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Abstract  
Insects are guided to potential host plants by visual and olfactory signals. Upon arrival they 

encounter various taste stimuli, ultimately deciding whether the plant is a proper food or 

oviposition source. The detection of gustatory stimuli by contact chemosensilla has been studied 

in several insect species, and intracellular recordings from neurons in the subesophageal 

ganglion (SOG) of Heliothis virescens have revealed responses to several taste qualities 

mediated by different appendages. However, how the information is further processed in higher 

gustatory areas and how it may lead to taste-related behavior is poorly understood. Important 

questions are where gustatory neurons (GNs) project in the protocerebrum and how they process 

information mediated by different appendages, i.e. the coding of taste identity and location. 

These topics were investigated in the present study using intracellular recordings combined with 

fluorescent staining techniques. The recordings were carried out in vivo from single neurons in 

the protocerebrum of the moth Heliothis virescens, while concurrently stimulating the contact 

chemosensilla of the antennae and the proboscis with gustatory and mechanosensory stimuli. The 

protocerebral neurons showed large diversity in their response tuning breadth, some responding 

specifically to one tastant applied at one appendage, whereas others responded to several tastants 

applied at one, two or three appendages. Some of the neurons were successfully stained, all of 

them partially or entirely located in the protocerebrum. In addition, some of the neurons targeted 

the SOG/tritocerebrum, the antennal mechanosensory and motor center (AMMC) and the 

antennal lobes (ALs). The present results point to different processing streams of taste 

information in the protocerebrum, where the narrowly tuned neurons seem to participate in a 

labelled line (LL) and the others in an across fiber pattern (AFP) mechanism. Moreover, the 

important role of the gustatory system for influencing behavior is substantiated by the 

widespread gustatory innervation of the protocerebrum. These projections suggest a role for the 

gustatory system in modulating the activity of other sensory systems, in addition to the coding of 

taste information.  
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Sammendrag 
Smakssansen hos insekter er et essensielt redskap for å evaluere potensielle matkilder og 

eggleggingssteder. I flere studier hard et blitt satt fokus på det perifere smakssystemets 

oppbygning og funksjon. I tillegg er det vist at nevroner i det primære smakssenteret responderer 

på stimulering med flere smakskvaliteter på ulike appendiks. Hvordan smaksinformasjonen 

behandles i høyere smakssentre er derimot lite undersøkt. For å forstå dette bedre er det viktig å 

granske smaksnevronenes innerveringsmønster i protocerebrum og hvordan de responderer til 

stimulering med ulike smaksmodaliteter på flere appendiks. Disse spørsmålene har blitt 

undersøkt i denne studien ved bruk av intracellulære registreringer kombinert med fluoriserende 

fargeteknikker. De intracellulære registreringene ble utført fra enkeltnevroner lokalisert i 

protocerebrum av nattflyarten Heliothis virescens, samtidig som kontakt-kjemosensillene 

lokalisert på antennene og proboscis ble stimulert med mekanosensorisk stimuli og relevante 

smaksstimuli. De protocerebrale smaksnevronene varierte med hensyn til hvordan de responderte 

til stimulering med ulike modaliteter på forskjellige appendiks. Enkelte nevroner responderte 

spesifikt på stimulering med en modalitet på et appendiks, mens andre responderte på flere 

modaliteter på et eller flere appendiks.  Noen av nevronene ble farget, og alle var helt eller delvis 

lokalisert i protocerebrum. I tillegg innerverte enkelte nevroner SOG/tritocerebrum, AMMC og 

antennelobene. Resultatene fra denne studien tyder på at smaksinformasjonen i protocerebrum 

behandles ved bruk av flere spatielle kodingsmekanismer; både populasjonskoding og “labelled 

line” koding ser ut til å operere i dette systemet. Videre er smakssansens betydning for dette 

insektet underbygget av smaksnevronenes omfattende innervering av protocerebrum.  

 

 



Table of Contents   

! !  IV 

Table of Contents 
 
Acknowledgements _____________________________________________ I 
Abstract _____________________________________________________ II 
Sammendrag _________________________________________________ III 
Table of contents ______________________________________________ IV 
1   Introduction ____________________________________________ 1 
1.1         The organization of the peripheral gustatory system in insects _____ 1 
1.2         Properties of GRNs _______________________________________ 2 
1.3         Gustatory receptors _______________________________________ 2 
1.4         Projections of GRNs in the primary taste center _________________ 3 
1.5         Coding of gustatory information _____________________________ 4 
1.6         Topics addressed in the present study _________________________ 5 
2            Materials and Methods ___________________________________ 6 
2.1         The insects ______________________________________________ 6 
2.2         Preparation for electrophysiological recordings _________________ 6 
2.3         Intracellular recordings of protocerebral GNs ___________________ 6 
2.2         Staining of protocerebral GNs _______________________________ 7 
2.3         Confocal laser-scanning microscopy _________________________ 8 

                2.6         Three-dimensional reconstruction of a stained neuron and          
transformation into the standard brain atlas ____________________ 9 

2.7         Neurophysiological analyses _______________________________ 10 
2.7.1      Response strength analysis ________________________________ 10 
2.7.2      Response strength correlation analysis _______________________ 11 
2.7.3      Response frequency analysis _______________________________ 12 
3            Results _______________________________________________ 14 
3.1         Physiological properties of protocerebral GNs _________________ 15 
3.1.1      Response profiles _______________________________________ 15 
3.1.2      Spontaneous activity _____________________________________ 17 
3.1.3      Response strength _______________________________________ 20 
3.1.4      Response strength correlation ______________________________ 23 
3.1.5      Discrimination of stimuli by class 2 and 3 GNs ________________ 24 
3.1.5.1   Response strength _______________________________________ 24 
3.1.5.2   Temporal firing characteristics _____________________________ 25 
3.2         Morphology of protocerebral GNs __________________________ 30 
4            Discussion _____________________________________________ 35 

 4.1         Comparison between the response properties of protocerebral 
                      and SOG GNs __________________________________________ 35 



  Table of Contents 

! V 

4.2         Coding in the protocerebrum _______________________________ 37 
4.3         Discrimination of stimuli by class 2 and 3 GNs ________________ 39 
4.4         Morphology of protocerebral GNs __________________________ 44 
4.5         Topics for further research ________________________________ 47 
5            Conclusion ____________________________________________ 49 
6            Abbreviations __________________________________________ 50 
7            References ____________________________________________ 51 
8            Appendices ____________________________________________ 57 
8.1         Appendix I _____________________________________________ 57 
8.2         Appendix II ____________________________________________ 59 
8.3         Appendix III ___________________________________________ 60 
 



Introduction   

! !  1 

1   Introduction 
The detection of chemical cues in the environment is of great importance to all organisms. In 

animals, the senses of taste (gustation) and smell (olfaction) reflect the sophisticated neural 

systems evolved for this task. The olfactory and gustatory systems, detecting volatile and 

dissolved compounds, respectively, are evolutionary old and serve many of the same functions in 

both vertebrates and invertebrates. The primary role of the gustatory system is to discriminate 

palatable, nutrient-rich compounds from compounds that are unpalatable and potentially 

harmful. Food sources rich in carbohydrates are perceived as pleasant by animals, leading to 

ingestion, whereas toxic compounds are usually unpleasant, leading to rejection. These behaviors 

are innate and essential for all animals when coping with the decision of whether to consume 

available food items. In insects, the sense of taste also contributes to the evaluation of potential 

places to deposit eggs (oviposition sites) (Schoonhoven, 1968; Ramaswamy et al., 1987a; 

Thompson and Pellmyr, 1991; Renwick and Chew, 1994). The critical involvements of the 

gustatory system in regulating energy intake and reproduction have triggered scientists to look 

for the underlying neural mechanisms of insect gustation. 

1.1   The organization of the peripheral gustatory system in insects 
Insects have their taste organs located on several parts of the body, like the mouthparts, wings, 

tarsi, antennae and ovipositor (Dethier, 1955; Stocker, 1994; Amrein and Thorne, 2005). The 

chemosensory organs are named sensilla, consisting of an outer cuticle and a subcuticular matrix 

termed the sensillum lymph. In addition to housing neurons, the sensilla contain supporting non-

neural cells responsible for establishing the appropriate ionic composition of the sensillum 

lymph (Dethier, 1955; Phillips and Vandeberg, 1976; Zacharuk and Shields, 1991). The sensilla 

are morphologically characterized and classified into several subtypes, like the sensilla 

trichodea, sensilla chaetica, sensilla styloconica and sensilla placodea. Among the different 

sensillum types, these four are identified to have gustatory function, but the same terms are also 

met for sensilla with olfactory (s. trichodea and s. placodea) and mechanosensory function        

(s. trichodea, s. chaetica and s. styloconica) (Schneider, 1964; Zacharuk and Shields, 1991). The 

gustatory sensilla contain the dendrites of several (usually three or four) gustatory receptor 

neurons (GRNs) and one mechanosensory dendrite, attached to the base. The dendrites of the 

GRNs extend to the distal end of the sensillum, where contact may be established with the 

external surroundings through an apical pore. In contrast to olfactory sensilla, gustatory sensilla 

must establish direct contact with an external surface in order to detect the stimuli. For that 
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reason, gustation is termed contact chemoreception and the gustatory sensilla are named contact 

chemosensilla (Larsen, 1962; Gaffal, 1979; Zacharuk, 1980; Hallberg, 1981). 

1.2   Properties of GRNs 

Insects are able to detect a large diversity of different substances, categorized into a few taste 

qualities. Their gustatory sensilla detect sugars, amino acids, salts, water, noxious compounds 

(equivalent to mammalian bitter compounds) and mechanosensory stimuli. In the blowfly 

Phormia regina and the fruit fly Drosophila melanogaster, a gustatory sensillum contains one 

mechano receptor neuron and four GRNs that are tuned to either salt, sugar, water or bitter 

compounds (Wolbarsht and Dethier, 1958; Dethier and Hanson, 1968; McCutchan, 1969; 

Dethier, 1977; Stocker, 1994; Liscia and Solari, 2000; Ozaki et al., 2003; Amrein and Thorne, 

2005). Electrophysiological recordings from the gustatory s. chaetica of the tobacco budworm 

moth Heliothis virescense have revealed responses to bitter stimuli, sugars, amino acids, salts, 

water and alcohols (Jørgensen et al., 2006; Jørgensen et al., 2007a). In the honeybee Apis 

mellifera, responses to sugars and salts, but not to bitter compounds, have been recorded from 

GRNs located on the antennae (de Brito Sanchez et al., 2005; de Brito Sanchez, 2011). 

1.3   Gustatory receptors 

A scan of the D. melanogaster genome uncovered a family of 60 genes suggested to encode 

gustatory receptors. The 60 genes encode 68 seven-transmembrane proteins, expressed almost 

exclusively in GRNs (Clyne et al., 2000; Dunipace et al., 2001; Scott et al., 2001; Robertson et 

al., 2003). Furthermore, multiple receptors are co-expressed in single GRNs (Wang et al., 2004; 

Montell, 2009). The co-expression of Gr64f with either Gr5a or Gr64a is hypothesized to form a 

dimer, responsible for the detection of sugars (Jiao et al., 2007; Jiao et al., 2008; Isono and 

Morita, 2010). Similarly, bitter-tasting compounds are detected by a receptor complex, trimeric 

or multimeric in structure, in which Gr33a is an omnipresent subunit co-expressed with other 

gustatory receptors (e.g. Gr66a, Gr32a, Gr93a) (Thorne et al., 2004; Lee et al., 2009; Moon et 

al., 2009; Isono and Morita, 2010). Four functionally different classes of bitter receptor neurons 

are identified, each class expressing a unique composition of bitter receptors (Weiss et al., 2011). 

Importantly, receptors for sugars and bitter compounds are never co-expressed, proving the 

existence of non-overlapping populations of bitter and sugar receptor neurons (Scott, 2005). 

Receptors for salt and water do not seem to be present among any of the 60 gustatory receptor 

genes. In contrast, ion channels sensitive to changes in osmolarity are believed to be responsible 

for the transduction of water taste (Meunier et al., 2009; Cameron et al., 2010), whereas 
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amiloride-sensitive degenerin/epithelial sodium channels have been suggested as salt receptor 

candidates (Liu et al., 2003). Less is known about the gustatory receptors in other insects, like H. 

virescens and A. mellifera. Currently, only one receptor, HR5, has been suggested as a candidate 

gustatory receptor in the tobacco budworm moth. This assumption is based on the expression of 

the receptor in sensory neurons associated with the s. chaetica located on the antennae (Krieger 

et al., 2002). Ten gustatory receptor genes have been identified in the honeybee. Two of them 

encode receptors involved in sugar detection, whereas the remaining eight are not functionally 

characterized (Robertson and Wanner, 2006; de Brito Sanchez, 2011). Whether insect gustatory 

receptors signal by a metabotropic or ionotropic mechanism is presently a matter of debate 

(Bredendiek et al., 2011; Sato et al., 2011). 

