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Abstract

Fresh by-products of whitefish such as cod and saithe is processed to fishmeal (FM)

on-board seagoing Norwegian trawlers. The aim of this study was to document the

properties of whitefish FM (WFM) protein with respect to, physicochemical and

bioactive properties. Analysis of the proximate composition of representative

seasonal WFM batches show that the production is robust without much variance.

The mean protein (61.9 ± 1.2), fat (8.9 ± 1.1%), moisture (5 ± 1.2%) and ash content

(22.4 ± 0.8%), reflect the use of lean and bony raw-material. The WFM has a low

content of free amino acids (0.7%) and biogenic amines (< 1000 mg/kg) that confirm

the high quality and freshness of the raw material. Amino-acid analysis identified the

presence of all nutritionally essential amino acids. The WFM physicochemical

properties was comparable to soy-bean meal (SBM) by analysis of solubility, water-

holding capacity (WHC), the emulsion stability (ES). Proteolytic degradation of the

WFM was used to demonstrate the presence of bioactive peptides with inhibiting

activity against angiotensin-converting enzyme (ACE) activity, in vitro. Taken
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together, WFM produced from fresh by-products is an excellent protein source with

attributes of interest beyond the aquafeed-market.

Keywords: Food science, Food analysis

1. Introduction

Fishmeal is an superior aqua-feed and pet-food ingredient due to the high content

of protein and the nutritive value of lipids and other constituents (Cho and Kim,

2011). However, a stagnation of the global capture fisheries concurrent with the

increased demand by the current aquaculture growth, limit the FM availability,

drive the price and force the feed-industry to utilize FM sources more efficiently

(Olsen and Hasan, 2012). The promising exploration of novel and cheaper proteins

from insects and plants also contributes to a more unpredictable future market for

FM producers (Olsen and Hasan, 2012). Norway is a major provider of whitefish

originating from well-managed and stable sources of wild-caught species such as

cod (Gadus morhua), saithe (Pollachius virens) and haddock (Melanogrammus

aeglefinus). The fish is processed by heading and gutting (HG) or filleting of the

fresh fish on-board modern sea-going trawlers resulting in the production of fish

offcuts and offals as by-products. Less than 45% of the available whitefish by-

products are currently utilized for production purposes (Olafsen et al., 2014).

However, compact FM factories are now implemented in newly contracted

trawling vessels to enable conversion of fresh by-products to WFM. The WFM is

produced on-board by cooking, pressing and drying of fresh by-products. On the

contrary to the land-based FM industry, the press-liquid (stickwater) containing

water-soluble proteins is currently not utilized due to space constraints and the

energy cost of evaporation, resulting in a pure press-cake FM (Hall, 2010). The

Common Fisheries Policy (CFP) reforms agreed by the European Union ministers

include a discard ban where fishers will be required to land all fish. This landing

obligation include all the by-products and are expected to be implemented by the

CFP by 2019 (European Commission, 2013) hence forcing the industry to find

better economical solutions to improve the current marginal profit of costly WFM

production at-sea. The WFM has been approved for human consumption by

Norwegian authority but is mainly sold as a moderately priced commodity product.

The combined effects of population increase and increasing standards of living in

developing countries are expected to create a high demand for animal-derived

protein by 2050 (FAO, 2006). Thus new initiatives will be required to produce the

necessary quantities of high quality (Boland et al., 2013). An important

contribution to future protein nutrition of man could be helped by shifting marine

protein up the value-chain to produce nutritious and health-promoting ingredients

(Boland et al., 2013; Cashion et al., 2017). In concordance with the growing

documentation of functional- and health-promoting properties of marine proteins

and peptides of different sources the exploration of WFM as a protein source for
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the human consumption market seem mature (Ahn and Kim, 2013; Brooks et al.,

2013; He et al., 2013). Better documentation of the WFM as a protein source could

facilitate the development of new products and increase the profit margins for

utilization of by-products (Brooks et al., 2013). Proteins from marine sources have

promising properties as functional ingredients due to their physicochemical ability

to promote film and foam formations, induce gel forming, adsorb oils and promote

emulsification and bind water (Lordan et al., 2011). Gelatin isolated from

collagene-rich, marine material, is for instance used as a food additive to increase

the texture, water-holding capacity and stability in food products (Lordan et al.,

2011). The current work therefore focus on the characterisation of chemical and

physiochemical properties to extend the knowledge of WFM as a protein product.

