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Abbreviations 

 
ACT   Antenno-cerebral tract 

AL   Antennal lobe 

APT   Antenno-protocerebral tract 

GABA   -aminobutyric acid 

ISA   Iterative shape averaging 

KC   Kenyon cell 

l-   lateral 

LH   Lateral horn 

LP   Lateral protocerebrum 

m-   medial 

MB   Mushroom body 

ml-   medio lateral 

OA   Olfactory axis 

ORN   Olfactory receptor neuron 

PN   Projection neuron 

SBA   Standard brain atlas 

SBAGl  Standard brain atlas with glomeruli 

SP   Superior protocerebrum 

SOG   Subesophageal ganglion 

VIB   Virtual insect brain 
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Introduction 
 

Sigmund Freud ones said that the organic sublimation of the sense of smell is a factor of 

civilization. For ages the sense of smell was considered a primitive and bestial sense 

which represented a lower cognitive function and the sublimation lifted humans up to a 

higher cognitive level clearly separated from other animals. In everyday life you may not 

think so much of this sense unless you are actively using it to decide the condition of a 

box with expired milk or if it is to feel the rich and wonderful odors from a white rose. 

An odor plume might also unexpectedly struck you with an indescribable magnitude 

which catches you’re full attention and you suddenly find your self fully engaged in 

identifying the source so you can get away. Odors also have the power to recall distant 

memories and make them intimate in a way that fills you with emotions. So, how would 

life be without the sense of smell? Anosmia or odor blindness can be experienced in 

various degrees from insensitivity to some odors (hyposmia) to the total lack of 

sensibility. People that have lost the sense of smell reports reduced appetite, loss of 

weight, malnutrition, depression and anxiety. A serious problem is also the lack of ability 

to sense more dangerous odors like smoke and gas. Freud might have been right when he 

said that social human beings have sublimed this sense but even though we are less aware 

and dependent on olfaction for survival, it still affects our functioning and quality of life 

to a great extend. Most other animal species from mammals to insects are highly 

dependent on this sense which can be seen when a new born pup finds his mothers breast 

for the first time or when a female moth searches for a suitable plant for laying her eggs. 

Besides being important, olfaction is also involved in almost all aspects of an animal’s 

life from feeding, navigation, communication, mating and danger avoidance to learning 

and memory formation.  

 

The olfactory system in mammals and invertebrates 

Both mammals and insects have olfactory receptor neurons (ORNs) that are activated 

upon the binding of air born molecules called odorants. In insects, the ORNs have their 

dendrites with the membrane receptor proteins placed in sensilla that are usually found on 

the antennae and on mouth parts. In mammals the ORNs dendrites, which holds cilia with 
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receptor proteins, are embedded in the mucosa of the olfactory epithelium in the nose 

cavity (Shepherd, 2006; Sachse and Krieger, 2011). Each ORN expresses only one or 

exceptionally two to four odorant receptor types (Mombaerts, 2004; Vosshall and 

Stocker, 2007). The number of expressed receptor types varies in different animal species 

from around fifty in the fruit fly to about 400 in humans and chimps and up to over a 

thousand in mouse and dogs.  The receptor neurons send information about odor 

molecules via their axons to glomeruli in the primary olfactory centre, the antennal lobes 

(AL) in insects and the olfactory bulb in vertebrates. Since each receptor neuron type 

project axons to only one or two of the numerous glomeruli, the number of glomeruli in 

the primary olfactory centre is correlated to the number of expressed receptor types. Thus 

the numbers are species specific, ranging from fifty to several hundreds in insects and up 

to more than a thousand in some mammals. The primary olfactory centre is a 

sophisticated processing centre where the multidimensional odor information mediated 

by the ORN axons is transformed into complex activity patterns among the glomeruli of 

the neuronal network (Lledo et al., 2005). From the primary olfactory centre the 

processed information is transferred through parallel pathways to higher brain areas 

where the olfactory information is further processed and integrated in the neuronal 

networks (Galizia and Rössler, 2010; Nagayama et al., 2010). In mammals some of the 

major target areas of the olfactory bulb tracts are the olfactory cortex (including the 

piriform cortex) and the limbic system (with the hippocampal formation which is 

important for several types of memories, hypothalamus and amygdala which are closely 

associated with emotional responses (Greenstein and Greenstein, 2000; Shepherd, 2006). 

In invertebrates the major target areas of the AL tracts are the Mushroom Bodies (MB) 

which is important for learning and memory, the superior protocerebrum (SP) proximate 

to and closely associated with the MB lobes, and the lateral- protocerebrum and horn 

(LP/LH). The LP also contain a premotoric area (Menzel and Giurfa, 2001; Heisenberg, 

2003; Gerber et al., 2004).   

 

A foundation of primary plant odorants 

Through the research work in our lab we seek a better understanding on how relevant 

olfactory information is coded in the neuronal networks of the brain. In achieving this we 
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have focused our research on a model insect, the American tobacco budworm moth, 

Heliothis virescens. This moth belongs to the sub family Heliothinae consisting of more 

than 80 species, several of them considered as major pest insects in agriculture causing 

severe damage for instance in cotton fields (Fitt, 1989; Matthews, 1991). Many insect 

species, including moths have an excellent sense of smell. Their well developed olfactory 

system and simple brain with relatively few neurons that are fairly accessible for 

physiological and morphological studies have made insects important and widely used 

models for studying the function of the nervous system. Previous studies that were 

carried out in our lab have provided knowledge about biologically relevant plant odorants 

detected by the ORNs in three closely related moth species, H. virescens, Helicoverpa

armigera og Helicoverpa assulta. In these studies electrophysiological recordings from 

single receptor neurons linked to gas chromatography and mass spectrometry have 

revealed a high degree of specificity among these ORNs. Many primary plant odorants 

was identified, each activating one ORN type. Only one of these odorants, linalool, 

activated weakly a second ORN type that was primarily activated by geraniol (Stranden 

et al., 2002; Stranden et al., 2003a; Stranden et al., 2003b; Røstelien et al., 2005). 

Numerous studies on olfactory receptor neurons of other insect and vertebrates species 

have been performed by directly testing available odorants. These studies have shown 

some narrowly tuned but mostly broadly tuned ORNs with a wider molecular receptive 

range (De Bruyne et al., 1999; Malnic et al., 1999; De Bruyne et al., 2001; Shields and 

Hildebrand, 2001; Hallem and Carlson, 2006; Nara et al., 2011). The identification of the 

primary odorants in H. virescens laid the foundation for investigations of how the 

olfactory information is further handled and coded by the neuronal networks in the brain 

of this moth. By combining sharp in vivo electrophysiological recordings with staining 

and visualization techniques of neurons in the primary olfactory centre and higher 

olfactory areas of the brain, the neuronal networks involved in the sense of smell in this 

model insect could be elucidated (paper I, II and III).   

 

Standard brain atlases 

The relatively small sized brain of H. virescens and other insect species is advantageous 

when studying connectivity between different brain regions, because the projections 
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between the neuropils can be kept intact. Resolving the functional connectivity in the 

neuronal networks is crucial for understanding how the system operates. One challenging 

aspect in using intracellular recording and staining techniques for this purpose is to 

spatially relate and visualize morphological data acquired from different brain 

preparations. To meet this challenge, digital brain atlases (SBAs) have been made for 

several insects species (fruit fly (Drosophila melanogaster), Rein et al., 2002; honeybee 

(Apis melifera), Brandt et al., 2005; locust (Schistocerca gregaria), Kurylas et al., 2008) 

including two moth species, H. virescens (paper I) and the hawk moth (Manduca sexta, 

Jundi et al., 2009). Two different methods have been used, the iterative shape averaging 

(ISA) procedure originally developed for studies on the honeybee (Rohlfing et al., 2001; 

Brandt et al., 2005) and the virtual insect brain (VIB) procedure developed for the fruit 

fly (Jenett et al., 2006). One principal difference between these two procedures is that 

ISA reduces anatomical variability, whereas VIB preserves it (Jundi et al., 2009). Various 

neuropils have been included in the different SBAs according to requirements in the 

projects and the visibility of the different brain structures. The SBA with its neuropils 

serves as a common framework where physiologically and morphological characterized 

neurons from different preparations can be integrated in order to visualize neuronal 

projections and possible functional connectivity. Intensity based transformation 

techniques based on raw data images have also been developed (Rohlfing et al., 2004; 

Jefferis et al., 2007). Separate atlases of sub-brain compartments like the ALs has been 

made in several insect species, including H. virescens (Rospars and Chambille, 1981; 

Flanagan and Mercer, 1989; Stocker et al., 1990; Galizia et al., 1999a; Laissue et al., 

1999; Rospars and Hildebrand, 2000; Chiang et al., 2001; Berg et al., 2002; Smid et al., 

2003; Greiner et al., 2004; Huetteroth and Schachtner, 2005; Masante-Roca et al., 2005; 

Skiri et al., 2005; Staudacher et al., 2009; Varela et al., 2009; paper II). Because these 

atlases often are based on confocal microscopy scans of higher resolution than the SBAs, 

they contain more precise and detailed spatial information about the selected neuropile 

architecture.  

 

The sharp intracellular recordings in the olfactory and the gustatory system in of H.

virescens generated physiologically and morphologically characterized neurons (Kvello 
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et al., 2010; paper I, II and III) as illustrated in Figure 1. In order to understand how the 

processed information in these neurons were integrated and distributed through the 

networks of the brain, it was important to develop the SBA of H. virescens. Integration of 

all glomeruli from the high resolution antennal lobe atlas into the SBA, resulted in the 

SBAGl, in which both glomerular arborisation and protocerebral projections of projection 

neurons (PNs) of the AL could be visualized.   

 

 

 

 

 

 

 

 

 

 

 

 

    
 

 

 

 

 

 

The primary olfactory centre 

Mainly three types of neurons make connections in and among the numerous glomeruli in 

the insect AL, the receptor neurons, local inhibitory neurons which connect most or all 

glomeruli of the AL and uni and multiglomerular PNs (Stocker et al., 1990; Sun et al., 

1993a; Sun et al., 1997; Ng et al., 2002). In the AL of the fruit fly also excitatory local 

interneurons have been described (Olsen et al., 2007; Shang et al., 2007). The local 

 
Figure 1: Illustration photo of data acquired from the 
intracellular recordings and staining experiments. Three 
olfactory and two gustatory neurons have been transformed 
into the SBAGl. Photo: Bjarte Bye Løfaldli/Pål Kvello. 
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interneurons have been shown to constitute two systems which contribute to odor 

processing among the glomeruli in the networks of the AL of the honeybee and the fruit 

fly. One is a global inhibitory system which receives input and gives output in most if not 

all glomeruli. This system may either constitute a gain control system or it may 

participate in the synchronization of the network activity. The second is a more local 

inhibitory system (and an excitatory system in the fruit fly) involved in glomerulus 

specific regulation, which de-correlates the activity between individual glomeruli and 

increase the coding capacity of the AL network (Sachse and Galizia, 2002; Silbering and 

Galizia, 2007; Silbering et al., 2008). In addition to these main types of neurons, 

modulatory centrifugal neurons have also been found to make widely distributed 

connections among the glomeruli of the AL. One example is the octopaminergic WUM 

mx1 neuron identified by Hammer (1993) in the honeybee. Another example is the 

serotoninergic neurons described in different moth species, including one of the 

heliothines, H. assulta (Sun et al., 1993b; Kloppenburg et al., 1999; Zhao and Berg, 

2009). The atlases of the ALs  in the various insect species demonstrate the different 

glomerular numbers, counting about 50 in the fruit fly (Stocker et al., 1990; Laissue et al., 

1999), around 60-67 in different moth species (Rospars and Hildebrand, 2000; Berg et 

al., 2002; Skiri et al., 2005; Varela et al., 2009; paper II), 180 in the honeybee (Flanagan 

and Mercer, 1989; Galizia et al., 1999a) and between 250 to 630 in ants (Zube and 

Rössler, 2008; Kelber et al., 2009). These atlases have supported the early finding that the 

number and position of glomeruli in the AL is highly constant between individuals and 

gender of the same species (Rospars and Chambille, 1981; Rospars, 1983).  

 

The AL of moths is clearly separated in two parallel sub systems, the macroglomerular 

complex (MGC) which is devoted to processing of pheromone information and the 

numerous ordinary glomeruli constituting the plant odor system. Much is known about 

information processing of the pheromone system in the AL (Christensen et al., 1991 and 

1995; Berg et al., 1998; Vickers et al., 1998; Anton and Hansson, 1999; Galizia et al., 

2000; Kanzaki et al., 2003; Vickers and Christensen, 2003) compared to the more 

complex plant odor system. Studies of the AL in different insect species have indicated 

different coding mechanisms based on the presence of highly specific as well as broader 
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information channels. Two examples of highly specific systems comes from 

electrophysiological studies in hawk moth, where one glomerulus, the LPOG is shown to 

mediate information about carbon dioxide (Guerenstein et al., 2004) and two other 

identified glomeruli about one specific plant odorant (Roche King et al., 2000; 

Reisenman et al., 2004; Reisenman et al., 2005). In contrast to these findings other 

electrophysiological and calcium imaging studies have reported that odor information is 

coded and processed in a more integrative manner among the networks of the AL. For 

instance, by intracellular recordings of PNs in the moth Spodoptera littoralis both odor 

specific and more broadly responding PNs have been identified (Anton and Hansson, 

1994; Sadek et al., 2002). In calcium imaging studies of the AL in H. virescens some of 

the primary odorants were each specifically represented in single glomeruli, whereas 

others were represented by activity in two or three glomeruli (Galizia et al., 2000; Skiri et 

al., 2004). Based on the findings that different odorants elicit specific activity patterns 

both among the olfactory receptor neurons and the glomeruli in the primary olfactory 

centre, a combinatorial type of odor processing have been proposed both in insects and 

vertebrates (Honeybee: Joerges et al., 1997; Sachse et al., 1999; Galizia and Szyszka, 

2008). Moths: Vickers et al., 1998; Lei et al., 2004. OB in vertebrates: Friedrich and 

Korsching, 1997 and 1998; Spors and Grinvald, 2002; Leon and Johnson, 2003; Nara et 

al., 2011). This implies that information about some odorant might be encoded 

specifically in certain neurons and in a combinatorial manner in other neurons of the 

network (Keene and Waddell, 2007). 

 

Other questions raised concerns how odor blends and the single constituents are 

represented in the AL.  For instance, calcium imaging in the AL of the honeybee have 

demonstrated that single odorants and their blends are differently represented in ORNs 

and PNs. In contrast to the PNs showing less elemental mixture effects (more inhibition), 

the responses of the ORNs to antennal stimulation with odor blends could be predicted by 

the responses elicited by the constituting single odorants (more elemental, Deisig et al., 

2006; Deisig et al., 2010). Studies in the same insect species have also shown that 

mixtures are differently processed in two of the antenno-protocerebral tracts (APTs), PNs 

of the medial-APT processing mixtures elementally and the lateral-APT PNs 
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synthetically. These conclusions was based on the findings that most medial-APT PNs 

responded with hypoaditivity to some of the single odorants and their mixtures whereas 

the lateral-APT PNs showed more suppressive responses to the mixtures compared to the 

constituents (Krofczik et al., 2009; Yamagata et al., 2009). Multiunit recording in the AL 

of the hawk moth has supported the findings reported in the honeybee regarding 

dissimilar representations of single odorants and their blends. In the moth the mixtures 

and the single constituents evoked specific spatio-temporal activity patterns among the 

neurons of the AL (Riffell et al., 2009a; Riffell et al., 2009b). A spatial independent 

mechanism for odor quality coding has been proposed in the locust. Here, odors are 

represented by the synchronous temporal activity patterns of several multiglomerular PNs 

(Laurent et al., 1996; Perez-Orive et al., 2004).  

 

The antenno-protocerebral tracts 

The processed odor information is conveyed from the AL to higher brain areas mainly by 

the three parallel antenno-protocerebral tracts (APTs), a term proposed as a common 

nomenclature by Galizia and Rössler (2010). This term replaces the previous term, 

antenno-cerebral tracts (ACTs) used in H. virescens (Rø et al., 2007; paper I and II).  

Thus, the inner-, the medial and the outer ACT is accordingly termed the medial-, the 

medio-lateral- and the lateral APT (m-APT, ml-APT and l-APT), respectively. The PNs 

of the three APTs projects to three higher brain areas associated with the olfactory system 

in insects (for rev: Galizia and Rössler 2010). The m-APT, which house PNs that 

innervates one or a few glomeruli, runs medio-posteriorly to the calyces of the MB, 

giving off three to five axonal branches before turning anterior-laterally and projecting 

into the LP/LH (Homberg et al., 1988; Stocker et al., 1990; Malun et al., 1993; Abel et 

al., 2001; Müller et al., 2002; Kirschner et al., 2006; Jefferis et al., 2007; Rø et al., 2007; 

paper I and II). In the LP of H. virescens the projections of the m-APT PNs form a dorso-

ventral axis, termed the olfactory axis (OA). Neurons innervating the same glomerulus 

show similar projection patterns, whereas those from different glomeruli project to partly 

overlapping areas (paper I and II). Similar patterns have also been reported in other moth 

species and in the fruit fly (Marin et al., 2002; Wong et al., 2002; Jefferis et al., 2007; 

Namiki and Kanzaki, 2011). PNs of the l-APT run more laterally from the AL to the 
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LP/LH, before projecting dorso-posteriorly into the calyces of the MB (Homberg et al., 

1988; Müller et al., 2002; Kirschner et al., 2006; Rø et al., 2007). In H. virescens the l-

APT PNs enters the LP in the ventral part of the OA, extending in a ventro-dorsal 

direction (Rø et al., 2007; paper III). Similar projection patterns have been shown by 

mass staining in the honeybee (Kirschner et al., 2006). The multiglomerular PNs of the 

ml-APT have axonal projections directly to the LP/LH, with some axons branching off 

and turning dorso-medially into the superior protocerebrum (SP), located proximate to 

and dorsally of the MB lobes, extending from the anterior to the posterior part of the 

lobes (Homberg et al., 1988; Abel et al., 2001; Kirschner et al., 2006; Rø et al., 2007; 

paper III). Several if not all of the PN fibers of the ml-APT have been shown to contain 

-aminobutyric acid (GABA, Hoskins et al., 1986; Schäfer and Bicker, 1986; Berg et al., 

2009). In H. virescens the PNs of the ml-APT enters the LP in the medial parts of the OA 

where they project both in a dorsal and ventral direction and thereby showing 

overlapping projections with PNs both in the m- and the l-APT (paper III).  

 

Odor processing in higher brain areas 

In the MB the kenyon cells (KCs) receive the processed odor information via PNs in two 

of the APTs. The KC constitute the major type of intrinsic neurons of the MB, each 

making synaptic contact with multiple PNs, and each PN giving input to multiple KCs 

(for rev: Menzel and Muller, 1996; Heisenberg, 2003; Keene and Waddell, 2007). In 

addition to the excitatory synapses formed by the PN and the KC in the calyces inhibitory 

neurons have been found to project to the calyces (Ganeshina and Menzel, 2001).Typical 

for the KCs are sparse response patterns to olfactory stimulation (Perez-Orive et al., 

2002; Stopfer et al., 2003; Szyszka et al., 2005; Szyszka et al., 2008). The MB system is 

closely connected to other brain areas through several types of efferent and afferent MB 

extrinsic neurons, as shown in several insect species (Homberg, 1984; Mauelshagen, 

1993; Li and Strausfeld, 1997; Ito et al., 1998; Rybak and Menzel, 1998; Strausfeld, 

2002; Tanaka et al., 2008). Afferent neurons projecting from brain areas like the LP/LH 

and SP to the MB calyces and lobes have been shown. Efferent MB extrinsic neurons 

receives input from KC and projects from the MB lobes and the pedunculus to different 

brain areas, like the inferior medial protocerebrum, the SP, the LP/LH and to other parts 
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of the MB complex. Connections are made both on the ipsi and the contra-lateral side of 

the brain. The central role of the MB complex in olfactory learning and memory, and the 

ability of efferent MB extrinsic neurons, like the PE1 in the honeybee, to change response 

activity after conditioning, show that these neurons convey learned information from the 

MB complex to other parts of the brain, like the SP and the LP (Mauelshagen, 1993; 

Rybak and Menzel, 1998; Okada et al., 2007). Here they might be in position to influence 

and change the activity of postsynaptic neurons (Okada et al., 2007). This indirect 

olfactory pathway via the MB complex is likely to constitute an associative or experience 

dependent route for olfactory information from the AL to the premotoric area of the LP 

(Heisenberg, 2003; Keene and Waddell, 2007; Okada et al., 2007). 

 

A parallel and more direct route for olfactory information from the AL leads directly to 

the LP/LH through all three APTs. In the fruit fly three types of third order LH neurons 

have been identified. All three types have most of their dendritic arborisations in the LH 

and axonal projections in different parts of the brain, including the SP and the more 

ventral areas of the LP (Tanaka et al., 2004; Jefferis et al., 2007). These third order 

neurons receive input from projections originating in several other brain areas, including 

the AL. It has been suggested that the direct AL-LH/LP pathway might represents a more 

naïve and experience independent processing stream for olfactory information (for rev: 

Heisenberg, 2003; Keene and Waddell, 2007). In addition to the LP/LH and the MB 

complex, the SP is another higher olfactory area that receives input both from the AL, the 

MB complex and the LP (Li and Strausfeld, 1997; Ito et al., 1998; Abel et al., 2001; 

Tanaka et al., 2008; Kirschner et al., 2006; Rø et al., 2007; paper III). In spite of the 

substantial olfactory input to the SP as shown in several insect species we have scares 

knowledge about the handling of the olfactory information in this area.  

 

In trying to elucidate how odour information is represented in the brain of the model 

insect H. virescens, sharp in vivo electrophysiological recordings and staining was 

performed in order to physiologically and morphologically characterise olfactory 

neurons. In the studies underlying this thesis, the initial recordings was carried out in the 

AL, from were characterized PNs was transformed into the developed SBA (paper I, II). 
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This work laid the foundation for the subsequent recordings in the protocerebrum (paper 

III). A highly detailed and accurate map of the APT projections in the LP and the SP was 

produced through the transformation of reconstructed AL PNs into the SBA. This map 

was used to guide the localisation of the olfactory areas of the LP and SP during the 

recordings. The change of recording sites from the AL to the LP and the SP was based on 

the following reasons: Recordings from the AL is technically challenging, probably 

because of its loose structure. Therefore, the more compact protocerebrum was   

considered to yield more stable and long lasting recordings. In addition, recordings in the 

LP and the SP would provide insight about processing of relevant plant odour 

information in higher olfactory neurons in H. virescens. This would elucidate how the 

olfactory information is dispread and integrated in these higher olfactory areas by 

identifying functional connections between the neuropiles.  

 

 

Aim of the thesis 
 

The aims of this thesis were: 

To create an average standard brain atlas of the female moth H. virescens into 

which physiologically and morphologically characterized neurons could be 

transformed. This in order to elucidate possible connectivity in the networks of 

the brain (paper I). 

To integrate the antennal lobe atlas with all glomeruli into the H. virescens 

standard brain atlas in order to identify glomerular innervation and map the 

axonal projections of AL PNs in higher brain areas (paper II).  

To physiologically and morphologically characterize neurons processing 

information about primary plant odorants in the protocerebrum of H. virescens. 

This, in order to elucidate possible functional connectivity between higher 

olfactory areas (paper III).  
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Survey of the papers 

 

Paper I 

The aim of the study of paper one was to create an average standard brain atlas (SBA) of 

the female H. virescens that could serve as a common framework into which intracellular 

recorded and stained neurons of different brain preparations could be transformed. This 

was important since intracellular recordings and staining result in single identified 

neurons in each brain preparation. Since individual brains varies in size and shape 

integration of neurons from different preparation require an SBA.  

 

The SBA of H. virescens was created using the iterative shape averaging (ISA) protocol 

originally developed in the standard brain atlas project of the honeybee brain. In H.

virescens 72 female brain preparations were stained using the monoclonal antibody 

against the synaptic protein synapsin (SYNORF1) and the secondary antibody CY5. 

Based on the staining quality eleven brain preparations were chosen for manually 

labeling of the following selected neuropiles; the glomerular layer of the ALs, the MB 

system (calyces, peduncle and lobes), the central complex, the anterior optical tubercle, 

the mid brain region consisting of the protocerebrum (with the protocerebral lobes, the 

lateral horn, the lateral accessory lobes and the protocerebral bridge), parts of the 

deutocerebrum (the antenno-mechanosensory and motor centre and a small structure 

located ventrally to the glomerular layer), the tritocerebrum and the subesophageal 

ganglion (SOG) and the eye lobes (constituting the lobula, lobula plate and the medulla). 

Two olfactory and two gustatory neurons, in addition to axonal projections from 

gustatory receptor neurons were transformed into the SBA to demonstrate the application 

of the atlas. The transformation of two m-APT PNs and the gustatory neurons showed 

that neurons innervating both highly compartmentalized neuropiles (AL and MB) and a 

more uniform structure without landmarks (LP and SOG) could be transformed into the 

SBA. The m-APT PNs innervating the same glomerulus in the AL showed similar and 

overlapping projection patterns in the LP. Some of the axonal projection from one of the 

gustatory neurons, which responded to quinine, was identified in an area ventro- 

anteriorly in the LP, with one branch extending dorsally towards and proximate to the 
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projections from the olfactory PNs. These results indicated that olfactory and gustatory 

information might be integrated in third or higher order neurons in the LP of H.

virescens.    

 

Paper II 

The aim of the study of paper two was to integrate into the SBA of the female H.

virescens the antennal lobe atlas with all individual glomeruli identified and numbered 

according to a common numbering system used in heliothine moths. This allowed 

visualization of both glomerular arborisation in the AL and protocerebral projection 

patterns of the transformed neurons. The SBA with the glomeruli (SBAGl) could in 

addition aid the identification of the innervated glomeruli. Since the AL of the SBA of H.

virescens included the glomerular layer exclusively, the antennal lobe atlas could with 

success be integrated into the SBA. To demonstrate the application of the SBAGl three 

m-APT PNs with different glomerular innervation was transformed. Two of the PNs were 

uniglomerular and one innervated three glomeruli, one glomerulus extensively and the 

two others more weakly. The axons of these neurons ran posteriorly in the brain, giving 

off three to five branches to the calyces of the MB before projecting anterior-laterally, 

and entered the dorsal parts of the LP. Here, the projections partly overlapped, following 

the dorso-ventral olfactory axis. The new antennal lobe atlas was made after the first AL 

model by Berg et al. (2002) in order to identify and number the glomeruli according to 

the numbering system developed for the two closely related heliothine species, 

Helicoverpa armigera and Helicoverpa assulta (Skiri et al., 2005). The identification of 

female specific glomeruli required comparison with the atlas of the male antennal lobe 

which also was made using the same numbering system. The results confirmed the 

findings in Berg et al. (2002), about the position and identity of the four male specific 

glomeruli in the MGC. In addition, in the present study four female specific glomeruli 

were identified, which showed consistency between individuals. The ordinary glomeruli 

also showed consistency both within and between individuals and genders. One exception 

was an ordinary glomerulus (G63) only present in the male AL of H. virescens. In the 

comparison between the three species larger differences were seen in the gender specific 

glomeruli with the typical four glomeruli units in H. virescens in contrast to the three 
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units in the helicoverpa species. In contrast, the ordinary glomeruli were constant in 

number and positions between species. 

 

Paper III 

The aim of the study of paper three was to identify a putative circuit in the brain of H.

virescens involved in handling information about single odorants and blends. Primary 

odorants and blends ranging from a binary two component mixture to a complex twelve 

component mixture were used as stimuli. In vivo sharp recordings were performed from 

neurons in two higher olfactory areas of the brain, the LP and the SP. The strength of the 

odor elicited responses of 28 neurons was analyzed by dividing the response window into 

excitatory and inhibitory phases. Three response modes were identified, excitation only, 

inhibition only and complex responses composed of both excitatory and inhibitory 

phases. The analysis revealed that some neurons responded specifically to a few odorants 

and mixtures, however most neurons responded to a broader range of the odor stimuli, 

but with different response strengths. This implied that the neurons might integrate 

olfactory information from several input channels and that the odors are processed in a 

combinatorial manner in the higher brain areas. The staining and transformation of six 

neurons, two multiglomerular PNs of the ml-APT, two efferent MB extrinsic neurons, 

one LP-SP neuron and a LP-descending neuron revealed partly morphological overlap in 

two higher brain areas, the LP and the SP. All, except one ml-APT PN responded to 

stimulation with a ten component mixture. This implies that these neurons might be 

involved in a putative circuit connecting the three higher olfactory areas, the LP, the MB 

complex and the SP with the input from the AL. The results also suggest that olfactory 

information conveyed from the AL is being processed in parallel in the three 

protocerebral areas. An undefined area located anterior-ventrally of the OA in the LP was 

found to house the dendrites of a descending neuron with axonal projections running into 

the ipsi-lateral connective. This neuron responded with inhibition to antennal stimulation 

with the ten component blend.             
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Discussion 
 

Odor representation in higher brain areas  
Knowledge about the function of the olfactory system is growing and much research has 

been carried out in invertebrate and vertebrates, which has broaden our understanding of 

this fascinating sense. Odor processing in the primary olfactory centre, the AL in insects 

has been the centre of attention in many electrophysiological and imaging studies. In 

several species, the olfactory pathways to higher brain areas like the MB, the LP/LH and 

the SP have been identified (for review: Galizia and Rössler, 2010). How the processed 

odor information from the AL is integrated and coded in the networks of these higher 

brain areas are important question for the understanding how odors influence and guide 

relevant behaviors. Important questions also concerns how olfactory information is 

learned and stored in the insect brain, which particularly have involved studies of the MB 

complex. A wide range of techniques have been applied including electrophysiological 

recordings, imaging and labeling techniques in several insect species and important 

mechanisms and principles underlying learning and memory formation have been 

revealed (for review: Menzel and Muller, 1996; Heisenberg, 2003; Keene and Waddell, 

2007; Strausfeld et al., 2009). Although some studies have focused on the networks in the 

LP/LH and the SP, the knowledge is scarce on how odor information is processed and 

distributed in these protocerebral areas, including the premotoric areas of the LP.  