1.4   Projections of GRNs in the primary taste center  

Unlike mammalian taste receptor cells, insect GRNs are primary bipolar neurons. GRNs located 

on the head, thorax and abdominal segments project their axons into corresponding ganglia in the 

central nervous system. GRNs located on the mouthparts and the antennae project their axons 

directly to the SOG/tritocerebrum, whereas GRNs on the wings and ovipositor project axons to 

thoracic or abdominal ganglia. Axons of GRNs located on some legs project to the SOG, 

whereas others project to thoracic or abdominal ganglia (Stocker, 1994; Singh, 1997; Mitchell et 

al., 1999; Marella et al., 2006). Because of the substantial gustatory innervation of the SOG, this 

ganglion is regarded as the insect primary taste center. It is formed by the merging of the 

mandibular, maxillary and labial neuromeres, and is fused with the tritocerebrum of the brain in 

some insects (Rehder, 1988; Mitchell et al., 1999). In the SOG/tritocerebrum of                          

D. melanogaster, axons of GRNs located on the internal mouthparts, the proboscis and the legs 

have been traced to spatially segregated areas (Stocker and Schorderet, 1981; Wang et al., 2004). 

Similarly, axons of GRNs situated on the antennae and the proboscis in H. virescens project to 

close, but segregated areas of the dorsal SOG/tritocerebrum (Jørgensen et al., 2006; Kvello et al., 

2006). In addition to this organotopic mapping, spatial mapping exists based on receptor neuron 

type, evident from the non-overlapping axonal projections of mechano receptor neurons and 

GRNs in the SOG/tritocerebrum of two mosquito species (Ignell and Hansson, 2005), the 

blowfly (Edgecomb and Murdock, 1992), the American cockroach (Nishino et al., 2005) and the 

honeybee (de Brito Sanchez, 2011). In H. virescens, axon terminals of mechanosensory and 

gustatory receptor neurons have been found to be both segregated and partially overlapping. No 

segregation has been found for the axon terminals of GRNs projecting from one sensillum, 

suggesting that information about different gustatory modalities is relayed to the same area 
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(Jørgensen et al., 2006). In contrast, in the SOG of the fruit fly, axons of GRNs detecting bitter 

stimuli terminate in a non-overlapping area from those detecting sugars, thus pointing to the 

existence of a taste quality map in this species (Wang et al., 2004; Miyazaki and Ito, 2010).  

1.5   Coding of gustatory information 

Based on the tuning of GRNs to single taste qualities and their systematic projection pattern in 

the SOG, it is argued that encoding of gustatory information in the periphery follows an LL 

mechanism (Marella et al., 2006). This means that information about a taste quality is encoded 

by narrowly tuned GNs, i.e. neurons tuned to one particular taste modality. The information is 

further relayed up the gustatory neuraxis following an independent pathway, segregated from 

pathways encoding other taste qualities (Hettinger and Frank, 1992; Erickson, 2000; Erickson, 

2008). Thus, the information transfer is hardwired from the periphery to central targets. This 

organization implies that activation of a pathway is enough to provide information about the 

stimulus identity, whereas stimulus concentration is presumably mediated by the neuronal firing 

rate (Carleton et al., 2010). Consistent with LL coding, intracellular recordings from the flesh fly 

Sarcophaga bullata provided evidence that SOG interneurons respond selectively to 

sucrose/water or salt. Some neurons responded to all three tastants and were considered purely 

mechanosensory (Mitchell and Itagaki, 1992). An equivalent study in H. virescens demonstrated 

that a large number of GNs in the SOG respond to different taste qualities applied at several 

appendages. Consequently, in this species, the activity of individual SOG neurons does not 

unequivocally state the specific taste quality or its application site, disagreeing with an LL 

scheme. Rather than engaging in an LL organization, the GNs seem to participate in a population 

code, more in accordance with an AFP model (Kvello et al., 2010). In the context of gustation, 

the AFP model states the presence of a population of GNs that are broadly tuned, responding to 

stimulation with a broader range of taste modalities. The neurons respond with varying 

sensitivity to stimulation with different taste qualities, leading to the hypothesis that the 

combined activity of several neurons is necessary to code taste quality (Pfaffmann, 1959). Thus, 

the hallmark of the AFP model is that the message conveyed to postsynaptic neurons is present 

in the unique activity pattern of the neuronal ensemble (Hettinger and Frank, 1992; Erickson, 

2000; Erickson, 2008). 
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1.6   Topics addressed in the present study 

Progress has been made to understand the processing of gustatory information in the periphery 

and the first relay stations in the SOG and thoracic ganglia in insects. However, research on how 

gustatory information is processed in higher brain centers has been lagging behind. Results from 

a previous study of the SOG showed gustatory neurons projecting to the protocerebrum, 

indicating that gustatory processing occurs in this ganglion as well (Kvello et al., 2010). This 

observation raised questions about the prevalence of GNs in the protocerebrum and how they 

handle gustatory information. By examining how the neurons respond to different modalities 

applied to different appendages, information is obtained regarding how this insect codes different 

gustatory stimuli. Furthermore, the morphology of the neurons will inform about where they 

receive and transmit information, and give indications to how they may be wired together in the 

gustatory neural network. These topics were explored in the present study. Intracellular 

recordings from single GNs in the protocerebrum of the moth H. virescens were carried out, 

during which the insect appendages were stimulated with mechanosensory and biologically 

relevant taste stimuli. The intracellular recordings were combined with fluorescent staining 

techniques, allowing visualization of the neurons. These methods enabled studying the following 

question: 

- Which areas of the protocerebrum are innervated by protocerebral GNs? 

Furthermore, neurophysiological analyses of the spike trains were carried out in order to inspect 

the following two hypotheses: 

1. Protocerebral GNs respond to stimulation of several taste qualities applied at several 

appendages, i.e. they are broadly tuned with respect to stimulus identity and 

application site. 

2. Broadly tuned protocerebral GNs participate in a discriminatory process of gustatory 

stimuli, by displaying differences in response strengths and temporal patterns to 

stimulation with different modalities. 
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2   Materials and Methods 
2.1   The insects 
 
The insects (Heliothis virescens; Heliothinae; Lepidoptera; Noctuidae) were acquired as pupae 

from a Swiss laboratory facility (Syngenta, Basel, Switzerland). Upon arrival, the pupae were 

sorted according to sex. After emerging as adults, the moths were transferred to cylindrical 

plexiglass containers (marked with the date of hatching) with perforated lids and supplied with a 

5 % sucrose solution upon which they could feed ad lib. A maximum of eight animals were 

housed together in one container. The males and females were held in separate climate cabinets 

(Refritherm 200, Struers-Kebolab, Albertslund, Denmark, 22 °C) on a reversed LD photoperiod. 

2.2   Preparation for electrophysiological recordings 
 
On the day of the experiment, female moths (three to six days old) were selected and put in 

plastic tubes. Dental wax (Kerr Corporation, Romulus, MI, USA) was applied to fasten and 

immobilize the insect, exposing only the head. Tungsten clamps were utilized to keep the 

antennae and the proboscis in a fixed position, assuring that the contact chemosensilla would be 

exposed to stimulation throughout the experiment. Cephalic scales and hair present on the dorsal 

cuticle of the head were removed with a forceps, after which a microknife and a microscissor 

were used to remove the cuticle posterior to the antennae. Intracranial muscles and trachea were 

removed with a forceps to gain access to the left brain hemisphere, where the intracellular 

recordings were to take place. Ringer solution (in mM: 150 NaCl, 3 CaCl2, 3 KCl, 25 C12H22O11, 

10 TES buffer; pH 6.9) was continuously administered to prevent dehydration of the brain tissue. 

2.3   Intracellular recordings of protocerebral GNs 
 
The plastic tube containing the moth was mounted in a holder and positioned under the 

microscope in the electrophysiological setup. The setup was situated inside a Faraday cage in 

order to block out external interference. A reference electrode (silver chloride coated silver wire) 

was inserted into the right compound eye. Neuronal activity was recorded using a sharp 

microelectrode of borosilicate glass, pulled with a flaming brown micropipette puller (P-97, 

Sutter Instrument Co., Novato, CA, USA). The resistance of the electrode was in the range      

100-400 MΩ. The tip of the glass electrode was filled with the fluorescent dye 

tetramethylrhodamine-biotin dextran (Micro-Ruby; Invitrogen, Germany; 4%) and the electrode 

was backfilled with an electrolyte solution (0.2 M potassium acetate). A silver chloride coated 
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silver wire connected to a preamplifier (Axonprobe-1A, multipurpose microelectrode amplifier, 

Molecular Devices, CA, USA) was inserted into the fluid-filled microelectrode. The neuronal 

activity was visualized on an oscilloscope screen and the signal was digitalized through the use 

of the data acquisition unit CED (Micro 1401-03, Cambridge Electronic Design, Cambridge, 

England). The spike recording software Spike2 (v.7, CED), running a custom-made stimulation 

script, was used to record the neuronal activity. The recording electrode was inserted into the 

brain tissue with the use of a micromanipulator, and the insertion site was most frequently in the 

dorso-lateral area of the brain (the lateral protocerebrum). Some recordings were also carried out 

in the dorso-medial protocerebrum. 

 

The stimuli used in the experiments were biologically relevant tastants (all from Merck 

Chemicals, Darmstadt, Germany; 1.0 M sucrose, 0.01 M quinine hydrochloride, 0.1 M NaCl), 

previously shown to activate the GRNs of the contact chemosensilla located on the antennae 

(Jørgensen et al., 2007a), proboscis (Kvello, unpublished data) and tarsi (Boschker, 2010) in H. 

virescens. Tactile stimulation was also performed. All chemicals were dissolved in distilled 

water. The gustatory stimuli were applied as droplets on a glass rod to each appendage in the 

following sequence: left antenna, proboscis, right antenna. To each appendage the stimulation 

order was: sucrose, quinine, NaCl, tactile touch. If a stimulus evoked a response, the stimulation 

was repeated. 

2.4   Staining of protocerebral GNs 
 
GNs were stained by passing a 0.5-3 nA depolarizing current (pulses of 2 Hz, 0.2 s duration) 

through the recording electrode. The staining operation persisted as long as contact with the 

neuron was intact, usually between 5-15 minutes. Only a single staining procedure was 

performed in each brain preparation. After staining, the fluorescent dye was allowed to diffuse 

through the neuron over night at 4 °C. The following day, the brains were dissected in Ringer 

solution and fixed in paraformaldehyde (4 %) at 4 °C (24 hours) to prevent degradation of the 

neural tissue. The brains were treated with phosphate buffered saline (PBS; in mM: 684 NaCl, 13 

KCl, 50.7 Na2HP04, 5 KH2PO4; pH 7.2; 10 min) to wash out any remains of the fixative agent. 

To amplify the neuronal staining, the brains were immersed in Streptavidin-CY3 (Jackson 

Immunoresearch, West Grove, PA, USA) diluted in PBS (1: 200) at 4°C (24 hours), and 

subsequently rinsed in PBS (10 min). The preparations were dehydrated in an increasing ethanol 

sequence (50, 70, 90, 96, 100 %, 10 min each) to prepare for treatment in methyl 2-

hydroxybenzoate (methyl salicylate). This compound is hydrophobic and serves as a clearing 
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agent, making the brains transparent. At this stage, the brains were placed in methyl salicylate in 

a centrally located hole on an aluminum slide. The hole was on both sides covered by cover 

glass. The brains were examined under a fluorescence light microscope (Leitz Aristoplan, 

Wetzlar, Germany) to investigate whether the neurons had been successfully stained.  

 

If dye injection had been accomplished, the preparations were rehydrated in a decreasing ethanol 

sequence (100, 96, 90, 70, 50 %, 10 min each) and treated with PBS (10 min) to rinse out any 

leftover methyl salicylate. A dehydration procedure in an increasing ethanol sequence was 

performed to prepare the brains for treatment with the degreasing agent xylol (5 min). 

Subsequently, the brains were rehydrated in a decreasing ethanol sequence followed by washing 

in PBS (10 min), before the preparations were immersed in collagenase diluted in PBS (1 mg 

collagenase: 1 mL PBS) at 36 °C. The preparations were preincubated in normal goat serum 

(NGS; Sigma, ST. Louis, MO, USA; 10 %) diluted in PBS containing triton X (PBStx; 0.1 %) in 

room temperature (30 min). Triton X is a detergent, making the plasma membranes more 

permeable, thus improving access to intracellular antigens. Thereafter, treatment with a 

monoclonal mouse antibody (SYNORF 1; provided by Prof. E. Buchner, Würzburg, Germany) 

diluted in PBStx (0.1 %) and NGS (10 %) at 4 °C (48 hours) was performed. This primary 

antibody labels synapsin, a protein located in presynaptic terminals, and is thus an identifier of 

synaptic neuropiles. NGS was added to block unspecific binding of proteins. The preparations 

were subsequently washed in PBS   (6 repetitions, 20 min each), after which they were incubated 

in CY5-conjugated goat anti-mouse secondary antibody (Jackson Immunoresearch; diluted 1:500 

in PBStx) at 4 °C (48 hours). CY5 is a hydrophilic fluorescent dye and binds to the primary 

antibody. After incubation in CY5, the preparations were rinsed in PBS (6 repetitions, 1 hour 

each) and dehydrated in increasing ethanol concentrations. Finally, the brains were cleared in 

methyl salicylate and placed in a frontal position on the aluminum slides prepared for confocal 

laser-scanning microscopy.  

