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Introduction

The research contained in the papers that constitute the present thesis is
primarily related to questions arising from operator-related function theory in
spaces of Dirichlet series

(1) f(s) =

∞∑

n=1

ann
−s, s = σ + it.

This subject combines different fields of mathematics such as analytic number
theory, complex analysis in one and several variables, ergodic theory, functional
analysis, harmonic analysis and probability theory. The modern treatment of the
subject was initiated in a 1997 paper by Hedenmalm, Lindqvist and Seip [13],
which relies on a century-old insight of Harald Bohr [4] on the interaction between
Dirichlet series and analysis in polydiscs. Essentially, Bohr’s point of view is that
each prime number p−sj should be considered an independent complex variable
zj , which associates the Dirichlet series (1) to a power series in an infinite number
of variables.

In the first decade following [13], the elements of various spaces of Dirichlet
series viewed as analytic functions in the half-plane

C1/2 = {s = σ + it : σ > 1/2}

were studied intensively by several authors [14, 24, 25, 26, 30, 32]. Among the
investigated topics were boundary limits, convergence properties, interpolation
problems, local embeddings, partial sums and zero sets. Independently of these
developments, pseudomoments of the Riemann zeta function were introduced in
[6]. Intended as tractable analogues to the classical moments investigated by
Hardy and Littlewood [12] and Ingham [19], we now interpret these pseudo-
moments as Hardy space norms of the partial sums of the Riemann zeta function
on the critical line σ = 1/2.

It has consistently been found that the additive structure of the integers plays
a role whenever questions and problems arising from the half-plane point of view
are investigated. Papers 1, 4, 5 and 11 in the present thesis contain contributions
to this aspect of the theory.
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Concurrently with the investigations discussed above, a nascent operator
theory in spaces of Dirichlet series was being developed. Composition operators
were first studied by Gordon and Hedenmalm in the pioneering paper [11], which
incited a flurry of activity [2, 3, 9, 20, 28, 29]. Papers 2, 3 and 4 in the present
thesis are concerned with composition operators.

In another direction, Helson initiated the study of multiplicative Hankel forms
[15, 16, 17]. For a sequence % ∈ `2, consider the bilinear form

(2) %(a, b) =

∞∑

m=1

∞∑

n=1

ambn%mn,

where the subindex mn denotes the product of m and n. Helson observed that
from Bohr’s point of view, the form (2) is naturally realized as a (small) Hankel
operator on the infinite polydisc, and enquired whether a classical theorem of
Nehari [23] holds in this setting. He provided a positive answer in the case where
the bilinear form (2) is Hilbert–Schmidt, but it was demonstrated by Ortega-
Cerdà and Seip [27] that Nehari’s theorem for multiplicative Hankel forms does
not hold in full generality. Papers 6, 7, 8 and 9 in the present thesis are devoted
to the study of multiplicative Hankel forms.

It is of interest to note that the positive result from [16] and the negative
result from [27] both are obtained by multiplicatively iterating a suitable finite
dimensional result. This phenomenon is typical for function spaces on the infinite
polydisc, which are infinite products of their classical one-dimensional counter-
parts. In particular, questions and problems arising from the polydisc often enjoy
multiplicative properties, which through Bohr’s point of view can be viewed as
statements about the multiplicative structure of the integers.

Function and operator theory in the unit disc clearly constitutes a major
source of inspiration for the development of the corresponding theory for Dirichlet
series. However, we also observe many new and interesting phenomena, which are
often related to analytic number theory or appear as a consequence of the infinite
dimensional nature of the spaces considered. Many of the classical objects exhibit
different and often surprising properties. Moreover, several of the powerful tools
employed in the development of the classical theory, such as duality arguments
and inner-outer factorization, do not exist in the Dirichlet series setting. In
practice, this means that results are often proved by novel combinations of the
various fields of mathematics mentioned above. We refer to [31] for an overview
of some of the recent developments and related open problems.

We have found that interactions between number theory and operator theory
appear naturally when investigating operators that rely on both the additive and
the multiplicative structures of the integers. This is featured most prominently
in Paper 10, where Volterra operators defined by multiplication, differentiation
and integration are studied. Other examples are found in Papers 7 and 11.
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This introduction contains four additional sections. The first two sections
contain a minimal amount of background material in order to prepare the reader
for the papers that follow. We first recall the definitions of Bergman and Hardy
spaces of the unit disc and exemplify the deep connections between function
theory and operator theory. In the second section, we explain how spaces of
Dirichlet series can be defined and their connection to analysis on the polydisc
through Bohr’s point of view. The third section contains an overview of the
thesis, while the final section is comprised of some editorial remarks.

1. Function spaces in the unit disc

Function spaces in the unit disc and the related operator theory constitutes
a classical topic, and we refer generally to the monographs [7, 8, 33]. In this
introductory section we present suitable definitions of Bergman spaces and Hardy
spaces, which will serve as a backdrop for the exposition of function spaces of
Dirichlet series contained in the following section.

Let D = {z ∈ C : |z| < 1} denote the unit disc and T = {z ∈ C : |z| = 1}
its boundary. For α > 1, consider the measure

(3) dmα(z) = (α− 1)
(
1− |z|2

)α−2 dxdy

π
.

Note that mα(D) = 1. For 0 < p < ∞ and α > 1, we take the Bergman space
Apα to be the closure of the set of analytic polynomials in the (quasi)-norm

‖f‖p
Ap

α
=

∫

D
|f(z)|p dmα(z).

For the case α = 1, we let m1 denote the normalized Lebesgue measure on T and
define the Hardy space Hp, for 0 < p <∞, as the closure of analytic polynomials
in Lp(T). This definition is justified by the fact that

lim
α→1+

‖f‖Ap
α
= ‖f‖Hp .

Among the many interesting properties of Bergman spaces and Hardy spaces are
their rich function-related operator theory. In many cases, one can characterize
properties such as boundedness and compactness by investigating the symbol
generating an operator, rather than the operator itself. Let us now look at two
specific examples, compactness of composition operators on Bergman spaces and
boundedness of Hankel forms on Hardy spaces.

Composition operators on Bergman spaces and Hardy spaces are generated
by analytic self-maps φ of the unit disc, for which the composition operator is
defined by Cφ(f) = f ◦ φ. It follows from the closed graph theorem that every
composition operator is bounded and the following sharp upper bound for the
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norm is easily deduced from Littlewood’s subordination principle [21].

(4) ‖Cφf‖Ap
α
≤
(
1 + |φ(0)|
1− |φ(0)|

)α/p
‖f‖Ap

α
,

where we in (4) include the case α = 1 by letting Ap1 denote Hp. For the Bergman
spaces A2

α, it can be shown that the operator Cφ is compact if and only if

(5) lim
|z|→1−

1− |z|2
1− |φ(z)|2 = 0.

For the Hardy space H2 an analogous statement to (5) can be made in terms of
the Nevanlinna counting function Nφ.

Given a symbol ϕ ∈ H2, we can define a (possibly unbounded) Hankel form
on H2 ×H2 by

Hϕ(fg) = 〈fg, ϕ〉L2(T) =
∞∑

m=0

∞∑

n=0

ambn%m+n,

where we in the final equality assumed that the coefficients of f , g and ϕ are am,
bn and %k, respectively. Clearly, if ϕ ∈ L∞(T), then ‖Hϕ‖ ≤ ‖ϕ‖L∞(T). However,
the classical Hilbert inequality

(6)

∣∣∣∣∣
∞∑

m=0

∞∑

n=0

ambn
m+ n+ 1

∣∣∣∣∣ ≤ π

( ∞∑

m=0

|am|2
)( ∞∑

n=0

|bn|2
) 1

2

,

gives an example of a bounded Hankel form with the unbounded symbol

(7) ϕ(z) =
1

z
Log

(
1

1− z

)
.

By orthogonality, we can replace ϕ by any symbol ψ ∈ L2(T) with ψ̂(n) = ϕ̂(n)
for n = 0, 1, 2, . . . while retaining the property that 〈fg, ϕ〉L2(T) = 〈fg, ψ〉L2(T).
In particular, for the symbol (7) we may choose

ψ(z) = −i zArg(z),

for which clearly ‖ψ‖L∞(T) = π. Nehari’s theorem [23] states that if ϕ ∈ H2

generates a bounded Hankel form on H2 × H2, we can always find a symbol
ψ ∈ L∞(T) such that Hϕ = Hψ and ‖Hϕ‖ = ‖ψ‖L∞(T). By the Hanh–Banach
theorem, this is equivalent to

‖Hϕ‖ = ‖ϕ‖(H1)∗ .

The statement holds true also for Hankel forms on Bergman spaces, but the
norms of the Hankel form and the symbol are no longer identical, but merely
equivalent (see Paper 9).
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2. Function spaces of Dirichlet series

We begin with the Hardy spaces H p, which we for 0 < p <∞ define as the
closure of the set of Dirichlet polynomials with respect to the Besicovitch norm

(8) ‖f‖pH p = lim
T→∞

1

2T

∫ T

−T
|f(it)|p dt.

Let Cθ = {s = σ + it : σ > θ}. The spaces H p are Dirichlet series analogues to
the classical Hardy spaces Hp(D). A simple computation shows that if f denotes
the Dirichlet series (1), then

‖f‖2H 2 =

∞∑

n=1

|an|2.

It therefore follows from the Cauchy–Schwarz inequality that H 2 is a space of
(absolutely) convergent Dirichlet series in the half-plane C1/2, where its elements
enjoy the pointwise estimate

|f(s)|2 ≤ ζ(2σ)‖f‖2H 2 .

To see that θ = 1/2 cannot be improved, consider f(s) = ζ(1/2 + ε + s) where
ζ denotes the Riemann zeta function and ε > 0. These statements carry over
to H p for every 0 < p < ∞. Thus we observe that while the norm of H p

is computed at the boundary of C0, its elements are analytic functions in the
smaller half-plane C1/2.

Let us now turn to the Bohr correspondence. Every positive integer n can
be factored uniquely into a product of prime factors

n =

∞∏

j=1

p
κj(n)
j .

The factorization defines a bijection between the positive integers and the set
of finite non-negative multi-indeces, by κ(n) = (κ1(n), κ2(n), κ3(n), . . . ). The
Dirichlet series (1) now corresponds to its Bohr lift, which is the power series

Bf(z) =

∞∑

n=1

anz
κ(n), z = (z1, z2, z3, . . . ).

The Birkhoff ergodic theorem for the Kronecker flow on T∞ gives that if f is a
Dirichlet polynomial, then

(9) ‖f‖H p = ‖Bf‖Lp(T∞).

Here Lp(T∞) is defined with respect to the (countably) infinite product measure

(10) m1(z) = m1(z1)×m1(z2)×m1(z3)× · · · ,
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which is equal to the Haar measure of T∞ considered as a compact group. Observe
that if p = 2, then it is easily verified that (9) holds. This leads to a simple proof
of (9) through the Weierstrass approximation theorem, which is found in [30].

Through (9), we find that B defines a multiplicative isometric isomorphism
from H p to the Hardy space of the infinite polydisc Hp(D∞), where the latter
space is defined as the closure of the set of analytic polynomials in Lp(T∞). The
Bohr correspondence also allows us to define Bergman spaces of Dirichlet series
as the closure of Dirichlet polynomials with respect to the norm

‖f‖p
A p

α
=

∫

D∞
|Bf(z)|p dmα(z).

Here mα denotes the infinite product measure generated from (3) in the same
way as (10) was generated from m1. Let dα(n) denote the coefficients of the
Dirichlet series defined by [ζ(s)]α. For instance d2(n) is the well-known divisor
function d(n). It now follows that if f is the Dirichlet series (1), then

‖f‖2A 2
α
=

∞∑

n=1

|an|2
dα(n)

.

By Cauchy–Schwarz inequality we conclude that A 2
α is a space of (absolutely)

convergent Dirichlet series in the half-plane C1/2 for every α > 1, a statement
which also holds for A p

α .

3. Overview of the thesis

This thesis is organized into three parts. The first part contains five papers
concerned with the properties of elements in spaces of Dirichlet series viewed
as functions in the half-plane C1/2. The second part deals with multiplicative
Hankel forms and contains four papers. The last part consists of two relatively
unrelated papers, the first dealing with Volterra operators and the second with
pseudomoments.

It should be pointed out that there are several connections between the papers
in the different parts. For instance, Section 4 of Paper 4 builds on Paper 7, while
Theorem 3.4 in Paper 11 is an extension of Theorem 1 in Paper 4. Moreover,
Paper 10 relies crucially on certain results from Paper 8. Here follows a brief
summary of the contents of the three parts.

Part 1: Composition operators and local embeddings. One of the
most important problems when considering H p as a space of analytic functions
in the half-plane C1/2 is whether they are locally embedded in the usual Hardy
spaces of C1/2. Equivalently, is there a constant Cp ≥ 1 such that

(11)
1

π

∫ ∞

−∞
|f(1/2 + it)|p dt

1 + t2
≤ Cp‖f‖pH p

6



for every f ∈ H p? Ever since [13] it has been known that the answer is yes when
p = 2, 4, 6, . . . , but the problem remains open for other 0 < p < ∞. In Paper
5, we give a simple and direct proof of (11) for p = 2, 4, 6, . . . and identify the
optimal constant Cp = 2. A similar question can be asked for Bergman spaces of
Dirichlet series, but nothing is known unless p is an even integer [24]. In Paper 1,
we show that the bounded zero sequences of certain Hilbert spaces of Dirichlet
series are the same as the spaces they are optimally embedded into.

In Paper 2, we use embeddings from [24] to extend the Gordon–Hedenmalm
theorem on composition operators [11] to Bergman spaces. The arguments of
[11] and Paper 2 rely on suitably applying the one-dimensional result (4). As
explained in [3, Sec. 3], we cannot generally use one-dimensional results such as
(5) to study compactness of composition operators on spaces of Dirichlet series.
This means that the question of compactness is considerably more difficult than
the question of boundedness.

Paper 3 is devoted to the study of compact composition operators on H 2.
We are able to completely describe the compact composition operators generated
by polynomial symbols of degree 1 or 2 through analysis on the polydisc and a
result from [29]. In Paper 4, we observe that the Gordon–Hedenmalm theorem for
H p in fact is equivalent to the embedding (11). We also prove a weaker version
of (11), which is employed to give the first non-trivial examples of bounded
composition operators on H p generated by polynomial symbols.

Part 2: Multiplicative Hankel forms. In Paper 6, we improve on the
construction from [27] to show that there are multiplicative Hankel forms (2) in
the Schatten class Sp for every p > p0, where

p0 =

(
1− log π

log 4

)−1

= 5.7388 . . . ,

that do not satisfy Nehari’s theorem. The result from [16] states that Nehari’s
theorem holds in the Hilbert–Schmidt class S2. Hence it remains an interesting
problem to find the biggest p such that Nehari’s theorem holds for multiplicative
Hankel forms in Sp. We know that that the optimal p satisfies 2 ≤ p ≤ p0.

In Paper 7, we identify and study a multiplicative analogue of the Hilbert
inequality (6) whose analytic symbol is the primitive of the Riemann zeta function

ϕ(s) =

∞∑

n=2

1√
n log n

n−s.

We are unable to verify if the multiplicative Hilbert matrix satisfies Nehari’s
theorem, that is whether ϕ ∈ (H 1)∗. However, we demonstrate that if (11)
holds for p = 1, then this is the case. Note also that in Paper 4 it is shown that
ϕ ∈ (H p)∗ for every p > 1.

7



In Paper 8, we discuss certain technical details about weak product spaces of
Dirichlet series. We prove a square function characterization of H p and formulate
a Schur multiplier problem related to skew products. The main goal of Paper 9
is to investigate multiplicative Hankel forms on Bergman spaces, but we also find
several counter-examples on the infinite polydisc to well-known finite dimensional
results regarding Carleson measures.

Part 3: Volterra operators and pseudomoments. In Paper 10, we
study Volterra operators

(Tgf)(s) = −
∫ ∞

s

f(w)g′(w) dw

acting on Hardy spaces of Dirichlet series for some symbol g ∈ H 2. The space
of symbols generating bounded Volterra operators on H 2 serves as a promising
candidate for a BMOA–type space of Dirichlet series. We prove that it lies
between the classical spaces BMOA(C0) and BMOA(C1/2) and that its elements
satisfy a John–Nirenberg type inequality. When investigating symbols such that
1 + g′(s) can be represented by an Euler product, we find connections to two
number theoretic papers of Hilberdink [18] and Gál [10]. We are able to find
a symbol of this type which generates a Volterra operator which is bounded,
but not compact. This symbol converges in C0, but fails spectacularly to have
bounded mean oscillation on the imaginary axis. We also study m-homogeneous
symbols, and prove results related to those obtained for multipliers in [1, 22].

The pth pseudomoment of the Dirichlet series (1) is the sequence
∥∥∥∥∥
N∑

n=1

ann
−s
∥∥∥∥∥

p

H p

.

In [6], precise asymptotics as N → ∞ for the pseudomoments of ζ(1/2 + s)
were computed for even integers p. For general values of 0 < p < ∞, upper
and lower bounds were found in [5], and we improve these estimates for p ≥ 2
in Paper 11. It is interesting to note that the improved estimates are obtained
after replacing an additive technique (partial sums of Euler products) with a
multiplicative technique (Hardy–Littlewood inequalities).

In the opposite direction, Paper 11 also contains an example related to the
zeta function which shows that for small 0 < p < 1, the multiplicative technique
does not always provide the correct asymptotics. In fact, Paper 11 contains
several results regarding the Hardy spaces H p for 0 < p < 1 such as estimates
for coefficients and partial sums. When applying multiplicative techniques to
investigate these additive problems, we encounter again the intriguing interplay
between the additive and multiplicative structures of the integers.
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4. Editorial remarks

The papers included in this thesis represents their final preprinted version,
with one notable exception. An additional section has been added to Paper 4.
This section contains a sharper version of the necessary and sufficient conditions
for bounded zero sequences for functions in H p found in Section 3 of Paper 1
and [32, Sec. 4], respectively. The new results are the best possible we can expect
to obtain from Hilbert space methods.

Several typographical adjustments has been made in order to accommodate
the change to the B5 format of the thesis. The bibliographies have also been
revised and updated. Some effort has been made to make the notation employed
in the different papers as uniform as possible, but there are still some lingering
inconsistencies and constant vigilance is advised.

In particular, we would like to make clear some facts about the two scales of
Bergman–type Hilbert spaces appearing in the various papers. For the Dirichlet
series (1) consider the spaces defined by the norms

‖f‖2Dα
=

∞∑

n=1

|an|2
[d(n)]α

,

‖f‖2A 2
β
=

∞∑

n=1

|an|2
dβ(n)

.

Here d(n) = d2(n) denotes the usual divisor function, α ≥ 0 and β ≥ 1. In
particular D1 = A 2

2 and D0 = A 2
1 = H 2, and these are the only cases of

equality. Note that Dα appear in Papers 1, 2, and 4, and also in [5, 32], while
A 2
β appear in Paper 9 and (implicitly) in Paper 11. Both scales of spaces appear

as examples in [24].
The scale A 2

β has several advantages compared to Dα. First, its reproducing
kernels are simply [ζ(s)]β , while the reproducing kernels of Dα are perturbations
of [ζ(s)]2

α

. This is the reason why the scale A 2
β appears naturally when studying

multiplicative Hankel forms in Paper 9. Note also that the results of this paper
cannot generally be reproved for Dα. Conversely, every result for Dα proved in
Papers 1, 2, 4 and in [5, 32] can with only minor modification be reproved for
A 2
β , replacing α with β − 1 and 2α with β in the various statements. Moreover,

the necessity of a Möbius factor in an inequality for Dα discussed on [5, p. 203]
does not apply to the corresponding statement for A 2

β .
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ZEROS OF FUNCTIONS IN BERGMAN–TYPE HILBERT
SPACES OF DIRICHLET SERIES

OLE FREDRIK BREVIG

Abstract. For a real number α the Hilbert space Dα consists of those
Dirichlet series

∑∞
n=1 an/n

s for which
∞∑

n=1

|an|2
[d(n)]α

< ∞,

where d(n) denotes the number of divisors of n. We extend a theorem of Seip
on the bounded zero sequences of functions in Dα to the case α > 0. Gener-
alizations to other weighted spaces of Dirichlet series are also discussed, as
are partial results on the zeros of functions in the Hardy spaces of Dirichlet
series H p, for 1 ≤ p < 2.

1. Introduction

Let d(n) denote the divisor function let α be a real number. We are interested
in the following Hilbert spaces of Dirichlet series:

Dα =

{
f(s) =

∞∑

n=1

an
ns

: ‖f‖2Dα
=

∞∑

n=1

|an|2
[d(n)]α

< ∞
}
.

The functions of Dα are analytic in C1/2 = {s = σ + it : σ > 1/2}. Bounded
Dirichlet series are almost periodic, and this implies that they have either no
zeros or infinitely many zeros, as observed by Olsen and Seip in [10]. This leads
us to restrict our investigations to bounded zero sequences for spaces of Dirichlet
series. In [13], Seip studied bounded zero sequences for Dα, when α ≤ 0. This
includes the Hardy–type (α = 0) and Dirichlet–type (α < 0) spaces. The topic
of the present work is the Bergman–type spaces (α > 0).

Let us therefore introduce the weighted Bergman spaces in the half-plane, Aβ .
For β > 0, these spaces consists of functions F which are analytic in C1/2 and
satisfy

‖F‖Aβ
=

(∫

C1/2

|F (s)|2
(
σ − 1

2

)β−1

dm(s)

) 1
2

< ∞.

The author is supported by Grant 227768 of the Research Council of Norway.
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It was shown by Olsen in [9] that the local behavior of the spaces Dα are similar
to the spaces Aβ , where β = 2α − 1. This relationship between α and β will be
retained throughout this paper.

For a class of analytic functions C on some domain Ω ⊆ C, we will say that
a sequence S of not necessarily distinct numbers in Ω is a zero sequence for C if
there is some non-trivial F ∈ C vanishing on S, taking into account multiplicities.
We will let Z(C ) denote the set of all zero sequences for C .

A result proved by Horowitz in [6] shows that if C = Aβ we may assume that
F vanishes precisely on S ∈ Z(Aβ), i.e. F has no extraneous zeros in C1/2. We
will exploit this fact to prove our main result.

Theorem 1. Suppose S = (σj + itj) is a bounded sequence of points in C1/2 and
that α > 0. Then there is a non-trivial function in Dα vanishing on S if and only
if S ∈ Z(Aβ).

The “only if” part follows from the local embedding of Dα into Aβ of Theorem
1 and Example 4 from [9]. To prove the “if” part, we will adapt the methods of
[13], where an analogous result for α ≤ 0 was obtained.

The “if” part can essentially be split into two steps. The first step is a dis-
cretization lemma, which depends on the properties of Dα — or rather the weights
[d(n)]α. The second step is an iterative scheme, where the properties of Aβ be-
come more prominent.

Comparing this with [13], the first step is somewhat harder, since we require
very precise estimates on the weights as α grows to infinity. The second step is
considerably easier, mainly due to the fact that the norms of Aβ are easier to
work with than those of the Dirichlet spaces used in [13].

We will use the notation f(x) � g(x) to indicate that there is some constant
C > 0 so that |f(x)| ≤ Cg(x). Sometimes the constant C may depend on certain
parameters, and this will be specified in the text. Moreover, we write f(x) � g(x)
if both f(x) � g(x) and g(x) � f(x) hold.

2. Proof of Theorem 1

We begin with the Paley–Wiener representation of functions F ∈ Aβ , and seek
to construct a Dirichlet series f ∈ Dα which approximates F .

Lemma 2 (Paley–Wiener Representation). Aβ is isometrically isomorphic to

L2
β =

{
φ measurable on [0,∞) : ‖φ‖2L2

β
=

2πΓ(β)

2β

∫ ∞

0

|φ(ξ)|2 dξ

ξβ
< ∞

}
,

under the Laplace transformation

F (s) =

∫ ∞

0

φ(ξ)e−(s−1/2)ξ dξ.
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Proof. A proof can be found in [2]. �

The other ingredient needed for the discretization lemma is estimates on the
growth of [d(n)]α. We will partition the integers into blocks and use an average
order type estimate. To prove this estimate, we will need the precise form of
a formula stated by Ramanujan [11] and proved by Wilson [15]: For any real
number α and any integer ν > 2α − 2, we have

(1) Dα(x) =
∑

n≤x

[d(n)]α = x(log x)2
α−1

(
ν∑

λ=0

Aλ

(log x)λ
+O

(
1

(log x)ν+1

))
.

Wilson’s proof of (1) can be considered at special case of Selberg–Delange method.
For more about the Selberg–Delange method, we refer to Chapter II.5 of [14].
However, we mention that the coefficients Aλ depend on the coefficients of the
Dirichlet series φα, which we implicitly define through the relation

(2) ζα(s) =

∞∑

n=1

[d(n)]αn−s =

∞∏

j=1

(
1 +

∞∑

k=1

(k + 1)αp−sk
j

)
= [ζ(s)]

2α
φα(s).

The partial sums of the coefficients of ζα are estimated through Perron’s formula
and the residue theorem. While (2) is only valid for Re(s) > 1, a simple compu-
tation using Euler products shows that φα converges for Re(s) > 1/2, and thus
Theorem 5 of [14] may be applied. In particular, the coefficients Aλ depend on
the coefficients of φα, and since the coefficients of φα depend continuously on α,
so does Aλ in (1).

Lemma 3. Let α be a real number and 0 < γ < 1. Then

(3)
∑

jγ≤log n≤(j+1)γ

[d(n)]α

n
� jγ2

α−1,

as j → ∞. The implied constants may depend on α and γ.

Proof. We will first assume that 2α is not an integer. Fix ν such that ν > 2α − 1
and ν > 1/γ − 1. We use Abel summation to rewrite

(4)
∑

y<n≤x

[d(n)]α

n
=

Dα(x)

x
− Dα(y)

y
+

∫ x

y

Dα(z)

z2
dz.
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By using (1) and the fact that 2α − 1− ν < 0 we perform some standard calcu-
lations to estimate

Dα(x)

x
− Dα(y)

y
=

ν∑

λ=0

Aλ

(
(log x)2

α−1−λ − (log y)2
α−1−λ

)

+O
(
(log y)2

α−2−ν
)
,

∫ x

y

Dα(z)

z2
dz =

ν∑

λ=0

Aλ

2α − λ

(
(log x)2

α−λ − (log y)2
α−λ

)

+O
(
(log y)2

α−1−ν
)
.

Let us now take x = exp ((j + 1)γ) and y = exp (jγ). For any exponent η it is
clear that

(log x)η − (log y)η = γηjγη−1

(
1 +O

(
1

j

))
.

Hence we have

Dα(x)

x
− Dα(y)

y
�

ν∑

λ=0

Aλ(γ(2
α − 1− λ))jγ(2

α−1−λ)−1 +O
(
jγ(2

α−2−ν)
)
,

∫ x

y

Dα(z)

z2
dz �

ν∑

λ=0

Aλj
γ(2α−λ)−1 +O

(
jγ(2

α−1−ν)
)
.

We combine these estimates with (4) to obtain
∑

jγ≤logn≤(j+1)γ

[d(n)]α

n

� jγ2
α−1

(
A0 +

ν∑

λ=1

Bλ

jγλ
+O

(
1

jγ2α−1−γ(2α−1−ν)

))
,

(5)

where Bλ = Aλ + Aλ−1γ (2
α − λ). This proves (3) since ν > 1/γ − 1. By

continuity on both sides of (5), the assumption that 2α is not an integer may be
dropped. �

The parameter 0 < γ < 1 will be used to control the “block size” in our
partition of the integers. It will become apparent that as α grows to infinity, we
must be able to let γ tend to 0. In [13] it was sufficient to have a similar estimate
only for 1/2 < γ < 1.

Lemma 4 (Discretization Lemma). Let α > 0 and let N be a sufficiently large
positive integer. Then there exists positive constants A and B (depending on α,
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but not N) such that the following holds: For every function φ ∈ L2
β supported

on [logN,∞), there is a function of the form

f(s) =
∞∑

n=N

an
ns

in Dα such that ‖f‖Dα
≤ A‖φ‖L2

β
. Moreover, f may be chosen so that

Φ(s) =

∫ ∞

logN

φ(ξ)e−(s−1/2)ξ dξ − f(s)

enjoys the estimate

|Φ(s)| ≤ B|s− 1/2|N−σ+1/2(logN)−1‖φ‖L2
β
,

in C1/2.

Proof. Let γ = 2/(4+2α) and let J be the largest integer smaller than (logN)1/γ .
For j ≥ J , let nj be the smallest integer n such that ej

γ ≤ n. When γ is small
it is possible that nj = nj+1. This can be avoided by taking N sufficiently large.
Set ξnj

= jγ and for nj < n ≤ nj+1 iteratively choose ξn such that

(6)
ξβ+1
n+1 − ξβ+1

n

β + 1
= Aj

[d(n)]α

n
,

where Aj is chosen so that ξnj+1 = (j + 1)γ . Clearly, Lemma 3 implies that Aj

is bounded as j → ∞. Let us set

an =
√
n

∫ ξn+1

ξn

φ(ξ) dξ.

A simple computation using the Cauchy–Schwarz inequality shows that

|an|2 = n

∣∣∣∣∣

∫ ξn+1

ξn

φ(ξ) dξ

∣∣∣∣∣

2

≤ n · ξ
β+1
n+1 − ξβ+1

n

β + 1

∫ ξn+1

ξn

|φ(ξ)|2 dξ

ξβ
.

In view of (6) it is clear that ‖f‖Dα
≤ A‖φ‖L2

β
. Now, if nj ≤ n ≤ nj+1 and

ξ ∈ [ξnj , ξnj+1 ] we see that

(7)
∣∣∣e−(s−1/2) − n−(s−1/2)

∣∣∣ ≤ N−σ+1/2|s− 1/2|jγ−1.

Then, by (7) and the Cauchy–Schwarz inequality

|Φ(s)| ≤ N−σ+1/2|s− 1/2|
∞∑

j=J

jγ−1

nj+1−1∑

n=nj

(
ξβn+1 − ξβn

β

) 1
2
(∫ ξn+1

ξn

|φ(ξ)|2 dξ

ξβ

) 1
2

.
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By using the Cauchy–Schwarz inequality again with (6) we get

|Φ(s)| � N−σ+1/2|s− 1/2|
∞∑

j=J

jγ−1




nj+1−1∑

n=nj

[d(n)]α

n




1
2 (∫ ξnj+1

ξnj

|φ(ξ)|2 dξ

ξβ

) 1
2

.

Now Lemma 3 and the Cauchy–Schwarz inequality yield

|Φ(s)| � N−σ+1/2|s− 1/2|




∞∑

j=J

j(2+2α)γ−3




1
2 (∫ ∞

logN

|φ(ξ)|2 dξ

ξβ

) 1
2

.

The series converges since γ < 2/(2+ 2α). The proof is completed by a standard
estimate of the convergent series,




∞∑

j=J

j(2+2α)γ−3




1
2

� (logN)((2+2α)γ−2)/(2γ) = (logN)−1,

where we used that J � (logN)1/γ . �

The final result needed for the iterative scheme is the following simple lemma
on the ∂-equation. We omit the proof, which is obvious.

Lemma 5. Suppose g is a continuous function on C1/2, supported on

Ω(R, τ) = {s = σ + it : 1/2 ≤ σ ≤ 1/2 + τ, −R ≤ t ≤ R},
for some positive real numbers τ and R. Then

u(s) =
1

π

∫

Ω

g(w)

s− w
dm(w)

solves ∂u = g in C1/2 and satisfies ‖u‖∞ ≤ CΩ‖g‖∞.

We have now collected all our preliminary results and are ready to begin the
proof of Theorem 1. For any positive integer N we set EN (s) = N−s+1/2 and
consider the space ENAβ . By a substitution it is evident that any F ∈ ENAβ

can be represented as

F (s) =

∫ ∞

logN

φ(ξ)e−(s−1/2)ξ dξ

for some φ ∈ L2
β [logN,∞), in view of Lemma 2.

Final step in the proof of Theorem 1. Let us fix α > 0 and a bounded sequence
S = (σj + itj) ∈ Z(Aβ). From this point all constants may depend on α and S.
Since S is bounded we may assume S ⊂ Ω(R − 2, τ − 2) for some R, τ > 2. Let
Θ be some smooth function defined on C1/2 with the following properties:
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• Θ is supported on Ω(R, τ),
• Θ(s) = 1 for s ∈ Ω(R− 1, τ − 1),
• |∂Θ(s)| ≤ 2.

Let G ∈ Aβ vanish precisely on S and assume furthermore that ‖G‖Aβ
= 1. Now,

suppose that F ∈ ENAβ , and let f ∈ Dα be the function obtained by applying
Lemma 4 to F , and Φ = F − f . Moreover, let u denote the solution to the
equation

(8) ∂u =
∂(ΘΦ)

GEN
.

The right hand side of (8) is a smooth function compactly supported on Ω(R, τ)
since |G(s)| is bounded from below where ∂Θ(s) 6= 0. We can use Lemma 5 and
Lemma 2 to estimate

(9) ‖u‖∞ �
∥∥∥∥
∂(ΘΦ)

GEN

∥∥∥∥
∞

� (logN)−1‖φ‖L2
β
= (logN)−1‖F‖Aβ

.

We set TNF = ΘΦ−GENu. The function TNF has the following properties:
• TNF (s) = Φ(s) for s ∈ S,
• TNF is analytic in C1/2 since ∂TNF (s) = 0 for s ∈ C1/2,
• TNF ∈ ENAβ , by the compact support of Θ and the estimate (9).

Hence TN defines an operator on ENAβ . By the triangle inequality, Lemma 4
and the fact that Θ has compact support, it is clear that

‖TNF‖Aβ
≤ ‖ΘΦ‖Aβ

+ ‖GENu‖Aβ
� (logN)−1‖φ‖L2

β
+ ‖u‖∞‖G‖Aβ

.

Since ‖G‖Aβ
= 1 and ‖φ‖L2

β
= ‖F‖Aβ

we have ‖TN‖ � (logN)−1 in view of (9).
Let N be large, but arbitrary, and define F0(s) = EN (s)G(s). Then F0 ∈ ENAβ

and its norm in this space is ≤ 1. Set

Fj = T j
NF0.

Let fj be the Dirichlet series of Lemma 4 obtained from Fj . Then f0+F1 vanishes
on S, since

f0(s) + F1(s) = f0(s) + TNF0(s) = f0(s) + F0(s)− f0(s) = F0(s) = 0,

for s ∈ S, by the fact that TNF (s) = Φ(s) for s ∈ S. Iteratively, the function
f0 + f1 + · · ·+ fj + Fj+1 also vanishes on S. Define

f(s) =
∞∑

j=0

fj(s)

and choose N so large that ‖TN‖ < 1 so that ‖Fj‖Aβ
→ 0 and, say

|f(1)| >
∞∑

j=1

|fj(1)|,
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so that f is non-trivial in Dα and vanishing on S. �

By again following [13], we can modify the iterative scheme in the following
way: Let F ∈ Aβ be arbitrary, and set F0 = F . Using the algorithm in the same
manner as above, we see that F1(s) + f0(s) = F0(s) for s ∈ S. Moreover,

Fj+1(s) + fj(s) + fj−1(s) + · · ·+ f0(s) = F (s),

for s ∈ S. Continuing as above, we obtain the following result:

Corollary 6. Suppose S = (σj + itj) ∈ Z(Aβ) is bounded. For every function
F ∈ Aβ there is some f ∈ Dα such that f(s) = F (s) on S.

We can extend Theorem 1 and Corollary 6 by considering different weights.
Let w = (w1, w2, . . . ) be a non-negative weight. Define the Hilbert space of
Dirichlet series Dw in the same manner as above, with the added convention that
the basis vector n−s is excluded if wn = 0. Theorem 1 in [9] states that Dw

embeds locally into Aβ if and only if

(10)
∑

n≤x

wn � x(log x)β ,

where β > 0. By modifying the proof of our Theorem 1, we can obtain a similar
result for Dw with respect to Aβ provided we additionally have

(11)
∑

jγ≤log n≤(j+1)γ

wn

n
� jγ(β+1)−1,

as j → ∞, for some 0 < γ < 2/(3 + β). Several of the weights considered in
[9] are possible, but we only mention the case wn = (log n)β for β > 0. These
spaces were introduced by McCarthy in [8]. It is easy to show that these weights
satisfy (10) and (11) for any 0 < γ < 1, and similar results with respect to Aβ

are obtained.

Remark. The embeddings of [9] extend to any β ≤ 0, in view of (10), and we
get the Hardy space (β = 0) and Dirichlet spaces (β < 0) in the half-plane. We
can extend the results in [13] in a similar manner as above. However, this is only
possible for −1 ≤ β < 0. The method of [13] breaks down for β < −1 due to the
fact that the norms of the corresponding Dirichlet spaces in the half-plane uses
higher order derivatives and different estimates are needed.

3. Blaschke-type conditions for Dα and H p

Now that we have identified the bounded zero sequences of Dα as those of Aβ ,
let us consider necessary and sufficient conditions for bounded zero sequences of
Aβ . The zero sequences of Bergman spaces in the unit disc D have attracted
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considerable attention. We refer to the monograph [3]. For β > 0, these are the
spaces

Aβ(D) =
{
F ∈ H(D) : ‖F‖ =

∫

D
|F (z)|2(1− |z|)β−1dm(z) < ∞

}
.

Results pertaining to zero sequences of Aβ(D) are relevant to our case since

φ(s) =
s− 3/2

s+ 1/2

is a conformal mapping from C1/2 to D, and

F 7→ (s+ 1/2)−2(β+1)F

(
s− 3/2

s+ 1/2

)

defines an isometric isomorphism from Aβ(D) to Aβ . This implies that S ∈ Z(Aβ)
if and only if φ(S) ∈ Z(Aβ(D)). Since the Hardy space H2(D) is included in
Aβ(D) for every β > 0, it is clear that the Blaschke condition

(12)
∑

j

(σj − 1/2) < ∞

is sufficient for bounded zero sequences of Aβ . Moreover, Theorem 4.1 of [3] shows
that the Blaschke condition (12) is both necessary and sufficient provided the
bounded sequence S is contained in any cone |t− t0| ≤ c(σ−1/2). Unfortunately,
the situation becomes more complicated in the general case and we do not have
a precise Blaschke-type condition for bounded zero sequences. In fact, for every
ε > 0 and every Aβ a necessary condition for bounded zero sequences is

(13)
∑

j

(σj − 1/2)1+ε < ∞,

by Corollary 4.8 of [3]. Clearly, this condition does not offer any insight into
what happens as β → 0+. However, using the notion of density introduced by
Korenblum in [7] it is possible to provide a generalized condition describing the
geometrical information of the zero sequences of Aβ(D). The most precise results
on Korenblum’s density are obtained by Seip in [12]. We omit the details, only
mentioning that this generalized condition in a certain sense tends to (12) when
β → 0+.

The Hardy spaces of Dirichlet series H p, 1 ≤ p < ∞, can be defined as the
closure of the set of all Dirichlet polynomials with respect to the norms

∥∥∥∥∥
N∑

n=1

an
ns

∥∥∥∥∥
H p

= lim
T→∞

(
1

2T

∫ T

−T

∣∣∣∣∣
N∑

n=1

an
nit

∣∣∣∣∣

p

dt

) 1
p

.

For the basic properties of these spaces we refer to [4] and [1]. However, we
immediately observe that H 2 = D0. In [13], the bounded zero sequences of
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the spaces H p, for 2 ≤ p < ∞, are studied. In particular, for H 2 the Blaschke
condition (12) is shown to be both necessary and sufficient. Results for 2 < p < ∞
are obtained through embeddings Dα ⊂ H p ⊂ H 2, where α < 0 depends on
p. The embedding of H p into H 2 implies that the Blaschke condition (12) is
necessary for H p.

The sufficient conditions are obtained through a similar result as Theorem
1: For α < 0, the spaces Dα have the same bounded zero sequences as certain
weighted Dirichlet spaces in C1/2. In particular, for 2 < p < ∞ there is some
0 < γ < 1 such that a sufficient condition for bounded zero sequences of H p is

(14)
∑

j

(σj − 1/2)1−γ < ∞,

and moreover γ → 0 as p → 2−. We omit the details, which can be found in [13].
We will now consider the case 1 ≤ p < 2. That H 2 ⊂ H p ⊆ H 1 for

1 ≤ p < 2 is trivial, and this shows that (12) is a sufficient condition for bounded
zero sequences of H p. In [5], Helson proved the beautiful inequality

(15) ‖f‖D1 =

( ∞∑

n=1

|an|2
d(n)

) 1
2

≤ ‖f‖H 1 ,

which implies that H p ⊂ D1. This shows that the Blaschke-type condition (13)
is necessary for bounded zero sequences of H p, for every ε > 0. Regrettably, this
means we are unable to specify how the situation changes as p → 2−, in a manner
similar to (14). However, if we again restrict S to the cone |t− t0| ≤ c(σ − 1/2),
the Blaschke condition (12) is both necessary and sufficient for bounded zero
sequences of H p.

Remark. The Blaschke condition (12) is well-known to be necessary and sufficient
for bounded zero sequences of the Hardy spaces Hp(C1/2). By a theorem in
[4], H 2 embeds locally into H2(C1/2). This trivially extends to even integers p.
Whether the local embedding extends to every p ≥ 1 is an open question. Observe
that if (12) is not the optimal necessary condition for bounded zero sequences of
H p, when 1 ≤ p < 2, then the local embedding would be impossible for these p.
However, since (14) is a sufficient condition for bounded zero sequences of H p

when p ≥ 2, its optimality would not contradict the local embedding for these p.
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COMPACT COMPOSITION OPERATORS WITH NON-LINEAR
SYMBOLS ON THE H2 SPACE OF DIRICHLET SERIES

FRÉDÉRIC BAYART AND OLE FREDRIK BREVIG

Abstract. We investigate the compactness of composition operators on
the Hardy space of Dirichlet series induced by a map ϕ(s) = c0s + ϕ0(s),
where ϕ0 is a Dirichlet polynomial. Our results depend heavily on the
characteristic c0 of ϕ and, when c0 = 0, on both the degree of ϕ0 and its local
behaviour near a boundary point. We also study the approximation numbers
for some of these operators. Our methods involve geometric estimates of
Carleson measures and tools from differential geometry.

1. Introduction

A theorem of Gordon and Hedenmalm [9] describes the bounded composition
operators on the Hilbert space H 2 of Dirichlet series,

f(s) =
∞∑

n=1

ann
−s,

with square summable coefficients endowed with the norm ‖f‖2H 2 :=
∑∞

n=1 |an|2.
We let Cθ denote the half-plane of complex numbers s = σ + it with σ > θ. The
Dirichlet series in H 2 represent analytic functions in C1/2 and a mapping ϕ of
C1/2 into itself defines a function Cϕ(f) := f◦ϕ on C1/2, if f ∈ H 2. The operator
Cϕ : H 2 → H 2 is well-defined and bounded if and only if ϕ is a member of the
following class:

Definition. The Gordon–Hedenmalm class, denoted G , is the set of functions
ϕ : C1/2 → C1/2 of the form

(1) ϕ(s) = c0s+

∞∑

n=1

cnn
−s =: c0s+ ϕ0(s),

where c0 is a non-negative integer called the characteristic of ϕ, the Dirichlet
series ϕ0 converges uniformly in Cε (ε > 0) and has the following mapping
properties:

(a) If c0 = 0, then ϕ0(C0) ⊂ C1/2.

The second author is supported by Grant 227768 of the Research Council of Norway.
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(b) If c0 ≥ 1, then either ϕ0 ≡ 0 or ϕ0(C0) ⊂ C0.

Since the paper of Gordon and Hedenmalm, several authors have studied the
properties of composition operators acting on H 2 or on similar spaces of Dirichlet
series (see for instance [1, 2, 7, 8, 11]). In the present work, we are interested in
the study of the compactness of Cϕ when ϕ is a polynomial symbol, say

(2) ϕ(s) = c0s+ c1 +

N∑

n=2

cnn
−s,

and we implicitly assume that ϕ ∈ G . The symbol ϕ is said to have unrestricted
range if

inf
s∈C0

Re (ϕ(s)) =

{
1/2 if c0 = 0,

0 if c0 ≥ 1.

Correspondingly, if ϕ(C0) is strictly contained in any smaller half-plane, we say
that Cϕ has restricted range. It is well-known that the composition operator Cϕ

is compact when ϕ has restricted range [1, Thm. 21]. In what follows, we will
assume that ϕ has unrestricted range.

Definition. A set of integers Λ ⊆ N − {1} is called Q-independent if the set
{log n : n ∈ Λ} is linearly independent over Q.

Symbols of the form (2) have been extensively studied in the linear case,

(3) ϕ(s) = c0s+ c1 +
d∑

j=1

cqjq
−s
j ,

where the set {qj} is Q-independent and cqj 6= 0. When c0 ≥ 1, it is proven in [2]
that the operator Cϕ is compact if and only if ϕ has restricted range. Our first
result extends this to the case of an arbitrary polynomial:

Theorem 1. Let ϕ be a Dirichlet polynomial of the form (2) with c0 ≥ 1. Then
Cϕ is compact if and only if ϕ has restricted range.

As is to be expected when investigating composition operators on H 2, the
symbols with c0 = 0 are more difficult to handle and require different techniques.
In this case, it is proven independently in [2] and [8] that composition operators
induced by linear symbols (3) with c0 = 0 are compact if and only if ϕ has
restricted range or d ≥ 2.

The main effort of this paper is dedicated to extending this result to gen-
eral polynomials. We rely crucially on a geometric description of such compact
composition operators found in [11] (see Lemma 5 below). Our second result is:
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Theorem 2. Suppose that {qj}dj=1 are Q-independent and that

ϕ(s) =
d∑

j=1

Pj(q
−s
j )

is in G , and that the polynomials Pj are non-constant. Then Cϕ is compact if
and only if ϕ has restricted range or d ≥ 2.

Theorem 2 is truly a non-linear extension of the results for linear symbols,
however it fails to handle the relatively simple cases

ϕ1(s) =
9

2
− 2−s − 3−s − 2 · 6−s,

ϕ2(s) =
13

2
− 4 · 2−s − 4 · 3−s + 2 · 6−s,

(4)

where “mixed terms” are present. However, the compactness of the associated
operators can be decided by our main result. Before this result can be stated, we
need to introduce some additional definitions.

Definition. Let Λ ⊆ N − {1}. We let the complex dimension of Λ, denoted
D(Λ), be the infimum of card(Λ0) where Λ0 ⊂ N − {1} is Q-independent and
multiplicatively generates Λ.

At this point, we should mention that the set Λ0 attaining such an infimum is
not necessarily unique. This is easily seen by considering

Λ =
{
22 · 32, 24 · 32, 22 · 34, 24 · 34

}
,

where Λ0 can be chosen as any of the following sets:

{2, 3}
{
22, 3

} {
2, 32

} {
22, 32

} {
22 · 3, 3

} {
2, 2 · 32

}

Now, we will rewrite (2) as

(5) ϕ(s) = c1 +
∑

n∈Λ

cnn
−s

with cn 6= 0 for every n ∈ Λ. We pick some Λ0 = {q1, q2, . . . , qd} where d =
D(Λ). Since Λ0 generates Λ, any n ∈ Λ can be written uniquely as a product of
elements in Λ0,

n =
d∏

j=1

q
αj

j .

This associates to n the d-dimensional multi-index α(n). Clearly, α(n) depends
on the choice of Λ0 as the example considered above illustrates.
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Definition. The degree of ϕ with respect to Λ0 is defined by

deg(ϕ,Λ0) = sup
{
|α(n)| = α1 + α2 + · · ·+ αd : n ∈ Λ

}
.

Among the different Λ0 which generate Λ and with card(Λ0) = D(Λ), we choose
an optimal Λ0 in the sense that it minimizes deg(ϕ,Λ0). The degree of ϕ is then
equal to the value of deg(ϕ,Λ0) where Λ0 is optimal in the previous sense.

It is clear that there can be more than one optimal Λ0, as the example con-
sidered above again demonstrates, where the three final possibilities all have
deg(ϕ,Λ0) = 4 if ϕ is given by (5).

Remark. For maps of the form (3) as considered before, the complex dimension
is equal to d and the degree is equal to 1, which justifies our terminology “linear
case”.

The study of the Hardy space of Dirichlet series H 2 is intimately related to
function theory on polydiscs. In our concerns, the main tool will be the so-called
Bohr lift. Indeed, consider an optimal Λ0 and use the substitution q−s

j 7→ zj .
To simplify the expressions in what follows, we will also subtract 1/2. Hence we
obtain a polynomial in d variables with the same degree as ϕ,

(6) Φ(z) =

(
c1 −

1

2

)
+
∑

n∈Λ

cnz
α(n).

The polynomial Φ will be called an optimal Bohr lift of ϕ. Using Kronecker’s
theorem (see for instance [10, Ch. 13]), the Q-independence of Λ0 implies that Φ
maps Dd into C0. The polynomial Φ induces a map, denoted by φ, on Rd defined
by

φ(θ1, θ2, . . . , θd) = Φ
(
eiθ1 , eiθ2 , . . . , eiθd

)
.

Remark. We will sometimes need to define the Bohr lift when the map ϕ(s) =∑
n≥1 cnn

−s is not a Dirichlet polynomial. It is then defined as

Φ(z) =

(
c1 −

1

2

)
+
∑

n≥2

cnz
α(n)

where we use the substitution p−s
j 7→ zj . If we assume that ϕ ∈ G , its Bohr lift

Φ is now well-defined on D∞ ∩ c0, and Kronecker’s theorem shows that this set
is mapped by Φ into C0.

Let us come back to a polynomial ϕ ∈ G . If we assume that ϕ has unrestricted
range, there exists at least one point w ∈ Td so that ReΦ(w) = 0, by the
compactness of Td. Let w =

(
eiϑ1 , eiϑ2 , . . . , eiϑd

)
. Then ϑ = (ϑ1, ϑ2, . . . , ϑd)

has to be a critical point of Reφ since this last map admits a minimum at ϑ.
Moreover, the mapping properties of ϕ implies that the Hessian matrix of Reφ
at ϑ should be non-negative.
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Definition. We define the boundary index of Φ at w as the non-negative integer
J(Φ, w) such that the signature of the Hessian matrix of Reφ at ϑ is equal to(
J(Φ, w), 0

)
.

With these definitions at hand, we are able to state our main theorem which
shows that, when there are mixed terms, the complex dimension does not give
enough information and that we need a more careful study of ϕ.

Theorem 3. Let ϕ(s) = c1 +
∑

n≥2 cnn
−s be a Dirichlet polynomial in G with

unrestricted range. Suppose that its complex dimension d is greater than or equal
to 2, and let Φ be a minimal Bohr lift of ϕ. Assume that

• either the degree of ϕ is equal to 1 or 2,
• or the degree of ϕ is at least 3 and for any w ∈ Td, either ReΦ(w) > 0

or ReΦ(w) = 0 and J(Φ, w) ≥ 2.

Then Cϕ is compact on H 2. Moreover, the result is optimal in the following
sense:

• If the complex dimension of ϕ is equal to 1, then Cϕ is never compact.
• There exist polynomials ϕ ∈ G of arbitrary complex dimension and of

arbitrary degree greater than or equal to 3 such that Cϕ is not compact.

At this point we should mention that Theorem 3 does not encompass Theo-
rem 2, and we will return to this point later (see Section 7). However, Theorem 3
allows us to conclude that for the Dirichlet polynomials ϕ given by (4), which
have complex dimension and degree equal to 2, the induced composition operators
are compact.

We are also interested in the degree of compactness of our operators, which
may be estimated using their approximation numbers.

Definition. Let H be a Hilbert space and let T ∈ L(H). The nth approximation
number of T , denoted an(T ), is the distance of T to the operators of rank < n.

The study of the behaviour of an(Cϕ) when ϕ ∈ G is a linear symbol (3) has
been done in [11]. In particular, it is shown there that

(
1

n

)(d−1)/2

� an(Cϕ) �
(
log n

n

)(d−1)/2

where d is the complex dimension of ϕ. We will extend this result to a general
context. To keep this introduction sufficiently short, we refer to Section 8 for our
statement, and give only one striking consequence of it: We may distinguish the
Schatten classes of linear operators on H 2 using composition operators induced
by polynomial symbols. By definition, a compact linear operator T belongs to

55



the Schatten class Sp, for 0 < p <∞, if

‖T‖pp := Tr (|T |p) =
∞∑

n=1

an(T )
p <∞.

Corollary 4. Let 0 < p < q. There exists a Dirichlet polynomial ϕ ∈ G such
that Cϕ ∈ Sq\Sp.

Let us end this introduction by mentioning that the the composition operators
induced by the maps ϕ1 and ϕ2 have different degrees of compactness. Indeed,
we will show that

(
1

n

)1/2

� an (Cϕ1) �
(
log n

n

)1/2

,

(
1

n

)1/3

� an (Cϕ2) �
(
log n

n

)1/3

.

Organization. The remainder of this paper is divided into seven sections.

• Section 2 contains the proof of Theorem 1. The content of this section is
independent from that of the following sections.

• In Section 3 we introduce some necessary tools and results needed for the
proof of Theorem 2 and Theorem 3.

• Section 4 is devoted to the proof of Theorem 2.
• Section 5 contains the proof of Theorem 3.
• In Section 6 we prove Lemma 12, which is the most technical part of

Theorem 3.
• In Section 7 we discuss the case deg(ϕ) ≥ 3 and J(Φ, w) = 0, its connec-

tion to Theorem 2 and some related examples.
• Finally, in Section 8, we discuss the decay of the sequence of approxima-

tion numbers for some of our operators.

Notation. The notation f(ε) � g(ε) will mean that f(ε) ≤ Cg(ε) for some
constant C which does not depend on ε. We will sometimes write f(ε) �a g(ε)
to emphasize that C depends on a. As usual, we let {pj} denote the sequence
of prime numbers written in increasing order. We let md denote the normalized
Lebesgue measure on Td. This measure is invariant under rotations. If we do
not have a priori knowledge of the complex dimension d, we will often call this
measure m∞. For a point z = eiθ on the unit circle T, we will always assume
that θ ∈ (−π, π]. Finally, 0 will denote the point (0, . . . , 0) ∈ Cd, and 1 will
similarly denote the point (1, . . . , 1).
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2. Proof of Theorem 1

Let ϕ(s) = c0s + c1 +
∑N

n=2 cnn
−s ∈ G such that c0 ≥ 1. We already know

that if ϕ has restricted range, then Cϕ is compact. Let us therefore assume
that Cϕ is compact and also assume that ϕ has unrestricted range, to argue by
contradiction.

By [2, Thm. 3], we know that

(7)
Reϕ(s)

Re(s)

Re(s)→0−−−−−→ +∞.

Now, since ϕ has unrestricted range there exists a sequence {sk = σk+ itk}k≥1

in C0 such that Reϕ(sk) → 0. It is well-known that this forces that σk → 0 (see
[2]). Then

Reϕ(sk) = c0σk+Re(c1)+
N∑

n=2

n−σk
(
Re(cn) cos(tk log(n))+Im(cn) sin(tk log(n))

)
.

By successive extraction of subsequences, we may assume that there exist real
numbers an and bn so that for 2 ≤ n ≤ N we have, as k → ∞,

cos(tk log(n)) → an and sin(tk log(n)) → bn.

Hence, we may write

Reϕ(sk) = c0σk +Re(c1) +
N∑

n=2

n−σk
(
Re(cn)an + Im(cn)bn

)
+

N∑

n=2

n−σkFn(tk),

where each Fn(tk) → 0 as k → ∞. Since Re sk = σk also goes to 0, we may
deduce that

Re(c1) +

N∑

n=2

(
Re(cn)an + Im(cn)bn

)
= 0,

so that we have

Reϕ(s) = c0σ +

N∑

n=2

(
n−σ − 1

) (
Re(cn)an + Im(cn)bn

)
+

N∑

n=2

n−σFn(t).

We will now choose another sequence {s′k = σ′
k + itk}k≥1 where Re(s′k) → 0 in

order to obtain a contradiction with (7). More precisely, let {σ′
k}k≥1 be any

sequence of positive real numbers tending to 0 such that, for any n = 2, . . . , N
and every k ≥ 1, we have n−σ′

k |Fn(tk)| ≤ σ′
k. Then we obtain

Reϕ(s′k) = c0σ
′
k +

N∑

n=2

(
n−σ′

k − 1
) (

Re(cn)an + Im(cn)bn
)
+

N∑

n=2

n−σ′
kFn(tk),

so Reϕ(s′k) = O(σ′
k) = O

(
Re(s′k)

)
and this contradicts (7). The assumption

that ϕ has unrestricted range must be wrong. �
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Remark. An inspection of the proof reveals that the statement of Theorem 1
remains true if we assume that ϕ(s) = c0s+ c1 +

∑∞
n=2 cnn

−s ∈ G with c0 ≥ 1,∑∞
n=1 |cn| < +∞ and that the complex dimension of ϕ is finite. The latter

assumption is needed to use (7).

3. Preliminaries

As explained in the introduction, our main tool for proving or disproving
compactness is a result from [11]. We formulate it in a more general context than
for polynomials since it will be used under this form in Section 8. Recall that a
Carleson square in C0 is a closed square in C0 with one of its sides lying on the
vertical line iR; the side length of Q is denoted by `(Q). A non-negative Borel
measure µ on C0 is called a vanishing Carleson measure if

lim sup
`(Q)→0

µ(Q)

`(Q)
= 0.

Lemma 5. Suppose that ϕ(s) =
∑

n≥1 cnn
−s ∈ G and that ϕ(C0) is bounded.

The corresponding composition operator Cϕ is compact on H 2 if and only if the
measure

µϕ(E) := m∞ ({z ∈ T∞ : Φ(z) ∈ E}) , E ⊆ C0.

is vanishing Carleson in C0, where Φ denotes a Bohr lift of ϕ.

Proof. This is Corollary 4.1 in [11]. �

Hence we consider squares

Q = Q(τ, ε) = [0, ε]× [τ − ε/2, τ + ε/2],

and want to investigate whether µϕ(Q) = o(ε) uniformly in τ ∈ R. Our next
lemma points out that this depends only on the local behaviour of Φ.

Lemma 6. Let ϕ be a Dirichlet polynomial (2) with c0 = 0 mapping C0 into
C1/2 and let Φ be a minimal Bohr lift of ϕ. If for every w ∈ Td with ReΦ(w) = 0

there exists a neighbourhood Uw 3 w in Td, constants Cw > 0 and κw > 1 such
that for every τ ∈ R and every ε > 0 we have

(8) md ({z ∈ Uw : Φ(z) ∈ Q(τ, ε)}) ≤ Cwε
κw ,

then Cϕ is compact.

Proof. Since ϕ is a Dirichlet polynomial, it has finite complex dimension d.
We first observe that (8) is always satisfied for those w ∈ Td with ReΦ(w) > 0.

Indeed, by continuity of Φ, we may always find a neighbourhood Uw 3 w and
ε0 > 0 such that, for all ε ∈ (0, ε0) and all τ ∈ R,

{
z ∈ Uw : Φ(z) ∈ Q(τ, ε)

}
is

empty. We may then take κw > 1 be arbitrary and choose Cw with Cwε
κw
0 ≥ 1.
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We will then use a compactness argument and Lemma 5. Indeed, there exists
a finite number of points w1, . . . , wN such that Td is covered by Uw1 , . . . ,UwN

.
Now, we may take C = Cw1 + · · ·+CwN

and κ = min(κw1 , . . . , κwN
). Hence, for

all τ ∈ R and all ε > 0,

md

({
z ∈ Td : Φ(z) ∈ Q(τ, ε)

})
≤ Cεκ

which achieves the proof of the compactness of Cϕ on H 2. �

Hence, we will require more information about the Taylor coefficients of Φ at
a boundary point. Assume that Φ(w) = 0 where w = 1. In this case, we will
rewrite

(9) Φ(z) =
∑

n∈Λ

c̃n

d∏

j=1

(1− zj)
αj =

∑

α∈Nd

cα(1− z)α,

where we have adopted the convention cα = c̃n, which is not generally equal to
cn. We shall need a kind of Julia–Caratheodory theorem for Φ of the form (9).

Lemma 7. Let Φ : Dd → C0 be of the form (9) and let |α| = 1. Then cα ≥ 0.
Moreover, there exists at least one multi-index α with |α| = 1 and cα > 0, unless
Φ ≡ 0.

Proof. We may assume that α = (1, 0, . . . , 0). Consider the one-variable polyno-
mial

ψ(w) = Φ(w, 1, . . . , 1).

Clearly, ψ maps D to C0, and ψ(1) = 0. We write

ψ(w) = a(1− w) + b(1− w)2 +O
(
(1− w)3

)
.

We set w = eiθ and obtain

ψ
(
eiθ
)
= a

(
θ2

2
− iθ

)
− bθ2 +O

(
θ3
)
.

In particular,

Re
(
ψ
(
eiθ
))

= θ Im(a) + θ2
(
Re(a)

2
− Re(b)

)
+O

(
θ3
)
.

Since this should be non-negative, clearly Im(a) = 0. We now set w = 1 − δ for
0 < δ < 1 and consider ψ(δ) = aδ+O

(
δ2
)
. Since the real part of this also should

be non-negative as δ → 0+ we must have a ≥ 0. Hence cα ≥ 0 when |α| = 1.
Now, consider the mapping

α 7→ n(α) =
d∏

j=1

p
αj

j .
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It defines a total order on Nd by setting α ≤ β if and only if n(α) ≤ n(β). Assume
that Φ 6≡ 0 and that cα = 0 whenever |α| = 1. Consider

β = inf {α : cα 6= 0} ,
which exists since Φ 6≡ 0. There is θ ∈ (−π, π] so that cβ = |cβ |eiθ. Fix θj ∈
(−π/2, π/2) and define

zj = 1− p−σ
j eiθj ,

where σ > 0. For large enough σ, clearly z = (z1, . . . , zd) ∈ Dd. Moreover,

Φ(z1, . . . , zd) = |cβ |eiθ[n(β)]−σei(β1θ1+···+βdθd) + o
(
[n(β)]−σ

)
,

as σ → ∞. This implies that

Re (Φ(z1, . . . , zd)) = |cβ |[n(β)]−σ cos(θ + β1θ1 + · · ·βdθd) + o
(
[n(β)]−σ

)
.