The WFM was analysed with respect to chemical quality parameters, amino-acids

profiles and selected physiochemical properties like water holding capacity

(WHC), emulsifying stability (ES) and solubility. The biological activity of WFM

protein hydrolysates was analysed for inhibiting effect on the angiotensin-

converting enzyme (ACE) before and after proteolysis.

2. Materials and methods

2.1. Materials

Representative WFM samples were collected from five batches produced during

the winter months in the years 2012, 2013 and 2014. The WFM was produced on

board the whitefish trawler F/T Havstrand equipped with FM factory capable of

processing heads and viscera produced from HG cod (Gadus morhua) and saithe

(Pollachius virens). The raw material was processed by coarse grinding and steam-

heated screw cooking at 90 °C for approximately 30–45 min. Then, the cooked raw

material was pressed in a twin-screw press before the press-cake was dried in a

rotational steam-heated dryer at 90–100 °C for approximately 30 min. The dried

press-cake was milled to FM powder and packed in in 25 kg paper bags. The press

liquid (stick water) containing fish solubles was discarded in the process.

Ethoxyquin or other preservatives were not added during the production. Samples

of the WFM were then stored at room-temperature until analysis. The experimental

production of WFM 6 based on fish-heads as the only raw-materials source, were

made by manually sorting out viscera before the raw-material was processed as

described above. Soybean meal (SBM) was used as a reference in the functional

assays and was purchased at a local health shop. The SBM contained per 100 g dry

matter: 37 g protein 23.5 g fat and 27.9 g carbohydrates (Saltå Kvärn, Järna,

Sweden).
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2.2. Chemicals

Lyophilized powder of rabbit lung angiotensin converting enzyme (ACE),

substrate for ACE (FAPGG or N-[3-(2-Furyl) acryloyl]-L-phenylalanyl-glycyl-

glycine), Protamex ® (Sigma P0029) and standard chemicals, were purchased from

Sigma–Aldrich (St. Louis, MO).

2.3. Proximate chemical composition, amino acids and biogenic
amines

Crude protein (6.25 × nitrogen) was analysed according to ISO 5983–2 (ISO,

2009) and the lipid content by American Oil Chemists’ Society method Ba 3–38
(Brühl, 1997). Determination of moisture (water) was performed according to ISO

6496 (ISO, 1999) and total ash content according to ISO 5984 (ISO, 2002). The

salt content was analysed using AOAC (2005) method 937.09 (AOAC, 2005). The

amino acid profiles were determined by HPLC and acid hydrolysis according to

ISO 13903 (ISO, 2005). The content of Tryptophane was analysed according to

ISO 13904 (ISO, 2016), and the content of Cysteine, Cystine and Methionine

according to the oxidative method ISO 13903 (ISO, 2005). Biogenic amines were

analysed by the Dansyl method (Önal et al., 2013).

2.4. Solubility and water holding capacity (WHC)

WFM for physiochemical analysis were accurately weighted (5 g ± 0.1 g) into

Erlenmeyer flasks and autoclaved water added to 100 ml. The flasks were shaken

at 150 rpm for 15 min to ensure proper mixing of FM and water. The water-soluble

fraction was collected after centrifugation at 5000 x g for 20 min and then

supernatant filtered through a Whatman qualitative filter paper (5–8 μm) before

analysis. Percentage solubility (g/100 ml) was determined by pipetting of 30 ml

filtered supernatant into pre-weighted aluminium trays and determination of dry

matter after heating overnight at 102 ± 4 °C. For the calculation of the % WHC,

FM samples were accurately weighted (5 g ± 0.1 g) in pre-weighted Falcon tubes

and water added to 50 g ± 0.1 g. The solutions were mixed for 5 min at 300 rpm/

min and then centrifuged at 5000 x g for 10 min. The supernatant was decanted and

percentage of water remaining in the pellet determined by weight (Bragadóttir

et al., 2007).