2.5    Confocal laser-scanning microscopy 
 
Visualization of stained neurons was performed using a confocal laser-scanning microscope 

(CLSM) (Leica TCS SP5; Leica Microsystems CMS GmbH, Mannheim, Germany). The brains 

were scanned with a DPSS laser using a 10x dry objective (HCX PL APO CS), creating a stack 

of images representing the z-axis of the brain (anterior-posterior axis). The DPSS laser excites at 

561 nm, suitable for preparations stained with Micro-Ruby (maximum fluorescence excitation at 

550 nm). The beam path setting of the microscope was set to the CY3 option. All scans were 
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performed with a resolution of 1024x1024 pixels. Axonal and dendritic areas were scanned with 

a speed of 100-200 Hz, while overview scans of the brains were performed with a scanning 

speed of 400 Hz. The interslice distance in the z-axis, the z-step size, was automatically set using 

an optimization formula in the Leica software, yielding step sizes between 2−3.5 µm. The 

resulting stack of confocal images for each preparation was saved as a Leica Image File (.lif) and 

converted to Amira Mesh format (.am) in Amira (v. 4.1; Amira Visage Imaging Inc., San Diego, 

CA, USA). A scaling factor of 1.6 was applied to the image stacks to compensate for the 

refractive power of the methyl salicylate. 

2.6 Three-dimensional reconstruction of a stained neuron and  
transformation into the standard brain atlas 

 
The raw data provided by the CLSM was used as template to create a three-dimensional model 

of a selected neuron in the computer software Amira. The neuron was manually reconstructed 

using a skeleton tool (Schmitt et al., 2004; Evers et al., 2005), tracing the neuronal projections 

slice by slice in the image stack. After reconstructing the neuron, selected neuropile structures 

were reconstructed as label images using the segmentation editor in Amira. These label images 

constituted a reconstruction of the brain preparation, including distinctive neuropile structures 

(e.g. the mushroom bodies and the anterior optic tubercles) corresponding to structures included 

in the standard brain atlas (SBA) of this species. The label images were affine- and elastically 

registered to the corresponding label images of the standard brain, giving the label images of the 

preparation the same coordinates as those of the standard brain. The parameters obtained by this 

procedure were applied to the reconstructed neuron when affine- and elastically registering it 

into the SBA. The result was compared with the confocal images to make sure the neuron was 

correctly positioned in the SBA. The registration of the reconstructed neuron into the SBA was 

similar to the procedure described by Brandt et al. (2005).  
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2.7   Neurophysiological analyses 

In order to investigate the hypotheses regarding neuronal tuning breadth, GNs were selected for 

neurophysiological analyses of the spike trains based on the following three criteria: 

- The neurons had to be tested for at least five different stimuli (assuring that more than one  

appendage and stimulus have been tested). 

- The neurons had to respond to at least one tastant. 

- The appendage mediating the response had to be tested with a mechanosensory control 

(tactile stimulation). 

2.7.1   Response strength analysis 
 

To determine the average spiking frequency of the neuron during each response, a response 

strength analysis of the spike train was carried out. Spontaneous activity for each neuron was 

exported as bin-wise (bin length 0.05 s) action potential frequencies (in Hertz) using the event 

correlation option in Spike2. The spontaneous activity was measured in time intervals of 1.0 s 

before and after each response. The bin-wise frequencies were imported into Microsoft Excel 

(Excel 2011, Microsoft Corp., Wa, USA) where they were averaged into one frequency value, 

representing the spontaneous activity of the neuron. If the spontaneous activity of the neuron 

changed drastically throughout the recording, two or more frequencies were calculated, 

reflecting the different spontaneous activities. The responses of each neuron to the given stimuli 

were exported in a similar manner, with predefined response duration of either 600 or 1200 ms 

(in cases where the responses were considerably longer, other duration parameters were used). 

The response durations were set to be identical for all responses from one neuron. Where 

available, both responses of each repeated stimulus were exported. The mean spontaneous firing 

frequency was subtracted from each of the frequency bins of the response and bins with higher 

or lower firing frequencies than the spontaneous activity (the excitatory and inhibitory part of the 

response, respectively) were averaged separately. Consequently, any inhibitory and excitatory 

parts of a response were prevented from canceling each other out. Originating from this 

procedure was a mean deviation value (excitatory and/or inhibitory) from spontaneous activity, 

defined as the response strength. To inspect whether the response strength was significantly 

different from the spontaneous activity, a z-score value for each response was calculated 

(equation 1). 

 z = X − µ
σ

  ,         [1] 
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where z  is the z-score, X  is the mean response strength, µ is the mean spontaneous firing rate, 

and σ  is the standard deviation of the spontaneous activity. The response was considered 

significant for |z| ≥ 2. To determine if two response strengths were different from each other, a 

pooled standard deviation estimate was used. Two responses were defined to have different 

strengths if equation 2 was met. 

X −Y
sp

≥1 ,     [2] 

where X and Y represent the mean response strength of stimuli X and Y, respectively, and sp  is 

the pooled standard deviation.  The pooled standard deviation is given by equation 3. 

sp =
((ni −1)si

2 )
i=1

k∑
(ni −1)i=1

k∑
,     [3] 

where ni  is the size of the ith sample, s2i  denotes the variance of the ith sample, and k is the 

number of different samples to be combined.  

 

Finally, the population of response strengths was tested for normality using the Shapiro-Wilks 

test. 

2.7.2   Response strength correlation analysis  
 
A Spearman correlation analysis (Spearman’s ρ) was used to investigate how the response 

strengths of two modalities were related to one another. The Spearman’s correlation coefficient 

(Rs) was calculated between the paired response strengths of two experimental stimuli 

(mechano/sucrose, mechano/quinine, mechano/NaCl, sucrose/quinine, sucrose/NaCl, 

quinine/NaCl). Since each response produced an excitatory and inhibitory mean deviation value, 

only the part (excitatory or inhibitory) yielding a significant response (|z| ≥ 2) was used in this 

analysis. Furthermore, because a stimulation causing no response consisted of both excitatory 

and inhibitory non-significant deviation values, the response strengths of these stimulations were 

defined as 0. First, the correlation analysis was performed for all stimulations across neurons, 

irrespective of which appendage generated the response. Thereafter, potentially correlated 

activity was examined with respect to the different appendages, treating stimulations at the left 

antenna, the proboscis and the right antenna separately. Finally, response strengths elicited by 

stimulating different appendages with the same modality was investigated for correlated activity, 

e.g. the correlation of sucrose stimulation between the left antenna and the proboscis. Before 
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calculating the correlation coefficient, the response strengths of stimuli X and Y were ranked, 

converting them into to the set of ranks x and y. The correlation coefficient was then calculated 

using the ranks (equation 4). 

Rx,y =
(xi − x

_
)(yi − y

_
)

i=1

n

∑

(xi − x
_
)2

i=1

n

∑ (yi − y
_
)2

i=1

n

∑
,     [4]  

whereRx,y  is the Spearman correlation coefficient between the ranks of x and y, 

is the covariance between x and y, and (xi − x
_
)2

i=1

n

∑ (yi − y
_
)2

i=1

n

∑  is the product of the standard 

deviations of x and y. x
_

 and y
_

 denote the mean of the ranks of x and y, respectively. To test if 

the correlations were statistically significant, i.e. rejecting the null hypothesis (Rs = 0), a 

permutation test using Matlab (v. R2011b, TheMathWorks.inc, Natick, Massachusetts, USA) 

was performed. The significance level (α) was set to 5 %.   

2.7.3   Response frequency analysis 
 
In order to investigate the temporal expression of a response, a frequency spectrum analysis was 

carried out. This analysis produces a spectrum showing the individual spiking frequencies 

constituting the response, i.e. the particular frequencies at which the neuron emitted action 

potentials during the response. A frequency spectrum was computed for each response and for an 

appurtenant spontaneous activity. This was done in order to distinguish the dominant frequencies 

of the response from those of the spontaneous activity. The spike trains, from which the spectra 

were produced, were exported from Spike2 as waveform audio files (.wav). The files were 

imported into Matlab, where a Lomb-Scargle signal transformation algorithm was executed to 

create the spectra. The Lomb-Scargle algorithm (Press et al., 1992) applies the same principles 

as the more widely used Fast Fourier Transform (FFT) algorithm, but the former was chosen due 

to its higher sensitivity. In essence, the Fourier and Lomb-Scargle transformations state that any 

signal in time can be represented as a sum of sine waves of different frequencies and phases. The 

frequency spectrum produced is thus a measure of the contribution from different sine wave 

frequencies in constituting the original signal (Bloomfield, 2000).  

 

 

(xi − x
_
)(yi − y

_
)

i=1

n

∑
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In addition, the common FFT algorithm was applied to all responses and a representative 

spontaneous activity from each neuron. The FFT frequency spectrum of the spontaneous activity 

was subsequently subtracted from the FFT frequency spectrum of the response, yielding a 

spectrum reflecting the spike frequency differences between the neuron in the active state and at 

rest. This was subsequently color plotted and scaled, enabling a comparison between color 

spectra from different responses. The color spectrum of each response was scaled according to 

the neuron’s activity level at each particular frequency relative to mean spontaneous activity. 

Shades of red represented degrees of increased activity, ranging from average spontaneous 

activity (white) to 20 times increased activity (dark red). Shades of blue represented decreased 

activity from average spontaneous activity to 20 times decreased activity (dark blue). A filter 

was set at 50 Hz intervals (50, 100, 150, 200, 250, 300 Hz) making these specific areas appear 

white. The filtering was performed due to the appearance of electrical artifacts at these 

frequencies, resulting from the influence of local electrical lines on intracellular recordings (Pei 

and Tseng, 1995). The Matlab code that generated the FFT color plots is available in appendix I.  
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3   Results 
 

In this study, intracellular recordings were carried out from 44 protocerebral GNs in the moth    

H. virescens (five recordings were provided by Dr. Pål Kvello). These neurons were tested with 

mechanosensory and three gustatory stimuli applied to both antennae and the proboscis. Over the 

population of 44 neurons, 289 different stimulations were carried out. Among them, a 

preliminary qualitative analysis revealed a total of 102 responses (excitation/inhibition). In 

addition, when a stimulus evoked a response, that stimulation was repeated. However, only one 

of the two responses from the repeated stimuli is accounted for among the 102 responses. Table 

1 shows the number and percentage of the excitatory and inhibitory responses out of the total 

102 responses. Among the 44 neurons, 11 were stained, some of them incompletely or co-stained 

with other neurons in the same preparation. The neurons varied in their responses to both 

stimulus identity (modality) and application site (appendage). In order to investigate the neuronal 

tuning breadth, GNs were selected for further analyses based on the criteria defined in section 

2.7: Neurophysiological analyses. 

 

Table 1.  Excitatory and inhibitory responses from 44 neurons triggered by stimulation with sucrose, 

quinine, NaCl and tactile touch (mechano).  

  

Number of responses Percentage (%) 

Excitation Inhibition Excitation Inhibition 

Sucrose 22 18 21.57 17.65 

Quinine 20 12 19.61 11.76 

NaCl 12 4 11.76 3.92 

Mechano 6 8 5.88 7.84 

Sum 60 42 58.82 41.18 

Sum total 102 100 
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3.1   Physiological properties of protocerebral GNs 

Among the 44 neurons, 30 fulfilled the criteria for further analyses. However, four neurons 

contained solely responses that did not meet the z-score criterion of |z| ≥ 2, and were discarded. 

The remaining 26 recordings were gathered from 21 moths, with maximum two recordings in 

one preparation. Eight neurons were stained, one of which was fully reconstructed and registered 

into the SBA. From the population of 26 GNs, three different classes of protocerebral GNs 

appeared, differing in their response tuning breadth to stimulus identity and application site:  

- Class 1 GNs responded to a single tastant applied at a single appendage.  

- Class 2 GNs responded to two or more stimuli applied at a single appendage.  

- Class 3 GNs responded to two or more stimuli applied at two or three appendages. 

 

3.1.1    Response profiles  

Because of the limited time duration of the challenging intracellular recordings, every neuron 

was not tested with the complete protocol of stimuli. Thus, it should be taken into account that 

the groups and the number of neurons within these groups could have changed with ampler 

testing. 

The 26 neurons demonstrated pure excitation or inhibition and no mixed responses were present. 