Since |β| ≥ 2, we can always choose θj ∈ (−π/2, π/2) such that cos(θ + β1θ1 +
· · · + βdθd) < 0. This contradicts the mapping properties of Φ, and hence the
assumption that cα = 0 whenever |α| = 1 is wrong. �

We will also need two lemmas from differential geometry. The first one is the
parametrized Morse lemma (see for instance [5, Sec. 4.44]).

Lemma (Parametrized Morse Lemma). Let U ⊂ RJ ×Rd−J be a neighbourhood
of 0 ∈ Rd and let F : U → R, (u, v) 7→ F (u, v) be a smooth function. Assume
that F (0) = 0, that ∂F/∂ui(0) = 0 for all i = 1, . . . , J and that the matrix

(
∂2F

∂ui∂uj
(0)

)

1≤i,j≤J

is positive definite. Then there exist a neighbourhood V 3 0 with V ⊂ U , a
smooth diffeomorphism Γ : V → Rd, (u, v) 7→ (γ(u, v), v) with Γ(0) = 0 and a
smooth map h : Rd−J → R such that, for any (u, v) ∈ V ,

F (u, v) =

J∑

j=1

γj(u, v)
2 + h(v).

The second lemma reads as follows.

Lemma 8. Let p ≥ 1 be an integer, and let f : I → R be a smooth function
where I is an open interval containing 0 and f(x) ∼0 x

p. Then there exist C > 0
and an open interval I ′ 3 0 inside I such that, for any τ ∈ R and any δ > 0, the
set {x ∈ I ′ : |f(x)− τ | < δ} has Lebesgue measure less than Cδ1/p.

Proof. Assume first that f(x) = xp. If |τ | ≤ 2δ, then the result is clear. Other-
wise, if τ ≥ 2δ, then x has to live in

[
(τ − δ)1/p, (τ + δ)1/p

]
and the length of this

interval may be easily estimated using the mean value theorem.
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The general case reduces to this one. For small values of x, set y = [f(x)]1/p

if p is odd or y = [f(x)]1/p for x > 0, y = −[f(x)]1/p for x < 0 if p is even. In
both cases, y is differentiable at 0 and dy/dx > 0. Hence, x = γ(y) where γ is a
smooth diffeomorphism. Now, for some small open interval I ′ 3 0, we have

{x ∈ I ′ : |f(x)− τ | < δ} =
{
x ∈ I ′ : |

(
γ−1(x)

)p − τ | < δ
}
.

Since γ is a diffeomorphism, the latter has Lebesgue measure less than Cδ1/p. �

4. Proof of Theorem 2

We intend to apply Lemma 6. Hence, let w ∈ Td with Re Φ(w) = 0. By the
rotational invariance of md, we may always assume that w = 1. Moreover, since
the conditions in Lemma 6 are invariant by vertical translations, we may also
assume that Φ(w) = 0. In this case we have

Φ(z1, z2, . . . , zd) =

d∑

j=1

Φj(zj) =

d∑

j=1

∑

k

a
(j)
k (1− zj)

k.

Since Φ is a minimal Bohr lift of ϕ, inspecting the proof of Lemma 7, we may
conclude that in this case a(j)1 > 0 for every j = 1, 2, . . . , d. This means we have

ReΦ
(
eiθ1 , eiθ2 , . . . , eiθd

)
=

d∑

j=1

bjθ
kj

j + o
(
θ
kj

j

)
,

where the coefficients bj 6= 0 are real numbers and the exponents kj ≥ 2 are
integers. The fact that this quantity is supposed to be non-negative implies that
bj > 0 and that kj is even, by similar considerations as those in the proof of
Lemma 7. Moreover

ImΦ
(
eiθ1 , eiθ2 , . . . , eiθd

)
= −

d∑

j=1

a
(j)
1 θj + o

(
θj
)
.

Proof of the first part of Theorem 2. Let τ ∈ R and ε > 0 be arbitrary. The
preceding discussion means there is some neighbourhood U 3 (1, 1, . . . , 1) in Td

so that
1

2

d∑

j=1

bjθ
kj

j ≤ ReΦ
(
eiθ1 , eiθ2 , . . . , eiθd

)
≤ 2

d∑

j=1

bjθ
kj

j ,

when eiθ ∈ U . Hence if Φ
(
eiθ
)
∈ Q(τ, ε) and eiθ ∈ U , we conclude from the real

part that |θj | � ε1/kj , for j = 1, 2, . . . , d. Now, fixing θj for j = 2, . . . , d we
conclude from the imaginary part and Lemma 8 that θ1 can live in an interval of
size at most Cε. Hence we have

md ({z ∈ Uw : Φ(z) ∈ Q(τ, ε)}) �w ε1+1/k2+···+1/kd .
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In fact, we may choose

κw = 1 +
d∑

j=1

1

kj
− min

1≤j≤d

1

kj
,

and conclude by Lemma 6, since d ≥ 2. �

Proof of the second part of Theorem 2. In this case d = 1, and the polynomial
Φ(z) is of only one variable. We again consider some neighbourhood U 3 1 in
T, so that when eiθ ∈ U we have

0 ≤ ReΦ
(
eiθ
)
≤ 2bθk and

∣∣ ImΦ
(
eiθ
)∣∣ ≤ 2a|θ|,

where a = a1, b = b1 and k ≥ 2 is even. Now, we choose τ = 0 and observe that
ϕ
(
eiθ
)

belongs to Q(τ, ε) provided |θ| � ε. Hence

m1 ({z ∈ T : Φ(z) ∈ Q(τ, ε)}) ≥ m1 ({z ∈ Uw : Φ(z) ∈ Q(τ, ε)}) � ε,

and Cϕ cannot be compact by Lemma 5. �

Remark. Inspecting the proof of Theorem 2, we see that we may replace the
polynomials Pj , by corresponding power series

Pj

(
q−s
j

)
=

∞∑

k=0

c
(j)
k q−ks

j ,

provided
∑∞

k=0

∣∣c(j)k

∣∣ <∞. However, we still require the complex dimension d to
be finite.

5. Proof of Theorem 3

We begin by observing that the penultimate point of Theorem 3 follows from
the second part of Theorem 2. Regarding the final part of Theorem 3, it is
contained in the following result:

Lemma 9. There are polynomials ϕ ∈ G of any complex dimension and of any
degree ≥ 3 for which the corresponding composition operator Cϕ is non-compact.

Proof. Let P (z) = P (z1, z2, . . . , zd) be any polynomial in d variables and define

Φ(z) = (1− z1) + δ(1− z1)
2P (z),

for some δ > 0 to be decided later. We compute

ReΦ
(
eiθ1 , . . . , eiθd

)
= (1− cos θ1)

×
(
1− 2δ

(
cos (θ1)ReP

(
eiθ
)
− sin (θ1) ImP

(
eiθ
)))

.

Pick δ small enough so that we have
1− cos θ1

2
≤ ReΦ

(
eiθ1 , . . . , eiθd

)
≤ 2(1− cos θ1).
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The first inequality tells us that Φ is a minimal Bohr lift of

ϕ(s) =
(
1− p1

−s
)
+ δ
(
1− p1

−s
)2
P
(
p−s
1 , . . . , p−s

d

)
,

with ϕ ∈ G having unrestricted range. Using the second inequality and a Taylor
expansion of ImΦ, we also get that near 1,

ReΦ
(
eiθ1 , . . . , eiθd

)
= O

(
θ21
)
,

ImΦ
(
eiθ1 , . . . , eiθd

)
= O(θ1).

Similar considerations as in the proof of the second part of Theorem 2 allow us
to conclude that Cϕ is not compact. �

Remark. The key point of Lemma 9 is that even if Φ involves d variables, its
local behaviour near 1 depends too heavily on z1 to ensure compactness.

Having now concluded the negative parts of Theorem 3, we turn to the positive
parts. Let us fix a polynomial ϕ ∈ G and let Φ denote a minimal Bohr lift of ϕ.
We can simplify how to write Φ around a point w ∈ Td such that ReΦ(w) = 0.
Without loss of generality, we may again assume that w = 1 and that Φ(w) = 0.
Then we may write

Φ(z) =
d∑

j=1

aj(1− zj) +
d∑

j=1

bj(1− zj)
2

+
∑

1≤j<k≤d

cj,k(1− zj)(1− zk) + o


 ∑

1≤j≤d

|1− zj |2

 .

We let zj = eiθj and since aj ≥ 0 by Lemma 7 we get

Re (Φ(z)) =
d∑

j=1

(aj
2

− Re(bj)
)
θ2j −

∑

1≤j<k≤d

Re(cj,k)θjθk + o


 ∑

1≤j≤d

θ2j


 .

The quadratic form appearing above is brought to standard form by a linear
change of variables,

Re (Φ(z)) =
d∑

j=1

(`j(θ))
2
+ o


 ∑

1≤j≤d

θ2j


 .

Next, we write

Im (Φ(z)) = −
d∑

j=1

ajθj + o




d∑

j=1

|θj |


 = −`d+1(θ) + o




d∑

j=1

|θj |


 ,
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and by Lemma 7 we know that `d+1 6≡ 0, since at least one aj > 0. The last step
to finish the proof of Theorem 3 is the following result:

Lemma 10. Let Φ : Dd → C0 be an optimal Bohr lift of ϕ ∈ G , where ϕ has
unrestricted range and complex dimension d ≥ 2. Suppose that w ∈ Td is such
that ReΦ(w) = 0. Then there exist a neighbourhood Uw 3 w in Td, κ = κw > 1
and C = Cw > 0 such that, for any τ ∈ R and for every ε > 0,

md ({z ∈ Uw : Φ(z) ∈ Q(τ, ε)}) ≤ Cεκ

in the following cases:

• J(Φ, w) ≥ 1 and `d+1 is independent from (`1, . . . , `J). We may choose
κ = 1 + J(Φ, w)/2.

• J(Φ, w) ≥ 2 and `d+1 belongs to span(`1, . . . , `J). We may choose κ =
(1 + J(Φ, w))/2.

• J(Φ, w) = 1, `d+1 is a multiple of `1 and Φ has degree 2. We may choose
κ = 9/8.

• J(Φ, w) = 0 and Φ has degree 2. We may choose κ = (d+ 3)/4.

Before we prove the different cases of this lemma, let us make some comments.
Firstly, it is clear that Lemma 10 and Lemma 6 imply Theorem 3 when the degree
of ϕ is at least 2. When the degree of ϕ is equal to 1, then

Φ(z) =

d∑

j=1

aj(1− zj)

so that each aj is positive. This implies that J(Φ, w) = d so that we may again
apply Lemma 10 and Lemma 6.

It is also important to notice that Φ cannot be an arbitrary polynomial map-
ping of Dd into C0. It is an optimal Bohr lift of some ϕ ∈ G with complex
dimension d. In particular, we shall use that ∂Φ

∂zj
6≡ 0 for every 1 ≤ j ≤ d. More-

over, the polynomial Φ(z) = λ(1−z1z2) is not an optimal Bohr lift. Otherwise, it
would arise from ϕ(s) = λ(1− q−s

1 q−s
2 ), but the optimal Bohr lift of ϕ is λ(1−z).

We are now ready for the proof of Lemma 10. By similar considerations as
before, we may again assume that w = 1 and that Φ(w) = 0. We write J for
J(Φ, w).

The case J = 0. This implies that

aj
2

− Re(bj) = Re(cj,k) = 0,

64



for j, k = 1, . . . , d. We set zj = eiθj and compute

Re (aj(1− zj)) = aj(1− cos θj)

Re
(
bj(1− zj)

2
)
= −aj cos θj(1− cos θj) + 2 Im(bj) sin θj(1− cos θj)

Re (cj,k(1− zj)(1− zk)) = Im (cj,k) (sin θj (1− cos θk) + sin θk(1− cos θj))

This means that

Re (Φ(z)) =
d∑

j=1

Im(bj)θ
3
j +

∑

1≤j<k≤d

Im (cj,k)

2

(
θjθ

2
k + θkθ

2
j

)
+ o




d∑

j=1

|θj |3

 .

However, the non-negativity of ReΦ then implies that Im(bj) = Im (cj,k) = 0.
Hence we in total have bj = aj/2 and cj,k = 0, which means

Φ(z) =
d∑

j=1

(
aj(1− zj) +

aj
2
(1− zj)

2
)
.

In fact, this means that aj > 0 for every j, by the assumption that the complex
dimension is d and Lemma 7. We may now use (the proof of) Theorem 2 to
conclude that there exists a neighbourhood Uw 3 w such that

md ({z ∈ Uw : Φ(z) ∈ Q(τ, ε)}) � ε× ε
d−1
4 = ε

d+3
4 ,

since we now have

ReΦ
(
eiθ1 , . . . , eiθd

)
=

1

4

d∑

j=1

ajθ
4
j + o

(
θ4j
)
,

and we are done with this case. �

The case J ≥ 1 and independence. After a linear change of variables, we
may write Reφ and Imφ as

Reφ(θ1, . . . , θd) = u21 + · · ·+ u2J + o




d∑

j=1

u2j




Imφ(θ1, . . . , θd) = ud + o




d∑

j=1

|uj |




Since a linear change of variables does not change the value of the volume up to
constants, we may assume that φ depends on (u, v) with u = (u1, u2, . . . , uJ) and
v = (uJ+1, . . . , ud). Applying the parametrized Morse lemma to Reφ, we may
write

Reφ(u, v) = γ1(u, v)
2 + · · ·+ γJ(u, v)

2 + h(v).

65



We also apply the change of variables (u, v) 7→ Γ(u, v) to Imφ and since Γd(u, v) =
ud, we find

Imφ(u, v) = ud + g(Γ(u, v)),

where g is a smooth function defined on V such that ∂g/∂ud(0) = 0.
Now, we know that Reφ(u, v) ≥ 0 for every (u, v) ∈ Rd. Since Γ is a diffeo-

morphism, v can take any value in some neighbourhood of zero in Rd−J even if
we require that

γ1(u, v) = γ2(u, v) = · · · = γJ(u, v) = 0,

and hence h(v) ≥ 0.
This implies that we may find some neighbourhood W 3 0 in V such that, for

every τ ∈ R and every ε > 0,

(u, v) ∈ W and φ(u, v) ∈ Q(τ, ε) =⇒ |γj(u, v)| ≤ ε1/2.

Now, for if we fix γ1(u, v), . . . , γd−1(u, v), it follows from Lemma 8 with p = 1
that γd(u, v) = ud has to belong to some interval of size Cε, provided that (u, v)
is sufficiently close to 0. This means that there exists a neighbourhood O ⊂ W
of 0 such that

{(u, v) ∈ O : φ(u, v) ∈ Q(τ, ε)} ⊂
{
(u, v) ∈ O : Γ(u, v) ∈ R(τ, ε)

}
,

where the volume of R(τ, ε) is less than Cε1+
J
2 . Since Γ is a diffeomorphism, we

are done. �

The case J ≥ 2 and dependence. With a similar linear change of variables as
in the previous case, we may write

Reφ(u1, . . . , ud) = u21 + · · ·+ u2J + o




d∑

j=1

u2j




Imφ(u1, . . . , ud) =

J∑

j=1

αjuj + o




d∑

j=1

|uj |




We use again the parametrized Morse lemma with Reφ, and it is again easy to
show that γj(u, v) = uj + o

(∑d
j=1 |uj |

)
so that

Imφ(u, v) =
J∑

j=1

αjγj(u, v) + g(Γ(u, v))

with ∂g/∂uj(0) = 0 for j = 1, . . . , d.
We argue as in the previous case. For every j = 2, . . . , J , for any τ ∈ R and

every ε > 0,

(u, v) ∈ W ⊂ V and φ(u, v) ∈ Q(τ, ε) =⇒ |γj(u, v)| ≤ ε1/2.
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Now, for a fixed value of γ2(u, v), . . . , γd(u, v), it is again clear that γ1(u, v) has
to belong to some interval of size Cε, provided (u, v) is sufficiently close to 0.
This means that there exists a neighbourhood O 3 0 in W such that

{(u, v) ∈ O : φ(u, v) ∈ Q(τ, ε)} ⊂
{
(u, v) ∈ O : Γ(u, v) ∈ R(τ, ε)

}
,

where the volume of R(τ, ε) is less than Cε1+
J−1
2 . We conclude as in the previous

step. �

The case J = 1 and dependence, d = 2. This is the most difficult case. At
first, we do not assume that d = 2 but we always assume that the degree of ϕ
is equal to 2. We know that there is constant λ ∈ R∗ so that `1(θ) = λ`d+1(θ),
which means √

aj
2

− Re(bj) = λaj , 1 ≤ j ≤ d

and that λ > 0 by the computations in the beginning of this section. We nor-
malize Φ(z) as λ−2Φ(z), so that we may assume that λ = 1. Hence

`1(θ) =
d∑

j=1

ajθj ,

and this immediately implies that

(10) Re(bj) =
aj
2

− a2j and Re(cj,k) = −2ajak, 1 ≤ j, k ≤ d.

Suppose that a1 = 0. Then Re(b1) = 0 and Re(c1,k) = 0 for 2 ≤ k ≤ d. We
compute

Re
(
Φ(eix, 1, . . . , 1)

)
= −2 Im(b1) sinx(1− cosx) ≥ 0,

which means that Im(b1) = 0, so that b1 = 0. Next we compute

Φ
(
eix, eiy, 1 . . . , 1

)
= a2(1− cos y) +

(a2
2

− a22

)
(1− 2 cos y + cos 2y)

− Im(c1,2)
(
− sinx− sin y + sin(x+ y)

)

= (1− cos y)
(
a2(1− cos y) + 2a22 cos y + Im(c1,2) sinx

)

+ Im(c1,2) sin y(1− cosx).

Taking y = ±δ for small enough δ, we obtain that Im(c1,2) = 0. There is nothing
special about z2, and hence we conclude that Im(c1,k) = 0, for 2 ≤ k ≤ d.
In particular, c1,k = 0 for the same values of k. But this is impossible, since
the variable z1 no longer appear in our polynomial. Hence the assumption that
a1 = 0 must be wrong.

Arguing in the same way, we have that aj > 0 for 1 ≤ j ≤ d. Moreover, after
renaming the variables, we may suppose a1 ≥ a2 ≥ · · · ad > 0. Finally,

0 ≤ Re (Φ(−1, 1, . . . , 1)) = 2a1 + 4
(a1
2

− a21

)
=⇒ a1 ≤ 1,
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so without loss of generality, we may assume that

1 ≥ a1 ≥ a2 ≥ · · · ≥ ad > 0.

From now on, we assume that d = 2 and that 1 ≥ a1 ≥ a2 > 0. We need the
following lemma.

Lemma 11. We have a2 ≤ 1− a1.

Proof. We compute

Φ(−1,−1) = −4a21 − 4a22 − 8a1a2 + 4a1 + 4a2 = 4(a1 + a2)(1− a1 − a2).

Since this has to be non-negative, we get the result. �

Remark. Lemma 11 immediately implies that a1 ∈ (0, 1) and a2 ∈ (0, 1/2] by the
assumptions that 0 < a2 ≤ a1 ≤ 1.

Let us apply the change of variables θ1 = a2u+ a2v, θ2 = a1u− a1v to φ:

Reφ(u, v) = −4a21a
2
2u

2 + o(u2 + v2)(11)
Imφ(u, v) = 2a1a2u+ o(|u|+ |v|).(12)

As before, we intend to apply the parametrized Morse lemma to Reφ. Setting
Ψ = Γ−1, we get that, around 0,

Reφ ◦Ψ(u, v) = u2 + h(v)

Imφ ◦Ψ(u, v) = u+ g(u, v)

with h and g smooth functions which have no terms of order 1 at 0.
Assume first that h 6≡ 0. Let p ≥ 2 be such that h(v) ∼0 αpv

p with αp 6= 0.
Because φ ◦ Ψ maps R2 into C0, we must have that αp > 0 and that p is even.
Now, if φ ◦Ψ(u, v) ∈ Q(τ, ε) with (u, v) sufficiently close to 0, then 0 ≤ h(v) ≤ ε
which implies by Lemma 8 that v belongs to some set of measure less than Cε1/p.
Moreover, for a fixed value of v, a look at the imaginary part and Lemma 8 yield
that u has to belong to some interval of size Cε and thus we are done with
κ = 1 + 1/p.

Thus, we are lead to study what happens if h ≡ 0. The situation is easier if
the Taylor expansion of g(u, v) admits some term in vp. In that case, we may
write

Imφ ◦Ψ(u, v) = ug1(u, v) + vpg2(v)

with smooth functions g1 and g2, such that g1(0, 0) = 1 and g2(0) 6= 0. If
φ◦Ψ(u, v) belongs to Q(τ, ε), we conclude from the real part that then |u| ≤ ε1/2,
and from the imaginary part, we get that, near 0,

|vpg2(v)− τ | ≤ Cε1/2.

By appealing again to Lemma 8, we conclude that v belongs to some set of
Lebesgue measure less than Cε1/2p. For a fixed value of v, we look once more at
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the imaginary part, and obtain that u must belongs to some interval of size Cε.
Hence, we are done with κ = 1 + 1/(2p).

Therefore, it remains to show that we will always fall into one of the previous
cases and compute the value of p. We again recall that the polynomial

Φ(z) = λ(1− z1z2),

is a contradiction to the fact that Φ is a minimal Bohr lift of ϕ ∈ G . More
precisely, we are reduced to proving the following lemma.

Lemma 12. Let 0 < a2 ≤ a1 ≤ 1 and a2 ≤ 1− a1. Suppose that Φ : D2 → C0 is
the polynomial

(13) Φ(z) = a1(1−z1)+a2(1−z2)+ b1(1−z1)2+ b2(1−z2)2+ c(1−z1)(1−z2),

where

Re(b1) =
a1
2

− a21, Re(b2) =
a2
2

− a22 and Re(c) = −2a1a2.

Set θ1 = a2u+ a2v, θ2 = a1u− a1v and

φ(u, v) = Φ
(
eiθ1 , eiθ2

)
.

Then there does not exist smooth maps γ : R2 → R and h : R2 → R so that

Reφ(u, v) = γ(u, v)2(14)
Imφ(u, v) = γ(u, v)h(u, v)(15)

except if Φ(z) = 1
2 (1−z1z2). More precisely, if Φ(z) 6= 1

2 (1−z1z2), for any smooth
maps γ : R2 → R and h : R → R, then

• either the Taylor series of Reφ − γ2 at 0 has a non-zero term of order
≤ 5,

• or the Taylor series of Imφ−γ ·h at 0 has a non-zero term of order ≤ 4.

The proof of this lemma is rather delicate and will be postponed in Section 6
in order to keep a clearer exposition of the proof of Lemma 10. However, using
Lemma 12 we are able to finish this case. Indeed, if Γ(u, v) = (γ(u, v), v) is the
map given by the parametrized Morse lemma and if f1, f2 and f3 are smooth
functions such that

Reφ(u, v) = γ(u, v)2 + f1(v) and Imφ(u, v) = γ(u, v)f2(u, v) + f3(v),

then Lemma 12 implies that either f1(v) ∼0 αpv
p with p ≤ 5 or f3(v) ∼0 βpv

p

with p ≤ 4. By the considerations above we may conclude that κ = 9/8 is
possible. �
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The case J = 1 and dependence, d ≥ 3. It remains to consider the case
J = 1, d ≥ 3 and `1 is a multiple of `d+1. We shall deduce this case from the
case d = 2 using the following lemma.

Lemma 13. Let ε > 0, τ ∈ R and z3, . . . , zd ∈ Td−2. Consider the set

Az3,...,zd(τ, ε) =
{
(z1, z2) ∈ T2 : Φ(z) ∈ Q(τ, ε)

}
.

Then, for every w3, . . . , wd ∈ Td−2, there exists a neighbourhood

W 3 (w3, . . . , wd)

in Td−2 such that, for all (z3, . . . , zd) ∈ W we have

Az3,...,zd(τ, ε) ⊂ Aw3,...,wd
(τ, 2ε).

Proof. Assume that this is not the case. Then there exists a sequence
(
z
(k)
1 , . . . , z

(k)
d

)

in Td such that z(k)j → wj for 3 ≤ j ≤ d and
(
z
(k)
1 , z

(k)
2

)
∈ A

z
(k)
3 ,...,z

(k)
d

(τ, ε)\Aw3,...,wd
(τ, 2ε).

Extracting a subsequence if necessary, we may assume that z(k)1 → w1 and z(k)2 →
w2 for some (w1, w2) ∈ T2. By the continuity of Φ,this implies that Φ(w) ∈
Q(τ, ε)\Q(τ, 2ε), which is a contradiction. �

We now set
Ψ1,2(z1, z2) = Φ(z1, z2, 1, . . . , 1).

Since J(Φ, w) = 1, we already know that aj > 0 for all j = 1, . . . , d and hence
the variables z1 and z2 both appear in the polynomial Ψ1,2. Provided Ψ1,2(z) 6=
λ1,2(1− z1z2) for some λ1,2 ∈ R∗, we know from the case d = 2 that there exists
a neighbourhood V 3 (z1, z2) in T2 and C > 0 such that, for any τ ∈ R and
every ε > 0,

m2

({
(z1, z2) ∈ V : Φ(z1, z2, 1, . . . , 1) ∈ Q(τ, 2ε)

})
≤ Cεκ

with κ = 9/8. By Lemma 13, there exists a neighbourhood W 3 1 in Td−2 such
that, for any (z3, . . . , zd) ∈ W ,

{
(z1, z2) ∈ V : Φ(z1, . . . , zd) ∈ Q(τ, ε)

}

⊂
{
(z1, z2) ∈ V : Φ(z1, z2, 1, . . . , 1) ∈ Q(τ, 2ε)

}
.

This yields
md ({z ∈ V × W : Φ(z) ∈ Q(τ, ε)}) ≤ Cεκ.

So the result is proved except if, for every j < k, there exists some λj,k > 0
such that

(16) Φ(1, . . . , 1, zj , 1, . . . , 1, zk, 1, . . . , 1) = λj,k(1− zjzk).
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Writing 1− zjzk = (1− zj) + (1− zk)− (1− zj)(1− zk) and comparing this with
the expansion of Φ near 1, we get

aj = ak = λj,k, bj = 0, cj,k = −λj,k.

Using (10), we may conclude that aj = 1/2 and cj,k = −1/2. In total this means
that

Φ(z1, z2, . . . , zd) =
1

2

d∑

j=1

(1− zj)−
1

2

∑

1≤j<k≤d

(1− zj)(1− zk).

However,

Φ(−1,−1, . . . ,−1) =
2d− 2d(d− 1)

2
= d(2− d) < 0,

since d ≥ 3. Hence (16) is not possible for every j < k and we are done. �

6. Proof of Lemma 12

We intend to prove this result by contradiction. We require several tedious
computations, which can be done either by hand or by a computer algebra system.
We have used Xcas, and our file is available for download [3]. In the proof below,
we will skip certain computations such as computing Taylor coefficients, simpli-
fying algebraical expressions and solving simple equations. The proof consists of
three steps, and in each step we refer to the lines in [3] where the computations
are performed.

The idea of the argument is rather easy. We assume that we may factorize
Reφ(u, v) and Imφ(u, v) as (14) and (15) and we write

γ(u, v) = −2a1a2u+ γ2,0u
2 + γ1,1uv + γ0,2v

2 + γ3,0u
3 + γ2,1u

2v + γ1,2u
2v

+ γ0,3v
3 + γ4,0u

4 + γ3,1u
3v + γ2,2u

2v2 + γ1,3uv
3 + γ0,4v

4 + o
(
|u|5 + |v|5

)
,

h(u, v) = 1 + h1,0u+ h0,1v + h2,0u
2 + h1,1uv + h0,2v

2 + o
(
|u|2 + |v|2

)
.

We already know the first coefficients of γ and h by (11) and (12). We will
then compare the Taylor expansions of Reφ(u, v) and Imφ(u, v) obtained using
(13) or using (14) and (15). Looking at all coefficients of a given order, we will
get first the value of the coefficients of the Taylor expansions of γ and h of a
certain order and also an equation for Im(b1), Im(b2) and Im(c).

At one point, we will have more equations than variables. These equations will
have to be compatible, and will force Φ(z1, z2) = (1−z1z2)/2, which is equivalent
to saying a1 = a2 = 1/2 and Im(b1) = Im(b2) = Im(c) = 0. This will imply the
desired result.
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Step 1. The goal of the first step is to show that if we have a1 = a2 = 1/2, then
we also have Im(b1) = Im(b2) = Im(c) = 0. In addition to this, we obtain some
useful equations for the following steps. [3, Lin. 1–14]

We begin by looking at the coefficients of uv2 in the real part of Φ(u, v). Using
on the one hand (13) and on the other hand (14) we conclude that

γ0,2 =
−6a31 Im(b2)− 6a32 Im(b1) + a1a2(a1 + a2) Im(c)

8a1a2
.

We then obtain the first equation for Im(b1), Im(b2) and Im(c) by looking at the
coefficients of v3 in the real part:

(17) a32 Im(b1)− a31 Im(b2) +
a1a2(a2 − a1)

2
Im(c) = 0.

Since we know the value of γ0,2, we can get a second equation for Im(b1), Im(b2)
and Im(c) by looking at the coefficients of v2 in the imaginary part. Hence we
get

(18)
4a1a

2
2 − 3a22
4a1

Im(b1) +
4a21a2 − 3a21

4a2
Im(b2) +

−8a1a2 + a1 + a2
8

Im(c) = 0.

By the assumptions on a1 and a2, we know that 2(a1+a2) < 3 and hence we can
solve (17) and (18) with respect to Im(b1) and Im(b2) to obtain

Im(b1) =
a1(2a

2
2 + 2a1a2 + a1 − 2a2)

2a22(2a1 + 2a2 − 3)
Im(c)

Im(b2) =
a2(2a

2
1 + 2a1a2 − 21 + a2)

2a21(2a1 + 2a2 − 3)
Im(c).

In particular, we may conclude that if Im(c) = 0, then we also have Im(b1) =
Im(b2) = 0. If we substitute these values into the expression for γ0,2, we obtain

γ0,2 =
−(a1 + a2)

2

2(2a1 + 2a2 − 3)
Im(c).

Now, looking at the coefficient of v4 in the real part shows that

(γ0,2)
2 = −a1a2(a1 + a2)(a1a

2
2 + a21a2 − a21 − a22 + a1a2)

4
,

and this yields our first expression for Im(c)2,

(19) Im(c)2 =
−a1a2(2a1 + 2a2 − 3)2(a1a

2
2 + a21a2 − a21 − a22 + a1a2)

(a1 + a2)3
.

From (19), it is evident that if a1 = a2 = 1/2, then Im(c) = 0. �
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Step 2. In this step, we want to show that a1 = a2. Our first goal is to compute
another equation to compare with (19). [3, Lin. 15–21]

We begin by successively looking at the coefficients of u2v in the real part, uv
in the imaginary part and uv3 in the real part, to obtain

γ1,1 =
a1 − a2

2
Im(c),

h0,1 =
(a1 − a2)(4a1 + 4a2 − 3)

4a1a2(2a1 + 2a2 − 3)
Im(c),

γ0,3 =
−a1 + a2

24a1a2(2a1 + 2a2 − 3)
×

(
20a1

2a2
4 + 40a1

3a2
3 + 20a1

4a2
2 − 12a1a2

4 − 54a1
2a2

3 − 54a1
3a2

2

−12a1
4a2 + 18a1a2

3 + 18a1
2a2

2 + 18a1
3a2 + 3(a1 + a2)

2 Im(c)2
)
.

Using these values, we will investigate the coefficient of v3 in the imaginary part.
This term depends indeed only on γ1,1, h0,1 and γ0,3. Using the above expression,
we obtain our second equation on Im(c)2:

−3(a1 − a2)(a1 + a2)
2(a1 + a2 − 1)

4a1a2(2a1 + 2a2 − 3)2
Im(c)2 =

−(a1 − a2)(3a1a
2
2 + 3a21a2 − a21 − a22 − a1a2)

4
.

(20)

At this stage, we have to consider several cases. Assuming that a1 − a2 6= 0 and
a1 + a2 − 1 6= 0, we may compute

(21) Im(c)2 =
−a1a2(2a1 + 2a2 − 3)2(3a1a

2
2 + 3a21a2 − a21 − a22 − a1a2)

3(a1 + a2)2(a1 + a2 − 1)
.

The only possibility is that the two values for Im(c)2 have to coincide. Equating
(19) and (21) and simplifying, we obtain

a1a2(2a1 + 2a2 − 3)2P (a1, a2)

3(a1 + a2)2(a1 + a2 − 1)
= 0,

where
P (a1, a2) = 2a31 + 2a32 + a1a

2
2 + a21a2 − 3a21 − 3a22 + 3a1a2.

Since 2(a1+ a2) < 3, the only possibility is that P (a1, a2) vanishes somewhere in
the domain

Ω = {(a1, a2) ∈ (0, 1)2 : a2 < a1, a2 < 1− a1}.
We first look at what happens on the boundary, where we have

P (a1, 0) = 2a31 − 3a21 < 0 provided a1 ∈ (0, 1),

P (a1, a1) = 3a21(2a1 − 1) < 0 provided a1 ∈ (0, 1/2),

P (a1, 1− a1) = −(2a1 − 1) < 0 provided a1 ∈ (1/2, 1).
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Hence, P is negative on the boundary of , except at (1/2, 1/2). Hence, if P
vanishes in Ω, then it admits a critical point there. Now, we consider the system

{
0 = ∂P

∂a1
(a1, a2) = 6a21 + a22 + 2a1a2 − 6a1 + 3a2,

0 = ∂P
∂a2

(a1, a2) = a21 + 6a22 + 2a1a2 + 3a1 − 6a2.

The solutions of this system are easily found to be at the intersection of two
distinct ellipses. We cannot have more than two points of intersection and we
have two trivial solutions, (0, 0) and (1/3, 1/3). Hence, none of the critical points
of P are inside . Hence we get a contradiction, and we have finished this case.

Hence we must have a1 + a2 = 1 or a1 = a2. Let us now investigate the case
a1 + a2 = 1. Looking at (20), this means that either a1 = a2 = 1/2 (and we are
done) or

3a1a
2
2 + 3a21a2 − a21 − a22 − a1a2 = 0.

Taking into account that a2 = 1 − a1, we get the equation −4a21 + 4a1 − 1 = 0
which admits the single solution a1 = 1/2 and we get the same conclusion. Hence,
the only remaining possibility is that a1 = a2. �

Step 3. It remains to deal with the case a1 = a2 = a ∈ (0, 1/2]. We can no
longer use (21) and need to find another equation for Im(c)2. [3, Lin. 21–30]

We will be looking at the coefficient before v4 in the imaginary part. By
considering γ × h, we see that this coefficient is equal to

γ0,4 + γ0,3h0,1 + γ0,2h0,2.

Hence, it remains to compute γ0,4 and h0,2. First, we compute some auxiliary
values. By looking at u3 in the real part, u2 in the imaginary part and u2v2 in
the real part, respectively, we obtain

γ2,0 = −a(2a− 1)

3a− 4
Im(c),

h1,0 =
(2a− 1)(4a− 1)

2a(4a− 3)
Im(c),

γ1,2 =
a(2a− 1)

(
48a4 − 72a3 + 27a2 + 4 Im(c)2

)

4(4a− 3)2
.

Knowing these values, we look at the coefficients of uv4 in the real part and uv2
and the imaginary part, respectively, to obtain

γ0,4 = −a Im(c)
32a5 − 96a4 + 90a3 + 12a Im(c)2 − 27a2 − 6 Im(c)2

6(4a− 3)3
,

h0,2 = (−2a+ 1)
128a5 − 240a4 + 144a3 + 16a Im(c)2 − 27a2 − 8 Im(c)2

8a(4a− 3)2
.
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Finally, we investigate the coefficient of v4 in the imaginary part to obtain the
equation

a(2a− 1)
16a4 − 32a3 + 15a2 + 4 Im(c)2

4(4a− 3)2
Im(c) = 0.

Now, if Im(c) = 0 and a1 = a2 = a, it follows at once from (19) that a = 1/2,
since a ∈ (0, 1/2]. Conversely, we divide away Im(c) and solve for Im(c)2 to
obtain the equation

Im(c)2 = −a2 (4a− 3)(4a− 5)

4
.

Now, this has to be equal to (19), and we find

−a(2a− 1)(4a− 3)2

8
= −a

2(4a− 3)(4a− 5)

4
.

Here the only solutions are a = 0 and a = 3/4, neither of which belong to
(0, 1/2]. Hence the assumption Im(c) 6= 0 must be wrong and we conclude a1 =
a2 = 1/2. �

7. Remarks and Further Examples

If we look more closely at the map Φ defined in Lemma 9 (the negative part
of Theorem 3), then we may observe that these counterexamples all satisfy

ReΦ(eiθ1 , . . . , eiθd) =
θ21
2

+ o(θ21)

ImΦ(eiθ1 , . . . , eiθd) = −θ1 + o(|θ1|).
Hence, J

(
Φ,1

)
= 1 and, using the terminology of the Section 5, we have de-

pendence. Our next results shows that we may also have non-compactness if
J(Φ, w) = 0 for some w ∈ Td.

Theorem 14. There are polynomials ϕ with unrestricted range, of any complex
dimension d ≥ 2 and of any complex degree ≥ 4 for which the corresponding
composition operator Cϕ is non-compact and such that they admit a minimal
Bohr lift Φ satisfying J(Φ, w) = 0 for any w ∈ Td with ReΦ(w) = 0.

Proof. Let δ > 0 and define

Φ(z1, z2) = 2(1− z1) + (1− z1)
2
(
1− δ(1− z2)− δ(1− z1)(1− z2)

)
.

Let ϕ(s) = Φ(p−s
1 , ps2). Clearly Φ is a minimal Bohr lift of ϕ. Then a computation

shows that

ReΦ(z1, z2) = 2(1− cosx)
(
(1− cosx)

(
1 + 2δ(sinx sin y + (1− cos y) cosx)

)

+ δ(1− cos y)
)
.
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Clearly, for small enough δ > 0 this quantity is non-negative. Hence ϕ ∈ G
and J(Φ, (1, 1)) = 0 because of the relation between a1 and b1. Considerations
similar to those of Lemma 9 show that Cϕ cannot be compact. To produce a
counterexample with degree 3 and a bigger complex dimension d, we may simply
replace (1− z2) by

1

d− 1
·

d∑

j=2

(1− zj)

in the definition of Φ. The production of examples with degree ≥ 5 is easier. Set

Φ(z) = (1− z1) +
1

2
(1− z1)

2 + δ(1− z1)
4P (z),

where P (z) = P (z1, z2, . . . , zd) is any polynomial. The proof follows now that of
Lemma 9. �

The reason the first counterexample in Theorem 14 works is that we have a
cancellation of the term (1−cosx) sinx sin y. It seems difficult to obtain the same
cancellation if we restrict ourself to degree 3 and require J = 0.

Question. Is it possible to construct a counterexample of degree 3 with J = 0?

An answer to the question would in a certain sense improve the optimality
of Lemma 10, but it would not yield the complete answer to which Dirichlet
polynomials in G induce compact composition operators. Indeed, the natural
next point of investigation would be this: What happens when the “quartic form”
is degenerate?

In this case, terms of degree 5 also have to disappear. This follows by the
mapping properties and the argument is identical to the one used to show that
degree 3 terms disappear in the case J = 0 given above. Hence we are reduced
to studying a “sextic form”.

Our counterexamples can be modified to work in this case, but they now have
degree 6 and 7. Degree ≤ 3 will also easily reduce to the case of Theorem 2 in
the same manner as J = 0 did for degree ≤ 2. However, the cases with degree
4 and 5 would need further investigation. Even if we could solve this case, we
would need to investigate the case when the “sextic form” is degenerate and this
leads to the “octic form” and so on.

Remark. The previous counterexample shows that we cannot deduce Theorem 2
from Theorem 3. Indeed, it is easy to construct symbols ϕ ∈ G which may be
written ϕ(s) =

∑d
j=1 Pj(p

−s
j ) and such that J(Φ,1) = 0 for Φ a minimal Bohr

lift of ϕ. Indeed, we may consider

Pj(z) = (1− z) +
1

2
(1− z)2 + δ(1− z)4Qj(z)
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where Qj is an arbitrary polynomial and δ > 0 is sufficiently small. Then Cϕ is
compact by Theorem 2 if d ≥ 2 but this cannot be deduced from Lemma 10.

This construction can be generalized to show that Theorem 2 can handle a
variety of different interesting cases not covered by Theorem 3. In fact, given any
d positive integers kj , we may find a polynomial Φ(z) =

∑d
j=1 Φj(zj) which is a

minimal Bohr lift of some ϕ ∈ G , with ReΦ(z1, . . . , zd) = 0 if and only if z = 1
and here we have the expansion

ReΦ
(
eiθ1 , . . . , eiθd

)
=

d∑

j=1

θ
2kj

j + o




d∑

j=1

θ
2kj

j


 ,

ImΦ
(
eiθ1 , . . . , eiθd

)
=

d∑

j=1

a
(j)
1 θj + o




d∑

j=1

|θj |


 .

As remarked upon in the proof of Theorem 2, we must have a
(j)
1 > 0. The

construction of such a polynomial is immediate from our next result.

Lemma 15. There is a polynomial Φ : C → C which satisfy ReΦ
(
eix
)
= (1 −

cosx)k, for any k ∈ N.

Proof. Fix N with k ≤ 2N , and for real numbers an and bn consider

Φ(z) =
N∑

n=1

(−1)n−1

2n
(
an(1− z)2n−1 − bn(1− z)2n

)
.

Our first goal is to expand the real part of Φ
(
eix
)

as degree 2N polynomial in
(1− cosx) with no constant term. To this end, we compute

(
1− eix

)2n−1
= ei(2n−1)x/2

(
e−ix/2 − eix/2

)2n−1

= ei(2n−1)x/222n−1(−1)ni sin2n−1
(x
2

)
.

We use 2 sin2(x/2) = 1− cosx, and obtain

Re
(
1− eix

)2n−1
= 22n−1(−1)n−1 sin2n−1

(x
2

)
sin
(
nx− x

2

)

= (−1)n−12n(1− cosx)n
sin
(
nx− x

2

)

2 sin
(
x
2

) .
(22)

Similarly, we obtain

Re
(
1− eix

)2n
= 22n(−1)n sin2n

(x
2

)
cos(nx)

= (−1)n2n(1− cosx)n cos (nx).
(23)
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To continue the computations, we introduce the Chebyshev polynomials

Un(y) =
n∑

j=0

(−2)j
(n+ j + 1)!

(n− j)!(2j + 1)!
(1− y)j ,

Tn(y) = n
n∑

j=0

(−2)j
(n+ j − 1)!

(n− j)!(2j)!
(1− y)j .

The Chebyshev polynomials are relevant due to the formulas

sinnx = sin(x)Un−1(cosx) and cosnx = Tn(cosx).

We record the following coefficients.

u
(n)
n−2 = (−2)n−1

(
− (2n− 1)(n− 2)

2

)

u
(n)
n−1 = (−2)n−1 (2n), t

(n)
n−1 = (−2)n−1 (n),

u(n)n = (−2)n−1 (−2), t(n)n = (−2)n−1 (−1).

Now, we rewrite (23) as

Re
(
1− eix

)2n
= (−1)n2n(1− cosx)nTn(cosx),

which is then clearly a degree 2n polynomial in (1−cosx) with no constant term.
For (22) we have to work a bit more, so we first compute

sin
(
nx− x

2

)

2 sin
(
x
2

) =
sin(nx) cos

(
x
2

)
− cos(nx) sin

(
x
2

)

2 sin
(
x
2

)

= cos2
(x
2

)
Un−1(cosx)−

Tn(cosx)

2
,

which implies that we may rewrite (22) as

Re
(
1− eix

)2n−1
= (−1)n−12n(1− cosx)n

×
((

1− 1− cosx

2

)
Un−1(cosx)−

Tn(cosx)

2

)
.

Again we observe that this is a polynomial of degree 2n in (1 − cosx) with no
constant term. In total, we have

ReΦ
(
1− eix

)
=

2N∑

m=1

cm(1− cosx)m =
N∑

n=1

(anPn(1− cosx) + bnQn(1− cosx)) ,
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where

Pn(y) =

n∑

j=0

d
(n)
j yn+j = yn

((
1− y

2

)
Un−1(1− y)− Tn(1− y)

2

)
,

Qn(y) =
n∑

j=0

e
(n)
j yn+j = ynTn(1− y).

Given any choice of cm (for instance cm = 0 for m 6= k and ck = 1), we now have
2N linear equations and 2N unknowns, an and bn for 1 ≤ n ≤ N . We will now
show that this system can always be solved.

We first observe that an and bn only have an effect on cm when n ≤ m ≤
2n. Ordering the unknowns as aN , bN , aN−1, bN−1, . . . , a1, b1 and the datas as
c2N , c2N−1, . . . , c1, this means that the matrix of our system can be written in
upper triangular block form, where the blocks on the diagonal are

(
e
(n)
n d

(n)
n

e
(n)
n−1 d

(n)
n−1

)
, n = N,N − 1, . . . , 1.

We know that e(n)n−1 = t
(n)
n−1 and e

(n)
n = t

(n)
n , which we recorded above. It is now

easy to verify that

d
(n)
n−1 = u

(n)
n−1 −

u
(n)
n−2

2
− t

(n)
n−1

2
= (−2)n−1

(
3n

2
+

(2n− 1)(n− 2)

4

)
,

d(n)n = u(n)n − u
(n)
n−1

2
− t

(n)
n

2
= (−2)n−1

(
−3

2
− n

)
.

Hence we are reduced to considering the equation

0 =
d
(n)
n−1e

(n)
n − d

(n)
n e

(n)
n−1

4n−1
=

(
3n

2
+

(2n− 1)(n− 2)

4

)
(−1)−

(
−3

2
− n

)
n

= n2 − (2n− 1)(n− 2)

4
,

which has no integer solutions, and we are done. �

The construction of Φ with specific expansion facilitated by Lemma 15 will be
used in the next section to prove Corollary 4.

8. Approximation numbers

In this section, we consider only the case c0 = 0. We intend to estimate the
decay of an(Cϕ) for maps ϕ which are, in a certain sense, regular at their boundary
points. For this we need as previously a careful inspection of the behaviour of
the Bohr lift Φ near these boundary points.
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Definition. Suppose that ϕ(s) = c1+
∑N

n=2 cnn
−s ∈ G , and that ϕ has complex

dimension d and unrestricted range. Let Φ be a minimal Bohr lift of ϕ and let
w ∈ Td be such that ReΦ(w) = 0. We say that ϕ is boundary regular at w if there
exist independent linear forms `1, . . . , `d on Cd, even integers k1 ≥ k2 ≥ . . . ≥ kd
and real numbers b1, . . . , bd, τ with b1 6= 0 such that

ReΦ
(
eiθ1w1, . . . , e

iθdwd

)
= `1(θ)

k1 + · · ·+ `d(θ)
kd +

d∑

j=1

o
(
`
kj

j (θ)
)

(24)

ImΦ
(
eiθ1w1, . . . , e

iθdwd

)
= τ + b1`1(θ) + · · ·+ bd`d(θ) + o




d∑

j=1

|`j(θ)|


 .(25)

We define the compactness index of ϕ at w as

ηϕ,w =




d∑

j=2

1

kj


× k1

2(k1 − 1)
.

If every boundary point is boundary regular, we say that ϕ is boundary regular.

The proof of Theorem 2 then shows that given a boundary regular map ϕ, the
composition operator Cϕ is compact if and only if d ≥ 2. We shall now assume
that there is only one point w ∈ Td such that ReΦ(z) = 0. In this case, we let
the compactness index of ϕ be ηϕ := ηϕ,w.

The main theorem of this section now reads.

Theorem 16. Let ϕ(s) = c1 +
∑N

n=2 cnn
−s ∈ G have unrestricted range and

complex dimension d. Let Φ be a minimal Bohr lift and assume that there exists
a unique w ∈ Td such that ReΦ(w) = 0. Suppose moreover that ϕ is boundary
regular at w. Then

(
1

n

)ηϕ

� an(Cϕ) �
(
log n

n

)ηϕ

.

This statement may be applied to several cases.

Corollary 17. Let ϕ(s) = c1 +
∑N

n=2 cnn
−s ∈ G have unrestricted range and

complex dimension d. Let Φ be a minimal Bohr lift of ϕ and assume that there
exists a unique w ∈ Td such that ReΦ(w) = 0 and that J(Φ, w) = d. Then

(
1

n

)(d−1)/2

� an(Cϕ) �
(
log n

n

)(d−1)/2

.

Proof. Under these assumptions, ϕ is boundary regular at w with k1 = · · · =
kd = 2. �
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In particular, this corollary covers the result of Queffélec and Seip for linear
symbols (3), as well as the map ϕ1 given in (4). We may also apply Theorem 16
to the maps considered in Theorem 2. In this case, one has simply `j(θ) = θj
(up to a reordering of the terms).

Another interesting application of Theorem 16 is that we may distinguish the
Schatten classes of bounded linear operators on H 2 using composition operators,
as mentioned in the introduction.

Proof of Corollary 4. Let p′ < q′ and ε > 0 be such that

p ≤ p′/2 and
(
1

2
+ ε

)
q′ ≤ q.

Then let d ≥ 2 and k ≥ 2 even such that

p′ <
d− 1

k
< q′ and

1

2
<

k

2(k − 1)
<

1

2
+ ε.

By Lemma 15, we know that there exists a boundary regular polynomial Φ :
Td → C0 such that ReΦ(w) = 0 if and only if w = 1 and

Φ
(
eiθ1 , . . . , eiθd

)
= θk1 + . . .+ θkd + o

(
θk1
)
+ . . .+ o

(
θkd
)
.

Letting ϕ ∈ G any map such that Φ is a minimal Bohr lift of ϕ, we immediately
get

(
1

n

) d−1
k × k

2(k−1)

� an(Cϕ) �
(
log n

n

) d−1
k × k

2(k−1)

,

which completes the proof. �

Theorem 16 may be also applied to many other maps. We will consider here
the map ϕ2 given in (4). Its boundary regularity is different than that of ϕ1, and
hence the degree of compactness is also different.

Example. Let ϕ2(s) = 13/2 − 4 · 2−s − 4 · 3−s + 2 · 6−s as in (4) and let Φ be
its minimal Bohr lift. It can be shown that ReΦ(w) = 0 for w ∈ T2 if and only
if w = (1, 1), and

ReΦ
(
eiθ1 , eiθ2

)
= `1(θ)

4 + `2(θ)
2 + o

(
`41(θ)

)
+ o
(
`22(θ)

)
,

ImΦ
(
eiθ1 , eiθ2

)
= −2`1(θ) + o

(
|`1(θ)|+ |`2(θ)|

)
,

where `1(θ) = θ1 + θ2 and `2(θ) = θ1 − θ2. Hence ηϕ2
= (1/2)× (4/6) = 1/3.

The remaining part of this section is devoted to the proof of Theorem 16. We
use the scheme introduced by Queffélec and Seip in [11] in the context of Dirichlet
series (see also [12] for similar works on the classical Hardy space of the disk).
Their method is based on Carleson measures, interpolation sequences and model
spaces. In Subsection 8.1, we survey these tools and give a couple of lemmas.
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Subsection 8.2 is devoted to the proof of the upper bound, in a more general
context, whereas Subsection 8.3 will be devoted to the lower bound.

8.1. Tools.

The Hyperbolic Metric. The pseudo-hyperbolic metric on the half-plane C0 is
defined by

ρ(z, w) =

∣∣∣∣
z − w

z + w

∣∣∣∣ =
1− e−d(z,w)

1 + ed(z,w)

where d(z, w) is the hyperbolic distance between two points z and w in C0. The
hyperbolic length of a curve Γ ⊂ C0 is given by the integral

Lp(Γ) =

∫

Γ

|dz|
Re z

.

Carleson Measures and Interpolating Sequences. Let H be a Hilbert space of
functions defined on some measurable set Ω in C. A non-negative Borel measure
µ on Ω is a Carleson measure for H if there exists some constant C > 0 such
that ∫

Ω

|f(z)|2dµ(z) ≤ C‖f‖2H ,

for every f in H. The smallest possible C will be called the Carleson norm of µ
with respect to H and will be denoted by ‖µ‖C ,H .

We also assume that the linear point evaluation is bounded at any z ∈ Ω.
Then H admits a reproducing kernel KH

z ∈ H for any z ∈ Ω which satisfies
f(z) =

〈
f,KH

z

〉
for every f ∈ H. We then say that a sequence Z = (zm) of

distinct points in Ω is a Carleson sequence for H if the measure

µZ,H :=
∑

m

∥∥KH
zm

∥∥−2

H
δzm

is a Carleson measure for H.
We say that a sequence Z = (zm) of distinct points in Ω is an interpolating

sequence for H if the interpolation problem f(zm) = am has a solution f ∈ H
whenever the admissibility condition

∑

m

|am|2
∥∥KH

zm

∥∥−2

H
<∞

is satisfied. By the open mapping theorem, if Z is an interpolating sequence for
H, there is a constant C > 0 such that we can solve f(zm) = am with f satisfying

‖f‖H ≤ C

(∑

m

|am|2
∥∥KH

zm

∥∥−2

H

)1/2

.

The smallest constant C with this property will be called the constant of inter-
polation of Z and will be denoted by MH(Z).
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We shall consider the two spaces H = H 2 and H = H2
(
Td
)
. Then we have,

respectively, Ω = C1/2 and Ω = Dd, and moreover

∥∥KH 2

s

∥∥−2
= [ζ(2Re s)]−1 and

∥∥KH2(Td)
z

∥∥−2
=

d∏

j=1

(1− |zj |2).

We will need the three following lemmas.

Lemma 18. Let µ be a Borel measure on C0, let σ ∈ (0, 1) and R > 0. Assume
that µ is supported on the rectangle 0 ≤ Re s ≤ σ, | Im s| ≤ R. Then

‖µ‖C ,H 2 �R sup
ε>0, τ∈R

µ
(
Q(τ, ε)

)

ε
≤ 2 sup

ε∈(0,σ), τ∈R

µ
(
Q(τ, ε)

)

ε
.

Proof. The first inequality is Lemma 2.3 in [11] (the involved constant does not
depend on σ ∈ (0, 1)). The second follows from the inequality

sup
τ∈R

µ
(
Q(τ, 2k+1σ)

)

2k+1σ
≤ sup

τ∈R

µ
(
Q(τ, 2kσ)

)

2kσ
,

valid for any k ≥ 0. Indeed, for any τ ∈ R and any k ≥ 0, we may find τ1, τ2 ∈ R
such that

µ
(
Q(τ, 2k+1σ)

)
= µ

(
Q(τ1, 2

kσ)
)
+ µ

(
Q(τ2, 2

kσ)
)
,

since the support of µ is contained in 0 ≤ Re s ≤ σ. �

Lemma 19. Let ν > 0. There exists C > 0 such that, for any δ ∈ (0, 1/ν),
MH 2(Sδ) ≤ C where Sδ = (sm)

1/δ
m=1 with sm = 1

2 + νδ + imδ.

Proof. The proof of this lemma can be found in [11, Sec 8.2]. �

Lemma 20. Let C1, C2 > 0. There exists D > 0 such that for any δ > 0 and
any (finite) sequence

Z =
(
Z(α)

)
=
(
(1− ρ1(α))e

iθ1(α), . . . , (1− ρd(α))e
iθd(α)

)

in Dd satisfying
• supj=1,...,d |θj(α)− θj(β)| ≥ C1δ, when α 6= β,
• ρj(α) ≤ C2δ, for any α and j = 1, . . . , d,

we have
∥∥µZ,H2(Td)

∥∥
C ,H2(Td)

≤ D.

Proof. To each point Z(α), we associate a rectangle Rα on the distinguish bound-
ary Td centered at (

z1(α)

|z1(α)|
, . . . ,

zd(α)

|zd(α)|

)
,
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with side lengths 2(1− |z1(α)|), . . . , 2(1− |zd(α)|). By Chang’s characterization
of Carleson measures on the polydisc (see [4] or [6]), it is enough to show that we
for all open sets U of Td have

∑

Rα⊂U

md(Rα) ≤ Dmd(U ).

If R is some rectangle in Td and λ > 0, denote by λR the rectangle with the
same center and side lengths multiplied by λ. Then our assumptions on Z imply
that there exists some λ ∈ (0, 1) depending only on C1 and C2 such that the
rectangles Rα are pairwise disjoint. Thus

∑

Rα⊂U

md(U ) ≤
∑

Rα⊂U

1

λd
md(λRα) ≤

1

λd
md

( ⋃

Rα⊂U

λRα

)
≤ 1

λd
md(U ),

which completes the proof with D = 1/λd. �

The Queffélec–Seip Method. We have to introduce additional conventions. For
ϕ ∈ G and Ω a compact subset of C0, we denote by µϕ,Ω the non-negative Borel
measure on C0 defined by

µϕ,Ω(E) := m∞ ({z ∈ T∞ : Φ(z) ∈ E\Ω}) .
Next, assume that ϕ has complex dimension d and Bohr lift Φ : Cd → C. Let
S = (sm) be a sequence of n points in C1/2 and let Z be a finite sequence of
points in Dd such that Φ(Z) = S − 1

2 . We set

NΦ(sm;Z) :=
∑

z∈Z∩Φ−1(sm−1/2)

∥∥KH2(Td)
z

∥∥−2
.

We state Theorem 4.1 of [11] as the forthcoming lemma (we have modified it
slightly to take into account our normalization).

Lemma 21. Let ϕ(s) =
∑∞

n=1 cnn
−s ∈ G such that ϕ(C0) is bounded.

(a) Let σ > 0 and Ω be a compact subset of Cσ. Let B be a Blaschke product
of degree n on C0 whose zeros lie in Ω. Then

an(Cϕ) ≤
(
sup
s∈Ω

|B(s)|2ζ(1 + 2σ) + sup
ε>0,τ∈R

µϕ,Ω(Q(τ, ε))

ε

)1/2

.

(b) Assume that ϕ has complex dimension d. Let S and Z be finite sets in
respectively C1/2 and Dd such that Φ(Z) = S − 1

2 . Then

an(Cϕ) ≥ [MH 2(S)]
−1 ∥∥µZ,H2(Td)

∥∥−1/2

C ,H2(Td)
inf
m

[NΦ(sm;Z)ζ(2Re sm)]
1/2

.
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8.2. The Upper Bound.

Let ϕ(s) =
∑∞

n=1 cnn
−s ∈ G and suppose that ϕ(C0) bounded. By Lemma

5, Cϕ is compact if and only if µϕ

(
Q(τ, ε)

)
= o(ε) uniformly in τ ∈ R. We

are planning to get an upper bound of an(Cϕ) depending on the behaviour of
supτ∈R µϕ

(
Q(τ, ε)

)
with respect to ε and on the size of the image of ϕ near a

boundary point.
Thus, let Φ be a Bohr lift of ϕ. We define κϕ as the infimum of those κ ≥ 1

such that there exists a constant C > 0 such that, for every τ ∈ R and every
ε > 0,

m∞ ({z ∈ T∞ : Φ(z) ∈ Q(τ, ε)}) ≤ Cεκ.

Assume now that there exists a unique w ∈ T∞ such that ReΦ(w) = 0 and write
Φ(w) = iτ . Let ωϕ be the infimum of the positive ω such that, for any s ∈ C0,

|Imϕ(s)− τ |ω ≤ C

(
Reϕ(s)− 1

2

)
.

Theorem 22. Let ϕ(s) =
∑∞

n=1 cnn
−s ∈ G with ϕ(C0) bounded, let Φ be a Bohr

lift of ϕ and assume that there is a unique w ∈ T∞ such that ReΦ(w) = 0. Then

an(Cϕ) �




exp

(
−λn−1/2

)
if ωϕ ≤ 1,

(
log n
n

)(κϕ−1)× ωϕ
2(ωϕ−1)

if ωϕ > 1.

Here λ is some positive constant depending on ϕ.

This theorem illustrates the following general principle for composition opera-
tors (valid beyond H 2): The more restricted the image of the symbol is, the more
compact the associated composition operator is. In particular, the case ωϕ = 1
(the range of ϕ is contained in an angle) is reminiscent from [12, Thm. 1.2] where
a similar result was obtained for composition operators on H2(D).

Before we embark upon the proof of Theorem 22, we first employ it to deduce
the upper bound of Theorem 16.

Final part in the proof of the upper bound of Theorem 16. Suppose that ϕ ∈ G
is a boundary regular Dirichlet polynomial, and assume that ReΦ(1) = 0. We
write

ReΦ
(
eiθ1 , . . . , eiθd

)
= `1(θ)

k1 + · · ·+ `d(θ)
kd +

d∑

j=1

o
(
`
kj

j (θ)
)
,

ImΦ
(
eiθ1 , . . . , eiθd

)
= τ + b1`1(θ) + · · ·+ bd`d(θ) + o




d∑

j=1

|`j(θ)|


 ,

with k1 ≥ . . . ≥ kd and b1 6= 0. The proof of Theorem 2 shows that we have
κϕ ≥ 1 +

∑d
j=2 1/kj .
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Now, let us write the Taylor expansion of ReΦ and ImΦ near 1, but also now
for a point belonging to the unit polydisc. Writing

Φ(z) =
d∑

j=1

aj(1− zj) + o




d∑

j=1

|1− zj |




and z =
(
(1− ρ1)e

iθ1 , . . . , (1− ρd)e
iθd
)
, it is easy to get

ReΦ(z) = a1ρ1 + · · ·+ adρd + `1(θ)
k1 + · · ·+ `d(θ)

kd + o




d∑

j=1

(
ρj + `

kj

j (θ)
)

 ,

ImΦ(z) = τ + b1`1(θ) + · · ·+ bd`d(θ) + o




d∑

j=1

|`j(θ)|


 .

Recalling that aj ≥ 0 for j = 1, . . . , d, it is easy to conclude that there exists a
neighbourhood U 3 1 in Dd and C > 0 such that, for all z ∈ U ,

| ImΦ(z)− τ |k1 ≤ C ReΦ(z).

Outside U , ReΦ(z) is bounded away from 0, and |ImΦ(z) − τ | is here trivially
majorized. Hence, the upper bound of Theorem 16 follows from Theorem 22. �

Let us now turn to the proof of Theorem 22. The proof will be preceded by
two lemmas. The first one is inspired by Lemma 3.1 in [12].