2.5. Emulsion stability (ES)

0.5 g (± 0.05 g) WFM was weighed into 50 ml Falcon tubes. 10 ml 0.1 M NaCl

and 10 ml pure Eldorado rapeseed oil (Unil AS, Oslo, Norway) was added to the

tubes. The mixture was homogenized using Ultra Thurrax T18 (IKA-Werke GmbH

& Co. KG, Germany) at 25000 rpm for 1 min. The resulting emulsions were

poured into 100 ml graduated cylinders and incubated at room temperature before
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recording the emulsion and water phases after 15 min, 1 h and 24 h. ES (%) were

determined according to a previous report (Geirsdottir et al., 2011).

2.6. Preparation of protein hydrolysates

10 g (± 0.1 g) of WFM was weighed into Erlenmeyer flasks and distilled water

added to 100 g. The flasks were shaken at room temperature at 250 rpm for 15 min

to dissolve water-soluble components before the temperature was adjusted to 55 °C

in a water bath. Protamex (Novozymes A/S, Denmark), an enzyme where the

activity is attributed to a Serine protease that cleave internal peptide bond in

proteins, was selected for the hydrolysis. 0.1% of the enzyme (w/w, dry weight

FM) was added to the flasks and the hydrolysis performed by gentle shaking (100

rpm) at 55 °C for 60 min. No adjustment of the pH was performed before or during

the hydrolysis. 30 ml aliquots were transferred to 50 ml falcon tubes at time zero,

60 min and at 180 min and the protease was immediately inactivated in a boiling

water bath for 10 min. Samples were centrifuged at 5000 x g for 20 min and the

hydrolysate collected by careful pipetting of the supernatant. To remove WFM

particles the hydrolysates were filtered through a Whatman qualitative filter paper

(5–8 μm) before analysis. The protein concentration was determined by the

bichinchoninic acid assay (BCA) using Bovine serum Albumin as standard protein

(BCA-1, Sigma Chemicals). The Degree of Hydrolysis (% DH) was determined by

the o-phthaldialdehyde (OPA) spectrophotometric method using aqueous serine,

(0.1 g/L) as the reference standard (Church et al., 1985). Preparation of the OPA

assay reagents and determination of the % DH were performed according to a

modified protocol (Nielsen et al., 2001).

2.7. Determination of angiotensin I-converting enzyme (ACE)
inhibitory activity

The ACE inhibitory activity was measured using commercial ACE from rabbit

lung (Sigma Chemical Co, A6778) and the synthetic substrate peptide N-[3-(2-

Furyl) acryloyl]-Phe-Gly-Gly (FA-PGG, Sigma Chemical Co 7131). ACE catalyse

the cleavage of FA-PGG to furylacryloylphenylalanine (FAP) and glycileglycine

and the reaction can be quantified by measuring the decrease in the absorbance at

340 nm. In 96 well Plates 10 μl (0.25U/ml) ACE was mixed with 150 μl 1.75 mM

FA-PGG (dissolved in 50 mM Tris-Cl, pH 8 and 0.3 M NaCl) and 10 μl of protein
hydrolysates. The activity was continuously monitored at 340 nm during

incubation at 37 °C for 30 min to record changes in absorbance. As a control,

the hydrolysate was replaced by deionized water in tubes containing FA-PGG and

ACE. The ACE activity was calculated according to Shalaby et al., 2006.
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2.8. Statistical analysis

Unless otherwise stated, the results are presented as mean ± standard deviation

(sd). Mean values were compared using one-way analysis of variance (ANOVA)

SPSS Statistics 21.0 (SPSS Inc., Chicago, IL). The statistical significance level was

set to P < 0.05.