Among the 26 neurons, a total of 13 (50 %) were categorized as class 1 GNs. Seven of them 

responded to sucrose, four to quinine and two to NaCl. The response profiles of class 1 GNs are 

illustrated in Fig. 1 (A). Altogether, the neurons in this class were tested for 106 out of 156 

possible stimuli, resulting in an overall stimulation score of 68 %. The neurons responding to 

sucrose showed both excitatory and inhibitory responses. The excitation was mediated by the 

proboscis in GN 1, 2, and 3, and by the right antenna in GN 6 and GN 7. The excitatory response 

of GN 1 is presented in Fig. 2. Two neurons (GN 4 and GN 5) responded with inhibition 

mediated by the proboscis. GN 8 and GN 9 responded by excitation to NaCl stimulation of the 

left antenna. The neurons responding to quinine stimulation of the antennae showed both 

excitatory (GN 11, 12 and 13) and inhibitory (GN 10) responses.  

Seven neurons (27 %) fitted into class 2 GNs. The response profiles of these neurons are 

illustrated in Fig. 1 (B). Altogether, the seven neurons were tested for 51 out of 84 possible 

stimuli, resulting in an overall stimulation score of 61 %. In these neurons, the gustatory stimuli 

elicited the same response mode, either excitation or inhibition. Moreover, all of them responded 
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to stimulation with both sucrose and quinine: with excitation in GN 14, 15, 16, 18, and inhibition 

in GN 17, 19 and 20. Among the four neurons tested for NaCl, GN 15 and GN 18 were excited, 

GN 19 was inhibited, and GN 16 did not respond. Responses to tactile stimulation were evident 

in two neurons (GN 17 and GN 18), wherein the mechanosensory response mode was opposite 

of the taste response mode. This is exemplified in Fig. 3, showing spike trains from GN 17 in 

response to mechanosensory and gustatory stimulation of the left antenna. 

Six neurons (23 %) were categorized according to the class 3 specifications, responding to 

different stimuli applied to two or three appendages. The response profiles of the six class 3 

neurons are illustrated in Fig. 1 (C). Altogether, the neurons in this class were tested for 63 out of 

72 possible stimuli, yielding an overall stimulation score of 88 %. GN 21 demonstrated the 

broadest tuning by responding to all presented stimuli, mainly by inhibition. The responses of 

GN 21 to mechanosensory and gustatory stimulation are shown in Fig. 4. The most broadly 

tuned neuron with solely excitatory responses was GN 26. This neuron was excited by the three 

gustatory stimuli applied to the left antenna and the proboscis. GN 25 displayed the narrowest 

tuning in this group, excited by sucrose application to the right antenna and quinine application 

to the proboscis. Three neurons (GN 21, 23 and 24) were similar in that they showed 

mechanosensory responses of opposite mode to their excitatory taste responses. However, they 

differed in their excitatory responses. GN 21 responded to quinine stimulation of the proboscis, 

GN 23 to quinine stimulation of the proboscis and sucrose stimulation of the right antenna, and 

GN 24 to sucrose stimulation of the proboscis and the right antenna. Unfortunately, GN 24 was 

not tested for mechanosensory stimuli applied to the proboscis, and GN 21 for mechanosensory 

stimuli applied to the right antenna. Consequently, it cannot be ruled out that the responses 

elicited by stimulation of these appendages were evoked by the mechanosensory component of 

the stimulation. Interestingly, no neurons showed excitatory responses mediated by stimulation 

of both the antennae, only inhibitory responses were obtained (GN 21 and GN 22). Stimulating 

the right antenna with sucrose, quinine and NaCl, and the left antenna with quinine evoked the 

inhibitory responses in GN 22. 
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3.1.2    Spontaneous activity 

The three classes of GNs differed slightly in their average spontaneous activity. Whereas the 

majority of class 1 neurons at rest fired action potentials between 0 and 20 spikes/s (Hz), class 2 

and 3 neurons had on average higher spontaneous firing rates. The majority of the class 2 

neurons (71 %) had an average spontaneous activity between 18 and 42 Hz, and 67 % of class 3 

neurons between 34 and 70 Hz. Among the 26 neurons, only GN 11 (class 1) exhibited no 

spontaneous activity. Some neurons in class 1, 2 and 3 showed tonic firing mode, whereas others 

exhibited regular or irregular bursting activity. Hence, a temporal feature characterizing the 

spontaneous activity of each class did not appear.  

 

 

 

 

 

 

 

 

Figure 1. Response profiles of the 26 neurons analyzed in this study. Figure A, B and C show class 1, 2 
and 3 GNs, respectively. GN = Gustatory Neuron. In the response profile of each neuron, a column 
represents one appendage (L.A = Left antenna, P = Proboscis, R.A = Right antenna) and a row represents 
one modality (M = Mechano, S = Sucrose, Q = Quinine, N = NaCl). Green, red, grey and white fields 
indicate excitation, inhibition, no response and not tested, respectively.  
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Figure 2. Spike trains from a class 1 neuron (GN 1) stimulated at the proboscis with mechano, sucrose 
and quinine. The arrow indicates stimuli onset. 
 

 
 
 

 
 
 
 
 
 

 
 
 

 
 
 
 
 
 

 
 
 

 
 
 
 
 
Figure 3. Spike trains from a class 2 neuron (GN 17) stimulated at the left antenna with mechano, sucrose 
and quinine. The arrow indicates stimuli onset.  
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Figure 4. Spike trains from a class 3 neuron (GN 21) stimulated at the left antenna with mechano, 
sucrose, quinine and NaCl, the proboscis with mechano, sucrose and quinine, and the right antenna with 
sucrose. The arrow indicates stimuli onset. 
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3.1.3   Response strength 

The class 1 neurons exhibited a large array of response strength values, illustrated in Fig. 5. The 

two NaCl responding GNs showed excitatory response strengths of 10 and 16 Hz, whereas 

sucrose and quinine responding neurons showed excitatory strengths from 12-59 Hz and           

19-62 Hz, respectively. The response strengths of the two neurons responding by inhibition to 

sucrose stimulation were 7 and 26 Hz, whereas the neuron responding by inhibition to quinine 

stimulation had a response strength of 11 Hz. The response strength analysis of the class 2 

neurons yielded excitatory responses from 11-32 Hz and inhibitory responses from 8-30 Hz. The 

response strength values of the individual class 2 neurons are presented in Fig. 6. The difference 

in response strength between taste modalities in a single neuron ranged from 1-12 Hz, whereas 

the strength differences between gustatory and mechanosensory stimuli were larger, with 

opposite modes. The class 3 neurons showed excitatory response strength values from 19-99 Hz, 

the majority from 19-67 Hz. The strength of the inhibitory responses ranged from 11-53 Hz. The 

response strength values of the individual class 3 neurons are presented in Fig. 7. As opposed to 

class 2 neurons, class 3 neurons expressed considerably larger span in response strength values 

between modalities within a single neuron. This is exemplified in GN 25 (Fig. 7), showing a 

difference of approximately 70 Hz between responses elicited by stimulation of sucrose applied 

to the right antenna and quinine applied to the proboscis.  

 

 

 

 

 

 

 

 

Figure 5. Response strengths of the 13 neurons included in the class 1 category. The bars, colored 
black, blue and red, represent neurons responding to sucrose, NaCl and quinine, respectively. The 0 Hz 
line indicates mean spontaneous activity. Positive and negative frequency values represent excitation 
and inhibition, respectively. 
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Figure 6. Response strengths of the seven neurons included in the class 2 category. The neurons 
responding to stimulation of the right antenna (top diagram), the left antenna (middle diagram) and the 
proboscis (bottom diagram) are presented separately. The bars, colored grey, black, red and blue, 
represent responses to mechano, sucrose, quinine and NaCl, respectively. The 0 Hz line indicates mean 
spontaneous activity. Positive and negative frequency values represent excitation and inhibition, 
respectively. Empty slots indicate no response or not tested, cf. Fig. 1 (B).   
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Figure 7. Response strengths of the six neurons included in the class 3 category.  Responses from each 
neuron are presented according to the appendage mediating the response. The top, middle and bottom 
diagram represent the right antenna, the left antenna and the proboscis, respectively. The bars, colored 
grey, black, red and blue, represent responses to mechano, sucrose, quinine and NaCl, respectively. The 0 
Hz line indicates mean spontaneous activity. Positive and negative frequency values represent excitation 
and inhibition, respectively. Empty slots indicate no response or not tested, cf. Fig. 1 (C). 
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3.1.4   Response strength correlation 

In order to investigate how strongly the response strengths of different stimuli are related, a 

Spearman rank correlation analysis was performed. This correlation, in contrast to the Pearson 

product-moment correlation, does not assume that the experimental data is normally distributed. 

The population of response strengths in this study was not normally distributed (Shapiro-Wilks 

test, p < 0.05). Consequently, the Spearman rank correlation was preferred. The analysis was 

carried out over the whole population of 26 neurons without respect to the different classes of 

GNs. First, the response strengths were analyzed without regard to which appendage mediated 

the response. This resulted in significant positive correlations (two tail permutation test,              

α = 0.05) between the response strengths of each pair of tastants: sucrose/quinine (Rs = 0.47,      

N = 66, p < 0.001), sucrose/NaCl (Rs = 0.56, N = 32, p < 0.001), quinine/NaCl (Rs = 0.65,         

N = 31, p < 0.001). These correlations mean that an increase or decrease in response strength to 

stimulation with one tastant would tend to be accompanied by an increase or decrease in 

response strength to the other tastants. The response strengths between tactile stimulation and the 

three gustatory stimuli were not significantly correlated. No significant negative correlations 

were detected, meaning that no relationship existed where a change in response strength to 

stimulation with one tastant was accompanied by an opposite change in strength to another 

tastant. This means that no excitatory responses to stimulation of one tastant tended to be 

accompanied by an inhibitory response to stimulation of another tastant. 

Second, the correlations were calculated with respect to which appendage mediated the response, 

investigating correlated activity between responses mediated by the same appendage. This 

uncovered that the relationships were not uniform across the three appendages. Regarding 

responses mediated by the left antenna, the response strengths to sucrose stimulation were 

significantly correlated with quinine (Rs = 0.80, N = 23, p < 0.001) and NaCl (Rs = 0.89, N = 14,  

p < 0.001). Moreover, a positive significant correlation was observed between quinine and NaCl 

(Rs = 0.66, N = 13, p < 0.05). Regarding responses mediated by the proboscis, no significant 

correlations were observed. In contrast, the response strengths of quinine and NaCl mediated by 

the right antenna were significantly correlated (Rs = 0.86,  N = 10, p < 0.01).  

Third, considering the relation between the response strengths elicited by the same modality 

applied at different appendages, no significant correlations were found between responses to 

sucrose mediated by the left antenna/proboscis, left antenna/right antenna and proboscis/right 

antenna. Similarly, no correlated activity was found for responses to quinine mediated by the 
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three appendages. Response strengths to NaCl were not significantly correlated between left 

antenna and proboscis, whereas insufficient experimental testing rendered it not possible for 

further correlation analysis of NaCl.  

In summary, the findings from the correlation analysis showed a high degree of correlated 

activity between the strengths of tastant-evoked responses mediated by the left antenna (three 

correlations), not a single correlated pair of responses mediated by the proboscis, whereas the 

right antenna mediated one correlated pair of response strengths. Furthermore, no correlations 

were found between the responses elicited by stimulating two appendages with the same 

modality.  

3.1.5   Discrimination of stimuli by class 2 and 3 GNs 

Resulting from the high specificity of class 1 neurons, a stimulus-evoked response would 

provide information about both the identity and the location of the applied stimulus. In contrast, 

this relation was not as straightforward in the broadly tuned class 2 and 3 neurons, which 

responded to several stimuli. Nevertheless, differences in response strengths or temporal patterns 

produced by individual class 2 and 3 GNs might contribute to discrimination between taste 

modalities and their application sites. 

3.1.5.1   Response strength 

The responses evoked in a single neuron were classified as having different average strengths 

based on a pooled standard deviation estimate. Responses referred to in the following text have 

been defined as different or not different using this method.  

Among the class 2 neurons, three neurons (GN 14, 17 and 20) responded stronger to sucrose than 

to quinine, and GN 19 responded stronger to sucrose than to quinine and NaCl. The others,      

GN 15, 16 and 18, showed no differences in response strengths between the taste modalities. The 

response strengths of class 2 GNs are presented in Fig. 6. Class 3 neurons expressed more 

complex response profiles compared to class 2 neurons. Whereas both class 2 and 3 neurons 

responded in an unspecific manner regarding stimulus identity, class 3 neurons were less specific 

concerning stimulus application site (Fig. 1). The response strengths of class 3 GNs are 

presented in Fig 7. Among the eight responses mediated by the three appendages in GN 21, NaCl 

and quinine application to the left antenna resulted in the strongest inhibition (Fig. 4). 

Furthermore, the inhibitory responses evoked by stimulation of the antennae with gustatory 

stimuli were stronger than those mediated by the proboscis. GN 22 responded with the strongest 
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inhibitory response to sucrose application to the right antenna, while no distinction could be 

made between the responses evoked by quinine and NaCl stimulation. Both GN 23 and GN 25 

responded stronger to sucrose applied at the right antenna than quinine applied at the proboscis. 