Lemma 23. Let Ω be a bounded domain in C0 whose boundary is a piecewise
regular Jordan curve Γ, with Lp(Γ) ≥ 1. Let s1, . . . , sn be points in Γ such that
the hyperbolic length of the curve between any two points sj and sj+1 is equal to
Lp(Γ)/n, 1 ≤ j ≤ n, where sn+1 = s1. Let B be the Blaschke product of degree n
whose zeros are precisely s1, . . . , sn. Then, for any s ∈ Ω,

|B(s)| ≤ exp

(
−C n

Lp(Γ)

)
.

Proof. By the maximum principle, it is sufficient to prove this inequality for
s ∈ Γ. In this case, we know that there exists some j ∈ {1, . . . , n} such that
d(s, sj) ≤ Lp(Γ)/n, from which we deduce that

d(s, sk) ≤
Lp(Γ)

n
(1 + |k − j|)

for any k = 1, . . . , n. Using the link between the pseudo hyperbolic distance and
the hyperbolic distance, we deduce that

|B(s)| ≤
n∏

j=1

(
1− e−j

Lp(Γ)

n

1 + e−j
Lp(Γ)

n

)
.

86



By a Riemann sum argument, this means that

|B(s)| ≤ exp

(
−n
∫ 1

0

ln

(
1− e−xLp(Γ)

1 + exLp(Γ)

)
dx

)

≤ exp

(
− n

Lp(Γ)

∫ 1

e−Lp(Γ)

1

y
ln

(
1 + y

1− y

)
dy

)
,

and we get the desired conclusion, since by assumption Lp(Γ) ≥ 1. �
Hence, we require estimates of the hyperbolic length of some curves which are

linked to the way that ϕ touches the boundary. Such estimates are contained in
the following result.

Lemma 24. Let ω ≥ 1, σ ∈ (0, 1/2) and C > 1. Consider

Ωω,σ,C =
{
s ∈ C0 : | Im s|ω ≤ C Re(s), σ ≤ Re s ≤ C

}
.

Let Γω,σ,C denote the boundary of Ωω,σ,C . Then

Lp(Γω,σ,C) �ω,C

{(
1
σ

)ω−1
ω if ω > 1,

− ln(σ) if ω = 1.

Proof. Consider the curves

Γ1 =
{
s ∈ C0 : Re s = σ, | Im s| ≤ C1/ω(Re s)1/ω

}
,

Γ2 =
{
s ∈ C0 : Re s = C, | Im s| ≤ C1/ω(Re s)1/ω

}
,

Γ3 =
{
s ∈ C0 : σ ≤ Re s ≤ C, | Im s| = C1/ω(Re s)1/ω

}
.

Clearly, Γω,σ,C ⊂ Γ1 ∪ Γ2 ∪ Γ3 and it is sufficient to prove the corresponding
inequalities for Γj , j = 1, 2, 3. Firstly, Lp(Γ2) �ω,C 1. Regarding Γ1,

Lp(Γ1) =

∫ C1/ωσ1/ω

−C1/ωσ1/ω

dy

σ
�ω,C

(
1

σ

)ω−1
ω

which is even a stronger inequality than required when ω = 1. Finally,

Lp(Γ3) �ω,C

∫ C

σ

√
1 + x

2
ω−1

x
dx�ω,C

{
− ln(σ) if ω = 1,
(
1
σ

)ω−1
ω if ω > 1.

The last estimate follows from inspecting the integrand near x = 0, since σ ∈
(0, 1). �
Proof of Theorem 22. Let σ ∈ (0, 1) and n ≥ 1. Without loss of generality, we
may assume that Φ(1) = 0. Keeping the notations of Lemma 24, there exists
C > 0 such that

ϕ(C0)−
1

2
⊂
{
s ∈ C0 : 0 ≤ Re s ≤ σ

}
∪ Ωωϕ,σ,C .
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Let B be a Blaschke product of degree n defined as in Lemma 23 with Ωωϕ,σ,C .
Enlarging C if necessary, we may always assume that Lp(Γωϕ,σ,C) ≥ 1, so that
the assumptions of Lemma 23 are satisfied. The set

Ω =

{
ϕ(s)− 1

2
: Reϕ(s) ≥ 1

2
+ σ

}

is a compact subset of C0, and we may apply part (a) of Lemma 21. Since
Ω ⊂ Ωωϕ,σ,C , we obtain

sup
s∈Ω

|B(s)|2 ≤ exp

(
−2C ′ n

Lp(Γωϕ,σ,C)

)
.

Moreover, ζ(1 + 2σ) � 1/σ. Finally, using Lemma 18, we obtain

‖µϕ,Ω‖C ,H 2 � sup
ε∈(0,σ), τ∈R

µϕ,Ω

(
Q(τ, ε)

)

ε
� σκϕ−1.

We will now optimize the choice of σ with respect to n. When ωϕ > 1, we set

σ = ρ

(
log n

n

) ωϕ
ωϕ−1

,

where % is some numerical parameter to be chosen later. Then

sup
s∈Ω

|B(s)|2ζ(1 + 2σ) ≤ exp

(
−2C ′ρ

ωϕ−1

ωϕ log n

)
· 1

σ
�
(
log n

n

) ωϕ
ωϕ−1 (κϕ−1)

,

provided ρ > 0 is sufficiently large. When ωϕ ≤ 1, we set σ = exp
(
− ρn−1/2

)
,

so that

sup
s∈Ω

|B(s)|2ζ(1 + 2σ) ≤ exp

(
−C

′′

ρ
n1/2 + ρn1/2

)
,

and the result is proved provided ρ > 0 is sufficiently small. �

Remark. Our method of proof also shows, provided ϕ(C0) is bounded and κϕ > 1,
that

an(Cϕ) ≤
(
log n

n

)κϕ−1

2

.

Indeed, we apply the same method with Ωσ,C = {s ∈ C0 : σ ≤ Re s ≤
C, | Im s| ≤ C} which satisfies Lp(Γ) �C σ−1. The rest of the proof remains
unchanged.
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8.3. The Lower Bound.

Let ϕ ∈ G satisfying the assumptions of Theorem 16 and let us assume that
around 1, Φ satisfies (24) and (25). Let ν > 0. For δ ∈ (0, 1/ν), we consider the
sequence Sδ = (sm), given by

sm =
1

2
+ νδ + imδ, where 1 ≤ m ≤

(
1

δ

)1− 1
k1

.

We intend to apply part (b) of Lemma 21. We will require the construction of
preimages of Sδ − 1/2 by Φ, and the inverse function theorem will provide the
solution.

Lemma 25. Let ϕ ∈ G satisfy the assumptions of Theorem 16. Then there exist
ν0, C1, C2 > 0 such that for all ν ≥ ν0 and every δ ∈ (0, 1/ν), there exists a finite
sequence Zδ = (Z(α)) in Dd with

Z(α) =
[
(1− ρ1(α))e

iθ1(α), . . . , (1− ρd(α))e
iθd(α)

]

such that
• for any α 6= β, we have supj=1,...,d |θj(α)− θj(β)| ≥ C1δ,
• for any α and any j = 1, . . . , d, we have C−1

2 δ ≤ ρj(α) ≤ C2δ,

• Φ(Zδ) = Sδ−1/2 and, for any 1 ≤ m ≤
(
1
δ

)1− 1
k1 , the equation Φ(Z(α)) =

sm − 1
2 has at least

∏d
j=2

⌊(
1
δ

)1− 1
kj

⌋
solutions.

Proof. We start as in the deduction of the upper bound in Theorem 16 from
Theorem 22, writing

ReΦ(z) = a1ρ1 + · · ·+ adρd + `1(θ)
k1 + · · ·+ `d(θ)

kd + o




d∑

j=1

(
ρj + `

kj

j (θ)
)

 ,

ImΦ(z) = τ + b1`1(θ) + · · ·+ bd`d(θ) + o




d∑

j=1

|`j(θ)|


 ,

for z =
(
(1 − ρ1)e

iθ1 , . . . , (1 − ρd)e
iθd
)
. To simplify the notations, we use the

(linear) change of variables uj = `j(θ). We also set

Λ = Nd ∩
d∏

j=1

[
1,

(
1

δ

)1− 1
kj

]

and, for α ∈ Λ and j = 2, . . . , d we let ρj(α) = δ and uj(α) = αjδ.
Setting m = α1, we want to find Z(α) such that ReΦ(Z(α)) = νδ and

ImΦ(Z(α)) = mδ. It remains to determine ρ1(α) and u1(α). We rewrite this
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system as

(26)
{
fα(ρ1, u1)ρ1 + gα(ρ1, u1)u

k1
1 = νδ + dα

hα(ρ1, u1)u1 = mδ + eα

where fα, gα and hα are smooth functions depending only on α2, . . . , αd and
there exists a neighbourhood U 3 (0, 0) so that for every (ρ, u) ∈ U ,

|fα(ρ, u)− a1| � δ, |gα(ρ, u)− 1| � δ and |hα(ρ, u)− 1| � δ.

Here, the open set U and the involved constants are uniform with respect to α,
ν ≥ 1 and δ ∈ (0, 1/ν). Moreover, the real numbers dα and eα satisfy

dα �
d∑

j=2

δ +
d∑

j=2

((
1

δ

)1− 1
kj

)kj

� δ

eα � δ

d∑

j=2

(
1

δ

)1− 1
kj

� δ
1
k1 .

We now apply the inverse function theorem to solve the system (26). Provided ν
is large enough, we get a solution (ρ1(α), u1(α)) satisfying sup(ρ1(α), |u1(α)|) �
δ1/k1 . In this case, the involved constant depends on ν, but it is uniform with
respect to α and δ.

Now, a look at the first equation of (26) shows that we in fact have the more
precise inequality δ � ρ1(α) � δ, provided ν is sufficiently large, and this is
independent of α and δ ∈ (0, 1). Looking now at the second equation of (26),
if α 6= β ∈ Λ satisfy αj = βj for j ≥ 2, so that eα = eβ and hα = hβ , then
|u1(α)− u1(β)| � δ.

Hence, we have obtained
∏d

j=2

⌊(
1
δ

)1− 1
kj

⌋
solutions to the equation Φ(Z(α)) =

sm, and they satisfy the conclusions of Lemma 25 since the inequalities on uj(α)
are also valid for θj(α) up to a constant depending only of Φ. �

Final part in the proof of the lower bound of Theorem 16. We apply Lemma 21
to Sδ and Zδ given by the previous lemma, for

δ =

(
1

n

) k1
k1−1

,

so that Sδ has cardinal number equal to n. Since MH 2(Sδ) � 1 and
∥∥µZ,H2(Td)

∥∥
C ,H2(Td)

� 1

by Lemma 19 and Lemma 20, it remains to estimate the sum NΦ(sm;Z)ζ(2Re sm)
for any m. Using the fact that ρj(α) � δ for any j = 1, . . . , d and any α, we
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obtain

NΦ(sm;Z)ζ(2Re sm) �
(
1

δ

)∑d
j=2

(
1− 1

kj

)

· δd · δ−1

� δ
∑d

j=2
1
kj �

(
1

n

)(∑d
j=2

1
kj

)
× k1

k1−1

,

and we are done. �
Remark. We may modify the proof of Theorem 16 so that we do not assume that
there exists a unique w ∈ Td such that ReΦ(w) = 0. Suppose that ϕ is boundary
regular at any w ∈ Td such that ReΦ(w) = 0. Define now the compactness index
of ϕ as the real number

ηϕ(s) = inf
{
ηϕ,w : ReΦ(w) = 0

}
.

It should be observed that this infimum is in fact a minimum. Indeed, our
assumptions imply that the points w ∈ Td such that ReΦ(w) = 0 are isolated.
Theorem 16 remains true with this new definition of ηϕ.
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COMPOSITION OPERATORS AND EMBEDDING THEOREMS
FOR SOME FUNCTION SPACES OF DIRICHLET SERIES

FRÉDÉRIC BAYART AND OLE FREDRIK BREVIG

Abstract. We observe that local embedding problems for certain Hardy
and Bergman spaces of Dirichlet series are equivalent to boundedness of a
class of composition operators. Following this, we perform a careful study of
such composition operators generated by polynomial symbols ϕ on a scale
of Bergman–type Hilbert spaces Dα. We investigate the optimal β such
that the composition operator Cϕ maps Dα boundedly into Dβ . We also
prove a new embedding theorem for the non-Hilbertian Hardy space H p

into a Bergman space in the half-plane and use it to consider composition
operators generated by polynomial symbols on H p, finding the first non-
trivial results of this type. The embedding also yields a new result for the
functional associated to the multiplicative Hilbert matrix.

1. Introduction

A paper by Gordon and Hedenmalm [11] initiated the study of composition
operators acting on function spaces of Dirichlet series, f(s) =

∑
n≥1 ann

−s. Their
object of study was the Hilbert space of Dirichlet series with square-summable
coefficients, H 2. In this paper, we consider composition operators acting on
various scales of function spaces of Dirichlet series.

For 1 ≤ p < ∞, we follow [3] and define the Hardy space H p as the Banach
space completion of Dirichlet polynomials P (s) =

∑N
n=1 ann

−s in the Besicovitch
norm

(1) ‖P‖H p := lim
T→∞

(
1

2T

∫ T

−T
|P (it)|p dt

) 1
p

.

The spaces H p are Dirichlet series analogues of the classical Hardy spaces in unit
disc. We refer to [19] and to [20, Ch. 6] for basic properties of H p, mentioning for
the moment only that their elements are absolutely convergent in the half-plane
C1/2, where Cθ := {s ∈ C : Re(s) > θ}.

The second author is supported by Grant 227768 of the Research Council of Norway.
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For α ∈ R, we let Dα denote the Hilbert space consisting of Dirichlet series f
satisfying

(2) ‖f‖Dα
:=

( ∞∑

n=1

|an|2
[d(n)]α

) 1
2

<∞.

Here d(n) denotes the number of divisors of the positive integer n. Note that
D0 = H 2. We are interested in the range α ≥ 0 and, as explained in [1], these
spaces may be thought of as Dirichlet series analogues of the classical scale of
weighted Bergman spaces in the unit disc. Since d(n) = O (nε) for every ε > 0, it
follows from the Cauchy–Schwarz inequality that Dirichlet series in Dα also are
absolutely convergent in C1/2.

Due to an insight of H. Bohr (see Section 2), both H p and Dα can be identified
with certain function spaces in countably infinite number of complex variables,
and — consequently — the norms (1) and (2) can be computed as integrals on
the polytorus T∞ or in the polydisc D∞, respectively.

In an attempt to better understand these spaces, their composition operators
Cϕ(f) = f ◦ ϕ have recently been investigated in a series of papers. It is well-
known (see [1, 3, 11, 21]) that any function ϕ : C1/2 → C1/2 defining a bounded
composition operator from H p to H q, for some p, q ≥ 1, or from Dα to Dβ , for
some α, β ≥ 0, necessarily is a member of the following class.

Definition. The Gordon–Hedenmalm class, denoted G , is the set of functions
ϕ : C1/2 → C1/2 of the form

ϕ(s) = c0s+
∞∑

n=1

cnn
−s =: c0s+ ϕ0(s),

where c0 is a non-negative integer called the characteristic of ϕ and is denoted
char(ϕ), the Dirichlet series ϕ0 converges uniformly in Cε (ε > 0) and has the
following mapping properties:

(a) If c0 = 0, then ϕ0(C0) ⊂ C1/2.
(b) If c0 ≥ 1, then either ϕ0 ≡ 0 or ϕ0(C0) ⊂ C0.

Regarding sufficient conditions, the case (b) is the most well-understood. It
was shown in [3] that (b) is sufficient for boundedness of Cϕ from H p to H p

and in [1] that the same holds for boundedness of Cϕ from Dα to Dα.
The case char(ϕ) = 0, which is the topic of this paper, is more difficult. Here

it is only known that (a) is sufficient for boundedness of Cϕ from H p to H p if
p is an even integer. In [1], it was shown that if ϕ ∈ G with char(ϕ) = 0, then
Cϕ maps Dα into D2α−1 (which is smaller than Dα if 0 < α < 1 and larger than
Dα if α > 1). It was left open whether the value 2α − 1 is optimal or not.

The sticking point seems to be that in order to prove sufficient conditions for
boundedness of composition operators with char(ϕ) = 0, we require an embedding
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of the function spaces of Dirichlet series into certain classical function spaces in
the half-plane C1/2. The existence of such embeddings in the non-Hilbertian case
is a well-known open problem in the field.

This paper is initiated by the observation that such embeddings are in fact
equivalent to the sufficiency of condition (a). Our approach is related to the
transference principle introduced in [21]. As a corollary, we obtain that the
parameter 2α−1 discussed above is sharp, since it was demonstrated in [15] that
the corresponding embedding is optimal.

We also discuss embeddings of H p when 1 ≤ p < 2. Although we were unable
to prove that H p embeds into the corresponding conformally invariant Hardy
space of C1/2, we show that it embeds into an optimal conformally invariant
Bergman space.

Theorem 1. Let 1 ≤ p < 2. There exists a constant Cp > 0 such that
(∫

R

∫ ∞

1/2

|f(s)|2
(
σ − 1

2

) 2
p−2

dσdt

|s+ 1/2|4/p

) 1
2

≤ Cp‖f‖H p ,

for every f ∈ H p. The exponent 2
p − 2 is the smallest possible.

We then perform a careful study of composition operators with polynomial
symbols mapping Dα to Dβ , in the spirit of [5]. We show that for certain poly-
nomial symbols, Cϕ maps Dα into Dβ with β < 2α − 1 and that the optimality
of β = 2α − 1 also can be decided by investigating the most simple non-trivial
symbol, namely ϕ(s) = 3/2− 2−s.

Consequently, we consider boundedness of this simple composition operator an
interesting necessary condition for the embedding problem for H p. This leads
us to an in-depth study of composition operators with linear symbols on H p.
By using Theorem 1 and estimates of Carleson measures, we prove the following
result.

Theorem 2. Let ϕ(s) = c1 +
∑d
j=1 cpjp

−s
j be a Dirichlet polynomial belonging

to G such that cpj 6= 0 for j = 1, . . . , d and suppose that d ≥ 2. Then Cϕ is
bounded on H p, for p ∈ [1,∞).

Observe that the case d = 1 corresponds to the simple symbol discussed above.
It should also be mentioned that very few non-trivial composition operators of
characteristic 0 on H p are known when p is not an even integer, and none
involving two or more prime numbers. Moreover, it is possible to generate more
examples from our method and results in [5].

We show that if ϕ(s) = 3/2−2−s generates a bounded composition operator on
H 1, then Nehari’s theorem holds for the multiplicative Hilbert matrix introduced
in [9]. Furthermore, we apply Theorem 1 to demonstrate that the associated
functional is bounded on H p for p ∈ (1,∞). We also explain how Theorem 1
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and the techniques used in its proof can be used to improve the necessary and
sufficient conditions for bounded zero sequences for H p from [8, 23].

Organization. This paper is divided into seven sections. Section 2 contains
an exposition of our observation that the embedding problem is equivalent to
boundedness of certain composition operators for H p and Dα, in addition to
the proof of Theorem 1. In Section 3, we collect some results regarding Carleson
measures in the half-plane and on the polydisc. Section 4 is devoted to a study
of composition operators from Dα to Dβ generated by polynomial symbols. In
Section 5, we discuss composition operators with linear symbols on H p. The
penultimate section contains some connections from the results obtained in this
paper to the validity of Nehari’s theorem for the multiplicative Hilbert matrix,
while the final section is dedicated to bounded zero sequences for H p.

Notation. We will use the notation f(x) � g(x) when there is some constant
C > 0 such that |f(x)| ≤ C|g(x)| for all (appropriate) x. If both f(x) � g(x)
and g(x) � f(x) hold, we will write f(x) � g(x). As usual, {pj}j≥1 will denote
the increasing sequence of prime numbers.

2. Composition operators and the embedding problem

2.1. Hardy spaces. As mentioned in the introduction, functions in H p are
holomorphic in the half-plane C1/2. It is therefore interesting to investigate how
they behave on the line 1/2+ it. In this context, the most important question is
the embedding problem (see [22, Sec. 3]), which can be formulated as follows. Is
there a constant Cp such that

(3) sup
τ∈R

∫ τ+1

τ

|P (1/2 + it)|p dt ≤ Cp‖P‖pH p

for every Dirichlet polynomial P? It follows from an inequality of Montgomery
and Vaughan (see [14, pp. 140–141]) that (3) holds for p = 2, and hence for every
even integer p, but its validity for other values remains open. Now, from (1) it is
clear that the H p-norm is invariant under vertical translations, so it is enough
to check (3) for a fixed τ , say τ = 0.

A typical application of the local embedding is to deduce that ϕ ∈ G with
char(ϕ) = 0 is a sufficient condition for boundedness of the composition operator
Cϕ on H p. This is usually done through the following equivalent formulation of
(3).

The conformally invariant Hardy space in the half-plane C1/2, which we denote
Hp

i , consists of those functions f such that f ◦ T ∈ Hp(T), where T is the
following mapping from D to C1/2,

T (z) =
1

2
+

1− z

1 + z
.
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The mapping T appeared in the transference principle of [21], where it was used
to transfer certain results about composition operators on H2(T) to results about
composition operators on H 2. Now, the norm of Hp

i can be computed as

‖f‖p
Hp

i
:= ‖f ◦ T ‖pHp(T) =

1

2π

∫ π

−π
|f(1/2 + i tan(θ/2))|p dθ

=
1

π

∫

R
|f(1/2 + it)|p dt

1 + t2
.

(4)

The inequality (3) is equivalent to ‖P‖Hp
i
≤ C ′

p‖P‖H p , since evidently
∫ 1

0

|P (1/2 + it)|p dt� ‖P‖p
Hp

i
� sup

τ∈R

∫ τ+1

τ

|P (1/2 + it)|p dt.

Our observation is that not only does the embedding (3) imply a sufficient
condition for boundedness of certain composition operators, it is in fact equivalent
to boundedness of all composition operators of this type.

Theorem 3. Fix 1 ≤ p <∞. The following are equivalent.

(a) The local embedding (3) holds for p.
(b) For every ϕ ∈ G with char(ϕ) = 0, the composition operator Cϕ acts

boundedly on H p.
(c) Let ψ(s) = T (2−s). The composition operator Cψ acts boundedly on

H p.

As explained in [3], the proof of (a) =⇒ (b) can be adapted from the proof
given for p = 2 in [11]. This argument relies on approximating the Besicovitch
norm (1) by taking a limit in a family of conformal mappings. A simpler proof
of this implication, based on a trick from [1], is included below.

To facilitate this, let us recall the Bohr lift. Every positive integer n can be
written uniquely as a product of prime numbers,

n =
∞∏

j=1

p
κj

j .

This factorization associates the finite multi-index κ(n) = (κ1, κ2, . . . ) to n.
Consider a Dirichlet series f(s) =

∑
n≥1 ann

−s. Its Bohr lift Bf is the power
series

Bf(z) =

∞∑

n=1

anz
κ(n).

It is well-known (see [3, 20]) that the Bohr lift defines an isometric isomorphism
between H p and the Hardy space of the countably infinite polytorus, Hp(T∞).
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The polytorus T∞ is a compact abelian group, which we endow with its normal-
ized Haar measure ν, so that

‖f‖pH p = ‖Bf‖pHp(T∞) :=

(∫

T∞
|Bf(z)|p dν(z)

) 1
p

.

It is important to note that the Haar measure ν = ν0 of the polytorus T∞ is simply
the product of the normalized Lebesgue measure on T, denoted m = m0, in each
variable. The subscript is included to indicate the connection to D0 = H 2.

Proof of Theorem 3. For (a) =⇒ (b), we first suppose that Φ is a holomorphic
function mapping D to C1/2. Using Littlewood’s subordination principle (see [27,
Ch. 11]), we find that

(5) ‖f ◦ Φ‖pHp(T) ≤
1 + |T −1(Φ(0))|
1− |T −1(Φ(0))| ‖f‖

p
Hp

i
,

for f ∈ Hp
i . For G ∈ Hp(T∞) and w ∈ C, set Gw(z) = G(wz1, wz2, . . . ). By

Fubini’s theorem,

‖G‖pHp(T∞) =

∫

T∞

∫

T
|Gw(z)|p dm(w)dν(z).

Let P be a Dirichlet polynomial and assume that ϕ ∈ G with char(ϕ) = 0.
The latter assumption implies that B(P ◦ ϕ) = P ◦ (Bϕ). Thus, by setting
G = B(P ◦ ϕ), we obtain

‖P ◦ ϕ‖pH p =

∫

T∞

∫

T
|P ◦ (Bϕ)w(z)|p dm(w)dν(z).

Fixing for a moment z ∈ T∞, we notice that Φ(w) = (Bϕ)w(z) maps D to C1/2

with Φ(0) = c1. Considering therefore P a member of Hp
i , we apply (5) and

conclude that

‖P ◦ ϕ‖pH p ≤
∫

T∞

(
1 + |T −1(c1)|
1− |T −1(c1)|

‖P‖p
Hp

i

)
dν(z) =

1 + |T −1(c1)|
1− |T −1(c1)|

‖P‖p
Hp

i
,

seeing as the constant in this instantiation of Littlewood’s subordination principle
does not involve z.

The implication (b) =⇒ (c) is obvious, seeing as it is easy to verify that
ψ ∈ G . To prove that (c) =⇒ (a), assume that Cψ acts boundedly on H p, say
that

‖CψP‖H p ≤ Cp‖P‖H p

holds for every Dirichlet polynomial P . Arguing as above, we find that B(P ◦ψ) =
P ◦ (Bψ) and that, in this case, Bψ(z) = T (z1). In particular, using the Bohr
lift, this means that

‖CψP‖H p = ‖P ◦ T ‖Hp(T),

so we are done by (4). �
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2.2. Bergman spaces. Let us now explain how to do the same for the Bergman–
type spaces Dα. Let α, β > 0, and consider the following probability measures
on D.

dmα(z) =
1

Γ(α)

(
log

1

|z|2
)α−1

dm1(z),(6)

dm̃β(z) = β
(
1− |z|2

)β−1
dm1(z).(7)

Here m1 (which is the only case where m = m̃) is taken to be the standard
Lebesgue measure on C, normalized so that m1(D) = 1. For α > 0, the Bergman
space Dα(D) can be defined as the L2-closure of polynomials with respect to
either measure, yielding equivalent norms. We will for simplicity use the measure
(7) in most cases.

However, in an infinite number of variables, the norms are no longer equivalent.
We use (6) to compute the norm of Dα as an integral over D∞ to ensure that
(2) is satisfied. Therefore, we define dνα(z) = dmα(z1) × dmα(z2) × · · · . It is
straightforward to verify that

‖f‖2Dα
=

∫

D∞
|Bf(z)|2 dνα(z).

Set Sτ = [1/2, 1] × [τ, τ + 1]. For the Bergman spaces Dα, the local embedding
problem takes on the following form: Given α > 0, what is the smallest β > 0
such that

(8) sup
τ∈R

∫

Sτ

|P (s)|2
(
σ − 1

2

)β−1

dm1(s) ≤ Cα,β‖P‖2Dα

for every Dirichlet polynomial P? Again, it is clear that the norm of Dα is
invariant under vertical translations, so arguing as above, we find that (8) is
equivalent to ‖P‖Dβ,i

≤ C ′
α,β‖P‖2Dα

, setting

(9) ‖f‖2Dβ,i
:= ‖f ◦ T ‖2Dβ(D) = 4ββ

∫

C1/2

|f(s)|2
(
σ − 1

2

)β−1
dm1(s)

|s+ 1/2|2β+2
,

since any f in Dα is uniformly bounded in C1 by its Dα-norm. For the next
result, (a) =⇒ (b) is part of the main result in [1]. The other steps are identical
to the proof of Theorem 3 in view of the discussion above.

Theorem 4. Fix α, β > 0. The following are equivalent.
(a) The local embedding (8) holds for α and β.
(b) For every ϕ ∈ G with char(ϕ) = 0, the composition operator Cϕ : Dα →

Dβ is bounded.
(c) Let ψ(s) = T (2−s). The composition operator Cψ maps Dα boundedly

into Dβ.
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It was shown in [15] that β = 2α − 1 is the optimal exponent in (8). We will
touch upon the reason behind this value in the next section, see in particular
(17). From this optimality, we obtain at once the following result, clarifying the
optimal β in the main result of [1], which states that if ϕ ∈ G with char(ϕ) = 0,
then Cϕ maps Dα boundedly into Dβ if β ≥ 2α − 1.

Corollary 5. Let α ≥ 0. There is ϕ ∈ G with char(ϕ) = 0 such that Cϕ : Dα →
Dβ is bounded if and only if β ≥ 2α − 1.

2.3. Embedding of H p into Dβ,i. Even if one is unable to prove the embedding
inequality (3) for 1 ≤ p < 2, it is natural to ask whether it is possible to embed
H p into some Bergman space Dβ,i. For the Hardy spaces of the unit disc, this
type of result goes back to the function theoretic version of the isoperimetric
inequality due to Carleman, which asserts that

(10) ‖f‖D1(D) ≤ ‖f‖H1(D).

Iterating the inequality (its contractivity is crucial) and using the Bohr lift, Hel-
son [12] found that ‖f‖D1

≤ ‖f‖H 1 . Combining Helson’s inequality with the re-
sults from [15] discussed above, one finds that H 1 is embedded in D1,i, thereby
reclaiming (10) in the context of Hardy spaces of Dirichlet series and weighted
Bergman spaces in C1/2.

If we seek to extend Helson’s inequality to 1 < p < 2, we are required to use
the measure (6) when defining the spaces Dα(D), to ensure that we get Dα after
the iterative procedure. By a standard interpolation argument between (10) and
H2(D), one find that for p ∈ (1, 2),

(11) ‖f‖D 2
p
−1

(D) ≤ Cp‖f‖Hp(D).

Nevertheless, the constant Cp arising from interpolation between Hardy spaces is
strictly bigger than 1 (see [7]). Without contractivity, we cannot argue as Helson,
starting from (11), to prove that H p embeds into D2/p−1. It turns out that this
embedding is false, since it can be proved (see [7] or the argument at the end of
the proof of Theorem 1) that if H p embeds into Dα, then α ≥ 1 − log p/ log 2
which is stricly bigger than 2/p− 1 when p ∈ (1, 2).

On the other hand, such an embedding is not known to exist, unless p ∈ {1, 2}.
If we could prove that H p embeds into Dα, with α = 1 − log p/ log 2, then the
embedding (8), which is valid with β = 2α − 1, would imply that

(12) ‖f‖D 2
p
−1,i

� ‖f‖H p ,

again reclaiming (11) for Hardy spaces of Dirichlet series and weighted Bergman
spaces in C1/2. Similarly, the embedding (3) also implies (12), in this case by first
translating (11) to C1/2 with T . We have been able to prove (12) by different
methods, which is our Theorem 1.
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The proof uses several tools from harmonic analysis and analytic number the-
ory. The first is a special case of a result of Weissler [25], who studied the
hypercontractivity of the Poisson kernel.

Lemma 6. Let p ∈ [1, 2]. For any f(z) =
∑
k≥0 akz

k, we have the contractive
estimate

( ∞∑

k=0

|ak|2
(p
2

)k
)1/2

≤ ‖f‖Hp(D).

The second tool is a way to iterate this inequality multiplicatively, first devised
in [3] and later used in [7, 12]. We formulate it in an abstract context and we
give a brief account of the proof.

Lemma 7. Let p ∈ [1, 2] and assume that there exists a sequence {γk}k≥0 of
positive real numbers with γ0 = 1, such that for every f(z) =

∑
k≥0 akz

k ∈
Hp(D),

( ∞∑

k=0

|ak|2 γk
)1/2

≤ ‖f‖Hp(D).

Let Γ denote the multiplicative function defined on the prime powers by Γ(pkj ) =
γk. Then,

( ∞∑

n=1

|an|2 Γ(n)
)1/2

≤ ‖f‖H p ,

for every f(s) =
∑
n≥1 ann

−s ∈ H p.

Proof. Fix d ≥ 1 and f(z) =
∑
κ∈Nd aκz

κ ∈ Hp(Td). By the Bohr lift, it is
sufficient to prove that

(13)


∑

κ∈Nd

|aκ|2γκ1 · · · γκd




1/2

≤ ‖f‖Hp(Td).

The assumption of the lemma is that (13) holds for d = 1. We will argue by
induction on d and assume that (13) is true for d−1. Then, fixing z1, . . . , zd−1 ∈
Td−1 and considering f a function only of zd, we use (13) with d = 1 to get


∫

T

∣∣∣∣∣∣
∑

κ∈Nd

aκγ
1/2
κd

zκ1
1 · · · zκd

d

∣∣∣∣∣∣

2

dm(zd)




p/2

≤
∫

T

∣∣∣∣∣∣
∑

κ∈Nd

aκz
κ1
1 · · · zκd

d

∣∣∣∣∣∣

p

dm(zd).
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We integrate over the remaining coordinates z1, . . . , zd−1 and use Minkowski in-
equality in the following form: For measure spaces X and Y , a measurable func-
tion g on X × Y and r ≥ 1,

(∫

X

(∫

Y

|g(x, y)|dy
)r

dx

)1/r

≤
∫

Y

(∫

X

|g(x, y)|rdx
)1/r

dy.

This yields, with X = T, Y = Td−1 and r = 2/p, that


∫

T



∫

Td−1

∣∣∣∣∣∣
∑

κ∈Nd

aκγ
1/2
κd

zκ1
1 · · · zκd

d

∣∣∣∣∣∣

p

dm(z1) · · · dm(zd−1)




2/p

dm(zd)




p/2

≤ ‖f‖p
Hp(Td)

.

The induction hypothesis allows us to conclude. �
Our final tool is a number theoretic estimate on the average order of a mul-

tiplicative function. Let Ω(n) be the total number of prime divisors of n, say
Ω(pκ1

1 · · · pκd

d ) = κ1+ · · ·+κd. For 0 < y < 2 we refer to Selberg–Delange method
(see [24, Thm. II.6.2]) and for y = 2 we refer to [2].

Lemma 8. Let 0 < y ≤ 2. Then

(14)
1

x

∑

n≤x
yΩ(n) �

{
(log x)y−1 if 0 < y < 2,

(log x)2 if y = 2.

Observe the phase change at y = 2, which occurs since 2 is the first prime
number. We are now ready to proceed with the proof of (12).

Proof of Theorem 1. Combining Lemma 6 and Lemma 7, we get the inequality

(15)

( ∞∑

n=1

|an|2
(p
2

)Ω(n)
)1/2

≤ ‖f‖H p ,

for every f(s) =
∑
n≥1 ann

−s ∈ H p, since in this case Γ(n) = (p/2)Ω(n). In other
words, following the conventions of [15], the space H p is continuously embedded
into

Hwp :=





∞∑

n=1

ann
−s : ‖f‖wp :=

( ∞∑

n=1

|an|2/wp(n)
) 1

2

<∞



 ,

where wp(n) = (2/p)
Ω(n). The main result of [15] relates the average order of the

weight w(n) with the optimal embedding of Hw into Dβ,i, the relation being the
two-sided estimate

(16)
1

x

∑

n≤x
w(n) � (log x)β .
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Now, the case p = 1 was discussed and resolved above, using Helson’s inequality.
For 1 < p < 2, we have 1 < y < 2, so we conclude using (14) that Hwp is
continuously embedded in D2/p−1,i and that the parameter 2/p − 1 is optimal,
with respect to Hwp . This proves (12), using (15).

It remains only to verify that the optimality of the parameter 2/p− 1 extends
to H p. Fix ε > 0 and consider

fε(s) =
[ζ(s+ 1/2 + ε)]2/p

[ζ(1 + 2ε)]1/p
,

which, as shown in [3, Thm. 3], satisfies ‖fε‖H p = 1. For s = σ + it satisfying,
say, 1 < σ < 3/2 and 0 < t < 1, we have that ζ(s) � (s − 1)−1. Assume now
that H p embed continuously into Dβ,i. Then, for 1 ≤ p < 2 and 0 < β ≤ 1, we
estimate

1 � ‖fε‖Dβ,i
�
∫ 1

1/2

∫ 1

0

|ζ(s+ 1/2 + ε|]4/p
[ζ(1 + 2ε)]2/p

(
σ − 1

2

)β−1

dtdσ

� ε2/p
∫ 1

1/2

∫ 1

0

(σ − 1/2)β−1

((σ − 1/2 + ε)2 + t2)
2/p

dtdσ

� ε2/p
∫ 1

1/2

(σ − 1/2)β−1

(σ − 1/2 + ε)4/p−1
dσ � ε2/p+β−4/p+1,

which means that if H p is continuously embedded in Dβ,i, then necessarily β ≥
2/p− 1. �

Let us compare the space Hwp
to the space Dα for α = 1−log p/ log 2. It turns

out that if n is square-free, then (p/2)Ω(n) = 1/[d(n)]α. For other values, wp(n)
is strictly smaller than 1/[d(n)]α, and it can be significantly smaller, most easily
seen by considering n = 2k. Thus, the space Hwp

is (strictly) bigger than Dα.
However, when 1 < p < 2, the weights wp(n) are dominated by their square-free
parts, so Dα and Hwp

are embedded into the same Dβ .
To explain why this happens, let ξ be any positive multiplicative function with

ξ(pj) = β and ξ(pkj ) � (2− δ)k for some 0 < δ < 2. Then, for Re(s) > 1,

∞∑

n=1

ξ(n)n−s =
∞∏

j=1

(
1 + βp−sj +

∞∑

k=2

ξ(pkj )p
−ks
j

)

= [ζ(s)]β
∞∏

j=1

(
1 + βp−sj +O(p−2s

j )
) (

1− βp−sj +O(p−2s
j )

)

= [ζ(s)]β
∞∏

j=1

(
1 +O(p−2s

j )
)
,
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so by the Selberg–Delange method, we find
∑
n≤x ξ(n) � x(log x)β−1. Observe

again the phase change at δ = 0, leading to different embeddings for Hw1 and D1

in view of (16), since the latter weight satisfies the assumption ξ(pkj ) � (2− δ)k,
while the former does not.

3. Carleson measures in the half-plane and on the polydisc

3.1. Carleson measures in the half-plane. For β > 0, the non-conformal
Bergman space Dβ(C1/2) consists of the holomorphic functions f in C1/2 which
satisfy

‖f‖2Dβ(C1/2)
:=

∫

C1/2

|f(s)|2
(
σ − 1

2

)β−1

ds <∞.

If β = 0, then Dβ(C1/2) is taken to be the non-conformal Hardy space, H2(C1/2),
with norm

‖f‖2H2(C1/2)
:= sup

σ>1/2

∫

R
|f(σ + it)|2 dt <∞.

For α, β ≥ 0, let X denote either Dα or Dβ(C1/2). A positive Borel measure µ on
C1/2 is called a Carleson measure for X provided there is a constant C = C(X,µ)
such that for every f ∈ X,

∫

C1/2

|f(s)|2 dµ(s) ≤ C‖f‖2X .

The smallest such constant C(X,µ) is called the Carleson constant for µ with
respect to X. A Carleson measure µ is said to be a vanishing Carleson measure
for X provided

lim
k→∞

∫

C1/2

|fk(s)|2 dµ(s) = 0

for every weakly compact sequence {fk}k≥1 in X. In this case, weakly compact
means that φ(fk) → 0 for every φ ∈ X∗. Since both X = Dβ(C1/2) and X = Dα

are reproducing kernel spaces, it is clear that {fk}k≥1 in X is weakly compact if
and only if ‖fk‖X ≤ C and fk(s) → 0 on every compact subset K of C1/2.

Lemma 9. Let α ≥ 0. Suppose that µ is a Borel measure on C1/2 with bounded
support. Then µ is a Carleson measure for Dα if and only if µ is a Carleson
measure for D2α−1(C1/2). Moreover, µ is vanishing Carleson for Dα if and only
if µ is vanishing Carleson for D2α−1(C1/2).

The first part of this result can be extracted from [15, 16]. In preparation
for the part regarding vanishing Carleson measures, let us collect some prelimi-
nary results. The following geometric characterization of Carleson measures for
Bergman spaces can be found in [27, Sec. 7.2].
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Lemma 10. Let β ≥ 0 and let µ be a Borel measure on C1/2. Then µ is a
Carleson measure for Dβ(C1/2) if and only if

µ
(
Q(τ, ε)

)
= O

(
εβ+1

)

for every Carleson square Q(τ, ε) = [1/2, 1/2+ε]×[τ−ε/2, τ+ε/2]. Additionally,
µ is vanishing Carleson for Dβ(C1/2) if and only if

µ
(
Q(τ, ε)

)
= o
(
εβ+1

)
,

as ε→ 0+, uniformly for τ ∈ R.

The reproducing kernels of Dα are given by Kα(s, w) = ζα (s+ w), where

ζα(s) =
∞∑

n=1

[d(n)]
α
n−s.

It is clear that ‖Kα(·, w)‖Dα
=
√
ζα(2Rew). We extract from [26, pp. 240–241]

that
(17)

ζα(s) :=

∞∑

n=1

[d(n)]α n−s = [ζ(s)]
2α

∞∏

j=1

(
1 +

∞∑

m=2

bmp
−ms
j

)
=: [ζ(s)]

2α
φα(s),

where the Euler product φα(s) converges absolutely in C1/2 with φα(1) 6= 0.

Proof of Lemma 9. As stated above, the first part regarding Carleson measures
can be extracted from [15, 16]. We will only consider the part pertaining to
vanishing Carleson measures here.

We argue first by contradiction. Assume that µ is vanishing Carleson for
Dα, and that µ is not vanishing Carleson for D2α−1(C1/2). By Lemma 10,
the latter assumption implies that there is some sequence of Carleson squares
{Qk(τk, εk)}k≥1, where εk → 0, satisfying

µ(Qk) � ε2
α

k .

Let sk = 1/2 + εk + iτk and consider

fk(s) =
Kα(s, sk)

‖Kα(·, sk)‖Dα

=
ζα (s+ sk)√
ζα(1 + 2εk)

.

It is easy to see that fk is weakly compact in Dα, since ‖fk‖Dα
= 1 and fk(s) → 0

uniformly in σ ≥ 1/2 + δ for every δ > 0. Since µ is assumed to be vanishing
Carleson for Dα, this means that

lim
k→∞

∫

Qk

|fk(s)|2 dµ(s) ≤ lim
k→∞

∫

C1/2

|fk(s)|2 dµ(s) = 0.
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Now, let s = σ+it ∈ Qk. Then 1/2 ≤ σ ≤ 1/2+εk and τk−εk/2 ≤ t ≤ τk+εk/2.
Recalling the simple pole of the zeta function and using (17), we obtain

ζα (s+ sk) � (s+ sk − 1)
−2α � (1 + 2εk + iεk/2− 1)−2α � ε−2α

k .

Similarly,
√
ζα(1 + 2εk) � ε−2α−1

k . Hence, by the assumption that µ is not
vanishing Carleson for D2α−1(C1/2), we estimate

0 = lim
k→∞

∫

Qk

|fk(s)|2 dµ(s) � lim
k→∞

µ(Qk)ε
−2α

k � 1,

and the desired contradiction is obtained.
In the other direction, assume that µ is vanishing Carleson for D2α−1(C1/2).

Let {fk}k≥1 be a weakly compact sequence in Dα. Since µ has bounded support,
there is some constant M > 0 so that

(18)
∫

C1/2

|fk(s)|2 dµ(s) ≤M

∫

C1/2

∣∣∣∣
fk(s)

(s+ 1/2)2α

∣∣∣∣
2

dµ(s).

Let Fk(s) = fk(s)/(s+1/2)2
α

. Clearly Fk(s) → 0 on compact subsets K of C1/2

since this is true for fk. From (9) and the discussion following Theorem 4, we
conclude that ‖Fk‖D2α−1

� ‖fk‖Dα
. In particular, this implies that {Fk}k≥1 is

a weakly compact sequence in D2α−1(C1/2) and hence by (18), the measure µ is
vanishing Carleson for Dα. �

Remark. The first part of the proof of Lemma 9 does not use that µ has bounded
support, so a vanishing Carleson measure for Dα is always vanishing Carleson for
D2α−1(C1/2).

3.2. Carleson measures on the polydisc. Let ϕ ∈ G with char(ϕ) = 0, and
let Φ denote the Bohr lift of ϕ. For β ≥ 0 we will consider the following measures
on C1/2.

µβ,ϕ(E) =

{
νβ
(
{z ∈ D∞ : Φ(z) ∈ E}

)
, if β > 0,

νβ
(
{z ∈ T∞ : Φ(z) ∈ E}

)
, if β = 0,

E ⊂ C1/2.

The following necessary and sufficient Carleson conditions for boundedness and
compactness of Cϕ when ϕ ∈ G with char(ϕ) = 0 and ϕ(C0) is a bounded set
will be our main technical tool for the study of composition operators between
the spaces Dα.

Lemma 11. Let α, β ≥ 0. Suppose that ϕ ∈ G with char(ϕ) = 0 and suppose
that ϕ(C0) is a bounded subset of C1/2. Then Cϕ : Dα → Dβ is bounded if and
only if

(19) µβ,ϕ
(
Q(τ, ε)

)
= O

(
ε2

α)
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for every Carleson square Q(τ, ε) = [1/2, 1/2 + ε]× [τ − ε/2, τ + ε/2]. Moreover,
Cϕ is compact from Dα to Dβ if and only if

µβ,ϕ
(
Q(τ, ε)

)
= o
(
ε2

α)
,

as ε→ 0+, uniformly for τ ∈ R.

Proof. We begin with the proof of the boundedness criterion (19). Assume at
first that α, β > 0. Let P be a Dirichlet polynomial. Since c0 = 0, we observe as
in the proof of Theorem 3 that B(P ◦ ϕ) = P ◦ Bϕ, so

(20) ‖CϕP‖2β =

∫

D∞
|P (Φ(z)) |2 dνβ(z).

Now, since µβ,ϕ = νβ,ϕ ◦Φ−1 and since Dirichlet polynomials are dense in Dα, it
is easy to deduce from (20) that Cϕ is bounded from Dα to Dβ if and only if

∫

C1/2

|f(s)|2 dµβ,ϕ(s) � ‖f‖2Dα
.

Using Kronecker’s theorem and the maximum modulus principle on the polydisc,
we find that supp

(
µβ,ϕ

)
= ϕ(C0). By assumption, ϕ(C0) is a bounded subset of

C1/2, so µβ,ϕ has bounded support. Hence, by Lemma 9 and Lemma 10, µβ,ϕ is
a Carleson measure for Dα if and only if

µβ,ϕ
(
Q(τ, ε)

)
= O

(
ε2

α
)
.

The argument for compactness follows by similar considerations. If α = 0, these
arguments work line for line. If β = 0, we appeal directly to [21, Lem. 4.1].
Clearly supp

(
µβ,ϕ

)
⊆ ϕ(C0), so the measure is still boundedly supported. The

remaining deliberations apply directly. �

This lemma can be combined with a compactness argument as in [5, Lem. 6],
to obtain the next result. But first, note that if ϕ ∈ G is a Dirichlet polynomial
with char(ϕ) = 0, its Bohr lift Φ = Bϕ is always a polynomial of d <∞ variables.
We call d the complex dimension of ϕ and write d = dim(ϕ).

Corollary 12. Let ϕ ∈ G be a Dirichlet polynomial with dim(ϕ) = d and Bohr
lift Φ. If for every w ∈ Td with ReΦ(w) = 1/2 there exist a neighborhood Uw 3 w

in Dd, constants Cw > 0 and κw ≥ 2α such that, for every τ ∈ R and every ε > 0,

νβ
(
{z ∈ Uw : Φ(z) ∈ Q(τ, ε)}

)
≤ Cwε

κw ,

then Cϕ maps Dα boundedly into Dβ. If moreover κw > 2α for every w ∈ Td
with ReΦ(w) = 1/2, then Cϕ : Dα → Dβ is compact.
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3.3. Measures of some sets in Dd. Corollary 12 indicates that we need to
estimate the measure of some sets in Dd. Let us collect some estimates for
some particular subsets of Dd. To simplify the computations, we will replace the
measure νβ with the new measure ν̃β associated to m̃β as defined in (7). Now, if
dim(f) = d, then clearly

∫

Dd

|Bf(z)|2 dν̃β(z) �d,β
∫

Dd

|Bf(z)|2 dνβ(z).

In particular, we can replace νβ by ν̃β in Corollary 12. We should also point out
that for β = 0, we do not change the measure and adopt the convention ν0 = ν̃0.

For δ, ε > 0, let S(δ, ε) =
{
z = (1− ρ)eiθ ∈ D : 0 ≤ ρ ≤ δ, |θ| ≤ ε

}
. As usual,

B(w, r) will denote the open ball centered at w ∈ C with radius r > 0. Geometric
considerations show that there exist absolute constants c, C > 0 such that, for
every ε > 0 and every w ∈ T, we have

S(cε, cε1/2) ⊂ {z ∈ D : Re(1− z) < ε} ⊂ S(Cε,Cε1/2)(21)
wS(cε, cε) ⊂ B(w, ε) ∩ D ⊂ wS(Cε,Cε).(22)

The following lemmas are inspired by [4], and for the sake of clarity we include a
brief account of their proofs.

Lemma 13. For any β > 0, m̃β

(
S(δ, ε)

)
�β δβε.

Proof. This follows from an integration in polar coordinates. �

Lemma 14. For any β > 0, m̃β

(
{z ∈ D : Re(1− z) < ε}

)
�β εβ+

1
2 .

Proof. The result follows from Lemma 13 and (21). �

Lemma 15. Let β > 0 and v ∈ C. Then

m̃β

(
{z ∈ D : Re(1− z) < ε, | Im(v − z)| < ε}

)
�β ε

1+β .

Proof. This follows again from an integration in polar coordinates. �

Lemma 16. Let β > 0. There exists c > 0 such that, for any v ∈ C satisfying

|Re(v)− 1| ≤ cε and | Im(v)| ≤ (cε)1/2,

then
m̃β

(
{z ∈ D : Re(1− z) < ε, |v − z| < ε}

)
�β ε1+β .

Proof. The upper bound is Lemma 15. For the lower bound, observe that, pro-
vided c ∈ (0, 1/2), then {z ∈ D : |z − v| < ε/2} ⊂ {z ∈ D : Re(1 − z) < ε}.
Hence, we just need to minorize m̃β

(
B(v, ε/2)∩D

)
. Now, it is easy to check that

upon the conditions c ∈ (0, 1/2) and ε ∈ (0, 1),

−8cε ≤ 1− |v| ≤ 8cε.
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Writing

|z − v| ≤
∣∣∣∣z −

v

|v|

∣∣∣∣+
∣∣1− |v|

∣∣

we get that B(v/|v|, ε/4) ⊂ B(v, ε/2) provided c < 1/32. We finish the proof as
in Lemma 15. �

Remark. When δ = ε, the sets S(δ, ε) are the classical Carleson windows of the
disc. However, we are required to handle inhomogeneous Carleson windows in
what follows.

4. Composition operators with polynomial symbols on Dα

Let us consider a polynomial symbol in G of characteristic c0 = 0, say ϕ(s) =∑N
n=1 cnn

−s. We are only interested in symbols having unrestricted range, which
means that ϕ(C0) is not contained in C1/2+δ, for any δ > 0. If the symbol
has restricted range, it is trivial to deduce from [1, Thm. 1] that Cϕ maps Dα

compactly into Dβ , for any choice of α, β ≥ 0.
Let us now look at the Bohr lift of ϕ, denoted Φ. As in the previous section,

we will let dim(ϕ) denote the complex dimension of ϕ, which is equal to the
number of variables in the polynomial Φ(z1, . . . , zd). Now, the degree of ϕ will
be the degree of Φ, and we will write deg(ϕ). When the complex dimension is
big and the degree is small, we can improve β = 2α − 1 from the main result of
[1] substantially.

Theorem 17. Fix α > 0 and consider a Dirichlet polynomial ϕ in G with unre-
stricted range.

(i) If d = dim(ϕ) ≥ 2 and deg(ϕ) ∈ {1, 2}, then Cϕ maps Dα boundedly
into Dβ for some β < 2α − 1. More precisely, Cϕ : Dα → D(2α−1)/d is
bounded.

The result is optimal in the following sense.
(ii) If dim(ϕ) = 1, then Cϕ : Dα → Dβ is not bounded for any β < 2α − 1.
(iii) There are polynomials ϕ ∈ G of any complex dimension and with arbi-

trary deg(ϕ) ≥ 3 for which Cϕ is not bounded from Dα to Dβ for any
β < 2α − 1.

From the proof of Theorem 17 (and Corollary 12) it is possible to deduce the
following result regarding compactness. However, before we state the result, let
us stress that the inclusion Dα ⊂ Dβ is not compact for α < β. To realize this
one needs only consider the weakly compact sequence generated by the prime
numbers, {p−sj }j≥1, since d(pj) = 2.

Corollary 18. Fix α > 0 and consider a Dirichlet polynomial ϕ in G with
unrestricted range.
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(i) If dim(ϕ) ≥ 2 and deg(ϕ) ∈ {1, 2}, then Cϕ : Dα → D2α−1 is compact.
The result is optimal in the following sense.

(ii) If dim(ϕ) = 1, then Cϕ : Dα → D2α−1 is never compact.
(iii) There are polynomials ϕ ∈ G of any complex dimension and with arbi-

trary deg(ϕ) ≥ 3 for which Cϕ : Dα → D2α−1 is not compact.

It is interesting to compare Corollary 18 to its version for α = 0 which is [5,
Thm. 3]. Ignoring the technical part of [5, Thm. 3] regarding minimal Bohr lift
and boundary index, we observe that the results match up. However, going into
the details, we observe that this correspondance is not completely true. We shall
give later (see Theorem 21) simple examples of polynomial symbols ϕ such that
Cϕ maps Dα compactly into D2α−1 for α > 0, but does not map H 2 compactly
into H 2. This phenomenon is due to the necessity to introduce the minimal
Bohr lift in the context of H 2.

Observe also that it is possible to deduce a version of Theorem 17 for the case
Cϕ : Dα → H 2 from [5, Lem. 10] using Lemma 11 and Corollary 12. However,
the result would be cumbersome to state, due to the above mentioned technical
parts, so we avoid it here.

We need one final lemma to prove Theorem 17, which can easily be deduced
from the Julia–Caratheodory theorem (or from elementary considerations as in
the proof of [5, Lem. 7]).

Lemma 19. Let P (z) =
∑K
k=1 ak(1 − z)k be a polynomial mapping D into C0.

Then P ≡ 0 or a1 > 0.

We split the proof of Theorem 17 into two parts, and begin with the easiest
part.

Proof of Theorem 17 — (ii) and (iii). We begin with (ii). Fix α > 0 and assume
that ϕ ∈ G is a Dirichlet polynomial with dim(ϕ) = 1 and unrestricted range.
By Corollary 12 we investigate some w ∈ T such that Φ(w) = 1/2 + iτ , where
Φ denotes the Bohr lift of ϕ. We may assume that w = 1 and τ = 0 after,
if necessary, a (complex) rotation and a (vertical) translation. Hence, Φ is a
polynomial of the form

Φ(z) =
1

2
+

K∑

k=1

ak(1− z)k.

By Lemma 19 we know that a1 > 0. In view of Corollary 12, it suffices to prove
that for β > 0 and every small enough ε > 0,

µβ,ϕ
(
Q(0, ε)

)
� εβ+1.

Using Lemma 13, we see that it is sufficient to prove that the homogeneous
Carleson window S(ε, ε) is included in the pre-image of Q(0, cε) under Φ for some
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fixed c ∈ (0, 1) and for every small enough ε > 0. Now, note that if z ∈ S(ε, ε),
then

max
{
Re
(
(1− z)k

)
, Im

(
(1− z)k

)}
≤ εk.

In particular, since Φ is a polynomial and a1 > 0, we find that if z ∈ S(ε, ε), then

1/2 ≤ ReΦ(z) ≤ 1/2 + a1ε+O(ε2),

| ImΦ(z)| ≤ a1ε+O(ε2).

Hence any c > a1/2 will do. Part (iii) can be deduced from this argument in the
following way. Let δ > 0 and let Ψ(z) = Ψ(z1, . . . , zd) be any polynomial in d
variables and define

Φ(z) =
1

2
+ (1− z1) + δ(1− z1)

2Ψ(z).

Clearly Φ is the Bohr lift of

ϕ(s) =
1

2
+ (1− p−s1 ) + δ(1− p−s1 )2Ψ(p−s1 , . . . , p−sd ).

It is proved in [5, Lem. 9] that by choosing δ > 0 sufficiently small, we can
guarantee that ϕ ∈ G , that ϕ has unrestricted range and furthermore that if Φ
touches the boundary of C1/2 at some point z ∈ Dd, then necessarily z1 = 1. The
argument given above works line for line with one minor modification. Suppose
z1 ∈ S(ε, ε). Then for every choice of z2, . . . , zd in D we have

max
{
Re
(
δ(1− z1)

2Ψ(z)
)
, Im

(
δ(1− z1)

2Ψ(z)
)}

≤ δ‖Ψ‖∞ε2,
so we conclude again by Corollary 12 and Lemma 13. �

Proof of Theorem 17 — (i). Let ϕ ∈ G be a Dirichlet polynomial and assume
that dim(ϕ) = d ≥ 2 and deg(ϕ) ∈ {1, 2}. Let Φ be the Bohr lift of ϕ. We
will again apply Corollary 12. Hence, let w ∈ Td be such that ReΦ(w) = 1/2.
Without loss of generality, we may assume that w = 1 = (1, . . . , 1) and that
Φ(1) = 1/2. We may write Φ as

Φ(z) =
1

2
+

d∑

j=1

aj(1− zj) +
d∑

j=1

bj(1− zj)
2 +

∑

1≤j<k≤d
cj,k(1− zj)(1− zk).

We first claim that aj > 0 for any j = 1, . . . , d. Indeed, applying Lemma 19 to
Φ(1, zj ,1) − 1/2, we know that either aj > 0 or aj = bj = 0. Assume that the
latter case holds. Since ϕ has complex dimension d, there exists k 6= j so that
cj,k 6= 0. Let us consider Ψ(zj , zk) = Φ(1, zj ,1, zk,1). Then a Taylor expansion
of Ψ(eiθj , eiθk) shows that

ReΨ
(
eiθj , eiθk

)
=

1

2
+
(ak
2

− Re(bk)
)
θ2k − Re(cj,k)θjθk + o(θ2j ) + o(θ2k).

113



Choosing θj = δ and θk = δ2 and letting δ to 0, this implies that Re(cj,k) = 0
since by assumption ReΨ ≥ 1/2. On the other hand, for ρj ∈ (0, 1),

ReΨ(1− ρj , e
iθk) =

1

2
+
(ak
2

− Re(bk)
)
θ2k + Im(cj,k)ρjθk + o(ρ2j ) + o(θ2k).

This in turn yields that Im(cj,k) = 0, a contradiction.
We come back to Φ and, for j = 1, . . . , d, we write zj = (1 − ρj)e

iθj where
ρj ∈ (0, 1) and θj ∈ [−π, π). We shall use the local diffeomorphism between a
neighborhood of 1 in Cd and a neighborhood of 0 in R2d given by

(ρ, θ) 7→
(
(1− ρ1)e

iθ1 , . . . , (1− ρd)e
iθd
)
.

A Taylor expansion of ReΦ near 1 shows that

ReΦ(z) =
1

2
+

d∑

j=1

ρjFj(ρ, θ) +G(θ)

where Fj(0) = aj . Taking all ρj equal to zero, we get that G(θ) ≥ 0. Hence,
there exists a (fixed) neighborhood U 3 1 in Dd such that for all ε > 0 and all
τ ∈ R,

0 ≤
d∑

j=1

ρjFj(ρ, θ) ≤ ε and Fj(ρ, θ) ≥
aj
2

provided z ∈ U and Φ(z) ∈ Q(τ, ε). This implies that |ρj | ≤ 2ε/aj for any
j = 1, . . . , d. We now look at ImΦ and let us write it under the following form:

ImΦ(z) = γ(ρ,θ2,...,θd)(θ1) = a1θ1 + o(θ1).

The map (ρ, θ) 7→ γ(ρ,θ2,...,θd)(θ1) is smooth and satisfies γ′(ρ,θ2,...,θd)(0) = a1.
Then there exists V a neighborhood of 1 in Cd = R2d such that, for any z ∈ V ,

γ′(ρ,θ2,...,θd)(θ1) ≥
a1
2
.(23)

Now, if (ρ, θ2, . . . , θd) are fixed and θ1 is such that z belongs to V , the condition
Φ(z) ∈ Q(τ, ε) implies that γ(ρ,θ2,...,θd)(θ1) belongs to some interval of length ε.
By (23), this implies that θ1 belongs to some interval of length Cε, where C does
not depend on (ρ, θ2, . . . , θd) provided z ∈ V .

Let us summarize the previous computations. We have shown that there exist
a (fixed) neighborhood W = U ∩ V of 1 in Cd and a constant D > 0 such that,
for any z ∈ W ∩ Dd and any ε > 0 satisfying Φ(z) ∈ Q(τ, ε), then ρj ≤ Dε
and ρ, θ2, . . . , θd being fixed, θ1 belongs to some fixed interval of length Dε. By
Fubini’s theorem and polar integration as in Lemma 13, we get that

ν̃β
({
z ∈ W ∩ Dd : Φ(z) ∈ Q(τ, ε)

})
� εdβ+1.

We conclude by Corollary 12. �
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Let us focus our attention on part (ii) of Theorem 17, which implies that it is
sufficient to consider the most simple non-trivial symbol,

(24) ϕ(s) = 3/2− 2−s = 1/2 + (1− 2−s),

to conclude that the sharp β for Cϕ : Dα → Dβ is β = 2α−1. This is perhaps not
so surprising, since we can consider (24) a local version of the symbol associated
to the transference map,

T (2−s) =
1

2
+

1− 2−s

1 + 2−s
,

as considered in Section 2. We will devote the remainder of this section to
investigating two classes of examples that generalize (24).

The first extension of (24) are the linear symbols, namely symbols which are
of the form

(25) ϕ(s) = c1 +

d∑

j=1

cpjp
−s
j .

Observe in particular that (24) is just the case d = 1. We have the following
result.

Theorem 20. Let α, β ≥ 0. Let ϕ of the form (25) with unrestricted range and
cpj 6= 0 for every j. Then Cϕ : Dα → Dβ is bounded if and only if

(26)
1

2
+ d

(
1

2
+ β

)
≥ 2α.