 

The previous and unique identification of many primary plant odorants in H. virescens 

laid the foundation for the studies on the function of the central networks of the olfactory 

system. Stimulation with the identified odorants and their blends during 

electrophysiological recordings combined with staining techniques has elucidated parts of 

the central olfactory networks dealing with relevant plant odor information. A custom 

made blend of ten primary plant odorants (PB10), which specifically activated a 

multiglomerular PN of the ml-APT proved to be important in this work. Particularly in 

the recordings from neurons in the LP and SP, the two target areas of the PNs of the ml-

APT, the PB10 was found to be particularly effective in eliciting responses. Thus, this 

potent and relevant stimulus was important for the identification of possible functional 
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connections between the different neuropiles of the olfactory network. The reconstruction 

and transformation of the physiologically characterized neurons from different 

preparations into the standard brain atlas ensured that the suggested functional 

connectivity could be supported by the identification of morphological overlap (paper 

III).    

 

Previous electrophysiological and imaging studies, both in the AL and in the higher brain 

areas of different insect species have addressed the question on how odor quality is 

represented in the activity of neurons in the olfactory networks of the brain. Several 

different processing mechanisms have been proposed (Laurent et al., 1996; Müller et al., 

2002; Perez-Orive et al., 2002; Stopfer et al., 2003; Lei et al., 2004; Szyszka et al., 2005; 

Galizia and Szyszka, 2008; Yamagata et al., 2009). In the present study of H. virescens 

the intracellular recordings from the two higher brain areas, the LP and the SP, revealed a 

few neurons with a relatively high specificity to stimulation with single odorants and 

blends, as well as many neurons responding to stimulation with several odorants (paper 

III). This observed response pattern points to a combinatorial coding mechanism where 

information about different odorants is coded specifically in some neurons and in concert 

with others in other neurons (Keene and Waddell, 2007). A similar strategy has 

previously been shown in the primary olfactory centre of other insect and vertebrate 

species. The knowledge about the processing of plant odor information in the AL of H.

virescens is scarce, the results from the recordings obtained so far seem to reflect the 

observed representation of the primary plant odorants in the higher olfactory areas of 

protocerebrum, presented in paper III. 

 

In general, results obtained in electrophysiological studies of various insect species have 

suggested that different odor qualities are separately represented not only in the spatial 

but also in the temporal firing patterns among neurons of the olfactory network 

(MacLeod and Laurent, 1996; Perez-Orive et al., 2002; Stopfer et al., 2003; Riffell et al., 

2009a; Riffell et al., 2009b). The odor responses obtained from the recorded neurons in 

H. virescens partly supports this by the fact that most neurons differed in response 

strength to various single odorants and blends (paper III). Different from this are findings 
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in the honeybee, showing that MB extrinsic neurons display unspecific responses to 

different odor stimuli (Homberg, 1984; Mauelshagen, 1993; Rybak and Menzel, 1998; 

Okada et al., 2007). This suggests that the MB neurons in the honeybee in contrast to the 

moth do not differentiate between odor qualities through response strength or temporal 

patterns. The different findings across species may either be ascribed to inter species 

differences or to multiple coding mechanisms co-existing in the complex networks of the 

olfactory system within a species. Based on the sophisticated behaviors expressed by 

insects to different odor qualities one might expect that odor information is integrated and 

processed in a manner that conserves odor quality throughout the networks of the 

olfactory system, from the binding at the receptors to descending neurons in the brain.  

 

Morphological overlap and functional connectivity 

To resolve the central questions regarding olfactory coding mechanisms, the functionality 

and the connectivity of the neurons in the network must be clarified. One challenging 

task is to integrate and coordinate results obtained from multiple experimental trials, 

resulting in identification of single neurons in different individual brains. A solution to 

this problem was offered by the creation of SBAs. These atlases serving as common 

frameworks for integration and visualization of physiologically and morphologically 

characterized neurons proved to be valuable (paper I, II and III). The ISA procedure, 

reducing the variability between preparations and constraining the degree of allowed 

deformation of registered neurons is considered as an advantage. This secures that the 

traced neurons keep their original shape during the transformation from the experimental 

preparations to the SBA. Compared to manual transformation techniques the registration 

of neurons by the use of transformation algorithms offer a more objective and 

comprehensive solution where references to multiple factors are taken into consideration. 

Although advantageously, the use of SBAs as common frameworks for transforming 

neurons have one clearly limitary factor, which is the relatively slow and time consuming 

process of manually labeling innervated neuropiles and stained neurons. Following the 

progression and availability of different labeling techniques such as genetic labeling and 

the progression of electrophysiological recordings and staining experiment, the amount of 

accessible morphological data is rapidly growing. This has generated the need of 
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additional procedures which minimize or avoids the process of manually labeling. One 

such transformation procedure was applied in a study of Jefferies et al. (2007) on the fruit 

fly. Instead of manually labeling the new method relay on an intensity 3D- imaging 

registration algorithm combined with genetic single cell labeling were high resolution 

confocal images were linearly transformed before different brain structures were 

deformed in a nonrigid way. A high degree of precision was reported were transformation 

accuracy was calculated down to a few micrometers. Another advantage of this method is 

that the registration procedure can be applied in any study generating two channel 

confocal images, one channel with stained neurons and the other a background staining of 

the neuropiles. However, this method used in genetically labeling might not be as suitable 

for studies using intracellular recordings and staining because of the mechanical damage 

that may occur during penetration of the electrode.  

 

In the ongoing search for the neuronal networks underlying the sense of smell it is 

important to remember that morphologically identified overlap of neuritis does not 

automatically mean functional connections. Transformation of stained neurons into a 

common framework might only indicate functional connections. Therefore, the 

combination of morphological and physiological studies is desired. This was elegantly 

approached in the paper by Ruta et al. (2010) where a circuit for pheromone processing 

was identified from the receptor neurons on the antenna to descending neurons in the 

dimorphic lateral triangle and the superior-medial tract (SMP) in the LP of the fruit fly. 

By neuronal staining (genetically photoactivation and electroporation) morphological 

overlap was identified between upstream and downstream neurons in three areas of the 

brain, the AL, the LH and the LP.  Functional connections were indicated by 

electrophysiological and calcium imaging recordings where both electro-chemical 

(iontophoresing of acetycholin into glomeruli) and pheromone stimulation elicited 

activity in the downstream neurons of the AL. Similar labeling techniques as used in the 

fruit fly have not been available in the present studies of H. virescens. However the SBA 

in H. virescens represent a good tool for linking electrophysiological and morphological 

data in which functional connections of the neuronal network can be indicated and 

visualized, as shown in paper III.   
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The lateral protocerebrum and the olfactory axis 

Relatively little is known about the function and the connectivity of the networks of the 

LP/LH even though this area receives major olfactory input from the AL through 

multiple APTs in several insect species studied (Homberg et al., 1988; Stocker et al., 

1990; Kirschner et al., 2006; Rø et al., 2007; Galizia and Rössler, 2010; paper I, II and 

III) ). In addition to olfactory input, the LP receives input from multiple modalities and is 

also considered as a premotoric area. It has been proposed that the LP might be involved 

in more naive or direct odor processing, whereas the MB complex is primarily important 

for learning and memory (for review: Menzel and Muller, 1996; Heisenberg, 2003; 

Keene and Waddell, 2007). A deeper understanding of the role of LP/LH in integration of 

odor information might bring us closer to the understanding of how this information 

influence and guide animal behavior. A challenging property of the LP/LH is its 

undefined and loose structure with very little landmark neuropiles. In the process of 

understanding the integrative properties of neurons in the LP as well as other brain areas 

with similar loose structural appearance the use of standard brain atlases or other 

common frameworks is of great advantage.  

 

In H. virescens the work of mapping the neuronal connections in the LP started with the 

making of the SBA and the SBAGl (paper I and II and III). By integrating reconstructed 

PNs into the SBAGl both the glomerular innervation in the AL and axonal projections in 

the LP could be visualized. Here, it became evident that m-APT PNs innervating 

different glomeruli projected to partly overlapping areas of the LP along the dorso-ventral 

olfactory axis (paper II). PNs innervating the same glomerulus showed more intermingled 

and similar projection patterns (paper I). Such a stereotypic projection pattern among PNs 

has also been shown in the fruit fly by genetically labeling methods (Marin et al., 2002; 

Wong et al., 2002; Jefferis et al., 2007) and more recently by staining techniques in the 

hawk moth (Namiki and Kanzaki, 2011). A compartmentalization of the LH into several 

zones (three) has earlier been proposed for the fruit fly (Tanaka et al., 2004). However 

other studies have contradicted the findings of zones. In the more recent study of the LH 

in the fruit fly by Jefferies et al. (2007), a stratified and more complex projection patterns 

were identified instead of zones. The present studies of H. virescens supported the 
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findings by Jefferies et al., showing no indication of zones. The transformation of m- and 

ml-APT PNs into the SBA and the mass staining of the APTs in H. virescens showed a 

high degree of overlap between the PNs in the three APTs (paper II and III). Similar 

patterns have been shown in the honeybee (Kirschner et al., 2006). Taken together this 

suggests that the information carried by the three AL-LP channels might be integrated on 

third order LP neurons.  

 

Parallel pathways to the higher brain areas 

The multiple tracts mediating processed information from the AL to higher order 

olfactory areas in protocerebrum have raised the question about their differential 

functions (Müller et al., 2002; Rø et al., 2007; Krofczik et al., 2009; Galizia and Rössler, 

2010; paper III). Although knowledge is growing, much is still unclear about the 

processing and the function of these parallel pathways in the olfactory system of insects. 

Recent studies in the honeybee have suggested a differential processing of mixtures in the 

m- and the l-APT, the m-APT processes mixture information in an elemental way and the 

l-APT PNs in a more synthetic manner (Krofczik et al., 2009). However, the system may 

differ in H. virescens. So far the recordings from m-APT PNs have indicated specific 

responses to primary odorants, which seems to reflect the high specificity and only minor 

overlap of the molecular receptive ranges of the plant odor receptor neurons compared to 

what is known in honeybees. Although two or three major tracts are found in all insect 

species, some inter-species variations exist. Compared to the attention in many studies of 

the m- and the l-APT PNs, relatively few studies have been performed on the ml-APT 

PNs. In the present study of H. virescens one of the topics concerned the function and the 

morphology of the ml-APT PNs (paper III). The existence of morphologically different 

types of ml-APT PNs have previously been shown in the honeybee as well as in H.

virescens (Kirschner et al., 2006; Rø et al., 2007) and is in H. virescens further described 

in paper III. Interestingly, the electrophysiological recordings from two of the ml-APT 

PNs in H. virescens revealed a sparse response pattern, one of them responding 

exclusively to stimulation with the complex blend B10 and not to single odorants. This 

response property could be related to the loose innervation of numerous glomruli in the 

AL by this ml-APT neuron (paper III). However, recordings from multiglomerular ml-
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APT PNs in the AL of the honeybee revealed responses to single odorants (Abel et al., 

2001). This difference might be related to the more broadly tuned receptor neurons in the 

honeybee, if not to different types of ml-APT PNs within a species. Concerning the 

general function of the ml-APT PNs, it has been suggested that because of their 

multiglomerular connections in the AL, single ml-APT PNs may be in position to read 

out specific odor evoked activity patterns among the glomeruli in the AL (Kirschner et 

al., 2006; Galizia and Rössler, 2010). In H. virescens the blend B10 may define one of 

the activity patterns.  

 

Further information about the ml-APT PNs comes from immunoreactivity studies. Thus, 

using immuno-staining of the ml-APT in moths, including H. virescens and honeybees, 

most if not all PN fibers in this tract showed GABA immunoreactivity (Hoskins et al., 

1986; Schäfer and Bicker, 1986; Berg et al., 2009). This implies that the ml-APT PNs 

represent an inhibitory processing channel in parallel to the two other presumably 

excitatory pathways to the LP. Thus, the m- and the l-APT PNs may carry differentiated 

excitatory information about mixtures and single odorants, whereas the ml-APT exhibit 

inhibitory information about the combinatorial activity patterns in the AL. The extensive 

overlap between the projections of these parallel pathways in the LP/LH in H. virescens 

and the honeybee, make third order LP/LH neurons in position to integrate both the 

inhibitory and the excitatory information from the AL. 

 

Several functional implications of inhibitory signals have been proposed for different 

brain areas. How these relate to the odor evoked inhibitory signal in the ml-APT PN, one 

can only be speculate about. One possibility is that these signals are involved in the 

regulation and synchronization of the odor evoked activity in third order LP neurons, in a 

similar manner as have been suggested for other inhibitory protocerebral neurons 

(Grünewald, 1999; Ganeshina and Menzel, 2001; Perez-Orive et al., 2004; Szyszka et al., 

2005). Another possible function could be to reset the odor activated third order 

integrative neurons in the LP and thereby making them receptive to the continuous flow 

of  incoming signals either from the AL-LP pathway or from other indirect pathways like 

the efferent extrinsic neurons from the MB complex.  
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Parallel olfactory processing in higher brain areas 

How processed odor information from the primary olfactory centre is represented, 

dispersed and integrated in the higher olfactory processing areas of the brain are one of 

the ultimate questions regarding the function of the olfactory system. Clarification of this 

question might lay in tracing the odor signal information through all processing stages of 

the olfactory system, from the olfactory receptor neurons on the antennae to descending 

neurons in the premotoric areas of the brain. Since no methods exist for achieving this in 

one and the same individual, another attempt used in this study is to collect physiological 

and morphological data from neurons of different individuals and bring them together in 

a common framework. Similar to the study by Ruta et al., (2010) showing a circuit for 

handling pheromone information in the fruit fly, the present thesis presents a putative 

circuit that handles information about a ten component plant odor mixture in the brain of 

the H. virescens  (paper III). The electrophysiological recordings from the neurons in H.

virescens revealed that the information about this blend is parallel processed and 

mediated to three higher brain areas, the LP, the MB complex and the SP (Figure 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Illustration of the identified putative 
circuitry in H. virescens.    
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As previously mentioned, third order LP/LH neurons in insects might receive processed 

olfactory information directly from the AL via PNs of the three APTs. In addition to this 

direct olfactory pathway from the AL, several types of MB extrinsic neurons have been 

shown to project from the MB complex to the LP/LH in several insect species, in H.

virescens shown in paper III. The extrinsic MB neurons represent the output of the MB 

complex and some of these neuron have been related to learning and memory processes 

in the MB (Mauelshagen, 1993; Rybak and Menzel, 1998; Okada et al., 2007). Therefore 

this indirect pathway to the LP is considered to convey odor information in an associative 

and experience dependent context. Three types of third order LH neurons have been 

identified by genetically labeling in the fruit fly in which all types are believed to receive 

input in the LH and sending axonal projections to different areas of the brain, like the 

superior medial and superior lateral protocerebrum, the ventro-lateral and ventro-medial 

protocerebrum and the deutocerebrum (including the antennal mechanosensory and 

motor centre. Tanaka et al., 2004; Jefferis et al., 2007). In H. virescens, one third order 

LP neuron that responded to stimulation with the PB10 is characterized in paper III. This 

neuron, with dendrites in the OA of the LP and axonal projections in the SP is in position 

to integrate olfactory information from the different channels in the LP and convey this 

information to the SP (Figure 2). Two medial lobe efferent MB extrinsic neurons that 

responded to stimulation with the PB10 were also identified in H. virescens (paper III). 

These neurons showed axonal projections in different areas, one in the SP and the other 

in the OA of the LP. These results suggest that information about the PB10 is conveyed 

from the associative networks of the MB complex to two higher olfactory areas, the LP 

and the SP (Figure 2). The SP receives olfactory information from multiple areas of the 

insect brain. A close connections between the MB complex and the SP have previously 

been suggested, based on the massive neuronal projections found between these two 

areas (Ito et al., 1998; Tanaka et al., 2008). The results obtained in the H. virescens 

suggest that neurons in the SP may integrate olfactory information from at least three 

parallel processing channels, from the MB complex, the LP and the AL (Figure 2).  
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Descending neurons in the LP 

In order to understand how the processed olfactory information in the multiple relay areas 

of the olfactory system is transformed into relevant behavior, it is important to know how 

this information is integrated and represented in the descending neurons of the brain. 

Although descending neurons have been previously identified in moths (Kanzaki and 

Shibuya, 1986; Kanzaki et al., 1991; Kanzaki et al., 1994), relatively little is known about 

the physiology and morphology of LP descending neurons in moths. In this study of H.

virescens an undefined neuropile area located in the LP, anterior-ventrally of the OA, was 

found to house the dendrites of a descending neuron. The axon of this neuron projected 

out of the brain via the ipsi-lateral connective ventrally in the SOG (paper III, Figure 2). 

Dual mass staining from the pro-thoracic ganglion and the AL in H. virescens indicates 

that there might be only some overlap between the most ventral ml- and l-APT 

projections and some of the dendrites of the descending neurons (Siri Børø, master thesis 

NTNU). This is in accordance with the findings that only close projections and no direct 

overlap was found between the axons of the ml-APT PNs and the dendrites of the 

descending neuron after transformation into the SBA (paper III). It was suggested in this 

study that there might be overlap by other APT PN projections and descending neurons. 

This anterior-ventral area of the LP is clearly separated from the areas more medially in 

the protocerebrum, which houses the dendrites of pheromone responding descending 

neurons, as shown in the silkworm moth and in the hawk moth (Kanzaki and Shibuya, 

1986; Kanzaki et al., 1991; Kanzaki et al., 1994). This suggests that information about 

pheromones and plant odorants are kept separated also in the descending pathways of the 

moth brain. However, since the present study of H. virescens concerns the brain of the 

female moth, the two descending systems should be studied in the male moth before 

conclusions can be made.  

 

In addition to olfactory input the anterior-ventral area of the LP in H. virescens has been 

shown to receive input from other modalities. For instance, transformation into the SBA 

of the descending neuron and a taste neuron responding to quinine (paper I) indicated 

morphological overlap between the axons of the quinine neuron and the dendrites of the 

descending neuron (data not shown). In addition axonal projections of auditory neurons 
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have been found in this anterior-ventral area of the LP (Pfhül et al., personal 

communication). Integration of multimodal information has previously been proposed for 

areas in the ventro-lateral parts of the protocerebrum and in the deutocerebrum in flies, 

including the fruit fly based on projections both from olfactory, mechanosensory and 

visual areas have been described (Strausfeld, 1976; Strausfeld et al., 1984; Tanaka et al., 

2004). In flies including the fruit fly, the ventro-lateral deutocerebrum have been shown 

to house descending neurons (Strausfeld et al., 1984). The characterized descending 

neuron recorded in H. virescens, showing long lasting inhibitory responses to stimulation 

with the complex mixture PB10, made it particularly interesting to look for overlap of its 

dendrites with axonal projections of the ml-APT PN specifically responding to B10. 

However, no direct overlap could be found. This implies that the odor information is 

being relayed to this neuron by other PNs in the ml- or l-APT. Another possibility is an 

indirect pathway, either from third order LP neurons or from efferent MB extrinsic 

neurons, like the PE1 in the honeybee as discussed by Okada et al. (2007). The MB 

extrinsic neurons might connect with the descending neurons either through direct 

synapses or indirectly through other protocerebral neurons like the third order LP 

neurons. Through these connections the MB complex is in position to influence and 

possibly change the inhibitory response profile of descending neurons in response to 

learning and experience. One can further speculate that activity in this network is partly 

responsible for some changes in odor driven behavior following learning.  

 

An interesting question regarding the connection between odor evoked neuronal activity 

and odor driven behaviors concerns which odors may evoke relevant behaviors. The 

importance of mixtures in eliciting behavior is well known from pheromone attraction 

and sexual behavior in many insect species, including heliothine moths. In H. virescens, 

the behavioral effect of one primary odorant, germacrene D, on attraction and 

oviposition, was shown by adding the odorant to host plants releasing volatiles except 

germacrene D (Mozuraitis et al., 2002). Electrophysiological multi unit recordings 

combined with behavioral studies in the hawk moth suggests that feeding behavior is not 

initiated by the single components constituting a nine or a six component mixture derived 

from natural odor mixtures released by host plants (Riffell et al., 2009a; Riffell et al., 
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2009b). In line with these behavioral findings, the descending neuron in H. virescens 

responded specifically to the complex mixture PB10 and not or only weakly to the single 

primary odorants (paper III). Taken together these results imply that activity in multiple 

channels must coincide in order to elicit relevant odor behaviors or response in 

descending neurons, activity in multiple channels must coincide. This might either be 

achieved through the activity of multiple olfactory channels or by other simultaneously 

activated pathways, for instance from the MB system through associative learning and 

memory.  

 

 

Concluding remarks 
 

This thesis has provided new insight into how olfactory information is coded, integrated 

and dispread in the networks of the higher brain areas, the MB, the LP and the SP in the 

model insect H. virescens. The electrophysiological recordings and the following 

staining, reconstruction and transformation of the neurons into the standard brain atlas 

revealed both the projection pattern of AL PNs in the OA of the LP and of higher order 

neurons. The characterization of these higher order neurons suggests that relevant plant 

odor information are integrated and processed in parallel in the three higher brain areas, 

the MB complex, the LP and the SP. The SP was shown to receive odor information from 

three different processing channels, the AL, the MB and the LP. In addition, an undefined 

area anterior-ventrally of the OA in the LP was found to house the dendrites of an 

olfactory responding descending neuron. Together with the results from mass staining 

experiments these results suggests that there are little or no morphological overlap 

between dendrites of descending neurons and axons of PNs from the AL in the LP. This 

further suggests that the output region with dendrites of descending neurons is a defined 

and separate area of the LP in H. virescens.  

 

Although knowledge has been achieved, much more work still needs to be carried out in 

order to understand the complexity of odor coding in the central networks of H. virescens 

and other insects. Among other methods, electrophysiological recordings, staining and 



 29

transformation of single neurons into common frameworks as SBAs are important 

techniques which should be intensified in the continuation of this work. Particularly more 

effort should be invested in revealing the functionality and the connectivity of the 

networks in the LP and the SP. One particularly interesting and important task would be 

to characterize third order LP neurons in order to elucidate how odor information is 

integrated, coded and conveyed to other brain areas by these neurons. Another focus 

should be on the descending neurons in the LP in order to broaden our knowledge on how 

plant odor processing might lead to relevant behavioral responses.  
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et al., 2006) and the Iterative Shape Averaging (ISA) procedure 
developed to generate the honeybee standard brain (Rohlfi ng et al., 
2001; Brandt et al., 2005). This study concluded that the VIB pro-
cedure using a global and a local rigid transformation followed by 
a local nonrigid transformation preserves anatomical variability, 
whereas the ISA procedure using an affi ne transformation followed 
by iterative nonrigid registrations reduces the variability.

The digital brain atlases of these four insects are based on 
common neuropil substrates like the protocerebrum including 
the optic lobes, the central body and the mushroom bodies, the 
deutocerebrum with the antennal lobes, and the tritocerebrum. 
Additional structures included in two or three of the atlases are 
the protocerebral bridge, anterior optic tubercles, lateral horns and 
the suboesophageal ganglion, the latter fused with the brain in the 
fl y, the honeybee and the moth. These structures are involved in 
visual, olfactory and gustatory information processing as well as 
 associative learning and memory formation. They are linked by 
neurons mediating information from one structure to the next 
where the information is further processed, thus forming networks 
within and between the different brain structures. In order to 

INTRODUCTION
Challenged by the need to integrate the rapidly growing data in 
neuroscience, digital brain atlases have become an important tool 
serving as a database for neural structures with their three dimen-
sional spatial information. The intention is to provide common 
frameworks into which data from different brain preparations can 
be registered and spatially related. As the scientifi c record includes 
data from many animal species, digital brain atlases of several ver-
tebrates and invertebrates have been made (Toga and Thompson, 
2001; Rein et al., 2002; Toga, 2002; Van Essen, 2002; Brandt et al., 
2005; Kurylas et al., 2008; Jundi et al., 2009). In insects, three dimen-
sional digital brain atlases have been generated for four species; 
the population-based quantitative atlas of the fruit fl y Drosophila 
melanogaster (Rein et al., 2002), the average shaped standard atlas 
of the honeybee Apis mellifera (Brandt et al., 2005) and the locust 
Schistocerca gregaria (Kurylas et al., 2008), and the recently made 
standard brain atlas of the hawkmoth Manduca sexta (Jundi et al., 
2009). In creating the locust brain atlas two procedures were used 
for comparison, the Virtual Insect Brain (VIB) procedure initially 
developed for standardisation of the fruit fl y neuroanatomy (Jenett 
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understand how the neuronal networks operate, it is critical to 
clarify the connectivity between physiologically and morphologi-
cally characterised neurons in the circuits. Revealing such details 
is a very elaborate process requiring a preparation accessible for 
in vivo recordings of identifi able neurons. Particularly suited for 
these examinations are the insects. Their nervous system is eas-
ily accessible for intracellular electrophysiological recordings. 
Combined with staining the entire morphology of the neurons 
can be precisely determined and three dimensionally visualised in 
the individual brain. In addition the brain is small enough to be 
studied as a whole, avoiding the problem of cutting neurons pro-
jecting out of a section. The number of identifi ed neurons is large 
and growing, like neurons of the visual system in the fl y Calliphora 
vicina and the locust Schistocerca gragaria (Borst and Haag, 2002; 
Heinze and Homberg, 2007), the olfactory system in a number of 
species (Kanzaki et al., 1989; Heinbockel et al., 1999; Lei et al., 2001; 
Müller et al., 2002; Reisenman et al., 2005; Rø et al., 2007; Yamagata 
et al., 2007) auditory system of the crickets (Poulet and Hedwig, 
2006) the mushroom bodies in the honeybee (Mauelshagen, 1993; 
Rybak and Menzel, 1998) as well as neuromodulatory neurons and 
descending neurons (Kanzaki et al., 1991; Hammer, 1993; Bräunig 
and Pfl üger, 2001). Consequently the need for a standardized 
brain model as a tool for organizing and analyzing data has been 
substantial in many species. In addition to the three dimentional 
digital standard atlases providing common frames for integrat-
ing neurons in the entire brain, separate atlases of the antennal 
lobes have been made in a number of species, including heliothine 
moths (Rospars and Chambille, 1981; Flanagan and Mercer, 1989; 
Stocker et al., 1990; Galizia et al., 1999; Laissue et al., 1999; Rospars 
and Hildebrand, 2000; Chiang et al., 2001; Berg et al., 2002; Sadek 
et al., 2002; Reischig and Stengl, 2002; Smid et al., 2003; Greiner 
et al., 2004; Huetteroth and Schachtner, 2005; Masante-Roca et al., 
2005; Skiri et al., 2005a; Iyengar et al., 2006; Jefferis et al., 2007). 
These atlases are valuable tools for studying the neuronal network 
involved in processing olfactory information (Namiki and Kanzaki, 
2008; Staudacher et al., 2009).

The moth, Heliothis virescens, is a major pest insect in agricul-
ture and an object for extensive research in many areas, includ-
ing chemosensory coding, learning and memory (Hartlieb, 1996; 
Mustaparta, 2002; Skiri et al., 2005b; Jørgensen et al., 2006, 2007a,b; 
Kvello et al., 2006). The generation of a standard brain atlas of 
H. virescens is particularly motivated by the already large amount 
of data on the olfactory and the gustatory system. Tuning of olfac-
tory receptor neurons according to biologically relevant odorants, 
pheromones as well as plant odorants have been described (Berg 
et al., 1998; Mustaparta and Stranden, 2005; Røstelien et al., 2005). 
Projections of the primary axons in particular glomeruli of the 
antennal lobe are shown for the pheromone system by functional 
tracing (Berg et al., 1998). Antennal lobe projection neurons have 
been anatomically described according to glomerular innervation 
and axonal tracts (Rø et al., 2007), studies that are being followed 
up in ongoing investigations focusing on the physiology of mor-
phologically characterised neurons.