GN 24 responded with different excitatory strengths to sucrose application to the proboscis and 

the right antenna, showing a preference for the antennal stimulation. GN 26 showed no 

discernible differences between the excitatory responses evoked at the left antenna. However, the 

excitatory responses mediated by the left antenna were stronger than those elicited by NaCl 

stimulation of the proboscis. 

3.1.5.2   Temporal firing characteristics 
 
The response frequency analysis aimed at detecting the frequency distribution of the response. 

The Lomb-Scargle and Fourier analyses of single cell responses were conducted on seven of the 

eight class 2 and 3 neurons (GN 14, 15, 16, 23, 24, 25, 26) displaying excitatory responses to 

gustatory stimulation. The frequency analysis method is vulnerable to disturbance and 

background noise in the recording. Because abundant noise and interference were present in the 

recording of GN 18, it was not included in the analysis. The response frequency analysis 

uncovered conspicuous differences in firing rate dynamics between the excitatory responses 

elicited by different stimuli. The diversity in frequency distribution was a distinctive feature of 

the responses from the seven class 2 and 3 neurons analyzed, and is exemplified in the following 

text by GN 26 (Fig. 8 and 9). In the spontaneous activity state, GN 26 fired action potentials 

mainly at 35-40 Hz, but it also showed activity in the frequency interval from 60-110 Hz 

(appendix II, Fig. 15). The average spontaneous activity of GN 26 was estimated to 

approximately 60 Hz. A notable difference in spiking activity between the spontaneous activity 

and the responses of GN 26 was the almost complete lack of activity in the 0-50 Hz interval in 

the responses (Fig. 9). Bear in mind that the response frequencies referred to in the following 

text are absolute frequencies, not relative to spontaneous activity. In the response elicited by 

sucrose application to the proboscis, GN 26 fired predominantly at frequencies of 120 and      

140-150 Hz (Fig. 9: A), whereas the response elicited by sucrose stimulation of the left antenna 

predominantly consisted of frequencies of 90, 140-150 and 175-180 Hz (Fig. 9: B). The two 

quinine responses displayed activity in the range 80-180 Hz. In this frequency interval, the 

response mediated by the proboscis consisted predominantly of frequencies of 80, 90 and 175 Hz 

(Fig. 9: C), whereas the response mediated by the left antenna largely contained frequencies of 

110, 130-135 and 160 Hz (Fig. 9: D). The response elicited by NaCl stimulation of the proboscis 

was transmitted principally at a frequency of 80 Hz, although additional higher frequency 
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activity was present (Fig. 9: E). In contrast, the response evoked by stimulation of the left 

antenna with NaCl was transmitted mainly by frequencies of 90-100 and 160-175 Hz (Fig. 9: F). 

In summary, these six responses displayed clear differences in spike discharge patterns (Fig. 8), 

each response producing a distinct frequency distribution (Fig. 9). It is also noteworthy that two 

repetitions of the same stimulus produced two responses with different frequency distributions 

(Fig. 10). Furthermore, a recurring feature of the recorded protocerebral GNs was that the first 

stimulation of a taste modality typically produced a stronger (high frequency) excitation than the 

second stimulation (Fig. 11).  

 

 
 
  
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 
 
Figure 8. Spike trains from GN 26 in response to stimulation with sucrose, quinine and NaCl applied at 
the proboscis and the left antenna. Left column shows responses to sucrose, quinine and NaCl mediated 
by the proboscis and the right column shows responses to the same stimuli mediated by the proboscis. 
The arrows indicate stimuli onset. 
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Figure 9. Lomb-Scargle frequency spectra of gustatory responses from GN 26 stimulated at the proboscis 
(left column) and left antenna (right column) with sucrose (A, B), quinine (C, D) and NaCl (E, F). Note 
that activity at exactly 0, 50, 100, 150, 200, 250, 300 Hz is not regarded as neuronal spiking activity, 
since electrical artifacts are present at these frequencies due to the influence of local electrical power 
lines. 
 
 
 
 
 
 
 
 

A! B!

C! D!

E! F!



  Results 
!

! 28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Colorized net frequency spectra of responses from GN 26. The spectra labeled “1” and “2” 
represent the responses to the first and second stimulation, respectively. Note the differences between the 
frequency spectra of responses elicited by stimulation with the same modality. The responses labeled “1” 
is the same response used to generate the corresponding Lomb-Scargle spectrum in Fig. 8. Red and blue 
colors indicate increased and decreased activity, respectively, relative to spontaneous activity (0 to 20 
times average spontaneous activity). 
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Figure 11. Spike trains from to protocerebral neurons in response to two repetitions of a sucrose stimulus. 
(A) Spike trains from GN 26 stimulated at the left antenna. (B) Spike trains from GN 25 stimulated at the 
right antenna. Sucrose 1 and Sucrose 2 are the spike trains in response to the first and second stimulation 
with sucrose, respectively. Note that in both neurons the first stimulation produces a response of higher 
spiking frequency and longer duration. The arrow indicates stimuli onset. 
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3.2   Morphology of protocerebral GNs 

The organization of protocerebral GNs into three separate classes is based on physiological 

characteristics. The stained neurons belonging to each group did not display any common 

morphological features that supported the particular classification. Nonetheless, the stained 

neurons are presented according to the group-wise organization.  

Three neurons belonging to class 1 GNs (GN 1, 6 and 9) were successfully stained, representing 

neurons with different morphology. Because of limited time, only GN 1 was reconstructed. This 

neuron, excited by sucrose application to the proboscis, showed a bilateral morphology with 

dendrites and soma situated in the right brain hemisphere and axonal projections in the 

contralateral hemisphere (Fig 12: A, B, C). The soma was located in the outer cell body layer 

laterally in the SOG. Two dendritic branches extended into the SOG, and others in parallel with 

the ascending axon, innervating the AMMC (Fig 12: D, E, F). The axon ran close to the 

esophagus on the ipsilateral side, before crossing the midline just dorsal to the esophagus and 

ventral to the central body (CB). The axonal projection bifurcated, branching in posterior and 

anterior direction. An anterior branch projected close to the left AL, and a posterior branch 

ventrally to the lobes and peduncle of the left mushroom body (Fig 12: G, H, I). GN 6, excited 

by sucrose stimulation of the right antenna, had its soma located in the perikaryon layer of the 

right ventral lateral protocerebrum and neuronal processes positioned dorsally to the cell body 

and medially to the optic lobes (OLs). One branch extended into the right OLs, bifurcated and 

ramified in parallel in the lobula complex. A confocal image of GN 6 is presented in appendix III 

(Fig. 16). GN 9, excited by NaCl stimulation of the left antenna, was confined to the 

protocerebral neuropile. It resided mainly dorsomedially to dorsolaterally in the left 

protocerebrum, showing prominent projections in this area. A bilateral projection was also 

visible, crossing the midline proximal to the CB. The soma could not be identified, probably due 

to damage caused by the insertion of the microelectrode. A confocal image of GN 9 is shown in 

appendix III (Fig. 17). 
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Figure 12. Morphology of GN 1 shown by confocal images and 3D-reconstructions. Left column shows 
confocal images, while middle and right column show 3D-reconstructions of GN 1 included in the SBA. 
Top row displays overview photos of GN 1 in frontal (A, B) and lateral orientation (C).  Middle row 
displays close-up photos of the dendrites in frontal (D, E) and lateral (F) orientation. Bottom row displays 
close-up photos of the axonal projections in frontal (G, H) and lateral (I) orientation. Subesophageal 
Ganglion (SOG). Protocerebrum (PC). Central Body (CB). Antennal Lobe (AL). Mushroom Body 
calyces (MBca). Mushroom Body peduncle and lobes (MBpl). Esophagus (Es). 
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Two neurons, GN 17 and GN 19, belonging to class 2 GNs were successfully stained. GN 17, 

inhibited by sucrose and quinine and excited by tactile stimulation of the left antenna, resided in 

the left brain hemisphere. Its cell body was located in the left SOG, and branches were present in 

the SOG (Fig. 13: A, C), in the ventral protocerebrum, and the AMMC of the deutocerebrum 

(Fig. 13: A, B). Axonal collaterals (blebs) were present in the SOG and possibly the 

protocerebrum. GN 19, responding by inhibition to the three gustatory stimuli applied to the left 

antenna, innervated both primary olfactory centers: the ALs. Extensive branching was present in 

the majority of glomeruli in the left AL and a soma was recognizable in the lateral cell cluster of 

the right AL (appendix III, Fig. 18: A). However, it was difficult to trace a neurite to the soma. 

Furthermore, the neuron had arborizations in the left and right lateral protocerebrum and the left 

mushroom body calyces (MBca) (appendix III, Fig. 18: B, C, D). 

 

 

 

 

 

 

 

 

Figure 13. Confocal images of GN 17. All images are in the frontal plane. (A) Overview of the brain 
preparation with the stained GN 17. (B) Close-up photo of the arborizations in the left SOG and 
deutocerebrum. (C) Close-up photo of the projections in the left SOG.  
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Three neurons belonging to class 3 GNs were stained (GN 22, 23 and 26). GN 22, responding by 

inhibition to the three tastants applied to the right antenna and quinine applied to the left antenna, 

had its cell body located in the perikaryon layer of the left ventral medial protocerebrum. The 

neuron innervated the CB and adjacent areas. Due to the lack of blebs and the proximity to the 

soma, these arborizations were considered dendritic. Its axon crossed the midline and branched 

extensively in the right SOG/tritocerebrum. Axonal projections were also present in the right 

OLs. A confocal image of GN 22 is presented in appendix III (Fig. 19). GN 23, excited by 

sucrose stimulation of the right antenna and quinine stimulation of the proboscis, was co-stained 

with two additional neurons (Fig. 14: A). Two of the three neurons had their cell bodies situated 

in the right protocerebrum, medial to the OLs (Fig. 14: B). Their axons crossed the midline and 

arborized in the left ventral lateral protocerebrum. The soma of the third neuron was situated in 

the cell body layer of the left lobula complex (Fig. 14: C). The axon of this neuron crossed the 

midline and arborized in a manner similar to the other two neurons. Distinct axonal collaterals 

were present in the right ventral lateral protocerebrum, demonstrating the output area of the third 

neuron. Furthermore, one branch projected posterior in the medial protocerebrum in both 

hemispheres, possibly representing the dendritic areas of these neurons. Similar to GN 23,      

GN 26 was a bilateral neuron, innervating both the left and right protocerebrum. In this brain 

preparation, several neurons were stained. Nonetheless, one neuron was most clearly stained and 

was thus considered the neuron in which the intracellular recording took place (GN 26). This 

neuron, excited by the three tastants applied to the left antenna and the proboscis, had its cell 

body situated in the dorsal medial cell body layer of the right protocerebrum and dendrites 

extending ventrally in the right protocerebrum. The axon projected into the left protocerebrum, 

arborizing extensively. A confocal image of GN 26 is presented in appendix III (Fig. 20). 
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Figure 14. Confocal images of three neurons, GN 23 included, shown in the frontal plane. (A) Overview 
photo of the three neurons. (B) Close-up photo of the right hemisphere with the two cell bodies and 
neuronal branching. (C) Close up photo of the left hemisphere with the single cell body and neuronal 
branching. Scale bars = 50 µm. 
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4   Discussion 
 

The data from the present study have been gathered as part of a larger project, aiming at 

understanding the neural circuit processing of gustatory information in the tobacco budworm 

moth H. virescens. Intracellular recordings from protocerebral neurons, combined with 

fluorescent staining, were carried out in this study. The results provided information about the 

neuronal morphology and physiology, including how the neurons responded to stimulation with 

different taste qualities applied to different appendages. The neurons showed large variation in 

the morphology and the physiological response profiles, some neurons responding more 

selectively to different modalities and application sites than others. When stimulating with 

different modalities, individual broadly tuned GNs generally displayed differences in response 

strengths, as well as different response frequency distributions. In the results section, the 

physiology and morphology of the protocerebral GNs are presented separately and the discussion 

will follow the same outline. 

4.1   Comparison between the response properties of protocerebral    
and SOG GNs 
 

To understand how gustatory information is processed and how tastants elicit taste-related 

behaviors, it is important to comprehend how taste information is handled at every synaptic step. 