Moreover, Cϕ : Dα → Dβ is compact if and only if the inequality in (26) is strict.

Proof. If β = 0, this can be extracted from [21, Lem. 8.2] in combination with
Corollary 12.

Assume therefore that β > 0. Arguing as in [21], we may assume that c1 > 0
and that cpj < 0 for every j. Since ϕ has unrestricted range, we know that

c1 =
1

2
+

d∑

j=1

|cpj |.

We will represent the Bohr lift of ϕ in the following way.

(27) Φ(z) = c1 +
d∑

j=1

cpj −
d∑

j=1

cpj (1− zj) =
1

2
+

d∑

j=1

|cpj |(1− zj).

Let τ ∈ R and ε > 0. If Φ(z) ∈ Q(τ, ε), we inspect (27) to conclude, for any
j = 1, . . . , d− 1, that

Re(1− zj) ≤
ε

|cpj |
.
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Hence, for any j = 1, . . . , d−1, by Lemma 14 we know that zj belongs to some set
Rj(ε) satisfying m̃β(Rj(ε)) � ε

1
2+β . Moreover, for a fixed value of z1, . . . , zd−1,

we also have

Re(1− zd) ≤
ε

|cpd |
and | Im(v − zd)| ≤

ε

2|cpd |
for v ∈ C depending on τ, z1, . . . , zd−1. By Lemma 15, zd belongs to some set
Rd(z1, . . . , zd−1) satisfying m̃β(Rd(z1, . . . , zd−1)) � ε1+β . Using Fubini’s theo-
rem, we get

µβ,ϕ
(
Q(τ, ε)

)
� ε

1
2+d(

1
2+β)

and we compare this with the sufficient condition for continuity.
Conversely, assume that zj belongs to D(η) = {z ∈ D : Re(1 − z) ≥ ηε} for

some small η > 0 and for any j = 1, . . . , d− 1. Observe that m̃β

(
D(η)

)
� ε

1
2+β .

Then, setting

v =
(
|cp1 |(1− z1) + · · ·+ |cpd−1

|(1− zd−1)
)
/|cpd |

we get

Φ(z1, . . . , zd) ∈ Q(0, ε)

⇐⇒
{

0 ≤ Re
(
c1 − |cp1 |z1 − · · · − |cpd |zd

)
≤ ε∣∣Im

(
|cp1 |z1 + · · ·+ |cpd |zd

)∣∣ ≤ ε/2

⇐⇒
{

0 ≤ |cp1 |Re(1− z1) + · · ·+ |cpd |Re(1− zd) ≤ ε∣∣Im
(
|cp1(1− z1) + · · ·+ |cpd−1

|(1− zd−1)− |cpd |zd
)∣∣ ≤ ε/2

⇐⇒
{

0 ≤ Re
(
v + (1− zd)

)
≤ ε/|cpd |∣∣Im

(
v − zd

)∣∣ ≤ ε/2|cpd |.
Now, Re(v) ≤ Cηε and | Im(v)| ≤ (2Cηε)1/2 for

C =
|cp1 |+ · · ·+ |cpd−1

|
|cpd |

.

Hence, provided η is small enough, then Φ(z1, . . . , zd) ∈ Q(0, ε) as soon as Re(1−
zd) < ηε and |v − zd| < ηε. By Fubini’s theorem and Lemma 16,

µβ,ϕ
(
Q(0, ε)

)
� ε

1
2+d(

1
2+β).

We conclude by Corollary 12. The same proof shows that Cϕ maps Dα compactly
into Dβ if and only if 1/2 + d(1/2 + β) > 2α. �

It is clear that in H 2, the monomials n−s all have norm 1. This is of course
no longer the case in Dα when α > 0. Thus we have more flexibility in choosing
the Bohr lift for H 2, since we may use any sequence of independent integers
(q1, . . . , qd) instead of (p1, . . . , pd). This lead us to introduce the notion of minimal
Bohr lift in [5]. For the Bergman spaces, we are by definition required to consider
the canonical Bohr lift, since it is used to compute the norm. In this sense the
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situation is less subtle. To further emphasize the difference between α = 0 and
α > 0, we have the following result.

Theorem 21. Let α ≥ 0 and consider ϕ(s) = 3/2 − n−s for some fixed integer
n ≥ 2. Set d = dim(ϕ), which in this case is equal to the number of distinct prime
factors of n. Then Cϕ : Dα → Dβ is bounded if and only if β ≥ (2α − 1)/d. If
α = 0, then Cϕ is not compact on H 2. If α > 0, then Cϕ : Dα → Dβ is compact
if and only if β > (2α − 1)/d.

Observe that for every α > 0, we can make Cϕ map Dα into Dβ for any β > 0,
by increasing the number of prime factors in n. However, we can never obtain
β = 0 in this case.

Proof. Assume first that α = 0. As explained in [5], the minimal Bohr lift is
simply Φ(z) = 3/2 − z for every integer n ≥ 2, and by the results in [5], this
means that Cϕ : H 2 → H 2 is bounded, but not compact.

Assume now that α > 0. Let p be any prime number that does not divide
n and consider ψ(s) = 3/2 − p−s. By Theorem 17 (ii) and Corollary 18 (ii) we
know that Cψ : Dα → Dβ is bounded if and only if β ≥ 2α − 1 and compact if
and only if β > 2α − 1. Now, define the operator T on Cψ(Dα) by T (p−s) = n−s

so that Cϕ = T ◦ Cψ. A trivial estimate with the divisor function shows that if
g ∈ Cψ(Dα), then

‖g‖Dβ
≤ ‖T (g)‖Dβ/d

�n,β ‖g‖Dβ
,

so we are done. �

Remark. It is natural to ask whether the space D(2α−1)/d in Theorem 17 (i) is
optimal. We found that this is not the case for linear symbols in Theorem 20.
By Theorem 21, it is optimal if dim(ϕ) = 2. For dim(ϕ) ≥ 3, we conjecture that
(2α − 1)/d is not optimal, but our results do not further substantiate this claim.

5. Composition operators with linear symbols on H p

Let us reiterate that the results of the previous section show that the optimal
β for the local embedding of Dα can, through the results of Section 2, be decided
simply by considering the symbol ϕ(s) = 3/2 − 2−s. The embedding problem
is in general open for H p, so it is therefore interesting to investigate how the
composition operator generated by this symbol acts on H p.

As previously mentioned, composition operators with characteristic 0 acting
on H p are not well understood when p is not an even integer. In particular, very
few examples are known. To our knowledge, the only known non-trivial examples
appear in [6]. The symbols of these operators are given by

(28) ϕ(s) =
1

2
+

(
1− ω(2−s)
1 + ω(2−s)

)1−ε

117



where ω is an analytic self-map of D and ε ∈ (0, 1). Observe that the fact that we
are not allowed to set ε = 0 restricts the range of ϕ in C1/2. Symbols of this type
are a type of lens maps from C0 to C1/2. Observe also that the most simple case
ω(z) = z yields a restricted version of the “transference map” from Theorem 3
(iii).

Now, it is clear that ϕ(s) = 3/2− 2−s, or indeed any Dirichlet polynomial, is
not of the form (28). We are not able to settle the boundedness of the composition
operator induced by this symbol on H p, but we will again consider symbols of
linear type. Using Theorem 1, we will be able to prove boundedness when the
complex dimension is bigger than or equal to 2.

Our last main tool for this will be the so-called p/q–Carleson measures. Let
1 ≤ p, q <∞ and let X be one of the spaces considered in this paper, for instance
X = H q or X = Hq(C1/2). If X = Dα or X = Dβ(C1/2) then q = 2. We require
that a measure µ satisfies

(29)

(∫

C1/2

|f(s)|p dµ(s)
) 1

p

≤ C‖f‖X ,

for some constant C = C(p, q,X) to be p/q–Carleson for X. For X = Hq(C1/2)
and q ≤ p, the following description can be found in [10, Thm. 9.4].

Lemma 22. Let 1 ≤ q ≤ p < ∞. A positive Borel measure µ on C1/2 is p/q–
Carleson for Hq(C1/2) if and only if

µ
(
Q(τ, ε)

)
= O

(
εp/q

)

for every Carleson square Q(τ, ε) = [1/2, 1/2 + ε]× [τ − ε/2, τ + ε/2].

Let us now extend a result from [16] to the case p < q, which will be needed
in the proof of Theorem 2 for the range 2 < p <∞.

Lemma 23. Fix 1 ≤ q ≤ p <∞ and let µ be a positive Borel measure on C1/2.
(i) If µ is p/q–Carleson for H q, then µ is p/q–Carleson for Hq(C1/2).
(ii) If the embedding (3) holds for q and µ has bounded support, then the

converse is true.

Proof. To prove part (i), we use Lemma 22 and argue by contradiction as in the
first part of the proof of Lemma 9. In particular, assume that µ is a p/q–Carleson
measure H q. Consider a sequence of Carleson squares Qk = Q(τk, εk) and the
Dirichlet series

fk(s) = [ζ(s+ 1/2 + εk + iτk)]
2/q,

which satisfies ‖fk‖H q = [ζ(1+2εk)]
1/q. We deduce from (29) that µ(Qk) � ε

p/q
k

as εk → 0 and conclude as in Lemma 9. Part (ii) follows from a routine application
of the embedding. We proceed as in the proof of the second part of Lemma 9,
setting now F (s) = f(s)/(s+ 1/2)2/q and using the same trick as in (18). �
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To make the statement of our final lemma more convenient, we will move to
C0 as in [5]. This change is easily carried out when working with composition
operators, since it corresponds to the changes f(s) 7→ f(s + 1/2) and ϕ(s) 7→
ϕ(s+1/2)−1/2. In particular, the translated f ∈ Dα is embedded inD2α−1,i(C0).

Let dH(z, w) be the hyperbolic distance in the half-plane C0 which is defined
by

1− e−dH(z,w)

1 + e−dH(z,w)
=

∣∣∣∣
z − w

z + w

∣∣∣∣

and let BH(s, r) be the hyperbolic disc of centre s and radius r ∈ (0, 1). It is
well-known that BH(s, r), for s = σ + it, is simply the Euclidean disc of centre
(σ cosh r, t) and radius σ sinh r. In particular, we shall use that if r is not too big,
then BH(s, r) is contained in [σ/2, 2σ]× [t− σ, t+ σ].

Luecking in [13] has characterized the p/q–Carleson measures of the (un-
weighted) Bergman spaces in the unit disc when p < q. As observed in [18],
his proof carries on the weighted Bergman spaces. The next lemma is simply
[18, Thm. B] with p = 2 and n = 0, translated from Dβ(D) to Dβ,i(C0) using
T − 1/2.

Lemma 24. Let 1 ≤ p < 2 and let µ be a positive Borel measure on C0. Then
µ is p/2–Carleson for Dβ,i(C0) if and only if for some (any) r > 0,

(30)
∫

C0

(
µ
(
BH(s, r)

)) 2
2−p σ

(p−4)−pβ
2−p |s+ 1|

2p(β+1)
2−p dm1(s) <∞.

We are finally in a position to prove Theorem 2.

Proof of Theorem 2. We first assume p > 2. We begin by fixing some positive
integer k and consider q = 2k < p < 2k + 2. We want to investigate when
Cϕ maps H q to H p. Since p > q, this also means that Cϕ acts boundedly on
H p. Setting µϕ := µ0,ϕ, we argue as in the proof of Lemma 11 to find that
boundedness of Cϕ : H q → H p is equivalent to

(31)

(∫

C1/2

|f(s)|p dµϕ(s)
) 1

p

� ‖f‖H q .

Using Lemma 22 and Lemma 23, while keeping in mind that the embedding (3)
holds for q = 2k, we find that (31) is equivalent to

µϕ
(
Q(τ, ε)

)
� εp/q,

for every Carleson square Q. However, from [21, Lem. 8.2] we know that

µϕ
(
Q(τ, ε)

)
� ε(d+1)/2.
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Hence we require of d that

d ≥ 2p

q
− 1 =

p

k
− 1.

It is easy to check that d ≥ 2 is sufficient if p ∈ (2, 3] ∪ (4,∞) and d ≥ 3 is
sufficient if 3 < p < 4.

We now consider 1 ≤ p < 2. First, we use Theorem 20 with α = 1 and β = 0 to
conclude that if d ≥ 3, then Cϕ maps D1 boundedly into D0 = H 2. To conclude
that Cϕ : H p → H p is bounded, we use the inequalities

‖f‖D1 ≤ ‖f‖H 1 ≤ ‖f‖H p ≤ ‖f‖H 2 ,

where the first one is Helson’s inequality.
It remains to prove that d ≥ 2 is sufficient when 1 ≤ p < 2 and p ∈ (3, 4). The

trivial identity
‖f ◦ ϕ‖2pH 2p =

∥∥f2 ◦ ϕ
∥∥p

H p

shows that it is enough to conclude for p ∈ [1, 2). Assume that ϕ(s) = c1 +
cp1p

−s
1 + cp2p

−s
2 has unrestricted range. Using Theorem 1, we find that it is

sufficient to verify that
(∫

T2

|f ◦ Φ(z)|p dν(z)
) 1

p

=

(∫

C1/2

|f(s)|p dµ0,ϕ(s)

) 1
p

� ‖f‖D 2
p
−1,i

(C1/2).

We now move to C0 to use Lemma 24, and subtract 1/2 from ϕ. Arguing as in
(27) we may assume that Φ̃(z) = |cp1 |(1− z1)+ |cp2 |(1− z2), and we consider the
measure µ̃ defined on C0 by

µ̃(E) = ν
({

(z1, z2) ∈ T2 : Φ̃(z1, z2) ∈ E
})
, E ⊂ C0.

We need to investigate for which 1 ≤ p < 2 the measure µ̃ satisfies the condition
of Lemma 24 with β = 2/p − 1. Recall that, for s = σ + it and some suitably
small r > 0,

µ̃
(
BH(s, r)

)
≤ µ̃

(
[σ/2, 2σ]× [t− σ, t+ σ]

)

= ν
({

(z1, z2) ∈ T2

: |cp1 |(1− z1) + |cp2 |(1− z2) ∈ [σ/2, 2σ]× [t− σ, t+ σ]
})
.

Since Φ̃(T2) is a bounded subset of C0, it is clear that µ̃
(
BH(s, r)

)
= 0 when

Re(s) is large enough, say σ > σ0, or when | Im(s)| is large enough, say |t| > t0.
This means that the integral (30) in our case is equal to
∫ σ0

0

∫

|t|≤t0

(
µ̃
(
BH(s, r)

)) 2
2−p σ

2p−6
2−p |s+ 1| 4

2−p
dtdσ

π

�
∫ σ0

0

∫

|t|≤t0

(
µ̃
(
BH(s, r)

)) 2
2−p σ

2p−6
2−p dt dσ =: I.
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This means we only need to prove that I <∞ for any fixed pair (σ0, t0). Because
µ̃
(
BH(s, r)

)
is bounded, we may in fact assume that σ0 is very small. Now, let

us fix s ∈ C0 with Re(s) ≤ σ0 and let us consider (θ1, θ2) ∈ [−π, π)2 such that
Φ̃(eiθ1 , eiθ2) ∈ BH(s, r). Writing

Re Φ̃(eiθ1 , eiθ2) = |cp1 | (1− cos(θ1)) + |cp2 | (1− cos(θ2)) ,

it is clear that θ1 and θ2 are close to 0, so that

θ21 + θ22 � Re Φ̃(eiθ1 , eiθ2) ≤ 2σ,

and hence we conclude that |θ1|, |θ2| � σ1/2. On the other hand, this implies
that ∣∣∣Im Φ̃(eiθ1 , eiθ2)

∣∣∣ = ||cp1 | sin(θ1) + |cp2 | sin(θ2)| � σ1/2,

which yields that µ̃
(
BH(s, r)

)
= 0 provided |t| � σ1/2. Otherwise, for a fixed

value of θ2, we note that θ1 belongs to some interval with length dominated by
Cσ. Therefore, by Fubini’s theorem, µ̃

(
BH(s, r)

)
� σ3/2 where the involved

constant does not depend on t. In total, this means that we require

I �
∫ σ0

0

∫

|t|�σ1/2

σ
2p−3
2−p dt dσ �

∫ σ0

0

σ
2p−3
2−p + 1

2 dσ <∞.

This last integral is convergent for p ≥ 1. �

Remark. It is possible to generate more examples from the results in [5] or from
the results of Section 4 in combination with Theorem 1. If 2k < p < 2k + 2,
we can choose any Dirichlet polynomial with κ ≥ p/2k, where κ as defined in
[5, Lem. 10]. However, this also illustrates the disadvantage of this interpolation
method, since the natural condition is κ ≥ 1, which corresponds to the case d = 1
in (25).

We end this section by emphasizing that results with d = 1, or results for
Dirichlet polynomials ϕ ∈ G with unrestricted range and dim(ϕ) = 1, cannot be
obtained from the type of Carleson measure arguments employed in this section
and the local embedding (3) seems to be completely unavoidable in this setting.

6. The multiplicative Hilbert matrix

It was asked in [9, Sec. 6] whether the multiplicative Hilbert matrix introduced
in the same paper has a bounded symbol on the polytorus T∞, or, equivalently,
whether the functional

(32) L(f) =

∫ ∞

1/2

(f(s)− a1) ds

is bounded on H 1. It follows by standard Carleson measure techniques that if
the embedding (3) holds for H p, then the functional (32) acts boundedly on
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H p. It is therefore only known that the functional is bounded on H p when
2 ≤ p <∞.

Returning to the composition operator with symbol ϕ(s) = 3/2−2−s, we write
out explicitly the associated Carleson measure, finding that boundedness of Cϕ
on H p is equivalent to the inequality∫

3/2+T
|P (z)|p dm(z) � ‖P‖pH p ,

for every Dirichlet polynomial P . If we apply the characterization of Carleson
measures for Hp(T), we find furthermore that

∫ 1

1/2

|P (z)|p dz �
∫

3/2+T
|P (z)|p dm(z).

From this and the results in [9, Sec. 6] we observe that if Cϕ acts boundedly
on H 1, then the multiplicative Hilbert matrix considered in [9] has a bounded
symbol on the polytorus T∞. In [9] it is only shown that the embedding (3)
implies that the multiplicative Hilbert matrix has a bounded symbol, so this
observation is in some sense an improvement.

Using Theorem 1, we can prove boundedness of L on H p for p ∈ (1,∞).

Theorem 25. The functional L defined by (32) is bounded on H p for any p > 1.

Proof. We may restrict ourselves to p ∈ (1, 2). By Theorem 1, it is suffi-
cient to verify that the functional of integration from 1/2 to 1 is bounded on
D2/p−1,i(C1/2) or, equivalently, that the functional of integration from 0 to 1 is
bounded on D2/p−1(D). By duality, this is true since

fα(z) =
∞∑

k=0

(k + 1)α−1zk

is in Dα(D) if and only if α < 1, so that p > 1 is sufficient for L to act boundedly
on H p. �

This theorem has an interesting corollary. Write L(f) = 〈f, g〉H 2 , where

g(s) =
∞∑

n=2

1√
n log n

n−s.

We first have the following computation.

Lemma 26. g ∈ H p if and only if p < 4.

Proof. From the estimate
∑
n≤x[d(n)]

α � x(log x)2
α−1 (see [26]) and a standard

computation with Abel summation, we find that
∞∑

n=2

[d(n)]α

n(log n)β
<∞
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if and only if 2α < β. Assume first that 2 < p < 4. Using [23, Thm. 3] we have
that

‖g‖H p ≤
( ∞∑

n=2

[d(n)]2−
4
p

n(log n)2

) 1
2

<∞,

since α = 2− 4/p < 1 when 2 < p < 4. For p = 4, we compute

‖g‖4H 4 =
∥∥g2
∥∥2

H 2 =
∞∑

n=2

1

n



∑

d|n
1<d<n

(log(d) log(n/d))
−1




2

�
∞∑

n=2

[d(n)]2

n(log n)4
= ∞,

so we are done. �

Theorem 25 and Lemma 26 yield an explicit and natural example of the ob-
servation that H q ( (H p)∗ for Hölder conjugates 1 < p, q <∞, as discussed in
[22, Sec. 3].

Corollary 27. Let 1 < p ≤ 4/3 and set 1/p+1/q = 1. The Dirichlet series g is
in (H p)∗\H q.

7. Bounded zero sequences for H p

Let us show how Theorem 1 and the technique used in its proof can be used to
improve the known partial results for zeros of functions in H p. As explained in
[17], the almost periodicity of absolutely convergent Dirichlet series implies that
f ∈ H p either has no zeros or infinite many zeros in C1/2. One is therefore led
to consider bounded zero sequences. A sequence S ⊂ C1/2 of (not necessarily
distinct) points is a bounded zero sequence of some space of analytic functions X
if it is bounded and there is some nontrivial f ∈ X such that f(s) = 0 for s ∈ S.

If X is a Hilbert space of Dirichlet series, the situation is relatively clear thanks
to results in [8, 15, 17, 23]. For example, if X = H 2, it is known that the Blaschke
condition

(33)
∑

s∈S
(Re(s)− 1/2) <∞

is both necessary and sufficient. In both [8] and [23], embeddings between Hilbert
spaces of Dirichlet series and H p is used to obtain necessary and sufficient con-
ditions for 1 ≤ p < 2 and 2 < p < ∞, respectively. In particular, Theorem 1
of the present paper improves the results discussed in [8, Sec. 3], and allows us
to conclude that the necessary condition for bounded zero sequences of H p in a
certain sense converges to the Blaschke condition when p→ 2−.

However, the main point of this section is to sharpen the sufficient condition
from [23] when 2 < p <∞. We begin by taking the dual of (11) in the H2-pairing,
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we find for f(z) =
∑
k≥0 akz

k that

(34) ‖f‖Hp(D) ≤ Cp

( ∞∑

k=0

|ak|2(k + 1)2/p−1

) 1
2

for 2 ≤ p < ∞. Here we introduce Dα(D) for α < 0 as the Hilbert space of
functions f that satisfy

∑
k≥0 |ak|2(k + 1)−α <∞. The above inequality can be

written as
‖f‖Hp(D) ≤ Cp‖f‖D1−2/p(D)).

As before we are interested in contractive inequalities. We test with fε(z) = 1+εz
to find that if

‖f‖Hp(D) ≤ ‖f‖Dα(D),

then α ≤ 1 − (log p)/(log 2). Indeed, it was shown in [23] that if p = 2k this is
also sufficient which yields for the Dirichlet series f(s) =

∑
n≥1 ann

−s that

(35) ‖f‖H p ≤
( ∞∑

n=1

|an|2[d(n)]
log p
log 2−1

) 1
2

, p = 2k.

Following this, Riesz–Thorin interpolation between p = 2k and the results for
bounded zero sequences for Hilbert spaces of Dirichlet series gave a sufficient
condition for bounded zero sequences of H p. Let us now show how to improve
this result by replacing interpolation with Weissler’s inequality as in (the proof
of) Theorem 1.

Note that for 0 < α < 1, we have

‖f‖2Dα(D) � |f(0)|2 +
∫

D
|f ′(z)|2(1− |z|2)2−α dA(z).

The corresponding space in C1/2 can be given the norm

‖f‖Dα(C1/2) = |f(3/2)|2 +
∫

C1/2

|f ′(s)|2
(
σ − 1

2

)2−α
dA(s)

|s+ 1/2|2 .

The result in [23] discussed above was that every bounded zero sequences of
Dα(C1/2) is also a zero sequence for H p, but due to the interpolation step,
unless p = 2k then α > 2/p − 1. (We refer to [23] for the precise value.) Again,
we will find that a “worse” inequality than (35) will yield a better result locally.

Theorem 28. Let 2 < p <∞. Every bounded zero sequence in D2/p−1(C1/2) is
also a bounded zero sequence for H p.

Proof. Let f(z) =
∑
k≥0 akz

k. Set Prf(z) = f(rz). Weissler’s inequality [25]
states that if 0 < p ≤ q <∞ and r ≤

√
p/q, then

‖Prf‖Hq ≤ ‖f‖Hp .
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We set p = 2, q > 2, r =
√
p/q and recast the inequality as

‖f‖Hq ≤ ‖P1/rf‖H2 =

( ∞∑

k=0

|ak|2
(q
2

)k
) 1

2

.

Iterating the inequality using Minkowski’s inequality, we find that

‖f‖H q ≤
( ∞∑

n=0

|an|2
(q
2

)Ω(n)
) 1

2

.

Using Lemma 8, the techniques from [15] and [23] show that the bounded zero
sequences of the Hilbert space of Dirichlet series weighted by (q/2)Ω(n) weighted
space and D1−2/q(C1/2) are the same. �

In view of (34), Theorem 28 is the best possible result we can hope to obtain
by Hilbert space techniques. While the Weissler–type weights (q/2)Ω(n) gives rise
to a rather small space when 2 < q < ∞ (since the weights have the “wrong”
average order (compared to what is expected from (34)) when q > 4), the local
embeddings and interpolation results used for zero sequences depends on the
average order of 1/(q/2)Ω(n) which has the “correct” value compared to (34).
Hence it is a small space, but big enough to have all the bounded zero sequences
of D1−2/q(C1/2).
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AN EMBEDDING CONSTANT FOR THE HARDY SPACE OF
DIRICHLET SERIES

OLE FREDRIK BREVIG

Abstract. A new and simple proof of the embedding of the Hardy–Hilbert
space of Dirichlet series into a conformally invariant Hardy space of the half-
plane is presented, and the optimal constant of the embedding is computed.

Let H 2 denote the Hardy–Hilbert space of Dirichlet series,

f(s) =

∞∑

n=1

ann
−s,

with square summable coefficients, and set

‖f‖H 2 :=

( ∞∑

n=1

|an|2
) 1

2

.

Using the Cauchy–Schwarz inequality, we find that a Dirichlet series f ∈ H 2 is
absolutely convergent in the half-plane C1/2 := {s : Re(s) > 1/2}. To see that
C1/2 is the largest half-plane of convergence for H 2, consider f(s) = ζ(1/2+ε+s),
where ζ denotes the Riemann zeta function and ε > 0.

When studying function and operator theoretic properties of H 2, it has proven
fruitful to employ the embedding of H 2 into the conformally invariant Hardy
space of C1/2 (see e.g. [6, Sec. 9]). The embedding inequality takes on the form

(1) ‖f‖H2
i
:=

(
1

π

∫ ∞

−∞
|f(1/2 + it)|2 dt

1 + t2

) 1
2

≤ C‖f‖H 2 .

Observe that the embedding inequality (1) implies that Dirichlet series in H 2

are locally L2-integrable on the line Re(s) = 1/2. Indeed, the proofs of (1) in the
literature go via the local (but equivalent) formulation

(2) sup
τ∈R

(∫ τ+1

τ

|f(1/2 + it)|2 dt
) 1

2

≤ C̃‖f‖H 2 .
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To prove (2), one can use a general Hilbert–type inequality due to Montgomery
and Vaughan [3] or a version of the classical Plancherel–Polya inequality [2,
Thm. 4.11]. It is also possible to give Fourier analytic proofs of (2), the reader is
referred to [4, pp. 36–37] and [5, Sec. 1.4.4]. It should be pointed out that these
proofs do not give a precise value for either of the constants C and C̃.

This note contains a new and simple proof of (1), which additionally identifies
the optimal constant C. The proof is based on the observation that the H2

i -norm
of a Dirichlet series is associated to a Hilbert–type bilinear form which is easy to
estimate precisely.

Theorem. Suppose that f(s) =
∑∞

n=1 ann
−s is in H 2. Then

(
1

π

∫ ∞

−∞
|f (1/2 + it)|2 dt

1 + t2

) 1
2

<
√
2‖f‖H 2 ,

and the constant
√
2 is optimal.

Proof. Let x be a positive real number. We begin by computing

I(x) :=
1

π

∫ ∞

−∞
xit dt

1 + t2

=
1

π

∫ ∞

−∞
cos(| log x| t) dt

1 + t2
= e−| log x| =

1

max(x, 1/x)
.

Expanding |f(1/2 + it)|2, we find that

(3) ‖f‖2H2
i
=

∞∑

m=1

∞∑

n=1

aman√
mn

I(n/m) =
∞∑

m=1

∞∑

n=1

aman

√
mn

[max(m,n)]2
.

The identity (3) will serve as the starting point for both the proof of the inequality
‖f‖H2

i
<

√
2‖f‖H 2 , and for the proof that

√
2 cannot be improved.

Let us first consider the Hilbert–type (see [1, Ch. IX]) bilinear form associated
to (3). Given sequences a, b ∈ `2, we want to estimate

B(a, b) :=
∞∑

m=1

∞∑

n=1

ambn

√
mn

[max(m,n)]2
.

By the Cauchy–Schwarz inequality, we find that

|B(a, b)| ≤
( ∞∑

m=1

|am|2
∞∑

n=1

m

[max(m,n)]2

) 1
2
( ∞∑

n=1

|bn|2
∞∑

m=1

n

[max(m,n)]2

) 1
2

.

Then |B(a, b)| < 2‖a‖`2‖b‖`2 , since
∞∑

n=1

m

[max(m,n)]2
=

m∑

n=1

m

m2
+

∞∑

n=m+1

m

n2
< 1 +m

∫ ∞

m

dx

x2
= 2.
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Setting b = a, we obtain the desired inequality ‖f‖H2
i
<

√
2‖f‖H 2 .

For the optimality of
√
2, we again let f(s) = ζ(1/2 + ε + s) for some ε > 0.

Clearly, ‖f‖2H 2 = ζ(1 + 2ε). We insert f into (3) and estimate the inner sums
using integrals, which yields

‖f‖2H2
i
=

∞∑

m=1

m−ε

(
1

m2

m∑

n=1

n−ε +
∞∑

n=m+1

n−ε

n2

)

>
∞∑

m=1

m−ε

(
1

m2

m1−ε − 1

1− ε
+

(m+ 1)−1−ε

1 + ε

)

>
ζ(1 + 2ε)− ζ(2 + ε)

1− ε
+

ζ(1 + 2ε)− 1

1 + ε
.

Letting ε → 0+, we conclude that if ‖f‖H2
i
≤ C‖f‖H 2 , then C2 ≥ 2. �
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FAILURE OF NEHARI’S THEOREM FOR MULTIPLICATIVE
HANKEL FORMS IN SCHATTEN CLASSES

OLE FREDRIK BREVIG AND KARL-MIKAEL PERFEKT

Abstract. Ortega-Cerdà–Seip demonstrated that there are bounded mul-
tiplicative Hankel forms which do not arise from bounded symbols. On the
other hand, when such a form is in the Hilbert–Schmidt class S2, Helson
showed that it has a bounded symbol. The present work investigates forms
belonging to the Schatten classes between these two cases. It is shown that
for every p > (1− log π/ log 4)−1 there exist multiplicative Hankel forms in
the Schatten class Sp which lack bounded symbols. The lower bound on p

is in a certain sense optimal when the symbol of the multiplicative Hankel
form is a product of homogeneous linear polynomials.

1. Introduction

For a sequence % = (%1, %2, %3, . . . ) ∈ `2 its corresponding multiplicative Han-
kel form on `2 × `2 is given by

(1) %(a, b) =

∞∑

m=1

∞∑

n=1

%mnambn,

which initially is defined at least for finitely supported a, b ∈ `2. Such forms are
naturally understood as small Hankel operators on the Hardy space of the infinite
polydisc, H2(D∞). Therefore, one is led to investigate the relationship between
the symbol — a function on the polytorus T∞ generating the Hankel form —
and the properties of the corresponding Hankel operator.

In the classical setting, (additive) Hankel forms are realized as Hankel opera-
tors on the Hardy space in the unit disc, H2(D). Nehari’s theorem [8] states that
every bounded Hankel form is generated by a bounded symbol on the torus T.

On the infinite polydisc, the study of the corresponding statement was initiated
by H. Helson [4, pp. 52–54], who raised the following questions.

2010 Mathematics Subject Classification. Primary 47B35. Secondary 30B50.
Key words and phrases. Hankel forms, infinite-dimensional torus, Schatten class, Nehari’s
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Question 1. Does every bounded multiplicative Hankel form have a bounded
symbol ψ on the polytorus T∞?

Question 2. Does every multiplicative Hankel form in the Hilbert–Schmidt class
S2 have a bounded symbol?

Helson himself [5] gave a positive answer to Question 2. Ortega-Cerdà and
Seip [9] proved that there are bounded multiplicative Hankel forms that do not
have bounded symbols, using an idea of Helson [6], and hence gave a negative
answer to Question 1. Furthermore, their argument also quickly produces that
there are compact Hankel forms without bounded symbols (see Lemma 1). In
light of these results, a next natural question to ask is:

Question 3. Does there exist a Hankel form belonging to a Schatten class Sp,
2 < p < ∞, without a bounded symbol? If so, for which values of p does such a
form exist?

We will answer the first part of this question, by showing that for every

p > p0 =

(
1− log π

log 4

)−1

≈ 5.738817179,

there are multiplicative Hankel forms in Sp which do not have bounded symbols.
Our construction relies on independent products of homogeneous linear sym-

bols and is optimal when testing against products of linear homogeneous poly-
nomials, see Theorem 4. It is quite tempting to further conjecture that forms
without bounded symbols can be found in Sp for every p > 2, but our method
does not substantiate this claim.

The paper is organized into two further sections. Section 2 reviews the con-
nection between multiplicative Hankel forms, the Hardy space of Dirichlet series,
and the Hardy space of the infinite polydisc. In Section 3 the main results are
proven.

2. Preliminaries

We let H 2 denote the Hilbert space of Dirichlet series

(2) f(s) =

∞∑

n=1

ann
−s

with square summable coefficients. If g and ϕ are Dirichlet series in H 2 with
coefficients bn and %n, respectively, a computation shows that

〈fg, ϕ〉H 2 = %(a, b).
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A key tool in the study of Hardy spaces of Dirichlet series is the Bohr lift [1]. For
any n ∈ N, the fundamental theorem of arithmetic yields the prime factorization

n =
∞∏

j=1

p
κj

j ,

which associates the finite non-negative multi-index κ(n) = (κ1, κ2, κ3, . . . ) to
n. The Bohr lift of the Dirichlet series (2) is the power series

(3) Bf(z) =

∞∑

n=1

anz
κ(n),

where z = (z1, z2, z3, . . . ). Hence (3) is a power series in countably infinite
number of variables, but each term contains only a finite number of variables.

Under the Bohr lift, H 2 corresponds to the infinite dimensional Hardy space
H2(D∞), which we view as a subspace of L2(T∞). We refer to [3] for the details,
mentioning only that the Haar measure of the compact abelian group T∞ is
simply the product of the normalized Lebesgue measures of each variable. In
particular, H2(Dd) is a natural subspace of H2(D∞).

A formal computation shows that

〈BfBg,Bϕ〉L2(T∞) = 〈fg, ϕ〉H 2 ,

allowing us to compute the multiplicative Hankel form (1) on T∞. In the re-
mainder of this paper we work exclusively in the polydisc, with no reference to
Dirichlet series. Therefore, we drop the notation B and study Hankel forms

(4) Hϕ(fg) = 〈fg, ϕ〉L2(T∞), f, g ∈ H2(D∞).

In the previous considerations we had that ϕ ∈ H2(D∞), but there is nothing
to prevent us from considering arbitrary symbols from L2(T∞). Hence, each
ϕ ∈ L2(T∞) induces by (4) a (possibly unbounded) Hankel form Hϕ onH2(D∞)×
H2(D∞). Of course, this is not a real generalization. Each form Hϕ is also
induced by a symbol ψ ∈ H2(D∞); letting ψ = Pϕ we have Hϕ = Hψ, where P
denotes the orthogonal projection of L2(T∞) onto H2(D∞).

Note that if ψ ∈ L∞(T∞), then the corresponding multiplicative Hankel form
is bounded, since

|Hψ(fg)| = |〈fg, ψ〉| ≤ ‖f‖2 ‖g‖2‖ψ‖∞.
We say that Hϕ has a bounded symbol if there exists a ψ ∈ L∞(T∞) such that
Hϕ = Hψ. As mentioned in the introduction, it was shown in [9] that not every
bounded multiplicative Hankel form has a bounded symbol.

On the polydisc the Hankel form Hϕ is naturally realized as a (small) Hankel
operator Hϕ, which when bounded acts as an operator from H2(D∞) to the anti-
analytic space H2(D∞). Letting P denote the orthogonal projection of L2(T∞)
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onto H2(D∞), we have at least for polynomials f ∈ H2(D∞) that

(5) Hϕf = P (ϕf).

It is clear that when written in standard bases, the form Hϕ and the operator
Hϕ both correspond to the same infinite matrix

M% =




%1 %2 %3 · · ·
%2 %4 %6 · · ·
%3 %6 %9 · · ·
...

...
...

. . .


 .

Finally, we briefly recall the definition of the Schatten classes Sp, 0 < p < ∞.
Assume that the Hankel form Hϕ is compact. Let Λ = {λk}∞k=1 denote the
singular value sequence of M%, which of course is the same as the singular value
sequence of the operator Hϕ. The form Hϕ, or equivalently the operator Hϕ, is
in the Schatten class Sp if Λ ∈ `p, and

‖Hϕ‖Sp
= ‖Hϕ‖Sp

= ‖Λ‖`p .

3. Results

To prove that there for each p > p0 exist multiplicative Hankel forms in Sp
without bounded symbols, we will assume that every Hϕ ∈ Sp has a bounded
symbol and derive a contradiction. We begin with the following routine lemma.

Lemma 1. Let p ≥ 1. Assume that every Hϕ ∈ Sp has a bounded symbol on
T∞. Then there is a constant Cp ≥ 1 with the property that every Hϕ ∈ Sp has
a symbol ψ ∈ L∞(T∞) with Hϕ = Hψ and such that ‖ψ‖∞ ≤ Cp‖Hϕ‖Sp

.

Proof. We will define a lifting operator and show that it has to be continuous by
appealing to the closed graph theorem.

Let BH denote the space of bounded multiplicative Hankel forms. By a stan-
dard argument it is isomorphic to the dual space of the weak product H 2 �H 2

[6]. In particular BH is a Banach space under the operator norm. It follows
that SpH is also a Banach space, where SpH denotes the space of multiplicative
Hankel forms in Sp equipped with the norm of Sp.

Now we define

X = L∞(T∞) ∩
(
L2(T∞)	H2(T∞)

)
,

Y = L∞(T∞)/X.

Y is a Banach space under the norm ‖ϕ‖Y = inf {‖ψ‖∞ : ψ − ϕ ∈ X}, seeing as
X is a closed subspace of L∞(T∞). Since by assumption every Hϕ ∈ SpH has a
symbol ψ ∈ L∞(T∞), we can define a map T : SpH → Y by T (Hϕ) = ψ. This
is a well-defined linear map since Hϕ = 0 for a symbol ϕ ∈ L∞(T∞) if and only
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if ϕ ∈ X. An obvious computation verifies that T is a closed operator, hence
continuous. Therefore, there is a Cp ≥ 1 such that

‖T (Hϕ)‖Y ≤ Cp‖Hϕ‖Sp
.

The statement of the lemma follows immediately. �

Given the assumption of the lemma, we hence have for each polynomial f and
form Hϕ ∈ Sp that

|〈f, ϕ〉| = |Hϕ(f · 1)| = |Hψ(f · 1)| = |〈f, ψ〉| ≤ ‖ψ‖∞‖f‖1 ≤ Cp‖Hϕ‖Sp
‖f‖1,

where ‖ · ‖1 denotes the norm of L1(T∞). We thus obtain

(6)
|〈f, ϕ〉|

‖Hϕ‖Sp ‖f‖1
≤ Cp

for every polynomial f and every Hϕ ∈ Sp. To prove our main result we will
construct a sequence of polynomials and finite rank forms to show that no finite
constant Cp satisfying (6) exists for p > p0, thus obtaining a contradiction to the
assumption of Lemma 1. We will require the following lemma.

Lemma 2. Suppose that ϕ1, ϕ2, . . . , ϕm are symbols that depend on mutually
separate variables and which generate the multiplicative Hankel forms Hϕj

∈ Sp,
1 ≤ j ≤ m. Then

(7) ‖Hϕ‖Sp = ‖Hϕ1‖Sp ‖Hϕ2‖Sp · · · ‖Hϕm‖Sp ,

where ϕ = ϕ1ϕ2 · · ·ϕm.

Proof. For 1 ≤ j ≤ m, we let Xj denote the Hardy space of precisely the variables
that the symbol ϕj depends on, and if necessary let X0 denote the Hardy space
of the remaining variables, so that — as tensor products of Hilbert spaces — we
have

H2(D∞) = X0 ⊗X1 ⊗X2 ⊗ · · ·Xm.

We set ϕ0 = 1 and consider the small Hankel operators H̃ϕj
: Xj → Xj , defined

similarly to (5) for 0 ≤ j ≤ m. Now, if fj ∈ Xj , 0 ≤ j ≤ m, we observe that

Hϕ(f0f1 · · · fm) = H̃ϕ0(f0) H̃ϕ1(f1) · · · H̃ϕm(fm),

and hence Hϕ = H̃ϕ0
⊗ H̃ϕ1

⊗ · · · ⊗ H̃ϕm
.

Note that H̃ϕ0
has the sole singular value 1, of multiplicity 1. It follows that

all singular values λ of Hϕ are obtained as products λ = λ1λ2 · · ·λm, where λj
is a singular value of H̃ϕj

, see [2]. The multiplicity of λ is also obtained in the
expected way. From this, a short computation shows that

‖Hϕ‖Sp = ‖H̃ϕ1‖Sp ‖H̃ϕ2‖Sp · · · ‖H̃ϕm‖Sp .
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Finally, we have Hϕj
= H̃ϕ0

⊗ H̃ϕj
, where we now regard H̃ϕ0

as an operator on
the Hardy space of the variables of which ϕj is independent. Arguing as above,
it follows that ‖Hϕj‖Sp = ‖H̃ϕj‖Sp , completing the proof. �

If f1, f2, . . . , fm are polynomials depending on the same separate variables as
ϕ1, ϕ2, . . . , ϕm, respectively, and we set f = f1f2 · · · fm, then

|〈f, ϕ〉| = |〈f1, ϕ1〉| |〈f2, ϕ2〉| · · · |〈fm, ϕm〉|,
‖f‖1 = ‖f1‖1 ‖f2‖1 · · · ‖fm‖1.

Let S be the shift operator Sf(z1, z2, . . .) = f(z2, z3, . . .). Suppose that we can
find polynomials f and ϕ, both depending on the first d variables z1, z2, . . . , zd,
satisfying

(8)
|〈f, ϕ〉|

‖Hϕ‖Sp
‖f‖1

> 1.

Then, for 1 ≤ j ≤ m, consider the functions

ϕj(z) = Sd(j−1)ϕ(z) and fj(z) = Sd(j−1)f(z).

With Φ = ϕ1ϕ2 · · ·ϕm and F = f1f2 · · · fm, Lemma 2 yields
|〈F,Φ〉|

‖HΦ‖Sp
‖F‖1

=

( |〈f, ϕ〉|
‖Hϕ‖Sp

‖f‖1

)m
→ ∞, m→ ∞,

giving us the sought contradiction to (6). We realize this scheme in the next
theorem.

Theorem 3. For every p > p0 there is a multiplicative Hankel form Hϕ ∈ Sp
which does not have a bounded symbol.

Proof. Let d be a large positive integer to be chosen later. Consider the symbol

ϕ(z) =
z1 + z2 + z3 + · · ·+ zd√

d
.

It is clear that the sequence % = (%n)
∞
n=1 for the matrix of Hϕ is given by

%n =

{
1/
√
d if n = pj and 1 ≤ j ≤ d

0 otherwise
,

where pj denotes the jth prime. In other terms, the matrix M% of Hϕ, with all
zero rows and columns omitted, is the (d+ 1)× (d+ 1) matrix

1√
d




0 1 1 · · · 1
1 0 0 · · · 0
1 0 0 · · · 0
...

...
...

. . .
...

1 0 0 · · · 0



.
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This matrix is easily seen to have the singular values 1 (with multiplicity 2) and
0 (with multiplicity d− 1), and thus

‖Hϕ‖Sp = 2
1
p .

We choose f(z) = ϕ(z). Then 〈f, ϕ〉 = 1, and, moreover, the central limit
theorem for Steinhaus variables gives us that

lim
d→∞

‖f‖1 = lim
d→∞

E
( |z1 + z2 + z3 + · · ·+ zd|√

d

)
=

√
π

2
.

In particular, for each δ > 0 we have for sufficiently large d that

‖f‖1 ≤
√
π

2
+ δ.

We now observe that p = p0 is the solution of the equation 21/p · √π/2 = 1, and
hence if p > p0 we may find δ > 0 small enough that

‖Hϕ‖Sp
· ‖f‖1 ≤ 21/p ·

(√
π

2
+ δ

)
< 1.

This implies that if d is large enough, f and ϕ satisfy (8). This completes the
proof by appealing to the discussion preceding the statement of the theorem. �

Our result is optimal for symbols which are independent products of linear
homogeneous polynomials and test functions of the same form, as shown by the
following result.

Theorem 4. Suppose p ≤ p0 and consider

ϕ(z) = a1z1 + a2z2 + · · ·+ adzd and f(z) = b1z1 + b2z2 + · · ·+ bdzd,

for aj , bj ∈ C. Then |〈f, ϕ〉| ≤ ‖Hϕ‖Sp‖f‖1.

Proof. By the Cauchy–Schwarz inequality and Parseval’s formula, it is clear that

|〈f, ϕ〉| ≤ ‖a‖`2‖b‖`2 .
Straightforward computations with the matrix M% of Hϕ show that

M%M
∗
% =




‖a‖2`2 0 0 · · · 0
0 a1a1 a1a2 · · · a1ad
0 a2a1 a2a2 · · · a2ad
...

...
...

. . .
...

0 ada1 ada2 · · · adad



.

Here we have again omitted zero rows and columns. Note that the lower right
block has rank 1. By considering the vector (0, a1, a2, . . . , ad) it is clear that
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it has the sole eigenvalue ‖a‖2`2 . Thus, the singular value sequence of M% is
Λ = {‖a‖`2 , ‖a‖`2 , 0, . . . , 0}, and hence

‖Hϕ‖Sp = 21/p‖a‖`2 .
We use the optimal Khintchine inequality for Steinhaus variables [7, 10], p = 1,
and obtain

‖f‖1 ≥
√
π

2
‖b‖`2 .

The hypothesis that p ≤ p0 implies that 21/p
√
π/2 ≥ 1, and the proof is finished

by the following chain of inequalities.

‖Hϕ‖Sp
· ‖f‖1 ≥ 21/p · ‖a‖`2 ·

√
π

2
· ‖b‖`2 ≥ ‖a‖`2 · ‖b‖`2 ≥ |〈f, ϕ〉|. �
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THE MULTIPLICATIVE HILBERT MATRIX

OLE FREDRIK BREVIG, KARL-MIKAEL PERFEKT, KRISTIAN SEIP,
ARISTOMENIS G. SISKAKIS, AND DRAGAN VUKOTIĆ

Abstract. It is observed that the matrix with entries (
√
mn log(mn))−1

for m,n ≥ 2 appears as the matrix of the integral operator

Hf(s) :=

∫ +∞

1/2
f(w)(ζ(w + s)− 1) dw

with respect to the basis (n−s)n≥2; here ζ(s) is the Riemann zeta function
and H is defined on the Hilbert space H 2

0 of Dirichlet series vanishing at
+∞ and with square-summable coefficients. This infinite matrix defines a
multiplicative Hankel operator according to Helson’s terminology or, alter-
natively, it can be viewed as a bona fide (small) Hankel operator on the
infinite-dimensional torus T∞. By analogy with the standard integral rep-
resentation of the classical Hilbert matrix, this matrix is referred to as the
multiplicative Hilbert matrix. It is shown that its norm equals π and that
it has a purely continuous spectrum which is the interval [0, π]; these results
are in agreement with known facts about the classical Hilbert matrix. It
is shown that the matrix (m1/pn(p−1)/p log(mn))−1 has norm π/ sin(π/p)

when acting on `p for 1 < p < ∞. However, the multiplicative Hilbert
matrix fails to define a bounded operator on H p

0 for p 6= 2, where H p
0 are

Hp spaces of Dirichlet series. It remains an interesting problem to decide
whether the analytic symbol

∑
n≥2(logn)

−1n−s−1/2 of the multiplicative
Hilbert matrix arises as the Riesz projection of a bounded function on the
infinite-dimensional torus T∞.

1. Introduction

The classical Hilbert matrix

A :=

(
1

m+ n+ 1

)

m,n≥0

is the prime example of an infinite Hankel matrix, i.e., a matrix whose entries
am,n only depend on the sum m + n. The Hilbert matrix can be viewed as the

The research of the first and the third author is supported by Grant 227768 of the Research
Council of Norway. The fifth author’s work was supported by MTM2015-65792-P by MINECO,
Spain and ERDF (FEDER). This research was initiated while the third author served as a one
month visitor in the “Postgraduate Excellence Program” at the Department of Mathematics at
Universidad Autónoma de Madrid.
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matrix of the integral operator

(1) Haf(z) :=

∫ 1

0

f(t)(1− zt)−1dt

with respect to the standard basis (zn)n≥0 for the Hardy space H2(D). This
representation was first used by Magnus [14] who found that the Hilbert matrix
has no eigenvalues and that its continuous spectrum is [0, π]. It was also used in
[5] and [6] to study the Hilbert matrix as an operator on Hardy and Bergman
spaces of the disc and in particular to obtain its norm on those spaces.

The purpose of this paper is to identify and study a multiplicative analogue of
A. This means that we seek an infinite matrix with entries am,n that depend only
on the product mn and with properties that parallel those of A. Our starting
point is the multiplicative counterpart to (1) which we have found to be the
integral operator

(2) Hf(s) :=

∫ +∞

1/2

f(w)(ζ(w + s)− 1)dw

acting on Dirichlet series f(s) =
∑
n≥2 ann

−s. Here ζ(s) denotes the Riemann
zeta function, and we assume that f is in H 2

0 , which means that

‖f‖2H 2
0
:=

∞∑

n=2

|an|2 <∞.

By the Cauchy–Schwarz inequality, every f in H 2
0 represents an analytic function

in the half-plane σ = Re s > 1/2. The same calculation shows that point evalua-
tions f 7→ f(s) are bounded linear functionals on H 2

0 for s in this half-plane. As
is readily seen, the reproducing kernel Kw of H 2

0 is Kw(s) = ζ(s+w)− 1. This
implies that

(3) 〈Hf, g〉H 2
0
=

∫ ∞

1/2

f(w)g(w)dw

when f and g are Dirichlet polynomials. Now observe that arc length measure
on the half-line (1/2,+∞) is a Carleson measure for H 2

0 (the contribution from
1/2 < s < 3/2 is handled by [19, Theorem 4], while the contribution from s > 3/2
is handled by a pointwise estimates). We therefore get that (3) in fact holds for
arbitrary functions f and g in H 2

0 , and hence H is well defined and bounded
on H 2

0 . Taking into account that every f in H 2
0 is analytic when σ > 1/2, we

find that 〈Hf, f〉H 2
0
= 0 if and only if f ≡ 0. Hence (3) also implies that H is

a strictly positive operator. Now an explicit computation of the integral on the
right-hand side of (2) shows that the matrix of H with respect to the orthonormal
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basis (n−s)n≥2 is

M :=

(
1√

mn log(mn)

)

m,n≥2

.

We will refer to this matrix as the multiplicative Hilbert matrix. We will be inter-
ested in understanding M as an operator on `2 = `2(N \ {1}), which means that,
equivalently, we will be concerned with the properties of the integral operator H
acting on H 2

0 .
Our main result reads as follows.

Theorem 1. The operator H is a bounded and strictly positive operator on H 2
0

with ‖H‖ = π. It has no eigenvalues, and its continuous spectrum is [0, π].

This theorem, which is in agreement with what is known about the classical
Hilbert matrix, should be seen as an outgrowth of Helson’s last two papers [12,
13]. In these works, a study of multiplicative Hankel matrices was initiated,
mainly focused on the question of to which extent Nehari’s theorem [17, 21]
extends to the multiplicative setting. We will return to this interesting question
in the final section of this paper. At this point, we just wish to point out that
the existence of a canonical operator like H, closely related to the Riemann
zeta function, clearly demonstrates that multiplicative Hankel matrices may arise
quite naturally.

The computation of the norm of H is straightforward, by a simple adaption of
the classical proof of [10, pp. 226–229]. In fact, this adaption leads us to consider
an `p version of the multiplicative Hilbert matrix M , namely

Mp :=

(
1

m(p−1)/pn1/p log(mn)

)

m,n≥2

,

where 1 < p <∞. We will see that Mp has norm π/ sin(π/p), viewed as an oper-
ator on `p, which is analogous to the classical fact that A has norm π/ sin(π/p)
when it acts on `p. We will explain this link in Section 2. This result was actu-
ally first obtained by Mulholland [16], as a corollary to certain related integral
estimates.

The identification of the spectrum is the hardest part of the proof of Theorem 1.
Inspired by Magnus’s work [14], it is split into two main parts. First, in Section 3,
we establish estimates near the singular point s = 1/2 for the anticipated solutions
f to equations of the form

(H − λ)f = c · ψ,
where c is a constant and ψ is the analytic symbol of H. This means that ψ is
the primitive of −(ζ(s+1/2)−1) belonging to H 2

0 . The point of this estimation
is to show that f ′(w) must be square integrable on (1/2,∞). Here we make use
of the fact that ζ(s)− (s− 1)−1 is an entire function, which allows us to relate H
to a classical operator studied by Carleman. This analysis requires a fair amount
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of classical-type computations involving Mellin transforms. In Section 4, we may
then finish the proof by resorting to the following commutation relation, obtained
by integration by parts, between H and the differentiation operator D:

DHf(s) = −f(1/2)(ζ(s+ 1/2)− 1)−HDf(s).

After finishing the proof of Theorem 1, we turn to two questions related to
Helson’s viewpoint, namely that multiplicative Hankel operators are bona fide
(small) Hankel operators on the infinite-dimensional torus T∞. The first question
is whether there is a counterpart to the result of [5, 6] saying that the norm of Ha

viewed as an operator on Hp(D) is again π/ sin(π/p). We will show in Section 5
that the analogy with Ha breaks down at this point, or, more precisely, that
H does not extend to a bounded operator on the Hp analogues of H 2

0 , which
by Bayart’s work [1] can be associated with Hp(T∞). This negative result is
related to, though not a trivial consequence of, the fact that Hp(T∞) is not
complemented in Lp(T∞) [8].

The final question to be discussed concerns the analytic symbol

(4) ψ(s) :=

∞∑

n=2

n−s√
n log n

of the multiplicative Hankel matrix. Since −ψ is, up to a linear term, a primitive
of the Riemann zeta function, it appears to be of interest to investigate it more
closely. While it is known from [20] that Nehari’s theorem does not hold in the
multiplicative setting, it could still be true that ψ is the Riesz projection of a
bounded function. In the final Section 6, we will explain the exact meaning of
this statement and show how this question relates to a long-standing embedding
problem for Hp spaces of Dirichlet spaces.

A word on notation: Throughout this paper, the notation U(z) � V (z) (or
equivalently V (z) � U(z)) means that there is a constant C such that U(z) ≤
CV (z) holds for all z in the set in question, which may be a space of functions
or a set of numbers. We write U(z) � V (z) to signify that both U(z) � V (z)
and V (z) � U(z) hold.

2. The norm of the matrix Mp

In this section, ‖Mp‖p will denote the norm of Mp viewed as an operator on
`p. Our aim is to prove the following theorem, which in particular shows that
‖H‖ = π.

Theorem 2. We have ‖Mp‖p = π/ sin(π/p) for 1 < p <∞.
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Proof. The proof relies, as in [10, pp. 226–234], on the following homogeneity
property of the kernel (x+ y)−1:

(5)
∫ ∞

0

x−1/p 1

1 + x
dx =

∫ ∞

0

x−(p−1)/p 1

1 + x
dx =

π

sin(π/p)
.

The exact computation of the integral can be found in [24, p. 254, Example 4] or
[7, Section 9.5].

We prove first that ‖Mp‖p ≤ π/ sin(π/p). We write q = p/(p− 1) and assume
that (am)m≥2 is in `p and (bn)n≥2 is in `q. By Hölder’s inequality, we find that

∞∑

m,n=2

|am||bn|m−1/qn−1/p(log(mn))−1 ≤ P ·Q,

where

(6) P :=




∞∑

m=2

|am|p
∑

n≥2

n−1

(
logm

log n

)1/q
1

log(mn)




1/p

and

(7) Q :=




∞∑

n=2

|bn|q
∑

m≥2

m−1

(
log n

logm

)1/p
1

log(mn)




1/q

.

By a change of variables argument, each of the inner sums is dominated by the
integral in (5), and hence we obtain the desired bound by duality.

To prove that the norm is bounded below by π/ sin(π/p), we use the sequences
defined by

am = m−1/p(logm)−(1+ε)/p and bn = n−1/q(log n)−(1+ε)/q

for which we have

(8) ‖(am)‖pp =
1

ε
+O(1) and ‖(bn)‖qq =

1

ε
+O(1)

when ε→ 0+. We see that
∞∑

m,n=2

ambn
m1/q n1/p log(mn)

=
∞∑

m,n=2

(logm)−(1+ε)/p(log n)−(1+ε)/qm−1n−1 1

log(mn)

≥
∫ ∞

log 3

∫ ∞

log 3

x−(1+ε)/py−(1+ε)/q 1

x+ y
dxdy.

This iterated integral can computed as the corresponding integral in [10, p. 233,
Equation 9.5.2] so that we get

∞∑

m,n=2

ambnm
−1/qn−1/p =

1

ε

(
π

sin(π/p)
+ o(1)

)
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when ε → 0+. Combining this estimate with (8), we get the desired bound
‖Mp‖p ≥ π/ sin(π/p). �

It is of interest to observe that when we replace the inner sums in (6) and (7)
by the respective integrals in (5), we get a strict inequality. In particular, we get
that

‖Hf‖H 2
0
< π‖f‖H 2

0

for every nontrivial function f in H 2
0 . This means that we have already shown

that π is not an eigenvalue for H.
Another observation is that the matrix Mp fails to be bounded on `p

′
when

p′ 6= p. This is most easily seen when p′ > p because we can find a sequence a in
`p

′
for which the entries in Mpa become infinite. When p′ < p, we can apply the

same argument to the conjugate exponents q and q′ and the matrix Mq.
In preparation for the proof of the second part of Theorem 1, we now clarify

the relationship between H 2
0 and L2(1/2, ∞) implied by Theorem 2.

Corollary 1. If f is in H 2
0 , then ‖f‖L2(1/2,∞) ≤

√
π‖f‖H 2

0
. Additionally, H

extends to an operator from L2(1/2, ∞) to H 2
0 and ‖Hf‖H 2

0
≤ √

π‖f‖L2(1/2,∞).

Proof. The first statement follows from Theorem 2 with p = 2 and the fact that

〈Hf, f〉H 2
0
=

∫ +∞

1/2

|f(w)|2 dw.

Given f ∈ L2(1/2, ∞), clearly Hf is a Dirichlet series vanishing at +∞. If
g(s) =

∑
n≥2 bnn

−s, it follows from Fubini’s theorem that

〈Hf, g〉H 2
0
=

∞∑

n=2

(∫ ∞

1/2

f(w)n−w dw

)
bn =

∫ ∞

1/2

f(w)g(w) dw,

so that (3) extends to hold for f ∈ L2(1/2, ∞) and Dirichlet polynomials g. The
second statement now follows from the first, since

‖Hf‖H 2
0
= sup

‖g‖H 2
0
=1

∣∣∣〈Hf, g〉H 2
0

∣∣∣

≤ sup
‖g‖H 2

0
=1

‖f‖L2(1/2,∞)‖g‖L2(1/2,∞) ≤
√
π‖f‖L2(1/2,∞). �

3. Estimates for solutions of (H− λ)f = cψ

In preparation for the characterization of the spectrum of H, we will in this
section prove precise asymptotics as s→ 1/2 for solutions f in H 2

0 of the equation
(H−λ)f = cψ, where c is a constant and ψ is the analytic symbol of H defined by
(4). The considerations to come are in fact of a rather general nature, providing
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a spectral decomposition of f in terms of generalized eigenvectors of the (shifted)
Carleman operator [3, p. 169] defined by

Cf(s) =

∫ ∞

1/2

f(w)

s+ w − 1
dw, s > 1/2.

We choose to focus on H for simplicity, but it will be clear from the proof of
the next theorem that minor modifications yield similar results for other integral
operators whose kernels are perturbations K(s+w), K analytic, of the Carleman
kernel.

Theorem 3. Suppose that 0 < λ < π, and let ψ denote the analytic symbol of
H, that is

ψ(s) =
∞∑

n=2

1√
n log n

n−s, Re s > 1/2.

If f in H 2
0 satisfies (H − λ)f = cψ, then there exists a complex number d and

polynomially bounded sequences of complex numbers (ck)k≥1 and (dk)k≥1 such
that f has the following series representation for 1/2 < s < 3/2,

(9) f(s) = cd+

∞∑

k=1

(s− 1/2)2k−1/2
(
ck(s− 1/2)−iθ + dk(s− 1/2)iθ

)
,

where θ is a real number dependent on λ, namely

θ =
1

π
log

(
π

λ
−
√(π

λ

)2
− 1

)
.

In particular, if f in H 2
0 solves (H− λ)f = cψ then f ′ ∈ L2(1/2, ∞).

Remark. Note that for each k, the functions s 7→ (s−1/2)2k−1/2±iθ are generalized
eigenvectors of the Carleman operator C belonging to the eigenvalue λ, 0 < λ <
π; see Lemma 1. The constant function s 7→ cd is not such an eigenfunction, and
its appearance in (9) will allow us to derive a contradiction in the case that c 6= 0.

It is also possible to treat the case λ = π with the methods below, although we
choose not to since we do not need it. Carrying out the details, one obtains for
λ = π a decomposition of f in terms of the eigenfunctions s 7→ (s − 1/2)2k−1/2

and s 7→ (s− 1/2)2k−1/2 log(s− 1/2) of the Carleman operator.