3. Results and discussion

3.1. Proximate chemical composition

The proximate chemical composition of five WFM samples (WFM 1–5) collected
during the 2012–2014 winter months, was analysed for total content of protein (N *

6.25), lipids, ash (minerals), water and NaCl (Table 1). The mean values for each

constituent was calculated with their concomitant standard deviations to evaluate

potential deviations within the seasonal production of WFM. The calculated

standard deviations of WFM sample 1–5 was within 1–2% of the mean values of

each constituent and suggest that the on board productions of FM are a robust

process with minor raw-material variance. The calculated protein content (N *

6.25) was found to vary between 60.2 (WFM 3) to 64.5 resulting in a mean value >

62%. High quality FMs normally contain between 60–72% crude protein by weight

(Cho and Kim, 2011) and this place the WFM in the lower end. A low protein

content was not unexpected as it reflect high content of connective tissue in the by-

products (Falch et al., 2006). Furthermore, the discarded stickwater holds water-

soluble protein that potentially could contribute to the total protein content

(Bechtel, 2008). The lipid content of FM can range from 4–20% depending on

species used in the production (Miles and Chapman, 2012). The measured mean

Table 1. Proximate composition, % (g/100 g dry weight) of WFM batches from

selected winter months.

WFM Month-Year Protein (N * 6.25) Fat Ash Water NaCl

1 12-2012 64.5 7.3 23.1 6.1 1.1

2 11-2013a 61.0 9.7 20.9 6.2 1.6

3 11-2013b 60.2 10.6 23.2 3.4 1.7

4 02- 2014 60.8 8.8 22.5 5.8 n.a

5 03-2014 62.9 8.3 22.4 3.7 n.a

*mean ± sd 61.9 ± 1.8 8.9 ± 1.1 22.4 ± 0.8 5.0 ± 1.2 1.5 ± 0.3

–

6** 12-2012 57.9 5.6 29.1 6.5 1.1

*The mean values ± standard deviation of WFM batch 1–5. **Sample 6 (WFM 6) was not included the

calculations of the mean composition due to the biased raw-material content. n.a (not analysed).
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lipid content of 8.9% reflect that cod and saithe are lean species but also that

viscera including lipid rich liver (Falch et al., 2006) significantly contribute to the

content of the WFM. Considering that WFM is produced without addition of

antioxidants a low lipid content is advantageous as less incidents of oxidations are

likely to occur and as a result improved shelf-life over other FMs on the market.

This is important as natural oxidation of fatty-acids in FM have been shown to

affect nutritional quality (Opstvedt, 1975).

The mean content of minerals was 22.4% and a result of the high content of

connective tissue and bones in the raw-material (Toppe et al., 2007). In a human

consumption perspective the WFM could be considered a highly interesting source

of calcium (Ca), phosphorus and magnesium that constitute the main minerals in

fish bones (Toppe et al., 2007). This is supported by clinical trials documenting a

good uptake of Ca from bone meal of cod (Malde et al., 2010). Considering the

proximate composition of WFM6, an experimental production based on fish-heads,

this was even more evident. Here, a very high mineral content (29.1%) was found

along with a lower protein (57.9%) and fat content (5.6%) compared to the other

WFM samples. The high mineral content combined with clearly suggest that FMs

produced from fish-heads could be an excellent mineral source.

3.2. Analysis of protein quality by amino acid profiling

The content of amino-acids was analysed in WFM2 produced from viscera and

fish-heads, and WFM6, produced from fish-head only (Table 2). All twelve amino

acids considered to be nutritionally essential (EAA) were identified in both

samples including Arginine (Arg), Aspartic acid (Asp), Cysteine (Cys), Histidine

(His), Isoleucine (Iso), Leucine (Leu), Lysine (Lys), Methionine (Met),

Phenylalanine (Phe), Threonine (Thr), Valine (Val) and Tryptophane (Trp). The

calculated ratio of essential over non-essential AA was very similar for WFM 2

and WFM 6 suggesting that the protein is of comparable quality despite the

differences of the raw-material basis. The determined total essential amino acid

content (TEA) in the samples document a high-quality protein source as the daily

requirement for indispensable amino acids could be covered WFM alone (FAO,

2013). Of the essential amino-acids Lys has received most attention given its

nutritional importance and limited content in vegetable protein (Tome and Bos,

2007). The content of Lys was approx. 4.8 g/100 g dry matter in WFM 2 and 4.06

g/100 g dry matter in WFM6. A recommended daily intake of Lysine of 30 mg/kg/

day has been suggested (FAO, 2013) and in theory, a healthy adult in the 50–90 kg

range could cover this demand by consuming approx. 37–70 g WFM daily.