In a previous study of H. virescens, the response properties of the GRNs and their axonal 

projections in the primary taste center (SOG) have been described, providing knowledge about 

the detection of taste qualities and how this information is relayed to the SOG (Jørgensen et al., 

2006; Jørgensen et al., 2007a). Furthermore, intracellular recordings have shown that neurons in 

the SOG integrate different gustatory information mediated by different appendages (Kvello et 

al., 2010). In the present study, the analyses of the 26 protocerebral GNs revealed differences 

between the protocerebral and the SOG neurons. An observable difference was evident by 

looking at their spontaneous activities. The majority of the SOG neurons exhibited no or low 

spontaneous activity (0-20 Hz) (Kvello et al., 2010). In contrast, the protocerebral neurons, with 

one exception, displayed spontaneous spiking activity. Half of the population of recorded 

protocerebral GNs, categorized as class 1 GNs, displayed spontaneous activity between 0-20 Hz, 

whereas the remaining 13 neurons exhibited spontaneous activity between 18-70 Hz. Thus, the 

protocerebral neurons in general displayed higher spontaneous activity than the SOG neurons. 
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A notable difference between the response properties of SOG and protocerebral neurons was that 

the majority of the 26 protocerebral GNs showed higher response specificity, responding to 

stimulation of one appendage only. These were classified as class 1 GNs, responding specifically 

to one tastant, and class 2 GNs, responding to several stimuli. In contrast to the appendage 

specificity observed in class 1 and 2 GNs, the majority of GNs in the SOG responded to 

stimulation of several appendages (Kvello et al., 2010). Moreover, they frequently responded to 

several modalities, differing from the taste quality specificity seen in the protocerebral class 1 

GNs. Similarities to the SOG neurons were observed in the protocerebral class 3 GNs, 

responding to several stimuli applied at several appendages. Although similar in their overall 

response patterns, class 3 GNs generally showed higher response specificities. Whereas the 

majority of the SOG GNs responded to stimuli applied to three or four appendages, class 3 GNs, 

with one exception, responded to stimuli applied to two appendages (Fig. 1: C). Moreover, SOG 

GNs readily responded to stimulation of both the left and the right antenna. In contrast, only two 

of the recorded protocerebral neurons responded to stimulation of both antennae, and only by 

inhibition. Several of the SOG GNs also responded to the same taste modality applied at all 

tested appendages (Kvello et al., 2010). In this study, only GN 21 showed equivalent 

characteristics, responding to sucrose stimulation of both antennae and the proboscis. It should 

be noted that Kvello and colleagues (2010) tested four appendages, whereas only three were used 

in the present study. Nonetheless, the results from the protocerebrum are comparable to those 

from the SOG, considering that stimulation of the tarsus yielded relatively few responses in the 

SOG neurons. In essence, the comparison between protocerebral and SOG GNs led to the 

assumption that individual protocerebral neurons generally receive more specific gustatory and 

mechanosensory input than their SOG counterparts. This notion is supported by the correlation 

analysis, showing more pronounced correlations between responses to stimulation of a single 

appendage (principally the left antenna), with non-significant relationships across appendages. 

Hence, the majority of individual protocerebral GNs seem to receive input from a single 

appendage, with varying degrees of integration between modalities. The highest number of 

significant response strength correlations was observed for stimulation of the left antenna, 

suggesting that neurons receiving input from this appendage respond similarly to stimulation of 

different tastants. The intracellular recordings were carried out from the left brain hemisphere, 

which may be the reason for the higher number of response correlations observed for stimulation 

of the left antenna, compared to the proboscis and the right antenna. 
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The response profiles of the protocerebral GNs have provided an answer to the primary 

hypothesis in this study, stating that protocerebral GNs receive information about several taste 

qualities and from several appendages. Among the 26 GNs, only the six class 3 neurons had 

response properties in accordance with this hypothesis. The 13 class 1 GNs responded to a single 

tastant applied at a single appendage, thus challenging the hypothesis regarding integration 

between appendages and between modalities. Furthermore, the seven class 2 GNs responded to 

several stimuli applied at a single appendage, thus supporting the hypothesis regarding 

integration between modalities, but arguing against integration between appendages. From the 

response properties of the class 1, 2 and 3 GNs, it is obvious that the protocerebral GNs display 

larger variation in their response profiles than what was initially hypothesized. 

4.2   Coding in the protocerebrum  
 

Whether protocerebral GNs with similar physiological properties are present in other insect 

species is unknown. However, central processing of taste information has been extensively 

studied in mammals. Although having evolved independently, it is interesting to compare the 

gustatory systems of mammals and insects. In mammals, coding of gustatory information is 

transmitted by LL from the periphery to the first relay station in the medulla, the nucleus of the 

solitary tract (NST) (Spector and Travers, 2005; Carleton et al., 2010). This is equivalent to the 

LL scheme proposed for GRNs in insects (Wang et al., 2004; Marella et al., 2006).  Similar to 

the SOG GNs described by Kvello and coworkers (2010), mammalian NST GNs displayed 

varying response tuning breadth, some more selective than others, but all generally more broadly 

tuned compared to the peripheral afferent fibers (Spector and Travers, 2005; Carleton et al., 

2010). Stimulation with sweet, bitter, umami and salt elicited activity in discrete clusters of 

neurons in the primary gustatory cortex. This means that a cluster responding to a particular taste 

quality was spatially non-overlapping with clusters activated by other taste qualities, producing a 

gustotopic map. Furthermore, interspersed between the taste quality hot spots were areas 

believed to contain broadly tuned neurons (Chen et al., 2011). These findings are analogous with 

the present results from the protocerebrum of H. virescens, showing coexistence of taste quality 

specific neurons and more broadly tuned neurons. However, one important difference exists 

regarding gustatory coding in mammals and insects. In contrast to insects, mammals have their 

taste organs restricted to the oral cavity, presumably making coding of tastant location 

unnecessary. 
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Individual GNs in the mammalian central gustatory system, showing varying tuning breadths, 

have been hypothesized to serve different functions. Narrowly tuned neurons are believed to 

code taste quality, whereas neurons with broader tuning might execute functions that require less 

taste discrimination (Spector and Travers, 2005). Although simplistic, this idea is intriguing and 

may apply to the present results in H. virescens. The discovery of protocerebral GNs with 

varying tuning breadth indicates coexistence of LL and AFP coding in the protocerebrum. 

Hypothetically, the narrowly tuned class 1 GNs could act to unequivocally inform the animal 

about the location and the quality of the taste stimuli. This LL organization would efficiently and 

reliably inform about the nutritional value and the exact location of the food source or 

oviposition site. By looking into the response profiles of class 1 GNs (Fig. 1: A), further support 

is provided for an LL organization in the protocerebrum. From the recorded class 1 GNs, 

responses to all modalities were obtained. Furthermore, the responses were evoked by 

stimulating the proboscis and the right antenna with sucrose, the proboscis and antennae with 

quinine, and the left antenna with NaCl. Thus, the response profiles indicate that each appendage 

and modality is represented in such a proposed LL mechanism. The diversity in response 

strengths observed among the class 1 GNs (Fig. 5) implies additional support for an LL 

mechanism. The differences in response strengths might indicate that information about 

concentration is processed, where one LL circuit responds with varying strengths to varying 

concentrations of the preferred stimulus. However, altering the concentrations of the same 

stimulus was not performed in this study, which was needed to investigate this issue directly. In 

addition to GNs, neurons that showed no discernible differences in their responses to 

mechanosensory and gustatory stimuli were found (data not shown). These were regarded as 

purely mechanosensory and might participate in an LL of this modality.  

 

The more broadly tuned class 2 GNs might provide less information about tastant identity, but be 

involved in signaling the exact location of the food source, whereas class 3 GNs might 

participate in an AFP code of taste quality and location. Among the class 2 and 3 GNs, those 

receiving concomitant mechanosensory and gustatory information might be involved in 

processing information about the physical aspects of the food source. Physical features, like 

texture and epicuticular wax composition, have previously been shown to be important elements 

to the decision of whether to initiate feeding (Powell et al., 1999). The responses of 

protocerebral GNs to mechanosensory stimulation were usually of opposite mode to their taste 

responses (Fig. 1: B, C), implying that the protocerebral GNs handle mechanosensory 

information in a separate manner from gustatory information. Based on the differences in 
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response strength between taste-evoked responses observed in the majority of class 2 and 3 

neurons (Fig. 6 and 7), it is likely that these neurons participate in a discriminatory process of 

taste quality and location, possibly through an AFP organization. 

4.3   Discrimination of stimuli by class 2 and 3 GNs 
  

Four of the seven neurons belonging to class 2 GNs were classified as sucrose-best neurons, 

responding stronger to sucrose compared to quinine and salt. Three responded by inhibition (GN 

17, 19 and 20), possibly mediating aversion, whereas one (GN 14) responded by excitation, 

possibly mediating acceptance behavior. The existence of protocerebral modality-best neurons is 

similar to findings of modality-best neurons in the SOG of H. virescens and in the mammalian 

central gustatory system (Spector and Travers, 2005; Carleton et al., 2010; Kvello et al., 2010). 

In addition, three of the four sucrose-best protocerebral neurons responded to stimulation of 

either the left or right antenna, suggesting a role also in food orientation behavior. The three 

remaining class 2 neurons (GN 15, 16, 18) did not display differences in their response strengths, 

and may thus be candidates to participate in actions requiring little taste discrimination. 

Moreover, these neurons might be involved in orientation towards the food source, since GN 15 

and GN 16 responded to stimulation of the left antenna, and GN 18 to stimulation of the right 

antenna. 

 

Regarding class 3 GNs, differences in response strengths might be ascribed to a particular taste 

quality or application site (appendage). GNs that responded strongest to a single modality were 

regarded as modality-best neurons. Neurons responding strongest to one or two appendages, but 

with no conspicuous differences between modalities (as decided by the pooled standard 

deviation estimate), were regarded as appendage-best neurons. Among the six class 3 GNs      

(Fig. 7), only GN 22, showing strongest inhibition to sucrose stimulation of the right antenna, 

could with certainty be classified as a modality-best neuron. This neuron also responded by 

inhibition to quinine and NaCl stimulation of the right antenna, and quinine stimulation of the 

left antenna. The responses of GN 22 might suggest an involvement of this neuron in inhibiting 

proboscis extension. In contrast, GN 21 was considered an appendage-best neuron, responding 

strongest by inhibition to tastant application to both the left and the right antenna, and with 

weaker inhibition or excitation to tastant application to the proboscis. The strong inhibition in 

response to all tastants tested at the antennae, combined with excitation in response to quinine 

application to the proboscis, strongly suggest a role for GN 21 in inhibiting proboscis extension. 

Another neuron classified as appendage-best was GN 24, responding with a strong excitation to 
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sucrose stimulation of the right antenna and weaker excitation to sucrose stimulation of the 

proboscis, whereas stimulation of the left antenna evoked no response. This response profile 

suggests an involvement in mediating proboscis extension, as well as orientation towards the 

food source. The remaining class 3 neurons (GN 23, 25, 26) could not be defined as either 

modality-best or appendage-best neurons. For instance, GN 23 responded with a stronger 

excitation to sucrose applied to the right antenna than quinine applied to the proboscis, but it did 

not respond to sucrose application to the proboscis or quinine to the right antenna. Rather than 

being strictly modality-best or appendage-best, GN 23 is presumably a combination, responding 

most vigorously when sucrose is applied precisely at the right antenna. In addition, GN 23, 24 

and 26 responded to stimuli applied at two appendages, indicating a role in food orientation 

behavior.  

 

The ultimate function of the gustatory system is to distinguish nutrients from toxic items, hence 

coding of hedonic values might be important and might be ascribed to class 2 and 3 neurons. The 

hedonic value coding scheme implies that tastants eliciting similar behaviors are encoded 

together, in contrast to the encoding of separate taste modalities (de Brito Sanchez, 2011). The 

phagostimulants sugar, water and low concentrations of salt might be encoded together, all 

inducing acceptance behavior. Similarly, stimuli inducing avoidance behavior, like bitter 

compounds and high concentrations of salt, might be encoded together (Yarmolinsky et al., 

2009). In mammals, responses of identical modes to the phagostimulant sucrose and the deterrent 

quinine have not been found, even in the most broadly tuned brainstem neurons (Spector and 

Travers, 2005). This is in contrast to what is observed in insects. In the metathoracic ganglion of 

the locust Schistocerca gregaria (Rogers and Newland, 2002), in the SOG of the moth H. 

virescens (Kvello et al., 2010) as well as the protocerebral GNs found in this study, several of 

the GNs responded to both phagostimulants and deterrents. Kvello and coworkers (2010) 

connected the complex responses of individual SOG GNs to appendage specific behaviors, 

interpreting the neuronal responses in light of phagostimulatory and aversive behaviors. For 

instance, neurons excited by the phagostimulants sucrose and water applied to the antennae 

might participate in eliciting proboscis extension. In the same way, neurons excited by the 

deterrent quinine applied to the antennae might be involved in inhibiting proboscis extension. 

This approach was successfully applied to some of the protocerebral neurons in this study, as 

shown for the four sucrose-best class 2 neurons (GN 14, 17, 19 and 20) and the three class 3 

neurons (GN 21, 22 and 24) described in the previous paragraph. Such interpretations are 

corroborated by behavioral studies in H. virescens, demonstrating that sucrose elicits acceptance 
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behavior, whereas quinine induces aversion (Ramaswamy, 1987b; Ramaswamy et al., 1992; 

Jørgensen et al., 2007b). Moreover, salts have been argued to mediate aversion (Dethier, 1973; 

Dethier, 1977). In fact, it has been reported that NaCl at concentrations above 0.1 M (the 

concentration used in the present study) inhibit feeding in lepidopteran species (Bernays and 

Chapman, 2001b). The processing of these compounds in a hedonic value arrangement is further 

supported by a study of the metathoracic ganglion in the locust S. gregaria. In that study, Rogers 

and Newland (2002) discovered that the response duration of spiking local interneurons was 

dependent on both stimulus identity and concentration. Moreover, stimuli producing similar 

behavior elicited responses with similar duration. For instance, consistently stronger responses 

were observed to the deterrents NaCl (0.25 M) and nicotine hydrogen tartrate (0.005 M) 

compared to the phagostimulants water and sucrose (0.25 M). This observation led the authors to 

suggest that the behavioral effectiveness (i.e. hedonic value) is encoded, rather than the distinct 

modalities.  