To simplify the computations and to align our proof with the classical rep-
resentation of the Carleman operator, we will in this section shift everything to
R+ = (0,∞), and prove Theorem 3 on this ray. Shifting the representation back
to (1/2,+∞) will then give (9). This means that we consider H 2

0 the space of
Dirichlet series

f(s) =
∞∑

n=2

an√
n
n−s,
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with coefficients (an)n≥2 ∈ `2, and the operator

Hf(s) =

∫ ∞

0

f(w) (ζ(s+ w + 1)− 1) ds.

We let {x} denote the fractional part of x, and use the well-known formula

ζ(s+ 1)− 1 =
1

s
− (s+ 1)

∫ ∞

1

{x}x−(s+1) dx

x

=
1

s
− (s+ 1)

∫ ∞

0

{ex}e−(s+1)x dx =:
1

s
−K(s).

The function 1/s is the kernel of Carleman’s operator, defined on L2(R+) as

Cf(s) =

∫ ∞

0

f(w)

s+ w
dw.

We will let K denote the similarly defined integral operator with kernel (s, w) 7→
K(s + w), so that H = C − K. For 0 < λ < π and f in H 2

0 , we consider the
equation (H− λ)f = cψ, where ψ denotes

ψ(s) =
∞∑

n=2

1

n log n
n−s.

(Note that this function also differs by a 1/2 shift from the actual symbol ap-
pearing in Theorem 3.) It is convenient to rewrite this equation in the form

(10) (C− λ)f = Kf + cψ.

To analyze the equation (10), we will use the Mellin transform, which is defined
by

(11) M f(z) =

∫ ∞

0

szf(s)
ds

s
.

By the Cauchy–Schwarz inequality and Corollary 1, taking into account the rapid
decay near infinity, we obtain that if f is in H 2

0 , then the integral (11) converges
absolutely when Re z > 1/2. This means that the function M f(z) is analytic in
(at least) Re z > 1/2. Our first goals are thus to compute MCf and MKf for
f in H 2

0 , as well as the special transform Mψ.

Lemma 1. Suppose that f is in H 2
0 . Then

(12) (MCf)(z) =
π

sin (πz)
(M f)(z),

has a meromorphic continuation to Re z > 1/2.

Proof. When Re z < 1, z 6∈ Z and w > 0, we have
∫ ∞

0

sz−1

s+ w
ds =

π

sin (πz)
wz−1,
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which is the same integral (5) which was used in the proof of Theorem 2. By
this formula and Fubini’s theorem, we obtain (12) in the strip 1/2 < Re z < 1.
However, the right hand side of (12) has a meromorphic continuation to the
domain Re z > 1/2. �

Remark. Note that the choice of θ is such that π/ sin (π(iθ + 1/2)) = λ. This
motivates the appearance of the functions s 7→ s2k−1/2±iθ in (9) as generalized
eigenfunctions to the Carleman operator. Compare with the remark following
Theorem 3.

Lemma 2. Let f be a function in H 2
0 . Then (MKf)(z) has a meromorphic

continuation to Re z < 1 with simple poles at the non-positive integers. If Re z ≤
1− ε and | Im z| ≥ ε, for some positive ε, then

(13) (MKf)(z) � ‖f‖H 2
0
|z|e−π| Im z|/2.

Proof. We begin by computing

(14) Kf(s) =

∫ ∞

0

f(w)K(s+ w) dw =

∞∑

n=2

an√
n log n

(αn(s) + βn(s)) ,

where

αn(s) =

∫ ∞

0

An(x) se
−sx xdx and βn(s) =

∫ ∞

0

2Bn(x) e
−sx xdx,

with

An(x) =
1

1 + x/ log n

{ex}
x

e−x,

Bn(x) =
1

2

(
1

(1 + x/ log n)2
+

1

1 + x/ log n

) {ex}
x

e−x.

We will only need the estimates An(x), Bn(x) ≤ e−x, which imply that Kf(s)
is analytic in Re s > −1, since (an/(

√
n log n))n≥2 is in `1. We apply the Mellin

transform of (14), initially with 0 < Re z < 1, obtaining

(MKf)(z) =
∞∑

n=2

an√
n log n

(
Γ(1 + z)α̃n(z) + Γ(z)β̃n(z)

)
,

where Γ denotes the Gamma function and

α̃n(z) =

∫ ∞

0

An(x)x
1−z dx

x
and β̃n(z) =

∫ ∞

0

2Bn(x)x
2−z dx

x
.

When Re z < 1, we use the estimates An(x), Bn(x) ≤ e−x along with the triangle
inequality to obtain

|α̃n(z)| ≤ Γ(1− Re z) and |β̃n(z)| ≤ 2Γ(2− Re z).
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Hence MKf has a meromorphic continuation to Re z < 1, with simple poles at
the poles of Γ(z). Moreover, by the Cauchy–Schwarz inequality, we obtain that

|(MKf)(z)| � ‖f‖H 2
0

(
|Γ(1 + z)|Γ(1− Re z) + 2|Γ(z)|Γ(2− Re z)

)
.

When | Im z| ≥ ε, we may use the functional equation and reflection formula for
the Gamma function, and estimate further that

|(MKf)(z)| � ‖f‖H 2
0

(
|Γ(1 + z)|Γ(1− Re z)

)

= ‖f‖H 2
0

π

| sin (πz)|
Γ(1− Re z)

|Γ(−z)| .
(15)

By our restriction that Re z ≤ 1 − ε and | Im z| ≥ ε, Stirling’s formula (see [15,
p. 525]) now yields that

Γ(1− Re z)

|Γ(−z)| � |1− Re z|1/2−Re z

|z|−Re z−1/2
eπ| Im z|/2 � |z|eπ| Im z|/2,

where the implicit constants depend only on ε. Hence returning to (15), we find
that

|(MKf)(z)| � ‖f‖H 2
0
|z|e−π| Im z|/2

as claimed. �

Lemma 3. For Re z > 0, we have

(16) Mψ(z) = − 1

z2
+

∞∑

n=0

bn
z + n

+ Eψ(z),

where |bn| decays super-exponentially, and Eψ(z) is an entire function that, for
every real number R, is bounded in the half-plane Re z < R. Hence Mψ(z) has
a meromorphic continuation to C with a double pole at z = 0 and simple poles at
the negative integers.

Proof. Set h(s) := ψ(s)−log s. Since h′(s) = ζ(s+1)−1−1/s, h(s) =
∑
n≥0 bns

n

is an entire function. Note now that for Re z > 0 we have
∫ 1

0

sz−1 log s ds = − 1

z2
,

while ∫ 1

0

sz−1h(s) ds =
∞∑

n=0

bn
z + n

.

We finish the proof by setting Eψ(z) :=
∫∞
1
sz−1ψ(s) ds. �
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Proof of Theorem 3. Suppose that 0 < λ < π. Transforming the equation (10)
by the Mellin transform and solving for M f , we obtain

(17) M f(z) =

(
π

sin(πz)
− λ

)−1

(MKf(z) + cMψ(z)) .

Initially this formula is only valid for 1/2 < Re z < 1, but we note that the left
hand side can be analytically continued to Re z > 1/2 and the right hand side
can be meromorphically continued to Re z < 1.

The inverse Mellin transform is given by

(18) M−1h(s) =
1

2πi

∫ κ+i∞

κ−i∞
s−zh(z) dz

for a suitable κ. For (17) the Mellin inversion theorem allows us to choose κ ∈
(1/2, 1). Our expressions for MKf and Mψ show that the right-hand side of
(17) is meromorphic in Re z < 1 with (possible) simple poles at the solutions
of sin(πz) = π/λ as well as at z = 0. Note here that the factor in front of
MKf(z) + cMψ(z) has simple zeroes at the integers. Note also that there
actually are no poles in Re z > 1/2, since M f(z) is analytic there. Hence we are
left with the pole z = 0 (if c 6= 0) and those given by

1− λ

π
sin (πz) = 0, Re z ≤ 1/2 ⇐⇒ z = ±iθ + (2k + 1/2),

where k = 0, −1, −2, . . .
We now compute (18) for h = M f and κ = 2/3 by the method of residues.

Let Jn = [θ] + n and form the rectangular contour Jn with corners in 2/3 ±
iJn and −(2Jn + 3/2) ± iJn, traversed counter-clockwise. Using (13) and (16),
straightforward estimates show that for 0 < s < 1 we have

lim
n→∞

∫

Jn

s−zM f(z) dz =
1

2πi

∫ 2/3+i∞

2/3−i∞
s−zM f(z) dz.

Evaluating the left-hand side by residues, we obtain

f(s) = cd+

∞∑

k=0

s2k−1/2
(
cks

−iθ + dks
iθ
)
, 0 < s < 1,

where cd, ck, and dk are obtained as the residues of the right-hand side of (17)
at z = 0, z = iθ − 2k + 1/2 and z = −iθ − 2k + 1/2, respectively. In fact, it is
clear that ck and dk grow at most polynomially in k, as seen from the estimates
of Lemma 2 and Lemma 3.

It remains to show that c0 = d0 = 0. However, either of them assuming a non-
zero value contradicts the fact that f is in L2(R+). Moving back to (1/2,+∞),
we obtain (9).
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The final statement follows from the fact that f ′(s) is bounded in 1/2 < s < 1
due to (9), the contribution from s > 1 is easily estimated by the fact that f is
a Dirichlet series in H 2

0 . �

Note that in the excluded case λ = π one may use the same argument, but
the representation of f is different because all poles of the right-hand side of (17)
except z = 0 are double. We also note that a more careful analysis would show
that the sequences (ck)k≥0 and (dk)k≥0 are in fact bounded, but since we do not
need this, we have not made an effort to optimize this part of the theorem.

4. The spectrum of the multiplicative Hilbert matrix

In this section we establish that H has the purely continuous spectrum [0, π]
on H 2

0 . Our argument is based on a commutation relation between H and
the operator D of differentiation, Df(s) = f ′(s). To establish this relation, we
observe that

DHf(s) =

∫ ∞

1/2

f(w)D(ζ(w + s)− 1)dw, s > 1/2.

Supposing that f ′ is integrable on the segment (1/2, 1), we get that

DHf(s) = −f(1/2)(ζ(s+ 1/2)− 1)−
∫ ∞

1/2

f ′(w)(ζ(w + s)− 1)dw

= −f(1/2)(ζ(s+ 1/2)− 1)−HDf(s), s > 1/2,

where we have defined f(1/2) = f(1) −
∫ 1

1/2
f ′(w)dw. Thus, D and H anti-

commute up to an (unbounded) rank-one term. This observation is crucial for
the characterization of the spectrum of H.

To demonstrate that H has the purely continuous spectrum [0, π], it suffices
to show that H has no eigenvalues and that H − λ does not have full range for
λ in (0, π). Indeed, H is a positive operator with norm π, and so it follows that
its spectrum is [0, π]. Since any λ in the spectrum of a self-adjoint operator must
either be an eigenvalue or part of the continuous spectrum, we can conclude that
H has purely continuous spectrum. With this in mind we now finish the proof of
Theorem 1.

Theorem 4. The operator H : H 2
0 → H 2

0 has no point spectrum. Furthermore,
if f in H 2

0 solves the equation (H− λ)f = cψ, where c is a complex number and

ψ(s) =
∞∑

n=2

1√
n log n

n−s,

then f = c = 0. In particular, the spectrum of H is [0, π] and purely continuous.
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Proof. We have already proved that λ = 0 and λ = π are not eigenvalues, since
we have shown in Section 2 that H is a strictly positive operator for which
‖Hf‖H 2

0
< π‖f‖H 2

0
, f 6= 0. It is hence sufficient to verify the second part of

Theorem 4, since it shows simultaneously that no λ in (0, π) is an eigenvalue, and
that H− λ does not have full range.

Accordingly, we suppose that f in H 2
0 satisfies (H− λ)f = cψ. By Theorem

3, we have the series representation (9). In particular f ′ is square-integrable on
(1/2,∞) and f(1/2) = cd. But noting that ψ′(s) = ζ(s+ 1/2)− 1 and using the
commutation relation of H and D, we then get that

−(H+ λ)f ′ − cd(ζ(s+ 1/2)− 1) = c(ζ(s+ 1/2)− 1).

Since f ′ is in L2(1/2,∞) we use Corollary 1 to conclude that Hf ′ is also in
L2(1/2,∞). Since ζ(s + 1/2) has a pole of order 1 at s = 1/2, it follows that
d = −1. Hence, we have obtained that

(19) (H+ λ)f ′ = 0.

From (19) and Corollary 1, we get that f ′ is H 2
0 . But since H is a positive

operator on H 2
0 , applying (19) again, we find that f ′ ≡ 0. �

5. Failure of boundedness of H on H p
0 when p 6= 2

We follow [1] and define H p as the completion of the set of Dirichlet polyno-
mials P (s) =

∑
n≤N ann

−s with respect to the norm

‖P‖H p :=

(
lim
T→∞

1

T

∫ T

0

|P (it)|pdt
)1/p

.

The Dirichlet series of a function f in H p converges uniformly in each half-plane
Re s > 1/2 + ε, ε > 0, so f is analytic in the half-plane Re s > 1/2 (see [1, 22]).
The space H p

0 is the subspace of H p consisting of Dirichlet series of the form∑
n≥2 ann

−s, which means that series in H p
0 vanish at +∞.

Theorem 5. H does not act boundedly on H p
0 for 1 ≤ p <∞, p 6= 2.

The proof of this theorem requires us to associate H p with Hp(T∞). This
means that we need to invoke the so-called Bohr lift, which we now recall (see
[11, 22] for further details). For every positive integer n, the fundamental theorem
of arithmetic allows the prime factorization

n =

π(n)∏

j=1

p
κj

j ,

159



which associates n to the finite non-negative multi-index κ(n) = (κ1, κ2, κ3, . . . ).
The Bohr lift of the Dirichlet series f(s) =

∑
n≥1 ann

−s is the power series

(20) Bf(z) =
∞∑

n=1

anz
κ(n),

where z = (z1, z2, z3, . . . ). Hence (20) is a power series in infinitely many vari-
ables, but each term contains only a finite number of these variables. An impor-
tant example is the Bohr lift of the Riemann zeta function. Let fw(s) = ζ(s+w)
for Re(w) > 1/2. Using the Euler product of the Riemann zeta function, we find
that

(21) Bfw(z) =
∞∑

n=1

n−wzκ(n) =
∞∏

j=1

(
1− p−wj zj

)−1
.

Indeed, any Dirichlet series with an Euler product has a Bohr lift that separates
the variables in the same way.

Under the Bohr lift, H p corresponds to the Hardy space Hp(T∞), which
we view as a subspace of Lp(T∞). This means that B is a multiplicative and
isometric map from H p onto Hp(T∞). We refer to [1, 4, 11, 22] for the details,
mentioning only a few important facts. Functions in Hp(T∞) are analytic at the
points ξ ∈ D∞ ∩ `2. Indeed the reproducing kernel at ξ is given by

Kξ(z) =

∞∏

j=1

(
1− ξjzj

)−1
,

compare with (21). The Haar measure of the compact abelian group T∞ is simply
the product of the normalized Lebesgue measures for each variable. In particular,
Hp(Td) is a natural subspace of Hp(T∞). We denote the orthogonal projection
(Riesz projection) from L2(T∞) onto H2(T∞) by P+. Even though Hp(T∞) is
uncomplemented in Lp(T∞) when p 6= 2 [8], we can still identify its dual with the
Riesz projection of Lq(T∞) for 1/p + 1/q = 1 using the Hahn–Banach theorem,
(Hp(T∞))∗ = P+L

q(T∞), 1 ≤ p <∞.
We require the following lemma which is established by direct computation.

Here and in what follows, the Lp norm with respect to normalized Lebesgue
measure on T (or T∞) is denoted by ‖ · ‖p.
Lemma 4. Let λ be a real parameter and suppose that 0 < ε(1 + |λ|) < 1/4,
1 ≤ p <∞. Then

‖1 + ε(z + λz)‖pp = 1 +
p

4

[
(p− 1)(1 + λ)2 + (1− λ)2

]
ε2 +O(ε3).

The norm is minimal when λ = (2− p)/p:
∥∥∥∥1 + ε

(
z +

(2− p)

p
z

)∥∥∥∥
p

p

= 1 + (p− 1)ε2 +O(ε3).
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Proof. We write z = eiθ so that we have

|1 + ε(z + λz)|p =
(
1 + 2ε(1 + λ) cos θ + ε2(1 + λ)2 cos2 θ + ε2(1− λ)2 sin2 θ

)p/2

= 1 + pε(1 + λ) cos θ +
p

2
ε2

([
1 + 2

(p
2
− 1
)]

(1 + λ)2 cos2 θ

+ (1− λ)2 sin2 θ

)
+O(ε3).

Integrating, we get

‖1 + ε(z + λz)‖pp = 1 +
p

4

[
(p− 1)(1 + λ)2 + (1− λ)2

]
ε2 +O(ε3). �

The point of the lemma is that p2/4 > p − 1 whenever p 6= 2, so that (one-
dimensional) Riesz projection acts expansively on g(z) = 1 + ε(z + λz), since
‖P+g‖pp = 1 + (p/2)2ε2 +O(ε4).

Proof of Theorem 5. Assume first that p > 1. To estimate the norm of H on H p
0

from below, we will choose G in Lq(T∞) with 1/p+ 1/q = 1 such that G(0) = 1.
Then using that ζ(s+w)−1 is the reproducing kernel of H 2

0 , we get for f ∈ H p
0

that

〈BHf,G〉L2(T∞) = 〈Hf,B−1P+G〉H 2 =

∫ ∞

1/2

f(w)(B−1P+G(w)− 1) dw.

Specifically, we set

G(z) =
∞∏

j=1

(
1 +

2

q
p−αj

(
zj +

(2− q)

q
zj

))

where α > 1/2. Using Lemma 4 we find that

‖G‖qq =
∞∏

j=1

∥∥∥∥1 +
2

q
p−αj

(
zj +

(2− q)

q
zj

)∥∥∥∥
q

q

=
∞∏

j=1

(
1 +

4(q − 1)

q2
p−2α
j +O(p−3α

j )

)
.

To estimate the Euler products
∏
j≥1(1 + λp−sj ) for, say 1 < s < 2, we use that

∞∏

j=1

(1 + λp−sj ) =

∞∏

j=1

(1 + λp−sj )
(
1− λp−sj +O(p−2s

j )
)

(1− p−sj )λ
� ζ(s)λ � (s− 1)−λ.
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We get that ‖G‖q � (2α − 1)−4/(pq2) as α → 1/2, since (q − 1)/q = 1/p. If
1/2 < α,w < 1, then

B−1P+G(w) =
∞∏

j=1

(
1 + (2/q)p−α−wj

)
� (α+ w − 1)−2/q.

We now choose

f(w) =
∞∏

j=1

(
1 + (2/p)p−α−wj

)
− 1 � (α+ w − 1)−2/p.

The norm of f can be computed as in the proof of Lemma 4,

‖Bf‖p =
∞∏

j=1

∥∥1 + (2/p)p−αj zj
∥∥
p
=

∞∏

j=1

(
1 + p−2α

j +O(p−4α
j )

) 1
p � (2α− 1)−1/p.

Combining everything, we get that
∣∣〈BHf,G〉L2(T∞)

∣∣
‖Bf‖p‖G‖q

�
∫ 1

1/2

(2α− 1)4/(pq
2)+1/p

(α+ w − 1)2
dw � (2α− 1)4/(pq

2)+1/p−1.

The exponent is negative if p 6= 2 since, in this case, pq > 4 so letting α → 1/2
shows that H is unbounded on H p

0 .
For p = 1, we make a minor adjustment. We can use the same f (with p = 1),

but we choose

G(z) =
∞∏

j=1

(
1 + (1/4)p−αj (zj − zj)

)
.

The point is that zj − zj = 2i sin(θj), if zj = eiθj , so we get that

‖G‖∞ =
∞∏

j=1

√
1 + (p−αj /2)2 =

∞∏

j=1

(
1 + (1/8)p−2α

j +O(p−4α
j )

)
� (2α− 1)−1/8.

The rest of the argument works like above, the conclusion coming from that
1/8− 1/4 < 0. �

6. Symbols of the multiplicative Hilbert matrix

To place our discussion in context, we begin with some general considerations
concerning Hankel forms, i.e., the bilinear forms associated with (additive or
multiplicative) Hankel matrices. We recall that any function ψ in H2(T) defines
a Hankel form Hψ by the relation

Hψ(f, g) = 〈fg, ψ〉L2(T),

which makes sense at least for polynomials f and g. Nehari’s theorem [17] says
that Hψ extends to a bounded form on H2(T) ×H2(T) if and only if ψ = P+ϕ
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for a bounded function ϕ in L∞(T). Moreover, ‖Hψ‖ = ‖ϕ‖∞ if we choose ϕ to
have minimal L∞ norm. By the Hahn-Banach theorem and the observation that

〈f, ϕ〉L2(T) = 〈f, P+ϕ〉L2(T),

at least for polynomials f , we note an equivalent formulation of the first part
of Nehari’s theorem: Hψ defines a bounded form if and only if ψ induces a
bounded functional on H1(T), in the sense that there exist C > 0 such that for
every polynomial f it holds that |〈f, ψ〉L2(T)| ≤ C‖f‖1. See for example [18,
Section 1.4].

In this context let us indicate an alternative proof (in fact, the original ap-
proach of Hilbert) of the fact that the usual Hilbert matrix has norm π. Let
ϕ(θ) = ie−iθ(π − θ), θ ∈ [0, 2π). Since

∞∑

n=0

(n+ 1)−1einθ = P+ϕ(θ), a.e. θ,

and ‖ϕ‖∞ = π, it follows that the Hilbert matrix has norm at most π. As noted
above, it also follows that

∣∣∣∣∣
∞∑

n=0

cn(n+ 1)−1

∣∣∣∣∣ ≤ π‖f‖1,

where f(z) =
∑
n≥0 cnz

n. In the case of the Hilbert matrix, we have in fact the
stronger inequality

(22)
∞∑

n=0

|cn|(n+ 1)−1 ≤ π‖f‖1,

which was proved by Hardy and Littlewood [9].
We turn next to what is known about multiplicative Hankel forms. Every

sequence % = (%1, %2, %3, . . . ) in `2 defines in an obvious way a multiplicative
Hankel matrix, and we associate with it the corresponding multiplicative Hankel
form given by

(23) %(a, b) =
∞∑

m,n=1

%mnambn,

which initially is defined at least for finitely supported sequences a and b in `2.
We will now explain, using the Bohr lift, that every multiplicative Hankel matrix
can be uniquely associated with either a Hankel form on H2(T∞) ×H2(T∞) or
equivalently a (small) Hankel operator acting on H2(T∞).

If f , g, and ϕ are Dirichlet series in H 2 with coefficients an, bn, and %n,
respectively, a computation shows that

〈fg, ϕ〉H 2 = %(a, b).
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A formal computation gives that

〈BfBg,Bϕ〉L2(T∞) = 〈fg, ϕ〉H 2 ,

allowing us to compute the multiplicative Hankel form (23) on T∞. This means
that we may equivalently study Hankel forms

(24) HΦ(FG) = 〈FG,Φ〉L2(T∞), F,G ∈ H2(T∞).

In our previous considerations we required that Φ be in H2(T∞), but there is
nothing to prevent us from considering arbitrary symbols Φ from L2(T∞). Hence,
each Φ in L2(T∞) induces by (24) a (possibly unbounded) Hankel form Hϕ on
H2(T∞) ×H2(T∞). Of course, this is not a real generalization. Each form HΦ

is also induced by a symbol Ψ in H2(T∞); setting Ψ = P+Φ we have HΦ = HΨ.
On the polydisc, the Hankel form HΦ is naturally realized as a (small) Hankel

operator HΦ, which when bounded acts as an operator from H2(T∞) to the anti-
analytic space H2(T∞). Letting P+ denote the orthogonal projection of L2(T∞)

onto H2(T∞), we have at least for polynomials F in H2(T∞) that

HΦF = P+(ΦF ).

We now come to the question of to which extent Nehari’s theorem remains
valid in the multiplicative setting. Note first that if Ψ is in L∞(T∞), then the
corresponding multiplicative Hankel form is bounded, since

|HΨ(fg)| = |〈fg,Ψ〉| ≤ ‖f‖2 ‖g‖2‖Ψ‖∞.
We say that HΦ has a bounded symbol if there exists Ψ ∈ L∞(T∞) such that
HΦ = HΨ. In [12], Helson proved that every Hankel form in the Hilbert–Schmidt
class S2 has a bounded symbol, but it was shown in [20] that there exist bounded
multiplicative Hankel forms without bounded symbols, in sharp contrast to the
classical situation. Hence, there are in fact bounded Hankel forms HΦ for which
f 7→ HΦ(f) does not define a bounded functional on H1(T∞). For when this
functional is bounded on H1(T∞) it has, by Hahn-Banach, a bounded extension
to L1(T∞) and therefore is given by an L∞(T∞)-function Ψ which must satisfy
HΦ = HΨ. The result of [20] was strengthened in [2], where it was shown that
there are Hankel forms in Schatten classes Sp without bounded symbols whenever
p > (1− log π/ log 4)−1 = 5.7388...

In the opposite direction, we have the following positive result about Hankel
forms with bounded symbols, reflecting that when α(n) is a multiplicative func-
tion, variables separate in a natural way so that the classical Nehari theorem
applies to each of the infinitely many copies of the unit circle T.

Theorem 6. Suppose that ϕ(s) :=
∑
n≥1 α(n)n

−s is in H 2 and that α(n) is a
multiplicative function. If HBϕ is a bounded Hankel form on H2(T∞)×H2(T∞),
then there exist Ψ ∈ L∞(T∞) such that Bϕ = P+Ψ. Moreover, if the function
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α(n) is completely multiplicative, then the Hankel form HBϕ is always bounded
on H2(T∞)×H2(T∞).

Proof. We begin by proving the first statement. To this end, by the assump-
tion that α(n) is a multiplicative function, we may factor the symbol ϕ(s) =∑
n≥1 α(n)n

−s into an Euler product,

ϕ(s) =

∞∑

n=1

α(n)n−s =
∞∏

j=1

(
1 +

∞∑

k=1

α
(
pkj
)
p−ksj

)
=:

∞∏

j=1

ϕj(s),

which is absolutely convergent when Re s > 1/2. We observe that Φj := Bϕj
depends only on zj , so that Φ(z) := Bϕ(z) =

∏
j≥1 Φj(zj). Now a version of

Lemma 2 in [2] can be used to show that

‖HΦ‖ =

∞∏

j=1

‖HΦj‖.

Since HΦj
is a one variable Hankel form, we may appeal to the classical Nehari

theorem [17] to infer that there is some Ψj in L∞(T) so that HΦj
= HΨj

and
moreover that ‖HΦj

‖ = ‖Ψj‖∞. Setting Ψ(z) :=
∏
j≥1 Ψj(zj), we conclude that

‖HΦ‖ = ‖Ψ‖∞ and that Φ = P+Ψ.
The second statement of Theorem 6 is just a reformulation of the fact that the

set of bounded point evaluations for H1(T∞) is D∞∩ `2 [4]. Following [4, p. 122]
or the proof of the first part of the present theorem, we may find corresponding
bounded functions explicitly: For every point z = (zj) on T∞, we set

Ψ(z) =
∞∏

j=1

1

1− |α(pj)|2
1− α(pj)zj
1− α(pj)zj

.

This is a bounded function on T∞ because (α(pj))j≥1 ∈ D∞∩ `2. One may check
that B−1P+Ψ(s) =

∑
n≥1 α(n)n

−s by a direct computation or by checking that
Φ represents the functional of point evaluation at (α(pj))j≥1. �

Because of the factor 1/ log n, the analytic symbol (4) of the multiplicative
Hilbert matrix does not have multiplicative coefficients, and we know from The-
orem 1 that it is not compact. This means that the preceding discussion gives
no answer to the following question.

Question. Does the multiplicative Hilbert matrix have a bounded symbol?

Equivalently, we may ask whether we have

(25)

∣∣∣∣∣a1 +
∞∑

n=2

an√
n log n

∣∣∣∣∣� ‖f‖H 1
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when f(s) =
∑
n≥1 ann

−s is in H 1. We could even ask if the analogue of the
Hardy–Littlewood inequality (22) is valid: Does (25) hold when we put absolute
values on an, or, in other words, do we have

|a1|+
∞∑

n=2

|an|√
n log n

�
∥∥∥∥∥

∞∑

n=1

ann
−s
∥∥∥∥∥

H 1

?

To see that we could not hope for a better inequality with
√
n log n replaced by

a function of slower growth, we look at the function

fN (s) :=

(
N∑

n=1

n−1/2−s
)2

,

which has ‖fN‖H 1 ∼ logN . On the other hand, we observe that in this case,
∞∑

n=2

|an|√
n log n

≥
N∑

n=2

d(n)

n log n
∼ logN,

where d(n) is the divisor function and the latter estimate follows by Abel’s sum-
mation formula.

We observe that the left-hand side of (25) can be written as an integral, so that
another reformulation of the question is to ask if the linear functional defined by

(26) Lf =

∫ ∞

1/2

f(w)dw

extends to a bounded linear functional on H 1
0 . One of the most important open

problems in the theory of Hardy spaces of Dirichlet series is to determine whether

(27)
∫ 1

0

|P (1/2 + it)|dt� ‖P‖H 1

holds for all Dirichlet polynomials. If this were the case, then a Carleson measure
argument (see [19, Theorem 4]) shows that then we also have

∫ 3/2

1/2

|f(w)|dw � ‖f‖H 1

for all f in H 1. The contribution from Re(s) ≥ 3/2 can be handled with a point
estimate. The easiest way (see also [4]) to deduce a sharp point estimate for H 1

0

is through Helson’s inequality [12], which states that
∑
n≥1 |an|2/d(n) ≤ ‖f‖2H 1 .

For f ∈ H 1
0 and Re(s) = σ > 1/2 we get that

|f(s)| ≤
( ∞∑

n=2

|an|2
d(n)

) 1
2
( ∞∑

n=2

d(n)n−2σ

) 1
2

≤ ‖f‖H 1
0

(
ζ(2σ)2 − 1

) 1
2 .
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For instance, if w ≥ 3/2 then |f(w)| � ‖f‖H 1
0
4−w. Therefore the validity of the

embedding (27) in fact implies that
∫ ∞

1/2

|f(w)|dw � ‖f‖H 1
0
.

This inequality is stronger than asking the functional of (26) to be bounded
on H 1

0 , and hence we have shown that (27) would imply that the multiplicative
Hilbert matrix has a bounded symbol. Whether (27) holds is an open problem
that has remained unsolved for many years; we refer to [23] for a discussion of it.
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WEAK PRODUCT SPACES OF DIRICHLET SERIES

OLE FREDRIK BREVIG AND KARL-MIKAEL PERFEKT

Abstract. Let H 2 denote the space of ordinary Dirichlet series with
square summable coefficients, and let H 2

0 denote its subspace consisting of
series vanishing at +∞. We investigate the weak product spaces H 2 �H 2

and H 2
0 � H 2

0 , finding that several pertinent problems are more tractable
for the latter space. This surprising phenomenon is related to the fact that
H 2

0 �H 2
0 does not contain the infinite-dimensional subspace of H 2 of series

which lift to linear functions on the infinite polydisc.
The problems considered stem from questions about the dual spaces of

these weak product spaces, and are therefore naturally phrased in terms
of multiplicative Hankel forms. We show that there are bounded, even
Schatten class, multiplicative Hankel forms on H 2

0 × H 2
0 whose analytic

symbols are not in H 2. Based on this result we examine Nehari’s theorem
for such Hankel forms. We define also the skew product spaces associated
with H 2�H 2 and H 2

0 �H 2
0 , with respect to both half-plane and polydisc

differentiation, the latter arising from Bohr’s point of view. In the process
we supply square function characterizations of the Hardy spaces H p, for
0 < p < ∞, from the viewpoints of both types of differentiation. Finally
we compare the skew product spaces to the weak product spaces, leading
naturally to an interesting Schur multiplier problem.

1. Introduction

In this paper, we investigate certain properties of weak product spaces associ-
ated with the Hardy space of Dirichlet series,

H 2 =

{
f(s) =

∞∑

n=1

ann
−s : ‖f‖H 2 =

( ∞∑

n=1

|an|2
) 1

2

<∞
}
,

and its subspace H 2
0 , consisting of those f ∈ H 2 with a1 = f(+∞) = 0. The

main objects of study are the weak product spaces H 2 � H 2 and H 2
0 � H 2

0 .
With X = H 2 or X = H 2

0 , the weak product X �X is defined as the Banach
space completion of the finite sums F =

∑
k fkgk, where fk, gk ∈ X , under the

norm
‖F‖X �X = inf

∑

k

‖fk‖H 2‖gk‖H 2 .

The first author is supported by Grant 227768 of the Research Council of Norway.
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The infimum is taken over all finite representations of F as a sum of products.
While a separate study of H 2

0 � H 2
0 may at first be thought unmotivated,

we will find that the norm of this space is significantly larger for certain types of
Dirichlet series (see Theorem 1 and its corollaries). The presence of such examples
is related to the obstructions faced in producing monomials n−s in a product fkgk,
for fk, gk ∈ H 2

0 , when n is an integer with a low number of prime factors. In
particular, elements of H 2

0 �H 2
0 contain no terms of the form p−s, where p is a

prime number. Hence there is an easily identifiable infinite-dimensional subspace
of H 2 � H 2 which has trivial intersection with H 2

0 � H 2
0 .

The weak product space H 2�H 2 was first investigated by Helson [21, 22] in
an attempt to decide whether Nehari’s theorem holds for multiplicative Hankel
forms (see also Section 2). Helson’s work was continued in [25], where it was
demonstrated that Nehari’s theorem does not hold in full generality. To explain
his point of view, note that each sequence % ∈ `2 induces a (not necessarily
bounded) multiplicative Hankel form on `2 × `2,

(1) %(a, b) =

∞∑

m=1

∞∑

n=1

ambn%mn, a, b ∈ `2.

The analytic symbol of (1) is the Dirichlet series

ϕ(s) =
∞∑

n=1

%nn
−s.

Indeed, if f and g are elements of H 2 with coefficients a and b, respectively, we
have that

(2) Hϕ(fg) = 〈fg, ϕ〉 = %(a, b).

Here, and throughout the rest of the paper, 〈·, ·〉 denotes the inner product of
H 2.

Now, from (2) it is clear that the multiplicative Hankel form (1) is bounded
on `2 × `2, or equivalently Hϕ on H 2 ×H 2, if and only if ϕ induces a bounded
linear functional on H 2 � H 2 through the H 2-pairing, i.e. if and only if ϕ is
in
(
H 2 � H 2

)∗.
The first bona fide example of a multiplicative Hankel form was obtained in

[11], by the following approach. Note first that the elements of H 2 are analytic
functions in the half-plane Re s > 1/2, the reproducing kernel at each such s
being given by ζ(w + s), where ζ(s) =

∑
n≥1 n

−s is the Riemann zeta function.
It is thus natural to consider the Carleman-type operator

Hf(s) =

∫ ∞

1/2

f(w) (ζ(s+ w)− 1) dw
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acting on H 2
0 , since (ζ(s+ w)− 1) is the reproducing kernel of H 2

0 at w, for
w > 1/2. The matrix of the operator H is that of the multiplicative Hankel
form whose analytic symbol ϕ is the primitive of (ζ(s+ 1/2)− 1) in H 2

0 . In [11]
it was shown that the operator norm of H on H 2

0 is π, which in terms of its
corresponding Hankel form means precisely that |〈fg, ϕ〉| ≤ π‖f‖H 2‖g‖H 2 for
f, g ∈ H 2

0 . More explicitly written,

(3)
∣∣∣

∞∑

m=2

∞∑

n=2

ambn√
mn log(mn)

∣∣∣ ≤ π
( ∞∑

m=2

|am|2
) 1

2
( ∞∑

n=2

|bn|2
) 1

2

.

As explained more thoroughly in [11], inequality (3) is a multiplicative analogue
of the classical Hilbert inequality

(4)
∣∣∣

∞∑

m=1

∞∑

n=1

ambn
m+ n

∣∣∣ ≤ π
( ∞∑

m=1

|am|2
) 1

2
( ∞∑

n=1

|bn|2
) 1

2

.

There are several other versions of (4) which are also usually referred to as
Hilbert’s inequality — we direct the interested reader to [19, Ch. IX]. Let us
extract a few facts. First, that by discretization of the continuous version of (4)
and the Hermite–Hadamard inequality, the following improvement of (4) can be
obtained.

∣∣∣
∞∑

m=0

∞∑

n=0

ambn
m+ n+ 1

∣∣∣ ≤ π
( ∞∑

m=0

|am|2
) 1

2
( ∞∑

n=0

|bn|2
) 1

2

.

We mention without proof that the same procedure (with additional straight-
forward estimates) yields in the multiplicative setting that

∣∣∣
∞∑

m=1

∞∑

n=1

ambn√
(m+ 1/2)(n+ 1/2) log((m+ 1/2)(n+ 1/2))

∣∣∣ ≤ π‖a‖`2‖b‖`2 ,

which of course no longer represents a multiplicative Hankel form.
The strongest version of Hilbert’s inequality (4) is

(5)
∣∣∣
∑

m,n≥0
m+n>0

ambn
m+ n

∣∣∣ ≤ π
( ∞∑

m=0

|am|2
) 1

2
( ∞∑

n=0

|bn|2
) 1

2

.

The last variant can also be stated for two-tailed sequences {am}m∈Z and {bn}n∈Z.
The proof of (5) amounts to a concrete application of Nehari’s theorem on H2(T),
since the associated Hankel form has the bounded symbol Φ of supremum norm
π,

(6) Φ(z) = −iArg(z) = i(π − θ), z = eiθ.

As far as the authors are aware, all proofs of (5) in the literature make use of (a
reformulation of) (6).
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Whether the multiplicative Hankel form (3) has a bounded symbol is an open
problem that is related to a long standing embedding problem of H 1 (see [11,
Sec. 6]). It therefore natural to ask if we also have

(7) |〈fg, ϕ〉| ≤ π‖f‖H 2‖g‖H 2 , f, g ∈ H 2?

In light of the discussion above, this question actually turns out to be more subtle
than what one might expect at first. We are unable to settle it, seemingly due
to the lack of a Nehari theorem for multiplicative Hankel forms.

That (7) is significantly easier to settle for H 2
0 than for H 2 is not a peculiarity,

but rather an ongoing theme for all the questions we will ask about product spaces
in this paper. Note that inequality (3) is easily recast as a question about (the
dual space of) H 2

0 �H 2
0 . More generally, elements of

(
H 2

0 � H 2
0

)∗ correspond
to multiplicative Hankel forms of the type (1), but with sums starting at m,n = 2.
The remainder of this section is an overview of the problems that we will consider.

In Section 2, we investigate the difference between Hankel forms on H 2×H 2

and Hankel forms on H 2
0 × H 2

0 . After some preliminaries, we obtain the main
result of this section, Theorem 1, which allows us to embed any bounded operator
C : `2 → `2 into a Hankel form on H 2

0 × H 2
0 . This result is the basis for our

observation that H 2
0 �H 2

0 is significantly smaller than H 2�H 2, and it is also
an important tool in the proofs of our other main results.

Helson [21] proved that any Hankel form on H 2 × H 2 which is of Hilbert-
Schmidt class S2 is induced by a bounded symbol on the infinite polytorus T∞.
In [10] it was shown that if p > p0 ≈ 5.74, then there is a Hankel form on
H 2 ×H 2 of Schatten class Sp that does not have any bounded symbol, leading
to the conjecture that the same might be true for all p > 2. In Theorem 6 we will
prove that p = 2 is indeed critical in this sense for multiplicative Hankel forms
acting on H 2

0 × H 2
0 , leading us closer to optimality of Helson’s result. In fact,

for p > 2 we will even demonstrate the existence of forms in Sp that do not have
square-integrable symbols on the polytorus.

The penultimate section is devoted to the study of the skew product space
∂−1

(
H 2 � ∂H 2

)
. The motivation to study this space is twofold. Firstly, char-

acterizations of the dual spaces of skew products are often significantly easier to
obtain (see [1, 2]). Secondly, for the classical Hardy space H2, the comparison
between H2�H2 and ∂−1

(
H2 � ∂H2

)
leads naturally to a Schur multiplier prob-

lem for Hankel matrices. Much has been written about this problem, owing to the
fact that it was closely related to Pisier’s construction of a polynomially bounded
operator not similar to a contraction. We refer the reader to [9, 13, 16, 26].

We begin Section 3 by proving a square function characterization of H p, which
is of independent interest for the study of Hardy spaces of Dirichlet series. Due
to the notation involved, we defer a precise statement to Theorem 8. We first use
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this characterization to prove that

(8) H 2 � H 2 ⊆ ∂−1
(
∂H 2 � H 2

)
( H 1.

We then study whether the first inclusion in (8) is strict. This appears to be a
difficult question, but by Schur multiplier methods we are able to demonstrate
that this is the case if every appearance of H 2 in (8) is replaced by H 2

0 .
Finally, in Section 4, we look at the material of Section 3 again, but with the

Hardy spaces of the polydisc in mind. Noting that Dirichlet series differentiation
gives rise to a rather unnatural differentiation operator on the polydisc, we prove
instead a square function characterization of Hp(T∞) that is adapted to the radial
differentiation operator

(9) R =
∞∑

j=1

zj∂zj .

This will allow us to conclude that on finite-dimensional tori, it holds that

H2(Td)�H2(Td) = R−1
(
H2(Td)�RH2(Td)

)
= H1(Td).

It also turns out that radial differentiation has a number theoretic interpretation
when considered from the Dirichlet series point of view, something that too will
be elaborated upon in Section 4.

Notation. As usual, {pj}j≥1 denotes the sequence of prime numbers in increas-
ing order, and Ω(n) will denote the number of prime factors in n, counting mul-
tiplicities. We will write f � g to indicate that there is some positive constant
C so that |f(x)| ≤ C|g(x)|. If both f � g and g � f , we write f � g.

When we speak of a Dirichlet series ϕ as an element of a dual space K ∗,
where K is a Banach space of Dirichlet series in which the space of Dirichlet
polynomials P is dense, we always mean that the functional induced by ϕ via
the H 2-pairing is bounded. That is, ϕ ∈ K ∗ if and only if the functional

υϕ(f) = 〈f, ϕ〉, f ∈ P,

extends to a bounded functional on K . Similarly, when we write that K ∗ ⊆ X ,
where X is a Banach space of Dirichlet series, we mean that for every functional
υ ∈ K ∗ there exists a ϕ ∈ X such that υ = υϕ (on P) and ‖ϕ‖X � ‖υ‖K ∗ .

2. Hankel forms and a matrix embedding

Much of the success in the theory of Hardy spaces of Dirichlet series is due to
a simple observation of Bohr [7], which facilitates a link between Dirichlet series
and function theory in polydiscs. By identifying each prime number with an
independent variable, zj = p−sj , the Dirichlet series f(s) =

∑
n≥1 ann

−s is lifted
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to a function in the Hardy space of the countably infinite torus, H2(T∞). More
precisely, the prime factorization

n =
∞∏

j=1

p
κj

j

associates to n the finite non-negative multi-index κ(n) = (κ1, κ2, κ3, . . .). This
means that the Bohr lift of f is

Bf(z) =
∞∑

n=1

anz
κ(n),

where z = (z1, z2, z3, . . .). The mapping B : H 2 → H2(T∞) is an isometric
isomorphism that respects multiplication. T∞ is a compact abelian group, and
its Haar measure is denoted by m∞. The measure m∞ is equal to the product of
the normalized Lebesgue measure on T in each variable. In particular, H2(Td)
is a natural subspace of H2(T∞). We refer to [20, 27] for further properties of
H2(T∞).

In [4], Bayart introduced the spaces H p, for 1 ≤ p < ∞, as those Dirichlet
series f such that Bf ∈ Hp(T∞), and we define the H p-norm as

‖f‖H p =

(∫

T∞
|Bf(z)|p dm∞(z)

) 1
p

.

As above, Hp(Td) is a natural subspace of Hp(T∞) ' H p.
Returning to the multiplicative Hankel form Hϕ defined in (2), the fact that

B respects multiplication implies that

Hϕ(fg) = 〈BfBg, Bϕ〉H2(T∞).

From this representation, it is clear that we may replace Bϕ with any ψ ∈ L2(T∞)
such that Pψ = Bϕ, where P denotes the Riesz projection from L2(T∞) to
H2(T∞). In this case, we also denote the Hankel formHϕ byHψ. If ψ ∈ L∞(T∞),
then ‖Hϕ‖ ≤ ‖ψ‖∞, where ‖Hϕ‖ denotes the norm of Hϕ acting on H 2 × H 2,
and we say that Hϕ has bounded symbol ψ. Note that if the functional

f 7→ 〈f, ϕ〉, f ∈ H 1,

is bounded on H 1 ' H1(T∞) ⊂ L1(T∞), then Hϕ has a bounded symbol by
the Hahn-Banach theorem. Hence, Hϕ has a bounded symbol if and only if
ϕ ∈ (H 1)∗.

The main result of [25] implies that there exist bounded multiplicative Hankel
forms that do not have a bounded symbol. It should be pointed out that the
proof is non-constructive, and no example of a bounded multiplicative Hankel
form without a bounded symbol has been identified. On the other hand, if
d = 1 then Nehari’s theorem [24] states that every bounded Hankel form Hϕ
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on H2(Td)�H2(Td) has a bounded symbol ψ ∈ L∞(Td). Nehari’s theorem has
been extended to d <∞ by Ferguson–Lacey [17] and Lacey–Terwilleger [23].

The matrix of the multiplicative Hankel form (2) is

(10) M% =
(
%mn

)
m,n≥1

=




%1 %2 %3 · · ·
%2 %4 %6 · · ·
%3 %6 %9 · · ·
...

...
...

. . .


 .

By isolating the first row and column in M% using the inner product representa-
tion of Hϕ from (2), we obtain

(11) Hϕ(fg) = a1b1%1 + a1 〈g − b1, ϕ〉+ b1 〈f − a1, ϕ〉+Hϕ

(
(f − a1)(g − b1)

)
.

The left hand side is a bounded Hankel form if and only if ϕ ∈
(
H 2 � H 2

)∗,
while the right hand side is bounded if and only if ϕ ∈

(
H 2

0

)∗
= H 2/C and

ϕ ∈
(
H 2

0 � H 2
0

)∗. While it is obvious that

(12)
(
H 2 � H 2

)∗ ⊆ H 2,

we shall now see that the corresponding statement for H 2
0 is not true. This will

follow immediately from our next result, which also is crucial in establishing the
other main results of the paper.

Theorem 1 (Matrix embedding). Let C = (cj,k)j,k≥1 be an infinite matrix defin-
ing an operator on `2. Consider the Dirichlet series

ϕ(s) =

∞∑

j=1

∞∑

k=1

cj,k (p2j−1p2k)
−s
,

where {pj}j≥1 denotes the sequence of primes numbers in increasing order. Then
(a) ‖Hϕ‖0 = ‖C‖,
(b) ‖Hϕ‖ � ‖C‖S2 = ‖ϕ‖H 2 ,

where ‖Hϕ‖0 denotes the norm of Hϕ acting on H 2
0 × H 2

0 , and ‖C‖S2
denotes

the Hilbert–Schmidt matrix norm of C,

‖C‖S2 =

( ∞∑

j=1

∞∑

k=1

|cj,k|2
) 1

2

.

Proof. Let f, g ∈ H 2
0 with coefficients {aj}j≥1 and {bk}k≥1, respectively. Since

there are no constant terms in H 2
0 we have that

(13) Hϕ(fg) = 〈fg, ϕ〉 =
∞∑

j=1

∞∑

k=1

(
ap2j−1

bp2k + ap2kbp2j−1

)
cj,k.
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Note that for every prime p, ap and bp each only appear once in this sum. Let

K1 = span{p−s2k−1 : k ≥ 1},
K2 = span{p−s2k : k ≥ 1},
K3 = H 2

0 	 (K1 ⊕ K2) ,

and let PKj denote the corresponding orthogonal projections. Let aj and bj
denote the coefficient sequences, in the natural basis of Kj , of PKj

f and PKj
g,

respectively. Then we may rewrite (13) as

Hϕ(fg) = 〈Cb2,a1〉`2 + 〈Ca2,b1〉`2 = 〈J (CT ⊕ C)(a1,a2), (b1,b2)〉`2⊕`2 ,
where J is the involution on `2⊕`2 defined by J (a1,a2) = (a2,a1). We conclude
that

Hϕ

∣∣
H 2

0
' J (CT ⊕ C)⊕ 0,

completing the proof of (a). For (b), we first observe that setting g = 1 implies
‖Hϕ‖ ≥ ‖ϕ‖(H 2)∗ = ‖ϕ‖H 2 = ‖C‖S2

. Returning to the decomposition (11) we
see that ‖Hϕ‖ ≤ 4‖C‖S2 , by using (a). �

As a corollary of Theorem 1, we obtain that a bounded Hankel form on H 2
0 ×

H 2
0 does not necessarily have a symbol in L2(T∞), in stark contrast with the

classical situation where bounded Hankel forms have bounded symbols. We also
find that (12) does not hold for H 2

0 .

Corollary 2.
(
H 2

0 � H 2
0

)∗ 6⊆ H 2. That is, there are bounded multiplicative
Hankel forms Hϕ on H 2

0 × H 2
0 with the property that there is no ψ ∈ L2(T∞)

such that Hϕ = Hψ.

Proof. Use Theorem 1 and let C be the matrix of the identity operator on `2. �

Actually, we have the following stronger version of Corollary 2, which can be
proven by considering all diagonal operators C on `2 and using Theorem 1. It
exemplifies concretely that H 2

0 � H 2
0 is in some ways significantly smaller than

H 2 � H 2.

Corollary 3. The Dirichlet series

f(s) =
∞∑

k=1

ak(p2k−1p2k)
−s

is in H 2
0 �H 2

0 if and only if a ∈ `1, while it is in H 2�H 2 if and only if a ∈ `2.

Recall that H2(Td) is a natural subspace of H2(T∞) and that if f ∈ H 2
0 ,

then Bf(0) = 0. We now observe that the inclusions behave as expected for the
corresponding finite-dimensional subspaces of the weak product spaces.
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Lemma 4. For 1 ≤ d <∞, let H2
0 (Td) denote the space of functions F ∈ H2(Td)

for which F (0, 0, . . . , 0) = 0. Then
(
H2

0 (Td)�H2
0 (Td)

)∗ ⊆ H2
0 (Td)	 Lin(Td) ⊆ H2

0 (Td),

where Lin(Td) denotes the subspace of H2
0 (Td) consisting of linear functions,

Lin(Td) =
{
L(z) =

d∑

j=1

ajzj : aj ∈ C
}
.

Proof. It is sufficient to show that

H2
0 (Td)	 Lin(Td) ⊆ H2

0 (Td)�H2
0 (Td),

since it follows that any functional in
(
H2

0 (Td)�H2
0 (Td)

)∗ must be represented
by a unique element of H2

0 (Td)	 Lin(Td). Every F ∈ H2
0 (Td)	 Lin(Td) can be

written

F (z) =
d∑

j=1

zjFj(z),

where Fj ∈ H2
0 (Td). This representation of F is not unique, but we can always

organize it so that
∑
j ‖Fj‖2H2(Td) = ‖F‖2H2(Td). By the computation

‖F‖H2
0�H2

0
≤

d∑

j=1

1 · ‖Fj‖H2(Td) ≤
√
d
( d∑

j=1

‖Fj‖2H2(Td)

) 1
2

=
√
d‖F‖H2(Td),

we see that F ∈ H2
0 �H2

0 . �

It is clear that the final part of this argument breaks down for d = ∞; the key
point being that the subspace Lin(T∞) of linear functions in H2

0 (T∞) ' H 2
0 is

infinite-dimensional, which from the Dirichlet series point of view corresponds to
the fact that there are infinitely many prime numbers. Even so, Corollary 2 is
surprising. We stress that its conclusion is related to the additional arithmetical
obstructions which appear when computing the norm of an element in H 2

0 �
H 2

0 rather than in H 2 � H 2. The following result is intended to clarify this
statement. In particular, it demonstrates that the subspace of linear functions
actually is complemented in H 2 � H 2.

Theorem 5. For a non-negative integer m, let Pm denote the projection on
m-homogeneous Dirichlet series,

Pm

∞∑

n=1

ann
−s =

∑

Ω(n)=m

ann
−s.

Then Pm is a contraction on H 2 � H 2.
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Proof. The case m = 0 is trivial. Let m ≥ 1 and suppose that

(14) F =
∑

k

fkgk

is a finite sum. Then

PmF (s) =
∑

k

m∑

j=0

Pjfk(s)Pm−jgk(s).

By applying the definition of the norm of H 2 � H 2 and the Cauchy–Schwarz
inequality, we find that

‖PmF‖H 2�H 2 ≤
∑

k

m∑

j=0

‖Pjfk‖H 2‖Pm−jgk‖H 2

≤
∑

k

( m∑

j=0

‖Pjfk‖2H 2

) 1
2
( m∑

j=0

‖Pm−jgk‖2H 2

) 1
2

≤
∑

k

‖fk‖H 2‖gk‖H 2 ,

the final inequality following from the fact that
∞∑

j=0

‖Pjf‖2H 2 = ‖f‖2H 2 , f ∈ H 2.

The proof is completed by taking the infimum over the representations (14). �

We return to the matrix of Hϕ acting on H 2 × H 2 from (10). The matrix
M0
ρ corresponding to the action of Hϕ on H 2

0 × H 2
0 is obtained from Mρ by

deleting the first row and column. That is, M0
ρ = (ρmn)m,n≥2 in view of (10).

Now, suppose that Hϕ is a compact form, i.e. that its matrix M defines a
compact operator on `2. Let

Λ = {λ1, λ2, . . .}
denote the singular value sequence of M . We say that Hϕ is in the Schatten
class Sp, 0 < p ≤ ∞, if Λ ∈ `p, and we let ‖Hϕ‖Sp

= ‖Λ‖`p . When speaking
of a Hankel form Hϕ we will write Sp(H 2) or Sp(H 2

0 ) to clarify which space
is being considered; using Theorem 1 as in Corollary 3, it is easy to construct
Hankel forms belonging to the latter Schatten class, but not to the former.

Helson [21] showed that if Hϕ ∈ Sp(H 2) and p = 2, then Hϕ has a bounded
symbol. In [10], the authors showed that this is no longer the case when

p > p0 ≈ 5.738817179.

We will now investigate symbols for forms Hϕ ∈ Sp(H 2
0 ). We start by verifying

that Helson’s result still holds for S2(H 2
0 ).

180



As in Lemma 4, any bounded Hankel form on H 2
0 × H 2

0 has a symbol ϕ in
(H 2

0 � H 2
0 )∗ of the form

ϕ(s) =
∑

Ω(n)≥2

%nn
−s.

From this fact, a computation shows that

‖Hϕ‖2S2(H 2
0 ) =

∞∑

m=2

∞∑

n=2

|Hϕ(m
−sn−s)|2

=
∑

Ω(n)≥2

(d(n)− 2) |%n|2 �
∑

Ω(n)≥2

d(n)|%n|2.

Here d(n) denotes the number of divisors of n, and the final estimate follows from
the fact that d(n)−2 ≥ d(n)/3 for n such that Ω(n) ≥ 2, seeing as d(n) ≥ Ω(n)+1.
Hence we can use Helson’s inequality

( ∞∑

n=1

|an|2
d(n)

) 1
2

≤
∥∥∥∥∥

∞∑

n=1

ann
−s
∥∥∥∥∥

H 1

to conclude that ϕ ∈ (H 1)∗ whenever Hϕ ∈ S2(H 2
0 ). That is, Hϕ has a bounded

symbol whenever Hϕ ∈ S2(H 2
0 ). We now show that Helson’s result is optimal

for Sp(H 2
0 ).

Theorem 6. For p > 2 there exist Hankel forms Hϕ ∈ Sp(H 2
0 ) such that no ψ in

L2(T∞) satisfies Hϕ = Hψ. In particular, there exist Hankel forms Hϕ ∈ Sp(H 2
0 )

for which there are no bounded symbols.

Proof. Let C = (cj,k)j,k≥1 be a matrix defining an operator on `2 which belongs
to Sp but not to S2. In accordance with Theorem 1 let

ϕ(s) =

∞∑

j=1

∞∑

k=1

cj,k(p2j−1p2k)
−s.

Since, as in the proof of Theorem 1, Hϕ

∣∣
H 2

0
' J

(
CT ⊕ C

)
⊕ 0, we have that

‖Hϕ‖pSp(H 2
0 )

= 2‖C‖pSp
<∞.

On the other hand, we have by assumption that

‖ϕ‖H 2 = ‖C‖S2
= ∞. �

While Theorem 6 does not concern Hankel forms on H 2×H 2, we do consider
it to give us an indication that p = 2 might be the critical value also in this case.

Conjecture 1. For every p > 2 there exists a multiplicative Hankel form Hϕ in
Sp(H 2) without a bounded symbol.
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3. A square function characterization of H p and skew products

In the context of the classical Hardy spaces, it was Bourgain [9] who recalled
the square function characterization of Hp due to Fefferman and Stein [15] and
used it to the effect of showing that H2 � ∂H2 ⊆ ∂H1, where ∂Hp denotes the
space consisting of the derivatives of all Hp-functions. In view of the fact that
∂H1 = ∂(H2 �H2) ⊆ H2 � ∂H2 this immediately implies that

(15) ∂−1(H2 � ∂H2) = H2 �H2.

In terms of bilinear forms, we can naturally associate a Hankel-type form Jg to
every element g ∈

(
∂−1(H2 � ∂H2)

)∗. If an additive Hankel form Hg on H2×H2

corresponds to the matrix (ĝ(j + k))j,k≥0, then Jg has matrix
(

j + 1

j + k + 1
ĝ(j + k)

)

j,k≥0

.

Hence Bourgain’s lemma (15) can be equivalently rephrased to say that the map
Hg 7→ Jg is bounded in operator norm. This statement actually carries greater
interest than what its face value might suggest. The matrix

(
j + 1

j + k + 1

)

j,k≥0

is not a bounded Schur multiplier on all matrices, and hence the map Hg 7→ Jg
is not completely bounded [13]. This observation is at the heart of Pisier’s [26]
construction of a polynomially bounded operator not similar to a contraction.

We define the skew product space ∂−1(H 2 � ∂H 2) as the Banach space
completion of the space of Dirichlet series F whose derivatives have a finite sum
representation F ′ =

∑
k fkg

′
k, where fk, gk ∈ H 2. The completion is taken under

the norm

‖F‖∂−1(H 2�∂H 2) = |F (+∞)|+ inf
∑

k

‖fk‖H 2‖gk‖H 2 ,

where the infimum is computed over all finite representations. From the product
rule (fg)′ = f ′g + fg′ it is clear that

(16) H 2 � H 2 ⊆ ∂−1(H 2 � ∂H 2).

Our first goal is to establish a square function characterization of H p, for
0 < p < ∞, and use it to show that ∂−1(H 2 � ∂H 2) ⊆ H 1. We begin by
recalling that the spaces H p are related to the Möbius invariant Hardy spaces
in the right half-plane, C0, defined as

Hp
i (C0) =

{
f ∈ Hol(C0) : ‖f‖Hp

i (C0) = sup
σ>0

( 1
π

∫

R
|f(σ + it)|p dt

1 + t2

) 1
p

<∞
}
.
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Given a character χ ∈ T∞, we “twist” the Dirichlet series f(s) =
∑
n≥1 ann

−s to
obtain

fχ(s) =
∞∑

n=1

anχ(n)n
−s, χ(n) = χκ(n).

We will require the following basic result, which can be extracted from Lemma 5
and Theorem 5 in [4].

Lemma 7. Let 0 < p <∞, and suppose that f ∈ H p. For almost every χ ∈ T∞,
fχ ∈ Hp

i (C0). Moreover,

‖f‖H p =

(∫

T∞
‖fχ‖pHp

i (C0)
dm∞(χ)

) 1
p

.

Remark. The results in [4] are stated only for p ≥ 1, but the same arguments
lead to our statement of Lemma 7.

For τ ∈ R, let Γτ be the cone

Γτ = {σ + it : |t− τ | < σ}
in the right half-plane C0, with vertex at iτ . For a holomorphic function f in C0,
let Sf be the square function, or the Lusin area integral,

Sf(τ) =

(∫

Γτ

|f ′(σ + it)|2 dσ dt
)1/2

, τ ∈ R,

and let f∗ denote the non-tangential maximal function

f∗(τ) = sup
s∈Γτ

|f(s)|, τ ∈ R.

Since 1/(1+ τ2) is a Muckenhoupt Aq-weight for all q > 1, it follows from Gundy
and Wheeden [18] that f ∈ Hp

i (C0) if and only if

f∗ ∈ Lpi (R) = Lp
(
(1 + τ2)−1 dτ

)
,

for 0 < p < ∞, with comparable norms. Furthermore, if limσ→∞ f(σ + it) = 0,
then

(17) ‖f∗‖Lp
i (R) � ‖Sf‖Lp

i (R).

This gives us a norm expression for functions in H p in terms of the square
function.

Theorem 8. Let f(s) =
∑
n≥1 ann

−s. Then for any 0 < p <∞, we have

‖f‖pH p � |a1|p +
∫

T∞
‖S(fχ)‖pLp

i (R)
dm∞(χ)

= |a1|p +
∫

T∞

∫

R

(∫

Γτ

|f ′χ(σ + it)|2 dσ dt
)p/2

dτ

1 + τ2
dm∞(χ).

(18)
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Proof. In view of (17) and Lemma 7 we obtain (18) for f with constant term
a1 = 0, that is, for f ∈ H p

0 . Note that the linear functional f 7→ a1 is bounded
on H p, corresponding to the functional Bf 7→ Bf(0) on Hp(T∞) [12]. Hence,
the closed subspace H p

0 is complemented in H p by C, and (18) follows in general
for f ∈ H p, with one side being finite if and only if the other is. �

Corollary 9. ∂−1(H 2 � ∂H 2) ⊆ H 1.

