noted that the mean
deviation from desired end velocity, εv is not necessarily as informative as εx. Since
the initial state is x(0) = [0 0]T , the cart will have εv = 0 at time t = 0.

Table 7.6: Minimum-time: Mean deviation from desired end state over 5000 simulations,
for different values of tf and probability distributions for v. θ̂(0) = 0.25, P (0) = 1 and
θ = 1.

Distribution of v(t) Gaussian Uniform
tf = 2.0 εx = 0.41, εv = 0.32 εx = 0.47(0.43), εv = 0.26(0.34)
tf = 2.1 εx = 0.09, εv = 0.02 εx = 0.36(0.29), εv = 0.13(0.14)
tf = 2.2 εx = 0.04, εv = 0.02 εx = 0.20(0.16), εv = 0.05(0.05)
tf = 2.3 εx = 0.04, εv = 0.02 εx = 0.15(0.11), εv = 0.04(0.04)

In Subsection 3.3.1 it was suggested that it might be possible to derive a DP al-
gorithm that could better handle disturbances drawn from a uniform probability
distribution by improving the parameter estimation method. As described there,
the assumption that the noise and parameter are uniformly distributed introduces
some difficulties due to the resulting distribution of the sum of the two uniformly
distributed variables not being uniform. It was therefore, based on simulations,
proposed that it might be sufficient to still use a Gauss-Hermite quadrature to
approximate the expected cost to go. This method with the nonlinear param-
eter estimation and the Gauss-Hermite quadrature did however not produce an
adequate result in the calculations done here. It could be possible to pursue the
method further by finding weights based on the probability distribution function
of the sum directly, but I am not sure that it will be the best use of time. After all,
the difference in mean variance for the two parameter estimation methods found
in the example in Subsection 3.2.2 was less than 0.01 when the noise was in the
interval [−1, 1]. For this minimum-time problem, the interval is even smaller and
therefore it will most likely not be much to gain by pursuing this path for the
problems considered here. If however the variance had been very high, it might be
more to gain as was shown in the previously mentioned example.

It can be that there were other problems related to for instance initialization of the
cost matrix that could have improved the results for the method with nonlinear
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parameter estimation and the Gauss-Hermite quadrature. The results indicate that
much of the reason for the increase in the deviation from the desired end state is
due to the controller giving up. Therefore, it might also be possible to achieve
better results with the dual controller derived with the Gaussian assumption when
the noise is drawn from a uniform distribution, by giving the end conditions more
consideration.

7.6 Runtime for the DP Algorithm for the Cart
System

In this section we will present the runtime for the DP algorithm for the minimum-
time problem and see how this varies for different sizes of the state grid. Table
7.7 shows the runtime for one iteration of the DP algorithm with and without
parallelization for the given grids.

Table 7.7: Minimum-time: Runtime of DP Algorithm. ∆u = 0.1, |umax| = 1 and grid
is given by x1 × x2 × θ̂ × P .

Grid size 12× 12× 17× 5 111× 12× 17× 5
Parallel 10 s 69 s
Serial 12.5 s 113 s

As one can expect, the runtime for the problem with an increased resolution in
x1 is many times that of the coarser grid. The runtime shown in the table is for
the program where parallelization is done in the state x1. Exchanging the two
states x1 and x2 for the grid where the resolution of x1 is increased, such that the
parallelization is done for x2, results in a longer runtime of about five seconds for
each iteration of the algorithm.

7.7 Common Observations

Solving adaptive optimal control problems with dynamic programming is challeng-
ing, and the many different factors affecting the problem make it difficult to analyse
the solutions obtained. These factors range from discretization of the continuous
space and how to handle values outside of the grid and in between the discrete
values, to parameter estimation and numerical approximation of the integral in the
Bellman equation. There are a lot of choices to be made, and it is important to
remember that these choices can have not only an individual effect on the dual
controller, but also the interplay between them has to be considered. Moreover,
every problem is different and what works for one problem does not necessarily
work for the next.

Small changes in the implementation can have a great impact on the solution.
Runtime depends heavily on choices done in the implementation, since there are
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a lot of computations to be done. Most of the runtime for the DP algorithms is
however spent on the interpolation. The programs were not written with the main
focus on runtime, and it is therefore most likely room for improvement. It has
nevertheless been given some consideration, and I believe that what is found here
is a good example of what is possible to achieve with the current computational
power.

The two main problems presented in this thesis are in many ways very different,
but the main features of a dual controller are present for both the problems. Al-
though the dual controllers designed in this thesis performed well, the method is
unfortunately still not scalable to larger systems. Therefore, it is interesting to ex-
plore alternative methods that can provide the same dual properties. Wittenmark
(2002) suggested designing a cautious controller and adding a perturbation signal
to the system to increase learning. The additional signal can be white noise for
instance. This was also shown by La et al. (2016) in their example with a tractor
passing a corner. They found that measurement noise improved the parameter es-
timates by acting as an excitation signal. The major drawback with this method is
naturally that it is not possible to apply this signal in any systematic way. Heirung
et al. (2015) on the other hand, derived a more systematic approach by adding a
term representing the uncertainty to the objective function. Their controller con-
verged to a CE controller when the uncertainty was decreased and thereby avoided
unnecessary loss.