Whereas the central olfactory pathways have been described 
in this as well as in many insect species, only scarce knowledge 
exists about the central gustatory pathways in two insect species, 
the fl y Sarcophaga bullata (Mitchell and Itagaki, 1992) and in the 

locust Locusta migratoria (Rogers and Newland, 2003). H. virescens 
is emerging as one of few model insects in elucidating the gusta-
tory pathways. The axonal projections of the gustatory receptor 
neurons have been traced to defi ned areas of the suboesophageal 
ganglion and tritocerebrum (Jørgensen et al., 2006; Kvello et al., 
2006), and intracellular recordings combined with staining of indi-
vidual gustatory neurons in the CNS have been made from a large 
number of neurons (unpublished). Particularly interesting is the 
connection between the gustatory and the olfactory systems which 
forms the neuronal basis for associative learning of odorants and 
tastants. In order to integrate the existing and future data, as well 
as to spatially relate neurons of any brain compartment, a com-
mon framework of the entire H. virescens brain is needed. Using 
standard brain atlases to integrate identifi ed neurons of different 
preparations offers easy visual access to the relative position of the 
neurons in three dimensions and thus promotes an understand-
ing of their functional relationship. Therefore, in the search for 
neuronal networks in any animal species, a standard brain atlas 
is a valuable tool.

In this paper we present a digital standard brain atlas of the moth 
Heliothis virescens. Since the purpose is to relate spatial informa-
tion between different preparations it is important to minimize 
individual variability. We therefore chose to generate the standard 
brain using the ISA procedure. To demonstrate its application we 
have registered two olfactory and two gustatory interneurons, as 
well as the axonal projections of the gustatory receptor neurons 
on the antennae and proboscis into the model using the procedure 
described by Brandt et al. (2005). The presented average standard 
brain atlas of this moth will be used as a tool for investigating and 
visualising the neural networks underlying gustatory and olfactory 
coding as well as appetitive and aversive learning and memory 
formation. The moth standard brain is accessible at http://www.
ntnu.no/biolog/english/neuroscience/brain

MATERIALS AND METHODS
INSECTS
The moths, Heliothis virescens (Heliothinae; Lepidoptera; 
Noctuidae) were imported as pupae from a laboratory culture 
at Novartis Crop Protection, Basel, Switzerland. Before emerging 
the pupae were separated according to sex and placed in a glass 
container (height: 18 cm, width: 12 cm, depth: 17 cm) covered 
by a perforated plexiglass. The container with pupae was kept in 
a Refritherm 6 E incubator (Struers) at a reversed photoperiod 
(14-h light and 10-h dark) and at a temperature of 22–23°C. When 
emerged, the adults were placed into a plexiglass cylinder (height: 
20 cm, diameter: 10 cm) covered by a perforated lid. The moths 
were fed ad. lib. on a 0.15 M sucrose solution. Experiments were 
performed on adult female moths 3- to 5-days after emerging.

THE STANDARD BRAIN
Preparations
Female moths were mounted in plastic tubes with the head immo-
bilized by dental wax (Kerr Corporation, Romulus, MI, USA). 
After removing cephalic scales and mouthparts, the moths were 
decapitated. The brains were dissected in Ringer solution and 
fi xed in 4% paraformaldehyde in a phosphate-buffered saline 
(PBS: 684 mM NaCl, 13 mM KCl, 50.7 mM Na2HPO4 and 5 mM 
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KH2PO4, pH 7.2) over night at 4°C. After a 10-min rinse in PBS, 
 preparations were dehydrated in an increasing ethanol series 
(50%, 70%, 90%, 96%, 100%, 10 min each), degreased in xylol 
for 5 min, and  rehydrated in a decreasing ethanol series (100%, 
96%, 90%, 70%, 50%, 10 min each). The brains were then washed 
for 10 min in PBS, and incubated for 30 min in 1 mg/ml colla-
genase solution (Collagenase Type I, Invitrogen Norge AS) at 36°C. 
Subsequently the brains were preincubated in 10% normal goat 
serum (NGS; Sigma, St. Louis, MO, USA) in a PBS solution con-
taining 0.1% Triton X (PBSX) for 30 min at room temperature. 
The brains were further incubated with a monoclonal antibody 
against the synaptic protein synapsin (SYNORF 1, kindly provided 
by Dr. E. Buchner, Würzburg, Germany), diluted 1:10 in PBSX 
and 10% NGS for 48 h at 4°C. After the preparations had been 
rinsed fi ve times each for 20 min in PBS, they were incubated for 
24 h with a Cy5-conjungated goat anti-mouse secondary antibody 
(Jackson Immunoresearch; dilution 1:500 in PBSX) at 4°C. The 
incubation was followed by rinsing in PBS, fi ve times for 20 min, 
before the brains were dehydrated in increasing ethanol series. 
Finally the brains were cleared in methyl salicylate and mounted 
as whole mounts in double-sided aluminium slides.

Visualization of brain preparations
The stained whole-mount brain preparations were visualized with 
a laser-scanning confocal microscope (LSM 510 META Zeiss, Jena, 
Germany) using a C-Apochromat 10×/0.45NA water objective. The 
fl uorescent dye (Cy5) was exited by a 633 nm line of argon laser. 
Due to the large size of the brain, each preparation was scanned 
in two partially overlapping tiles with a resolution of 1024 × 1024 
pixels in the xy-plane and an interslice distance of 3 μm (voxel size 
of 0.75 μm × 0.75 μm × 3 μm). The resulting two stacks of optical 
sections per brain were resampled in order to make the size of the 
fi les manageable for the computer, then merged and fi ltered by the 
computer software Amira 4.1 (Mercury Computer Systems, San 

Diego, CA, USA). To  compensate for the refraction indexes of the 
mountant and that of the water objective, the z-axis dimension 
was multiplied by a factor of 1.3. The fi nal voxel size of each stack 
consequently increased to 1.1 μm × 1.1 μm × 3.9 μm.

Reconstruction of brain structures
The gray value image stacks acquired from the confocal microscope 
were elaborately examined section by section and brain structures 
of interest were manually labelled using the segmentation editor 
in Amira (Table 1). In this process any group of voxels belonging 
to a particular brain structure was given a unique label resulting 
in a stack of label images corresponding to the underlying confo-
cal images. As a prerequisite to the subsequent registration and 
averaging process corresponding structures of the different brain 
preparations were given the same label. These label images were 
subsequently used to perform conventional volumetric analyzes, 
to reconstruct polygonal surface models and to generate the aver-
age standard brain atlas. The volume of each labelled structure 
was calculated by the “TissueStatistics” tool in Amira 4.1. Other 
conventional volumetric analyses, like mean volume, relative vol-
ume, standard deviations and relative standard deviation, were 
performed using Microsoft offi ce Excel (2003).

Averaging brain structures
Creating the average standard brain followed the ISA method 
according to the description for the honeybee Apis mellifera and 
the locust Schistocerca gregaria (Rohlfi ng et al., 2001; Brandt et al., 
2005; Kurylas et al., 2008). One brain was fi rst selected as a template. 
Then the label images of the other brain preparations were affi ne 
registered to the label images of the template brain followed by mak-
ing an average. Then the affi ne registered brain preparations and the 
template were elastically registered to the average followed by the 
generation of a second average. This was repeated by a second elastic 
registration of the previous elastic registered  preparations to the 

Table 1 | Volumetric analysis of the 16 reconstructed brain structures included in the standard brain atlas. Calculations for the medulla, lobula and 

lobula plate are based on 10 brains, whereas the remaining structures are based on 11. Mean volume (Mean V), relative volume (Rel. V), standard deviation 

(SD) and relative standard deviation (Rel. SD).

Structure Mean V (μm3) Rel. V (%) SD (μm3) Rel. SD (%)

Right antennal lobe 4.34 × 106 2.95 4.95 × 105 11.37

Left antennal lobe 4.31 × 106 2.92 5.15 × 105 11.96

Central body 1.69 × 106 1.14 3.05 × 105 18.07

Right calyx 2.38 × 106 1.61 3.15 × 105 13.22

Left calyx 2.38 × 106 1.61 3.24 × 105 13.61

Right peduncle and lobe 1.41 × 106 0.96 4.34 × 105 30.76

Left peduncle and lobe 1.34 × 106 0.91 3.89 × 105 28.93

Right anterior optic tubercle 4.98 × 105 0.34 1.26 × 105 25.37

Left anterior optic tubercle 5.00 × 105 0.34 1.24 × 105 24.77

Midbrain region 9.31 × 107 63.12 1.52 × 107 16.32

Right medulla 1.30 × 107 8.79 1.07 × 106 8.24

Left medulla 1.27 × 107 8.63 1.05 × 106 8.26

Right lobula 3.61 × 106 2.44 2.52 × 105 6.98

Left lobula 3.40 × 106 2.30 3.34 × 105 9.82

Right lobula plate 1.47 × 106 1.00 2.83 × 105 19.23

Left lobula plate 1.38 × 106 0.94 3.22 × 105 23.33
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second average brain. Thus, the affi ne  registration  compensating for 
position, rotation and global size differences was performed only 
once whereas the elastic registration compensating for local dif-
ferences in shape was performed twice. To verify the average shape 
property of the ISA-generated standard brain atlas, three dimen-
tional polygonal surface models of the standard brain and each 
individual brain were made. They were subsequently aligned with 
respect to position, orientation and size before the shape differences 
between them were calculated. The calculations were performed 
using the surface distance tool in Amira 4.1 which measured the 
average distance between corresponding points on the surface of 
the different brain preparations.

INTERNEURONS
Preparation
The insects were mounted in a plastic tube with the head exposed. 
Wax was used to immobilize the head and the mouthparts. For 
recording from the olfactory neurons, the antennae were fastened 
to the wax with tungsten cramps. The cuticle between the eyes 
was removed, exposing the antennal lobes and the protocerebrum. 
Large trachea, intracranial- and antennal muscles were removed 
to eliminate brain movements. When recording from gustatory 
interneurons the antenna and the uncoiled proboscis were fastened 
to the wax with tungsten cramps. The labium was cut off and the 
underlying trachea removed. Subsequently the left eye was cut off 
and the preparation tilted in order to expose the left side of the SOG 
and tritocerebrum. To facilitate insertion of the microelectrode the 
neurolemma was removed with a tungsten hook and the prepara-
tion was superfused with ringer solution.

Stimulation, recordings and staining
The taste stimuli used in the experiments were sucrose (1 M, 
Sigma-Aldrich), quinine hydrochloride (0.1 M, VWR), distilled 
water, and tactile touch, previously found to elicit responses in 
separate receptor neurons (Jørgensen et al., 2007a). The stimuli 
were applied to the sensilla as droplets on a glass rod. The olfac-
tory stimuli were applied as air puffs (0.8 ml/500 ms) through 
glass cartridges, each containing the odorants applied to a fi l-
ter paper. The two neurons included were tested for 100 μg of 
each of 12 primary plant odorants (Hexanol, (3Z)-Hexen-1-ol, 
(3Z)-Hexenyl acetate, Ocimene, racemic- Linalool, Geraniol, 
(+)-3-Carene, trans-Verbenol, Methyl benzoate, 2-Phenylethanol, 
(-)-Germacrene D, Farnesene) (Røstelien et al., 2005). Neuronal 
activity in the antennal lobe and the SOG was recorded intracel-
lularly with a glass microelectrode containing 0.2 M K+-acetate 
solution with 4% dye (Micro-Ruby or Micro-Emerald, Invitrogen). 
After stimulation with tastants and odorants the neurons were 
stained by passing a 1–3 nA depolarizing current of 2 Hz with 
0.2 s duration. Complete labelling of the neurons required dye 
injection for 5–10 min. After current injection, the dye was allowed 
to diffuse over night at 4°C. The brains were dissected in Ringer 
solution. The “olfactory” preparation was fi xed in 4% parafor-
maldehyde in PBS similar to the standard brain preparations. The 
two “gustatory” preparations were also fi xed in a solution of 4% 
paraformaldehyde in PBS, but additionally added 0.5% glutaralde-
hyde as an alternative and less time consuming way of visualizing 
neuropile structures. All three preparations were left over night 

at 4°C. To amplify the staining of the labelled neurons the brains 
were incubated in Streptavidin-Cy3 (Micro-Ruby stained prepa-
rations) and Streptavidin-Cy2 (Micro-Emerald stained prepara-
tions) (Jackson immunoresearch, West Grove, PA, USA; diluted 
1:200 in PBS) over night at 4°C. After 10 min rinse in PBS the 
“olfactory” preparation went through the same protocol as the 
preparations used for the standard brain, starting with preincuba-
tion in 10% normal goat serum (NGS; Sigma, St. Louis, MO, USA) 
in a PBS solution containing 0.1% Triton X (PBSX) for 30 min at 
room temperature. Finally, all preparations were dehydrated in 
increasing ethanol series and cleared in methyl salicylate.

Visualization
The brains were mounted as whole mounts on double-sided alu-
minium slides and the stained neurons were examined with a 
confocal laser-scanning microscope (LSM 510 META, Zeiss, Jena, 
Germany) using a C-Apochromat 10×/0.45NA water objective, a C-
Achroplan 40×/0.8NA water objective and a Plan-Neofl uar 20×/0.5 
dry lens objective. The two fl uorescent dyes were exited by different 
lasers. Micro-emerald was excited by a Titanium Sapphire laser of 
780 nm and a 488 nm argon laser, both fi ltered through a bandpass 
fi lter BP 500–550 IR. Micro-ruby was excited by a 543 nm Helium 
Neon laser and fi ltered through a bandpass fi lter BP 565–615 IR. 
The Titanium Sapphire laser was used for two-photon microscopy 
increasing the resolution in the z-axis which enabled us to better 
distinguish among overlapping neurites. The brains were scanned 
frontally with an interslice distance of 0.5–3 μm and an optical 
resolution in the y- and x-axis of 1024 × 1024 pixels. The neurons 
were scanned in several tiles and the tiles were manually merged in 
Amira. To compensate for the refraction indexes of the mountant 
and that of the water and dry lens objective, the z-axis dimension 
was multiplied by a factor of 1.3 and 1.6, respectively.

Reconstruction and registration of neurons into the average 
standard brain atlas
The gray value image stacks acquired from the confocal  microscope 
were examined section by section and the neurons were semi-
 automatically reconstructed using the skeleton tool (Evers et al., 
2004; Schmitt et al., 2004), which was implemented as a custom 
module in Amira 3.1. Registration of the neurons into the standard 
brain atlas followed the same procedure as described by Brandt 
et al. (2005). Selected brain structures in the “neuron-preparations” 
were reconstructed as label images. The selection only included 
brain structures corresponding to the structures in the standard 
brain atlas. Then, the label images in the “neuron-preparations” 
were affi ne- and elastically registered to the label images of the 
standard brain. The resulting transformation parameters for the 
brain structures were subsequently applied to the reconstructed 
neurons. The same procedure was followed for integrating the 
previously described gustatory receptor neurons (Jørgensen et al., 
2006; Kvello et al., 2006).

RESULTS
RECONSTRUCTION
For creating the standard brain of the moth Heliothis virescens we 
selected the 11 best out of 72 female brain preparations. The selec-
tion was mainly based on the staining quality and the preservation 
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of brain structures. Brain neuropils with high synaptic density were 
clearly stained with the antibody SYNORF 1 against synapsin, as 
visualized in the confocal microscope images (Figure 1).

FIGURE 1 | Confocal images of the Heliothis virescens brain 

immunostained with the synaptic marker SYNORF 1. Sections from 
anterior to posterior at depths 30 μm, 100 μm, 162 μm and 246 μm. (A) Right 
and left antennal lobes with olfactory glomeruli. (B–D) Anterior optic tubercle 
(AOT), mushroom body lobes (MBL), tritocerebrum (T), central body (CB), 
medulla (M), lobula (L), Lobula plate (LP), mushroom body peduncle (MBP) 
and mushroom body calyces (MBC). Light intensity difference is due to 
merging of two image stacks with different light intensities.

Based on distinguishable structures, each of the 11 brain 
 preparations was divided into 16 anatomical regions that were 
separately labelled (Table 1).

In one of the 11 preparations the optic lobes were excluded 
because of mechanical damage. However, the medial part of this 
brain was included because of its high staining quality. Because 
some neuropil structures could not be clearly distinguished in 
these whole mount preparations, they were included in a larger 
region. Thus, the region termed “Midbrain region” includes 
the protocerebral lobes with the lateral horns, the lateral acces-
sory lobes, the protocerebral bridge and a small, previously not 
described structure located posterior to the antennal lobe glomeruli 
and merging into the protocerebrum. The midbrain region also 
includes the antennal mechanosensory and motor centre of the 
deutocerebrum, the tritocerebrum and the suboesophageal gan-
glion (SOG) (Figures 2A,B).

The calyces of the mushroom bodies could be clearly distin-
guished from the surrounding protocerebrum and labelled as 
one distinct structure (Figures 2C,D). The pedunculus and the 
lobe system of the mushroom bodies were diffi cult to completely 
separate and were therefore included as a single labelled region 
(Figures 2E,F). The central body and the anterior optic tuber-
cles could be distinguished and were assigned to separate labels 
(Figures 2G–J). Among the lateral protocerebral structures com-
prising the optic lobes we included the medulla, the lobula and 
the lobula plate as separate labels (Figures 2K,L). Among the deu-
tocerebral structures we have collectively assigned the antennal lobe 
glomeruli as one labelled region (Figures 2M,N). As a prerequisite 
to the subsequent registration process corresponding structures 
of the different preparations were given the same label. From the 
constructed label fi les a complete three dimensional surface recon-
struction of one brain was made, shown in Figure 3.

Conventional volumetric analyzes including means and stand-
ard deviations of the absolute and relative volumes were performed 
on the label images of each anatomical region in all 11 brain 
 preparations (Table 1).

AVERAGING
After constructing the label images of all 11 brain preparations one 
brain was selected as a template into which the other were registered 
and subsequently averaged. The selection of the template brain 
was based on staining quality and shape. Before starting the ISA 
procedure the label images were divided into three major compart-
ments, the right optic lobe, the left optic lobe and the remaining 
medial brain structures. The registration and averaging procedures 
were subsequently performed separately on each compartment. 
The procedures were repeated according to the ISA method. The 
three average label image stacks resulting from the second elastic 
registration were selected as the standard brain. A three dimen-
tional polygonal surface model of each major compartment was 
created (Figure 4).

To verify the average shape property of the standard brain which 
we defi ned as the brain shape being most similar to the 11 indi-
vidual brains, we calculated the shape difference between them. 
The calculations were performed using the surface distance tool 
in Amira 4.1 which measured the mean distance between corre-
sponding points on the surface of the different brain  preparations. 
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FIGURE 2 | The structures included in the Heliothis virescens standard 

brain atlas visualized by confocal images including their labelled outline 

(left) and surface reconstructions (right). The images are from a single brain 
preparation. (A,B) Midbrain region. (C,D) Mushroom body calyx. 

(E,F) Mushroom body peduncle and lobes. (G,H) Central body. (I,J) Anterior 
optic tubercle. (K,L) Optic lobe neuropils including the medulla (M), lobula plate 
(LP) and lobula (L). (M,N) Antennal lobe glomeruli. Light intensity difference is 
due to merging of two image stacks with different light intensities.
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FIGURE 3 | Surface reconstruction of an individual brain of Heliothis 

virescens. (A) Anterior view. (B) Posterior view. (C) Dorsal view. Midbrain 
region (MR), right mushroom body calyces (rMBC), right mushroom body 
peduncle and lobes (rMBPL), central body (CB), right anterior optic tubercle 
(rAOT), right antennal lobe (rAL), right medulla (rM), right lobula plate (rLP), 
right lobula (rL), left mushroom body calyces (lMBC), left mushroom body 
peduncle and lobes (lMBPL), left anterior optic tubercle (lAOT), left antennal 
lobe (lAL), left medulla (lM), left lobula plate (lLP), left lobula (lL).

FIGURE 4 | The average standard brain of Heliothis virescens. (A) Anterior 
view. (B) Posterior view. (C) Dorsal view. Midbrain region (MR), right 
mushroom body calyces (rMBC), right mushroom body peduncle and lobes 
(rMBPL), central body (CB), right anterior optic tubercle (rAOT), right antennal 
lobe (rAL), right medulla (rM), right lobula plate (rLP), right lobula (rL), left 
mushroom body calyces (lMBC), left mushroom body peduncle and lobes 
(lMBPL), left anterior optic tubercle (lAOT), left antennal lobe (lAL), left medulla 
(lM), left lobula plate (lLP), left lobula (lL).

All the brains were compared with each other and with the stand-
ard after they had been aligned with respect to position, rotation 
and global size (rigid and iso-scaling transformations). The cal-
culations were performed separately on each of the three major 
compartments (Figure 5).

As shown in Figure 5, on average the standard brain is a true 
average brain, fulfi lling the average shape requirements for the 
standard brain atlas.

FITTING SINGLE NEURONS INTO THE STANDARD BRAIN ATLAS
To demonstrate the application of the average standard brain 
atlas we have registered four intracellularly recorded and stained 
interneurons into the model, two olfactory and two gustatory neu-
rons. To visualize the gustatory input region we have also registered 
the previously described axonal projections of the antennal and the 
proboscis gustatory receptor neurons (Jørgensen et al., 2006; Kvello 
et al., 2006). The two olfactory interneurons were stained simul-
taneously during one recording, a phenomenon often observed 
for antennal lobe projection neurons. The olfactory function was 
manifested as exitation to several of the tested odorants in repeated 
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FIGURE 5 | The mean surface distance between the standard brain and 

the individual brains, as well as between each individual brain and the 

other brains. (A) The mean distance between the standard (the medial brain 
structures) and the 11 individual brains is 11.0 μm, whereas the mean distance 
between the individual brains range from 12.2 to 16.1 μm. (B) The right optic 
lobe. The mean distance between the standard and the 10 individual brains is 
8.0 μm, whereas the mean distance between the individual brains range from 
9.3 to 14.5 μm (C) The left optic lobe. The mean distance between the 
standard and the 10 individual brains is 8.0 μm, whereas the mean distance 
between the individual brains range from 9.1 to 14.2 μm. On average the 
standard brain is more similar to each individual brain than the individual brains 
are to each other. The vertical bars show the standard deviation.

stimulation. The axons closely followed each other all the way from 
the left antennal lobe to the calyces of the ipsilateral mushroom 
body and laterally in the protocerebral lobe (Figure 6).

The two neurons densely innervated the same glomerulus 
(Figure 6A), but no connections to the somata were identifi ed. 
The axons followed the inner antenno-cerebral tract, each giving 
off four branches projecting in partially overlapping areas of the 
mushroom body calyces (Figures 6B–D). They continued ante-
rior laterally in the protocerebral lobe, extending several branches 
into an area posterior dorsally of the lateral horn. One branch of 
both axons extended into the lateral horn (Figures 6C,D). The 
lateral area of the protocerebral lobes also received gustatory infor-
mation, as shown by one neuron (Figure 7A).

This neuron was excited by quinine and tactile stimulation of the 
right antenna. The excitation was strongest to quinine appearing as 
two bursts, similar to the quinine responses of the receptor neurons 
(Jørgensen et al., 2007a). The response to sucrose stimulation did 
not exceed the mechanosensory response. The dendrites arborised 
in the dorsal SOG/tritocerebrum and the axon projected in wide 
areas of the protocerebral lobes. To elucidate whether the axonal 
projections of the gustatory- and the olfactory interneurons later-
ally in the protocerebral lobes are overlapping or separated, they 
were registered into the standard brain atlas (Figures 7B–D). The 
registration revealed two closely, but separated projection areas 
(smallest distance 34 μm); the gustatory area located anterior-
 ventrally to the olfactory area.

The other gustatory interneuron, with excitatory responses to 
repeated application of sucrose to the proboscis (latency: 47 ms), 
was confi ned to the SOG (Figure 8), the terminal area of the gusta-
tory receptor neurons on the antennae and the proboscis.

The interneuron showed no response to sucrose stimulation 
of the antennae. The dendrites arborized extensively in the left, 
lateral SOG with branches extending from the anterior surface of 
the neuropil to the most posterior part (Figures 8A–D). The axon 
ran contra laterally in a medial commissure before bifurcating in 
one lateral and one ventral branch. Both branches turn in posterior 
direction ramifying extensively throughout the right, ventro lateral 
SOG, each ramifi cation ending in a large beaded terminal. The soma 
was located dorso medially, close to the oesophagus (Figure 8C). 
To indicate possible connections between the gustatory receptor 
neurons and the interneuron, the antennal and the proboscis gus-
tatory receptor neurons were registered into the standard brain 
atlas together with the interneuron. Overlap with the dendritic 
arborisations of the interneuron only occurred with the proboscis 
receptor neuron projections, as shown in Figures 8C,D by the single 
axon of category two described in Kvello et al. (2006). In fact, direct 
contact occurred between a few of the neurites. No overlap with 
the antennal gustatory receptor neurons was found.

DISCUSSION
The results present a digital, three dimensional average standard 
brain atlas of Heliothis virescens, based on brain preparations of 3- to 
5-days-old females. Since the aim is to use this atlas as a common 
framework into which identifi ed neurons of different brain prepa-
rations will be transformed, the important feature is a minimized 
difference between the standard model and any individual brain. 
Both from nature and experimental procedures, the individual brain 
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The procedure used and the structures selected for making the 
moth standard brain atlas are in general the same as for the honey-
bee brain, with a few modifi cations. The division of the moth brain 
into three compartments compensated for individual differences 
of the optic lobe orientations. The segregation allowed the use of 
11 specimen for the midbrain region and 10 for the optic lobes 
because of mechanical damage. The selection of structures was 
based on staining quality, signifi cance as landmarks and relevance 

preparations differ slightly, not only in size and orientation, but also 
in shape of the whole brain as well as brain structures exemplifi ed by 
the 11 individual preparations in this study (Table 1, Figure 5). The 
ISA procedure takes this variability into account in the rigid and the 
elastic registrations as well as in the averaging procedures, resulting 
in a brain model with minimized differences to the individual brains 
(Figure 5), as previously demonstrated for the honeybee and the 
locust brain models (Brandt et al., 2005; Kurylas et al., 2008).

FIGURE 6 | Confocal images and registration of two antennal lobe 

projection neurons (simultaneously stained) into the average standard 

brain atlas of Heliothis virescens. (A) Confocal image of a section showing 
Micro-Ruby stained dendrites (De) of two antennal lobe projection neurons 
innervating a single glomerulus (Gl). Their branching pattern within the 
glomerulus could not be distinguished. (B) Confocal image showing the 
projections of the two neurons in the mushroom body calyces and in the 

lateral part of the protocerebral lobe. (C,D) Reconstruction of the left 
protocerebral lobe with the two neurons innervating one glomerulus (Gl) of the 
antennal lobe (AL), the mushroom bodies calyces (MBC) and the lateral 
protocerebral lobe (LPL) in a frontal view (C) and lateral view (D). One branch 
of both axons extends into the lateral horn (LH). (E,F) The two neurons 
registered into the standard brain atlas in a frontal view (E) and lateral view (F). 
Central body (CB).



Frontiers in Systems Neuroscience www.frontiersin.org October 2009 | Volume 3 | Article 14 | 10

Kvello et al. A heliothine moth standard brain

with respect to chemosensory coding and learning. Structures of 
the optic lobes like the medulla, lobula and lobula plate were well 
stained and also necessary to make the brain model complete. The 
well stained central body and the anterior optic tubercles are impor-
tant landmarks in the midbrain. The antennal lobe glomeruli, the 
mushroom bodies, and the lateral parts of the protocerebral lobes 
are involved in processing olfactory information (Rø et al., 2007), 
and the SOG/tritocerebrum in processing gustatory information 
(Jørgensen et al., 2006; Kvello et al., 2006). However, the staining 
quality of these structures varied, either because of how well the 

antibody penetrated the tissue or because of different synaptic 
density. As a result the weakly stained structures were collectively 
assigned to one large label (Midbrain region) whereas the well 
stained structures were given a unique label.

The antennal lobe glomeruli with high synaptic density appeared 
as distinct stained structures, easily distinguished from the dark 
surroundings. They were collectively assigned as one label, separate 
from the remaining antennal lobe. This differs from the standard 
brain of the fruit fl y, honeybee and the locust where the whole anten-
nal lobe was assigned as one label (Rein et al., 2002; Brandt et al., 

FIGURE 7 | The spatial relationship between a single gustatory interneuron 

and the two antennal lobe projection neurons visualised in the standard 

brain atlas of Heliothis virescens. (A) Confocal image of a brain section showing 
the gustatory interneuron stained with Micro-Emerald. Axon (Ax). 
(B) Reconstruction of the gustatory interneuron (black) and the two antennal lobe 
projection neurons (yellow and red) registered into the standard brain atlas (frontal 
view with selected brain structures). Mushroom body calyces (MBC), Central 
body (CB), Lateral horn (LH), Suboesophageal ganglion (SOG), Tritocerebrum (T). 