Proof. Suppose that f, g ∈ H 2, and that F is the Dirichlet series such that
F ′ = fg′ with F (+∞) = 0. Since ‖g− g(+∞)‖H 2 ≤ ‖g‖H 2 it is for the purpose
of proving the statement justified to assume that g(+∞) = 0. We then have that

‖F‖H 1 �
∫

T∞

∫

R

(∫

Γτ

|fχ(σ + it)|2|g′χ(σ + it)|2 dσ dt
)1/2

dτ

1 + τ2
dm∞(χ)

≤
∫

T∞

∫

R
(fχ)

∗(τ)

(∫

Γτ

|g′χ(σ + it)|2 dσ dt
)1/2

dτ

1 + τ2
dm∞(χ)

≤
∫

T∞
‖(fχ)∗‖L2

i (R)

(∫

R

∫

Γτ

|g′χ(σ + it)|2 dσ dt dτ

1 + τ2

)1/2

dm∞(χ)

�
∫

T∞
‖fχ‖H2

i (C0)‖gχ‖H2
i (C0) dm∞(χ) ≤ ‖f‖H 2‖g‖H 2 .

This proves that ∂−1(H 2 � ∂H 2) ⊆ H 1. �

Before proceeding, we give a few remarks on the application of Theorem 8 to
the Hardy space Hp(Td) of a finite-dimensional polydisc, d < ∞. Let D denote
the differentiation operator on Dirichlet series,

Df(s) = ∂f(s) = f ′(s) = −
∞∑

n=2

an log(n)n
−s.

Consider a series f such that Bf ∈ H2(Td), i.e. such that an = 0 if pj |n for
some j > d. Identifying pj with the jth complex variable zj , the differentiation
operator D in the usual polydisc notation has the form

(19) DBf(z1, . . . , zd) = −
d∑

j=1

log(pj)zj∂zjBf(z1, . . . , zd).

Hence Theorem 8 gives us a new type of square function characterization of
Hp(Td), in terms of the differentiation operator D. In analogy with Corollary 9
it can be used to prove that

D−1
(
H2(Td)�DH2(Td)

)
⊆ H1(Td)
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and by the characterization of H1(Td) due to Ferguson–Lacey [17] and Lacey–
Terwilleger [23] we conclude that in the finite polydisc we have

(20) D−1
(
H2(Td)�DH2(Td)

)
= H2(Td)�H2(Td) = H1(Td).

It should be objected, however, that the weighted differentiation operator D
might not be natural in the setting of the polydisc. In Section 4 we shall consider
the constructs of the present section for the infinite polydisc, using the radial
differentiation operator instead of D, and in the process prove that (20) is valid
also for radial differentiation and integration.

We return to the discussion of products of Dirichlet series spaces, and note
that Corollary 9 in combination with (16) yields that

(21) H 2 � H 2 ⊆ ∂−1
(
∂H 2 � H 2

)
⊆ H 1.

The remainder of this section is devoted to the investigation of whether these
inclusions are strict. We begin with the following observation.

Lemma 10. Let ϕ(s) =
∑
k≥1 ρkk

−s be a function in H 2. Then ϕ induces a
bounded linear functional υϕ on ∂−1(H 2 � ∂H 2), via the H 2-pairing, if and
only if the form

(22) Jϕ(a, b) =
∞∑

m=1

∞∑

n=1

ambn
log n

logm+ log n
ρmn

is bounded on `2 × `2, where the summand is understood to be 0 if m = n = 1.
The corresponding norms are equivalent,

‖υϕ‖ � |ρ1|+ ‖Jϕ‖.
In particular, if ρk ≥ 0 for all k, then ϕ ∈

(
∂−1(H 2 � ∂H 2)

)∗ if and only if
ϕ ∈

(
H 2 � H 2

)∗, with equivalent norms.

Proof. Suppose that f and g are Dirichlet series with coefficient sequences a and
b, respectively. Let ∂−1(f ′g) denote the primitive of f ′g with constant term 0.
Then

〈∂−1(f ′g), ϕ〉 =
∞∑

m=1

∞∑

n=1

ambn
log n

logm+ log n
ρmn,

proving the first part of the proposition. For the second part, note as per usual
that the action of ϕ as an element in

(
H 2 � H 2

)∗ corresponds to the multi-
plicative Hankel form

(23) Hϕ(a, b) =

∞∑

m=1

∞∑

n=1

ambnρmn.

Hence, if ρk ≥ 0 for all k, then

‖ϕ‖(∂−1(H 2�∂H 2))∗ � ‖ϕ‖(H 2�H 2)∗ .
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The converse inequality is a direct consequence of (16). �

Ortega-Cerdá and Seip [25] showed that H 2 � H 2 ( H 1. With Lemma 10,
we are able to apply their technique to prove the corresponding statement for
∂−1(H 2 � ∂H 2).

Theorem 11. ∂−1(H 2 � ∂H 2) ( H 1

Proof. Let d be a positive integer and consider the function

ϕd(s) =
d∏

j=1

(
p−s2j−1 + p−s2j

)
,

where {pj}j≥1 again denotes the prime sequence. The norm of ϕd as an element
of the dual of H 2�H 2 is 2d/2 [25]. Since the coefficients of ϕd are non-negative,
Lemma 10 hence shows that

‖ϕd‖(∂−1(H 2�∂H 2))∗ � 2d/2.

On the other hand, consider fd = ϕd as an element of H 1, ‖fd‖H 1 = (4/π)d

[25]. Since 〈fd, ϕd〉2 = 2d, the functional induced by ϕd on H 1 has norm at least
(π/2)d. If it were the case that ∂−1(H 2 � ∂H 2) = H 1, then the norm of ϕd
as a functional on H 1 and the norm as a functional on ∂−1

(
H 2 � ∂H 2

)
would

be equivalent, a contradiction as d→ ∞. �

The remaining question of whether

(24)
(
∂−1(H 2 � ∂H 2)

)∗
=
(
H 2 � H 2

)∗

or, equivalently, whether the first inclusion in (21) is strict, appears to be subtle.
As we just saw in Lemma 10 it can be rephrased as to ask if the forms (22) and
(23) are simultaneously bounded, which would mean precisely that

(
log n

logm+ log n

)

m,n≥1

is a Schur multiplier on the class of multiplicative Hankel forms. Specializing
to the one-variable case by only considering integers of the form 2k, we see that
the analogue of (24) for the classical Hardy space H2(T) is equivalent to the
statement that (j + 1)/(j + k + 1) is a Schur multiplier on (additive) Hankel
forms, as discussed in the introduction of this section.

However, by applying Theorem 1 in full force together with Schur multiplier
techniques, we are able to show that the inclusion is strict when H 2 is replaced
by H 2

0 . We define ∂−1
(
H 2

0 � ∂H 2
0

)
in exact analogy with our previous con-

siderations, except that we impose all of its elements f to have constant term
f(+∞) = 0.

Theorem 12. H 2
0 � H 2

0 ( ∂−1
(
H 2

0 � ∂H 2
0

)
.
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Proof. Assume to the contrary that
(

log n

logm+ log n

)

m,n≥2

is a Schur multiplier on bounded multiplicative Hankel forms

ρ(a, b) =
∞∑

m=2

∞∑

n=2

ambnρmn, a, b ∈ `2.

Applied to every symbol constructed by the procedure of Theorem 1, we conclude
that

(25)
(

log p2j−1

log p2k + log p2j−1

)

j,k≥1

is a Schur multiplier on all matrices C defining bounded operators C : `2 → `2.
However, (25) cannot be a Schur multiplier, as this would defy Bennett’s criterion
[5], since

lim
j→∞

lim
k→∞

log p2j−1

log p2k + log p2j−1
= 0,

while

lim
k→∞

lim
j→∞

log p2j−1

log p2k + log p2j−1
= 1. �

It must be stressed that Theorem 12 does not imply that the inclusion in (16) is
strict. If we attempt to apply the proof to H 2�H 2, the matrices constructed by
Theorem 1 are Hilbert–Schmidt. To be a Schur multiplier on Hilbert–Schmidt
matrices means only to have bounded entries, so no contradiction is obtained.
However, we do feel that Theorem 12 invokes the natural conjecture.

Conjecture 2. The inclusion between the standard weak product and its skew
counterpart is strict, H 2 � H 2 ( ∂−1

(
H 2 � ∂H 2

)
.

4. Radial differentiation

From the polydisc point of view, the constructs of the last section all arose
from the weighted differentiation operator D of (19), obtained from the Dirichlet
series formalism. In the present section we shall consider instead the more natural
radial differentiation operator of equation (9). Before commencing, note that as
in Theorem 5 every Dirichlet series may be decomposed into m-homogeneous
subseries,

f(s) =

∞∑

n=0

ann
−s =

∞∑

m=0

( ∑

Ω(n)=m

ann
−s
)
=

∞∑

m=0

Pmf(s).
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Through the Bohr lift, this is equivalent to the corresponding decomposition of
a power series in a countably infinite number of variables,

F (z) =
∞∑

n=0

anz
κ(n) =

∞∑

m=0

( ∑

|κ(n)|=m
anz

κ(n)
)
=

∞∑

m=0

PmF (z), z = (z1, z2, . . .).

We recall that κ(n) = (κ1, κ2, . . .) is the finitely supported multi-index associated
to every positive integer n through its prime decomposition, so that

|κ(n)| = Ω(n) =
∑

j

κj .

Consider now, for any z ∈ T∞, the following power series in one variable w.

Fz(w) = F (zw) =

∞∑

n=1

anz
κ(n)wΩ(n) =

∞∑

m=0

PmF (z)w
m.

Observe in particular that the mth coefficient of Fz(w) is the m-homogeneous
subseries of F . From here it is clear that differentiation in the auxiliary variable
w allows us to capture the natural radial differentiation of the polydisc, since
every monomial of order m is treated equally. This is further justified by the
formal computation

w
d

dw
Fz(w) = w

∞∑

j=1

zj∂zjF (wz) = (RF )z(w).

We have the following analogue of Lemma 7. We also point out that through
the Bohr lift a similar statement can be made for Dirichlet series.

Lemma 13. Let F ∈ Hp(T∞), 0 < p < ∞. Then Fz ∈ Hp(T) for almost every
z ∈ T∞ and

(26) ‖F‖Hp(T∞) =

(∫

T∞
‖Fz‖pHp(T) dm∞(z)

)1/p

.

Proof. This follows from Fubini’s theorem and the fact that z 7→ F (z) and z 7→
F (wz), for w ∈ T, have equal Hp(T∞)-norm. �

For θ ∈ [0, 2π), let Γα(θ) denote the Stolz angle in D with vertex at eiθ and of
some fixed aperture α < π/2. The (slightly non-standard) square function Sg of
a function g holomorphic in D is given by

Sg(θ) =

(∫

Γα(θ)

|wg′(w)|2 dA(w)
)1/2

,

where dA denotes the normalized area element. If g(0) = 0 we have that
‖g‖Hp(T) � ‖Sg‖Lp(T). Since Fz(0) = F (0) for every z ∈ T∞, this immediately
gives us the analogue of Theorem 8.
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Theorem 14. Let F ∈ Hp(T∞), 0 < p <∞. Then

‖F‖pHp(T∞) � |F (0)|p +
∫

T∞

∫ 2π

0

(∫

Γα(θ)

|(RF )z(w)|2 dA(w)
)p/2

dθ

2π
dm∞(z).

Now most of the arguments of the previous section can be repeated. We collect
the results that follow without providing details. Note in particular the satisfying
conclusion obtained for the finite-dimensional polydisc. Indeed, this result partly
motivates the existence of this section.

Corollary 15. We have that

H2(T∞)�H2(T∞) ⊆ R−1
(
H2(T∞)�RH2(T∞)

)
( H1(T∞).

On the other hand, when d <∞ it holds that

H2(Td)�H2(Td) = R−1
(
H2(Td)�RH2(Td)

)
= H1(Td).

We remark that it is not clear how to obtain Corollary 15 directly from the
considerations in Section 3, due to the weights log pj entering into Dirichlet series
differentiation. In fact, suppose that n =

∏
j p

κj

j . Then

log n =
∑

j

κj log pj and Ω(n) =
∑

j

κj ,

illustrating the fact that the R treats every prime equally, while the half-plane
differentiation operator D does not. In particular, the proof of Theorem 12 does
not yield any information when D is replaced by R, since the Schur multiplier
vital to the proof has entries

Ω(n)

Ω(m) + Ω(n)
=

Ω(p2j−1)

Ω(p2k) + Ω(p2j−1)
=

1

2
.

It should also be pointed out that decomposing Dirichlet series (or power series
on the infinite polydisc) into homogeneous subseries is not a new idea. It dates
back at least to Bohnenblust–Hille [6], and has recently been applied to obtain
results for composition operators on spaces of Dirichlet series [3] as well as L1-
estimates for Dirichlet polynomials [8].

We conclude this paper by providing a charming inequality, which follows at
once from Lemma 13 and the classical Hardy inequality

(27)
∞∑

m=0

|bm|
m+ 1

≤ π

∥∥∥∥∥
∞∑

m=0

bmw
m

∥∥∥∥∥
H1(T)

.
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Corollary 16. Let f(s) =
∑
n≥1 ann

−s ∈ H 1 and consider the m-homogeneous
subseries Pmf(s) =

∑
Ω(n)=m ann

−s. Then
∞∑

m=0

‖Pmf‖H 1

m+ 1
≤ π‖f‖H 1 .

Corollary 16 can be compared to the estimate ‖Pmf‖H 1 ≤ ‖f‖H 1 appearing
in [8, Lem. 3]. Returning to the beginnings of this paper, we mention that Hardy’s
inequality (27) in turn can be obtained by viewing the bounded symbol for the
sharpest version of Hilbert’s inequality (6) as an element in the dual of H1(T)
(see [14, pp. 47–49]).
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CONTRACTIVE INEQUALITIES FOR BERGMAN SPACES
AND MULTIPLICATIVE HANKEL FORMS

FRÉDÉRIC BAYART, OLE FREDRIK BREVIG, ANTTI HAIMI,
JOAQUIM ORTEGA-CERDÀ, AND KARL-MIKAEL PERFEKT

Abstract. We consider sharp inequalities for Bergman spaces of the unit
disc, establishing analogues of the inequality in Carleman’s proof of the
isoperimetric inequality and of Weissler’s inequality for dilations. By con-
tractivity and a standard tensorization procedure, the unit disc inequalities
yield corresponding inequalities for the Bergman spaces of Dirichlet series.
We use these results to study weighted multiplicative Hankel forms associ-
ated with the Bergman spaces of Dirichlet series, reproducing most of the
known results on multiplicative Hankel forms associated with the Hardy
spaces of Dirichlet series. In addition, we find a direct relationship between
the two type of forms which does not exist in lower dimensions. Finally,
we produce some counter-examples concerning Carleson measures on the
infinite polydisc.

1. Introduction

Hardy spaces of the countably infinite polydisc, Hp(D∞), have in recent years
received considerable interest and study, emerging from the foundational papers
[16, 23]. Partly, the attraction is motivated by the subject’s link with Dirichlet
series, realized by identifying each complex variable with a prime Dirichlet mono-
mial, zj = p−s

j (see [5]). Hardy spaces of Dirichlet series, H p, are defined by
requiring this identification to induce an isometric, multiplicative isomorphism.
The connection to Dirichlet series gives rise to a rich interplay between operator
theory and analytic number theory — we refer the interested reader to the survey
[37] or the monograph [38] as a starting point.

One aspect of the theory is the study of multiplicative Hankel forms on `2×`2.
A sequence % = (%1, %2, . . .) generates a multiplicative Hankel form by the formula

(1) %(a, b) =
∞∑

m=1

∞∑

n=1

ambn%mn,

The second named author is supported by Grant 227768 of the Research Council of Norway.
The third named author is supported by Lise Meitner grant of Austrian Science Fund (FWF).
The fourth named author is supported by the MTM2014-51834-P grant by the Ministerio de
Economía y Competitividad, and by the Generalitat de Catalunya (project 2014 SGR 289).
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defined at least for finitely supported sequences a and b. Helson [24] observed that
multiplicative Hankel forms are naturally realized as (small) Hankel operators on
H2(D∞), and went on to ask whether every symbol ρ which generates a bounded
multiplicative Hankel form on `2× `2 also induces a bounded linear functional on
the Hardy space H1(D∞). In other words, he asked whether there is an analogue
of Nehari’s theorem [32] in this context.

Helson’s question inspired several papers [9, 11, 25, 26, 35, 36]. Following the
program outlined in [26], it was established in [35] that there are bounded Hankel
forms that do not extend to bounded functionals on H1(D∞). In the positive
direction, it was proved in [25] that if the Hankel form (1) instead satisfies the
stronger property of being Hilbert–Schmidt, then its symbol does extend to a
bounded functional on H1(D∞). Briefly summarizing the most recent develop-
ment, the result of [35] was generalized in [9], in [11] an analogue of the classical
Hilbert matrix was introduced and studied, and in [36] the boundedness of the
Hankel form (1) was characterized in terms of Carleson measures in the special
case that the form is positive semi-definite.

Very recently, a study of Bergman spaces of Dirichlet series A p begun in [3].
In analogy with the Hardy spaces of Dirichlet series, A p is constructed from
the corresponding Bergman space, Ap(D∞). New difficulties appear in trying
to put this theory on equal footing with its Hardy space counterpart. One of
them is the lack of contractive inequalities for Bergman spaces in the unit disc.
In the Hardy space of the unit disc there is a comparative abundance of such
inequalities, each immediately implying a corresponding inequality for H p. For
example, the result of [25] on Hilbert–Schmidt Hankel forms relies essentially on
the classical Carleman inequality,

‖f‖A2(D) ≤ ‖f‖H1(D).

A second example is furnished by Weissler’s inequality: defining for 0 < r ≤ 1
the map Pr : H

p(D) → Hq(D), by Prf(w) = f(rw), then Pr is contractive if and
only if r ≤

√
p/q ≤ 1. Since both of these inequalities are contractive, they carry

on to the infinite polydisc by tensorization (see Section 3), thus yielding results
for H p.

We derive analogues of the mentioned inequalities for Bergman spaces of the
unit disc in Section 2. Our proofs involve certain variants of the Sobolev in-
equalities from [4] and [6]. Then, in Section 3, we follow the by now standard
tensorization scheme to deduce the corresponding contractive inequalities for the
Bergman spaces of Dirichlet series.

Section 4 is devoted to the weighted multiplicative Hankel forms related to the
Bergman space, defined by the formula

(2) %d(a, b) =
∞∑

m=1

∞∑

n=1

ambn
%mn

d(mn)
, a, b ∈ `2d.
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In (2), d(k) denotes the number of divisors of the integer k, and `2d denotes the
corresponding weighted Hilbert space. Note that the divisor function d(k) counts
the number of times %k appears in (2). In the same way that the forms (1) are
realized as Hankel operators on the Hardy space H2(D∞), the weighted forms
(2) are naturally realized as (small) Hankel operators on the Bergman space of
the infinite polydisc, A2(D∞). Equipped with the inequalities from Sections 2
and 3 we successfully obtain the Bergman space counterparts of results from
[11, 25, 26, 35].

In Section 4 we will also point out a surprising property of multiplicative
Hankel forms. We first observe that A2(D∞) may be naturally isometrically
embedded in the Hardy space H2(D∞), since the same is true for A2(D) with
respect to H2(D2). Then, we notice that this embedding lifts to the level of
Hankel forms, giving us natural map taking weighted Hankel forms (2) to Hankel
forms (1). The striking aspect is that this map preserves the singular numbers
of the Hankel form, in particular preserving both the uniform and the Hilbert–
Schmidt norm.

Finally, in Section 5 we come back to harmonic analysis on the Hardy spaces
Hp(D∞). We produce two counter-examples for Carleson measures, again point-
ing out phenomena that do not exist in finite dimension.

Notation. We will use the notation f(x) ≤ g(x) if there is some constant C > 0
such that |f(x)| ≤ C|g(x)| for all (appropriate) x. If f(x) ≤ g(x) and g(x) ≤ f(x),
we write f(x) � g(x). As above, (pj)j≥1 will denote the increasing sequence of
prime numbers.

2. Inequalities of Carleman and Weissler for Bergman spaces

2.1. Preliminaries. Let α > 1 and 0 < p < ∞, and define the Bergman space
Ap

α(D) as the space of analytic functions f in the unit disc

D = {z : |z| < 1}

that are finite with respect to the norm

‖f‖Ap
α(D) =

(∫

D
|f(w)|p (α− 1)(1− |w|2)α−2 dm(w)

) 1
p

.

Here m denotes the Lebesgue area measure, normalized so that m(D) = 1. It
will be convenient to let dmα(w) = (α− 1)(1− |w|)α−2 dm(w) for α > 1, and to
let m1 denote the normalized Lebesgue measure on the torus

T = {z : |z| = 1}.
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The Hardy space Hp(D) is defined as closure of analytic polynomials with respect
to the norm

‖f‖Hp(D) =

(∫

T
|f(w)|p dm1(w)

) 1
p

.

The Hardy space Hp(D) is the limit of Ap
α(D) as α→ 1+, in the sense that

lim
α→1+

‖f‖Ap
α(D) = ‖f‖Hp(D)

for every analytic polynomial f . We therefore let Ap
1(D) = Hp(D). Our main

interest is in the distinguished case α = 2, when mα = m is simply the nor-
malized Lebesgue measure. Therefore we also let Ap(D) = Ap

2(D). We will only
require some basic properties of Ap

α(D) in what follows, and refer generally to the
monographs [18, 22].

Let cα(j) denote the coefficients of the binomial series

(3)
1

(1− w)α
=

∞∑

j=0

cα(j)w
j , cα(j) =

(
j + α− 1

j

)
.

It is evident from (3) that

(4)
∑

j+k=l

cα(j)cβ(k) = cα+β(l).

If α is an integer, then cα(j) denotes the number of ways to write j as a sum of
α non-negative integers. Furthermore, if f(w) =

∑
j≥0 ajw

j , then

(5) ‖f‖A2
α(D) =




∞∑

j=0

|aj |2
cα(j)




1
2

.

Functions f in Ap
α(D) satisfy for w ∈ D the sharp pointwise estimate

(6) |f(w)| ≤ 1

(1− |w|2)α/p ‖f‖A
p
α(D).

For the sake of completeness, we will state and prove the results in this section
for as general α > 1 as we are able, even though we will only make use of the
results for α = 2 in the following sections.

2.2. Contractive inclusions of Bergman spaces. It is well-known that, if
0 < p ≤ q and α, β ≥ 1, then Ap

α(D) embeds continuously into Aq
β(D) if and

only if q/β ≤ p/α (see e.g. [45, Exercise 2.27]). By tensorization, this statement
extends to the Bergman spaces on the polydiscs of finite dimension. However, in
order for such embeddings to exist on the infinite polydisc, it is necessary that
the inclusion map in one variable is contractive.
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The first result of the type we are looking for was given by Carleman [13]. For
f ∈ H1(D) it holds that

(7) ‖f‖A2(D) = ‖f‖A2
2(D) ≤ ‖f‖A1

1(D) = ‖f‖H1(D).

A modern and natural way to prove (7) can be found in [43]. First, it is easy
to verify that

‖gh‖A2(D) ≤ ‖g‖H2(D)‖h‖H2(D),

for example by computing by coefficients. If f is a non-vanishing function of
H1(D), writing f = gh with g = h = f1/2 now leads to (7). For a general
function f ∈ H1(D), we first factor out the zeroes through a Blaschke product.
This is possible by what seems to be a coincidence: multiplication by a Blaschke
product decreases the norm on the left hand side of (7) but preserves the norm
on the right hand side.

The ability to factor out zeroes and take roots implies that Carleman’s in-
equality (7) holds for arbitrary 0 < p <∞,

‖f‖A2p(D) ≤ ‖f‖Hp(D).

In [12], Burbea generalized Carleman’s inequality, showing that for every 0 <
p <∞ and every non-negative integer n, it holds that

(8) ‖f‖
A

p(1+n)
1+n (D) ≤ ‖f‖Hp(D).

Let

α0 =
1 +

√
17

4
= 1.280776 . . .

We offer the following extension of Carleman’s inequality.

Theorem 1. Let α ≥ α0 and 0 < p <∞. For every f ∈ Ap
α(D),

‖f‖
A

p(α+1)/α
α+1 (D) ≤ ‖f‖Ap

α(D).

Moreover, if α > α0, we have equality if and only if there exists constants C ∈ C
and ξ ∈ D such that

f(w) =
C

(1− ξ̄w)2α/p
.

Let us give two corollaries. The first is mainly decorative, but it illustrates
that (8) gets weaker as n increases.

Corollary 2. Let f ∈ H1(D) = A1
1(D). Then

‖f‖A1
1(D) ≥ ‖f‖A2

2(D) ≥ ‖f‖A3
3(D) ≥ ‖f‖A4

4(D) ≥ · · ·
We also have the following corollary, which will be important in the next

section.
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Corollary 3. Let p = 2/(1+n/2) for a non-negative integer n and suppose that
f(w) =

∑
j≥0 ajw

j is in Ap(D). Then

‖f‖A2
n+2(D) =




∞∑

j=0

|aj |2
cn+2(j)




1
2

≤ ‖f‖Ap(D).

Proof. This follows from n successive applications of Theorem 1, starting from
p = 2/(1 + n/2) and α = 2. �

We now begin the proof of Theorem 1. A version of it was announced in [4]1,
following a scheme designed in [7]. Observe also that an analogous result in the
Fock space was proved by Carlen [14] using a logarithmic Sobolev inequality. We
follow the general strategy of [4, 7], replacing [4, Sec. 5] with a result from [31].
We include many additional details in an attempt to make the scheme used in
[4, 7, 14] available to a wider audience.

We shall use two structures on the disk, the Euclidean and the hyperbolic.
The usual gradient and Laplacian of u will be denoted by ∇u and ∆u, while the
hyperbolic gradient and the hyperbolic Laplacian are denoted by ∇H u and ∆H u.
They are connected by the following formulas:

∇H u(w) =

(
1− |w|2

2

)
∇u(w) and ∆H u(w) =

(
1− |w|2

2

)2

∆u(w).

We shall also use the Möbius invariant measure

dµ(w) =
dm(w)

(1− |w|2)2 .

We begin with an integral identity (essentially [4, Thm. 3.1]). An analogous
result was proven for the Fock space in [14], and a similar result also appears in
[7].

Lemma 4. Let p > 0 and β > 1/2. For an analytic function f in D, set
u(w) = |f(w)|p(1− |w|2)β. Then

∫

D
|∇H u(w)|2dµ(w) =

β

2

∫

D
|u(w)|2dµ(w).

Proof. Integrating by parts gives

(9)
∫

D
|∇H u|2dµ =

1

4

∫

D
|∇u|2dm = −1

4

∫

D
u∆udm.

1Theorem 3.2 in [4] is stated for kq > 2, but there seems to be a mistake in the proof of
uniqueness on p. 1083. The argument in its entirety seems to apply only when kq > 3.
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It follows from the assumption β > 1/2 that boundary terms do not appear here.
We compute the Laplacian now. At any point where f does not vanish, we can
write

∂u

∂̄w
=
p

2
|f |p−2ff ′(1− |w|2)β − βw|f |p(1− |w|2)β−1,

so that
∂2u

∂w∂̄w
=

p2

4
|f ′|2|f |p−2(1− |w|2)β − β

p

2
|f |p−2ff ′w̄(1− |w|2)β−1

−β|f |p(1− |w|2)β−1 − βp

2
|f |p−2f ′f̄(1− |w|2)β−1

+β(β − 1)|w|2|f |p(1− |w|2)β−2.

We see that

−u∆u = −p2|f ′|2|f |2p−2(1− |w|2)2β + 2βp|f |2p−2ff ′w̄(1− |w|2)2β−1

+4β|f |2p(1− |w|2)2β−2 + 2βp|f |2p−2f ′f̄w(1− |w|2)2β−1

− 4β2|w|2|f |2p(1− |w|2)2β−2.

Coming back to the expression of ∂u/∂̄w, we find that

−1

4
u∆u = β

u2

(1− |w|2)2 −
∣∣∣∣
∂u

∂̄w

∣∣∣∣
2

= β
u2

(1− |w|2)2 − |∇H u|2
(1− |w|2)2 .

Integrating with respect to dm and using (9) gives the result. �

Proof of Theorem 1. We set q = p(α + 1)/α, A = (α − 2)/(α − 1) and B =
1/(α− 1), so that A+B = 1. We want to find the infimum of

(α− 1)

∫

D
|f(w)|p(1− |w|2)αdµ(w)

under the constraint

α

∫

D
|f(w)|q(1− |w|2)α+1dµ(w) = 1.

Equivalently, using Lemma 4 with

(10) u(w) = |f(w)|p/2(1− |w|2)α/2,
we want to find the infimum of

(11) A

∫

D
|u(w)|2dµ(w) + 4B

α

∫

D
|∇H u(w)|2dµ(w)

under the constraint

(12) α

∫

D
|u(w)|2q/pdµ(w) = 1.
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We now solve the latter minimization problem for real-valued u belonging to the
Sobolev space W 1,2(D), i.e. functions u such that

∫

D
|∇H u(w)|2dµ(w) <∞.

By the well-known inequality for the bottom of the spectrum of the Laplace–
Beltrami operator (see e.g. [31]) we know that for any u ∈W 1,2(D),

∫

D
|u(w)|2dµ(w) ≤ 4

∫

D
|∇H u(w)|2dµ(w).

Hence

N(u) =

(
A

∫

D
|u(w)|2dµ(w) + 4B

α

∫

D
|∇H u(w)|2dµ(w)

)1/2

is a norm on W 1,2(D) equivalent to the usual norm, since A > −B/α. By the
Rellich–Kondrakov theorem [30, Ch. 11], which asserts that the inclusion map
fromW 1,2(D) into Ls(D, dµ) is compact for any finite s, the problem of finding the
infimum of (11) for u ∈W 1,2(D) satisfying (12) is well-posed. Moreover, this also
ensures that minimizers do exist. Indeed, let us take any sequence (un) realizing
the infimum. This sequence is bounded in the reflexive space W 1,2(D), so we may
assume that it converges weakly to some u ∈ W 1,2(D). Then (un) converges to
u in L2q/p(D, dµ) so that ‖u‖2q/p

L2q/p = 1/α whereas N(u) ≤ lim infnN(un).
Next we compute the Euler–Lagrange equation corresponding to the con-

strained variational problem given by (11) and (12). By standard arguments,
we find that any local minimum of the problem is a weak solution of

(13) Au− 4B

α
∆H u = λu

2q
p −1

for some λ ∈ R. By Lemma 5 below, there are minimizers that are actually
C2(D). Multiplying by u and integrating with respect to µ, we find from (9) that
λ > 0. We now rescale (13) by setting u = κv with

κ2q/p−2 =
4B

αλ
.

Then v ∈W 1,2(D) ∩ C2(D) satisfies

(14) ∆H v −
(α− 2)α

4
v + v

2q
p −1 = 0.

We now investigate (13) for our candidate solution u0(w) = (1− |w|2)α/2. Since

∆H u0(w) = −α
2
(1− |w|2)α/2

(
1− α

2
|w|2

)

we have that

Au0 −
4B

α
∆Hu0 =

α

α− 1
(1− |w|2)α

2 +1 = λ0u
2q
p −1

0 ,
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where λ0 = α/(α− 1). Hence, if we let u0 = κ0v0 with

κ
2q/p−2
0 =

4B

αλ0
,

then v0 ∈ W 1,2(D) is a solution of (14). However, by [31, Thm. 1.3] we know
that the solution of (14) is unique up to a Möbius transformation, as long as

α(2− α)

4
<

4q

p
(

2q
p + 2

)2 .

Replacing q/p by its value, we find that this inequality is satisfied if and only if
α > α0. Both the Euler–Lagrange equation and our constraint problem are in-
variant under Möbius transformations, so we have found all minimizers. Coming
back to analytic functions via (10), we have shown that we have equality if and
only if there exists ξ ∈ D and C̃ ∈ R such that

|f(w)|p/2 = C̃

∣∣∣∣∣1−
∣∣∣∣
ξ − w

1− ξ̄w

∣∣∣∣
2
∣∣∣∣∣

α/2 ∣∣1− |w|2
∣∣−α/2

= C̃

(
1− |ξ|2

)α/2
∣∣1− ξ̄w

∣∣α .

This shows that f has to be a multiple of (1− ξ̄w)−2α/p for some ξ ∈ D. Finally,
the assertion of the theorem for α = α0 is obtained by taking the limit as α →
α+
0 . �

The following is the regularity result that was used in the proof of the previous
theorem.

Lemma 5. There are minimizers of the variational constrained variational prob-
lem given by (11) and (12) that are C2 smooth in D.

Proof. Let u be a minimizer. Then it is weak solution of the Euler-Lagrange equa-
tion (13). We also know that u ∈ L2q/p(D, dµ). Since the radial rearrangement
decreases the Dirichlet norm (by the Polya–Szegö inequality [30, Thm. 16.17])
there is a minimizer u that is positive, radially symmetric and decreasing. There-
fore F (u) is bounded in the unit disk, where

F (u) :=
α

4B

(
Au− λu

2q
p −1

)

Consider any solution v to the Poisson equation:

∆v(z) =
F (u(z))

(1− |z|2)2 ,

then u − v satisfies ∆(u − v) = 0 weakly. Therefore u = v + h where h is an
harmonic function. One explicit solution to the Poisson equation is given by

v(z) =

∫

D
K(z, w)

F (u(w))

(1− |w|2)2 dm(w)
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where

K(z, w) =
1

2π

{
log

∣∣∣∣
w − z

1− wz

∣∣∣∣
2

+
(1− |w|2)(1− |z|2)

|1− wz|2 + |z|2
(
1− |w|2
|1− wz|

)2
}
.

It was shown in [1] that K(z, w) satisfies the estimate

|K(z, w)| ≤ (1− |w|2)2
|1− wz|2

(
1 + log

∣∣∣∣
1− wz

w − z

∣∣∣∣
)
, z, w ∈ D.

The difference between u and v is harmonic, thus the regularity of u follows from
the regularity of v. �

Remark. The constants A and B, with A + B = 1, were chosen in the proof so
that u(w) = (1 − |w|2)α/2 would be a solution of the Euler–Lagrange equation
for some λ ∈ R. This is only possible if β = α + 1, and thus explains why this
relationship is imposed in the statement of Theorem 1. The condition α ≥ α0

comes from [31, Thm. 1.3], but we do not know if it is necessary for the uniqueness
of (14).

Question. For any 0 < p ≤ q and α, β ≥ 1 such that q/β ≤ p/α, does the
contractive inequality

‖f‖Aq
β(D) ≤ ‖f‖Ap

α(D)

hold? By Carleman’s inequality and Theorem 1, this is true when β = α+ n for
some integer n, and either α = 1 or α ≥ α0. We remark that it is easy to show,
for example by computing with coefficients, that

‖f‖A4
2α(D) ≤ ‖f‖A2

α(D)

holds for every α ≥ 1.

2.3. Hypercontractivity of the Poisson kernel. For r ∈ [0, 1], let Pr denote
the operator defined on analytic functions in D by Prf(w) = f(rw). Clearly, if
r < 1 it follows from (6) that Pr maps any Ap

α(D) into every Aq
β(D). We are

interested in knowing when this map is contractive.

Theorem 6. Let 0 < p ≤ q < ∞ and let α = (n + 1)/2 for some n ∈ N. Then
Pr is a contraction from Ap

α(D) to Aq
α(D) if and only if r ≤

√
p/q.

Weissler [44] proved Theorem 6 when α = 1. The case α = 3/2 is also known,
see [21, Remark 5.14] or [28], but it appears that these are the only two previously
demonstrated cases. To prove Theorem 6 we will use a classical argument of
complex analysis to transfer results from Hardy spaces to Bergman spaces in
smaller dimensions. This will be accomplished through the following lemma.
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Lemma 7 ([40], Sec. 1.4.4). Let Sn denote the real unit sphere of dimension
n ≥ 1, and let σn denote its normalized surface measure. Extend the function
h : D → C to Sn by h̃(x) = h(x1 + ix2) for x = (x1, x2, . . . , xn+1) ∈ Sn. Then

∫

Sn
h̃(x) dσn(x) =

∫

D
h(w)dm(n+1)/2(w).

We can now demonstrate how Theorem 6 follows from a result of Beckner [6]
concerning the unit sphere.

Proof of Theorem 6. Let Pr denote the Poisson kernel on Sn, defined by

Pr(ξ, η) =
1− r2

|rξ − η|n+1
, ξ, η ∈ Sn.

For a function g on Sn, let

(Prg)(ξ) =

∫

Sn
Pr(ξ, η)g(η)dσn(η).

It is proved in [6] that Pr defines a contraction from Ls(Sn) to Lt(Sn), 1 ≤ s ≤
t <∞, if and only if r ≤

√
(s− 1)/(t− 1).

Let us now start with 0 < p ≤ q <∞ and r <
√
p/q. Let m be a large number

such that mp > 1 and such that

r ≤
√
mp− 1

mq − 1
.

Given an analytic polynomial f , we define g on Sn by

g(x1, x2, . . . , xn+1) = |f(x1 + ix2)|1/m.
Since f is analytic, it follows that g is subharmonic and hence for any

(x1, . . . , xn+1) ∈ Sn

we get that
g(rx1, . . . , rxn+1) ≤ Prg(x1, . . . , xn+1).

Using Beckner’s result with s = mp and t = mq we get that

(∫

Sn
g(rx1, . . . , rxn+1)

mqdσn(x)

)1/q

≤
(∫

Sn
g(x1, . . . , xn+1)

mpdσn(x)

)1/p

.

By Lemma 7, this is the same as
(∫

D
|f(rw)|qdm(n+1)/2(w)

) 1
q

≤
(∫

D
|f(w)|pdm(n+1)/2(w)

) 1
p

.
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It follows that the condition r ≤
√
p/q is sufficient (by a limiting argument in

the endpoint case r =
√
p/q). Conversely, for fixed r > 0 and small ε > 0 we

have that
(∫

D
|1 + εrw|q dmα(w)

) 1
q

= 1 +
qr2

4α
ε2 +O(ε4).

Letting ε→ 0 shows that qr2 ≤ p is also necessary, for any value of α ≥ 1. �

Remark. As in the previous subsection, we conjecture that Theorem 6 is true for
all values of α ≥ 1. Several other positive results can be deduced from Theorem
1. For instance, if α ≥ α0, then

‖Prf‖A2
α(D) ≤ ‖f‖

A
2α/(α+1)
α (D),

for every analytic polynomial f , if and only if r2 ≤ (α+ 1)/α. In fact, it follows
from Theorem 1 that

‖f‖A2
α+1(D) ≤ ‖f‖

A
2α/(α+1)
α (D).

Computing the norms as in (5), we have that

‖Prf‖A2
α(D) ≤ ‖f‖A2

α+1(D)

if and only if, for any k ≥ 1,

r2k ≤ cα+1(k)

cα(k)
=
α+ k

α
.

3. Inequalities on the polydisc and in the half-plane

For α > 1, consider the following product measure on D∞,

mα(z) = mα(z1)×mα(z2)×mα(z3)× · · · ,
and for 0 < p < ∞ the corresponding Lebesgue space Lp

α(D∞). We define
the Bergman spaces of the infinite polydisc, denoted Ap

α(D∞), as the closure in
Lp
α(D∞) of the space of analytic polynomials in an arbitrary number of variables.

The Hardy spaces Hp(D∞) are defined as the closure of analytic polynomials
with respect to the norm given by the product m1 ×m1 × · · · on T∞, so that

‖f‖pHp(D∞) =

∫

T∞
|f(z)|p dm1(z).

As before, Hp(D∞) is the limit as α→ 1+ of Ap
α(D∞), in the sense that

lim
α→1+

‖f‖Ap
α(D∞) = ‖f‖Hp(D∞)
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for every analytic polynomial f . We distinguish the case α = 2 by writing
Ap(D∞) = Ap

2(D∞). Applying the point estimate (6) repeatedly we find that if
f is a polynomial in Ap

α(D∞), then

(15) |f(z)| ≤




∞∏

j=1

1

1− |zj |2




α/p

‖f‖Ap
α(D∞),

which implies that elements of Ap
α(D∞) are analytic functions on D∞∩ `2. Every

f in Ap
α(D∞) has a power series expansion convergent in D∞ ∩ `2,

(16) f(z) =
∑

κ∈N∞
0

aκz
κ,

where N∞
0 denotes the set of all finite non-negative multi-indices.

Finally, when p = 2 we can compute the norm explicitly. Suppose that f is of
the form (16). Then

(17) ‖f‖A2
α(D∞) =


 ∑

κ∈N∞
0

|aκ|2
cα(κ)




1
2

, where cα(κ) =

∞∏

j=1

cα(κj).

Note that the final product contains only a finite number of factors not equal to
1, since κ is a finite multi-index.

The contractive inequalities of Section 2 can now be extended to D∞ using
Minkowski’s inequality in the following formulation: if X and Y are measure
spaces, g a measurable function on X × Y , and p ≥ 1, then

(∫

X

(∫

Y

|g(x, y)| dy
)p

dx

) 1
p

≤
∫

Y

(∫

X

|g(x, y)|p dx
) 1

p

dy.

It is sufficient to prove the contractive results on the finite polydiscs Dd, d <∞,
as this allows us to conclude by the density of analytic polynomials. This is done
by iteratively applying the one dimensional result to each of the variables, and
applying Minkowski’s inequality in each step. This procedure has been repeated
many times (for instance in [5, 8, 25] or in [38, Sec. 6.5.3]) and we do not include
the details here.

In particular, Corollary 3 for n = 2 yields the next result on the polydisc.
Helson [25] proved the corresponding result for the Hardy spaces Hp(D∞), which
he used to study Hilbert–Schmidt multiplicative Hankel forms. We shall carry
out the analogous study for weighted multiplicative Hankel forms associated with
the Bergman space in the next section.

Lemma 8. ‖f‖A2
4(D∞) ≤ ‖f‖A1(D∞).

Let r = (r1, r2, . . .) with rj ∈ [0, 1] and define Prf(z) = f(r1z1, r2z2, . . .).
Following [5] and using Theorem 6 (with α = 2), we get the next result.
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Lemma 9. Let 0 < p ≤ q < ∞. The map Pr is a contraction from Ap(D∞)

to Aq(D∞) if and only if rj ≤
√
p/q. Moreover, Pr is bounded from Ap(D∞) to

Aq(D∞) as soon as rj ≤
√
p/q for all but a finite set of js.

When working with multiplicative Hankel forms and Dirichlet series, it is often
convenient to recast the expansion (16) in multiplicative notation. Each integer
n ≥ 1 can be written in a unique way as a product of prime numbers,

n =
∞∏

j=1

p
κj

j .

This factorization associates n uniquely to the finite non-negative multi-index
κ(n). Setting an = aκ(n), we rewrite (16) as

(18) f(z) =
∞∑

n=1

anz
κ(n).

For α ≥ 1 we define the general divisor function dα(n) as the coefficients of the
Dirichlet series given by ζα, where ζ(s) =

∑
n≥1 n

−s is the Riemann zeta function.
Using the Euler product of the Riemann zeta function, say for Re(s) > 1, we find
that

(19) ζ(s)α =




∞∏

j=1

1

1− p−s
j




α

=
∞∏

j=1

( ∞∑

k=0

cα(k)p
−ks
j

)
=

∞∑

n=1

dα(n)n
−s.

It follows that cα(κ(n)) = dα(n). In multiplicative notation, we restate (17) as
∥∥∥∥∥

∞∑

n=1

anz
κ(n)

∥∥∥∥∥
A2

α(D∞)

=

( ∞∑

n=1

|an|2
dα(n)

) 1
2

.

When α ≥ 1 is an integer, it is clear that dα(n) denotes the number of ways to
write n as a product of α non-negative integers. In particular, d2 is the usual
divisor function d. It also follows from (19) that

(20)
∑

mn=l

dα(m)dβ(n) = dαβ(l),

in analogy with (4).
The Bohr lift of a Dirichlet series f(s) =

∑
n≥1 ann

−s is the power series
defined by

Bf(z) =
∞∑

n=1

anz
κ(n),
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realizing the identification zj = p−s
j . The Bergman space of Dirichlet series A p

is defined as the completion of Dirichlet polynomials in the norm

‖f‖A p = ‖Bf‖Ap(D∞).

Inequality (15) implies that A p is a space of analytic functions in the half-plane
C1/2, and that f in A p enjoys the sharp pointwise estimate

(21) |f(s)| ≤ ζ(2Re s)2/p‖f‖A p .

Let T denote the conformal map of D to C1/2 given by

T (z) =
1

2
+

1− z

1 + z
.

The conformally invariant Bergman space of C1/2, denoted Ap
α,i(C1/2), is the

space of analytic functions f in C1/2 with the property that f ◦ T ∈ Ap
α(D). A

computation shows that

‖f‖p
Ap

α,i(C1/2)
=

∫

C1/2

|f(s)|p (α− 1)

(
Re(s)− 1

2

)α−2
4α−1

|s+ 1/2|2α dm(s).

By Lemma 8 we have the following version of Carleman’s inequality for Dirichlet
series in the half-plane.

Theorem 10. Suppose that f(s) =
∑

n≥1 ann
−s is in A 1. Then

(22)

( ∞∑

n=1

|an|2
d4(n)

) 1
2

≤ ‖f‖A 1

Moreover, there is a constant C ≥ 1 such that ‖f‖A2
4,i(C1/2)

≤ C‖f‖A 1 .

Proof. The inequality (22) is Lemma 8 in multiplicative notation. The second
statement follows from the first and Example 2 in [33]. �

For ε > 0, define the translation operator Tε by Tεf(s) = f(s + ε). Here
is a sharp and general version of [3, Prop. 9], which we interpret as Weissler’s
inequality for Dirichlet series in the half-plane. The corresponding result for H p

can be found in [5].

Theorem 11. Let 0 < p ≤ q < ∞. The operator Tε : A p → A q is bounded for
every ε > 0, and contractive if and only if 2−ε ≤

√
p/q.

Proof. This follows from Lemma 9, using the fact that Tε corresponds to Pr with
rj = p−ε

j . �
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We end this section by demonstrating that Lemma 9 also implies a weak
generalization of Theorem 10 to more general exponents. In the Hardy space
context, it was proven in [8] that if f(s) =

∑
n≥1 ann

−s and 0 < p ≤ 2, then
( ∞∑

n=1

|an|2
|µ(n)|
d2/p(n)

) 1
2

≤ ‖f‖H p .

The Möbius factor |µ(n)| is 1 if n is square-free and 0 if not. From (8), it follows
that this factor may actually be replaced by 1 if p = 2/(1 + n) for some non-
negative integer n. We have the following extension to Bergman spaces in mind.

Theorem 12. Let 0 < p ≤ 2 and suppose that f(s) =
∑

n≥1 ann
−s is in A p.

Then ( ∞∑

n=1

|an|2
|µ(n)|
d4/p(n)

) 1
2

≤ ‖f‖A p .

If p = 2/(1 + n/2) for some non-negative integer n, then
( ∞∑

n=1

|an|2
1

d4/p(n)

) 1
2

≤ ‖f‖A p .

Proof. Let Ω(n) denote the number of prime factors of n (counting multiplicity).
Using Lemma 9 with rj =

√
p/2, we have that

∥∥∥∥∥
∞∑

n=1

ann
−s

∥∥∥∥∥
A p

≥
∥∥∥∥∥

∞∑

n=1

an

(p
2

)Ω(n)/2

n−s

∥∥∥∥∥
A 2

=

( ∞∑

n=1

|an|2
1

(2/p)Ω(n)d(n)

) 1
2

≥
( ∞∑

n=1

|an|2
|µ(n)|

(2/p)Ω(n)d(n)

) 1
2

=

( ∞∑

n=1

|an|2
|µ(n)|
d4/p(n)

) 1
2

.

In the final equality we used that dα(n) = αΩ(n) when n is square-free. When
p = 2/(1+n/2) for a non-negative integer n, tensorizing Corollary 3 (by appealing
to Minkowski’s inequality) yields that the Möbius factor is actually unnecessary;
see Lemma 8 and Theorem 10. �

Remark. Considering the square-free terms only of a Dirichlet series is in many
cases sufficient to obtain sharp results, see for example [8]. Often, the reason
for this is related to the fact that the square-free zeta function has the same
behaviour as the zeta function ζ(s) near s = 1, since

∞∑

n=1

|µ(n)|n−s =
∞∏

j=1

(1 + p−s
j ) =

∞∏

j=1

1− p−2s
j

1− p−s
j

=
ζ(s)

ζ(2s)
.
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4. Multiplicative Hankel forms

The multiplicative Hankel form (2) is said to be bounded if there is a constant
C <∞ such that

(23) |%(a, b)| =
∣∣∣∣∣

∞∑

m=1

∞∑

n=1

ambn
%mn

d(mn)

∣∣∣∣∣ ≤ C

( ∞∑

m=1

|am|2
d(m)

) 1
2
( ∞∑

n=1

|bn|2
d(n)

) 1
2

.

The smallest such constant is the norm of %. The symbol of the form % is the
Dirichlet series ϕ(s) =

∑
n≥1 %nn

−s. If f and g are Dirichlet series with coeffi-
cient sequences a and b, respectively, then (23) can be rewritten as |Hϕ(fg)| ≤
C‖f‖A 2‖g‖A 2 , where we define

Hϕ(fg) = 〈fg, ϕ〉A 2 =
∞∑

l=1

(∑

mn=l

ambn

)
%l
d(l)

=
∞∑

m=1

∞∑

n=1

ambn
%mn

d(mn)
.

Hence, the multiplicative Hankel form is bounded if and only if Hϕ is a bounded
form on A 2 × A 2.

We begin with the following example, giving the Bergman space analogue of
the multiplicative Hilbert matrix studied in [11]. Let A 2

0 denote the subspace of
A 2 consisting of Dirichlet series f(s) =

∑
n≥1 ann

−s such that a1 = f(+∞) = 0.
As in [11], it is natural to work with Dirichlet series without constant term for
convergence reasons. We consider the form

(24) H(fg) =

∫ ∞

1/2

f(σ)g(σ)

(
σ − 1

2

)
dσ, f, g ∈ A 2

0 .

Theorem 13. The bilinear form (24) is a multiplicative Hankel form with symbol

ϕ(s) =

∫ ∞

1/2

(
ζ(s+ σ)2 − 1

)(
σ − 1

2

)
dσ =

∞∑

n=2

d(n)√
n(log n)2

n−s.

The form Hϕ is bounded, but not compact, on A 2
0 × A 2

0 .

Proof. To see that ϕ is the symbol, one can either compute H(fg) at the level
of coefficients or use that ζ(s+ w)2 − 1 is the reproducing kernel of A 2

0 . To see
that H is bounded, we first use the Cauchy–Schwarz inequality,

|H(fg)| ≤
(∫ ∞

1/2

|f(σ)|2
(
σ − 1

2

)
dσ

) 1
2
(∫ ∞

1/2

|g(σ)|2
(
σ − 1

2

)
dσ

) 1
2

.

By symmetry, we only need to consider one of the factors. We split the integral
at σ = 1.

∫ ∞

1/2

|f(σ)|2
(
σ − 1

2

)
dσ =

(∫ 1

1/2

+

∫ ∞

1

)
|f(σ)|2

(
σ − 1

2

)
dσ.
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The first integral is bounded by a constant multiple of ‖f‖2A 2 , as follows from
[33, Thm. 3 and Example 4]. For the second integral, we have by the pointwise
estimate (21) that

|f(σ)|2 ≤ ‖f‖2A 2

( ∞∑

n=2

d(n)n−2σ

)
≤ (2 + o(1))4−σ‖f‖2A 2 ,

where we in the final inequality used that σ ≥ 1. To show that Hϕ is not compact,
let kε(s) denote the normalized reproducing kernel of A 2

0 at the point 1/2+ ε/2,

kε(s) =
ζ2(s+ 1/2 + ε/2)− 1√

ζ2(1 + ε)− 1
.

The functions kε converge weakly to 0 as ε→ 0, since they converge to 0 on every
compact subset of C1/2. By the fact that

ζ(s) =
1

s− 1
+O(1)

for Re(s) > 1 close to 1, we get for, say 1/2 < σ < 1, that

kε(σ) =
(σ + 1/2 + ε/2− 1)−2 +O(1)

(1 + ε− 1)−1 +O(1)
= ε

(
1

(σ − 1/2 + ε/2)2
+O(1)

)
.

Setting f = g = kε, we find that

H(fg) = ε2

(∫ 1

1/2

(
1

(σ − 1/2 + ε/2)4
+O(1)

)(
σ − 1

2

)
dσ +O(1)

)
� 1,

showing that H is not compact. �

Since the Bohr lift is multiplicative, it holds that

〈fg, ϕ〉A 2 = 〈BfBg,Bϕ〉A2(D∞).

For the remainder of this section we will work in the polydisc, and we therefore
tacitly identify the Dirichlet series f with its Bohr lift Bf . Hence, we consider
symbols of the form

ϕ(z) =
∞∑

n=1

%nz
κ(n),

and define Hϕ(fg) = 〈fg, ϕ〉A2(D∞), for f, g ∈ A2(D∞).
If ϕ defines a bounded functional on A1(D∞), then it follows from the Cauchy–

Schwarz inequality that

|Hϕ(fg)| = |〈fg, ϕ〉A2 | ≤ ‖ϕ‖(A1)∗‖fg‖A1 ≤ ‖ϕ‖(A1)∗‖f‖A2‖g‖A2 ,

i.e. the Hankel form Hϕ is bounded on A2(D∞) × A2(D∞) in this case. Our
first goal is to show that the converse does not hold. We define the weak product
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A2(D∞)�A2(D∞) as the closure of all finite sums f =
∑

k gkhk, gk, hk ∈ A2(D∞),
under the norm

‖f‖A2(D∞)�A2(D∞) = inf
∑

k

‖gk‖A2(D∞)‖hk‖A2(D∞).

Here the infimum is taken over all finite representations f =
∑

k gkhk. Note that
‖f‖A1(D∞) ≤ ‖f‖A2(D∞)�A2(D∞).

Lemma 14. Suppose that ϕ generates a Hankel form on A2(D∞) × A2(D∞).
Then

‖Hϕ‖ = ‖ϕ‖(A2(D∞)�A2(D∞))∗ .

Every bounded Hankel form Hϕ extends to a bounded functional on A1(D∞) if
and only if there is a constant C∞ <∞ such that for any f ∈ A1(D∞),

‖f‖A2(D∞)�A2(D∞) ≤ C∞‖f‖A1(D∞).

Proof. The first statement is a tautology. The weak product space A2(D∞) �
A2(D∞) is a Banach space, and therefore the second statement follows from the
closed graph theorem and duality (see [9, 25]). �

Factorization and weak factorization of Hardy and Bergman spaces have a
long history. Strong factorization for H1(D) was treated by Nehari [32], and the
analogous factorization for A1(D) was given by Horowitz [27]. Every f in H1(D)
or A1(D) can be written as a single product f = gh, for g, h in H2(D) or A2(D),
respectively. In Nehari’s theorem it is even possible to choose g and h such that
‖f‖H1(D) = ‖g‖H2(D)‖h‖H2(D). The same is not possible in the factorization of
A1(D), a simple observation we do not find recorded in the literature.

Factorization on the polydisc Dd is a much subtler matter, even when 1 < d <
∞. Strong factorization is certainly not possible, but in [20, 29] it was shown
that the corresponding weak factorization holds,

H1(D) = H2(Dd)�H2(Dd), d <∞.

The Bergman space analogue was established in [17],

A1(Dd) = A2(Dd)�A2(Dd), d <∞.

In [35] it was shown that the best constant Cd in the factorization,

‖f‖H2(Dd)�H2(Dd) ≤ Cd‖f‖H1(Dd),

satisfies growth estimate Cd ≥ (π2/8)d/4 when d is an even integer. This im-
mediately implies that the weak factorization H1(D∞) = H2(D∞) �H2(D∞) is
impossible. By tensorization, it is explained in [9, Sec. 3] that Ckd ≥ Ck

d for
every positive integer k, a result which effortlessly carries over to the context of
Bergman spaces. Hence we have the following.
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Theorem 15. Let Cd denote the best constant in the inequality

‖f‖A2(Dd)�A2(Dd) ≤ Cd‖f‖A1(Dd),

for d = 1, 2, . . .. Then

Cd ≥
(
9

8

)d/2

.

In particular, the factorization in the unit disc is not norm-preserving, and there-
fore the weak factorization

A1(D∞) = A2(D∞)�A2(D∞)

does not hold.

Proof. In view of the discussion preceeding the theorem, it is sufficient to prove
that C1 ≥ 3/(2

√
2). For every polynomial ϕ, we get from duality that

C1 ≥ ‖ϕ‖(A1(D))∗

‖ϕ‖(A2(D)�A2(D))∗
≥

‖ϕ‖2A2(D)
‖ϕ‖A1(D)‖ϕ‖(A2(D)�A2(D))∗

,

where we have estimated the (A1(D))∗-norm by testing ϕ against itself. As in
Lemma 14, we have that

‖ϕ‖(A2(D)�A2(D))∗ = ‖Hϕ‖A2(D)×A2(D).

We choose ϕ(w) =
√
2w. Clearly ‖ϕ‖A2(D) = 1. The matrix of Hϕ with respect

to the standard basis of A2(D) is
(
0 1
1 0

)
,

so we find that ‖Hϕ‖A2(D)×A2(D) = 1. We are done, since

‖ϕ‖A1(D) = 2
√
2

∫ 1

0

r2 dr =
2
√
2

3
. �

It would be interesting to decide if the symbol of the Hilbert–type form con-
sidered in Theorem 13, which lifts to

(25) ϕ(z) =
∞∑

n=2

d(n)√
n(log n)2

zκ(n),

defines a bounded linear functional on A1(D∞). We are unable to settle this prob-
lem, but offer the following two observations. First, if f is an analytic polynomial
on D∞ such that f(0) = 0, we may write

〈f, ϕ〉A2(D∞) =

∫ ∞

1/2

(
B−1f

)
(σ + it)

(
σ − 1

2

)
dσ.
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If we could prove the embedding ‖f‖A1
i (C1/2)

≤ C̃‖f‖A 1 , which is a stronger
version of the second statement in Theorem 10, then it would follow by simple
Carleson measure argument that (25) defines a bounded linear functional on
A1(D∞), through the (inverse) Bohr lift.

Our second observation is contained in the following result.

Theorem 16. Let ϕ be as in (25). Then ϕ defines a bounded functional on
Ap(D∞) for every 1 < p <∞.

Proof. This is trivial when p ≥ 2, since ϕ ∈ H2(D∞). Let us therefore fix
1 < p < 2, and suppose that f(z) =

∑
n≥1 anz

κ(n) is in Ap(D∞). Then it follows
from the Cauchy–Schwarz inequality and Lemma 9 with rj =

√
p/2 that

∣∣〈f, ϕ〉A2(D∞)

∣∣ =
∣∣∣∣∣
∞∑

n=2

an
1√

n(log n)2

∣∣∣∣∣

≤
( ∞∑

n=2

|an|2
d(n)

(p
2

)Ω(n)
) 1

2
( ∞∑

n=2

(
2

p

)Ω(n)
d(n)

n(log n)4

) 1
2

≤ ‖f‖Ap(D∞)

( ∞∑

n=2

(
2

p

)Ω(n)
d(n)

n(log n)4

) 1
2

where again Ω(n) denotes the number of prime factors of n. We may conclude if
we can show that ∞∑

n=2

d(n)αΩ(n)

n(log n)4
<∞

if 1 < α < 2. This follows at once from Abel summation and the estimate

(26)
1

x

∑

n≤x

d(n)αΩ(n) = Cα(log x)
2α−1 +O

(
(log x2α−2)

)
.

To demonstrate (26), we consider the associated Dirichlet series, for say Re(s) >
1, and factor out an appropriate power of the zeta function

fα(s) =
∞∑

n=1

d(n)αΩ(n)n−s =
∞∏

j=1

(
1

1− αp−s
j

)2

= ζ2α(s)
∞∏

j=1

(
(1− p−s

j )α

1− αp−s
j

)2

=: ζ2α(s)gα(s).

Note that since
(
(1− p−s

j )α

1− αp−s
j

)2

= 1 + (α− 1)αp−2s
j +O(p−3s

j ),
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the Dirichlet series gα is absolutely convergent for

Re(s) > max (1/2, log2 α) .

A standard residue integration argument (see e.g. [42, Ch. II.5]) now gives (26)
with Cα = gα(1)/Γ(2α). �

Next, we investigate Hilbert–Schmidt Hankel forms (2), following [25]. Recall
that on the finite polydisc Dd, d < ∞, a symbol ϕ generates a Hilbert–Schmidt
Hankel form on H2(Dd) ×H2(Dd) if and only if it generates a Hilbert–Schmidt
Hankel form on A2(Dd)×A2(Dd). On the infinite polydisc we have the following
result. Theorem 10 is its essential ingredient.

Theorem 17. If the Hankel form generated by ϕ is Hilbert–Schmidt on A2(D∞)×
A2(D∞), then ϕ also generates a bounded functional on A1(D∞). If ϕ generates a
Hilbert–Schmidt form on H2(D∞)×H2(D∞), then it generates a Hilbert–Schmidt
form on A2(D∞)×A2(D∞), but the converse does not hold.

Proof. First, we compute the Hilbert–Schmidt norm on A2(D∞)×A2(D∞) of the
form Hϕ generated by the symbol ϕ(s) =

∑
n≥1 %nz

κ(n). An orthonormal basis
for A2(D∞) is given by

en(z) = zκ(n)
√
d(n).

Hence,

‖Hϕ‖2S2(A2(D∞)×A2(D∞)) =
∞∑

m=1

∞∑

n=1

|Hϕ(emen)|2 =
∞∑

m=1

∞∑

n=1

|%mn|2d(m)d(n)

[d(mn)]2

=
∞∑

l=1

|%l|2
[d(l)]2

∑

mn=l

d(m)d(n) =
∞∑

l=1

|%l|2
d4(l)

[d(l)]2
,

where we have made use of (20) after recalling the convention that d2 = d.
The first statement now follows from Theorem 10, since the Cauchy–Schwarz
inequality implies that

|〈f, ϕ〉A2(D∞)| =
∣∣∣∣∣
∞∑

n=1

an%n
d(n)

∣∣∣∣∣ ≤
( ∞∑

n=1

|an|2
d4(n)

) 1
2
( ∞∑

n=1

|%n|2
d4(n)

[d(n)]2

) 1
2

.

Similarly we have that

‖Hϕ‖2S2(H2(D∞)×H2(D∞)) =
∞∑

n=1

|%n|2d(n).