 

In the wild, insects encounter food sources consisting of complex taste mixtures. Hence, a neural 

circuit in the brain suited to process complex taste information may be present. Class 2 and 3 

neurons, showing varying response sensitivity to stimulation with different modalities, might 

operate in a population code dealing with discrimination and processing of complex taste 

mixtures. Unfortunately, mixtures of tastants have not been applied as stimuli in the study of the 

SOG neurons or the protocerebral neurons in the present study. However, tastant interactions 

have been investigated in the peripheral gustatory system of H. virescens. It was showed that 

sucrose- and water-responsive GRNs located on the antennae and sucrose-responsive GRNs on 

the ovipositor were inhibited by alkaloids, indicating taste mixture interactions (Ramaswamy et 

al., 1992; Jørgensen et al., 2007a). Electrophysiological recordings from two other lepidopteran 

species, the butterfly Pieris napi and the caterpillar of the tiger moth Grammia geneura, showed 

that individual GRNs responded differently when stimulated with binary or complex mixtures 

compared to single compounds (van Loon, 1996; Bernays and Chapman, 2001a). Moreover, 

behavioral studies in humans have indicated that a constituent in a taste mixture is usually 

perceived as less salient compared to stimulation with the component alone. This is thought to 

arise due to neural processing and not to chemical interactions in the mixture (Lawless, 1979). A 

neural circuit in the central gustatory system devoted to the processing of taste mixtures has not 

yet been identified. However, the broadly tuned neurons found in the mammalian primary 

gustatory cortex has been suggested to participate in such a system (Chen et al., 2011). To 

understand how single protocerebral neurons are involved in the processing of taste mixtures, 
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more detailed studies using taste mixtures and their single constituents at different concentrations 

are needed.  

 

Traditionally, neurons participating in LL or AFP mechanism have been considered to mediate 

taste information by rate coding, i.e. conveying information by the average neuronal firing rate. 

However, by only looking at the average firing rate, vital information present in the temporal 

expression of the response might be lost. Temporal codes in form of spike timing, spike 

discharge patterns and spike synchronicity are receiving increased attention by gustatory 

neurophysiologists, as well as researchers working with other sensory systems. Thus, responses 

of the GNs in the present study were analyzed to find out if temporal patterns may be used to 

discriminate different stimuli. The FFT procedure used in this study is commonly used to 

analyze EEG recordings, but is also applicable to spike trains from single cell recordings (Koch 

and Segev, 1998; Windhorst and Johansson, 1999). Emerging from this analysis was clear 

differences in temporal expression between responses elicited by different stimuli, exemplified 

by GN 26 (Fig. 8 and 9). However, the differences in firing frequency distribution between two 

repetitions of the same stimulus were prominent (Fig. 10). Because of the variability observed in 

responses elicited by the same stimulus, it was difficult to infer whether class 2 and 3 neurons 

utilized spike discharge patterns to distinguish between different stimuli. Only two repetitions of 

each stimulus were conducted in this study, thus it cannot be excluded that stimulus specific 

temporal features could have emerged with more extensive testing, e.g. a sucrose specific 

temporal pattern distinct from that of quinine. Another interesting occurrence was that the first 

stimulation with a modality generally yielded a response of hiher firing frequency than the 

subsequent stimulation, as exemplified by the responses to sucrose stimulation mediated by the 

left antenna in GN 26 and the right antenna in GN 25 (Fig. 11). Since these stimulations were not 

conducted in succession, but instead interspersed between stimulation with other modalities, the 

difference is presumably not a result of sensory adaptation. Although it is difficult to assess, this 

pattern might be a means of neuronal communication. As indicated by the spike frequency 

analysis, the protocerebral GNs do not seem to rely on specific temporal spike discharge patterns 

to distinguish stimuli. However, this type of coding is shown to be important in the caterpillar of 

the tobacco hornworm Manduca sexta. It was concluded that this species is able to discriminate 

compounds detected by the same bitter-sensitive receptor neurons, as long as these compounds 

elicit responses with distinct spike discharge patterns (Glendinning et al., 2006). In addition, 

temporal coding has been thoroughly investigated in mammals, where it is believed to have a 
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functional significance. However, the exact information value carried by specific temporal 

patterns has been difficult to determine (Hallock and Di Lorenzo, 2006).   

 

The second hypothesis in this study states that broadly tuned neurons participate in a 

discriminatory process of stimuli, by displaying differences in their average response strength 

and temporal pattern to different stimuli. The present results showed that neurons generally 

respond to different stimuli with different average strengths, thus these differences may have a 

functional significance. In contrast, the results did not show any consistent pattern indicating that 

temporal coding in form of spike discharge patterns occurs in protocerebral GNs. Hence, the 

second hypothesis seems to be in line with the results regarding discrimination by average 

response strength, but not by temporal patterns. One possibility might be that temporal codes are 

more important to discriminate different compounds within a modality, as shown by Glendinning 

and coworkers (2006), whereas average strength is used to discriminate between gustatory 

modalities.  

 

The intracellular recording technique is very precise and allows to accurately monitor the activity 

of a single neuron. However, stable contact between the microelectrode and the interior of the 

cell is usually intact for only a limited amount of time. These short-lived recordings did not 

permit stimulating the animal with many modalities applied at many appendages, as well as 

testing each modality at various concentrations. In the present study, the test substances were 

sucrose (1.0 M), NaCl (0.1 M) and quinine (0.01 M). Since the modalities were presented at 

unequal concentrations, the differences in the response strengths and temporal patterns observed 

in protocerebral class 2 and 3 GNs might be due to stimulation with different concentrations, 

rather than resulting from stimulation with different modalities. In fact, one drawback of the AFP 

theory is the difficulty of distinguishing a preferable taste quality at low intensity from an 

unfavorable one at high intensity (Spector and Travers, 2005). For instance, a neuron displaying 

higher sensitivity to sucrose than quinine will respond in a similar manner to low concentrations 

of sucrose and high concentrations of quinine. The importance of concentration to taste 

perception has been shown in Drosophila, where a behavioral assay has been utilized to 

investigate discrimination of compounds within a modality. In this taste associative learning 

paradigm, heat was paired with the presentation of fructose, which resulted in the flies displaying 

learned avoidance to this compound. Importantly, the flies showed aversion to lower, but not 

higher concentrations of fructose. By using different concentrations of fructose and glucose, the 

flies were able to differentiate between the compounds. However, their different chemical 
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identities did not seem to be important factors in the discrimination process. These results 

indicated discrimination based on palatability, brought about by concentration rather than 

differences in chemical identity (Masek and Scott, 2010). 

4.4   Morphology of protocerebral GNs 
 

By connecting the morphology of the protocerebral GNs to their physiological properties, the 

ultimate goal is to obtain a coherent image of the overall function of the GNs and how they 

might establish synaptic connections in the gustatory neural network. In this study, eight neurons 

were successfully stained. The morphology of these stained confirmed that they were 

protocerebral neurons, since all were partially or entirely located in the protocerebrum. 

 

Compared to the SOG neurons described by Kvello and coworkers (2010), the protocerebral 

GNs generally displayed increased response specificities. This feature of the protocerebral GNs 

might arise by these neurons receiving selective input from modality-best SOG projection 

neurons or from SOG projection neurons tuned to a specific modality. The staining of GN 1, a 

neuron projecting from the SOG to the protocerebrum, provided information about this issue. 

This neuron had dendrites located in the right SOG and the AMMC, and an axon projecting to 

the contralateral protocerebral hemisphere in close proximity to the CB (Fig. 12). GN 1 

responded specifically to sucrose applied to the proboscis, thus pointing to an increased 

specificity already in the neural trajectory from the SOG to the protocerebrum. This narrowly 

tuned neuron might receive its input from narrowly tuned SOG neurons. Some of the SOG GNs 

responded with the strongest excitation to sucrose applied to the proboscis, with weaker 

excitation or no response to stimulation with other modalities applied to the proboscis, tarsus and 

antennae (Kvello et al., 2009; Kvello et al., 2010). Thus, these neurons are good candidates to 

feed information onto GN 1. Another neuron innervating the SOG, the protocerebrum and the 

AMMC of the deutocerebrum was GN 17 (Fig. 13). This neuron responded to stimuli applied to 

the left antenna: by inhibition to stimulation of sucrose and quinine, and by excitation to tactile 

stimulation. It was difficult from the morphology to clearly determine whether the branches 

located in the AMMC and the protocerebrum were pre- or postsynaptic. A previous study 

presented results showing that mechanosensory fibers from the antennae project mostly to the 

ipsilateral AMMC, but also in the SOG. Likewise, fibers assumed to be gustatory were found to 

project both in the AMMC and the SOG (Jørgensen et al., 2006). The most prominent axon 

collaterals of GN 17 were present in the SOG, suggesting that this neuron receives gustatory and 

mechanosensory information in the AMMC and relays it to the SOG and possibly the 
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protocerebrum. As illustrated in GN 17, uncertainty existed regarding whether neuronal branches 

were dendritic or axonal. The morphological results provided by the fluorescent staining 

technique did not provide direct evidence about this issue. This method provided information 

about the overall neuronal morphology, making it possible to infer the input and output areas 

based on features like the appearance of blebs. However, caution should be taken when trying to 

assess the dendritic and axonal terminals of a stained neuron. 

 

An interesting multimodal area in the brain is the lateral protocerebrum, a region shown to 

receive olfactory, visual and gustatory information (Schröter and Menzel, 2003; Wessnitzer and 

Webb, 2006; Farris, 2008). This neuropile contains descending olfactory neurons, as shown in 

M. sexta (Kanzaki et al., 1991) and H. virescens (Løfaldli, unpublished data), and is considered 

to be a premotoric area. GN 9, excited by NaCl applied to the left antenna, innervated this area 

(appendix III, Fig. 17). It had neuronal processes also in the right dorsomedial protocerebrum 

and dorsomedially to dorsolaterally in the left protocerebrum. However, it was difficult to clearly 

distinguish the axonal and the dendritic terminals, due to the damage caused by the insertion of 

the microelectrode. Thus, it was difficult to determine whether the innervation of the lateral 

protocerebrum is pre- or postsynaptic. Similar to GN 9, GN 23 and GN 26 displayed a bilateral 

morphology, having dendrites in one hemisphere and axonal projections in the contralateral 

hemisphere. GN 23 was co-stained with two other neurons, and interestingly, the three neurons 

showed a remarkably similar morphology (Fig. 14). Two of these neurons had their cell bodies in 

the right protocerebral hemisphere and axons projecting to the contralateral hemisphere. The 

third neuron had its cell body in the left protocerebral hemisphere and an axon projecting to the 

contralateral hemisphere. The neurons had a branch extending posteriorly in both protocerebral 

hemispheres, possibly representing the dendritic areas. The functional significance of the 

observed morphological symmetry is not known. However, a tempting idea is that these neurons 

respond to similar taste modalities, but applied to different appendages. GN 23 responded to 

sucrose application to the right antenna and quinine application to the proboscis. Thus, the 

contralateral neuron(s) might respond similarly to stimulation of the left antenna. An interesting 

feature of GN 26, having dendrites in the right protocerebrum and axonal projections in the left 

protocerebrum, is that it  responded to stimulation of the left antenna and the proboscis, while the 

morphology indicated information transfer to the left protocerebrum (appendix III, Fig.  20). 

Thus, information from the GRNs located on the left antenna and proboscis seem to have been 

relayed to the contralateral hemisphere, before being transferred back to the left hemisphere by 

GN 26.  
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GN 1, 9, 17, 23 and 26 are believed to participate directly in the coding of taste quality and 

location. In contrast, the remaining three stained GNs are hypothesized to have modulatory roles. 

Two of them connected the gustatory system with the OLs. GN 6, responding by excitation to 

sucrose applied to the right antenna, innervated the right OLs and had also processes in the right 

dorsolateral protocerebrum. Although difficult to determine the input and output areas of this 

neuron, the innervation of the OLs seemed to contain axon collaterals (appendix III, Fig. 16).  