(C,D) Magnifi ed sections of the lateral parts of the left protocerebral lobe in a 
frontal view (C) and a lateral view (D). The segregated axonal projections of the 
gustatory interneuron and the antennal lobe projection neurons appear. Arrows 
point to the axonal projections of the gustatory interneuron and the arrowheads to 
the axonal projections of the antennal lobe projection neurons. Antennal lobe (AL). 
(E) Electrophysiological recordings from the interneuron during stimulation of the 
right antenna with quinine (Q), mechanosensory stimuli (M1, M2) and sucrose 
(S1, S2). Arrow points to the stimulus onset.
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2005; Kurylas et al., 2008). One reason for the separate glomerular 
labelling in the moth brain atlas was the diffi culties in determining 
the borderline between the antennal lobe and the protocerebrum. In 
addition, the antennal lobe glomeruli have a larger surface relative 
to the volume as compared to the whole antennal lobe, which is an 
advantage when registering neurons into the atlas. The particular 
registration algorithm developed for label images use information 

that lies in the borderline of the label images (Rohlfi ng et al., 2001). 
A larger surface gives the algorithm more information and conse-
quently improves the precision when registering neurons into the 
brain atlas. Finally, we also want to emphasize the glomeruli, being 
of particular interest since they relay information from olfactory sen-
sory neurons to the second order neurons. We did not fi nd it practi-
cal to include each of the 66 glomeruli as separate labels because 

FIGURE 8 | The spatial relationship between a single gustatory 

interneuron and the axonal projections of the antennal and proboscis 

gustatory receptor neurons visualized in the standard brain atlas of the 

Heliothis virescens. (A) Confocal image of a section of the suboesophageal 
ganglion with a Micro-Ruby stained gustatory interneuron. Axon (Ax), 
Dendrite (De). (B) The gustatory interneuron (yellow) and the axonal 
projections of the antennal (green) and proboscis (red and black) gustatory 
receptor neurons registered into the standard brain atlas (frontal view with a 
few selected structures) Mushroom body calyces (MBC), Anterior optic 

tubercle (AOT), Mushroom body peduncle and lobes (MBPL), Antennal lobe 
(AL), Central body (CB). (C,D) Magnifi ed section of the suboesophageal 
ganglion in a frontal view (C) and a lateral view (D). The axon terminals of the 
proboscis gustatory receptor neuron (black) overlap the dendritic 
arborisations of the gustatory interneuron with direct contact between a few 
of the neurites. (E) Electrophysiological recordings from the interneuron 
during stimulation of the proboscis with sucrose (S1, S2), quinine (Q), 
water (W) and a mechanosensory stimulus (M). Arrow points to the 
stimulus onset.
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we have already made three dimensional atlases of the antennal lobe 
glomeruli of this species (Berg et al., 2002; Skiri et al., 2005a). At 
present, the separate antennal lobe atlas seems necessary for identify-
ing the glomeruli innervated by a neuron, since this needs a detailed 
analysis of the relative position of the glomeruli. If practical and 
technically possible the atlas of the antennal lobe glomeruli may be 
registered into the standard brain atlas in the future.

The mushroom bodies were divided into the calyces and the 
 peduncle/lobe system. These two compartments were easily distin-
guished, but a further division into their sub-compartments proved 
unreliable. Consistent with previous studies of H. virescens (Rø et al., 
2007) and Spodoptera littoralis (Sjöholm et al., 2005) we could not 
distinguish any accessory calyx from the primary calyces. Such a 
division of the calyces, described in the moth Manduca sexta, may 
refl ect a functional difference between the species (Homberg et al., 
1988; Nighorn et al., 2001). Because of the diffi culties of separating 
the mushroom body peduncle and the lobe system in the H. vires-
cens brain these structures were included in the same label like in the 
other insect brain atlases (Rein et al., 2002; Brandt et al., 2005; Kurylas 
et al., 2008; Jundi et al., 2009). As shown in Heliothis virescens and 
Spodoptera littoralis the peduncle fuses anteriorly with the lobe system 
dividing into a dorsal α lobe and a medial β lobe, both intimately asso-
ciated with the γ lobe (Sjøöholm et al., 2005; Rø et al., 2007). Specifi c 
to Lepidoptera is the Y lobe which was vaguely observed in a few 
preparations and therefore was not included in the standard atlas.

The SOG, tritocerebrum and protocerebral lobes, including the 
lateral accessory lobes, the protocerebral bridge and the lateral horns 
did not appear distinct and therefore were collectively included into 
the midbrain region label. In the same label we also included the 
particular structure located posterior to the antennal lobe glomeruli 
merging into the protocerebral lobes without a distinct borderline. 
The SOG, tritocerebrum and protocerebral lobes are also included 
in the same label in the honeybee and the fruit fl y brain atlases. In 
these species as in the moth, the three structures are highly intercon-
nected and seem to lack an area with high synaptic density where 
a reliable distinction can be made (Rein et al., 2002; Brandt et al., 
2005). This differs from the locust where the SOG (not included in 
the standard locust brain atlas) is a distinct ganglion connected to 
the brain by the circumoesophageal connectives (Burrows, 1996). 
The lateral horn is another structure treated differently among the 
fi ve insect brain atlases. In H. virescens, they were weakly stained 
and therefore included in the same label as the SOG, tritocerebrum 
and protocerebral lobes like in the honeybee and M. sexta (Brandt 
et al., 2005; Jundi et al., 2009). This differs from the fruit fl y and 
the locust where the lateral horns were given a unique label (Rein 
et al., 2002; Kurylas et al., 2008). The midbrain region is by far the 
largest structure in the standard moth brain atlas. Its shape results 
in a relative small surface which is disadvantageous when register-
ing neurons into the structure. Therefore, the central body and the 
anterior optic tubercles, located within the midbrain region, serve 
as important landmarks. These two structures appeared quite dis-
tinct in all 11 preparations. Especially the central body is a stable 
landmark because its location in the middle of the brain keeps it 
protected from distortion by external factors.

The application of the average standard brain atlas is demon-
strated by the four registered interneurons, as well as the axonal pro-
jections of the gustatory receptor neurons shown in Figures 7 and 8. 

The olfactory interneurons showed the typical morphology of 
inner-tract antennal lobe projection neurons (Rø et al., 2007), 
with dendrites innervating a single glomerulus of the antennal 
lobe, and axons projecting via the inner antenno-cerebral tract to 
the calyces of the mushroom body involved in olfactory learning 
and memory (Menzel, 2001; Heisenberg, 2003), and to the lateral 
parts of the median protocerebrum considered to be a premotoric 
area (Figure 6). Interestingly, axonal projections of the quinine 
responding neuron were identifi ed in a separate, but closely located 
area of the olfactory projections. Because of the absence of distinct 
landmarks in this brain region the standard brain atlas proved 
particularly valuable in visualizing and distinguishing these target 
areas of the gustatory- and olfactory  projections (Figures 7B–D). 
However, registration of more neurons into the standard brain atlas 
combined with electrophysiology is needed to verify whether the 
projection areas of the two chemosensory modalities are completely 
separated or partly overlapping in this area of the brain. The atlas 
also proved valuable in visualising possible connections between 
the sucrose responding interneuron and the receptor neurons in 
the SOG (Figure 8). The direct contact between the intermingled 
dendritic branches of one gustatory interneuron and the projec-
tions of the proboscis gustatory receptor neuron suggest input from 
the proboscis. In contrast the non overlapping projections of the 
antennal gustatory receptor neuron indicate no antennal input. 
This was in fact shown physiologically by the excitatory responses 
of the interneuron to sucrose stimulation of the proboscis, but 
not of the antennae. Furthermore, the short and constant latency 
of the response indicate monosynaptic connections (Burrows and 
Newland, 1994; Newland, 1999). The axon projected contra laterally 
relative to the dendritic arborizations, terminating in the ventro 
lateral SOG where motorneurons of the mouthparts presumably 
are located. Thus, this neuron may receive direct synaptic input 
from the sucrose receptor neurons on the proboscis and feed into 
motor neurons involved in feeding.

The standard brain atlas is a valuable tool for visualising the 
spatial relationship between neurons from different brain prepara-
tions, detecting regions of overlap among the neurites, and thus to 
make predictions about neuronal connectivity. The procedure of 
rigid and elastic registration is particularly suited as an objective 
way to integrate neurons from different preparations into the dig-
ital standard brain atlas. The average property of the atlas ensures 
that the neurons undergo a minimal deformation in the registra-
tion procedure. In combination with physiological data the atlas 
provides an important tool for investigating and visualising the 
neural networks underlying gustatory and olfactory coding as well 
as appetitive and aversive learning and memory formation.
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underlying chemosensory coding and learning in this moth species 
(Kvello et al., 2009). Like for all fi ve insect brain atlases, the ALs are 
included as a single brain compartment without internal structures. 
Different from the other atlases, the AL of the H. virescens brain 
atlas includes exclusively the glomerular layer as a single labelled 
identity, an advantage for registering the AL glomeruli as separate 
units into the atlas.

Numerous studies have been devoted to the neuronal network 
of the primary olfactory centres, the olfactory bulb in vertebrates 
and the AL in insects, in trying to elucidate how olfactory infor-
mation is processed and coded (Laurent et al., 1996; Hildebrand 
and Shepherd, 1997; Galizia and Menzel, 2000; Lledo et al., 2005; 
Wilson and Mainen, 2006; Stopfer, 2007; Kloppenburg and Mercer, 
2008). Common for the two systems are the input elements of 
sensory neurons, the output elements of mitral/tufted cells and 
projection neurons (PNs) respectively, intrinsic local interneurons, 
as well as centrifugal modulatory neurons. Typical are the numer-
ous glomeruli, spheric-ovoid structures of fi ne neuropils with con-
densations of synapses forming a neuronal network; in insects 
between all four elements. Each glomerulus represents a functional 
unit receiving information from one set of sensory neurons with 
the same receptor protein type and sending out the processed 
information to olfactory areas of higher order (Axel, 1995; Clyne 
et al., 1999; Vosshall et al., 1999; Buck, 2000; Mombaerts, 2001; 
Vosshall and Stocker, 2007). In insects, the output neurons are uni- 
or multiglomerular PNs with axons following one of three major 

INTRODUCTION
Digital three dimensional standard brain atlases (SBAs) have been 
made of several vertebrate and insect species in order to integrate 
neuroimaging data of different preparations (Toga and Thompson, 
2001; Rein et al., 2002; Toga, 2002; Van Essen, 2002; Brandt et al., 
2005; Kurylas et al., 2008; el Jundi et al., 2009; Kvello et al., 2009). 
In insects, whole brain atlases of fi ve species are available as suit-
able tools for studying the three dimensional spatial relationship 
between neurons innervating different brain structures (Rein et al., 
2002; Brandt et al., 2005; Kurylas et al., 2008; el Jundi et al., 2009; 
Kvello et al., 2009). Based on confocal scans with higher resolution, 
separate atlases of specifi c brain compartments like the primary 
olfactory centre, the antennal lobe (AL), and the central complex 
involved in processing visual information, have also been made 
(Rospars and Chambille, 1981; Flanagan and Mercer, 1989; Stocker 
et al., 1990; Galizia et al., 1999; Laissue et al., 1999; Rospars and 
Hildebrand, 2000; Chiang et al., 2001; Berg et al., 2002; Reischig 
and Stengl, 2002; Sadek et al., 2002; Smid et al., 2003; Greiner et al., 
2004; Huetteroth and Schachtner, 2005; Masante-Roca et al., 2005; 
Skiri et al., 2005; Iyengar et al., 2006; Jefferis et al., 2007; Kazawa 
et al., 2009; Varela et al., 2009; el Jundi et al., 2010). Thus, the neu-
rons can be registered into these particular structures with higher 
precision, suitable for studying the network within the brain com-
partments. Recently, we have made a SBA of Heliothis virescens 
based on the iterative shape average (ISA) procedure, with the 
aim to spatially relate identifi ed neurons forming the networks 
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MATERIALS AND METHODS
Heliothis virescens (Heliothinae; Lepidoptera; Noctuidae) pupae 
were imported from a laboratory culture (Syngenta, Basel, 
Switzerland), separated according to sex and placed in different 
containers in an incubator (Refritherm 6E, Struers) on a phase-
shifted LD photoperiod (14:10 hours) at 22°C. Emerged adults 
were transferred to new containers and fed ad libitum on a 0.15-M 
sucrose solution. Experiments were performed on 3–5 days old 
female and male moths.

STAINING OF THE ANTENNAL LOBE AND PROJECTION NEURONS
The moths were mounted in plastic tubes and immobilised with 
dental wax (Kerr Corporation, Romulus, MI, USA). Cephalic scales 
and mouthparts were removed before decapitation. Brains were 
dissected in a saline solution (in mM: 150 NaCl, 3 CaCl

2
, 3 KCl, 25 

C
12

H
22

O
11

 and 10 TES buffer, pH 6.9) and fi xed in paraformaldehyde 
(4%) diluted in methanol (50%) over night (4°C). After rinsing 
in a phosphate buffered saline solution (PBS in mM: 684 NaCl, 
13 KCl, 50.7 Na

2
HPO

4
 and 5 KH

2
PO

4
, pH 7.2; 10 min), prepara-

tions were dehydrated in an increasing ethanol series (50, 70, 90, 
96 and 100%, 10 min each) degreased in xylol (5 min), rehydrated 
in a decreasing ethanol series (100, 96, 90, 70 and 50%, 10 min 
each) before washed in PBS (10 min) and preincubated in nor-
mal goat serum (NGS; Sigma, St. Louis, MO, USA; 10%) in PBS 
at room temperature (30 min). This was followed by incubation 
in a monoclonal antibody against the synaptic protein synapsin 
(SYNORF 1, kindly provided by Prof. E. Buchner, Würzburg, 
Germany), diluted in PBS (1:10) and NGS (10%) for 48 h (4°C). 
After rinsing in PBS (5 × 20 min) the preparations were incubated 
for 24 h (4°C) with a Cy5-conjungated goat anti-mouse secondary 
antibody (Jackson Immunoresearch; dilution 1:500 in PBS) before 
rinsing in PBS (5 × 20 min) and dehydrated in increasing ethanol 
series. Preparations were cleared in methyl salicylate and mounted 
as whole mounts in double-sided aluminium slides.

For staining of the PNs female moths were restrained and 
immobilised with wax with the head and antenna protruding. 
The cuticle between the eyes was removed, exposing the AL and 
the protocerebrum. Large trachea, intracranial- and antennal mus-
cles were removed to eliminate brain and antennal movements. 
Neurolemma was perforated with a tungsten hook to facilitate 
insertion of the microelectrode prior to superfusion with saline 
solution. Glass microelectrodes were pulled with a Flaming-Brown 
horizontal puller (P97; Sutter Instruments, Novato, CA, USA), the 
tips were fi lled with dye (Micro-Ruby, Invitrogen; 4%) and back-
fi lled with potassium acetate solution (0.2 M). The microelectrodes 
had a resistance of 150–400 MΩ. Neurons were iontophoretically 
stained by passing a 1–3 nA depolarising current of 2 Hz with 0.2 s 
duration. Complete labelling of the neurons required dye injec-
tion for 10–15 min. After current injection, the dye was allowed to 
diffuse over night at 4°C or 3 h at room temperature. The brains 
were dissected in saline solution, fi xed in paraformaldehyde (4%) 
in PBS and left over night at 4°C. To intensify the staining of the 
labelled neurons the brains were incubated in Streptavidin-Cy3 
(Jackson Immunoresearch, West Grove, PA, USA; diluted 1:200 
in PBS) over night at 4°C before rinsed in PBS. Subsequently, the 
SYNORF1 protocol, as described above, was used on the prepara-
tions for background staining.

antennocerebral tracts, the inner (IACT), the middle (MACT) and 
the outer (OACT) in moths (Homberg et al., 1988; Rø et al., 2007). 
They project to the calyces of the mushroom bodies, important 
in learning and memory (Menzel, 2001; Heisenberg, 2003), and 
to the lateral protocerebrum, a premotoric area. To resolve how 
biologically relevant odour information is handled by the network, 
it is essential to determine the relevant input and output of spe-
cifi c glomeruli, which also require identifi cation of the glomeruli 
across individuals. The atlases of the AL glomeruli of several insect 
species including heliothine moths have supported the early fi nd-
ings of constant numbers and positions. Thus, they are helpful 
tools in identifying the glomeruli innervated by physiologically 
characterised AL neurons.

In herbivorous species of Lepidoptera the AL is organised 
into two parallel olfactory systems, the macroglomerular com-
plex (MGC) consisting of a few glomerular units dealing with 
pheromone information in male moths, and the numerous ordi-
nary glomeruli dealing with plant odours in males and females 
(Anton and Homberg, 1999; Christensen and Hildebrand, 2002; 
Mustaparta, 2002). Due to available, identifi ed pheromone compo-
nents as well as the relative simple system, the functional organi-
sation of the MGC is to a large extent resolved in several species, 
including H. virescens, as concerns input and output information 
(Berg et al., 1998; Vickers et al., 1998; Anton and Hansson, 1999; 
Galizia et al., 2000; Kanzaki et al., 2003; Vickers and Christensen, 
2003). Knowledge about the more complex plant odour system is 
in general scarce, partly due to unknown relevant plant odorants. 
However, using chemical analyses linked to electrophysiological 
recordings from single units, sharply tuned plant odour recep-
tor neurons have been well documented, particularly in H. vires-
cens for which numerous primary and secondary plant odorants 
have been identifi ed (Mustaparta and Stranden, 2005; Røstelien 
et al., 2005). These results are important in ongoing studies on 
the processing of plant odour information in the brain of this 
species. Using intracellular recordings combined with fl uorescent 
staining we are physiologically characterising chemosensory neu-
rons, including PNs, followed by visualisation in confocal laser 
scanning microscope and three dimensional reconstructions (Rø 
et al., 2007; Kvello et al., 2009). The neurons are subsequently regis-
tered into the SBA for spatially relating the neurons from different 
preparations in this common frame. In order to identify the PNs 
it is important to determine the glomeruli they innervate. This 
may be performed using the separate AL atlas. However, in order 
to relate the glomeruli giving input to the PNs with their output 
regions in protocerebrum, integration of the AL glomeruli into 
the SBA is required.

In this paper we present the H. virescens female SBA with a new 
model of the AL glomeruli integrated into the atlas (SBAGl), i.e. 
with each of its 66 glomeruli identifi ed with a specifi c number. 
The glomeruli in the new atlas are numbered according to the 
AL atlases of two other heliothine species (Skiri et al., 2005). For 
identifying female specifi c glomeruli comparison with the male 
AL was necessary, which required a new H. virescens male AL atlas, 
included in this paper. As demonstrated by the three registered 
AL PNs, the SBAGl is a helpful tool for determining the glomeruli 
innervated as well as the relative position of the axonal projections 
in the protocerebrum.
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VISUALISATION OF THE ANTENNAL LOBE GLOMERULI AND 
THE PROJECTION NEURONS
Stained preparations were visualised with a laser scanning confocal 
microscope (LSM 510 META Zeiss, Jena, Germany). Stained AL 
preparations were examined using a Zeiss Plan-Neofl uar 40 × 0.75 
NA dry lens objective. The fl uorescent dye (Cy5) was exited by 
a 633-nm line of argon laser and scanned with a resolution of 
1024 × 1024 pixels in the xy-plane and an interslice distance of 2 μm 
(voxel size of 0.75 μm × 0.75 μm × 2 μm). Intracellular fi llings were 
examined with a Plan-Neofl uar 20×/0.5 NA dry lens objective. The 
intracellular dye was excited by a 543-nm Helium Neon laser and 
fi ltered through a bandpass fi lter BP 565-615 IR. Preparations were 
scanned with a resolution of 1024 × 1024 pixels in the xy-plane and 
an interslice distance of 2 μm. The neurons were scanned in several 
tiles and manually merged in Amira 4.1. To compensate for the 
refraction indexes of the mountant and that of the dry lens objec-
tive, the z-axis dimension was multiplied by a factor of 1.6.

RECONSTRUCTION AND IDENTIFICATION OF THE 
ANTENNAL LOBE GLOMERULI
Grey value image stacks acquired from the confocal microscope were 
elaborately examined section by section and glomeruli were manually 
labelled using the segmentation editor in Amira 4.1 (Visage Imaging, 
Fürth, Germany). In this process any group of voxels belonging to a 
particular glomerulus was given a unique label resulting in a stack of 
label images corresponding to the underlying confocal images. The 
label images were used to create 3D polygonal surface models.

INTEGRATION OF THE ANTENNAL LOBE ATLAS INTO 
THE STANDARD BRAIN
The digital SBA of H. virescens includes the ALs as models solely 
constituting the glomerular layer labelled as a single material iden-
tity (Kvello et al., 2009). Thus, to register the glomeruli of the AL 
atlas into the SBA, the separately labelled glomeruli had fi rst to be 
assigned a single material identity corresponding to the AL model of 
the SBA. The label image stack of the AL glomeruli was then affi ne- 
and elastically registered into the corresponding label images of the 
SBA, i.e. corresponding points in the AL atlas and the AL model of 
the SBA were transformed into the same coordinates. Subsequently, 
the glomeruli were relabelled as separate units and given material 
identity and colour code according to the separate AL atlas.

RECONSTRUCTION AND REGISTRATION OF NEURONS INTO THE NEW 
STANDARD BRAIN ATLAS WITH GLOMERULI
Gray value image stacks of stained neurons and innervated brain 
structures acquired from the confocal microscope were examined 
and reconstructed in the computer software Amira 3.1, as described 
by Kvello et al. (2009). Brain structures were reconstructed as label 
images and neurons by using the skeleton tool (Evers et al., 2004; 
Schmitt et al., 2004). In general, the registration of neurons into 
the SBA followed the same procedure as described by Brandt et al. 
(2005). The label images of the innervated brain structures were 
affi ne- and elastically registered to the label images of the corre-
sponding structures in the SBA. Then the resulting transformation 
parameters for the brain structures were applied to the reconstructed 
neurons. Since the registration of a neuron into any structure of 
the SBA requires the identifi cation of the corresponding structure 

in the preparation, the neurons were fi rst registered into the SBA. 
The SBAGl was then superposed in order to identify the inner-
vated glomeruli. The identifi cation was checked against the confocal 
images. The innervated glomeruli as well as a few other landmark 
glomeruli were subsequently reconstructed in the preparation and 
registered into the corresponding glomeruli of the SBAGl.

RESULTS
ATLAS OF ANTENNAL LOBE GLOMERULI
As expected, the synapsin-specifi c antibody staining gave a clear 
labelling of brain structures, particularly the glomeruli of the ALs 
(Figure 1).

In addition the calyces of the mushroom bodies, the optic lobes 
and the suboesophageal ganglion were clearly stained. Two of the 
three AL cell body clusters (Berg et al., 2002), the lateral and the 
medial, were recognised, but were not further described in this 
study. The results are based on confocal laser images of the glomer-
uli of four ALs, one right (Figure 2), and one left from different 
females and two left from different males.

Figure 3 shows the 3D reconstructions of each glomerulus in 
the two female and one male preparations.

The ALs of the two female specimens were compared with the 
female AL model and the underlying confocal images of two other 
heliothine moth species, Helicoverpa armigera and Helicoverpa assulta 
(Skiri et al., 2005), to identify corresponding glomeruli that were 
given the same number and colour. The same procedure was car-
ried out for comparing and numbering the male AL glomeruli. Sex 
specifi c glomeruli of the female ALs were identifi ed by comparing 
the glomeruli between the two sexes. Like in the previous studies, the 
primary landmarks were the antennal nerve entrance, the central large 
female glomerulus (cLFG), the male specifi c MGC, the labial pit organ 
glomerulus (LPOG), the adjacent large glomerulus medially of the 
LPOG (mLPOG), and the fi bre bundles of the lateral and the medial 
cell clusters, LCCl and MCCl, respectively (Figure 3). Surrounding 
glomeruli of the primary landmarks served as secondary landmarks. 
This resulted in 4 female specifi c and 62 ordinary glomeruli in the AL 
of H. virescens females. In males 62 glomeruli corresponded to the 
ordinary glomeruli in females, whereas 5 glomeruli were male specifi c, 
including G63 and the 4 previously described units of the MGC.

FEMALE SPECIFIC GLOMERULI
The four female specifi c glomeruli of the H. virescens ALs, located 
at the entrance of the antennal nerve, were identifi ed in both 
preparations. Centrally at the entrance is the large female specifi c 
glomerulus (cLFG) (Figures 2D,E and 3G,H), previously identifi ed 
in Berg et al. (2002). Two other female specifi c glomeruli, F1 and 
F3, were positioned anterior of cLFG and the fourth, F2, posterior 
of cLFG. Compared with the other heliothine species (Skiri et al., 
2005), cLFG has a similar position and size, whereas the position 
of F1 and F2 differs among the species. F3 is only present in H. 
virescens and H. assulta.

ORDINARY GLOMERULI IN FEMALES
Sixty-six glomeruli were counted in both ALs of the two individu-
als (Figure 3). Among them, 62 glomeruli corresponded to ordi-
nary glomeruli in the AL of H. virescens males and of the two other 
heliothine species, H. armigera and H. assulta. For instance, easily 
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 recognised in all ALs are the two primary landmarks, the large LPOG 
and mLPOG, which are given the numbers G38 and G39, respec-
tively, according to Skiri et al. (2005). Posterior of G39 is G53 with 
fi ve dorso-medially located glomeruli, G58–G62 (Figures 3J,K). At 
the entrance of the antennal nerve, posterior of cLFG, are four recog-
nised glomeruli G51, G52, G56 and G57. Three other glomeruli, G49, 
G50 and G54, are recognised most dorsal in the AL, and G37, G36 
and G35 dorso-medially of the LCCl fi bre bundle (Figures 3G,H). 
On the basis of these recognised and identifi ed primary and second-
ary landmarks, the other 42 glomeruli were identifi ed and given 
numbers according to the other heliothine atlases (Skiri et al., 2005). 
This is exemplifi ed in Figure 3, showing the clockwise numbering 
of G1–G23 (Figures 3A,B), G24–G34 (Figures 3D,E), G35–G48 
(Figures 3G,H) and G49–G63 (Figures 3J,K), appearing in sections 
from anterior to posterior. In this way, all 62 glomeruli in both H. 
virescens female preparations were found to correspond with the 
ordinary glomeruli in the atlases of the other heliothine species.

COMPARISON OF NUMBERS AND POSITIONS OF GLOMERULI
Whereas the number of the glomeruli was constant in the ALs of the 
examined specimens, some variations were found regarding posi-
tions and sizes of a few glomeruli. For instance, the position of G1 

and G2 is shifted anterior–posterior in the two preparations and the 
size of G2 and G5 is marked larger in one preparation than in the 
other (Figures 3A,B). Other variations between the two H. vires-
cens preparations are the relative positions of G25, G24 and F1 and 
between G28 and G38. Comparison with the previous H. virescens 
atlas, the differences concern the total number of glomeruli identifi ed 
as well as the way of numbering the glomeruli. Concerning the female 
specifi c glomeruli, only two (cLFG and medially of it the mLFG) 
were identifi ed by Berg et al. (2002). The eight ordinary glomeruli 
G11–G13, G25, G34 and G45–G47 in the present atlas were counted 
as four units in the previous atlas. Oppositely, G62 and G22 in the 
present atlas seem to be counted as four in the previous atlas. The 
corresponding numbers of the two atlases are presented in Table 1.

MALE SPECIFIC AND ORDINARY GLOMERULI
Like in females, the MGC is located at the entrance of the anten-
nal nerve. As previously described it consists of the cumulus, the 
dorso-medial and the two ventral glomeruli (Figures 3C,F), and 
differs from the MGC of the two other heliothine species having 
only three glomeruli (Berg et al., 2002; Skiri et al., 2005). The MGC 
served as an additional primary landmark in the identifi cation of 
the ordinary glomeruli. Using the same way of identifi cation as in 

FIGURE 1 | Three dimensional visualisation of the confocal image stack of the H. virescens female moth brain. (A) The brain in a frontal view exposing the two 
antennal lobes (AL) with the numerous glomeruli. (B) The brain in posterior view showing the calyces of the mushroom bodies. OL, optic lobes; SOG, 
suboesophageal ganglion; CaL, lateral calyx; CaM, medial calyx.
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the female AL, 63 ordinary glomeruli were identifi ed in the male 
AL, of which G1–G62 showed correspondence with the female 
ordinary glomeruli and G63 being male specifi c.

INTEGRATION OF THE ANTENNAL LOBE GLOMERULI INTO THE 
STANDARD BRAIN ATLAS
Registration of the AL glomeruli into the SBA resulted in the new 
female H. virescens SBA with 66 identifi ed glomeruli (SBAGl) 
(Figure 4A).