Note that when n is a prime power n = pkj we have that

d4(n) =
(k + 1)(k + 2)(k + 3)

6
≤ (k + 1)3 = [d(n)]3.
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Since both d4(n) and d(n) are multiplicative functions, it follows that d4(n) ≤
[d(n)]3 for every n. Hence the second statement is proved.

To see that the converse of the second statement does not hold, consider the set
N = {n1 = 2, n2 = 3 · 5, n3 = 7 · 11 · 13, . . . } and define ϕ(s) =

∑
n∈N %nz

κ(n).
Then we have that

‖Hϕ‖2S2(A2(D∞)×A2(D∞)) =
∞∑

j=1

|%nj
|2,

‖Hϕ‖2S2(H2(D∞)×H2(D∞)) =
∞∑

j=1

|%nj
|22j . �

The final part of this section is devoted to showing that every Hankel form
of the type (2) naturally corresponds to a Hankel form of the type (1) with the
same singular numbers. Let D denote the diagonal operator in two variables,
Df(w) = f(w,w), for which we have the following observation.

Lemma 18. The operator D is a contraction from H2(D2) to A2(D).

Proof. This is proven in [39], but in an abstract formulation it dates back at least
to Aronzajn [2]. The proof of our particular case is very easy and we include it
here. Consider

f(z1, z2) =
∞∑

j=0

∞∑

k=0

aj,kz
j
1z

k
2

and use the Cauchy–Schwarz inequality to conclude that

‖Df‖2A2(D) =
∞∑

l=0

1

l + 1

∣∣∣∣∣∣
∑

j+k=l

aj,k

∣∣∣∣∣∣

2

≤
∞∑

l=0

∑

j+k=l

|aj,k|2 = ‖f‖2H2(D2). �

The diagonal operator D may be written as an integral operator using the
reproducing kernel of H2(D2),

Df(w) =

∫

T2

f(z1, z2)
1

1− wz1

1

1− wz2
dm1(z1)dm1(z2).

Hence its adjoint operator E : A2(D) → H2(D2) is given by

Eg(z1, z2) =

∫

D
g(w)

1

1− z1w

1

1− z2w
dA(w).

If f and g are in A2(D), then

〈Ef,Eg〉H2(D2) = 〈f, g〉A2(D),

that is, E is an isometry. Clearly, the composition DE is the identity operator
on A2(D). Hence we have identified A2(D) with the subspace X = EA2(D) of
H2(D2) (although perhaps it would be more appropriate to think of it as the

217



factor space induced by the map D). The projection P : H2(D2) → X is given
by P = ED. Note that P averages the coefficients of monomials of same degree.
Precisely, if f(z) =

∑
j,k≥0 aj,kz

j
1z

k
2 , then

Pf(z1, z2) =
∞∑

j=0

∞∑

k=0

Aj+kz
j
1z

k
2 , where Al =

1

l + 1

∑

j+k=l

aj,k.

Clearly, D(fg) = D(f)D(g), but E does not have this property. For example, if
g(w) = w, then

Eg(z1, z2) =
z1 + z2

2
and E(g2)(z1, z2) =

z21 + z1z2 + z22
3

,

so that E(g)E(g) 6= E(g2).
Let us now turn to the relationship between the operator E and Hankel forms.

To fix the notation, let Y be a Hilbert space with an orthonormal basis {ej}j≥1.
For a bilinear form H : Y × Y → C, let sn(H) denote its nth singular value, i.e.

sn(H) = inf{‖H −K‖Y×Y : rankK ≤ n},
where the rank of a bilinear form K : Y × Y → C is given by

rankK = codimkerK = codim{f ∈ Y : K(f, g) = 0 for all g ∈ Y }.
Of course, sn(H) is the same as the nth singular value of the operator

{H(ej , ek)}j,k≥1 : `2 → `2.

The p–Schatten norm of H, 0 < p <∞, is given by

‖H‖pSp(Y×Y ) =
∞∑

n=0

|sn(H)|p.

When p = 2 we obtain the Hilbert-Schmidt norm, which can also be computed
as the square sum of the coefficients,

‖H‖2S2(Y×Y ) =
∞∑

n=0

|sn(H)|2 =
∞∑

j=1

∞∑

k=1

|H(ej , ek)|2.

We have the following result.

Lemma 19. Suppose that ϕ ∈ A2(D). Then

sn(Hϕ) = sn(HEϕ), n ≥ 0.

In particular, for 0 < p <∞ we have

‖Hϕ‖A2(D)×A2(D) = ‖HEϕ‖H2(D2)×H2(D2),

‖Hϕ‖Sp(A2(D)×A2(D)) = ‖HEϕ‖Sp(H2(D2)×H2(D2)).
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Proof. Let J : X ×X → C be the restriction of HEϕ to X = EA2(D),

J(f, g) = 〈fg,Eϕ〉H2(D2), f, g ∈ X.

For f, g ∈ H2(D2) we have the identity

(27) 〈fg,Eϕ〉H2(D2) = 〈D(fg), ϕ〉A2(D) = 〈DfDg, ϕ〉A2(D).

Since D : X → A2(D) is unitary, this implies that J is unitarily equivalent to
Hϕ : A2(D)× A2(D) → C. If K : H2(D2)×H2(D2) → C is a rank-n form, then
its restriction to X, K ′ : X ×X → C, has smaller rank, rankK ′ ≤ n. Since

‖HEϕ −K‖H2(D2)×H2(D2) ≥ ‖J −K ′‖X×X

it follows that
sn(HEϕ) ≥ sn(J) = sn(Hϕ), n ≥ 0.

Conversely, if the form K : A2(D) × A2(D) → C has rank n, then clearly
K ′ : H2(D2) ×H2(D2) → C has smaller rank, where K ′(f, g) = K(Df,Dg), for
f, g ∈ H2(D2). However, it follows from (27) and Lemma 18 that

‖Hϕ −K‖ = ‖HEϕ −K ′‖,
proving that also sn(Hϕ) ≥ sn(HEϕ). �

Consider A2(D∞) as a function space over the variables z = (z1, z2, . . .) and
H2(D∞) as a function space over ξ = (ξ1, ξ2, . . .). Define the extension map E
from A2(D∞) to H2(D∞) by its integral kernel,

Kξ(z) =

∞∏

j=1

1

1− ξ2j−1zj

1

1− ξ2jzj
, z, ξ ∈ D∞ ∩ `2,

so that
E f(ξ) =

∫

D∞
f(z)Kξ(z) dm(z).

By tensorization of Lemma 19 (the required technical details may be found in [9,
Lem. 2]), we obtain the following.

Theorem 20. The map E has the following properties.
(a) E defines an isometric isomorphism from the Bergman space A2(D∞) to

a subspace of the Hardy space H2(D∞).
(b) For ϕ ∈ A2(D∞), let Hϕ : A2(D∞) × A2(D∞) → C be the Hankel form

generated by ϕ, and let HEϕ : H2(D∞) × H2(D∞) → C be the Hankel
form generated by Eϕ. Then, for every n ≥ 0, we have that

sn(Hϕ) = sn(HEϕ).

In particular, Hϕ is bounded (p–Schatten, 0 < p <∞) if and only if HEϕ

is bounded (p–Schatten), with equality of the norms.
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Remark. In [35], the symbol ψ(z) = (z1 + z2)/2 is used to show that the weak
factorization H1(D∞) = H2(D∞) � H2(D∞) cannot hold. In Theorem 15 the
symbol ϕ(w) = w is used to demonstrate the corresponding fact for the Bergman
spaces. In fact the two examples considered are the same, because Eϕ = ψ.

5. Carleson measures on the infinite polydisc

We end this paper by producing two infinite dimensional counter-examples to
well-known finite dimensional results for Carleson measures for the Hardy spaces
Hp(Dd). Let µ be a finite positive measure on Dd (where possibly d = ∞),
i.e. a finite positive Borel measure on Dd

such that µ(Dd \ Dd) = 0. As usual,
measures on the compact space Dd

correspond to linear functionals on the space
of continuous functions C(Dd

). We say that µ is a Hp–Carleson measure if there
exists a constant C = C(µd, p) <∞ such that

∫

Dd

|f(z)|p dµd(z) ≤ C‖f‖p
Hp(Dd)

for every analytic polynomial f . We say that µ is a Lp–Carleson measure if there
exists a constant C = C(µd, p) <∞ such that

∫

Dd

|Pf(z)|p dµd(z) ≤ C‖f‖p
Lp(Td)

for every trigonometric polynomial f . Here Pf is the Poisson extension of f ,
defined for f ∈ Lp(Td) by

Pf(w) =

∫

Td

f(z)Pw(z) dm1(z), Pw(z) =

d∏

j=1

1− |wj |2
|1− zjwj |2

.

This is always well-defined as long as we restrict ourselves to L2(Td)-functions f
only dependent on a finite number of variables, since we may then suppose that
w is finitely supported.

The study of Carleson measures on the infinite polydisc is an important part
of the theory of Hp spaces. For instance, the local embedding problem discussed
in [41, Sec. 3] can be formulated in terms of Carleson measures. Let B−1 denote
the inverse Bohr lift, so that

(
B−1f

)
(s) = f

(
2−s, 3−s, 5−s, . . . p−s

j , . . .
)
.

For 0 < p <∞, is it true that the measure µ∞ defined on D∞ by
∫
f(z)dµ∞(z) =

∫ 1

0

(
B−1f

)
(1/2 + it) dt, f ∈ C(Dd

),
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is a Hp–Carleson measure? A positive answer is only known for even integers.
Additionally, the boundedness of positive definite Hankel forms (1) can be for-
mulated in terms of Carleson measures on D∞ [36], and the same is true for the
Volterra operators studied in [10].

From [15], it is known that a measure µ on Dd, for d < ∞, is a Hp–Carleson
measure for one 0 < p < ∞ if and only if it is a Carleson measure for every
0 < p < ∞. We will now construct a counter-example to this statement when
d = ∞. We recall that the diagonal restriction operator Df(w) = f(w,w) induces
a bounded map from Hp(D2) to Ap(D) for every 0 < p <∞ (see [19]), and offer
the following clarification in the case 0 < p < 2.

Lemma 21. The diagonal operator D is not contractive from Hp(D2) to Ap(D)
when 0 < p < 2.

Proof. Let 0 < p < 2 and consider f(z1, z2) = (z1 + z2)/2. Clearly

‖Df‖pAp(D) =

∫

D
|f(w,w)|p dm(w) =

2

2 + p
,

so it is enough to verify that ‖f‖pHp(D2) < 2/(2+p). We factor out z2 and compute
using various identities for the Beta and Gamma functions, obtaining that

‖f‖pHp(D2) =
1

2π

∫ 2π

0

∣∣∣∣
1 + eiθ

2

∣∣∣∣
p

dθ =
1

2π

∫ 2π

0

∣∣∣∣cos
θ

2

∣∣∣∣
p

dθ

=
1

π

∫ π

0

(
cos

θ

2

)p

dθ =
2

π

∫ 1

0

tp√
1− t2

dt

=
1

π

∫ 1

0

t(p−1)/2(1− t)−1/2 dt =
B((p+ 1)/2), 1/2)

π

=
Γ(p/2 + 1/2)Γ(1/2)

πΓ(p/2 + 1)
=

Γ(p/2 + 1/2)

Γ(1/2)(p/2)Γ(p/2)
=

2

pB(p/2, 1/2)
.

To conclude we make use of the identity

B(x, y) =

∞∑

n=0

(
n− y

n

)
1

x+ n
, x, y > 0.

The binomial coefficient is positive for every n when y = 1/2, so if 0 < p < 2 we
have that

B(p/2, 1/2) >
1

p/2
+ B(1, 1/2)− 1

1
=

2

p
+ 1. �

Remark. Lemma 18 implies that D is a contraction from Hp(D2) to Ap(D) if p
is an even integer. It would be interesting to know if D is a contraction for every
p ≥ 2.

Tensorization of Lemma 18 and Lemma 21 yields the following result.
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Theorem 22. Let µ∞ be the measure defined for f in C(D∞
) by

(28)
∫

D∞
f(z1, z2, z3, z4, . . .) dµ∞(z) =

∫

D∞
f(z1, z1, z3, z3, . . .) dm(z),

where m denotes the infinite product of the unweighted normalized Lebesgue mea-
sure on D. The measure µ∞ is a Hp–Carleson measure on D∞ if p is an even
integer, but not when 0 < p < 2.

Theorem 22 invites the following question.

Question. If µ defines a Hp–Carleson measure on D∞ for some 0 < p <∞, does
it also define a Hq–Carleson measure for every p < q <∞?

In [15], it is also proven that Lp–Carleson and Hp–Carleson measures coincide
on Dd, when d < ∞. Again, this is no longer true on D∞, as our next two
examples will demonstrate.

To obtain the first counter-example, we verify that the measure (28) of The-
orem 22 does not define a L2–Carleson measure on D∞ by replacing Lemma 21
with the following result.

Lemma 23. The operator D ◦P is not a contraction from L2(T2) to L2(D,m).

Proof. Consider

f(eiθ1 , eiθ2) =
1√
3

(
eiθ1 + eiθ2 + ei2θ1e−iθ2

)
,

for which clearly ‖f‖L2(T2) = 1. Furthermore, we find that

Pf(reiθ, reiθ) =
eiθ√
3
(2r + r3),

so it follows that
∫

D
|Pf(z, z)|2 dm(z) =

2

3

∫ 1

0

(
2r + r3

)2
rdr =

43

36
> 1. �

Our second counter-example is obtained through the connection with Dirichlet
series. In preparation, let us recall a few properties of L2(T∞). Let Q+ denote
the set of positive rational numbers. Each q ∈ Q+ has a finite expansion of the
form

q =
∞∏

j=1

p
κj

j ,

where κj ∈ Z. Hence Q+ can be identified with the set of all finite multi-indices.
As in (18), every function f ∈ L2(T∞) has an expansion

f(z) =
∑

q∈Q+

aqz
κ(q), ‖f‖2L2(T∞) =

∑

q∈Q+

|aq|2.
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Note that if f ∈ L2(Td′
) for some d′ <∞ and s = σ + it, then

(
B−1Pf

)
(s) =

∑

q∈Q+

aq(q+)
−σq−it, where q+ =

∞∏

j=1

p
|κj |
j .

As our final preliminary, let ω(n) denote the number of distinct prime factors of
n. It is well-known that if Re(s) > 1, then

[ζ(s)]2

ζ(2s)
=

∞∏

j=1

1 + p−s
j

1− p−s
j

=
∞∑

n=1

2ω(n)n−s.

Theorem 24. Let µ∞ be the measure defined for f in C(D∞
) by

∫

D∞
f(z) dµ∞(z) =

∫ 1

0

(
B−1f

)
(1/2 + σ) dσ.

Then µ∞ is a H2–Carleson measure but not a L2–Carleson measure.

Proof. It is well-known that µ∞ is a H2-Carleson measure [11, 34]. Let us
therefore prove that µ∞ is not a L2–Carleson measure. Fix ε > 0 and define
w ∈ D∞ ∩ `2 by wj = p

−1/2−ε
j . We will consider the kernel of the d-dimensional

Poisson transform,

fd(z) =
d∏

j=1

1− |wj |2
|1− zjwj |2

.

First observe that

lim
d→∞

‖fd‖2L2(T∞) =
∞∏

j=1

1− p−2−4ε
j

(1− p−1−2ε
j )2

=
[ζ(1 + 2ε)]2

ζ(2 + 4ε)
� ε−2.

Next, we have that

lim
d→∞

(
B−1Pfd

)
(1/2 + σ) =

∑

q∈Q+

q−1−ε−σ
+ ,

uniformly convergent in σ ∈ [0, 1]. Note that

∑

q∈Q+

q−1−ε−σ
+ =

∞∑

n=1

2ω(n)n−1−ε−σ � (σ + ε)−2,

since there are 2ω(n) rational numbers q ∈ Q+ such that q+ = n. This concludes
the argument, since ∫ 1

0

dσ

(σ + ε)4
� ε−3. �

223



References

1. M. Andersson, Solution formulas for the ∂∂̄-equation and weighted Nevanlinna classes in
the polydisc, Bull. Sci. Math. (2) 109 (1985), no. 2, 135–154.

2. N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337–404.
3. M. Bailleul and P. Lefèvre, Some Banach spaces of Dirichlet series, Studia Math. 226

(2015), no. 1, 17–55.
4. J. Bandyopadhyay, Optimal concentration for SU(1, 1) coherent state transforms and an

analogue of the Lieb-Wehrl conjecture for SU(1, 1), Comm. Math. Phys. 285 (2009), no. 3,
1065–1086.

5. F. Bayart, Hardy spaces of Dirichlet series and their composition operators, Monatsh.
Math. 136 (2002), no. 3, 203–236.

6. W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality,
Ann. of Math. (2) 138 (1993), no. 1, 213–242.

7. B. G. Bodmann, A lower bound for the Wehrl entropy of quantum spin with sharp high-spin
asymptotics, Comm. Math. Phys. 250 (2004), no. 2, 287–300.

8. A. Bondarenko, W. Heap, and K. Seip, An inequality of Hardy-Littlewood type for Dirichlet
polynomials, J. Number Theory 150 (2015), 191–205.

9. O. F. Brevig and K.-M. Perfekt, Failure of Nehari’s theorem for multiplicative Hankel forms
in Schatten classes, Studia Math. 228 (2015), no. 2, 101–108.

10. O. F. Brevig, K.-M. Perfekt, and K. Seip, Volterra operators on Hardy spaces of Dirichlet
series, to appear in J. Reine Angew. Math. (doi:10.1515/crelle-2016-0069).

11. O. F. Brevig, K.-M. Perfekt, K. Seip, A. G. Siskakis, and D. Vukotić, The multiplicative
Hilbert matrix, Adv. Math. 302 (2016), 410–432.

12. J. Burbea, Sharp inequalities for holomorphic functions, Illinois J. Math. 31 (1987), no. 2,
248–264.

13. T. Carleman, Zur Theorie der Minimalflächen, Math. Z. 9 (1921), no. 1-2, 154–160.
14. E. A. Carlen, Some integral identities and inequalities for entire functions and their appli-

cation to the coherent state transform, J. Funct. Anal. 97 (1991), no. 1, 231–249.
15. S.-Y. A. Chang, Carleson measure on the bi-disc, Ann. of Math. (2) 109 (1979), no. 3,

613–620.
16. B. J. Cole and T. W. Gamelin, Representing measures and Hardy spaces for the infinite

polydisk algebra, Proc. London Math. Soc. (3) 53 (1986), no. 1, 112–142.
17. O. Constantin, Weak product decompositions and Hankel operators on vector-valued

Bergman spaces, J. Operator Theory 59 (2008), no. 1, 157–178.
18. P. Duren and A. Schuster, Bergman Spaces, Mathematical Surveys and Monographs, vol.

100, American Mathematical Society, Providence, RI, 2004.
19. P. L. Duren and A. L. Shields, Restrictions of Hp functions to the diagonal of the polydisc,

Duke Math. J. 42 (1975), no. 4, 751–753.
20. S. H. Ferguson and M. T. Lacey, A characterization of product BMO by commutators, Acta

Math. 189 (2002), no. 2, 143–160.
21. L. Gross, Strong hypercontractivity and relative subharmonicity, J. Funct. Anal. 190 (2002),

no. 1, 38–92, Special issue dedicated to the memory of I. E. Segal.
22. H. Hedenmalm, B. Korenblum, and K. Zhu, Theory of Bergman Spaces, Graduate Texts

in Mathematics, vol. 199, Springer-Verlag, New York, 2000.
23. H. Hedenmalm, P. Lindqvist, and K. Seip, A Hilbert space of Dirichlet series and systems

of dilated functions in L2(0, 1), Duke Math. J. 86 (1997), no. 1, 1–37.
24. H. Helson, Dirichlet Series, Henry Helson, Berkeley, CA, 2005.
25. , Hankel forms and sums of random variables, Studia Math. 176 (2006), no. 1,

85–92.

224



26. , Hankel forms, Studia Math. 198 (2010), no. 1, 79–84.
27. C. Horowitz, Factorization theorems for functions in the Bergman spaces, Duke Math. J.

44 (1977), no. 1, 201–213.
28. S. Janson, On hypercontractivity for multipliers on orthogonal polynomials, Ark. Mat. 21

(1983), no. 1, 97–110.
29. M. Lacey and E. Terwilleger, Hankel operators in several complex variables and product

BMO, Houston J. Math. 35 (2009), no. 1, 159–183.
30. G. Leoni, A first course in Sobolev spaces, vol. 105, American Mathematical Society Prov-

idence, RI, 2009.
31. G. Mancini and K. Sandeep, On a semilinear elliptic equation in Hn, Ann. Sc. Norm.

Super. Pisa Cl. Sci. (5) 7 (2008), no. 4, 635–671.
32. Z. Nehari, On bounded bilinear forms, Ann. of Math. (2) 65 (1957), 153–162.
33. J.-F. Olsen, Local properties of Hilbert spaces of Dirichlet series, J. Funct. Anal. 261 (2011),

no. 9, 2669–2696.
34. J.-F. Olsen and E. Saksman, On the boundary behaviour of the Hardy spaces of Dirichlet

series and a frame bound estimate, J. Reine Angew. Math. 663 (2012), 33–66.
35. J. Ortega-Cerdà and K. Seip, A lower bound in Nehari’s theorem on the polydisc, J. Anal.

Math. 118 (2012), no. 1, 339–342.
36. K.-M. Perfekt and A. Pushnitski, On Helson matrices: moment problems, non-negativity,

boundedness, and finite rank, arXiv:1611.03772.
37. H. Queffélec, Espaces de séries de Dirichlet et leurs opérateurs de composition, Ann. Math.

Blaise Pascal 22 (2015), no. S2, 267–344.
38. H. Queffélec and M. Queffélec, Diophantine Approximation and Dirichlet Series, Harish–

Chandra Research Institute Lecture Notes, vol. 2, Hindustan Book Agency, New Delhi,
2013.

39. W. Rudin, Function Theory in Polydiscs, W. A. Benjamin, Inc., New York-Amsterdam,
1969.

40. , Function Theory in the Unit Ball of Cn, Grundlehren der Mathematischen Wis-
senschaften, vol. 241, Springer-Verlag, New York-Berlin, 1980.

41. E. Saksman and K. Seip, Integral means and boundary limits of Dirichlet series, Bull. Lond.
Math. Soc. 41 (2009), no. 3, 411–422.

42. G. Tenenbaum, Introduction to analytic and probabilistic number theory, third ed., Grad-
uate Studies in Mathematics, vol. 163, American Mathematical Society, Providence, RI,
2015.

43. D. Vukotić, The isoperimetric inequality and a theorem of Hardy and Littlewood, Amer.
Math. Monthly 110 (2003), no. 6, 532–536.

44. F. B. Weissler, Logarithmic Sobolev inequalities and hypercontractive estimates on the cir-
cle, J. Funct. Anal. 37 (1980), no. 2, 218–234.

45. K. Zhu, Spaces of holomorphic functions in the unit ball, Graduate Texts in Mathematics,
vol. 226, Springer-Verlag, New York, 2005.

225





Part 3

Volterra operators and
pseudomoments





Paper 10

Volterra operators on Hardy spaces of Dirichlet
series

Ole Fredrik Brevig
Karl-Mikael Perfekt
Kristian Seip

To appear in J. Reine Angew. Math.

229





VOLTERRA OPERATORS ON HARDY SPACES OF
DIRICHLET SERIES

OLE FREDRIK BREVIG, KARL-MIKAEL PERFEKT, AND KRISTIAN SEIP

Abstract. For a Dirichlet series symbol g(s) =
∑

n≥1 bnn
−s, the associ-

ated Volterra operator Tg acting on a Dirichlet series f(s) =
∑

n≥1 ann
−s

is defined by the integral

f 7→ −
∫ +∞

s
f(w)g′(w) dw.

We show that Tg is a bounded operator on the Hardy space H p of Dirichlet
series with 0 < p < ∞ if and only if the symbol g satisfies a Carleson mea-
sure condition. When appropriately restricted to one complex variable, our
condition coincides with the standard Carleson measure characterization of
BMOA(D). A further analogy with classical BMO is that exp(c|g|) is inte-
grable (on the infinite polytorus) for some c > 0 whenever Tg is bounded.
In particular, such g belong to H p for every p < ∞. We relate the bound-
edness of Tg to several other BMO type spaces: BMOA in half-planes, the
dual of H 1, and the space of symbols of bounded Hankel forms. Moreover,
we study symbols whose coefficients enjoy a multiplicative structure and
obtain coefficient estimates for m-homogeneous symbols as well as for gen-
eral symbols. Finally, we consider the action of Tg on reproducing kernels
for appropriate sequences of subspaces of H 2. Our proofs employ function
and operator theoretic techniques in one and several variables; a variety of
number theoretic arguments are used throughout the paper in our study of
special classes of symbols g.

1. Introduction

By a result of Pommerenke [32], the Volterra operator associated with an
analytic function g on the unit disc D, defined by the formula

(1.1) Tgf(z) :=

∫ z

0

f(w)g′(w) dw, z ∈ D,

is a bounded operator on the Hardy space H2(D) if and only if g belongs to the
analytic space of bounded mean oscillation BMOA(D). In view of the factor-
ization H2 ·H2 = H1 and C. Fefferman’s famous duality theorem, according to

The first and third author are supported by Grant 227768 of the Research Council of Norway.
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which BMOA(D) is the dual of H1(D), it follows that Tg is bounded if and only
if the corresponding Hankel form Hg is bounded, where

Hg(f, h) :=

∫

T
f(z)h(z)g(z) dm1(z), f, h ∈ H2(D).

In recent years, it has become known how to give a direct proof of the equiva-
lence of the boundedness of Tg and Hg [3], with no mention of bounded mean
oscillation (BMO) or Carleson measures, relying instead on the square function
characterization of H1 to show that Tgf is in H1(D) whenever f and g are in
H2(D). Although the systematic study of Tg was conducted much later than that
of the Hankel form Hg (see [2, 4]), one could now, based on this insight, easily
imagine an exposition of the one variable Hardy space theory which considers
the boundedness of Volterra operators before BMOA and Hankel operators. One
advantage would then be that the John–Nirenberg inequality, by Pommerenke’s
trick [32], has an elementary proof for functions g such that Tg is bounded.

This conception of Volterra operators, as objects of primary interest for un-
derstanding BMO, underlies the present investigation of such operators on Hardy
spaces of Dirichlet series H p with 0 < p < ∞. The precise definition of these
spaces will be given in the next section; suffice it to say at this point that ev-
ery Dirichlet series f(s) =

∑
n≥1 ann

−s in H p defines an analytic function for
Re s > 1/2, and that H p can be identified with the Hardy space Hp(D∞) of
the countably infinite polydisc D∞, through the Bohr lift. For a Dirichlet series
symbol g(s) =

∑
n≥1 bnn

−s, we consider the Volterra operator Tg defined by

(1.2) Tgf(s) := −
∫ +∞

s

f(w)g′(w) dw, Re s > 1/2.

We denote the space of symbols g such that Tg : H p → H p is bounded by Xp.
The index p = 2 is special, and we frequently write X instead of X2.

A general question of interest in the theory of Hardy spaces of Dirichlet series is
to reveal how the different roles and interpretations of BMO manifest themselves
in this infinite-dimensional setting. The space of symbols generating bounded
Hankel forms has been shown to be significantly larger than (H 1)∗ [30], and
the space (H 1)∗ itself also lacks many of the familiar features from the finite-
dimensional setting. For instance, a function f in (H 1)∗ does not always belong
to H p for every p < ∞ [26]. By Pommerenke’s trick, however, it is almost
immediate that the corresponding inclusion does hold for the space X , i.e.,

X ⊂
⋂

0<p<∞
H p.

Furthermore, (H 1)∗ is notoriously difficult to deal with, in part owing to the
fact that Hp(D∞), viewed as a subspace of Lp(T∞), is not complemented when
p 6= 2. We shall find that the space X is significantly easier to manage.
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One of our main results is that the spaces Xp can be characterized by a
Carleson measure condition, in analogy with what we have in the classical one
variable theory. In our context, the Carleson measure associated with the symbol
g will live on the product of T∞ and a half-line. Again deferring precise definitions
to the next section, we mention that this result takes the following form: The
symbol g belongs to Xp if and only if there exists a constant C (depending on g
and p) such that

∫

T∞

∫ ∞

0

|fχ(σ)|p|g′χ(σ)|2σ dσdm∞(χ) ≤ C‖f‖pH p

holds for every f in H p. Here m∞ denotes Haar measure on T∞, while χ
is a character on T∞ and fχ(s) :=

∑
n≥1 anχ(n)n

−s for the Dirichlet series
f(s) =

∑
n≥1 ann

−s. This result, proved in Section 5, is based on an adaption to
our setting of an ingenious argument from a recent paper of Pau [31]. Our Car-
leson measure condition gives us the opportunity to study non-trivial Carleson
embeddings on the polydisc D∞, see Sections 5.2 and 5.3. Our understanding is
incomplete, but some of the questions asked are more tractable than the impor-
tant embedding problem of H p (see [34, Sec. 3]) while still being of a similar
character. In the classical setting, the description in terms of Carleson measures
shows that Tg is bounded on Hp(D) if and only if it is bounded on H2(D). We
will see that our Carleson measure characterization implies that if g is in Xp,
then g is in Xkp for every positive integer k. As is typical in this setting, we have
not been able to do better than this for a general symbol g, and the following
interesting problem remains open:

Question 1. Is Tg bounded on H 2 if and only if it is bounded on H p for every
p <∞?

We are able to give an affirmative answer to this question only in the case when
g is a linear symbol, i.e., when g has non-zero coefficients only at the primes pj
so that g(s) =

∑
j≥1 ajp

−s
j .

Before proceeding to give a closer description of our results, we would like
to mention another open problem related to Question 1. In Section 6, we will
observe that if Tg : H 2 → H 2 is bounded, then the corresponding multiplicative
Hankel form is bounded. Furthermore, we will show that if Tg : H 1 → H 1 is
bounded, then g is in (H 1)∗. Hence, if the answer to Question 1 is positive, then
so is the answer to the following.

Question 2. Do we have X2 ⊂ (H 1)∗?

The reverse inclusion is easily shown to be false. In fact, it is not even true
when formulated for the finite-dimensional polydisc D2 (see Theorem 6.6).

To give appropriate background and motivation for our general result about
Carleson measures, we have chosen to begin by exploring in some detail the
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distinguished space X2 and its many interesting facets. This will allow us to
exhibit the ubiquitous presence of number theoretic arguments in our subject,
which is a consequence of our operators Tg being defined in terms of integrals on
the half-plane Re s > 1/2. Roughly speaking, if trying to understand Tg at the
level of the coefficients of Tgf , one has to investigate the interplay between the
number of divisors d(n) of an integer n and its logarithm, log n. One may also
analyze symbols of number theoretic interest in terms of their function theoretic
properties. In fact, our first interesting example of a bounded Volterra operator
Tg : H p → H p, will be established by the result, shown in Section 2, that the
primitive of the Riemann zeta function,

g(s) = −
∫

(ζ(s+ 1)− 1) ds =
∞∑

n=2

1

n log n
n−s,

is of bounded mean oscillation on the line Re s = 0. Such a BMO condition easily
implies that g is in X2, and also that g is in Xp for 0 < p <∞, once our Carleson
measure condition is in place.

To close this introduction, we now describe briefly the contents of the six
subsequent sections of this paper. We begin in Section 2 by introducing the Hardy
spaces H p and start from the preliminary result that H ∞ ⊂ X ⊂ ⋂0<p<∞ H p.
In our setting, there is a considerable gap between H ∞ and

⋂
0<p<∞ H p, as

for instance functions in H ∞ are bounded analytic functions in the half-plane
Re s > 0, while functions in

⋂
0<p<∞ H p in general will be analytic in the smaller

half-plane Re s > 1/2. In Section 2, the main point is to demonstrate how X
can be thought of as a space of BMO functions in the classical sense. Using the
notation Cθ for the half-plane {s : Re(s) > θ} and D for the class of functions
expressible as a Dirichlet series in some half-plane Cθ, we prove that

BMOA(C0) ∩ D ⊂ X ⊂ BMOA(C1/2),

and we also show that ec|g| is integrable for some positive constant c whenever g
is in X .

Section 3 and Section 4 investigate properties of X with no counterparts in
the classical theory. After showing that the primitive of ζ(s + α) − 1 is in X if
and only α ≥ 1, we make in Section 3 a finer analysis by identifying and studying
a scale of symbols associated with the limiting case α = 1. More specifically, we
find that if we replace p−1−s in the Euler product for ζ(s+ 1) by λ(log p)p−1−s,
then this new symbol is in X if and only if λ ≤ 1, the point being to nail down
the exact edge for a symbol to be in X when its coefficients enjoy a multiplicative
structure. The methods used to prove this result come from two number theoretic
papers of respectively Hilberdink [24] and Gál [19].

In Section 4, we deduce conditions on the coefficients bn of a symbol g(s) =∑
n≥1 bnn

−s to be in X . We begin by showing that a linear symbol is in X if and
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only if g is in H 2. This leads naturally to a consideration of m-homogeneous
symbols, i.e., symbols such that bn is nonzero only if n has m prime factors,
counting multiplicity. We obtain optimal weighted `2-conditions for every m ≥ 2,
showing in particular that the Dirichlet series of g in general converges in C1/m

and in no larger half-plane. Letting m tend to ∞, we find that there exists a
positive constant c, not larger than 2

√
2, such that

‖Tg‖ ≤ C

(
|b2|2 +

∞∑

n=3

|bn|2ne−c
√
logn log log n

)1/2

holds for every g in X . These results are inspired by and will be compared
with analogous results of Queffélec et al. [5, 27] on Bohr’s absolute convergence
problem for homogeneous Dirichlet series.

Section 5 begins with our general result about Carleson measures and is subse-
quently concerned with a study of to what extent our results for X2 carry over to
Xp. As already mentioned, our understanding remains incomplete, but we will
see that a fair amount of nontrivial conclusions can be drawn from our general
condition.

In the last two sections, we return again to the Hilbert space setting. Section 6
explores the relationship between Tg, Hankel operators, and the dual of H 1. In
particular, this section gives background for what we have listed as Question 2
above. Finally, Section 7 investigates the compactness of Tg, with particular
attention paid to the action of Tg on reproducing kernels. Here we return to the
symbols considered in Section 3 which will allow us to display an example of a
non-compact Tg-operator.

Notation. We will use the notation f(x) � g(x) if there is some constant C > 0
such that |f(x)| ≤ C|g(x)| for all (appropriate) x. If we have both f(x) � g(x)
and g(x) � f(x), we will write f(x) � g(x). If

lim
x→∞

f(x)

g(x)
= 1,

we write f(x) ∼ g(x). The increasing sequence of prime numbers will be denoted
by {pj}j≥1, and the subscript will sometimes be dropped when there can be no
confusion. Given a positive rational number r, we will denote the prime number
factorization

r = pκ1
1 pκ2

2 · · · pκd

d

by r = (pj)
κ. This associates uniquely to r the finite multi-index κ(r) =

(κ1, κ2, . . . ). For χ in T∞, we set χ(r) := (χj)
κ, when r = (pj)

κ. If r is an
integer, say n, then the multi-index κ(n) will have non-negative entries. We let
(m,n) denote the greatest common divisor of two positive integers m and n. The
number of prime factors in n will be denoted Ω(n) (counting multiplicities) and
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ω(n) (not counting multiplicities), and π(x) will denote the number of primes
less than or equal to x. We will let logk denote the k-fold logarithm so that
log2 x = log log x, log3 x = log log log x, and so on. To avoid cumbersome nota-
tion, we will use the convention that logk x = 1 when x ≤ xk, where x2 = ee and
xk+1 = exk for k ≥ 2.

2. The Hardy spaces H p, symbols of Volterra operators,
and BMO in half-planes

2.1. Hardy spaces of Dirichlet series. The Bohr lift of the Dirichlet series
f(s) =

∑
n≥1 ann

−s is the power series Bf(z) =
∑

n≥1 anz
κ(n). For 0 < p <∞,

we define H p as the space of Dirichlet series f such that Bf is in Hp(D∞), and
we set

‖f‖H p := ‖Bf‖Hp(D∞) =

(∫

T∞
|Bf(z)|p dm∞(z)

) 1
p

.

Here m∞ denotes the Haar measure of the infinite polytorus T∞, which is simply
the product of the normalized Lebesgue measure of the torus T in each variable.
Note that for p = 2, we have

‖f‖H 2 =

( ∞∑

n=1

|an|2
) 1

2

.

We refer to [33] (or to [6, 22]) for a treatment of the properties of H p, describing
briefly the basic results we require below. For a character χ in T∞, we define

fχ(s) :=

∞∑

n=1

anχ(n)n
−s.

For τ in R, the vertical translation of f will be denoted by fτ (s) := f(s+ iτ). It
is well-known (see [22, Sec. 2]) that if f converges uniformly in some half-plane
Cθ, then fχ is a normal limit of vertical translations {fτk}k≥1 in Cθ.

The conformally invariant Hardy space Hp
i (Cθ) consists of holomorphic func-

tions in Cθ that are finite with respect to the norm given by

‖f‖Hp
i (Cθ) := sup

σ>θ

(
1

π

∫

R
|f(σ + it)|p dt

1 + t2

) 1
p

.

The following connection between H p and Hp
i (C0) can be obtained from Fubini’s

theorem:

(2.1) ‖f‖pH p =

∫

T∞
‖fχ‖pHp

i (C0)
dm∞(χ).

Based on (2.1), one can deduce Littlewood–Paley type expressions for the norms
of H p. This was first done for p = 2 in [7, Prop. 4], and later for 0 < p < ∞ in
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[8, Thm. 5.1], where the formula
(2.2)

‖f‖pH p � |f(+∞)|p +
∫

T∞

∫

R

∫ ∞

0

|fχ(σ + it)|p−2|f ′χ(σ + it)|2σdσ dt

1 + t2
dm∞(χ)

was obtained. When p = 2, we have equality between the two sides of (2.2).
We note in passing that this fact can be used to relate X to H ∞, the space of
bounded Dirichlet series in C0 endowed with the norm

‖f‖∞ := sup
σ>0

|f(s)|, s = σ + it.

Indeed, let Mg denote the operator of multiplication by g on H 2, and recall the
result that Mg is bounded if and only if g is in H ∞, with ‖Mg‖ = ‖g‖∞ (see [22,
Thm. 3.1]). Since (fg)′ = f ′g+(Tgf)

′, it then follows from the Littlewood–Paley
formula and the triangle inequality that

(2.3) ‖Tg‖ ≤ 2‖g‖∞
and consequently H ∞ ⊂ X .

Dirichlet series in H p for 0 < p < ∞ are however generally convergent only
in C1/2. In this half-plane, we have the following local embedding from [22,
Thm. 4.11]. For every τ in R,

(2.4)
∫ τ+1

τ

|f(1/2 + it)|2 dt ≤ C‖f‖2H 2 .

It is sometimes more convenient to use the equivalent formulation that

(2.5) ‖f‖2H2
i (C1/2)

≤ C̃‖f‖2H 2 .

It is interesting to compare (2.1) and (2.5). These formulas illustrate why both
half-planes C0 and C1/2 appear in the theory of the Hardy spaces H p. It will
become apparent in what follows that both half-planes show up in a natural way
also in the study of Volterra operators.

2.2. BMO spaces in half-planes. The space BMOA(Cθ) consists of holomor-
phic functions in the half-plane Cθ that satisfy

‖g‖BMO(Cθ) := sup
I⊂R

1

|I|

∫

I

∣∣∣∣f(θ + it)− 1

|I|

∫

I

f(θ + iτ) dτ

∣∣∣∣ dt <∞.

We let as before D denote the space of functions that can be represented by
Dirichlet series in some half-plane. The abscissa of boundedness of a given g
in D , denoted by σb, is the smallest real number such that g(s) has a bounded
analytic continuation to Re(s) ≥ σb + δ for every δ > 0. A classical theorem of
Bohr [10] states that the Dirichlet series g(s) converges uniformly in Re(s) ≥ σb+δ
for every δ > 0.

Lemma 2.1. Assume that g is in D ∩ BMOA(C0). Then
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(i) g has σb ≤ 0;
(ii) gχ is in BMOA(C0) and ‖gχ‖BMO = ‖g‖BMO for every character χ;
(iii) g is in

⋂
0<p<∞ H p and exp(c|Bg|) is integrable on T∞ for some c > 0.

An interesting point is that the space D ∩BMOA(C0) enjoys a stronger trans-
lation invariance, expressed by items (i) and (ii), than what the space BMOA(C0)
itself does. Lemma 2.1 can also be interpreted as saying that D ∩ BMOA(C0) is
only “slightly larger” than H ∞. We will later see that part (iii) of Lemma 2.1
holds whenever Tg is a bounded operator.

Proof of Lemma 2.1. By the definition of σb, there exists a positive number M
such that |g(σ + it)| ≤ M whenever σ ≥ σb + 1. Since g is assumed to be in
BMOA(C0), there exists a constant C such that

∫ ∞

−∞
|g(iτ)− g(σb + 1 + it)| σb + 1

(σb + 1)2 + (τ − t)2
dτ

π
≤ C.

Therefore, by the triangle inequality, we find that
∫ t+σb+1

t−σb−1

|g(iτ)|dτ ≤ 2(σb + 1) · (M + C).

Writing g as a Poisson integral, we see that this bound implies (i). Now (ii) follows
immediately from the translation invariance of BMOA, the characterization of
BMOA in terms of Poisson integrals, and that fχ is a normal limit of vertical
translations of f in C0 by (i). To prove (iii), we use the John–Nirenberg inequality
to conclude that there is c = c(‖g‖BMO) > 0 and C = C(‖g‖BMO) such that

∥∥ec|g−g(1)|∥∥
L1

i (iR)
:=

1

π

∫

R
ec|g(it)−g(1)| dt

1 + t2
≤ C.

Since σb(g) ≤ 0, we know that g is absolutely convergent at s = 1, so
∥∥ec|g−g(1)|∥∥

L1
i (iR)

�
∥∥ec|g|

∥∥
L1

i (iR)
,

where the implied constant depends on g, but only on the absolute value of its
coefficients. In particular, we can conclude that

∥∥ec|gχ|
∥∥
L1

i (iR)
≤ C̃,

for every χ ∈ T∞, and C̃ does not depend on χ, by (ii). Integrating over T∞

and using Fubini’s theorem as in (2.1) allows us to conclude that exp(c|Bg|) is
in L2(T∞), which also implies that g is in

⋂
0<p<∞ H p. �

We require the following standard result, which can be extracted from [20,
Sec. VI.1].
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Lemma 2.2. Let g be holomorphic in Cθ. Then the measure

µg(s) = |g′(σ + it)|2 (σ − θ) dσ
dt

1 + t2

is Carleson for Hp
i (Cθ) if and only if g is in BMOA(Cθ), and ‖µg‖CM(Hp

i )
�

‖g‖2BMO(C0)
.

We are now ready for a first result, saying that for the boundedness of Tg

it is sufficient that g is in BMOA(C0) and necessary that it is in BMOA(C1/2).
On the one hand, it is a preliminary result, following rather directly from the
available theory of H 2, outlined above. On the other hand, as we shall see in
Section 3 and Section 4, C0 and C1/2 are the extremal half-planes of convergence
for symbols g inducing bounded Volterra operators.

Theorem 2.3. Let Tg be the operator defined in (1.2) for some Dirichlet series
g in D .

(a) If g is in BMOA(C0), then Tg is bounded on H 2.

Suppose that Tg is bounded on H 2. Then,

(b) g satisfies condition (iii) from Lemma 2.1;
(c) g is in BMOA(C1/2).

Proof. We apply (2.2) to Tgf and use Lemmas 2.1 and 2.2. Since (fg′)χ = fχg
′
χ

we find that

‖Tg‖2H 2 �
∫

T∞

∫

R

∫ ∞

0

|(fg′)χ(σ + it)|2σ dσ dt

1 + t2
dm∞(χ)

�
∫

T∞
‖fχ‖2H2

i (C0)
‖gχ‖2BMO(C0)

dm∞(χ) = ‖f‖2H 2‖g‖2BMO(C0)
.

This completes the proof of (a).
For (b), we first observe that Tg1 = g, so that g is in H 2. Applying Tg

inductively to the powers gn, for n = 1, 2, . . ., we get that

‖gn‖H 2 ≤ ‖Tg‖nn!.

Using this and the triangle inequality, we obtain

∥∥ec|Bg|∥∥1/2
L1(T∞)

=
∥∥ec|Bg|/2∥∥

L2(T∞)
≤

∞∑

n=0

(c‖Tg‖
2

)n
,

which implies that ec|Bg| is integrable whenever c < 2/‖Tg‖.
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To prove (c), we use the Littlewood–Paley formula for H2
i (C1/2) and (2.5) to

see that∫

R

∫ ∞

1/2

|f(σ + it)|2 |g′(σ + it)|2
(
σ − 1

2

)
dσ

dt

1 + t2
� ‖Tgf‖2H2

i (C1/2)

� ‖Tgf‖2H 2

≤ ‖Tg‖2‖f‖2H 2 .

This means that

µg(s) = |g′(σ + it)|2
(
σ − 1

2

)
dσ

dt

1 + t2

is a Carleson measure for H 2 in C1/2. By [29, Thm. 3], this implies that µg(s)

is a Carleson measure for the non-conformal Hardy space H2(C1/2), which as in
Lemma 2.2 means that h(s) := g(s)/(s+1/2) is in BMO(C1/2). Indeed, we have
proved that ‖h‖BMO(C1/2) � ‖Tg‖.

Let us show that the factor (s + 1/2)−1 can be removed, so that g is in fact
in BMOA(C1/2). We note first that if |I| ≥ 1, then it follows from the local
embedding (2.4) that

∫

I

|g(1/2 + it)|2 dt� |I| · ‖g‖2H 2 ,

since g is in H 2 by (b). Hence we only need to consider intervals of length
|I| < 1. For a character χ in T∞, we define

hχ(s) :=
gχ(s)

s+ 1/2
.

Clearly, ‖Tgχ‖ = ‖Tg‖ for every χ in T∞. This means that

sup
χ∈T∞

‖hχ‖BMO(C1/2) � ‖Tg‖.

In particular, the BMO-norm of h is uniformly bounded under vertical transla-
tions of g, so that we only need to consider intervals I = [0, τ ] for τ < 1. On
this interval, (s+1/2)−1 and its derivative is bounded from below and above. It
follows that g is in BMO(C1/2). �

Combined with a result from [22], part (b) of Theorem 2.3 yields the following
result.

Corollary 2.4. If Tg is bounded on H 2, then for almost every character χ on
T∞, there is a constant C such that

(2.6) |gχ(σ + it)| ≤ C log
1 + |t|
σ

holds in the strip 0 < σ ≤ 1/2.
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Proof. We assume that Tg is bounded on H 2. Then by part (b) of Theorem 2.3,
there exists a positive number c such that the four functions e±cg and e±icg are
in H 2. Now let f be any of these four functions. Then [22, Thm. 4.2] shows
that, for almost every character χ, there exists a constant C (depending on χ)
such that

|fχ(σ + it)− f(+∞)| ≤ C
1 +

√
|t|

σ

for every point σ + it in C0. Combining the acquired estimates for the four
functions e±cg and e±icg and taking logarithms, we obtain the desired result. �

Our bound (2.6) shows that almost surely |gχ| grows at most as general func-
tions in BMOA(C0) at the boundary of C0. It would be interesting to know if this
result could be strengthened. For instance, is it true that gχ almost surely satis-
fies the BMO condition locally, say on finite intervals, whenever Tg is bounded
on H 2? Note that we cannot hope to have the stronger result that gχ is almost
surely in BMOA(C0). Indeed, the proof of part (a) of Theorem 2.3 gives that if
gχ is in BMOA(Cθ) for one character χ, then this holds for all characters χ. In
view of this fact and what will be shown in Section 4, gχ will in general be in
BMOA(C1/2) and in none of the other spaces BMOA(Cθ) for 0 ≤ θ < 1/2.

2.3. An unbounded Dirichlet series in BMO. The canonical example of an
unbounded function in BMO(R) is log |t|, the primitive of 1/t. The Riemann zeta
function ζ(s) is a meromorphic function with one simple pole, at s = 1. We now
show that the primitive of −(ζ(s)− 1) has bounded mean oscillation on the line
σ = 1. In view of Theorem 2.3, this supplies us with an example of a bounded
Tg-operator.

Theorem 2.5. The Dirichlet series

g(s) :=
∞∑

n=2

1

n log n
n−s.

is in BMOA(C0).

Proof. We will show that g is in BMOA(Cε), with BMO-norm uniformly bounded
in ε > 0. Since g(s−1/2) is in H 2, we can use the local embedding as in the proof
of Theorem 2.3 (c) to conclude that g satisfies the BMO-condition for intervals
of length |I| ≥ 1.

Focusing our attention on short intervals, we fix a real number a and 0 < T < 1
and set

c :=
∑

log n<1/T

1

n1+ε log n
n−ia.
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To prove the theorem, we will show that
∫ a+T

a

|g(ε+ it)− c|2 dt ≤ CT

where C is a universal constant.
Notice first that

∫ a+T

a

|g(ε+ it)− c|2 dt =
∫ T

0

|g̃(ε+ it)− c|2 dt,

where

g̃(s) :=
∞∑

n=2

n−ia

n log n
n−s.

Accordingly, set bn := n−ia/(n log n). Then we have that
(∫ a+T

a

|g(ε+ it)− c|2 dt
)1/2

≤



∫ T

0

∣∣∣∣∣
∑

log n<1/T

bnn
−ε(n−it − 1)

∣∣∣∣∣

2

dt




1/2

+



∫ T

0

∣∣∣∣∣
∑

logn>1/T

bnn
−εn−it

∣∣∣∣∣

2

dt




1/2

.

To deal with the second term, we use the local embedding (2.4) in a similar
manner as above, using now that

∫ T

0

|f(1/2 + ε+ it)|2 dt� ‖f‖2H 2

in this case, since T < 1. This gives us that

∫ T

0

∣∣∣∣∣
∑

log n>1/T

bnn
−εn−it

∣∣∣∣∣

2

dt ≤
∑

log n>1/T

n|bn|2 � T,

as desired.
For the first term, we compute:

(2.7)
∫ T

0

∣∣∣∣∣
∑

log n<1/T

bnn
−ε(n−it − 1)

∣∣∣∣∣

2

dt =
∑

logm<1/T
log n<1/T

bnbm(mn)−εhmn(T ),

where

hmn(T ) :=
(n/m)−iT − 1

i log m
n

− n−iT − 1

i log 1
n

− (1/m)−iT − 1

i logm
+ T.
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We write hmn as a Taylor series in T , whence

hmn(T ) =
∞∑

k=3

dkmnT
k,

where

dkmn :=
(−i)k−1

k!

((
log

n

m

)k−1

− (log n)k−1 −
(
log

1

m

)k−1
)
.

The point is that in the coefficient dkmn, the terms of order (logm)k−1 and
(log n)k−1 cancel. Estimating the remaining terms in a crude manner, we have
that

|dkmn| �
2k

k!

k−2∑

j=1

(logm)j(log n)k−j−1.

Note that for 1 ≤ j ≤ k − 2, we have

T k
∑

logm<1/T
log n<1/T

|bn||bm|(logm)j(log n)k−j−1 � T.

We observe that this inequality fails if j = 0 or j = k − 1, corresponding to the
terms which disappear from dkmn.

Combining these estimates with (2.7) we obtain
∫ T

0

∣∣∣∣∣
∑

log n<1/T

bnn
−ε(n−it − 1)

∣∣∣∣∣

2

dt� T

also for the first term, concluding the proof. �

3. Multiplicative symbols

In this section, we study symbols of the form

(3.1) g(s) =
∞∑

n=2

ψ(n)

log n
n−s,

where ψ(n) is a positive multiplicative function. We know from the previous
section that if ψ(n) = n−1, then g is in BMOA(C0), and therefore g is in X . We
begin by considering the distinguished case when the function ψ(n) corresponds
to horizontal shifts of the Riemann zeta function. To be more precise, our first
task will be to show that g is not in X when g is the function in BMOA(C1−α)
with coefficients given by ψ(n) = n−α and 1/2 ≤ α < 1. In particular, this
means that the Dirichlet series g(s) =

∑
n≥2 1/(

√
n log n)n−s, identified in [14]

as the symbol of the multiplicative analogue of Hilbert’s matrix and shown there
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to generate a bounded multiplicative Hankel form, is indeed far from belonging
to X , as it corresponds to the case α = 1/2.

In this section and the next, we will be working at the level of coefficients.
Observe that if f(s) =

∑
n≥1 ann

−s and g(s) =
∑

n≥2 bn/(log n)n
−s, then

Tgf(s) =

∞∑

n=2

1

log n

(∑

k|n
k<n

akbn/k

)
n−s.

Since the operator

a1 +

∞∑

n=2

ann
−s 7→ a1 +

∞∑

n=2

an
log n

n−s

is trivially bounded and even compact on H 2, we will sometimes tacitly replace
Tg with T̃g,

T̃gf(s) :=
∞∑

n=2

1

log n

(∑

k|n
akbn/k

)
n−s,

where it is understood that b1 = 1.

Theorem 3.1. Tg is unbounded when g is the primitive of ζ(s + α) − 1 and
α < 1.

Proof. If f(s) =
∑

n≥1 ann
−s, then with the convention just described, we have

that

Tgf(s) =
∞∑

n=2

1

nα log n

∑

k|n
akk

αn−s.

We now choose f(s) =
∏J

j=1(1 + p−s
j ), which satisfies ‖f‖H 2 = 2J/2. Let J be

a subset of {1, ..., J}.
Choosing n = nJ , where

nJ :=
∏

j∈J

pj ,

we see that ∑

k|nJ

akk
α = nαJ

∏

j∈J

(1 + p−α
j ).

It follows that
∥∥Tgf

∥∥2
H 2 =

∑

J 6=∅

1

(log nJ )2

∏

j∈J

(1 + p−α
j )2,

which gives
∥∥Tgf

∥∥2
H 2 ≥ 2J−1 min

|J |≥J/2

1

(log nJ )2

∏

j∈J

(1 + p−α
j )2.
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We conclude that
∥∥Tgf

∥∥2
H 2 � ecJ

1−α(log J)−α‖f‖2H 2

for an absolute constant c. �

The preceding clarification of the case of horizontal shifts of primitives of the
Riemann zeta function motivates a more careful examination of what we need to
require from the multiplicative function ψ(n) in (3.1) for g to belong to X . We
will now see that a surprisingly precise answer can be given if we make a slight
modification of the Euler product associated with ζ(s).

We will need the following simple decomposition of bounded Tg-operators.
Let Mh,x denote the truncated multiplier associated with h(s) =

∑
n≥1 cnn

−s

and x ≥ 1:

Mh,xf(s) :=
∑

n≤x

(∑

k|n
ckan/k

)
n−s,

where f(s) =
∑

n≥1 ann
−s. We observe that Mh,x acts boundedly on H 2 for

every Dirichlet series h, but the point of interest is to understand how the norm
of Mh,x grows with x. Truncated multipliers are linked to Tg by the following
lemma.

Lemma 3.2. Suppose that Tg acts boundedly on H 2. Then

3

4

∞∑

k=0

4−k
∥∥Mg′,e2k f

∥∥2
H 2 ≤ ‖Tgf‖2H 2 ≤ 4

∞∑

k=0

4−k
∥∥M

g′,e2k f
∥∥2

H 2

for every f in H 2.

Proof. We start from the expression

‖Tgf‖2H 2 =
∞∑

n=2

1

(log n)2

∣∣∣∣∣
∑

k|n
bk(log k)an/k

∣∣∣∣∣

2

,

which we split into blocks in the following way:

∞∑

k=0

1

4k

∑

e2k−1<n≤e2k

∣∣∣∣∣
∑

k|n
bk(log k)an/k

∣∣∣∣∣

2

≤ ‖Tgf‖2H 2 ,

‖Tgf‖2H 2 ≤ 4
∞∑

k=0

1

4k

∑

e2k−1<n≤e2k

∣∣∣∣∣
∑

k|n
bk(log k)an/k

∣∣∣∣∣

2

.
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The upper bound is immediate from the right inequality, and the lower bound
follows from the left inequality and the fact that

∑

e2k−1<n≤e2k

∣∣∣∣∣
∑

k|n
bkan/k

∣∣∣∣∣

2

=
∥∥M

g′,e2k f
∥∥2

H 2 −
∥∥M

g′,e2k−1 f
∥∥2

H 2 . �

The preceding lemma, which says that Tg is bounded whenever the norm of
Mg′,x grows roughly as log x, connects the study of Tg to the truncated multipliers
considered by Hilberdink [24] in a purely number theoretic context. Based on
this observation, we shall now present a natural scale of multiplicative symbols
gλ, where 0 < λ <∞, such that gλ induces a bounded Tg-operator if and only if
λ ≤ 1. We shall later see, in Section 7, that Tgλ is non-compact for the pivotal
point λ = 1.

Theorem 3.3. For 0 < λ < ∞, let g be the Dirichlet series (3.1), where
ψ(n) is the completely multiplicative function defined on the primes by ψ(p) :=
λp−1(log p). Then Tg is bounded if and only if λ ≤ 1.

Proof. We begin with the case λ < 1, for which we adapt the proof of [24,
Thm. 2.3]. Hence we let ϕ(n) be an arbitrary positive arithmetic function and
note that the Cauchy–Schwarz inequality implies that

‖Mg′,xf‖2H 2 =
∑

n≤x

∣∣∣∣∣
∑

d|n
ψ(d)an/d

∣∣∣∣∣

2

≤
∑

n≤x

∑

d|n

ψ(d)

ϕ(d)

∑

k|n
ψ(k)ϕ(k)|an/k|2.

We therefore find that

(3.2) ‖Mg′,x‖2H 2 ≤
∑

n≤x

ϕ(n)ψ(n)max
m≤x

∑

d|m

ψ(m)

ϕ(m)
.

We now require that ϕ be a multiplicative function satisfying

ϕ(pk) :=

{
1, p ≤M,

K
∑∞

r=1 ψ(p
r), p > M,

where the positive parameters K and M will be determined later. We find that
∑

n≤x

ϕ(n)ψ(n) ≤
∏

p

(
1 +

∞∑

k=1

ϕ(pk)ψ(pk)

)

≤ exp

( ∑

p≤M

∞∑

k=1

ψ(pk) +K
∑

p>M

( ∞∑

k=1

ψ(pk)

)2)

= exp

( ∑

p≤M

λp−1 log p

1− λp−1 log p
+K

∑

p>M

λ2p−2(log p)2

(1− λp−1 log p)2

)
.
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By Abel summation and the prime number theorem in the form

π(y) =
y

log y
+

y

(log y)2
+O

(
y

(log y)3

)
,

we infer that

(3.3)
∑

n≤N

ϕ(n)ψ(n) ≤ exp

(
λ logM +O(1) +O

(
K

logM

M

))
.

We now turn to the second factor on the right-hand side of (3.2). We then use
that also

Φ(m) :=
∑

d|m

ψ(d)

ϕ(d)

is a multiplicative function. We observe that

Φ(pk) =
k∑

r=0

ψ(pr)

ϕ(pr)
≤
{
1 +

∑∞
r=1 ψ(p

r), p ≤M,

1 +K−1, p > M.

Consequently

Φ(m) ≤
∏

p≤M

(
1 +

∞∑

r=1

ψ(pr)

)
(
1 +K−1

)ω(m)

≤ exp

(
λ logM +O(1) +O

(
K−1 log x

log2 x

))
,

(3.4)

where we used that ω(m) � log(m)/ log2(m). If we now choose M = log x,
K = (log x)/ log2 x, and insert (3.3) and (3.4) into (3.2), then we find that

‖Mg′,x‖2 ≤ C(log x)2λ.

Finally, we invoke Lemma 3.2 and conclude that Tg is bounded whenever λ < 1.
To show that Tg is bounded when λ = 1 we modify the proof. In addition to

the function ϕ(n), we use another auxiliary function hx(n) and use the Cauchy–
Schwarz inequality to obtain

‖Mg′,xf‖2H 2 =
∑

n≤x

∣∣∣∣∣
∑

d|n
ψ(d)an/d

∣∣∣∣∣

2

≤
∑

n≤x

∑

d|n

ψ(d)

ϕ(d)hx(n/d)

∑

k|n
ψ(k)ϕ(k)|an/k|2hx(n/k).

We require from hx(n) that

sup
m

∑

e2k≥m

h
e2k

(m) <∞.
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This will ensure boundedness if we can prove that

Φh(m) :=
∑

d|m

ψ(d)

ϕ(d)hx(m/d)

enjoys the same uniform bound as that we found for Φ(m) for a suitable hx(n).
To this end, we choose

hx(n) =

{
1,

√
x < n ≤ x,

exp
(
−2 log2

log x
logn+1

)
, 1 ≤ n ≤ √

x,

which implies that

Φh(m) ≤ Φ(m)e2 log3 x ≤ exp (log2m+ 2 log3 x+O(1)) .

This means that in what follows, we may assume that log(m) ≥ (log x)/(log2 x)
2.

Using again the definition of hx(n), we also obtain, for δ > 0,

(3.5)
∑

d|m
m/d≥xδ

ψ(d)

ϕ(d)hx(m/d)
≤ Φ(m)e2 log2

1
δ .

On the other hand, if m = xβ with 0 < β < 1, then arguing as before and
choosing the same M and K, we get

Φ(m) ≤ exp

(
log2 x− log

1

β
+O(1)

)
.

Hence, with β = logm/ log x and δ = β/2, we find in view of (3.5) that
∑

d|m
d≤√

m

ψ(d)

ϕ(d)hx(m/d)
≤ C log x.

It remains to estimate

(3.6)
∑

d|m
d≥√

m

ψ(d)

ϕ(d)hx(m/d)
≤ e2 log3 x

∑

d|m
d≥√

m

ψ(d)

ϕ(d)
.

Note first that
∑

d|m
d≥√

m

ψ(d)

ϕ(d)
≤ m−ε/2

∑

d|m

dεψ(d)

ϕ(d)
=: m−ε/2E(m).