Nutritionally, novel classifications of amino-acids have recently been suggested

labelling them either as conditionally essential or functional (Wu, 2013). Amino

acids are considered conditionally essential (CEAA) when limited under special
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physiological conditions in e.g premature infants or during metabolic disorders in

adults. Functional amino acids participate in and regulate key metabolic pathways

to improve health, survival, growth, development, lactation, and reproduction of

the organisms (Wu, 2013). Three of the protein-bound conditionally essential

amino acids (Glu, Gly and Pro) suggested by Wu (2013) are present in WFM

samples (Table 2). The fourth one Glutamine (Gln) is considered both

Table 2. Analysis of % (g/100 g dry matter) of amino acids (AA) and free

amino-acids (FAA) in WFM samples produced from two different raw-material

compositions.

Amino acid WFM 2* WFM 6**

AA

Ala 3.76 3.74

ArgEF 4.00 3.85

AspF 5.84 5.33

CysEF 0.55 0.60

GluCF 8.19 7.62

GlyCF 4.56 5.26

HisE 1.38 1.25

IsoE 2.65 2.30

LeuEF 4.54 4.10

LysE 4.78 4.06

MetEF 1.74 1.74

PheE 2.57 2.57

ProCF 2.85 3.14

Ser 2.99 2.98

ThrE 2.83 2.61

TrpEF 0.70 0.56

TyrEF 2.07 2.10

ValE 3.00 2.70

TAA 59.00 56.37

TEA 30.81 28.44

E/A 0.52 0.50

–

FAA

TauCF 0.29 0.24

TFAA 0.70 0.48

The summary of total amino acids (TAA), total essential amino acids (TEA), are shown. E/A, TEA:

TAA. TFAA, total free amino-acids. E Essential amino acids. F Functional amino acids.C Conditionally

essential amino acids. * WFM produced from viscera and heads. ** WFM produced from heads only.
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conditionally essential and functional, but was not analysed in the experimental

setup. Not surprisingly, the collagen associated amino-acids Gly and Pro (Toppe

et al., 2007) were found in higher concentrations in WFM6 compared to WFM2

whereas Glu was lower. Considering the list of suggested functional amino acids in

mammals (Wu, 2013) all but Gln were identified in the samples. Overall, these

results suggest that WFM is an excellent source of nutritionally important amino-

acids.

3.3. Free amino acids

A high score of free amino acids (TFAA) in the WFM 2 sample (0.70%) was

observed compared to the WFM 6 sample (0.48%) (Table 2). The result hint at the

activity of proteolytic enzymes present in the viscera that contribute to degradation

of proteins. However, analysis of several samples will be required to confirm the

apparent difference statistically. Taurine (Tau), is classified both as a CEAA and

FAA, and is known to be involved in a range of physiological processes affecting

human health (Bouckenooghe et al., 2006; Hosomi et al., 2012). In seafood the

taurine content is high in general (Spitze et al., 2003). However, the processing of

marine raw materials can promote loss of water soluble components including

taurine (Dragnes et al., 2009a; Spitze et al., 2003). High concentrations of taurine

was observed in both the analysed WFM samples with a content of 290 mg/kg

(WFM 2) 240 mg/kg (WFM 6) and respectively. In comparison to the reported

taurine concentrations in dried cod fillets of 375 ± 49 (Dragnes et al., 2009a) the

content of taurine in WFM, is high. Interestingly, the result was obtained despite

the fact that the stick-water containing water-soluble compounds such as FAAs, is

discarded.

3.4. Biogenic amines

An important aspect of the on board production of fishmeal is the utilization of

totally fresh raw material that in theory should ensure the highest quality possibly.

It was therefore of interest to look at biogenic amines (BA) known to be associated

with quality and freshness of the raw-materials and final products (Visciano et al.,

2012). Factors that influence the content of BAs are storage temperature, handling

practices, the presence of microorganisms with decarboxylase activity and the

content of free amino acids (Prester, 2011). The analysed content of total BAs is

shown in Table 3. The toxicological level of BAs depend among other factors on

the presence of other amines and is therefore difficult to predict (Mišurcová et al.,
2011). However, the total amount of BAs (TBA) indicate acceptable values

compared to the suggested maximum content of 300 mg/kg (Shalaby, 1996) and

750 − 900 mg/kg (Prester, 2011). The major concern of BAs in fish is the level of

histamine. The consumption of as low as 75 mg histamine has been reported to

cause intoxication symptoms in healthy people, but an intake of about 1000 mg is
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required to promote severe intoxications (Rauscher-Gabernig et al., 2009). The

content of histamine in the WFM samples are very low compared to other marine

products (Shalaby, 1996). The higher content of BAs in WFM 2 compared to

WFM 6 is in accordance with the observed higher content of FAA (Table 2).