The two reconstructed female ALs were independently integrated 
into the SBAGl. After transforming the glomeruli into the SBA, the 
shape and size of the glomeruli in SBAGl matched the glomerular 
layer in the SBA. The relative position of the glomeruli was main-
tained in the transformation process making the glomeruli easily 
recognisable (Figures 4B,C). Thus, they were relabelled and given 
numbers and colours corresponding to the separate AL atlas. With 
this new and more detailed anatomical atlas of the H. virescens brain, 
we next wanted to study the specifi c glomerular innervation of three 
AL PNs and their projection patterns in the protocerebrum.

INTEGRATION OF ANTENNAL LOBE PROJECTION 
NEURONS INTO THE SBAGl
The present results include three stained AL PNs registered into 
the SBAGl (Figures 5–7).

These neurons with axons following the IACT are termed PI 
neurons (Homberg et al., 1988; Rø et al., 2007). The initial reg-
istration of each of them into the SBA by transforming the AL 
as a single material identity revealed the glomerular area of the 

dendritic innervations in the AL as well as the axonal pathway and 
branching pattern in the calyces and the lateral protocerebrum. 
After superposing the glomeruli of the SBAGl, the innervated 
glomeruli clearly appeared. As exemplifi ed by the neuron shown 
in Figures 5A, 6, and 7, the innervations were identifi ed in three 
glomeruli, G35, G36 and G37. The dendrite differentially inner-
vated each of the three glomeruli; G37 stronger than G35 and 
only one branch in G36. The axon following the IACT, passed 
adjacent and posteriorlaterally to the central body (Figures 6A,B). 
Upon reaching the calyces of the ipsilateral mushroom body, the 
axon gave off fi ve branches innervating the medial and lateral 
calyces before turning anteriorlaterally into the lateral protocer-
ebrum, showing a star-like projection pattern. Most branches 
turned dorsally and only one ventrolaterally into the lateral horn 
(Figures 6A–C), defi ned as the protrusion from the lateral pro-
tocerebrum according to Kvello et al. (2009). The soma was located 
in the lateral cell cluster close to the innervated glomerulus, G37. A 
second PN with cell soma in the lateral cluster was registered by the 
same procedure into the SBAGl (Figures 5B and 7). This neuron 
innervated a single glomerulus identifi ed as G14, located close to 
its cell body. The axon followed quite closely the axon of the G37 
neuron, and also gave off fi ve branches to the calyces before turning 
anteriorlaterally and extending into the lateral protocerebrum. The 
same pattern of star-like projections appeared with most branches 
turning dorsally and one ventrolaterally towards the lateral horn. 
The third neuron registered into the SBAGl, showed innervation 
of a single glomerulus identifi ed as G11, located in the anterior 
part of the AL (Figures 5C and 7). The soma was in the anterior 

FIGURE 2 | Confocal images at different depths of the right H. virescens female antennal lobe, from anterior towards posterior at the following depths: 
(A) 64 μm, (B) 105 μm, (C) 144 μm, (D) 179 μm, (E) 216 μm. Except for G16 all glomeruli are shown. The AL is inverted.
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cluster, close to the innervated glomerulus. The innervation was 
extensive throughout the whole glomerulus (Figure 5C). The axon 
followed the IACT sending four branches into the medial and 
lateral calyces before turning anteriorlaterally towards the lateral 
protocerebrum, where it projected in the typical star-like pattern 
with most branches extending dorsally and one ventrolaterally 
into the lateral horn.

Comparison of the three neurons in the SBAGl shows their rela-
tive position from the different glomerular innervation to their 
projections in the calyces and the lateral protocerebrum (Figure 7). 
The two neurons innervating the more posteriorventrally located 

G35, G36, G37 and G14, respectively, with soma in the lateral cell 
cluster have axons running in a ventral pathway into the protocer-
ebrum. The axon of the neuron innervating the dorsoanterior G11 
with soma in the anterior cluster runs more dorsally in the AL 
and protocerebrum before joining the other axons in the IACT 
anteriorly and close to the central body. The axonal projections 
of the three neurons in the calyces intermingle, whereas in the 
lateral protocerebrum the axonal projections appears organised in 
a dorsoventral axis with partly overlap. The projections of the G14 
neuron are dorsally to those of the G11 neurons, which are again 
dorsally to those of the G37 neuron.

FIGURE 3 | Antennal lobe atlases as 3D reconstructions of two H. 

virescens female (right and left antennal lobe) and one male preparation 

(left antennal lobe). All glomeruli are reconstructed, identifi ed and given a 
specifi c number and colour that corresponded across preparations, including 
sexes, in accordance with the atlases of two other heliothine species in Skiri 

et al. (2005). The right and left female and the left male antennal lobes 
are shown in frontal view at four different sections. (A–C) The most 
anterior part of the three preparations, (D–L) the three deeper sections. 
The right female antennal lobe is inverted for comparison with the left 
antennal lobe.
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is further refl ected in higher olfactory areas, are central questions 
in studies on the functional organisation of vertebrate as well as 
insect olfactory systems. A major challenge is to map in higher 
olfactory brain neuropils the target areas of the primary olfac-
tory centre’s output neurons, according to the glomerular input; 
in Drosophila made possible by the use of molecular labelling of 
PNs (Wong et al., 2002; Tanaka et al., 2004; Jefferis et al., 2007). 
In the honeybee and the moth H. virescens, whole brain standard 
atlases have been demonstrated as helpful tools in determining the 
projections in the calyces and the lateral protocerebrum of AL PNs 
(Brandt et al., 2005; Kvello et al., 2009). Particularly in the lateral 
protocerebrum with no visible substructures, integrated PNs from 
different preparations give important information about their rela-
tive positions. However, because of the low resolution confocal 
scans used for creating the whole brain atlases, separate atlases with 
higher resolution are better suited for determining the PNs input 
and output regions, respectively. By integration of the AL glomeruli 
into the H. virescens SBA as shown in the present study, the PN input 
and output regions were standardised in this common framework, 
SBAGl. This integration process was facilitated by the fact that the 
AL of this atlas included the glomerular layer only, excluding tracts 
and cell clusters; different from the four other atlases. Therefore, 
the AL atlas glomeruli could be directly registered into the SBA, 
after being assigned a single material identity. Since the relative 
position of the glomeruli was maintained in the transformation 
process, all 66 glomeruli could easily be recognised, relabelled and 
numbered according to the AL atlas (Figure 4). The anatomically 
more detailed SBAGl provides a stronger basis for studying the 
specifi c innervations in the AL as well as the connections to higher 
brain areas, like the calyces and the lateral protocerebrum.

ANTENNAL LOBE PROJECTION NEURONS INTEGRATED INTO THE SBAGl
In principle, the integration of reconstructed AL neurons into 
the SBAGl is a two-step process as described for the neurons pre-
sented in Figures 5–7. The fi rst step constitutes a registration into 
the SBA which guides the localisation of the dendritic innerva-
tion to a particular area of the AL. Then, superposing the SBAGl 
reveals the innervated glomeruli. This procedure used for the well 
stained preparations in the present study allowed verifi cation of 
the glomerular innervation in confocal images. This means that 
the procedure can be used even for preparations where glomeruli 
may not be well distinguished, as long as the glomerular borderline 
is clearly detectable. The well stained preparations in the present 
study made reconstruction of the innervated and landmark glomer-
uli possible. The registration of these glomeruli into the SBAGl 
resulted in a precise position of the dendritic innervation within 
the glomeruli. Thus, the SBAGl is an extended and more elaborate 
tool that together with the confocal images expands the possibil-
ity for making accurate judgments of dendritic arborisation and 
identifi cation of the innervated glomeruli.

In addition to the high resolution model of the AL facilitating the 
identifi cation of glomerular innervation, the SBAGl also provides 
the frame for visualising the relative position of whole neurons in 
the brain. As shown in Figures 6 and 7, the details on the neuronal 
pathways are for instance visualised by the different axonal trajec-
tories in the AL before joining in the IACT. The uniglomerular 
innervation and extensive branching throughout the glomerulus as 

DISCUSSION
ANTENNAL LOBE GLOMERULI INTEGRATED INTO 
THE STANDARD BRAIN ATLAS
How glomerular activity in the primary olfactory centres repre-
sents odour information and how this topographic organisation 

Table 1 | Glomeruli of H. virescens antennal lobe atlases with 

corresponding numbers in the new and the previous atlas.

New atlas 

Previous atlas

  New atlas 

Previous atlasF and M  F and M

 
F M  F M

G1 G1 G8 G36 G45 G57

G2 G7 G3 G37 G37 G41

G3 G57 G6 G38 G19 G39

G4 G8 G2 G39 G21 G35

G5 G2 G7 G40 G22 G42

G6 G6 G17 G41 G43 G48

G7 G3 G23 G42 G42 G47

G8 G4 G1 G43 G24 G38

G9 G5 G12 G44 G23 G40

  G18 G45 G331 G33

G10 G11 G5 G46 G321 G241

G11 G581 G4 G47 G331 G45

G12 G361 G22 G48 G26 G53

G13 G361 G25 G49 G54 G541

G14 G30 G10 G50 G39 G55

G15 G18 G19 G51 G41 3

G16 G9 G211 G52 G38 G58

G17 G20 G16   G59

G18 G12 G15 G53 G44 G36

G19 G27 G26   G49

G20 G15 G27 G54 G53 G541

G21 G17 G13 G55 G52 3

G22 G322 G9 G56 G51 G56

 G60 G62 G57 G40 G60

G23 G59 G11   G61

G24 mLFG 3 G58 G48 3

G25 G581 G14 G59 G50 G51

G26 G35 G43 G60 G49 G46

G27 G28 G32 G61 G47 G50

  G212 G62 G55 G52

G28 G10 G31  G56 

G29 G14 G28 G63  Cumulus2

  G34 Cumulus  Cumulus1

G30 G13 G30 dm  dm

G31 G25 G29 vm  vm

G32 G29 G371 cLFG cLFG 

G33 G16 G20 F1 G31 

  G372 F2 G34 

G34 G321 G241 F3 3 

G35 G46 G44   

F, female; M, male.
1Two glomeruli counted as one.
2Includes a part of adjacent glomerulus.
3Glomeruli not found.
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FIGURE 4 | (A) The female H. virescens standard brain atlas with the glomeruli of one left and one right antennal lobe integrated. (B,C) The left female antennal lobe 
atlas with numbered glomeruli and cell clusters, showing the glomerular layer before (B) and after (C) registration into the standard brain atlas.

FIGURE 5 | Stacks of confocal images of three preparations each with one 

stained projection neuron having axon in the inner antennocerebral tract. 

(A) Dorsal view: This neuron innervated three glomeruli (G35, G36 and G37) and 
projected in the calyces with fi ve branches (three visible) before turning anterior-
laterally and projecting in lateral protocerebrum. (B) Dorsal view: This neuron 

innervated G14 and projected in calyces with fi ve branches before turning anterior-
laterally into the lateral protocerebrum. The starlike projection with dorsal branches 
as well as a single ventral branch into the lateral horn is visible. (C) Frontal view: 
This neuron (co stained with a second neuron, from Kvello et al., 2009) innervated 
G11. The projection in the calyces and the lateral protocerebrum is shown.
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shown for the G11 and G14 neurons are typical features for IACT 
PNs (category PIa in Homberg et al., 1988; Rø et al., 2007). These 
neurons found in most insect species belong to a conserved group of 
PNs (Schachtner et al., 2005). IACT neurons innervating a few adja-
cent glomeruli have also been identifi ed in H. virescens (category 
PIc in Rø et al., 2007), similar to the G37 neuron with dendritic 
arborisations in the two adjacent glomeruli, G35 and G36. The 
innervation pattern in protocerebrum, shown for the three neurons 

in Figure 7, is typical for IACT neurons. As previously described, 
they send three to fi ve branches into the calyces and extend the 
axon into the lateral protocerebrum ending in a star-like projection, 
where most branches project dorsally and one branch ventrola-
terally towards or into the lateral horn, like the IACT neurons in 
the present study. By using the SBAGl combined with registration 
algorithms for integrating the neurons we have here found that 
the three IACT neurons innervate distinct but  overlapping areas 

FIGURE 6 | The H. virescens standard brain atlas with one integrated 

antennal lobe projection neuron (the same as in Figure 5A). (A) Frontal view. 
(B) Posterior view. (C) Magnifi ed frontal view showing the innervated glomeruli 
and projection pattern in the medial and lateral calyces and in the lateral 
protocerebrum. (D–G) Confocal images showing the triple glomerular 

innervation in two different sections scanned with two channels. (D) Micro-ruby 
staining showing the innervation of glomeruli G37 and G36. (E) Synapsin 
staining visualising the glomeruli of the same section. (F) Micro-ruby staining 
showing the innervation of glomerulus G35. (G) Synapsin staining visualising the 
glomeruli of the same section. Arrows indicate innervated glomeruli.
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along a dorsoventral axis in the lateral  protocerebrum (Figure 7). 
Whether this organisation is consistent with the actual organisa-
tion or due to methodological limitations remains to be verifi ed. 
In contrast, the two PNs innervating the same glomerulus showed 
intermingled projections in the same area (Kvello et al., 2009). A 
similar principle for the organisation of PN projections is found in 
the lateral horn of Drosophila, where molecularly labelled neurons 
innervating the same glomerulus exhibited similar axonal topogra-
phy, whereas neurons from different glomeruli displayed different 
projection patterns (Wong et al., 2002). A further division of the 
lateral horn in Drosophila into sub-regions according to different 
PN projection clusters is described by Jefferis et al. (2007). How the 

projection pattern of PN populations in H. virescens are organised 
in the lateral protocerebrum according to the innervated glomeruli 
as well to the different tracts, are interesting questions to be resolved 
when more PNs have been integrated into the SBAGl.

COMPARISON OF ANTENNAL LOBE ATLASES 
BETWEEN SEXES AND SPECIES
In the present study we provided a new atlas of the AL of H. 
virescens females, based on the numbering system of two other 
heliothine moth species (Skiri et al., 2005). In general, the chal-
lenge in this kind of work is to detect the borders between the 
glomeruli. The difference from the previous H. virescens atlas in 

FIGURE 7 | The H. virescens standard brain atlas with three antennal lobe 

projection neurons integrated. (A,C) Frontal view. (B,E) Dorsal view. (D) 
Posterior lateral view. (F) Lateral view. The relative positions of the innervated 
glomeruli and projections as well as the axonal pathways are shown in the 

different views. The projections pattern in the lateral protocerebrum in different 
but overlapping areas along a dorsoventral axis appears particularly in (C) and (F). 
The dorsal axonal pathway in the antennal lobe of the G11 neuron before joining 
the other axons in the inner antennocerebral tract is clearly seen in (A) and (B).
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respect to the number of glomeruli included seems to be due to 
the lack of detectable borderlines between pairs of glomeruli in 
the lower resolution confocal images of the previous atlas (Berg 
et al., 2002). The glomeruli in the present H. virescens atlas showed 
a striking correspondence with the glomeruli of the atlases of the 
two other heliothine species (Skiri et al., 2005), which is the basis 
for the identifi cation of the glomeruli with corresponding numbers. 
Thus, the new H. virescens atlas is more reliable for identifying the 
glomeruli innervated by a neuron, as well as suited for comparing 
the results between heliothine species. For instance, a challenging 
question is whether corresponding glomeruli in the three species 
also receive and process information about the same odorants or 
the odorant specifi city has changed through evolution. An inter-
esting example on possibly conserved specifi city is for the large 
LPOG or G38, present in the typical position in the AL of lepi-
dopteran species, and in Manduca sexta shown to be involved in 
mediating information about CO

2
 (Gurenstein et al., 2004). The 

male AL atlas included in this study provides a basis for detecting 
similarities and differences with the female olfactory system both 
concerning morphology and physiology. Interestingly, except for 
one additional glomerulus, G63, in the male AL, the numerous 
ordinary glomeruli corresponded well between the two sexes as 
well as between the species. Because of this correspondence within 
and between sexes and species (all together 12 individual ALs), we 

fi nd that the present results are reliable as concerns numbers and 
relative positions of the glomeruli. In the present study we have 
integrated the AL glomeruli into the SBA of H. virescens and shown 
its suitability for integrating and visualising AL neurons. So far, we 
have only registered PNs of the IACT, showing their relative posi-
tions. The intention is to integrate physiologically characterised 
PNs of all tracts for relating glomerular innervation in the AL to 
axonal projections in the protocerebrum. Functional similarities 
and differences among the PNs may in this way be related to spe-
cifi c input, output or ACTs, the latter associated with functionally 
different PNs in the honeybee (Müller et al., 2002). In a previous 
study, we have compared the spatial relationship between a few 
olfactory and gustatory neurons showing adjacent projection areas 
in the lateral protocerebrum (Kvello et al., 2009). Thus, integration 
of more physiologically characterised chemosensory neurons may 
visualise the neuronal network underlying chemosensory coding 
in this moth species.
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Abstract 50 
The olfactory pathway in the insect brain is anatomically well described from the 51 
antennal lobe to the mushroom bodies and the lateral protocerebrum in several species. 52 
Less is known about the further connections of the olfactory network in protocerebrum 53 
and how information about relevant plant odorants and mixtures are represented in this 54 
network, resulting in output information mediated by descending neurons. In the present 55 
study we have recorded intracellularly followed by dye injections from neurons in the 56 
lateral- and superior protocerebrum of the moth, Heliothis virescens. As relevant stimuli, 57 
we have used selected primary plant odorants and mixtures of them. The results provide 58 
the morphology and physiological responses of neurons involved in a putative circuit 59 
connecting the mushroom body lobes, the superior and the lateral protocerebrum, as well 60 
as input to superior and lateral protocerebrum by one multiglomerular antennal lobe 61 
neuron and output from the lateral protocerebrum by one descending neuron. All neurons 62 
responded to one particular mixture of ten primary plant odorants, some neurons also to 63 
single odorants of the mixture. Altogether, the physiological data suggest a combinatorial 64 
coding mechanism involved in handling information about this mixture of primary plant 65 
odorants. 66 

67 
Introduction 68 
The intimate relationship between insects and plants relies to a large extent on plant 69 
produced chemical cues and sophisticated olfactory and gustatory systems evolved in 70 
insects. The importance of these senses is reflected in the numerous sensory organs, 71 
sensilla, on the various appendages and the large areas of the brain devoted to 72 
chemosensory coding and learning. Important questions in studying olfactory and 73 
gustatory mechanisms concerns stimulation with relevant odorants and tastants involved 74 
in attraction and selection of host plants, how receptor neurons detect the large diversity 75 
of odour and taste molecules, and how innate and learned odour and taste information is 76 
handled in the brain, resulting in particular motor output and behaviour.  77 
 78 
 The olfactory system of many insect species is anatomically and partly functionally 79 
described with common structures and organisation, from receptor neurons projecting in 80 
the primary olfactory centre, the antennal lobe (AL), to the second order olfactory areas 81 
in protocerebrum, like the mushroom bodies (MB), the lateral- and the superior 82 
protocerebrum (LP and SP) (Galizia and Rössler, 2010). As shown in the fruit fly 83 
(Drosophila melanogaster) and other species, the olfactory receptor neurons (ORNs); 84 
consists of subtypes, each subtype expressing one and the same type of receptor proteins 85 
and sending their primary axons to one specific glomerulus, exceptionally two, in the AL 86 
(Vosshall et al., 1999; Vosshall and Stocker, 2007). Thus, each glomerulus is considered 87 
to receive odour information from one type of ORNs. The number of glomeruli is species 88 
specific, like 43 in the fruit fly, 60-67 in moth species, including H. virescens (66 in 89 
females), and 160 in the honeybee (Apis melifera) (Flanagan and Mercer, 1989; Stocker 90 
et al., 1990; Berg et al., 2002; Løfaldli et al., 2010). The information is processed in the 91 
neuronal network formed by the synapses between the ORNs and the local and projection 92 
neurons (LNs and PNs) in the AL, and modulated by centrifugal neurons also innervating 93 
the glomeruli. Like in most insect species studied, the majority of PNs in moths are 94 
uniglomerular, innervating single glomeruli, in contrast to the multiglomular PNs present 95 
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in a smaller number (Homberg et al., 1988; Stocker et al., 1990; Jefferis et al., 2007; Rø 96 
et al., 2007).  The processed information is then mediated to the protocerebral areas, 97 
mainly via three parallel antenno-protocerebral tracts (APTs), the medial (also called the 98 
inner antenno-cerebral tract ACT), the lateral (also called the outer ACT) and the medio-99 
lateral APT.  Whereas the medial and the lateral APT both project in the calyces of the 100 
MB and in the LP lobe, but in opposite order, the mediolateral APT projects in the LP 101 
and the SP, avoiding the calyces of the MB (Homberg et al., 1988; Kirschner et al., 2006; 102 
Rø et al., 2007; Galizia and Rössler, 2010).  103 
 104 
The MB has been studied particularly in social insects, like honeybees and ants, because 105 
of its importance in learning and memory (Heisenberg et al., 1985; Menzel, 2001; 106 
Heisenberg, 2003; Gerber et al., 2004). The dendrites of the numerous kenyon cells, 107 
receiving information from the PNs of the AL, form the calyces, and the axons the 108 
peduncle and the lobe system that is divided into several subsystem of the medial and 109 
vertical lobes (Ito et al., 1998; Strausfeld, 2002; Fukushima and Kanzaki, 2009). Several 110 
types of extrinsic MB neurons have been morphologically described with dendritic 111 
innervations along the pedunculus and the lobes and axon projecting in other 112 
protocerebral areas, like the LP (Homberg, 1984; Ito et al., 1998; Li and Strausfeld, 1999; 113 
Tanaka et al., 2008). One physiologically characterised MB extrinsic neuron, the PE1 of 114 
the honeybee projecting in LP as well as other areas, is particularly interesting by 115 
showing changed responses after odour conditioning (Mauelshagen, 1993; Rybak and 116 
Menzel, 1998; Okada et al., 2007). The LP, receiving direct information from the AL as 117 
well as via the MB, is considered as a premotoric area, from where descending neurons 118 
mediate the information out of the brain. Whereas descending neurons responding to 119 
pheromones have been described in the lateral accessory lobes (Kanzaki et al., 1991; 120 
Kanzaki et al., 1994), the knowledge is scarce about descending LP neurons responding 121 
to plant odours. In flies a ventral area of the LP is shown to house descending neurons 122 
and to receive information of different modalities, including olfactory information from 123 
the lateral horn (LH) (Strausfeld, 1976; Tanaka et al., 2004).  124 
 125 
In general, little knowledge exits on the anatomical and functional organisation of the 126 
LP/LH. Studies both in the fruit fly and in the H. virescens have indicated a stratified 127 
projection pattern among m-APT PNs in the LH (fruit fly) and the LP (H. virescens); 128 
similar and close projections of neurons innervating the same glomerulus and partly 129 
overlapping projections of neurons innervating different glomeruli (Marin et al., 2002; 130 
Wong et al., 2002; Jefferis et al., 2007; Løfaldli et al., 2010). In H. virescens the olfactory 131 
projection area in the LP is termed olfactory axis (OA). Regarding the functionality of the 132 
LP/LH it has been proposed that the AL-LH pathway represents a naïve or inexperience 133 
odour processing route from the AL to motor control, compared to the associative and 134 
experience dependent MB pathway (Heimbeck et al., 2001; Keene and Waddell, 2007).  135 
In a recent study of the fruit fly, Ruta et al., (2010) mapped the information pathway of a 136 
pheromone from the responding PNs in the AL to descending neurons in the LP. They 137 
showed that information about the pheromone was transferred to third order LP neurons 138 
having dendritic overlap with the PN projections and axonal overlap with the dendrites of 139 
descending neurons that responded to stimulation with the pheromone, thus showing a 140 
functional pathway from the input to the output of the brain.  141 



 

Coding mechanisms have particularly been studied in the AL of many insect species, 142 
reporting both spatial and temporal principles for odour quality coding (Laurent et al., 143 
1996; Joerges et al., 1997; Galizia and Menzel, 2000; Stopfer et al., 2003; Wang et al., 144 
2003a; Lei et al., 2004; Riffell et al., 2009b). In moths, spatial coding principles are 145 
demonstrated by the functional organisation of the well defined macroglomerular 146 
complex innervated by PNs, of which some show specific responses to single compounds 147 
and others integration of the pheromone information (Anton and Hansson, 1994; Berg et 148 
al., 1998; Vickers et al., 1998; Christensen and Hildebrand, 2002). Likewise, in the more 149 
complex plant odour system of moths, PNs responding specifically to single odorants and 150 
others to several odorants have been shown by electrophysiological recordings as well as 151 
calcium imaging studies (Müller et al., 2002; Sadek et al., 2002; Skiri et al., 2004; 152 
Reisenman et al., 2005; Krofczik et al., 2009; Yamagata et al., 2009; Deisig et al., 2010; 153 
Kuebler et al., 2011). Using calcium imaging, similar results have been obtained in the 154 
honeybee, proposing a combinatorial coding mechanism where single odorants and 155 
blends elicit specific activity patterns among some glomeruli and neurons in the AL 156 
network (Galizia and Menzel, 2000; Galizia and Szyszka, 2008). In contrast, in the locust 157 
AL, exclusively containing multiglomerular PNs, odour coding is shown to relay more on 158 
the temporal synchronous activities than the spatial activity (Laurent et al., 1996; Perez 159 
Orive et al., 2002). In a recent multiunit recording study in the hawk moth (Manduca 160 
sexta) stimulation with complex mixtures containing particular odorants derived from 161 
host plants elicited synchronous intensity invariant firing patterns among the recorded 162 
neuronal units (Riffell et al., 2009a; Riffell et al., 2009b). It was found that the mixture 163 
was differently represented from the single constituents in a spatio-temporal activity 164 
pattern, similar to findings in the honeybee by imaging and electrophysiological 165 
recordings from PNs (Deisig et al., 2006; Yamagata et al., 2009). Furthermore, 166 
differentiation between information mediated by single odorants and blends have been 167 
proposed for the m- and the l-APT, the PNs of the l-APT processing synthetically and the 168 
m-APT PNs elementally information about mixtures (Krofczik et al., 2009). In spite of 169 
results provided by numerous studies in insects, we need more specific knowledge about 170 
the processing of relevant odour information both in the AL and in the protocerebral 171 
networks. 172 
 173 
The present study focuses on how information about relevant plant odours is handled by 174 
neurons projecting in two APT target areas in the protocerebrum of H. virescens.  It is 175 
based on knowledge about primary plant odorants, previously identified by the use of gas 176 
chromatography linked to electrophysiological recordings from single receptor neurons 177 
(Røstelien et al., 2005). From these long-lasting recordings of testing large numbers of 178 
naturally produced plant volatile mixtures ( “head-space”), we know that ORNs 179 
responding to plant odorants in this species belong to functional subtypes, each subtype 180 
responding best to one primary odorant and weakly to a few others of molecular 181 
similarity. Furthermore, with one exception, the molecular receptive ranges of the 182 
functionally described ORN types do not overlap. This indicates that responses of a 183 
central neuron to a primary odorant originate from one particular ORN type.  In the 184 
present study we have stimulated with selected primary odorants and defined mixtures of 185 
them during intracellular recordings from protocerebral neurons, followed by dye 186 
injection for morphological characterisation. We have asked how information about 187 
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relevant plant odorants and mixtures are represented among neurons in higher order 188 
protocerebral areas. The results revealed neurons that are part of a putative circuit 189 
handling information about a defined ten component plant odour blend. 190 