As we have seen here, dual control adds a lot of complexity to the problem, so
it is not necessarily the best solution in general. There are however certain sit-
uations where it can be worth the extra effort. Åström and Wittenmark (2013)
mention especially the situations where you have a very short time horizon and it
is important to get a good estimate of the unknown parameters immediately and
when the parameter is varying rapidly and can change sign. Even though only
constant parameters are considered in this thesis, Åström and Wittenmark (2013)
showed that the same methods can be used for a system with varying parameters.
As we have demonstrated here, the minimum-time problem with conditions on the
end state is also a typical problem where dual properties of the controller can be
desirable.
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Chapter 8
Conclusion and Future Work

This thesis has given an overview of adaptive optimal control problems and how to
solve them using dynamic programming. Multiple problems have been formulated
and solved numerically. It has been shown that it is possible to reproduce the
solution to the dual control problem first solved by Åström and Helmersson (1986),
and how the problem can be extended to include two unknown parameters. Also,
dual control has proved to give an elegant solution to a minimum-time problem
with an unknown breaking coefficient. Different parameter estimation methods
have been derived and the effect of introducing noise to the control problem has
been investigated. Experimentation with the dual control laws has illustrated how
the optimal solutions to adaptive control problems manage to be both cautious and
to work actively to reduce the uncertainty related to the model parameters. It has
been demonstrated how this distinguishes the dual controller from some ordinary,
heuristic adaptive controllers.

Calculations with different discretization accuracies indicate that the runtime de-
pends heavily on the grids used. It is shown that one iteration of the DP algorithms
can be done within a matter of seconds on a fairly large grid for the problems with
one unknown parameter. The extended problem with two unknown parameters
illustrates how the curse of dimensionality affects the problem with a drastic in-
crease in runtime. Despite this, it is shown that it is possible to solve this problem
with dual control too, and that the resulting control law possesses the same prop-
erties as for the system with one unknown parameter. Results from calculations
for all the problems also clearly indicate that runtime for the DP algorithms can
be reduced by running the calculations in parallel.

For the future, it can be useful to improve the algorithms made in the thesis,
to investigate further the possibility of reduced runtime and memory usage. Es-
pecially for the problem with multiple unknown parameters, where the runtime
is the longest. If the runtime for this problem can be reduced, it will be easier
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to run more experiments that can contribute to an even deeper insight. For the
minimum-time problem, it can be advantageous to look closer into the derivation
of a proper stopping criteria and a penalty function for the initialization of the cost
matrix. Possible improvements could contribute to a more robust dual controller
for this problem, and perhaps better performance in the presence of uniformly dis-
tributed noise. Additionally, it would be interesting to compare the results from
this approach with DP to other suboptimal controllers. Furthermore, it can be a
lot to gain on using the new insight obtained about AOCP and DP to investigate
approximate methods for active excitation.
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Appendix A
Statistics

A.1 Uniform Distribution

The uniform probability distribution is described by an interval [a, b], where the
random variable can be found anywhere with equal probability. The expected value
of a uniformly distributed random variable X is

µ = E[X] =
a+ b

2
(A.1)

while the variance is

σ2 = V ar(X) = E[X2]− E[X]2 =
(b− a)2

12
(A.2)

It has the probability density function

f(X = x) =

{
1
b−a a ≤ x ≤ b,

0 else
(A.3)

with a and b upper and lower limits of the interval, respectively. In terms of mean
and variance this can be expressed as

f(X = x) =

{
1

2σ
√

3
−σ
√

3 ≤ x− µ ≤ σ
√

3,

0 else
(A.4)

This suggests that a = µ− σ
√

3 and b = µ+ σ
√

3.

The expected value of a function m(X), where X is a uniformly distributed random
variable can be found from

E[m(x)] =

∫ σ
√

3+µ

−σ
√

3+µ

f(x)m(x)dx =

∫ σ
√

3+µ

−σ
√

3+µ

1

2σ
√

3
m(x)dx (A.5)
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A.2 Normal Distribution

The normal probability distribution is bell shaped, with the largest probability
centred at the expected value of the random variable X

µ = E[X] =

∫ ∞
−∞

xf(x)dx (A.6)

and with variance
σ2 = E[X2]− E[X]2 (A.7)

and probability density function

f(X = x) =
1√

2πσ2
e−

(x−µ)2

2σ2 (A.8)

The expectation of a function m(X) that depends on the random variable X, is
given by the following expression

E[m(x)] =

∫ ∞
−∞

m(x)
1√

2σ2
xπ
e
− (x−µx)2

2σ2x dx (A.9)
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