Thus, information is probably mediated to this area. GN 22 responded by inhibition to the three 

tastants applied to the right antenna and quinine applied to the left antenna. This neuron, 

receiving input in the CB and adjacent areas, had axonal projections in the SOG/tritocerebrum 

and the right OLs (appendix III, Fig. 19). The OLs are substructures of the protocerebrum 

involved in the processing of visual information from the compound eye (Strausfeld, 1970; 

Chapman, 1998), while the CB is a higher brain center involved in limb coordination and 

orientation (Loesel et al., 2002; Heinze and Homberg, 2007). Although Heliothis spp. are 

nocturnal, vision is important for orientation. At dusk or during night, these species use vision to 

find food, oviposition sites and mating partners (Fitt, 1989; Cutler et al., 1995). Hence, vision, as 

well as olfaction, seem to be necessary for the initial recognition and approach to a possible food 

or oviposition site, as shown for vision in the shark moth C. umbratica and olfaction in              

H. virescens (Brantjes, 1976; Tingle and Mitchell, 1992). Based on the morphology and 

physiology of GN 6 and GN 22, a direct neuronal connection between the visual and gustatory 

systems can be envisaged. Furthermore, an appealing idea is that GNs relaying gustatory 

information to the OLs might be modulatory, affecting the processing of visual information upon 

feeding. Unfortunately, neither GN 6 nor GN 22 was tested with visual stimuli. However, several 

of the other GNs in this study responded to light stimuli (data not shown), further supporting a 

direct connection between the visual and gustatory system.  

 

Another neuron hypothesized to be modulatory was GN 19. This neuron innervated the left and 

the right lateral protocerebrum, as well as both ALs and the left MBca, structures previously 

shown to be important in the processing of olfactory information (Hansson, 1995; Hildebrand, 

1996). Overall, the morphology of GN 19 resembled a modulatory serotonin-immunoreactive 

(SI) neuron characterized in another Heliothine species, the oriental tobacco budworm moth 

Helicoverpa assulta (Zhao and Berg, 2009), and also reported in several other insect species, e.g. 

the silkmoth Bombyx mori and the American cockroach Periplaneta americana (Salecker and 

Distler, 1990; Hill et al., 2002). Due to limited time, double labeling with serotonin 

immunocytochemistry was not performed, which is needed to confirm whether GN 19 is an SI 



Discussion   

! !  47 

neuron. Nonetheless, GN 19 showed similarities to the SI neurons of B. mori, P. americana and 

H. assulta, all of them innervating the left and right protocerebrum and both ALs. Furthermore, 

GN 19 and the SI neuron of B. mori and P. americana innervated the MBca, whereas the SI 

neuron of H. assulta did not. The neuronal processes of GN 19 located in the MBca were thick 

and blebby (appendix III, Fig 18: D), similar to the axon collaterals observed in P. americana, 

but differing from the fine processes observed in B. mori (Salecker and Distler, 1990; Hill et al., 

2002). It was difficult to clearly determine whether the neuronal processes of GN 19 in the left 

AL and the lateral protocerebrum were pre- or postsynaptic (appendix III, Fig. 18: A, B, C). In 

the SI neuron of B. mori, P. americana and H. assulta, the neuronal processes in the AL is 

presynaptic, which is also likely to be the case for GN 19. Therefore, the neuronal arborizations 

in the lateral protocerebrum are presumably postsynaptic, which is similar to the SI neurons in  

B. mori, P. americana and H. assulta (Salecker and Distler, 1990; Hill et al., 2002; Zhao and 

Berg, 2009). The SI neurons in B. mori and H. assulta were physiologically characterized, 

responding with excitation to various odors. In contrast, GN 19 responded with a pronounced 

inhibition to all tested taste modalities, suggesting an antagonistic role mediated by gustatory 

stimulation. Regardless of the exact operating mode, GN 19 provides compelling evidence of 

gustatory interaction in a circuit previously shown to mediate olfactory and mechanosensory 

information (Hill et al., 2002; Zhao and Berg, 2009). 

4.5   Topics for further research 
 

Traditionally, investigations of the insect gustatory system have focused on GRNs, their 

projections to the central nervous system and the processing of gustatory information in thoracic 

ganglia and the SOG. The SOG receives massive input from contact chemosensilla and houses 

motor neurons responsible for movement of the proboscis (Rehder, 1988; Rajashekhar and 

Singh, 1994; Gordon and Scott, 2009). This organization has led to the belief that gustatory 

processing in the SOG is sufficient to carry out feeding behavior, which is corroborated by the 

observation that SOG GNs are in close anatomical proximity to GRN output targets and SOG 

motor neurons (Kvello et al., 2010). Hence, SOG gustatory interneurons are well positioned to 

carry out the necessary processing of gustatory information and relay it to motor neurons 

controlling movement of the mouthparts. However, the results from this study have shown that 

GNs are represented in many areas of the protocerebrum and that extensive gustatory processing 

also occurs in this brain region. To develop our understanding of insect gustation, future research 

should investigate the protocerebral gustatory system in more detail, focusing on both 

physiological and morphological characteristics of protocerebral GNs. By employing different 
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concentrations of the same modality and several repetitions of each stimulus, one could 

investigate more thoroughly the importance of temporal codes to the discrimination of stimuli. 

Moreover, testing with different sugars and different bitter compounds would provide valuable 

insight into the neural information processing of different compounds within a modality. By also 

carrying out behavioral studies using the same compounds, a better connection between the 

neural processing of these compounds and their importance to taste-related behavior would be 

obtained. Another interesting topic to explore would be how complex taste mixtures are 

processed in the brain, whether they are processed separately or in a population code together 

with the processing of single components. Finally, the understanding of protocerebral gustatory 

processing could benefit from research mapping the morphology of GNs more thoroughly.                
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5   Conclusion 
 

The results from this study have demonstrated that GNs innervate many regions of the 

protocerebrum, including areas like the lateral protocerebrum, the central body and the optic 

lobes. Moreover, the physiological results showed that the recorded protocerebral GNs display 

variation in their response tuning breadth to stimulation with mechanosensory and gustatory 

modalities applied at different appendages. Some protocerebral neurons are narrowly tuned, 

responding to a single modality applied at a single appendage (class 1 GNs). Others are more 

broadly tuned, responding to different modalities applied at one, two or three appendages (class 

2 and 3 GNs). The majority of the broadly tuned neurons were found to respond differently to 

stimulation with different taste qualities. The analysis of the responses indicate a discriminatory 

process of taste qualities by means of average rate coding, but not temporal spike discharge 

patterns. By responding differently to the various stimuli, the class 2 and 3 GNs meet the 

requirements to participate in an AFP model, whereas the narrowly tuned class 1 GNs are ideally 

suited to take part in LL coding. Thus, the results presented in this study argue that the 

protocerebral gustatory system makes use of both LL and AFP coding in the processing of taste 

information. Furthermore, the morphological and physiological characteristics indicate a direct 

role of these neurons in gustatory coding, as well as an involvement of some GNs in modulating 

the activity of other sensory pathways.  
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6   Abbreviations 
 

AFP  – Across Fiber Pattern 

AL  – Antennal Lobe 

AMMC  –  Antennal Mechanosensory and Motor Center 

CB  – Central Body 

CLSM  –  Confocal Laser-Scanning Microscope 

Es  – Esophagus 

FFT  –  Fast Fourier Transform 

GN   –  Gustatory Neuron 

GRN  –  Gustatory Receptor Neuron 

LL   –  Labelled Line 

LP  – Lateral Protocerebrum 

MBca – Mushroom Body calyces 

MBpl – Mushroom Body peduncle and lobes 

NGS  –  Normal Goat Serum 

NST  –  Nucleus of the Solitary Tract 

OL   –  Optic Lobe 

PBS  –  Phosphate Buffered Saline 

PBStx - Phosphate Buffered Saline with triton x 

PC  – Protocerebrum 

SBA  –  Standard Brain Atlas 

SOG –  Subesophageal Ganglion 
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8   Appendices 
 

8.1   Appendix I 
 
The “difference” and “colormap” matlab codes generate the net frequency color spectra. The 
”difference” code performs the Fourier transformation and creates a net difference between 
the frequency spectra of the response and spontaneous activity. Furthermore, it rescales the 
spectra relative to average spontaneous activity (between 20-300 Hz). The ”colormap” code 
is responsible for importing the spontaneous activity and the response, and for generating 
labels to the spectrum.  
 
Difference.m 

 
function result = difference(x1,x2) 

    % Adjust the signal relative to the baseline 
    x1 = x1-mean(x1); 
    x2 = x2-mean(x2); 
     
    % Make sure the vectors have the same lengths 
    if (length(x1) > length(x2)) 
        x1 = x1(1:length(x2)); 
    else 
        x2 = x2(1:length(x1)); 
    end 
  
    % Do the Fast Fourier Fourier transformation 
    Fs           = 41666; 
    nfft         = 2^(nextpow2(length(x1)));  
    NumUniquePts = ceil((nfft+1)/2);  
  
    fftx1 = fft(x1,nfft);  
    fftx2 = fft(x2,nfft);  
     
    fftx1 = fftx1(1:NumUniquePts);  
    fftx2 = fftx2(1:NumUniquePts);  
  
    mx1 = (abs(fftx1)/length(x1)).^2;  
    mx2 = (abs(fftx2)/length(x2)).^2;  
  
    if rem(nfft, 2) 
        mx1(2:end) = mx1(2:end)*2; 
        mx2(2:end) = mx2(2:end)*2; 
    else 
        mx1(2:end -1) = mx1(2:end -1)*2; 
        mx2(2:end -1) = mx2(2:end -1)*2; 
    end 
  
    f = (0:NumUniquePts-1)*Fs/nfft; 
    
    % Find the differential spectrum 
    diff = mx2 - mx1; 
      
  % Convert to only the integral frequencies 0-300 Hz 
    original = zeros(1,300); 
    result   = zeros(1,300); 
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    for i=2:length(diff) 
        if (f(i) > 299.9) 
            break; 
        else 
            original(ceil(f(i))) = original(ceil(f(i))) + mx1(i); 
            result(ceil(f(i)))   = result(ceil(f(i)))   + diff(i); 
        end 
    end 
     
    % Rescale result by average spontaneous activity in 20-300 Hz 
    result = result ./ (20*sum(original(20:300))/(300-20+1)); 
    
    % Remove artifacts due to power grid resonance 
    c(1:5) = [0 0 0 0 0];  
    result(49)  = c(1); result(50)  = c(1); result(51)  = c(1); 
    result(99)  = c(2); result(100) = c(2); result(101) = c(2); 
    result(149) = c(3); result(150) = c(3); result(151) = c(3); 
    result(199) = c(4); result(200) = c(4); result(201) = c(4); 
    result(249) = c(5); result(250) = c(5); result(251) = c(5); 
    result(300) = 0; 
  
    % Make sure the result is nice 
    smooth(result,5,'loess'); 
end 
 
Colormap.m 
 
function colorplot(neuron) 
    % Acquire and process input data 
    n = size(neuron,2); 
    A = zeros(n,300); 
    for i=1:n 
            [file,path] = uigetfile('*.wav',sprintf('Spontanaktivitet for %s',neuron{i})); 
            [x1,f1] = wavread([path,file]); 
  
            [file,path] = uigetfile('*.wav',sprintf('Respons for %s',neuron{i})); 
            [x2,f2] = wavread([path,file]); 
  
            A(i,:) = difference(x1,x2); 
    end 
  
    % Generate the colorplot itself 
    figure('Color',[1 1 1]); 
    hold on; 
    colormap(makeColorMap([0,0,1],[1,1,1],[1,0,0],256)); 
    image(A,'CDataMapping','Scaled'); 
    colorbar('YTickLabel',{'-20','','','','','  0','','','','','+20'}); 
    caxis([-1 1]); 
    axis([0 300 0.5 (n+0.5)]); 
    set(gca,'YTick',1:n); 
    set(gca,'YTickLabel',neuron) 
  
    % Generate separator lines between neurons 
    for i=1:n-1 
        plot([0,300],[i+0.5,i+0.5],'color','black'); 
    end  
    % Miscellaneous plotting settings 
    xlabel('Frequency (Hz)'); 
    hold off; 
end 
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8.2   Appendix II 
 

 

 
 

Figure 15. Lomb-Scargle frequency spectrum of the spontaneous activity of GN 26. 
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8.3   Appendix III 
 

 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16. Confocal image of GN 6 in the frontal plane, innervating the lobula complex of the optic 
lobes. Scale bar = 50 µm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 17. Confocal image of GN 9, showing projections in the dorsolateral to 
dorsomedial area of the left protocerebrum. 
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Figure 18. Confocal images of GN 19. (A) Innervation of the left and right antennal lobes. The 
arrow indicates the soma. (B) and (C) Innervation of the right and left lateral protocerebrum (LP), 
respectively. (D) Innervation of the left mushroom body calyces (MBca). (A), (B), (C) are in 
frontal view, (D) is in dorsal view. Scale bar = 50 µm. 
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Figure 19. Confocal image of GN 22 in frontal plane, showing innervation of the optic lobes and 
the tritocerebrum/SOG. Scale bar = 50 µm. 

 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 20. Confocal image of GN 26 in the frontal plane, showing innervation of both the left and 
right protocerebrum. Scale bar = 50 µm. 
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