191 
Materials and Methods 192 
Insects, stimulation protocol, recordings and staining  193 
H. virescens (Heliothinae; Lepidoptera; Noctuidae) pupae were imported from a 194 
laboratory culture (Syngenta, Basel, Switzerland), separated according to sex, enclosed 195 
and kept with access to 0.1M sucrose solution in an incubator (Refritherm 6E, Struers) on 196 
a phase-shifted LD photoperiod (14:10 hours) at 25oC. Experiments were performed on 197 
three to six days old female moths. 198 
 199 
Moths were mounted in plastic tubes and immobilized with dental wax (Kerr 200 
Corporation, Romulus, MI). Part of head cuticle was removed to expose the superior and 201 
lateral parts of the protocerebrum. Large trachea, intracranial- and antennal muscles were 202 
removed to eliminate movements. Glass microelectrodes were pulled with a Flaming-203 
Brown horizontal puller (P97; Sutter Instruments, Novarto, Ca, USA), the tips were filled 204 
with dye (Micro-Ruby, Invitrogen; 4%) and backfilled with potassium acetate solution 205 
(0.2 M). The microelectrodes had a resistance of 150–400 M . Neurolemma was 206 
perforated with a tungsten hook to facilitate insertion of the microelectrode prior to super 207 
fusion with saline solution.  208 
 209 
Neuronal activity was recorded with an axoprobe amplifier (Molecular devices) and a 210 
CED data acquisition unit (Cambridge electronic design) during stimuli protocol 211 
application. Olfactory stimuli were applied as air puffs (0,8 ml/300 ms) into a continuous 212 
air stream through glass cartridges. Each cartridge containing one of the following 213 
primary odorants: Hexanol, (3Z)-Hexen-1-ol, (3Z)-Hexenyl acetate, Ocimene, racemic- 214 
Linalool, Geraniol, (+)-3-Carene, trans-Verbenol, Methyl benzoate, 2-Phenylethanol, (-)-215 
Germacrene D, Farnesene, (odorants described in Røstelien et al., (2005), defined blends 216 
with equally amount of each odorant (from a binary to a twelve component mixture), and 217 
other blends (Ylang oil and magnet), applied (10 g) to a filter paper (1,5 cm). All 218 
neurons were tested with purified air as control. Tactile and taste stimulation (sucrose, 219 
quinine hydrochloride, salt and distilled water) as described in Kvello et al., (2010), as 220 
well as sound and light stimulation were applied to some neurons.  221 
 222 
Neurons were iontophoretically stained by passing a 1-3 nA depolarizing current of 2 Hz 223 
with 0.2 seconds duration. Complete labelling of the neurons required dye (4% micro 224 
ruby, Invitrogen) injection for 10 to 15 minutes. After current injection, the dye was 225 
allowed to diffuse over night at 4oC. The brains were dissected in saline solution, fixed in 226 
paraformaldehyde (4%) in PBS and left over night (4oC). Stained neurons was intensified 227 
by Streptavidin-Cy3 (Jackson immunoresearch, West Grove, PA; diluted 1:200 in PBS) 228 
over night (4oC) before PBS rinsing, dehydration (ethanol series: 50, 70, 90, 96 and 100 229 
% 10 min each) and mounting in methyl salicylate. Most preparations with successful 230 
neuronal staining underwent a subsequent background staining with a SYNORF1 231 
protocol; rehydration in ethanol (100%, 96%, 90%, 70%, 50%, 10 minutes each), 232 
washing (PBS, 10 minutes) and preincubation in normal goat serum (NGS; Sigma, St. 233 



 

Louis, MO; 10%) in PBS at room temperature (30 minutes). Subsequently, the 234 
preparations were incubated in a monoclonal antibody against the synaptic protein 235 
synapsin (SYNORF 1, Prof. E. Buchner, Würzburg, Germany), diluted in PBS (1:10) and 236 
NGS (10%) for 48 hours (4°C). Rinsed in PBS (5x20 minutes) before incubated for 24 237 
hours (4°C) with a Cy5-conjungated goat anti-mouse secondary antibody (Jackson 238 
Immunoresearch; dilution 1:500 in PBS), rinsed again (PBS, 5x20 minutes), and 239 
dehydrated before mounted in methyl salicylate on double-sided aluminium slides. 240 
 241 
Visualization, reconstruction and registration of neurons into the standard brain 242 
atlas (SBA). 243 
Stained preparations were visualized in a laser scanning confocal microscope (LSM 510 244 
META Zeiss, Jena, Germany and a Leica TCS SP5, Leica microsystems). Intracellular 245 
fillings were examined with a Plan-Neofluar 20x/0.5 NA dry lens objective and a C-246 
Achroplan 40x/0.8 NA water objective in the Zeiss microscope and a 10x/0,4 NA dry 247 
lens objective in the Leica microscope. The intracellular dye was excited by a 543 nm 248 
Helium Neon laser and filtered through a bandpass filter BP 565-615 IR (561 HeNe laser 249 
in Leica), and the fluorescent dye Cy5 was exited by a 633 nm line of argon laser. 250 
Preparations were scanned with a resolution of 1024 x 1024 pixels in the xy-plane and an 251 
interslice distance of 2 m. Neurons was scanned in several tiles and manually merged in 252 
Amira (Visage Imaging). To compensate for the refraction indexes the z-axis dimension 253 
was multiplied by a factor of 1.6. Gray value image stacks of stained neurons and 254 
innervated brain structures acquired from the confocal microscope were examined and 255 
semi-automatically reconstructed (Evers et al., 2005; Schmitt et al., 2004 and Kvello et 256 
al., 2009). The registration of reconstructed neurons into the standard brain atlas (SBA) 257 
followed the same procedure as described by Brandt et al., (2005), Kvello et al., (2009) 258 
and Løfaldli et al., (2010). Selected brain structures in the preparations with stained 259 
neurons were reconstructed as label images and affine and elastically registered to the 260 
corresponding label imaged in the SBA. The transformation parameters were then applied 261 
to the corresponding reconstructed neuron. The results were then carefully evaluated by 262 
comparing the grey value images with the obtained model. The SBA contains only label 263 
images of neuropile areas and not cell clusters. 264 
 265 
Physiological analysis.  266 
All obtained intracellular voltage traces were processed with a wave form analysis mode 267 
in the computer program Spike 2 (Cambridge electronic design). The recordings were 268 
reviewed for odour evoked responses and sorted in a response table. Recordings that 269 
qualified for further response analyses had to fulfil the following criteria: In addition to 270 
control and B10, the neurons had to be tested for one or more of the four most frequently 271 
tested primary odorants, the responses had to be repeated and the recording had to be 272 
stable and reliable with low levels of noise. The responses were quantified in bins of 273 
50ms across all stimuli for all neurons except those with exceptionally wide response 274 
windows. The response window was defined as the period between stimulus onset and 275 
the first bin where the consecutive 400ms did not deviate significantly from spontaneous 276 
activity. The response window width (number of bins) of a neuron was kept constant 277 
across all stimuli, the duration of the longest response determining the width of the 278 
response window. Mean frequency and variance of the spontaneous activity were 279 
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estimated for each neuron. The estimation was based on the weighted average of spike 280 
rates from two periods: 200ms prior to stimuli onset and 1500ms recorded 400ms after 281 
the end of the defined response windows. The interval of 400ms after the response 282 
window was excluded from the estimation. This in order to ensure that neurons had 283 
returned to spontaneous activity. Any considerable change in spontaneous activity during 284 
the continuous recording was taken into account. 285 
 286 
Temporal response strength was quantified for each response window following an odor 287 
stimulus by calculating the mean deviation (in frequency) from estimated spontaneous 288 
activity (MDS): 289 
 290 

1

1 n

i sp
i

MDS r r
n  291 

 292 
 n is the number of bins, ri is the firing rate of bin i and rsp is the estimated spontaneous 293 
activity.  By taking the absolute value of the deviation, both positive and negative 294 
deviations contribute similarly to the MDS. This method enables quantification of 295 
complex responses consisting of both inhibitory and excitatory elements without 296 
neutralizing each other.  297 
 298 
To ascertain the excitatory and inhibitory parts of the responses, the contribution of 299 
positive deviation (eMDS) and negative deviation (iMDS) was also calculated. Mean 300 
response frequency (MRF) across bins of the response window and maximum frequency 301 
(maximum observed frequency in the response) was calculated as well. Odor responses 302 
were considered significant if either the excitatory or the inhibitory average MDS of two 303 
stimulations with the same odor exceeded the neuron’s standard deviation (SD) of 304 
spontaneous activity by a factor of 2. Absolute MDS had to exceed the SD in 305 
spontaneous activity by four times. Neurons were grouped according to their MDS 306 
response profiles for different odorants. To visualize the neurons response profile curves 307 
the significant responses were plotted over response window time. Responses to single 308 
odorants and mixtures in a neuron were determined as different if their average MDS 309 
differed more than the pooled SD for all repetitions of the significant responses in that 310 
particular neuron.  If the average MDS between the mixture response and the single 311 
odorant response differed less than the pooled SD, the term hypoadditivity is used. If the 312 
single odorants MDS was stronger than the blend MDS, the term suppression is used. 313 
Hypoadditivity was only used to describe differences between responses to a blend and a 314 
particular single odorant, and not as a general mixture effect, because all constituents of 315 
the complex mixture were not tested.  To compared the MDS response strength to control 316 
and selected single odorants and blends in the population of selected neurons, two-tailed 317 
Wilcoxon rank-sum tests were carried out on all significant responses. The stimuli were 318 
grouped as control, single odorants and blends and tests were carried out between these 319 
groups on the excitatory, the inhibitory and the absolute MDS in neurons grouped as 320 
excitatory, inhibitory or complex responding, respectively.  321 

322 
Terminology 323 

[1] 



 

In naming the antenna-cerebral tracts (ACT’s) we followed the nomenclature proposed 324 
by Galizia and Rössler (2010) using terms according to the position in the brain. Thus, 325 
the inner, the medial and the outer ACTs were in this study termed the medial (m), the 326 
medio-lateral (ml) and the lateral (l) antenno-protocerebral tract (APT), respectively. The 327 
term superior protocerebrum is according to Rø et al., (2007) the area proximately to and 328 
dorsally of the MB lobes, extending from the anterior to the posterior part. Concerning 329 
the anatomy of the mushroom body (MB) lobes, we employ the system described in Rø et 330 
al., (2007) in H. virescens. Here the  and ’ together with one arm of the  lobe makes 331 
up the vertical lobes and the second arm of the  lobe and the  and ’ constitutes the 332 
horizontal lobes. The heel (H) lays on the horizontal part anterior to the pedunculus. 333 
Lateral protocerebrum (LP) and lateral horn (LH) denotes to the areas defined in Kvello 334 
et al., (2009) and Løfaldli et al., (2010), i.e. LH is the small protrusion from the LP. 335 
 336 
Results 337 
Output areas of the antenno-protocerebral tracts 338 
Injection of dye in the antennal lobe of H. virescens revealed staining of the three major 339 
antenno-protocerebral tracts, the medial, the medio-lateral and the lateral (m-APT, ml-340 
APT and l-APT) and their target areas in protocerebrum (Figure 1A).  341 
 342 

 343 
 344 
 345 
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The calyces of the mushroom bodies (MB calyx) clearly appeared with projections from 346 
the medial and the lateral tract. In the lateral protocerebrum (LP) the dorso-ventral area of 347 
the olfactory axis (OA) received projections from all tracts. The third important olfactory 348 
area, the superior protocerebrum (SP) located dorsally of the posterior parts of the MB 349 
lobes, appeared with projections exclusively from the medio-lateral tract.  350 
 351 
Electrophysiological recordings from protocerebral neurons 352 
The presented results are based on recordings from 87 neurons obtained in the LP and in 353 
the SP. These neurons responded to stimulation with single odorants and blends of the 354 
selected primary plant odorants (Table 1).   355 
 356 
Table 1: Overview of the most tested single primary odorants and blends in all of the 87 357 
recorded odor responding neurons. The four single odorants and the two blends selected 358 
for further analysis as well as control are shaded. The weighted probability (P) to elicit 359 
responses is indicated for control, the four single odorants and the two blends (B10 and 360 
B12). 361 
 362 

 363 
A puff of purified air (control) resulted in a weak response in about 32 percent of the 364 
neurons. The response probability varied between the primary plant odorants and the 365 
plant odor blends. The summated response probability (P) was higher for the two most 366 
effective blends (P 0,93, B10 and B12) than for the four most effective single odorants 367 
(0,76, 3Z- hexenyl acetate, linalool, 2-phenyl ethanol and germacrene D. Table 1). The 368 
odorants constituting the six most tested plant odor blends are listed in table 2.  369 
 370 
The limited duration of the intracellular recordings, in emphasizing repetition as well as 371 
randomization of the stimuli, did not allow every neuron to be tested for all stimuli. We 372 
selected twenty-eight of the 87 neurons for further response analysis, based on the 373 
required recording quality and the applied stimuli, as given in the method.  Spontaneous 374 
activity in these neurons ranged from 1 - 42Hz (Figure 1B). The identified response 375 
types to olfactory stimulation were excitation, inhibition and complex responses 376 
consisting of inhibitory and excitatory phases (Figure 1C). Most responses outlasted the 377 
applied stimulus period. In the subsequent analyses of the 28 neurons, the focus was on 378 
the responses to the following stimuli; control, the four primary odorants, 3Z- hexenyl 379 
acetate, linalool, 2-phenyl ethanol and germacrene D, and the two most complex plant 380 
odor blends, the ten component B10 and the twelve component B12 (Table 1, shaded). 381 



 

B12 contained all of the four mentioned odorants and B10 all, but germacrene D (Table382 
2).  383 
 384 
Table 2: Single odorants (shaded) constituting the six most tested blends, from the 385 
binary, B2, to the most complex, B12.  386 
 387 

 388 
 389 
The two blends and the four odorants showed highest response probability and was the 390 
most tested stimuli in all of the 87 recorded neurons. Twelve of the 28 neurons were 391 
tested for responses to stimulation with tastants. Three of them responded, one excitatory 392 
to sucrose and quinine applied to the left antenna (also excitatory responses to odors) and 393 
the two other to sucrose applied to the proboscis (one with excitatory and one with 394 
complex responses to odor stimuli). Occasional light and sound stimulation did not elicit 395 
responses in the 28 neurons.  396 

397 
MDS and MRF  398 
The average responses of the 28 neurons to odor stimuli was calculated as mean deviation 399 
from spontaneous activity (MDS) indicating response strengths (both excitatory and 400 
inhibitory), mean response frequency (MRF) and maximum frequency (Figures 2A-I). 401 
 402 



 11

 403 
 404 
The response chart in Figure 3A-G gives an overview of the significant responses of the 405 
28 neurons to stimulation with control, the four single odorants and the blends.  406 
 407 



 

 408 
 409 
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Responses are marked as excitatory or inhibitory modes, according to which of the two 410 
phases were strongest. Thus, the chart does not give the response strength. Neurons were 411 
further grouped according to their MDS response pattern as exemplified in Figure 2A-C. 412 
Sixteen neurons (1–16) appeared with clear excitatory response profiles to odor stimuli, 413 
four neurons (17-20) mainly with inhibitory responses and seven neurons (21-27) with a 414 
complex response pattern of both excitatory and inhibitory phases. One neuron was 415 
unassigned because of a particular response pattern of two excitatory phases separated by 416 
a long inter-response interval (several seconds). The MDS response pattern of the 417 
individual neurons (Figure 2B, E and H) is also reflected in the response profile curve of 418 
the neurons in Figure 2A, D and E. All neurons assigned to the group of excitatory and 419 
inhibitory responses, showed positive or negative MDS, respectively, in the main part of 420 
the response window (Figures 2A-B and D-E).  In a few cases a transient change of the 421 
response appeared as exemplified by the MDS (Figure 2B) and the dotted curve (Figure 422 
2E) showing a small excitation following the inhibitory responses. This kind of changes 423 
was rarely significant. In the complex responding neurons exemplified in Figure 2F, a 424 
strong inhibitory response phase followed a stronger excitatory phase, also reflected by 425 
the single responses in Figure 2C. These transient changes of response phases are 426 
obviously not reflected in the MRF (Figure 2I). The response duration of the excitatory 427 
responding neurons varied, 14 showing short responses (150 – 600ms) and two longer 428 
responses (1000-3000ms). The latency also differed, being 100-200ms in the former and 429 
250-350ms in the latter group. Among the four inhibitory responding neurons, two 430 
showed short lasting (400-600ms) and two longer lasting (1500-1800ms) responses. 431 
Neurons placed in the complex responding group showed latency between 150-300ms 432 
and response duration between 400 and 1100ms. 433 
The response modes of all 28 neurons given in the chart of Figure 3A-G showed more 434 
frequently excitatory than inhibitory responses for all stimuli, also applying to the control 435 
(excitation in 14, no response in 11 and inhibition in 3). The control stimulus elicited 436 
responses in 60 % of the 28 neurons, somewhat more frequently than among all 87 437 
neurons (Table 1). The two mixtures B10 and B12 was the most potent stimuli, B10 438 
elicited responses in all 28 neurons and in 92 percent of totally 83 tested neurons and B12 439 
in all 22 tested among the 28 neurons and in 96 percent of 50 tested neurons (Table 1). A 440 
few neurons showed specific responses to a single odorant and the blends (Figure 3A-G), 441 
in contrast to most neurons which responded to many single odorants and the blends. 442 
Two particular neurons (15 and 16 in Figure 3A-G, only one single odorant tested in the 443 
latter) responded to the blend B10, but not to the single odorants tested.444 

445 
Odor discrimination expressed by response strength  446 
A comparison of the odor responses revealed different MDS and MRF in most of the 28 447 
neurons to the control, the single odorants and the mixtures, as exemplified in Figure 2A-448 
C and G-I. In the 16 neurons with excitatory responses, stimulation with the blends 449 
yielded the strongest responses, largest MDS and highest MRF in eleven of them (B10 450 
strongest in four and B12 in five neurons, the two neurons with long lasting excitation 451 
were only tested with B10, Figure 3A-G neuron 15 and 16). Suppression was observed 452 
in two neurons for which a single odorant (linalool and 2-Phenyl ethanol, respectively) 453 
yielded stronger MDS than the blends, B10 and B12. Hypoadditivity was seen in three 454 
neurons for which the strongest single odorant and the strongest blend yielded equal 455 



 

responses among the tested odorants. A more intricate relation was often found when 456 
comparing the responses to single odorants and the blends (Figure 2A-C and Figure 4). 457 
 458 

 459 
 460 
In the neuron in Figure 4 the response to the strongest blend (B10) and the strongest 461 
single odorant (2-phenyl ethanol) was about equal, implying hypoadditivity. However, in 462 
spite of the two added odorants, germacrene D and farnesenes, B12 showed suppression 463 
in relation to 2-phenyl ethanol, but hypoadditivity in relation to germacrene D and 3Z-464 
hexenyl acetate. All responses were clearly stronger than to the control. Different 465 
response strength to the single odorants was found in most neurons between the strongest 466 
and the weakest odorants and only in four neurons between the two strongest single 467 
odorants. The statistical analysis of the grouped MDS strength in the excitatory 468 
responding neurons (Figure 5A) showed significant stronger responses to the odorants 469 
than to control (air vs. singles p = 1,14E-06 and air vs. blends p = 4,52E-11) and 470 
significant stronger responses to blends than to single odorants (p = 3,11E-03).  471 
 472 

 473 
 474 
Among all sixteen excitatory neurons the highest observed MDS value (29Hz) and MRF 475 
(39Hz) was obtained for B10. The highest observed maximum response frequency (140 476 
Hz) was elicited by stimulation with 3Z-hexenyl acetate, 2-phenyl ethanol and B12 in one 477 
neuron. The inhibitory responding neurons also displayed different MDS strength in their 478 
responses to stimulation with the single odorants and mixtures. Two neurons responded 479 
stronger to B10 than to any of the other odorants (only one of them tested with B12). The 480 
other two inhibitory responding neurons showed hypoadditivity and did not differ in 481 
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response strength to the strongest single odorant and the strongest mixture. The control 482 
elicited response in one neuron, which was clearly weaker than the responses to the 483 
odors. The statistical tests of grouped MDS strength showed stronger responses to the 484 
blends than to the single odorants in the neurons responding by inhibition (p = 0,02997. 485 
Figure 5B).  486 
 487 
In the complex responding neurons the effect of the single odorants and mixtures varied 488 
more than in the two previously described groups. All neurons showed either suppression 489 
(four neurons; one in both phases, two in the inhibitory and one in the excitatory phase) 490 
or hypoadditivity (three neurons; two in both phases and one in the excitatory phase) in 491 
one or both of the response phases. Discrimination between the two complex mixtures 492 
and between the two strongest single odorants also varied across neurons as well as 493 
within a neuron. Four neurons had stronger MDS to one of the two mixtures (two to B10 494 
in the excitatory phase and two to B12 in the inhibitory phase) and two neurons showed 495 
different MDS to the two strongest single odorants (one neuron in the inhibitory phase 496 
and the other in the excitatory phase). Statistical analysis on the absolute MDS values in 497 
complex responding neurons revealed that single odorants (p = 0,000189) and blends (p = 498 
0,004335) elicited significantly stronger responses than the control (Figure 5C). 499 
Although the difference in MDS strength between single odorants and blends was not 500 
significant, the data pointed towards a stronger absolute MDS for the single odorants than 501 
for the blends. In the unassigned neuron MDS analysis on the first response phase 502 
revealed strongest excitatory response to 3Z-hexenyl acetate, whereas B10 and linalool 503 
elicited similar responses as control. As shown by the staining this neuron was bi-lateral 504 
having dendritic arborisations in the right LP and axonal projections in the OA of the left 505 
LP. 506 

507 
Neurons innervating olfactory areas in protocerebrum.  508 
Nine of the 28 neurons were fully stained, showing innervation in the three main 509 
olfactory protocerebral areas, the SP, the LP and the MB. The focus here is on five 510 
neurons, all responding to the blend B10 (Figure 6A-E).  511 
 512 
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530 
531 



 

532 
533 

Mediolateral APT projection neurons 534 
The two stained ml-APT PNs revealed different but partly overlapping axonal projections 535 
as well as different glomerular innervation patterns in the antennal lobe (Figure 7A-H). 536 
Both were multiglomerular, the Type 1 having a sparsely dendritic arborisation in each of 537 
the innervated glomeruli, most of them located laterally and medially in the AL (Figure 538 
5A,B,E-H, two Type 1 neurons stained during the same recording, blue color). The Type 539 
2 neurons (n=2, only one shown. Figure 7C,D,E-H, yellow colored reconstruction)  540 
innervated densely almost all glomeruli of the AL. All four PNs had soma in the ventral 541 
part of the lateral cell cluster.  The axons of the Type 1 ml-APT PNs projected in the 542 
medial part of the dorso-ventral olfactory axis in the LP, with some overlap with the more 543 
dorsal projections of m-APT PNs (Figure 11A-C, m-APT PNs from Løfaldli et al., 544 
(2010), termed IACT PNs). A few branches of the ml-APT PNs extended into LH and 545 
two others posteriorly towards the ipsilateral calyces. Some side branches turning more 546 
dorso-medially from the LP into to the SP. Here they branched off close to the MB lobes 547 
and the pedunculus, dorsally and posterior to the , ’ (vertical lobes) and the  lobe, the 548 
heel and pedunculus. 549 
The axons of Type 2 ml-APT PNs divided after passing ventro-laterally to the 550 
pedunculus (Figure 7D and E-H, only one included). One branch turned dorso-medially 551 
into SP where it showed extensive arborisations proximately to the MB lobes, partly 552 
overlapping with the Type 1 ml-APT PNs. A few smaller branches extended more dorso-553 
medially and posterior to the medial part of `,  (medial lobes) and  lobes (Figure 7E-554 
H, only one showed). The second major branch ran laterally into the dorso-ventral axis of 555 
LP overlapping with the projections of Type 1 ml-APT PNs (Figure 7E-H, only one 556 
showed). One single projection ran along and within the outer part of the pedunculus in 557 
posterior direction toward the ipsilateral calyces where it branched off in a confined area 558 
external to the calyces. 559 
Raster plot and the response curve from the recording of one Type 1 ml-APT PN is 560 
shown in Figure 6A. The responses appeared as a long lasting excitation to stimulation 561 
with B10 with latency around 300ms. No response was recorded to stimulation with 562 
control, other mixtures (B5 and ylang oil) or single odorants (3Z hexenyl acetate, 563 
linalool, geraniol) (neuron number 15 in Figure 3A-G). In the recording of the Type 2 564 
ml-APT PN no response was obtained to stimulation with control, single odorants or 565 
blends (not included among the 28 physiologically described neurons in this study).  566 
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567 
Mushroom body extrinsic neurons 568 
Two MB extrinsic neurons have been reconstructed and transformed into the standard 569 
brain atlas (Figure 8A-G). Both neurons have their dendritic arborisations within the 570 
medial lobe of the MB. One, named MB-SP extrinsic neuron (Figure 8A, B and E-G, 571 
white color), has dense arborisations in a confined area of the swelling part of the lobe, 572 
whereas the other extrinsic neuron (MB-LP) shows a sparse pattern with only one 573 
dendritic branch within the lobe (Figure 8C, D and E-G, blue color). The soma of the 574 
MB-SP extrinsic neuron was located frontally of the MB lobes and of the MB-LP 575 
extrinsic neuron posteriorly and closely to the MB calyces. As indicated by the name, the 576 
MB-SP extrinsic neuron had its axonal projections located in the SP with branches 577 
posteriorly and dorsally to the , ’ (vertical) and the  lobe. Some branches extended 578 
more laterally terminating in a dense projecting pattern (Figure 8E-G). The axonal 579 
projections of this extrinsic MB neuron partly overlapped with the axons of both types of 580 
ml-APT PNs in the SP (Figure 10A-F). This implies that SP in H. virescens receives 581 
input from both types of neurons in the same or partly overlapping areas. The stained 582 
MB-LP extrinsic neuron projected in the OA of LP, with relatively sparse branches 583 
extending from dorso-medial to more ventro-lateral areas (Figure 8E-G). The projections 584 
partly overlapped in the LP with the axonal projections of both types of ml-APT PNs 585 
(Figure 10A-F). This implies that LP like the SP in H. virescens receives information 586 
from the MB lobes as well as from the AL.   587 
Raster plots for the MB-SP extrinsic neuron (Figure 6B) and for the MB-LP extrinsic 588 
neuron (Figure 6C) show a strong response of both neurons to stimulation with B10. 589 
While the responses of the MB-SP extrinsic neuron appeared as a clear excitation, the 590 
responses of the MB-LP extrinsic neuron were typically complex (Figure 6B and 6C 591 
respectively). The MB-LP neuron showed a weak response to control and a slightly 592 
stronger excitation to stimulation with the mixture B10 (B12 not tested) than with the 593 
single odorant 3Z-hexenyl acetate, eliciting a slightly stronger inhibitory than excitatory 594 
phase (neuron number 21 in Figure 3A-G). The temporal response pattern clearly 595 
differed for the blend and the single odorant (Figure 6C). The excitatory phase of the 596 
first response to B10 was clearly stronger and longer lasting than of the repeated 597 
response. The opposite pattern appeared for the single odorant. The maximum frequency 598 
was also different between the responses to the blend (100Hz and 80Hz) than to the 599 
single odorant (80Hz and 60Hz). This neuron did not respond to stimulation with tastants, 600 
which were applied after odor stimulation in order to avoid influence on odor responses. 601 
In the LP-SP neuron the responses to stimulation with the single odorants and the blends 602 
showed different strength, clearly strongest to the blends B10 and B12, weaker to 3Z-603 
hexenyl acetate, weakest to 2-phenyl ethanol and no response to control. The difference 604 
between the B10 and B12 responses was too small to be considered as different. Like the 605 
MB-LP neuron, the MB-SP neuron displayed the same difference between the first and 606 
the repeated responses, by a stronger response to the first than to the repeated stimulation 607 
with the blends and the opposite pattern with 3Z-hexenyl acetate (Figure 6B, neuron 608 
number 5 in Figure 3A-G). The measured latency in the two MB extrinsic neurons was 609 
between 150-200ms.  610 

611 
Lateral protocerebral neurons 612 



 

The two reconstructed and transformed lateral protocerebral neurons differed in respect 613 
to dendritic arborisation and axonal projections (Figure 9A-D). Both neurons had their 614 
dendrites in the lateral protocerebrum but different axonal projections, one in the SP (LP-615 
SP neuron), and the other projecting in the ipsilateral connective (LP-descending neuron). 616 
The dendritic arborisations also differed between the two neurons. The LP-SP showed a 617 
sparse arborisation in the LP with a few branches extending towards the central complex, 618 
terminating proximate but outside the complex (Figure 9A and C-D, orange 619 
reconstruction). The dendrites of the LP-descending neuron showed a dense and more 620 
confined pattern located ventrally in the LP with the terminals arranged in an anterior-621 
posterior direction (Figure 9B and C-D, yellow reconstruction). The dendritic 622 
arborisations were close but not directly overlapping with the LP-SP dendrites (Figure 623 
9C-D) or with the axonal projections of the Type 1 ml-APT PNs (Figure 11A-C). After 624 
registration of the neurons into the standard atlas it became evident that the dendrites of 625 
the LP-descending neuron were positioned anterior-ventrally to the OA of the LP (Figure 626 
11A-C, m-APT PNs from Løfaldli et al., (2010)). Comparison of the confocal images of 627 
the LP-descending neuron and the mass stained APTs (Figure 1A) indicated that the 628 
descending neuron dendrites might have a direct overlap with some of the most ventral 629 
APT PN projections of the ml-APT or the l-APT. The LP-descending neuron, having a 630 
large soma in the SOG, appeared with two major dendritic branches extending from the 631 
SOG and giving off a few small branches in the SOG before the axon was leaving the 632 
brain via the ipsilateral connective. Unfortunately, the connectives and the thoracic 633 
ganglion were not dissected out for further investigations of the axonal projections 634 
(Figure 9B-D). Axon of the LP-SP neuron projected dorso-medially from the LP into the 635 
SP. Here it ramified relatively densely posterior and medial to the , ’ and  lobe 636 
(vertical lobes) with a few branches projecting slightly more ventrally. The cell soma was 637 
located laterally on the posterior side of the brain (Figure 9A and C-D). Some of the 638 
axonal projections of the LP-SP neuron showed partly overlap with axonal projections of 639 
both ml-APT PN types and of the MB-SP extrinsic neuron (Figure 10A-F). 640 
The LP-SP neuron and the LP-descending neuron both responded to B10, but differently, 641 
as shown by the raster plot and the response profile curves in Figure 6D and E, 642 
respectively. The LP-SP neuron showed a long lasting excitation consisting of two peaks, 643 
as seen in the response to the first stimulation with the blend (Figure 6D). No response 644 
was obtained to stimulation with 3Z-hexenyl acetate and the control (neuron number 16 645 
in Figure 3A-G). Unfortunately, other odorants were not tested. The LP-descending 646 
neuron responded with a long lasting inhibition, the longest to the first stimulation with 647 
B10 (raster plot Figure 6E). A considerably weaker inhibition was recorded to 648 
stimulation with other blends (PB2, PB3 and PB4) and to the first stimulations with 649 
linalool and germacrene D (neuron number 19 in Figure 3A-G). The other tested 650 
odorants (3Z-hexenyl acetate, E-verbenol, farnesenes and control) did not elicit any 651 
response. Measured latency for the LP-SP neuron was around 250ms and around 300ms 652 
for the LP-output neuron. 653 
 654 
The putative circuit 655 
The two MB extrinsic neurons receiving information in the medial lobe and projecting in 656 
the superior and lateral protocerebrum, respectively, had partly overlapping axonal 657 
projections with the ml-APT neurons, as shown after transformation into the standard 658 
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atlas (Figure 10A-F). In the lateral protocerebrum the axonal projections of the ml-APT-659 
neurons and the MB-LP neuron overlapped with the dendritic arborisations of one lateral 660 
protocerebral neuron, LP-SP, having axonal projections in the superior protocerebrum. In 661 
the SP the axonal projections of the LP-SP neuron overlapped with the projections of the 662 
other axonal branch of the ml-APT-neurons as well as with the axonal projection of one 663 
of the MB extrinsic neurons. Thus, these neurons might form a circuit where the superior 664 
protcerebrum directly received information from the AL via the multiglomerular ml-APT 665 
neurons and indirectly via the MB extrinsic neuron, as well as from the LP. The input to 666 
the lateral protocerebrum in the dorso-medal part is originating in the AL, via all three 667 
APTs, as well as in the MB. Output from protocerebrum was only found by the LP-668 
descending neuron. 669 