3.5. Physicochemical properties

Physicochemical parameters of the WFM was analysed as dried marine proteins

and peptides are known to contain interesting functional properties that are useful

in many food applications (Freitas and Cortez-Vega, 2016). Few studies of the

functional properties of FM proteins are available making comparisons challenging

due to differences in methodology (Samuelsen et al., 2013; Sathivel et al., 2005).

The determined solubility, WHC and % ES of WFM 1 to WFM 5 are shown in

Table 4 where the results are compared to SBM. The solubility of the WFM dry

matter (DM) was measured as described and results were calculated as g soluble

FM per 100 g DM (Table 4). The mean values of WFM suggest that about 8.5% of

the WFM compounds are water soluble compared to about 25% of the SBM

compounds. This is somewhat lower compared to e.g. whole-meal produced from

pelagic species reported to be in the 10–20% range (Ariyawansa, 2000). Analysis

of the % WHC suggest that WFM is highly capable of water absorption (Table 4).

The obtained results propose binding of water corresponding to more than twice its

own DM and is comparable to values obtained for FM of e.g. pelagic species

(Ariyawansa, 2000; Samuelsen et al., 2013).

The processing of FM include thermal treatments such as cooking of the raw-material

and drying of the press-cake before grinding and thus the content of denatured

Table 3. Biogenic amines (BA) in two selected WFM batches (mg/kg dry matter).

TBA, total biogenic amines.

BA WFM 2 WFM 6

–

Tyramine < 1 < 1

Putrescine 200.00 147.00

Cadaverine 7.51 4.54

Histamine < 1 < 1

Tryptamine < 5 < 5

2-Phenylamine 4.52 5.50

Spermidine 11.10 12.20

Spermine 4.92 7.66

TBA 235.05 183.90
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proteins are expected to be high. Still, WFM stands out as a protein source with better

water holding capacities compared to results obtained for enzymatically derived

hydrolysates of whitefish (Bragadóttir et al., 2007; Šližytė et al., 2009). The WHC of

WFM is comparable to results obtained for the SBM. However, taking the different

protein content of 61 g/100 g and 37.5 g/100 g into consideration, it is evident that the

SBMhave a higher water holding capacity binding per gram protein. Routine analysis

of the content of water-soluble proteins by BCA protein assays indicated about 3.7%

for WFM samples and about 5.5% for the SBM. The higher content of water soluble

protein in the SBM likely contribute to the better score for % solubility and theWHC.

% ES was recorded after 2 h and 24 h incubation and results compared to initial

emulsion volumes (0 h) to record the rate of the decline. Based on the statistical

analysis the average values of % ES obtained for WFM samples were comparable to

values of SBM and each other at 0 h and 24 h incubation as no significant difference

was calculated. Data obtained after two hours incubation suggested that % ES of

WFM 3 was significantly different from SBM and that WFM 2 and WFM 3 were

different from each other. However, as the calculated standard deviations vary these

differences likely reflect a natural variation of % ES among the WFM samples due to

minor differences in the proximate composition. pH was routinely measured in the

solubilised WFM samples and typically resulted in values in the 6–7 range.

3.6. Determination of ACE-I-inhibitory activity

It was possible to detect in vitro ACE-inhibitory activity in hydrolysates of WFM

as shown in Table 5. Inhibitory activity towards ACE after treatment of WFM with

Protamex for 0 min, 60 min and 180 min was analysed and clearly [4_TD$DIFF]increased with

Table 4. Functional properties of selected WFM batches compared to soy bean

meal (SBM). Values for each batch are expressed as mean ± standard deviation (n

= 3).