670 
Discussion 671 
Based on intracellular recordings from superior and lateral protocerebrum, we have 672 
described neurons involved in a circuit processing plant odour information in the brain of 673 
H. virescens females, 28 neurons presented in this study. We have stimulated with 674 
primary odorants, each identified as the best odorant for a particular ORN. Thus, we 675 
know that the responses obtained in the central neurons to stimulation with the single 676 
primary odorants and mixtures of them contain relevant information that can be ascribed 677 
to particular ORN types. The response profiles, classified as pure excitation, pure 678 
inhibition as well as mixed excitation-inhibition, are similar to responses described for 679 
other central olfactory neurons, like the antennal lobe projection neurons of several insect 680 
species, including heliothine moths (Christensen et al., 1991 and 1995; Vickers et al., 681 
1998; Heinbockel et al., 1999; Barrozo et al., 2011; Kuebler et al., 2011). Compared to 682 
the sparsely obtained responses to plant odorants in previous recordings from the AL of 683 
H. virescens (unpublished), we obtained more frequently responses when recording from 684 
the lateral and superior protocerebrum. Most olfactory neurons responded to several of 685 
the primary odorants and the blends and only a few showed more specific responses to 686 
one or two odorants. This implies that the information about different primary odorants to 687 
a large extend is integrated in these higher order protocerebral neurons. In contrast, most 688 
of the medial tract AL PNs, most of them innervating a single and fewer two-three 689 
closely located glomeruli, as shown in H. virescens and Bombyx mori may get excitatory 690 
input from one or two-three types of ORNs (Løfaldli et al., 2010; Namiki and Kanzaki, 691 
2011). Thus, when recording from the AL in contrast to protocerebrum, there is a lower 692 
probability to stimulate with the particular primary odorant, which explains the sparse 693 
responses obtained in H. virescens. Furthermore, sparse responses to single odorants may 694 
also apply to multiglomerular PNs as shown in this study for the Type 1 ml-APT PN, 695 
exclusively responding to the B10 blend. Local excitatory interneurons have not been 696 
found in this or in other moth species, in contrast to Drosophila where interglomerular 697 
excitation is shown (Olsen et al., 2007; Shang et al., 2007), which may contribute to a 698 
broader response profile of the PNs (Wilson et al., 2004).  699 
 700 
To understand how odour information is integrated in the central neurons of  701 
H. virescens, we have compared the responses elicited by single primary odorants and 702 
two complex mixtures containing the single odorants. In these comparisons we have used 703 
the MDS which quantifies response strength (firing rate) in different temporal phases of 704 



 

the response window. We are aware of the limitation of the results. Due to the relative 705 
short duration of this kind of intracellular recordings each neuron was not tested for all 706 
odorants in the protocol. However, from the data on the 28 selected neurons tested for the 707 
most effective odorants and mixture, several integration principles appeared, like 708 
hypoadditivity in eight neurons, suppression in six neurons and best mixture effect in 709 
thirteen neurons. Because hypoadditivity and best mixture effect would require tests with 710 
all single constituents we cannot conclude whether the responses were exclusively due to 711 
a mixture effect and not to another untested single constituent. In spite of these 712 
limitations, the results show that the integration is more intricate than just hypoadditivity 713 
and suppression, as exemplified in the results (Figures 2A-C and Figure 4). Thus, a 714 
neuron might show similar response strength to a mixture (B10) and to one of the single 715 
odorants, but the addition of two other excitatory odorants to the same mixture (B12) 716 
elicited a weaker response. Most likely the integrating neurons are activated by an array 717 
of input channels which might contribute with different strengths to the evoked post 718 
synaptic responses when activated alone by single odorants or in concert by mixtures. In 719 
addition to the complex integration in some neurons, others showed more specific 720 
responses to stimulation with one or two of the tested odorants.  721 

Putative circuit 722 
Based on the physiology and morphology of the successfully stained neurons presented in 723 
this study, we consider them as part of a putative circuit receiving input from the AL and 724 
connecting the three protocerebral areas, the SP, the LP and the MB. Anatomical overlap 725 
does not automatically indicate functional connectivity. However the responses by all of 726 
them to stimulation with the ten component mixture indicate that they are part of a 727 
putative circuit handling combinatorial information given by this blend. Like in other 728 
insect species, the calyces of the MB and the LP in H. virescens are the targets of the m- 729 
and l-APT neurons, but in the opposite order (Rø et al., 2007; Galizia and Rössler, 2010). 730 
The protocerebral olfactory areas, the calyces, the superior protocerebrum (SP) and the 731 
LP in H. virescens are visualised by the mass stained APTs (Figure 1A), the calyces and 732 
the LP covering the projection area of the three m-APT neurons, as shown in Figure 733 
11A-C (m-APT PNs from Løfaldli et al., (2010)). The typical five axonal branches of the 734 
m-APT neurons innervating the calyces appear before the axon run anterior-laterally into 735 
the OA of the LP, as previously shown in Rø et al., (2007) and Løfaldli et al., (2010). 736 
 737 
The ml-APT neurons   738 
The clearly mass stained ml-APT in fig – with the distinct pathways and projections in 739 
the superior and the lateral protocerebrum of H. virescens, show slightly different axonal 740 
branching pattern than ml-APTs described in other insect species, like in  the honeybee 741 
(Kirchener et al., 2006; Galizia and Rössler 2010). For instance, whereas SP is the target 742 
area of some ml-ACT neurons in H. virescens, the ring neuropil around the -lobe of the 743 
MB seems to be a corresponding area in the honeybee (Abel et al., 2001; Kirschner et al., 744 
2006). Previous studies in moths and the honeybee have reported that the ml-APT 745 
contains multiglomerular PNs (Abel et al., 2001; Jefferis et al., 2007; Rø et al., 2007; 746 
Galizia and Rössler, 2010; Namiki and Kanzaki, 2011), that have been found to be 747 
GABAergic (Hoskins et al., 1986; Schäfer and Bicker, 1986; Berg et al., 2009). In this 748 
study the two identified types of ml-APT PNs that follow the pathway of the mass-749 
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stained ml-ACT and exhibit different projection patterns share similarities with the ml-750 
APT neuron types previously described in this species by Rø et al., (2007). The type 2 751 
ml-APT neurons have the distinct axonal bifurcation, one branch projecting in the LP 752 
olfactory axis and the other turning dorso-medially into the SP, both showing extensive 753 
and wide projection patterns. Since the morphology of this neuron fits with the GABA-754 
immuno-stained ml-APT of this species (Berg et al., 2009), it is possible that this neurone 755 
is GABA-ergic.  The Type 1 ml-APT neurons, lacking the distinct axonal bifurcation and 756 
having a much more condensed arborisation in both the LP and the SP, follow the same 757 
pathway to the LP. Another difference between these two neurone types appears in the 758 
glomerular innervation; the Type 2 innervating many if not all glomeruli and Type 1 759 
fewer glomeruli located laterally in the AL. Both types show sparse intervention of each 760 
glomerulus, Type 1 even sparser than Type 2. Similar morphological patterns of two ml-761 
APT neurons have previously been described in the honeybee (Abel et al., 2001). 762 
 763 
The physiological responses recorded in the Type 1 ml-APT neuron in this study seem to 764 
reflect the sparse dendritic arborisation in each glomerulus. Since the neuron responded 765 
with strong excitation and long latency exclusively to the complex mixture of ten primary 766 
odorants and showed no responses to the single odorants in this mixture or to other 767 
blends, it implies that the neuron needs input from multiple glomeruli in concert to 768 
become activated. This is in contrast to uniglomerular neurons responding to single 769 
odorants and having dense innervation in one glomerulus. The correlation between 770 
innervation pattern and physiology of multiglomerular neurons has been a matter of 771 
speculations in earlier morphological studies by Kirschner et al., (2006) citation: “Due to 772 
the rather sparse dendritic innervation within glomeruli these neurons probably have a 773 
high activation threshold”. The functional implication of the ml-APT neuron in H.774 
virescens might be to transfer a combinatorial activity pattern from the AL to the target 775 
regions in SP and LP. However, different multiglomerular ml-APT neurons might display 776 
functional heterogeneity, since in the honeybee responses to single odorants by ml-APT 777 
neurons have been shown (Abel et al., 2001). We may further speculate that some 778 
GABAergic ml-APT neurons form an inhibitory channel from the AL to protocerebrum 779 
in parallel to the excitatory pathways formed by the m- and the l-APT PNs. This together 780 
with the functional differentiation between the m-APT and the l-APT described in the 781 
honeybee (Krofczik et al., 2009; Yamagata et al., 2009) might imply that third order LP 782 
neurons integrate both inhibitory and excitatory information about blends and single 783 
odorants from the AL. One possible role for an inhibitory multiglomerular APT channel 784 
might be to reset odour elicited activity of third order neurons in the LP network. Other 785 
possible functions is the involvement in regulating and synchronising the activity of 786 
odour triggered third order LP neurons, similar to the function suggested for other 787 
GABAergic protocerebral neurons (Honeybee: Grünewald, 1999; Ganeshina and Menzel, 788 
2001; Szyszka et al., 2005. Locusts: Perez-Orive et al., 2004).   789 

790 
The protocerebral neurons 791 
The two MB extrinsic neurons receiving information in the medial-lobe of the MB had 792 
axonal projections in the superior and the lateral protocerebrum, respectively that partly 793 
overlapped with the projections of the ml-APT neurons. A variety of MB extrinsic 794 
neurons have previously been described in several insect species like the honeybee, the 795 



 

fruit fly and the cockroach (Honeybee: Homberg, 1984; Mauelshagen, 1993; Rybak and 796 
Menzel, 1998; Strausfeld, 2002. Fruit fly: Ito et al., 1998; Tanaka et al., 2008. Cockroach: 797 
Li and Strausfeld, 1997). Although we did not find a complete morphological 798 
resemblance, the two stained extrinsic neurons in this study make similar connections 799 
between the lobes of the MB and the LP and SP as neurons described in the honeybee 800 
(Strausfeld 2002) and in Drosophila (Ito et al., 1998). For instance, efferent MB extrinsic 801 
neurons in Drosophila connects mainly the head of the  lobe with the SP and the LP (Ito 802 
et al., 1998), whereas the stained MB extrinsic neurons in this study projected exclusively 803 
from the swellings of the medial lobes (  and ’) to the SP and the LP. Dendritic 804 
arborisations confined to the swellings of the lobes seem to be in line with findings in 805 
Drosophila (Ito et al., 1998). 806 
 807 
MB extrinsic neurons, including the PE1 neuron in the honeybee, have been shown as 808 
multi modal as well as responding to a variety of odour stimuli (Homberg, 1984; 809 
Mauelshagen, 1993; Rybak and Menzel, 1998; Li and Strausfeld, 1999; Okada et al., 810 
2007). Our recordings in H. virescens showed that only one of the two MB extrinsic 811 
neurons responded to the mechanical stimulation (air puff) but not to stimulation with 812 
tastants. However, since stimulation with tastants was only tested for the MB-LP neuron, 813 
we can not conclude whether other medial lobe extrinsic neuron respond to this modality. 814 
In respect to odour stimuli both MB extrinsic neurons responded to all applied odorants 815 
but with a different response profiles. A clear difference in response strength to 816 
stimulation with the single odorants and the blends appeared in the MB-SP neuron. This 817 
implies an odour specific response to the primary odorants when presented in a novel 818 
non-associative situation. More recordings are obviously necessarily to generalise this as 819 
a principle for the medial lobe extrinsic neurons in H. virescens. However, in other insect 820 
species odour specific responses among cells of the MB, including extrinsic neurons has 821 
previously been reported (Honeybee: Szyszka et al., 2005. Locust: MacLeod and Laurent, 822 
1996; Perez-Orive et al., 2002; Stopfer et al., 2003; Cassenaer and Laurent, 2007. Fruit 823 
fly: Turner et al., 2008).  Since MB extrinsic neurons probably are involved in mediating 824 
conditioned olfactory information, it would be interesting in future experiments to test 825 
MB extrinsic neuron responses to the primary odorants before and after conditioning in 826 
H. virescens.  827 
 828 
Another interesting question is whether the olfactory specificity or the odour code is 829 
preserved through the neural network of the olfactory system from the receptor neuron 830 
input to specific glomeruli in the AL and further to the descending neurons in the pre-831 
motor area ventrally of the LP. In this study we have shown that the information about a 832 
plant odour blend is being processed in parallel through multiple pathways. Thus the SP 833 
receives information about the complex B10 blend both directly from the AL and 834 
indirectly from the MB and the LP, whereas the LP receives the same information 835 
directly from the AL via all three APTs and indirectly from the MB. Whether other 836 
parallel routs exist in H. virescens is not known. However, in other insects additional 837 
pathways to the MB have been described (Ganeshina and Menzel, 2001; Perez-Orive et 838 
al., 2002; Keene and Waddell, 2007). One implication of parallel olfactory pathways 839 
might be to process information in a context dependent manner in the different areas. 840 
Based on many studies it is previously suggested that whereas the MB function as a 841 
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coincidence detector for associative olfactory memories, the AL-LP pathway represent a 842 
novel or an inexperience independent pathway for olfactory dependent behaviour 843 
(Heimbeck et al., 2001; Tanaka et al., 2004; Keene and Waddell, 2007). In Drosophila it 844 
is speculated whether LP is also involved in olfactory associative memories (Wang et al., 845 
2003b).  846 
 847 
In this study the mass and the single cell staining indicates some overlap of the most 848 
anterior-ventrally projections from PNs in the l- and the ml-APT and the dendritic 849 
arborisation of the LP-descending neuron. This suggests that the output area of the LP is 850 
located anterior-ventrally of the OA. Axonal projections of a taste responding neuron 851 
have previously been shown to project in this area implying a possible integration of the 852 
two chemosensory modalities (Kvello et al., 2009). Integration of multimodal 853 
information in the output areas of LP has also been suggested in flies, indicated by visual 854 
and olfactory projections to this area (Strausfeld, 1976; Tanaka et al., 2004). 855 
Unfortunately, the descending neuron in this study was only tested for olfactory 856 
(inhibitory) and mechanical (no response) input and not with gustatory or other 857 
modalities. The strong inhibitory responses particularly to the blend might be mediated 858 
directly from PNs in the ml-APT like the neuron in this study, from third order LP 859 
neurons, as described in the Drosophila (Tanaka et al., 2004; Jefferis et al., 2007), or 860 
from the MB-LP rout. Although the axonal projections of the presented MB-LP neuron in 861 
this study did not overlap with the dendritic arborisations of the descending neuron, other 862 
MB-LP neurons might overlap. The inhibitory response of the descending neuron is 863 
interesting in connection with the speculation by Okada et al., (2007) regarding inhibition 864 
mediated to descending neurons, directly or indirectly from MB extrinsic neuron.  It is 865 
suggested that MB extrinsic neurons, like the PE1 in the honeybee mediate inhibition to 866 
descending neurons in naïve individuals and that olfactory learning reduces inhibition. 867 
The challenge of further studies would be to test responses to primary odorants and 868 
mixtures before and after learning to find out whether and how the inhibitory responses 869 
change in descending neurons. The result that only mixtures, especially the B10, elicited 870 
strong inhibitory responses in the descending neuron is interesting in comparison with 871 
behavioural results in the M. sexta, showing that complex mixtures derived from host 872 
plants and not the single constituents elicit feeding behaviour (Riffell et al., 2009a; Riffell 873 
et al., 2009b). This implies that odour responses in the descending neuron are elicited 874 
upon co-activation of multiple inputs from parallel pathways in the direct AL-LP stream 875 
(inexperienced) and/or from the integrative experienced AL-MB-LP stream.  876 
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Figure legend 1109 
Figure 1: Projection view from stacks of confocal images showing mass stained APTs, 1110 
spontaneous frequency distribution and response modes among the 28 recorded neurons. 1111 
(A) Projection view from confocal images of mass staining in the AL revealing the three 1112 
main APTs. The m- and the l-APTs projecting in the calyces of the MB and the OA of 1113 
the LP, but in opposite order, and the ml-APT directly in the LP with some branches 1114 
turning anterior-dorsally terminating in the SP. At this depth most m-APT projections in 1115 
the LP are not visible. Dorsal view. CB; central body, MBC; mushroom body calyces, 1116 
AL; antennal lobe, LP: lateral protocerebrum. (B) Graph showing the frequency 1117 
distribution of the spontaneous activity among recorded neurons in two target areas of 1118 
APTs, the SP and the LP. (C) Intracellular recording showing the three response modes, 1119 
excitation (upper trace), inhibition (middle trace) and complex (lower trace), elicited by 1120 
stimulation with B10 in three different neurons. All responses clearly outlasting the 1121 
stimulation period (300ms).  1122 
 1123 
Figure 2: Responses of selected neurons presented as MDS, MRF and maximum 1124 
frequency graphs with the response curves, exemplifying excitatory, inhibitory and 1125 
complex response modes. (A-C) Average MDS plot for control, four single odorants and 1126 
the two blends, B10 and B12 of (A) an excitatory, (B) an inhibitory and (C) an complex 1127 
responding neuron. In A only the response in the excitatory phase is significant (black 1128 
bars) and in B only in the inhibitory phase (grey bars). (D-F) The response curves for all 1129 
response modes clearly reflect the corresponding MDS plot. (D) Response curves for 1130 
three short excitatory, (E) for two short inhibitory and (F) for three complex responding 1131 
neurons. (G-I) Responses presented as maximum frequency (the two black bars 1132 
representing repeated responses) and MRF (striped bars) for the same neurons as in A-C. 1133 
Evidently the MRF and the maximum frequency for the inhibitory (H) and the complex 1134 
(I) responding neurons do not reflect the response curve.  1135 
 1136 
Figure 3: Response chart shows the response modes of all 28 neurons to the selected 1137 
stimuli. Neurons represented in each layer (A-G) is sorted according to response modes, 1138 
neurons 1-16 as excitatory (1-14 short excitatory), 17-20 as inhibitory and 21-27 as 1139 
complex, whereas 28 is unassigned. For the complex responding neurons the strongest 1140 
response phase is indicated. Green: excitation, red: inhibition, grey: no response and 1141 
white: not tested.  (A) Response modes to control, (B-D) to the four selected single 1142 
odorants and (E-F) to the two blends.  1143 
 1144 
Figure 4: Responses of an excitatory neuron presented as MDS histogram for an 1145 
excitatory responding neuron revealing an intricate response pattern to the single 1146 
odorants and the blends. The response to B10 showing hypoadditivity as compared to 2-1147 
phenyl ethanol. However addition of two components (B12) showed a weaker response 1148 
(suppression) as well as hypoadditivity compared to 3Z-hexenyl acetate and germacrene 1149 
D. Pooled SD is indicated.    1150 
 1151 
Figure 5: All significant responses of excitatory (left), inhibitory (middle) and complex 1152 
responding neurons (right) selected and represented in box plots. The circles indicate the 1153 
calculated MDS values (Hz) for the individual responses to the control, single odorants, 1154 



 

and the complex blends.  For the excitatory neurons only the positive deviation 1155 
(excitatory MDS) was considered, for the inhibitory neurons only the negative deviation 1156 
(inhibitory MDS) and for the complex responding neurons the absolute deviation. 1157 
Wilcoxon rank-sum tests were used to compare the observed values between the three 1158 
stimuli groups (control, the four single odorants and the two blends selected for analysis). 1159 
Asterisks indicate significance levels of the tests (*  p < 0.05, **  p < 0.01, ***  p 1160 
< 0.001). Since only one inhibitory neuron responded to control, this was not included in 1161 
the statistical analysis. 1162 
 1163 
Figure 6: Raster plots and response curves of stained neurons responding to stimulation 1164 
with the B10 blend. (A-E) Left: The raster plots include responses to the same stimuli 1165 
(control, 3Z-hexenyl acetate and B10) for the six stained neurons, (A) the Type 1 ml-APT 1166 
PN, (B) the MB-SP neuron, (C) the MB-LP neuron, (D) the LP-SP neuron and (E) the 1167 
LP-descending neuron. Right: Corresponding response curves showing the average 1168 
temporal response pattern. 3Z-H.ac.; 3Z-Hexenyl acetate, Cont; Control. 1169 
 1170 
Figure 7: Projection view from stacks of confocal images of two types of ml-APT 1171 
neurons, 3D reconstructions and transformations into the SBA. (A) Confocal images of 1172 
the two simultaneously stained Type 1 ml-APT PN showing the dendritic arborisation in 1173 
the AL with spars innervation in many glomeruli. (B) The axonal branches projecting in 1174 
the two protocerebral areas, the SP (sparsely) and the LP. (C) Confocal images of the 1175 
stained Type 2 ml-APT PN showing loose dendritic arborisation in most or all glomeruli. 1176 
(D) Axonal projections of the same neuron showing extensive and wide branching 1177 
patterns in the SP and the LP. One axon branch off before reaching the LP and making 1178 
the characteristic dorso-anterior turn before entering the SP. (E-H) 3D reconstructions of 1179 
the ml-APT PNs (Type 1; blue and Type 2; yellow) transformed into the SBA showing 1180 
extensive overlap in the OA of the LP, both axons branching in a dorsal and ventral 1181 
direction. In the SP some axonal projections are proximate to the MB lobes. Both neurons 1182 
had soma ventrally in the lateral cell cluster of the AL. (E) frontal view, (F) Close-up 1183 
frontal view, (G) lateral view and (H) dorsal view. AN; antennal nerve, PED; pedunculus, 1184 
CB; central body, LP; lateral protocerebrum, SP; superior protocerebrum.  1185 
 1186 
Figure 8: Projection view from stacks of confocal images and 3D reconstruction of two 1187 
stained efferent MB extrinsic neurons transformed into the SBA. (A) Projection view of 1188 
the MB-SP neuron showing the dense dendritic arborisation in the medial lobe and (B) 1189 
the relatively wide axonal projections in the SP proximate to the vertical lobe. (C) 1190 
Confocal images of the MB-LP extrinsic neuron showing the weak dendritic innervation 1191 
in the lateral part of the medial lobe and (D) the axonal projection in parts of the OA of 1192 
the LP. (E-G) 3D reconstruction of the MB-SP (white) and the MB-LP (dark blue) 1193 
transformed into the SBA visualize the different axonal projections in the SP and LP. (E) 1194 
Frontal view, (F) lateral view and (G) dorsal view. SP: superior protocerebrum, LP: 1195 
lateral protocerebrum, MB: mushroom bodies. 1196 
 1197 
Figure 9: Projection view from stacks of confocal images of the LP-SP and the LP-1198 
descending neuron reconstructed and transformed into the SBA. (A) Projection view of 1199 
the LP-SP neuron showing dendritic arborisations in the LP and axonal projections in the 1200 
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SP. (B) Projection view of the LP-descending neuron having two dendritic branches 1201 
originating in the SOG and terminating in dense arborisations in the ventro-anterior area 1202 
of the LP. (C-D) 3D reconstructions of the two neurons transformed into the SBA 1203 
visualizing the dendritic arborisations and the axonal projections of the LP-descending 1204 
neuron (yellow), the axon leaving the brain through the ipsilateral connective. The large 1205 
cell soma is located medio-ventrally in the SOG. The LP-SP neuron (orange) has a few 1206 
dendritic branches in the OA of the LP and in the medio-inferior parts of the 1207 
protocerebrum. The dense axonal projections are medially in the SP and some branches 1208 
terminate around the lobes.  No overlap was found between the LP-SP and the LP-1209 
descending neuron. (C) Frontal view and (D) lateral view. CB; central body, PED; 1210 
pedunculus; SP; superior protocerebrum, LP; lateral protocerebrum.  1211 
 1212 
Figure 10: 3D reconstructions of the ml-APT PNs, the MB extrinsic neurons and the LP-1213 
SP neuron transformed into the SBA. (A-C) Type 2 ml-APT PN (yellow) shows overlap 1214 
in the OA of the LP with both the dendrites of the LP-SP (orange) neuron and the axonal 1215 
projections from the MB-LP neuron (dark blue). Three neurons, the ml-APT, the MB-SP 1216 
(white) and the LP-SP, having partly overlapping axonal terminals in the SP, indicate 1217 
input from multiple brain areas. The MB-SP neuron has most terminals in a more dorsal 1218 
part of the SP than the two other neurons. (A) Frontal view, (B) lateral view and (C) 1219 
posterior view. (D-F) The Type 1 ml-APT (blue) neurons (two simultaneously stained) 1220 
transformed into the SBA together with the MB extrinsic neurons and the LP-SP neuron. 1221 
Due to the sparser projection pattern of the Type 1 ml-APT PN a less extensive overlap 1222 
with MB-LP axonal terminals and the LP-SP dendrites appeared. (D) Frontal view, (E) 1223 
lateral view and (F) posterior view.   1224 
 1225 
Figure 11: 3D reconstructions of two PN types and the LP-descending neuron visualized 1226 
in the SBA. (A-C) The projections of the three m-APT PNs (white) are most dorsal in the 1227 
LP, clearly separated from the more ventral dendrites of the descending neuron (yellow). 1228 
The wide projections of the ml-APT neurons (blue) partly overlaps with the m-APT PN 1229 
projections and extend close to the area of the descending neuron dendrites.  (A) Frontal 1230 
view, (B) lateral view and (C) posterior view.   1231 
 1232 
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Mating behaviour and evolutionary aspects of the 
breeding system of two bird species: the Temminck's 
stint and the Pied flycatcher 

 1992 Anne Kjersti Bakken Dr. scient 
Botany 

The influence of photoperiod on nitrate assimilation and 
nitrogen status in timothy (Phleum pratense L.) 

 1992 
 
Tycho Anker-Nilssen Dr. scient 

Zoology 
Food supply as a determinant of reproduction and 
population development in Norwegian Puffins 
Fratercula arctica 

 1992 Bjørn Munro Jenssen Dr. philos 
Zoology 

Thermoregulation in aquatic birds in air and water: With 
special emphasis on the effects of crude oil, chemically 
treated oil and cleaning on the thermal balance of ducks 

 1992 Arne Vollan Aarset Dr. philos 
Zoology 

The ecophysiology of under-ice fauna: Osmotic 
regulation, low temperature tolerance and metabolism in 
polar crustaceans. 

 1993 Geir Slupphaug Dr. scient 
Botany 

Regulation and expression of uracil-DNA glycosylase 
and O6-methylguanine-DNA methyltransferase in 
mammalian cells 

 1993 Tor Fredrik Næsje Dr. scient 
Zoology 

Habitat shifts in coregonids. 

 1993 Yngvar Asbjørn Olsen Dr. scient 
Zoology 

Cortisol dynamics in Atlantic salmon, Salmo salar L.: 
Basal and stressor-induced variations in plasma levels 
ans some secondary effects. 

 1993 Bård Pedersen Dr. scient 
Botany 

Theoretical studies of life history evolution in modular 
and clonal organisms 

 1993 Ole Petter Thangstad Dr. scient 
Botany 

Molecular studies of myrosinase in Brassicaceae 

 1993 Thrine L. M. 
Heggberget 

Dr. scient 
Zoology 

Reproductive strategy and feeding ecology of the 
Eurasian otter Lutra lutra. 