% Solubility WHC * ES (%)

Sample 0 hrs 2 hrs 24 hrs

WFM 1 7.27 ± 0.42 H 2.37 F 86.03 ± 1.97 A 76.07 ± 2.48 B 63.35 ± 7.42 E

WFM 2 9.41 ± 0.02 H 2.35 F 77.33 ± 8.95 A 68.07 ± 2.1C 62.05 ± 4.03 E

WFM 3 9.22 ± 0.07H 2.43 F 91.60 ± 5.48 A 85.97 ± 2.32 D 71.05 ± 5.59 E

WFM 4 8.48 ± 0.09 H 2.31 F 89.53 ± 4.14 A 80.17 ± 6.67 B 62.50 ± 5.94 E

WFM 5 8.02 ± 0.23 H 2.33 F 86.03 ± 2.42 A 74.10 ± 9.71 B 53.40 ± 4.81 E

mean ± sd 8.48 ± 0.016 2.38 ± 0.06 84.00 ± 7.00 75.5 ± 6.90 62.1 ± 5.70

SBM 25.10 ± 0.03G 2.45 F 79.37 ± 5.37 A 70.23 ± 2.51 B 63.20 ± 2.40 E

Different superscript letters in the same column denotes a significant difference (P < 0.05). * g/g dry

matter.
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the determined degree of hydrolysis (% DH). The results suggest that the

increasing inhibition with the time of proteolysis is likely due to the accumulation

of biological active peptides. This is in concordance with previous reports of ACE-

inhibitory activities identified in muscle and by-products of fish such as Alaska

pollock, blue whiting and cod (Byun and Kim, 2001; Dragnes et al., 2009b;

Geirsdottir et al., 2011; Jensen et al., 2014). The determined IC50 values reflect

that the ACE-inhibitory activity was measured directly in the hydrolysates without

any further concentration by e.g freeze drying of the peptides. This is evident from

the results in Table 5 reporting a higher protein concentration in μg/ml needed to

reach the IC50 compared to previous reports based on analysis of freeze dried

hydrolysates (Byun and Kim, 2001; Dragnes et al., 2009b; Geirsdottir et al., 2011;

Jensen et al., 2014). However, the main purpose of the measurement was fulfilled

as the result demonstrate that biological activity is retained despite the multiple

thermal treatments of raw-material proteins during the processing to WFM. This is

interesting in a human consumption perspective where WFM could be considered a

bioactive protein ingredient in a functional food setting (Shahidi and Ambigai-

palan, 2015). However, further studies of bioactivities in vitro and in clinical trials

would be necessary to clarify if WFM is a bioactive protein ingredient with impact

on human health.

4. Conclusions

Freshly produced WFM was characterised for proximate chemical composition,

biochemical parameters, selected physicochemical parameters and ACE-inhibitory

activity. The WFM is of high-quality with a high protein and mineral content. All

essential and functional amino acids are present documenting that WFM

nutritionally, is a complete protein source. The protein quality was confirmed by

a low content of free amino acids and biogenic amines acids suggesting minimal

microbial activity and endogenous proteolytic enzyme activity in the raw material.

The DM water holding capacity and the emulsifying properties of water soluble

Table 5. Angiotensin converting enzyme (ACE) inhibitory effect of fishmeal

hydrolysed with Protamex.

Hydrolysis time (min[3_TD$DIFF]) % DH IC50 (μg/ml)

0 4.83 ± 0.57 1850 ± 0.01

60 38.67 ± 1.21 102.78 ± 0.12

180 51.27 ± 1.79 36.27 ± 0.06

Data are presented as the protein concentration (μg/ml) needed to reach IC50% in a 1 mU ACE-assay.

The corresponding degree of hydrolysis (% DH) for each timepoint, is shown. Data are presented as the

mean ± the standard deviation (n = 3).
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fraction resembles values obtained for SBM whereas the water solubility is

significantly lower. Proteolysis of the WFM proteins was used to demonstrate the

presence of compounds with inhibiting activity towards ACE, in vitro. Taken

together, WFM proteins from fresh fish processing co-products have properties of

interest to a human consumption market. Future characterisation of sensory and

functional properties are vital before concluding on the potential for use in food

matrixes. The potential for bioactive compounds should also be explored in more

detail, preferably using enzymes simulating human digestion of proteins to mimic

food intake.
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