 1993 Kjetil Bevanger Dr. scient. 
Zoology 

Avian interactions with utility structures, a biological 
approach. 

 1993 Kåre Haugan Dr. scient 
Bothany 

Mutations in the replication control gene trfA of the 
broad host-range plasmid RK2 

 1994 Peder Fiske Dr. scient. 
Zoology 

Sexual selection in the lekking great snipe (Gallinago 
media): Male mating success and female behaviour at the 
lek 

 1994 Kjell Inge Reitan Dr. scient 
Botany 

Nutritional effects of algae in first-feeding of marine fish 
larvae 

 1994 Nils Røv Dr. scient 
Zoology 

Breeding distribution, population status and regulation of 
breeding numbers in the northeast-Atlantic Great 
Cormorant Phalacrocorax carbo carbo 

 1994 Annette-Susanne 
Hoepfner 

Dr. scient 
Botany 

Tissue culture techniques in propagation and breeding of 
Red Raspberry (Rubus idaeus L.) 

 1994 Inga Elise Bruteig Dr. scient 
Bothany 

Distribution, ecology and biomonitoring studies of 
epiphytic lichens on conifers 

 1994 Geir Johnsen Dr. scient 
Botany 

Light harvesting and utilization in marine phytoplankton: 
Species-specific and photoadaptive responses 

 1994 Morten Bakken Dr. scient 
Zoology 
 

Infanticidal behaviour and reproductive performance in 
relation to competition capacity among farmed silver fox 
vixens, Vulpes vulpes 



 1994 Arne Moksnes Dr. philos 
Zoology 

Host adaptations towards brood parasitism by the 
Cockoo 

 1994 Solveig Bakken Dr. scient 
Bothany

Growth and nitrogen status in the moss Dicranum majus 
Sm. as influenced by nitrogen supply 

 1994 Torbjørn Forseth Dr. scient 
Zoology 

Bioenergetics in ecological and life history studies of 
fishes. 

 1995 Olav Vadstein Dr. philos 
Botany 

The role of heterotrophic planktonic bacteria in the 
cycling of phosphorus in lakes: Phosphorus requirement, 
competitive ability and food web interactions 

 1995 Hanne Christensen Dr. scient 
Zoology 

Determinants of Otter Lutra lutra distribution in 
Norway: Effects of harvest, polychlorinated biphenyls 
(PCBs), human population density and competition with 
mink Mustela vision 

 1995 Svein Håkon Lorentsen Dr. scient 
Zoology

Reproductive effort in the Antarctic Petrel Thalassoica 
antarctica; the effect of parental body size and condition

 1995 Chris Jørgen Jensen Dr. scient 
Zoology 

The surface electromyographic (EMG) amplitude as an 
estimate of upper trapezius muscle activity 

 1995 Martha Kold Bakkevig Dr. scient 
Zoology 

The impact of clothing textiles and construction in a 
clothing system on thermoregulatory responses, sweat 
accumulation and heat transport 

 1995 Vidar Moen Dr. scient 
Zoology 

Distribution patterns and adaptations to light in newly 
introduced populations of Mysis relicta and constraints 
on Cladoceran and Char populations 

 1995 Hans Haavardsholm 
Blom 

Dr. philos 
Bothany 

A revision of the Schistidium apocarpum complex in 
Norway and Sweden 

 1996 Jorun Skjærmo Dr. scient 
Botany 

Microbial ecology of early stages of cultivated marine 
fish; inpact fish-bacterial interactions on growth and 
survival of larvae 

 1996 Ola Ugedal Dr. scient 
Zoology 

Radiocesium turnover in freshwater fishes 

 1996 Ingibjørg Einarsdottir Dr. scient 
Zoology 

Production of Atlantic salmon (Salmo salar) and Arctic 
charr (Salvelinus alpinus): A study of some 
physiological and immunological responses to rearing 
routines 

 1996 Christina M. S. Pereira Dr. scient 
Zoology 

Glucose metabolism in salmonids: Dietary effects and 
hormonal regulation 

 1996 Jan Fredrik Børseth Dr. scient 
Zoology 

The sodium energy gradients in muscle cells of Mytilus 
edulis and the effects of organic xenobiotics 

 1996 Gunnar Henriksen Dr. scient 
Zoology 

Status of Grey seal Halichoerus grypus and Harbour seal 
Phoca vitulina in the Barents sea region 

 1997 Gunvor Øie Dr. scient 
Bothany 

Eevalution of rotifer Brachionus plicatilis quality in 
early first feeding of turbot Scophtalmus maximus L. 
larvae 

 1997 Håkon Holien Dr. scient 
Botany 

Studies of lichens in spurce forest of Central Norway. 
Diversity, old growth species and the relationship to site 
and stand parameters 

 1997 Ole Reitan  Dr. scient. 
Zoology 

Responses of birds to habitat disturbance due to 
damming 

 1997 Jon Arne Grøttum  Dr. scient. 
Zoology 

Physiological effects of reduced water quality on fish in 
aquaculture 

 1997 Per Gustav Thingstad  Dr. scient. 
Zoology 

Birds as indicators for studying natural and human-
induced variations in the environment, with special 
emphasis on the suitability of the Pied Flycatcher 

 1997 Torgeir Nygård  Dr. scient 
Zoology 

Temporal and spatial trends of pollutants in birds in 
Norway: Birds of prey and Willow Grouse used as 
Biomonitors 



 1997 Signe Nybø  Dr. scient. 
Zoology 

Impacts of long-range transported air pollution on birds 
with particular reference to the dipper Cinclus cinclus in 
southern Norway 

 1997 Atle Wibe  Dr. scient. 
Zoology 

Identification of conifer volatiles detected by receptor 
neurons in the pine weevil (Hylobius abietis), analysed 
by gas chromatography linked to electrophysiology and 
to mass spectrometry 

 1997 Rolv Lundheim  Dr. scient 
Zoology 

Adaptive and incidental biological ice nucleators    

 1997 Arild Magne Landa Dr. scient 
Zoology 

Wolverines in Scandinavia: ecology, sheep depredation 
and conservation 

 1997 Kåre Magne Nielsen Dr. scient 
Botany 

An evolution of possible horizontal gene transfer from 
plants to sail bacteria by studies of natural transformation 
in Acinetobacter calcoacetius 

 1997 Jarle Tufto  Dr. scient 
Zoology 

Gene flow and genetic drift in geographically structured 
populations: Ecological, population genetic, and 
statistical models 

 1997 Trygve Hesthagen  Dr. philos 
Zoology 

Population responces of Arctic charr (Salvelinus alpinus 
(L.)) and brown trout (Salmo trutta L.) to acidification in 
Norwegian inland waters 

 1997 Trygve Sigholt  Dr. philos 
Zoology 

Control of  Parr-smolt transformation and seawater 
tolerance in farmed Atlantic Salmon (Salmo salar) 
Effects of photoperiod, temperature, gradual seawater 
acclimation, NaCl and betaine in the diet 

 1997 Jan Østnes  Dr. scient 
Zoology 

Cold sensation in adult and neonate birds 

 1998 Seethaledsumy 
Visvalingam 

Dr. scient 
Botany 

Influence of environmental factors on myrosinases and 
myrosinase-binding proteins 

 1998 Thor Harald Ringsby Dr. scient 
Zoology 

Variation in space and time: The biology of a House 
sparrow metapopulation 

 1998 Erling Johan Solberg Dr. scient. 
Zoology 

Variation in population dynamics and life history in a 
Norwegian moose (Alces alces) population: 
consequences of harvesting in a variable environment 

 1998 Sigurd Mjøen Saastad Dr. scient 
Botany 

Species delimitation and phylogenetic relationships 
between the Sphagnum recurvum complex (Bryophyta): 
genetic variation and phenotypic plasticity 

 1998 Bjarte Mortensen Dr. scient 
Botany 

Metabolism of volatile organic chemicals (VOCs) in a 
head liver S9 vial  equilibration system in vitro 

 1998 Gunnar Austrheim Dr. scient 
Botany 

Plant biodiversity and land use in subalpine grasslands. – 
A conservtaion biological approach 

 1998 Bente Gunnveig Berg Dr. scient 
Zoology 

Encoding of pheromone information in two related moth 
species 

 1999 Kristian Overskaug Dr. scient 
Zoology 

Behavioural and morphological characteristics in 
Northern Tawny Owls Strix aluco: An intra- and 
interspecific comparative approach 

 1999 Hans Kristen Stenøien Dr. scient 
Bothany 

Genetic studies of evolutionary processes in various 
populations of nonvascular plants (mosses, liverworts 
and hornworts) 

 1999 Trond Arnesen Dr. scient 
Botany 

Vegetation dynamics following trampling and burning in 
the outlying haylands at Sølendet, Central Norway 

 1999 Ingvar Stenberg Dr. scient 
Zoology

Habitat selection, reproduction and survival in the 
White-backed Woodpecker Dendrocopos leucotos 

 1999 Stein Olle Johansen Dr. scient 
Botany 

A study of driftwood dispersal to the Nordic Seas by 
dendrochronology and wood anatomical analysis 



 1999 Trina Falck Galloway Dr. scient 
Zoology 

Muscle development and growth in early life stages of 
the Atlantic cod (Gadus morhua L.) and Halibut 
(Hippoglossus hippoglossus L.) 

 1999 Marianne Giæver Dr. scient 
Zoology 

Population genetic studies in three gadoid species: blue 
whiting (Micromisistius poutassou), haddock 
(Melanogrammus aeglefinus) and cod (Gradus morhua) 
in the North-East Atlantic 

 1999 Hans Martin Hanslin Dr. scient 
Botany 

The impact of environmental conditions of density 
dependent performance in the boreal forest bryophytes 
Dicranum majus, Hylocomium splendens, Plagiochila 
asplenigides, Ptilium crista-castrensis and 
Rhytidiadelphus lokeus 

 1999 Ingrid Bysveen 
Mjølnerød 

Dr. scient 
Zoology 

Aspects of population genetics, behaviour and 
performance of wild and farmed Atlantic salmon (Salmo 
salar) revealed by molecular genetic techniques 

 1999 Else Berit Skagen Dr. scient 
Botany 

The early regeneration process in protoplasts from 
Brassica napus hypocotyls cultivated under various g-
forces 

 1999 Stein-Are Sæther Dr. philos 
Zoology 

Mate choice, competition for mates, and conflicts of 
interest in the Lekking Great Snipe 

 1999 Katrine Wangen Rustad Dr. scient 
Zoology 

Modulation of glutamatergic neurotransmission related 
to cognitive dysfunctions and Alzheimer’s disease 

 1999 Per Terje Smiseth Dr. scient 
Zoology 

Social evolution in monogamous families: 
mate choice and conflicts over parental care in the 
Bluethroat (Luscinia s. svecica) 

 1999 Gunnbjørn Bremset Dr. scient 
Zoology 

Young Atlantic salmon (Salmo salar L.) and Brown trout 
(Salmo trutta L.) inhabiting the deep pool habitat, with 
special reference to their habitat use, habitat preferences 
and competitive interactions 

 1999 Frode Ødegaard Dr. scient 
Zoology 

Host spesificity as parameter in estimates of arhrophod 
species richness 

 1999 Sonja Andersen Dr. scient 
Bothany 

Expressional and functional analyses of human, 
secretory phospholipase A2 

 2000 Ingrid Salvesen Dr. scient 
Botany 

Microbial ecology in early stages of marine fish: 
Development and evaluation of methods for microbial 
management in intensive larviculture 

  2000 Ingar Jostein Øien Dr. scient 
Zoology 

The Cuckoo (Cuculus canorus) and its host: adaptions 
and counteradaptions in a coevolutionary arms race 

 2000 Pavlos Makridis Dr. scient 
Botany 

Methods for the microbial econtrol of live food used for 
the rearing of marine fish larvae 

  2000 Sigbjørn Stokke Dr. scient 
Zoology 

Sexual segregation in the African elephant (Loxodonta 
africana) 

 2000 Odd A. Gulseth Dr. philos 
Zoology 

Seawater tolerance, migratory behaviour and growth of 
Charr, (Salvelinus alpinus), with emphasis on the high 
Arctic Dieset charr on Spitsbergen, Svalbard 

 2000 Pål A. Olsvik Dr. scient 
Zoology 

Biochemical impacts of Cd, Cu and Zn on brown trout 
(Salmo trutta) in two mining-contaminated rivers in 
Central Norway 

 2000 Sigurd Einum Dr. scient 
Zoology 

Maternal effects in fish: Implications for the evolution of 
breeding time and egg size 

 2001 Jan Ove Evjemo Dr. scient 
Zoology 

Production and nutritional adaptation of the brine shrimp 
Artemia sp. as live food organism for larvae of marine 
cold water fish species 

 2001 Olga Hilmo Dr. scient 
Botany 

Lichen response to environmental changes in the 
managed boreal forset systems 



 2001 Ingebrigt Uglem Dr. scient 
Zoology 

Male dimorphism and reproductive biology in corkwing 
wrasse (Symphodus melops L.) 

 2001 Bård Gunnar Stokke Dr. scient 
Zoology

Coevolutionary adaptations in avian brood parasites and 
their hosts

 2002 Ronny Aanes Dr. scient Spatio-temporal dynamics in Svalbard reindeer (Rangifer 
tarandus platyrhynchus) 

 2002 Mariann Sandsund Dr. scient 
Zoology 

Exercise- and cold-induced asthma. Respiratory and 
thermoregulatory responses 

 2002 Dag-Inge Øien Dr. scient 
Botany 

Dynamics of plant communities and populations in 
boreal vegetation influenced by scything at Sølendet, 
Central Norway 

 2002 Frank Rosell Dr. scient 
Zoology 

The function of scent marking in beaver (Castor fiber) 

 2002 Janne Østvang Dr. scient 
Botany

The Role and Regulation of Phospholipase A2 in 
Monocytes During Atherosclerosis Development 

 2002 Terje Thun Dr.philos 
Biology 

Dendrochronological constructions of Norwegian conifer 
chronologies providing dating of historical material 

 2002 Birgit Hafjeld Borgen Dr. scient 
Biology 

Functional analysis of plant idioblasts (Myrosin cells) 
and their role in defense, development and growth 

 2002 Bård Øyvind Solberg Dr. scient 
Biology 

Effects of climatic change on the growth of dominating 
tree species along major environmental gradients 

 2002 Per Winge Dr. scient 
Biology 

The evolution of small GTP binding proteins in cellular 
organisms. Studies of RAC GTPases in Arabidopsis 
thaliana and the Ral GTPase from Drosophila 
melanogaster 

 2002 Henrik Jensen Dr. scient 
Biology 

Causes and consequenses of individual variation in 
fitness-related traits in house sparrows 

 2003 Jens Rohloff Dr. philos 
Biology 

Cultivation of herbs and medicinal plants in Norway – 
Essential oil production and quality control 

 2003 Åsa Maria O. Espmark 
Wibe 

Dr. scient 
Biology 

Behavioural effects of environmental pollution in 
threespine stickleback Gasterosteus aculeatur L. 

 2003 Dagmar Hagen Dr. scient 
Biology 

Assisted recovery of disturbed arctic and alpine 
vegetation – an integrated approach 

 2003 Bjørn Dahle Dr. scient 
Biology 

Reproductive strategies in Scandinavian brown bears 

 2003 Cyril Lebogang Taolo Dr. scient 
Biology 

Population ecology, seasonal movement and habitat use 
of the African buffalo (Syncerus caffer) in Chobe 
National Park, Botswana 

 2003 Marit Stranden Dr.scient 
Biology 

Olfactory receptor neurones specified for the same 
odorants in three related Heliothine species (Helicoverpa 
armigera, Helicoverpa assulta and Heliothis virescens)

 2003 Kristian Hassel Dr.scient 
Biology 

Life history characteristics and genetic variation in an 
expanding species, Pogonatum dentatum 

 2003 David Alexander Rae Dr.scient 
Biology 

Plant- and invertebrate-community responses to species 
interaction and microclimatic gradients in alpine and 
Artic environments 

 2003 Åsa A Borg Dr.scient 
Biology 

Sex roles and reproductive behaviour in gobies and 
guppies: a female perspective 

 2003 Eldar Åsgard Bendiksen Dr.scient 
Biology 

Environmental effects on lipid nutrition of farmed 
Atlantic salmon (Salmo Salar L.) parr and smolt 

 2004 Torkild Bakken Dr.scient 
Biology

A revision of Nereidinae (Polychaeta, Nereididae) 

 2004 Ingar Pareliussen Dr.scient 
Biology 

Natural and Experimental Tree Establishment in a 
Fragmented Forest, Ambohitantely Forest Reserve, 
Madagascar 



 2004 Tore Brembu Dr.scient 
Biology 

Genetic, molecular and functional studies of RAC 
GTPases and the WAVE-like regulatory protein complex 
in Arabidopsis thaliana 

 2004 Liv S. Nilsen Dr.scient 
Biology 

Coastal heath vegetation on central Norway; recent past, 
present state and future possibilities 

 2004 Hanne T. Skiri Dr.scient 
Biology 

Olfactory coding and olfactory learning of plant odours 
in heliothine moths. An anatomical, physiological and 
behavioural study of three related species (Heliothis 
virescens, Helicoverpa armigera and Helicoverpa 
assulta) 

 2004 Lene Østby Dr.scient 
Biology 

Cytochrome P4501A (CYP1A) induction and DNA 
adducts as biomarkers for organic pollution in the natural 
environment 

 2004 Emmanuel J. Gerreta Dr. philos 
Biology

The Importance of Water Quality and Quantity in the 
Tropical Ecosystems, Tanzania

 2004 Linda Dalen Dr.scient 
Biology 

Dynamics of Mountain Birch Treelines in the Scandes 
Mountain Chain, and Effects of Climate Warming 

 2004 Lisbeth Mehli Dr.scient 
Biology 

Polygalacturonase-inhibiting protein (PGIP) in cultivated 
strawberry (Fragaria x ananassa): characterisation and 
induction of the gene following fruit infection by 
Botrytis cinerea 

 2004 Børge Moe Dr.scient 
Biology 

Energy-Allocation in Avian Nestlings Facing Short-
Term Food Shortage 

 2005 Matilde Skogen 
Chauton 

Dr.scient 
Biology 

Metabolic profiling and species discrimination from 
High-Resolution Magic Angle Spinning NMR analysis 
of whole-cell samples 

 2005 Sten Karlsson Dr.scient 
Biology 

Dynamics of Genetic Polymorphisms 

 2005 Terje Bongard Dr.scient 
Biology 

Life History strategies, mate choice, and parental 
investment among Norwegians over a 300-year period 

 2005 Tonette Røstelien ph.d 
Biology 

Functional characterisation of olfactory receptor neurone 
types in heliothine moths 

 2005 Erlend Kristiansen Dr.scient 
Biology 

Studies on antifreeze proteins 

 2005 Eugen G. Sørmo Dr.scient 
Biology 

Organochlorine pollutants in grey seal (Halichoerus 
grypus) pups and their impact on plasma thyrid hormone 
and vitamin A concentrations 

 2005 Christian Westad Dr.scient 
Biology 

Motor control of the upper trapezius 

 2005 Lasse Mork Olsen ph.d 
Biology

Interactions between marine osmo- and phagotrophs in 
different physicochemical environments 

 2005 Åslaug Viken ph.d 
Biology 

Implications of mate choice for the management of small 
populations 

 2005 Ariaya Hymete Sahle 
Dingle 

ph.d 
Biology 

Investigation of the biological activities and chemical 
constituents of selected Echinops spp. growing in 
Ethiopia 

 2005 Anders Gravbrøt 
Finstad 

ph.d 
Biology 

Salmonid fishes in a changing climate: The winter 
challenge 

 2005 Shimane Washington 
Makabu 

ph.d 
Biology 

Interactions between woody plants, elephants and other 
browsers in the Chobe Riverfront, Botswana 

 2005 Kjartan Østbye Dr.scient 
Biology 

The European whitefish Coregonus lavaretus (L.) 
species complex: historical contingency and adaptive 
radiation 



 2006 Kari Mette Murvoll ph.d 
Biology 

Levels and effects of persistent organic pollutans (POPs) 
in seabirds 
Retinoids and -tocopherol –  potential biomakers of 
POPs in birds?  

 2006 Ivar Herfindal Dr.scient 
Biology 

Life history consequences of environmental variation 
along ecological gradients in northern ungulates 

 2006 Nils Egil Tokle ph.d 
Biology 

Are the ubiquitous marine copepods limited by food or 
predation? Experimental and field-based studies with 
main focus on Calanus finmarchicus 

 2006 Jan Ove Gjershaug Dr.philos 
Biology 

Taxonomy and conservation status of some booted 
eagles in south-east Asia 

 2006 Jon Kristian Skei Dr.scient 
Biology 

Conservation biology and acidification problems in the 
breeding habitat of amphibians in Norway 

 2006 Johanna Järnegren ph.d 
Biology 

Acesta Oophaga and Acesta Excavata – a study of 
hidden biodiversity 

 2006 Bjørn Henrik Hansen ph.d 
Biology 

Metal-mediated oxidative stress responses in brown trout 
(Salmo trutta) from mining contaminated rivers in 
Central Norway 

 2006 Vidar Grøtan ph.d 
Biology 

Temporal and spatial effects of climate fluctuations on 
population dynamics of vertebrates 

 2006 Jafari R Kideghesho ph.d 
Biology 

Wildlife conservation and local land use conflicts in 
western Serengeti, Corridor Tanzania 

 2006 Anna Maria Billing ph.d 
Biology 

Reproductive decisions in the sex role reversed pipefish 
Syngnathus typhle: when and how to invest in 
reproduction 

 2006 Henrik Pärn ph.d 
Biology 

Female ornaments and reproductive biology in the 
bluethroat 

 2006 Anders J. Fjellheim ph.d 
Biology 

Selection and administration of probiotic bacteria to 
marine fish larvae 

 2006 P. Andreas Svensson ph.d 
Biology 

Female coloration, egg carotenoids and reproductive 
success: gobies as a model system 

 2007 Sindre A. Pedersen ph.d 
Biology 

Metal binding proteins and antifreeze proteins in the 
beetle Tenebrio molitor 
- a study on possible competition for the semi-essential 
amino acid cysteine 

 2007 Kasper Hancke ph.d 
Biology 

Photosynthetic responses as a function of light and 
temperature: Field and laboratory studies on marine 
microalgae 

 2007 Tomas Holmern ph.d 
Biology 

Bushmeat hunting in the western Serengeti: Implications 
for community-based conservation 

 2007 Kari Jørgensen ph.d 
Biology 

Functional tracing of gustatory receptor neurons in the 
CNS and chemosensory learning in the moth Heliothis 
virescens

 2007 Stig Ulland ph.d 
Biology 

Functional Characterisation of Olfactory Receptor 
Neurons in the Cabbage Moth, (Mamestra brassicae L.) 
(Lepidoptera, Noctuidae). Gas Chromatography Linked 
to Single Cell Recordings and Mass Spectrometry 

 2007 Snorre Henriksen ph.d 
Biology 

Spatial and temporal variation in herbivore resources at 
northern latitudes 

 2007 Roelof Frans May ph.d 
Biology 

Spatial Ecology of Wolverines in Scandinavia  
 

 2007 Vedasto Gabriel 
Ndibalema 

ph.d 
Biology 

Demographic variation, distribution and habitat use 
between wildebeest sub-populations in the Serengeti 
National Park, Tanzania 



 2007 Julius William 
Nyahongo 

ph.d 
Biology 

Depredation of Livestock by wild Carnivores and Illegal 
Utilization of Natural Resources by Humans in the 
Western Serengeti, Tanzania 

 2007 Shombe Ntaraluka 
Hassan 

ph.d 
Biology 

Effects of fire on large herbivores and their forage 
resources in Serengeti, Tanzania 

 2007 Per-Arvid Wold ph.d 
Biology 

Functional development and response to dietary 
treatment in larval Atlantic cod (Gadus morhua L.) 
Focus on formulated diets and early weaning 

 2007 Anne Skjetne 
Mortensen 

ph.d 
Biology 

Toxicogenomics of Aryl Hydrocarbon- and Estrogen 
Receptor Interactions in Fish: Mechanisms and Profiling 
of Gene Expression Patterns in Chemical Mixture 
Exposure Scenarios 

  2008 Brage Bremset Hansen ph.d 
Biology 

The Svalbard reindeer (Rangifer tarandus 
platyrhynchus) and its food base: plant-herbivore 
interactions in a high-arctic ecosystem 

  2008 Jiska van Dijk ph.d 
Biology 

Wolverine foraging strategies in a multiple-use 
landscape 

  2008 Flora John Magige ph.d 
Biology 

The ecology and behaviour of the Masai Ostrich 
(Struthio camelus massaicus) in the Serengeti 
Ecosystem, Tanzania 

  2008 Bernt Rønning ph.d 
Biology 

Sources of inter- and intra-individual variation 
in basal metabolic rate in the zebra finch, 
(Taeniopygia guttata) 

  2008 Sølvi Wehn ph.d  
Biology 

Biodiversity dynamics in semi-natural mountain 
landscapes.  
- A study of consequences of changed 
agricultural practices in Eastern Jotunheimen 

  2008 Trond Moxness Kortner ph.d 
Biology 

"The Role of Androgens on previtellogenic 
oocyte growth in Atlantic cod (Gadus morhua): 
Identification and patterns of differentially 
expressed genes in relation to Stereological 
Evaluations" 

  2008 Katarina Mariann 
Jørgensen 

Dr.Scient 
Biology 

The role of platelet activating factor in 
activation of growth arrested keratinocytes and 
re-epithelialisation 

  2008 Tommy Jørstad ph.d 
Biology 

Statistical Modelling of Gene Expression Data 

  2008 Anna Kusnierczyk ph.d 
Bilogy 

Arabidopsis thaliana Responses to Aphid 
Infestation 

  2008 Jussi Evertsen ph.d 
Biology

Herbivore sacoglossans with photosynthetic chloroplasts 

  2008 John Eilif Hermansen ph.d 
Biology 

Mediating ecological interests between locals and 
globals by means of indicators. A study attributed to the 
asymmetry between stakeholders of tropical forest at Mt. 
Kilimanjaro, Tanzania 

  2008 Ragnhild Lyngved ph.d 
Biology 

Somatic embryogenesis in Cyclamen persicum. 
Biological investigations and educational aspects of 
cloning 

  2008 Line Elisabeth  
Sundt-Hansen 

ph.d 
Biology 

Cost of rapid growth in salmonid fishes 
 

  2008 Line Johansen ph.d 
Biology 

Exploring factors underlying fluctuations in white clover 
populations – clonal growth, population structure and 
spatial distribution 

  2009 Astrid Jullumstrø 
Feuerherm 

ph.d 
Biology 

Elucidation of molecular mechanisms for pro-
inflammatory phospholipase A2 in chronic disease 



  2009 Pål Kvello ph.d 
Biology 

Neurons forming the network involved in gustatory 
coding and learning in the moth Heliothis virescens: 
Physiological and morphological characterisation, and 
integration into a standard brain atlas 

  2009 Trygve Devold Kjellsen ph.d 
Biology 

Extreme Frost Tolerance in Boreal Conifers 

  2009 Johan Reinert Vikan ph.d 
Biology 

Coevolutionary interactions between common cuckoos 
Cuculus canorus and Fringilla finches 

  2009 Zsolt Volent ph.d 
Biology 

Remote sensing of marine environment: Applied 
surveillance with focus on optical properties of 
phytoplankton, coloured organic matter and suspended 
matter 

  2009 Lester Rocha ph.d 
Biology 

Functional responses of perennial grasses to simulated 
grazing and resource availability 

  2009 Dennis Ikanda ph.d 
Biology 

Dimensions of a Human-lion conflict: Ecology of human 
predation and persecution of African lions (Panthera 
leo) in Tanzania 

  2010 Huy Quang Nguyen ph.d 
Biology 

Egg characteristics and development of larval digestive 
function of cobia (Rachycentron canadum) in response 
to dietary treatments 
-Focus on formulated diets 

  2010 Eli Kvingedal ph.d 
Biology 

Intraspecific competition in stream salmonids: the impact 
of environment and phenotype 

  2010 Sverre Lundemo ph.d 
Biology 

Molecular studies of genetic structuring and demography 
in Arabidopsis from Northern Europe 

  2010 Iddi Mihijai Mfunda  ph.d 
Biology 

Wildlife Conservation and People’s livelihoods: Lessons 
Learnt and Considerations for Improvements. Tha Case 
of Serengeti Ecosystem, Tanzania 

  2010 Anton Tinchov 
Antonov 

ph.d 
Biology 

Why do cuckoos lay strong-shelled eggs? Tests of the 
puncture resistance hypothesis 

  2010 Anders Lyngstad ph.d 
Biology 

Population Ecology of Eriophorum latifolium, a Clonal 
Species in Rich Fen Vegetation 

  2010 Hilde Færevik ph.d 
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