The definition of E(m) shows that, in particular,

E(pk) =
k∑

r=0

pεrψ(pr)

ϕ(pr)
≤
{
(1− pεψ(p))−1, p ≤M,

1 +K−1pε(1− ψ(p))/(1− pεψ(p)), p > M.
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We may assume that ε is so small that the factor (1 − ψ(p))/(1 − pεψ(p)) does
not exceed 2. Letting P denote an arbitrary finite set of primes p, we then get
that

E(m) ≤
∏

p≤logm

(1− pεψ(p))
−1

max
P :

∑
p∈P log p≤logm

∏

p∈P

(
1 + 2K−1pε

)

≤ exp

(
(logm)ε log2m+ 2K−1 max

log x
log2 x≤p≤x

pε

log p
logm+O(1)

)
.

We now choose

ε :=
4 log3 x

logm
.

Then the latter estimate becomes

E(m) ≤ exp

(
(logm)ε log2m+K−1 (log x)

ε

log2 x
logm

)

≤ exp (log2m+O(1)) ≤ exp (log2 x+O(1)) .

We finally observe that the factor m−ε/2 will take care of the term log3 x in the
exponent on the right-hand side of (3.6).

Following an insight of Gál [19], we argue in the following way in order to show
that Tg is unbounded when λ > 1. We start from the fact that

∏

p≤y

p = ey(1+o(1)),

which is a consequence of the prime number theorem. We let ϕ(n) be the multi-
plicative function defined by setting

ϕ(pr) :=

{
1, p ≤ log x

log2 x and r ≤ 1
2 log2 x,

0, otherwise.

Then ϕ(n) = 0 for n > x if x is large enough. We set an := ϕ(n)/(
∑

n ϕ(n))
1/2

and use the Cauchy–Schwarz inequality to see that

(∑

n≤x

∣∣∣∣∣
∑

d|n
adψ(n/d)

∣∣∣∣∣

2)1/2

≥
∑

n ϕ(n)
∑

d|n ϕ(d)ψ(n/d)∑
n ϕ(n)

.
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To simplify the writing, we set y := log x/ log2 x and ` := b 1
2 log2 xc. Then we

infer from the preceding estimate that
( ∑

n≤N

∣∣∣∣∣
∑

d|n
adψ(n/d)

∣∣∣∣∣

2)1/2

≥
∏

p≤y

1 + `+ `ψ(p) + (`− 1)ψ(p2) + · · ·+ ψ(p`)

1 + `

≥
∏

p≤y

(
1 +

`

`+ 1
ψ(p)

)
= exp

(
λ`

`+ 1
log y +O(1)

)

≥ (log x)λ
′

for some 1 < λ′ < λ when x is sufficiently large. We appeal again to Lemma 3.2
to conclude that Tg is unbounded. �

We notice that, clearly, the symbol g is not in BMOA(C0) for any λ > 0. In
fact, for σ > 0,

∞∑

n=1

ψ(n)n−σ =
∏

p

(
1− ψ(p)p−σ

)−1 � exp

(
λ
∑

p

log p

p1+σ

)
� eλ/σ,

which shows that g is not even in the Smirnov class of C0.

4. Homogeneous symbols and coefficient estimates

The multiplicative symbols of the previous section represent analytic functions
in C0. However, we saw in Theorem 2.3 that for Tg to be bounded, it is necessary
that g be in BMOA(C1/2). We will begin this section by showing that the latter
condition cannot be relaxed by much. Indeed, to begin with, we will prove that
linear Dirichlet series give examples of bounded Tg-operators with symbols g
converging in C1/2 but in no larger half-plane.

Theorem 4.1. Let g(s) =
∑

p bpp
−s be any linear symbol in H 2. Then ‖Tg‖ =

‖g‖H 2 .

Proof. We consider an arbitrary function f(s) =
∑

n≥1 ann
−s in H 2 and com-

pute:

‖Tgf‖2H 2 =
∞∑

n=2

1

(log n)2

∣∣∣∣∣
∑

p|n
bp(log p)an/p

∣∣∣∣∣

2

.

By the Cauchy–Schwarz inequality
∣∣∣∣∣
∑

p|n
bp(log p)an/p

∣∣∣∣∣

2

≤
(∑

p|n
log p

)(∑

p|n
|bp|2(log p)|an/p|2

)

≤ (log n)
∑

p|n
|bp|2(log p)|an/p|2.
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This shows that ‖Tg‖ ≤ ‖g‖H 2 . Since Tg1 = g, clearly ‖Tg‖ ≥ ‖g‖H 2 . �

We note that the space of linear symbols g in H 2 is embedded not only in
BMOA(C1/2) but in fact satisfies the local Dirichlet integral condition

∫ 1

0

∫ 1

1/2

|g′(σ + it)|2dσdt� ‖g‖22,

as shown in [28, Example 4]. We do not know if this stronger embedding can be
established for a general symbol in X .

While the norm of a linear function g viewed as an element in the dual of
H 1 is also equivalent to ‖g‖H 2 (see [23]), there is a striking contrast between
the preceding result and the characterization of linear multipliers. Indeed, let
again Mg denote the operator of multiplication by g on H 2, and recall that
‖Mg‖ = ‖g‖∞. (see [22, Thm. 3.1]). Hence, in the special case when g is linear,
it follows from Kronecker’s theorem that

‖Mg‖ = ‖g‖∞ = sup
σ>0

∣∣∣∣∣
∑

p

bpp
−s

∣∣∣∣∣ =
∑

p

|bp|.

The difference between a linear symbol g acting as a multiplier Mg and as a
symbol of the Volterra operator Tg is therefore dramatic: A bounded multiplier
has coefficients in `1, while the boundedness of Tg means that the coefficients
are in `2. The former implies absolute convergence in C0 and the latter only in
C1/2.

We may understand the phenomenon just observed in the following way. For
a general symbol g(s) =

∑
n≥1 bnn

−s, we have, using also (2.3), the series of
inequalities

(4.1)

( ∞∑

n=1

|bn|2
)1/2

≤ ‖Tg‖ ≤ 2‖g‖∞ ≤ 2
∞∑

n=1

|bn|.

The case of linear functions shows that neither the left nor the right inequality can
be improved. Loosely speaking, the maximal independence between the terms
in a linear symbol serves to make ‖Tg‖ minimal and thus equal to ‖g‖2 and,
at the same time, to make ‖Mg‖ maximal and hence equal to

∑
n≥1 |bn|. This

motivates an investigation of what happens when the dependence between the
terms in the symbol increases. Such a study, originating in the classical work of
Bohnenblust and Hille [9], has already been made in the case of multipliers, in
terms of m-homogeneous Dirichlet series. We will now follow the same path for
Tg-operators.
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Recall that Ω(n) gives the number of prime factors in n, counting multiplicities.
An m-homogeneous Dirichlet series is of the form

(4.2) g(s) :=
∑

Ω(n)=m

bnn
−s.

In this terminology, linear symbols are 1-homogeneous Dirichlet series. A precise
relationship between boundedness and absolute convergence for m-homogeneous
Dirichlet series was found in [5, 27]:

∑

Ω(n)=m

|bn|
(log n)

m−1
2

n
m−1
2m

≤ Cm

∥∥∥∥∥
∑

Ω(n)=m

bnn
−s

∥∥∥∥∥
∞
.

Here the exponent of log n on the left-hand side cannot be improved. Making
the choice m =

√
log n/ log2 n in (4.2), we may obtain the following statement:

If for some c, C > 0 we have

(4.3)
∞∑

n=1

|bn|
exp

(
c
√
log n log2 n

)
√
n

≤ C

∥∥∥∥∥
∞∑

n=1

bnn
−s

∥∥∥∥∥
∞
,

then c < 1. It was later shown in [16, 17] that (4.3) holds for c < 1/
√
2, and that

this is optimal.
The series of inequalities (4.1) suggests that we should search for upper `2-

estimates for ‖Tg‖ as the appropriate analogues of the lower `1 estimates (4.2)
and (4.3). Therefore, we now aim at finding weights wm(n) such that

(4.4) ‖Tg‖ ≤
( ∑

Ω(n)=m

|bn|2wm(n)

) 1
2

for g(s) =
∑

Ω(n)=m

bnn
−s.

The crucial ingredient in the proof of Theorem 4.1 which covers the case m = 1,
is the estimate ∑

p|n
log p ≤ log n.

To find a replacement for this estimate, we argue as follows. Observe that if
m ≤ Ω(n), then

∑

k|n
Ω(k)=m

log k ≤
∑

p1|n

∑

p2|n
· · ·
∑

pm|n
log(p1p2 · · · pm)

= m
∑

p1|n
· · ·
∑

pm|n
log pm = mω(n)m−1 log n.

(4.5)
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This is sharp, up to a constant depending only on m. Indeed, let n be square-free,
so that Ω(n) = ω(n). Then

∑

k|n
Ω(k)=m

log k =
∑

p|n

∑

p|k|n
ω(k)=m

log p =
∑

p|n
(log p)

(
ω(n)− 1

m− 1

)
= (log n)

(
ω(n)− 1

m− 1

)
.

This gives us an example of an admissible weight w2(n), since ω(n)/ log n is
bounded. It turns out that we can obtain the following optimal result from (4.5).

Theorem 4.2. The inequality in (4.4) holds when m = 2 with the weight function

(4.6) w2(n) = C2
log n

log2 n

and C2 an absolute constant. This is sharp in the sense that we cannot replace
log2 n in (4.6) by (log2 n)

1+ε for any ε > 0. When m ≥ 3, the inequality in (4.4)
holds with

(4.7) wm(n) = Cm
n

m−2
m

(log n)m−2

and Cm an absolute constant. This is also sharp in the sense that we cannot
replace (log n)m−2 in (4.7) by (log n)m+ε−2 for any ε > 0.

Proof. To prove that (4.6) is sufficient, we let Tg act on f(s) =
∑

n≥1 ann
−s. By

the Cauchy–Schwarz inequality,

‖Tgf‖2H 2 ≤
∞∑

n=2

1

(log n)2

( ∑

k|n
Ω(k)=2

(log2 k) log k

)( ∑

k|n
Ω(k)=2

|bk|2
log k

log2 k
|an/k|2

)

≤
∞∑

n=2

log2 n

(log n)2

( ∑

k|n
Ω(k)=2

log k

)( ∑

k|n
Ω(k)=2

|bk|2
log k

log2 k
|an/k|2

)
.

We complete the proof by using (4.5) and the well known estimate ω(n) �
log n/(log2 n).

To prove that (4.6) is best possible, we assume that there is some ε > 0 such
that

‖Tg‖ ≤ C2

( ∑

Ω(n)=2

|bn|2
log n

(log2 n)
1+ε

) 1
2

for every 2-homogeneous Dirichlet series g. Let x be a large real number and
consider the symbol

g(s) =
∑

x/2<p≤x

(log2(pq))
1+ε/2

p
(pq)−s,
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where q ∼ ex is a prime number. The weight condition is then satisfied uniformly
in x, since

∑

Ω(n)=2

|bn|2
log n

(log2 n)
1+ε

=
∑

x/2<p≤x

log(pq) log2(pq)

p2
� x log x

x2
π(x) � 1.

We now want to show that ‖Tg‖ is unbounded as x → ∞, and choose as a test
function

(4.8) f(s) :=
∏

x/2<p≤x

(
1 + p−s

)
.

Let Sx denote the set of square-free numbers generated by the primes x/2 < p ≤
x, so that ‖f‖2H 2 = |Sx| = 2N(x), where N(x) := π(x) − π(x/2). Note that if n
is in Sx, then ω(n) ≤ N(x). It follows from the prime number theorem that

N(x) ∼ x

2 log x
.

Set Vx := {n ∈ Sx : ω(n) ≥ N(x)/2}. By the symmetry of the binomial expan-
sion

|Sx| =
N(x)∑

n=0

(
N(x)

n

)
=

∑

n<N(x)/2

(
N(x)

2

)
+ |Vx|,

we find that |Vx| ∼ |Sx|/2. Then

‖Tg‖2 ≥ ‖Tgf‖2H 2

‖f‖2H 2

≥ 1

|Sx|
∑

n∈Vx

1

(log(nq))
2

∣∣∣∣∣
∑

pq|nq

(log2(pq))
1+ε/2

p
log(pq)

∣∣∣∣∣

2

≥ 1

|Sx|
∑

n∈Vx

∣∣∣∣∣
∑

p|n

(log2 q)
1+ε/2

p

∣∣∣∣∣

2

� 1

|Sx|
∑

n∈Vx

∣∣∣∣∣
(log x)1+ε/2

x
ω(n)

∣∣∣∣∣

2

� (log x)ε,

giving the desired conclusion.
The proof that (4.7) is sharp is similar. Let ε > 0 be given and consider

g(s) =
∑

n∈Sx
ω(n)=m

n−1+1/m(log n)m−1+ε/2n−s.

We observe that
∑

Ω(n)=m

|bn|2n1−2/m(log n)2−m−ε =
∑

n∈Sx
ω(n)=m

(log n)m

n
� (log x)m

xm
(π(x))m � 1.
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Now, if n is in Sx, then it follows from the prime number theorem that log n� x.
As test function, we use again (4.8). The function

t 7→ t−1+1/m(log t)m−1+ε/2

is eventually decreasing for every m ≥ 3 and every ε > 0. We find that

‖Tg‖2 ≥ ‖Tgf‖2H 2

‖f‖2H 2

≥ 1

|Sx|
∑

n∈Vx

1

(log n)2

∣∣∣∣∣
∑

k|n
Ω(k)=m

k−1+1/m(log k)m−1+ε/2

∣∣∣∣∣

2

� 1

|Sx|
∑

n∈Vx

1

x2

∣∣∣∣∣x
−m+1(log x)m+ε/2

(
ω(n)

m

)∣∣∣∣∣

2

� (log x)ε
1

|Sx|
∑

n∈Vx

1 � (log x)ε,

where we used that k ≤ xm in the inner sum.
It remains to establish that (4.4) holds with the weight (4.7). Let Tg act on

f(s) =
∑

n≥1 ann
−s. By the Cauchy–Schwarz inequality,

‖Tgf‖2H 2 ≤
∞∑

n=2

1

(log n)2

( ∑

k|n
Ω(k)=m

k2/m−1(log k)m

)

×
( ∑

k|n
Ω(k)=m

|bk|2k1−2/m(log k)2−m|an/k|2
)
.

Hence it suffices to show that

Am(n) :=
∑

k|n
Ω(k)=m

k2/m−1(log k)m � (log n)2.

Suppose that n has the prime factorization n = (pj)
κ. Let κ̃ denote a decreasing

rearrangement of κ and let ñ = (pj)
κ̃. The function

t 7→ t2/m−1(log t)m

is eventually decreasing for every m ≥ 3, so clearly Am(n) � Am(ñ). On the
other hand ñ ≤ n, so we may without loss of generality assume that n = ñ.
Hence, we have that

n = pκ1
1 · · · pκd

d ,

where κ1 ≥ κ2 ≥ · · · ≥ κd > 0. By the prime number theorem,

(4.9) pd ∼
∑

p≤pd

log p = log

(
d∏

j=1

pj

)
≤ log n.

255



By summing over the largest prime first, we find that

Am(n) ≤
∑

p≤pd

(m log p)mp2/m−1

(∑

q≤p

q2/m−1

)m−1

�
∑

p≤pd

p(log p) � p2d � (log n)2

using the prime number theorem twice. �

As promised, Theorem 4.2 exhibits m-homogeneous Dirichlet series g in X
that converge in C1/m, but in no larger half-plane, for every m ≥ 2. This can be
loosely interpreted as saying that the more prime factors we have in each non-
zero term, the closer we get to the half-plane C0. In this sense, the multiplicative
symbols of Section 3 correspond to m = ∞, and it is therefore not surprising that
they converge in C0.

Setting m =
√

2 log n/ log2 n, we are led to a family of weights w (cf. (4.3))
that give estimates of the type (4.4) with no reference to homogeneity, allowing
arbitrary Dirichlet series g.

Theorem 4.3. If c < 2, then

(4.10) ‖Tg‖ ≤ C

( ∞∑

n=2

|bn|2n exp
(
−c
√

log n log2 n
)) 1

2

.

Conversely, if (4.10) holds for every Tg-operator, then c ≤ 2
√
2.

Proof. We observe first that we must have c ≤ 2
√
2 for (4.10) to hold in view of

the sharpness of Theorem 4.2 and the fact that

n1−2/m

(log n)m−2
= n(log n)2 exp

(
−2

√
2
√
log n log2 n

)
,

if m =
√

2 log n/ log2 n.
It remains therefore only to show the positive result that (4.10) holds whenever

0 < c < 2. To simplify the notation, we set ϕc(k) := exp
(
c
√

log k log2 k
)
. By

the Cauchy–Schwarz inequality,

‖Tgf‖2H 2 ≤
∞∑

n=2

1

(log n)2

(∑

k|n

ϕc(k)

k
(log k)2

)(∑

k|n
|bk|2

k

ϕc(k)
|an/k|2

)
.

Choosing some c′, c < c′ < 2, we find that
∑

k|n

ϕc(k)

k
(log k)2 �

∑

k|n

ϕc′(k)

k
=: A(n)
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The rest of the proof is devoted to showing that A(n) � (log n)2, which is
precisely what is needed.

Since x 7→ ϕc′(x)/x is eventually decreasing on [1,∞), we may, as in the
last part of the proof of Theorem 4.2, assume that n = ñ. By splitting into
homogeneous parts and using (4.9), we find that

A(n) =
∑

m≤Ω(n)

∑

k|n
Ω(k)=m

ϕc′(k)

k
≤

∑

m≤Ω(n)

ϕc′ ((log n)
m)

∑

k|n
Ω(k)=m

1

k
.

In each inner sum
∑
k−1, we divide every prime factor of k by some a > 0 and

then bound the resulting sum by an Euler product (Rankin’s trick), to obtain
that

∑

k|n
Ω(k)=m

1

k
≤ a−m

∏

p|n

(
1− a

p

)−1

= a−m exp

(
a
∑

p|n

1

p
+O(1)

)
� a−m exp

(
a
∑

p≤pd

1

p

)

� a−m exp (a log2 pd) ≤ exp (−m log a+ a log3 n) .

Choosing a := m/(log3 n), we obtain in total

A(n) ≤
∑

m≤Ω(n)

exp
[
c′
√
m(log2 n)(logm+ log3 n)−m logm+m log4 n+m

]

� Ω(n) +
∑

m≤log2 n

exp
[
c′
√

2m(log2 n)(log3 n)−m logm+m log4 n+m
]
,

where we first used that the exponential in the sum is bounded when m ≥ log2 n,
and then that logm ≤ log3 n when m ≤ log2 n. To estimate the final sum, we
use calculus to conclude that the index m of the largest term should satisfy

c′2

2
(log2 n)(log3 n) = m (logm− log4 n)

2
,

and we see that m = (c′2/2 + o(1)) log2 n/ log3 n. Combining this with the stan-
dard estimate Ω(n) ≤ log n/ log 2, we find that

A(n) � log n+ (log2 n) exp

((
c′2

2
+ o(1)

)
(log2 n)

)
� (log n)2,

whenever c′2 < 4, which is the desired estimate. �
It is not surprising that there is a gap between the necessary and sufficient

conditions of Theorem 4.3. When considering the inequality (4.3), the neces-
sary condition obtained from m-homogeneous Dirichlet series misses the sharp
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condition, also by a factor
√
2. In the latter case, the proof of the sharp neces-

sary condition captures cancellations by L∞ estimates for random trigonometric
polynomials [16]. This suggests that our arguments, which only deal with the
absolute values of the coefficients of g, cannot be expected to tell the full story.

5. Boundedness of Tg on H p

5.1. Carleson measure characterization. We will now consider the action of
the Volterra operator Tg on the Hardy spaces H p, for 0 < p <∞. To this end,
we recall that Xp denotes the space of symbols g in D such that the Volterra
operator Tg acts boundedly on H p, and we set

‖g‖Xp
:= ‖Tg‖L (H p).

We will now establish our characterization of the elements of Xp in terms of
Carleson measures.

Applying the Littlewood–Paley formula (2.2) to Tgf , we immediately obtain
a characterization of the symbols g that belong to X2: g is in X2 if and only if
it there is a positive constant C(g) such that

‖Tgf‖2H 2 �
∫

T∞

∫

R

∫ ∞

0

|fχ(σ + it)|2|g′χ(σ + it)|2σ dσ dt

1 + t2
dm∞(χ)

≤ C(g)2‖f‖2H 2 .

Using Fubini’s theorem, we may remove the integral over R, since each t repre-
sents a rotation in each variable on T∞. From this observation we obtain the
characterization

(5.1)
∫

T∞

∫ ∞

0

|fχ(σ)|2 |g′χ(σ)|2 σdσ dm∞(χ) ≤ C(g)2‖f‖2H 2 .

Clearly, the smallest constant C(g) in (5.1) satisfies C(g) � ‖Tg‖L (H 2).

Theorem 5.1. Tg acts boundedly on H p for 0 < p < ∞ if and only if there is
a positive constant C(g, p) such that

(5.2)
∫

T∞

∫ ∞

0

|fχ(σ)|p|g′χ(σ)|2σ dσdm∞(χ) ≤ C(g, p)2‖f‖pH p ,

for all f ∈ H p. Furthermore, if

(5.3) C(g, p) := sup
‖f‖H p=1

(∫

T∞

∫ ∞

0

|fχ(σ)|p|g′χ(σ)|2σ dσdm∞(χ)

) 1
2

,

then C(g, p) � ‖Tg‖L (H p).
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We observe that if we restrict to only one variable, meaning that we consider
only Dirichlet series over powers of a single prime, then the condition of Theo-
rem 5.1 is independent of p and reduces to the familiar one variable description
of BMOA(D).

Our proof of Theorem 5.1 adapts arguments from [31], the main difference
being that we will additionally integrate every quantity over T∞. Before giving
the proof, we collect some preliminary results. By using Fubini’s theorem once
more, we find that (5.2) is equivalent to

(5.4)
∫

T∞

∫

R

∫ ∞

0

|fχ(σ+it)|p|g′χ(σ+it)|2σ dσ
dt

1 + t2
dm∞(χ) ≤ C(g, p)2‖f‖pH p .

The virtue of introducing an extra parameter in (5.4) is that it allows us to
apply techniques adapted to the conformally invariant Hardy space Hp

i (C0). In
addition to the Littlewood–Paley formula (2.2), we will use the square function
formula

(5.5) ‖f‖pH p � |a1|p +
∫

T∞

∫

R

(∫

Γτ

|f ′χ(σ + it)|2 dσ dt
)p/2

dτ

1 + τ2
dm∞(χ),

which can be found in [13, Thm. 7]. Here, for τ in R, Γτ is the cone

Γτ = {σ + it : |t− τ | < σ}.
For a holomorphic function f in C0, let f∗ denote the non-tangential maximal
function

(5.6) f∗(τ) := sup
s∈Γτ

|f(s)|, τ ∈ R.

Since 1/(1 + τ2) is a Muckenhoupt Aq-weight for all q > 1, it follows from the
work of Gundy and Wheeden [21] that f is in Hp

i (C0) if and only if f∗ is in
Lp
i (R) = Lp

(
(1 + τ2)−1 dτ

)
for 0 < p <∞, with comparable norms.

Lemma 5.2. Let ϕ be a function and µ a positive measure on {σ+ it : 0 < σ <
1}. Then

(5.7)
∫

R

∫ 1

0

|ϕ(σ + it)|dµ(σ, t) �
∫

R

∫

Γτ

|ϕ(σ + it)|1 + t2

σ
dµ(σ, t)

dτ

1 + τ2
.

If µ is a positive measure on all of C0, then

(5.8)
∫

R

∫ ∞

0

|ϕ(σ + it)|dµ(σ, t) �
∫

R

∫

Γτ

|ϕ(σ + it)|1 + t2

σ
dµ(σ, t)

dτ

1 + τ2
.

Proof. For σ + it in C0, we consider the set I(σ + it) := {τ ∈ R : σ + it ∈ Γτ}.
A computation shows that

∫

I(σ+it)

dτ

1 + τ2
� σ

1 + t2
, 0 < σ ≤ 1
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and that ∫

I(σ+it)

dτ

1 + τ2
� σ

1 + t2
, 0 < σ <∞.

The estimates (5.7) and (5.8) now follow from Fubini’s theorem. �

Proof of Theorem 5.1. We may assume that g is in H p since otherwise Tg is
trivially unbounded. Thus, for almost every χ in T∞, the measure

µg,χ(σ, t) = |g′χ(σ + it)|2 σdσ dt

1 + t2

is well-defined on C0.
Suppose first that p ≥ 2 and that (5.4) is satisfied. Then by the Littlewood–

Paley formula (2.2), Hölder’s inequality, and two applications of (5.4), we have
that

‖Tgf‖pH p �
∫

T∞

∫

R

∫ ∞

0

|(Tgf)χ(σ + it)|p−2|fχ(σ + it)|2dµg,χ(σ, t) dm∞(χ)

≤
(∫

T∞

∫

R

∫ ∞

0

|(Tgf)χ|pdµg,χ(σ, t) dm∞(χ)

) p−2
p

×
(∫

T∞

∫

R

∫ ∞

0

|fχ|pdµg,χ(σ, t) dm∞(χ)

) 2
p

� C(g, p)2‖Tgf‖p−2
H p‖f‖2H p ,

giving us that ‖Tgf‖H p � C(g, p)‖f‖H p .
Suppose now that Tg acts boundedly on H p, still considering p ≥ 2. By

(5.7), Hölder’s inequality, (5.6), (2.1), and the square function characterization,
we have
∫

T∞

∫

R

∫ 1

0

|fχ|pdµg,χ dm∞

�
∫

T∞

∫

R

∫

Γτ

|fχ(σ + it)|p|g′χ(σ + it)|2dσdt dτ

1 + τ2
dm∞(χ)

≤
∫

T∞

∫

R

(
f∗χ(τ)

)p−2
∫

Γτ

|(Tgf)
′
χ|2dσdt

dτ

1 + τ2
dm∞(χ)

≤ ‖f‖p−2
H p‖Tgf‖2H p � ‖Tg‖2L (H p)‖f‖pH p .

The remaining integral can be estimated using the uniform pointwise estimates
that hold for f and g in H p in the half-plane Re(s) ≥ 1, yielding that
∫

T∞

∫

R

∫ ∞

1

|fχ|pdµg,χ(σ, t) dm∞(χ) � ‖f‖pH p‖g‖2H p ≤ ‖f‖pH p‖Tg‖2L (H p).
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Suppose now that 0 < p < 2 and that (5.4) is satisfied. Using the square
function characterization (5.5), (5.6), Hölder’s inequality, (2.1), and (5.8), we
obtain

‖Tgf‖pH p �
∫

T∞

∫

R

(∫

Γτ

|fχ(σ + it)|2|g′χ(σ + it)|2 dσ dt
)p/2

dτ

1 + τ2
dm∞(χ)

≤
∫

T∞

∫

R

(
f∗χ(τ)

) (2−p)p
2

(∫

Γτ

|fχ(σ + it)|p|g′χ(σ + it)|2 dσ dt
)p/2

dτ

1 + τ2
dm∞(χ)

≤ ‖f‖
(2−p)p

2

H p

(∫

T∞

∫

R

∫

Γτ

|fχ(σ + it)|p|g′χ(σ + it)|2 dσ dt dτ

1 + τ2
dm∞(χ)

) p
2

� ‖f‖
(2−p)p

2

H p

(∫

T∞

∫

R

∫ ∞

0

|fχ(σ + it)|pdµg,χ(σ, t) dm∞(χ)

) p
2

≤ ‖f‖
(2−p)p

2

H p C(g, p)p‖f‖
p2

2

H p = C(g, p)p‖f‖pH p .

Finally we deal with the case when 0 < p < 2 and Tg : H p → H p is bounded.
Note first that by the Littlewood–Paley formula (2.2), we have

‖Tgf‖pH p �
∫

T∞

∫

R

∫ ∞

0

|(Tg)χ|p−2|fχ|2dµg,χ(σ, t) dm∞(χ).

Using Hölder’s inequality and this identity, we obtain
∫

T∞

∫

R

∫ ∞

0

|fχ|pdµg,χ(σ, t) dm∞(χ)

� ‖Tgf‖
p2

2

H p

(∫

T∞

∫

R

∫ ∞

0

|(Tgf)χ|pdµg,χ(σ, t) dm∞(χ)

) 2−p
2

≤ ‖Tgf‖
p2

2

H pC(g, p)
2−p‖Tgf‖

p(2−p)
2

H p ≤ C(g, p)2−p‖Tg‖pL (H p)‖f‖
p
H p .

By an approximation argument, we can a priori assume that C(g, p) is finite.
Then, by taking the supremum over norm-1 Dirichlet series f , we obtain that
C(g, p) � ‖Tg‖L (H p), as desired. �

5.2. Necessary and sufficient conditions. Theorem 5.1 can be applied to find
necessary and sufficient conditions for membership in Xp, parallel to the result
for X2 proved in Theorem 2.3. However, there is one essential difficulty when
passing from p = 2 to the general case 0 < p <∞, namely that the proof of part
(c) of Theorem 2.3 relies on the local embedding property of H 2 expressed by
(2.5). The local embedding extends trivially to hold for p = 2k, for every positive
integer k, since

(5.9) ‖f‖2kH2k
i (C1/2)

=
∥∥fk

∥∥2
H2

i (C1/2)
≤ C̃

∥∥fk
∥∥2

H 2 = C̃‖f‖2kH 2k ,

261



but it is a well-known open problem whether it holds for any other p. We refer
to [34, Sec. 3] for a discussion of the embedding problem.

Arguing similarly for the embedding constant (5.3), we find for every positive
integer n that

(5.10) C(g, p) ≥ C(g, np).

We will use this to prove a rather curious incomplete analogue to part (c) of
Theorem 2.3. In view of (5.9) and (5.10), we are allowed to apply integral powers
before and after using the local embedding property of H 2, leading us to the
expected necessary condition for g to belong to Xp, but only for rational p.

Theorem 5.3. Suppose that g is in D .
(a) If g is in BMOA(C0), then Tg is bounded from H p to H p.
(b) If g is in Xp, then g satisfies condition (iii) from Lemma 2.1.
(c) If g is in Xp and p is in Q+, then g is in BMOA(C1/2).

Proof. The proof of (a) is identical to the proof given for p = 2 in Theorem 2.3,
using Theorem 5.1, (5.4), and that Carleson measures in one variable are inde-
pendent of p. The proof of (b) is also the same.

For (c) we need two facts which follow from close inspection of the proof of
Theorem 5.1. First of all, it is clear from the first part of the proof that for p ≥ 2
there is a constant C1, independent of p, such that

‖Tg‖L (H p) ≤ C1C(g, p),

where C(g, p) is as in Theorem 5.1. Hence, we conclude by (5.10) that there is a
constant C2 such that for every positive integer n we have

(5.11) ‖Tg‖L (H np) ≤ C2‖Tg‖L (H p).

Secondly, by mimicking the next part of the proof, also for p ≥ 2, we see that
there is a constant C3 such that

(5.12)
∫

R

∫ 1

1/2

|f(s)|p|g′(s)|2(σ − 1/2)dσ
dt

1 + t2
≤ C3‖Tgf‖2Hp

i (C1/2)
‖f‖p−2

Hp
i (C1/2)

,

at least for Dirichlet polynomials f . Here we have implicitly applied the maximal
function characterization of Hp

i (C1/2). However, by the inner-outer factorization
of Hp

i , we see that the constants involved do not blow up as p → ∞. To prove
the theorem, let p = 2k/n > 0 be a rational number. Hence, by (5.11), Tg is
bounded on H 2k, with control of the constant. Combined with (5.12) and the
embedding (5.9), we find, setting C4 = C̃, that
∫

R

∫ 1

1/2

|f(s)|2k|g′(s)|2(σ − 1/2)dσ
dt

1 + t2
≤ C3‖Tgf‖2H2k

i (C1/2)
‖f‖2(k−1)

H2k
i (C1/2)

≤ C3C
2
4C

2
2‖Tg‖2L (H p)‖f‖2kH 2k .
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It follows that νg(σ+it) := |g′(s)|2(σ−1/2) dσdt/(1+t2) is a Carleson measure for
H 2k, with constant uniformly bounded by ‖Tg‖2L (H p). Clearly, the argument
in [29, Thm. 3] produces uniform estimates, so we conclude that νg is a Carleson
measure on H2k

i (C1/2), with constant uniformly bounded by the same quantity.
By appealing to the inner-outer factorization again, we conclude that there is a
constant C5 such that

‖νg‖CM(H2
i )

≤ C5‖Tg‖2L (H p) ≤ C6C(g, p)
2.

The proof is now completed by arguing as in the proof of Theorem 2.3. �

Theorem 2.5 now gives us an interesting example of a Tg-operator that is
bounded on all H p-spaces.

Corollary 5.4. Let g be as in Theorem 2.5, i.e.,

g(s) =

∞∑

n=2

1

n log n
n−s.

Then Tg : H p → H p is bounded for every p <∞.

5.3. Linear symbols. We will now extend Theorem 4.1 by proving that all linear
symbols g yield bounded operators Tg on H p, for the whole range 0 < p < ∞.
We do this by showing that in this special case, the constant C(g, p) in the
Carleson measure condition (5.2) may be chosen independently of p.

Theorem 5.5. Let

g(s) =
∞∑

j=1

bjp
−s
j

be given. Then Tg is bounded on H p if and only if g is in H 2. In fact,

sup
f∈H p,‖f‖H p≤1

∫

T∞

∫ ∞

0

|fχ(σ)|p|g′χ(σ)|2σdσdm∞(χ) =
1

4
‖g‖2H 2

holds whenever 0 < p <∞.

It suffices to consider finitely many, say d, variables. The Poisson kernel on
the polydisc is then given by

Pz(w) :=
d∏

j=1

1− |zj |2
|1− wjzj |2

,

where |zj | < 1 and w = (wj) is a point on Td. Suppose that 0 < α ≤ p and
that f is in Hp(Dd). Then |f |α is separately subharmonic in each variable, which
gives us the following.
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Lemma 5.6. If f is in Hp(Dd), then

|f(z)|α ≤
∫

Td

Pz(w)|f(w)|αdmd(w)

for every point z in Dd and 0 < α ≤ p.

Lemma 5.6 shows that if the Carleson embedding condition (5.2) holds for all
harmonic functions f , for one p, then (5.2) holds for all f in H p, for every p.
Hence, to prove Theorem 5.5, we only need to verify that linear functions g in H 2

induce Carleson measures on the harmonic functions for p = 2. Obviously this
raises the question whether the corresponding statement is true for other symbols
g from Sections 3 and 4, or even if it could be true that the Carleson condition for
analytic functions implies the same condition for harmonic functions, cf. Ques-
tion 1 in the introduction. We only have the answer in the simplest case of linear
symbols.

To simplify the computations to be given below, we will use the multiplicative
notation that comes from identifying the dual of the compact abelian group T∞

with the discrete abelian group Q+ (see [22, 33]). This means that the Fourier
series of f on T∞ takes the form

∑

r∈Q+

c(r)χ(r),

where c(r) = 〈f(χ), χ(r)〉L2(T∞). (The notation χ(r) is explained at the end of
the introduction.)

Proof of Theorem 5.5. To see that the supremum cannot be smaller than 1/4, it
suffices to set g(s) = pj

−s and f(s) = 1. To prove the bound from above, we
begin by expanding the function hp(χ) := |fχ|p/2 in a Fourier series on T∞,

hp(χ) =
∑

r∈Q+

c(r)χ(r).

Using Lemma 5.6 with zj = p−σ
j χ(pj) and α = p/2, we get that

|fχ(σ)|p/2 ≤
∫

Td

hp(w)Pz(w)dmd(w) =
∑

(m,n)=1

c
(m
n

)
(mn)−σχ

(m
n

)
,

where we in the last step integrated the Fourier series of hp term by term against
the Poisson kernel. It follows that

Iσ :=

∫

T∞
|fχ(σ)|p|g′χ(σ)|2dm∞(χ)

≤
d∑

j,k=1

∑

mµ
nν =

pj
pk

∣∣∣c
(m
n

)
c
(µ
ν

)∣∣∣ (mnµνpjpk)−σ|bjbk| log pj log pk,
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where it is understood that (m,n) = 1 and (µ, ν) = 1. By symmetry, we get
Iσ ≤ 2Iσ,1 + 2Iσ,2, where

Iσ,1 :=
d∑

j,k=1

∑

mµ
nν

=
pj
pk

,

pj |m, pk|n

∣∣∣c
(m
n

)
c
(µ
ν

)∣∣∣ (mnµνpjpk)−σ|bjbk| log pj log pk

Iσ,2 :=
d∑

j,k=1

∑

mµ
nν

=
pj
pk

,

pj |m, pk|ν

∣∣∣c
(m
n

)
c
(µ
ν

)∣∣∣ (mnµνpjpk)−σ|bjbk| log pj log pk.

We estimate the contribution from these two sums separately. First, by the
Cauchy–Schwarz inequality, we have

Iσ,1 ≤
(

d∑

j,k=1

∑

(m,n)=1,
pj |m, pk|n

∣∣∣c
(m
n

)∣∣∣
2 log pj log pk

(mn)2σ

) 1
2

×
(

d∑

j,k=1

∑

(µ,ν)=1

∣∣∣c
(µ
ν

)∣∣∣
2

|bj |2|bk|2
log pj log pk
(pjpk)2σ

) 1
2

≤
( ∑

(m,n)=1

∣∣∣c
(m
n

)∣∣∣
2 logm log n

(mn)2σ

) 1
2

×
( ∑

(µ,ν)=1

∣∣∣c
(µ
ν

)∣∣∣
2 d∑

j,k=1

|bj |2|bk|2
log pj log pk
(pjpk)2σ

) 1
2

,

where we in the final inequality changed the order of summation in the first factor
and used that

∑
pj |m log pj ≤ logm. To compute the integrals, we will use the

identity ∫ ∞

0

(log a)2a−2σσdσ =
1

4
,

which is valid for every a > 0. We use the Cauchy–Schwarz inequality again and
take the two integrals into the respective sums, to deduce that

∫ ∞

0

Iσ,1 σdσ ≤


 ∑

(m,n)=1

∣∣∣c
(m
n

)∣∣∣
2 logm log n

4(logmn)2




1
2

×


 ∑

(µ,ν)=1

∣∣∣c
(µ
ν

)∣∣∣
2 d∑

j,k=1

|bj |2|bk|2
log pj log pk
4(log pjpk)2




1
2

.
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The fractions with logarithms are bounded by 1/16, so in total we get that
∫ ∞

0

Iσ,1 σdσ ≤ 1

16
‖g‖2H 2‖f‖pH p .

To estimate Iσ,2, we use the Cauchy–Schwarz inequality and change the order of
summation:

Iσ,2 ≤
(

d∑

j,k=1

∑

(m,n)=1,
pj |m

∣∣∣c
(m
n

)∣∣∣
2

|bk|2
(log pj)

2

(mpj)2σ

) 1
2

×
(

d∑

j,k=1

∑

(µ,ν)=1,
pk|ν

∣∣∣c
(µ
ν

)∣∣∣
2

|bj |2
(log pk)

2

(νpk)2σ

) 1
2

= ‖g‖2H 2

( ∑

(m,n)=1

∣∣∣c
(m
n

)∣∣∣
2 ∑

pj |m

(log pj)
2

(mpj)2σ

) 1
2

×
( ∑

(µ,ν)=1

∣∣∣c
(µ
ν

)∣∣∣
2∑

pk|ν

(log pk)
2

(νpk)2σ

) 1
2

.

The two factors are symmetrical, so by using the Cauchy–Schwarz inequality
again we get

∫ ∞

0

Iσ,2 σdσ ≤ ‖g‖2H 2

∑

(m,n)=1

∣∣∣c
(m
n

)∣∣∣
2 ∑

pj |m

(log pj)
2

4(logmpj)2

=
‖g‖2H 2

4

∑

(m,n)=1

∣∣∣c
(m
n

)∣∣∣
2 1

logm

∑

pj |m

log pj

2 + logm
log pj

+
log pj

logm

≤ ‖g‖2H 2‖f‖pH p

16
,

where we used that logm/ log pj + log pj/ logm ≥ 2 when pj |m. Combining
everything yields

∫ ∞

0

Iσ σdσ ≤ 2

∫ ∞

0

Iσ,1 σdσ + 2

∫ ∞

0

Iσ,2 σdσ ≤ 1

4
‖g‖2H 2‖f‖pH p . �

6. Comparison of X with other spaces of Dirichlet series of BMO
type

6.1. Hardy spaces H p and BMOA(C0). Our initial motivation for studying
Tg was to consider X = X2 as a type of BMOA-space for the range of Hardy
spaces H p. From Theorem 2.3, we have the following inclusions, which show
that X is in every H p, for 0 < p <∞.
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Corollary 6.1. We have the following inclusions,

H ∞ ( BMOA(C0) ∩ D ( X (
⋂

0<p<∞
H p.

Proof. The inclusions are all from Theorem 2.3. That the first inclusion is strict
follows from Theorem 2.5. The second inclusion was observed to be strict in the
remark at the end of Section 3, but it can also be deduced from any example in
Section 4. The strictness of the last inclusion follows from Theorem 4.2 and the
fact that

(6.1) ‖g‖H p � ‖g‖H 2

when g is an m-homogeneous Dirichlet series, with implied constants depending
on m and p. To verify (6.1), we argue as follows. Let d(n) be the number
of divisors of the positive integer n. By the extension of Helson’s inequality
discussed in [12, Sec. 5] and [35, Thm. 3], there exist nonnegative number α and
β, depending on p, such that

(6.2)

( ∞∑

n=1

|an|2
[d(n)]α

) 1
2

≤
∥∥∥∥∥

∞∑

n=1

ann
−s

∥∥∥∥∥
H p

≤
( ∞∑

n=1

|an|2[d(n)]β
) 1

2

.

The key point is that if Ω(n) = m, then m + 1 ≤ d(n) ≤ 2m, proving (6.1). (In
fact, by a suitable application of Hölder’s inequality, we can prove (6.1) using
only the right inequality in (6.2).) �

In the next three subsections, we will compare X with two other analogues
of BMOA, namely the dual space (H 1)∗ and the space (H 2 �H 2)∗ of symbols
generating bounded multiplicative Hankel forms. Let us first recall that neither
of these spaces is contained in

⋂

0<p<∞
H p.

This follows immediately from a result of Marzo and Seip [26], which states that
the Riesz projection P on the polytorus is unbounded from L∞(T∞) to H4(D∞).
In fact, it is not even known whether P (L∞(T∞)) is contained in Hp(D∞) for
any p > 2. Note that P (L∞(T∞)) is naturally identified with (H 1)∗, and that
it is strictly continuously contained in (H 2 � H 2)∗ [30].

6.2. Hankel forms. Let us now consider the space of symbols g such that the
corresponding Hankel forms Hg are bounded. The form Hg is given by

Hg(fh) := 〈fh, g〉H 2 ,

from which it is clear, by definition, that Hg is bounded if and only if g is in
(H 2 � H 2)∗. Applying the product rule for derivatives, we find that

(6.3) Hg(fh) = f(+∞)h(+∞)g(+∞) + 〈∂−1(f ′h), g〉H 2 + 〈∂−1(fh′), g〉H 2 ,
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where
∂−1f(s) := −

∫ ∞

s

f(w) dw.

The “half-Hankel” form

(6.4) (f, h) 7→ 〈∂−1(f ′h), g〉H 2

is bounded if and only if g ∈ (∂−1(∂H 2 � H 2))∗. It is clear from (6.3) that

(6.5) (∂−1(∂H 2 � H 2))∗ ⊂ (H 2 � H 2)∗.

Whether the inclusion in (6.5) is strict, is an open problem. It was observed in
[13] that it is equivalent to an interesting Schur multiplier problem.

Corollary 6.2. Suppose that the Volterra operator Tg acts boundedly on H 2.
Then the Hankel form Hg is bounded.

Proof. The Littlewood–Paley formula (2.2) may be polarized, to obtain

〈f, g〉H 2 = f(+∞)g(+∞)

+
4

π

∫

T∞

∫

R

∫ ∞

0

f ′χ(σ + it)g′χ(σ + it)σ dσ
dt

1 + t2
dm∞(χ).

(6.6)

We find that

〈∂−1(f ′h), g〉H 2

=
4

π

∫

T∞

∫

R

∫ ∞

0

f ′χ(σ + it)hχ(σ + it)g′χ(σ + it)σ dσ
dt

1 + t2
dm∞(χ).

Hence, it is clear from Theorem 5.1 that if Tg is bounded, then so is the form
(6.4). Thus we may complete the proof by using the inclusion (6.5). �

On weighted Dirichlet spaces of the disc (including the Hardy space), even
in the vector-valued setting, the boundedness of a half-Hankel form also implies
the boundedness of the corresponding Tg operator (see [3]). However, by [13,
Lem. 10], a half-Hankel form on H 2 generated by a symbol g with positive coef-
ficients is bounded if and only if Hg is bounded. Since the symbols of Theorem 3.1
generate bounded Hankel forms for α ≥ 1/2, but not bounded Tg operators for
α < 1, this shows that the same relationship between the half-Hankel form and
Tg does not hold in the present context.

6.3. The dual of H 1. The most tractable sufficient condition for

g(s) =
∑

n≥1

bnn
−s

to belong to (H 1)∗ was put forward by Helson [23]: g is in (H 1)∗ if

(6.7)
∞∑

n=1

|bn|2d(n) <∞,
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where again d(n) denotes the number of divisors of the integer n. In fact, Helson’s
result is stated in terms of the Hankel form Hg considered above. If g satisfies
(6.7), then Hg is Hilbert–Schmidt. Note that, by a consideration of zero sets
based on [35, Thm. 2], we can show that a Dirichlet series g satisfying (6.7) will
not always be in BMOA(C1/2).

The examples of g in X2 considered in Sections 3 and 4 are easily seen to
satisfy (6.7). Moreover, we see that the symbols in Theorem 3.1, 1/2 < α < 1,
are in (H 1)∗, but not in X2. Hence (H 1)∗ is not contained in X2, and it is
tempting to conjecture that X2 ⊂ (H 1)∗.

First, let us show how to construct a class of Dirichlet series in (H 1)∗ ∩ X2

that do not satisfy (6.7), showing that Helson’s criterion is not well adapted to
understanding Volterra operators.

Theorem 6.3. Suppose that N = {n1, n2, . . . } ⊂ N\{1} is a set with the
property that (nj , nk) = 1 if j 6= k. If

(6.8) g(s) =
∑

n∈N

bnn
−s,

then ‖Tg‖L (H 2) = ‖g‖H 2 . Moreover, for f(s) =
∑

n≥1 ann
−s, we have

(
|a0|2 +

∑

n∈N

|an|2
) 1

2

≤
√
2‖f‖H 1 .

The second statement in the theorem yields ‖g‖(H 1)∗ ≤
√
2‖g‖H 2 , by the

Cauchy–Schwarz inequality applied to 〈f, g〉H 2 . Define the integers n1 := 2,
n2 := 3 · 5, n3 := 7 · 11 · 13, and so on. The set N := {n1, n2, . . . } satisfies the
assumptions of Theorem 6.3, but d(nj) = 2j , so (6.7) is not always satisfied.

Proof of Theorem 6.3. For the first statement, we simply observe that
∑

n|N
n∈N

log n ≤ logN,

which allows us to follow the proof of Theorem 4.1 to obtain that every Dirichlet
series of the form (6.8) satisfies ‖Tg‖ = ‖g‖H 2 .

For the second statement, fix some n = nj , and set d := ω(n), m := Ω(n) and
κ := κ(n). By Helson’s iterative procedure [23], it is sufficient to demonstrate
that for f in H1(Dd),

(6.9)
(
|a0|2 +

1

2
|aκ|2

) 1
2

≤ ‖f‖H1(Dd).
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We begin with Carleman’s inequality (see [36]),

( ∞∑

k=0

|ck|2
k + 1

) 1
2

≤
∥∥∥∥∥

∞∑

k=0

ckw
k

∥∥∥∥∥
H1(D)

.

Setting F (w) =
∑

k≥0 ckw
k, we use F. Wiener’s trick (see [11]) with an mth root

of unity, say ϕ, so that

Fm(wm) :=
1

m

(
F (w) + F (wϕ) + F (wϕ2) + · · ·+ F (wϕm−1)

)
=

∞∑

k=0

cmkw
mk.

Clearly ‖Fm‖H1(D) ≤ ‖F‖H1(D), so we find from Carleman’s inequality that

(6.10)

( ∞∑

k=0

|cmk|2
k + 1

) 1
2

≤
∥∥∥∥∥

∞∑

k=0

ckw
k

∥∥∥∥∥
H1(D)

.

Returning to our function f in H1(Dd), we let fk denote the k-homogeneous part
of f and decompose f accordingly:

f(z) =
∞∑

k=0

fk(z).

Substituting zj 7→ wzj for 1 ≤ j ≤ d, we find, using Fubini’s theorem, (6.10),
and Minkowski’s inequality, that

( ∞∑

k=0

1

k + 1
‖fkm‖2H1(Dd)

) 1
2

≤
∫

Dd

( ∞∑

k=0

|fkm(z)|2
k + 1

) 1
2

dmd(z) ≤ ‖f‖H1(Dd).

We retain only the two first terms in the sum on the left-hand side. The proof of
(6.9) is completed by noting that ‖f0‖H1(Dd) = |a0| and that |aκ| ≤ ‖fm‖H1(Dd),
where the latter inequality holds because |κ| = Ω(n) = m. �

As for the question of whether X2 ⊂ (H 1)∗, our best result is the following
corollary of the characterization given in Theorem 5.1. For its interpretation,
one should recall that (5.10) implies that X1 ⊂ X2. Hence, the corollary also
motivates further interest in the question of whether X2 = Xp for all p, 0 < p <
∞.

Corollary 6.4. Suppose that the Volterra operator Tg acts boundedly on H 1.
Then g is in (H 1)∗.

270



Proof. Let f be a Dirichlet series in H 1 and suppose that f(+∞) = 0. Let g be
X1 and apply (6.6) along with the Cauchy–Schwarz inequality,

|〈f, g〉H 2 | �
∣∣∣∣
∫

T∞

∫

R

∫ ∞

0

f ′χ(σ + it)g′χ(σ + it)σ dσ
dt

1 + t2
dm∞(χ)

∣∣∣∣

≤
(∫

T∞

∫

R

∫ ∞

0

|f ′χ(σ + it)|2
|fχ(σ + it)| σ dσ

dt

1 + t2
dm∞(χ)

) 1
2

×
(∫

T∞

∫

R

∫ ∞

0

|fχ(σ + it)| |g′χ(σ + it)|2σ dσ dt

1 + t2
dm∞(χ)

) 1
2

.

We finish the proof by using Theorem 5.1 with p = 1, since the quantity on the
second line is bounded from above and below by ‖f‖1/2H 1 in view of the Littlewood–
Paley formula (2.2). �

Observe that by part (a) of Theorem 5.3, this shows in particular that if
g is in BMOA(C0) ∩ D , then g is in (H 1)∗. This inclusion can also be de-
duced directly from the two Littlewood–Paley formulas (2.2) and (6.6), using the
Cauchy–Schwarz inequality and Lemma 2.2.

6.4. On the finite polydisc Dd. Let us now confine ourselves to studying
Dirichlet series

f(s) =

∞∑

n=1

ann
−s

restricted to the first d primes, by demanding that an = 0 if pj |n, for j > d.
Through the Bohr lift, the restricted Hardy spaces H p

d (which are complemented
subspaces of H p) are isometrically identified with Hp(Dd). We consider now a
Dirichlet series g restricted to the first d primes and let Tg act on H p

d .

Corollary 6.5. For 0 < p <∞, Tg is bounded on H p
d if and only if it is bounded

on H 2
d .

Proof. This follows from Theorem 5.1, since the Carleson measure characteriza-
tion is now over Dd, and the Carleson measures of Hp(Dd) are independent of p
(see [15]). �

Moreover, using the result that H2(Dd) � H2(Dd) = H1(Dd) from [18, 25],
we conclude that symbols inducing bounded Tg-operators on the finite polydisc
belong to (H1(Dd))∗. This subsection is devoted to showing that, even in the
finite-dimensional setting, the dual of H1 still does not characterize the bounded
Tg-operators.
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Let D denote the differentiation operator on Dirichlet series,

Df(s) := f ′(s) = −
∞∑

n=2

an(log n)n
−s.

Identifying again H p
d with Hp(Dd), we find that we may write

(6.11) Df(z1, . . . , zd) = −
d∑

j=1

(log pj)zj∂zjf(z1, . . . , zd).

Note the similarity between D and the radial differentiation operator

(6.12) Rf(z1, . . . , zd) :=

d∑

j=1

zj∂zjf(z1, . . . , zd).

The Volterra operator Tg defined with the radial differentiation operator R and
radial integration R−1 has previously been investigated on the unit ball Bd of Cd

by a number of authors. A seminal contribution is that of Pau [31], who proved
that Tg is bounded on Hp(Bd) if and only if g is in BMOA(Bd). In particular,
for p = 2, the Tg operator is bounded if and only if the corresponding Hankel
operator is bounded, i.e., if and only if g defines a bounded linear functional on
H2(Bd)�H2(Bd).

We shall now see that the corresponding statement is not true on the finite
polydisc D2. The statement and proof are written for the Volterra operator
defined in terms of radial differentiation (6.12), but the argument works equally
well for the half-plane differentiation (6.11). In the following theorem, we use the
notation g1 ⊗ g2(z, w) := g1(z)g2(w).

Theorem 6.6. There exists functions g1 in H∞(D) and g2 in BMOA(D) such
that Tg1⊗g2 is unbounded on H2(D2).

To obtain the desired conclusion from this theorem, namely that Tg is not
bounded simultaneously with the Hankel operator Hg even on the bidisc, it
suffices to observe that the symbol g1 ⊗ g2 is in BMOA(D2) and therefore in(
H2(D2)�H2(D2)

)∗
=
(
H1(D2)

)∗.

Proof of Theorem 6.6. Suppose that f(z, w) =
∑

m,n≥0 am,nz
mwn. Then

Rf(z, w) =
∑

m,n≥0

(m+ n)am,nz
mwn,

R−1f(z, w) =
∑

m,n≥0
m+n>0

am,n

m+ n
zmwn.
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We consider the Volterra operator Tgf = R−1(fRg), choosing f = f1⊗f2, where
f1 and f2 are both in H2(D). We compute and find that

(6.13) f(z, w)Rg(z, w) = f1(z)f2(w) (zg
′
1(z)g2(w) + wg1(z)g

′
2(w)) .

We consider first the second term of (6.13), which we write as h1(z)h2(w), where

h1(z) := f1(z)g1(z) =

∞∑

m=0

amz
m and h2(w) := wf2(w)g

′
2(w) =

∞∑

n=1

bnw
n.

Since f1 is in H2(D) and g is in H∞(D), clearly h1 is in H2(D), so
∑

m≥0 |am|2 <
∞. In a similar way, we see that h2 is the derivative of a function in H2(D)
because f2 is in H2(D) and g2 is in BMOA(D) so that the operator Tg2 is bounded
on H2(D). This means that

∑
n≥1 |bn|2/n2 <∞. We conclude therefore that

∥∥R−1(h1h2)
∥∥2
H2(D2)

=
∞∑

m=0

∞∑

n=1

|am|2|bn|2
(m+ n)2

≤
∞∑

m=0

|am|2
∞∑

n=1

|bn|2
n2

<∞.

Changing our attention to the first term in (6.13), it remains for us to show
that we can pick f1, f2, g1, and g2 satisfying our assumptions, so that the H2(D2)-
norm of

R−1 (zf1(z)g
′
1(z)f2(w)g2(w))

is infinite. Replace for the moment zf1(z)g′1(z) with an arbitrary function h1 in
z∂H2(D), say

h1(z) =

∞∑

m=1

amz
m.

Choose f2 and g2 as

f2(w) =
∞∑

n=2

wn

√
n(log n)

and g2(w) = − log(1− w).

The coefficients of h2(w) := f2(w)g2(w) =
∑

n≥3 bnw
n are given by

bn =
n−1∑

k=2

1√
k(log k)

1

(n− k)
� 1√

n(log n)

n−1∑

k=2

1

n− k
� 1√

n
.

Hence we find that
∥∥R−1(h1h2)

∥∥2
H2(D2)

�
∞∑

m=1

∞∑

n=3

|am|2
(m+ n)2n

�
∞∑

m=1

|am|2 log(m+ 2)

(m+ 1)2
= ∞

for an appropriate choice of h1 in z∂H2(D). However, by a factorization result
of Aleksandrov and Peller [1], there exist f j1 in H2(D) and gj1 in H∞(D) for
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1 ≤ j ≤ 4, such that

h1(z) = z

4∑

j=1

f j1 (z)(g
j
1)

′(z).

Therefore, at least one of the four pairs (f j1 , g
j
1), 1 ≤ j ≤ 4, will do as the choice

of (f1, g1). �

7. Compactness of Tg on H 2

7.1. Basic results. We turn to a brief discussion of compactness of Tg. Every
polynomial symbol g(s) =

∑
n≤N bnn

−s defines a compact Tg-operator, since in
this case Tg is the sum ofN diagonal operators with entries in c0. This means that
all bounded operators from Section 4 actually are compact. To see this, let SN

denote the partial sum operator, acting on a Dirichlet series f(s) =
∑

n≥1 ann
−s

by

SNf(s) =

N∑

n=1

ann
−s.

Suppose now that we have an estimate of the type ‖Tg‖2 ≤ ∑
n≥2 |bn|2w(n)

for some positive weight function w(n). If the right hand side is finite for some
Dirichlet series g, then

‖Tg −TSNg‖2 ≤
∑

n≥N

|bn|2w(n) → 0, N → ∞,

demonstrating that Tg is compact. In particular, every bounded Tg-operator
with a linear symbol is compact, since then ‖Tg‖L (H 2) = ‖g‖H 2 , by Theo-
rem 4.1. Let us also mention that the Volterra operator defined by the primitive
of the zeta function considered in Theorem 2.5,

g(s) =

∞∑

n=2

1

n log n
n−s,

is compact by this argument and Theorem 4.3. In the next subsection, we will
produce a concrete example of a non-compact operator, by testing the Volterra
operator of Theorem 3.3, for λ = 1, against reproducing kernels for suitable
subspaces of H 2.

We mention that it is possible to prove versions of Theorems 2.3, 5.1, and
5.3 for compactness, by replacing bounded mean oscillation by vanishing mean
oscillation, and embeddings by vanishing embeddings. The details are standard,
see for instance [31] for the arguments in a different setting.

We present only two results in this section. The first is that the closure of
Dirichlet polynomials in BMOA(C0) is VMOA(C0)∩D , as it relies on the trans-
lation invariance (i) of Lemma 2.1 enjoyed by Dirichlet series in BMOA(C0).
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Recall that VMOA(C0) consists of those g ∈ BMOA(C0) such that

lim
δ→0+

sup
|I|<δ

1

|I|

∫

I

∣∣∣∣f(it)−
1

|I|

∫

I

f(iτ) dτ

∣∣∣∣ dt = 0.

We endow the space BMO(Cθ) ∩ D with the norm ‖f‖BMO(Cθ)∩D := |f(+∞)|+
‖f‖BMO(Cθ).

Theorem 7.1. Let g be a symbol in VMOA(C0)∩D and ε be a positive number.
Then there is a Dirichlet polynomial P such that ‖g − P‖BMO(Cθ)∩D < ε.

Proof. Let Bδ denote the horizontal shift operator given by Bδg(s) = g(s + δ),
and, as above, let SN denote the partial sum operator. We choose P = BδSNg,
for some δ > 0 and N to be specified later. Clearly P (+∞) = b1 = g(+∞). Since
g is in VMOA(C0), we know from [20, Thm. VI.5.1] that

lim
δ→0

‖g −Bδg‖BMO(C0) = 0.

Choose δ > 0 so that ‖g −Bδg‖BMO(Cθ) < ε/2. Then

‖g − P‖BMO(C0) ≤ ‖g −Bδg‖BMO(C0) + ‖Bδg − P‖BMO(C0)

< ε/2 + 2‖Bδg −BδSNg‖H ∞ .

Now, by (i) of Lemma 2.1, we know that σb(g) ≤ 0. By a theorem of Bohr [10],
this implies that SNg(s) converges uniformly to g(s) in the closed half-plane Cδ,
for every δ > 0. Hence there is some N = N(g, δ) such that ‖Bδg−BδSNg‖H ∞ =
‖Bδ(g − SNg)‖H ∞ < ε/4. �

Our second basic result is that Tg is never in any Schatten class, unless g
is constant. This is in line with [31, Thm. 6.7], showing that a radial Volterra
operator Tg 6= 0 defined on H2(Bd) can be in the Schatten class Sp only for p > d.

Theorem 7.2. Let

g(s) =
∞∑

n=1

bnn
−s

be a non-constant Dirichlet series. Then Tg : H 2 → H 2 is not in Sp, for any
p <∞.

Proof. Since g is not constant, we know there is at least one non-zero term, so
set

N = inf {n ≥ 2 : bn 6= 0} <∞.

We will use [37, Thm. 1.33] in the following way: Set en(s) := n−s and assume
that 2 ≤ p < ∞. Then the set {en}n≥1 forms an orthonormal basis for H 2, so
that:

‖Tg‖pSp
≥

∞∑

n=N

‖Tgen‖pH 2 .
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A simple computation shows that if n ≥ N , then we have

‖Tgen‖2H 2 =
∞∑

m=2

|bm|2(logm)2

(logmn)2
≥ |bN |2(logN)2

(log nN)2
≥ |bN |2(logN)2

(2 log n)2
.

In particular, ‖Tgen‖H 2 ≥ (|bN | logN)/(2 log n) and hence ‖Tg‖pSp
≥ ∞. The

inclusion between Schatten classes allows us to conclude that Tg cannot be in Sp

for any 0 < p <∞. �

7.2. Estimating y-smooth reproducing kernels. We will now study the ac-
tion of Tg on reproducing kernels for suitable subspaces of H 2. The reproducing
kernel kw of H 2 itself at w, where Re(w) > 1/2, is given by

kw(s) := ζ (s+ w ) =
∏

p

(
1− p−s−w

)−1
.

Considering these reproducing kernels is insufficient in our analysis of the mul-
tiplicative symbol g from Theorem 3.3. Indeed, regardless of the value of λ, the
Dirichlet series g(s) converges absolutely all the way down to Re(s) = σ > 0.
Testing Tg on the kernels kw, in C1/2 is therefore not enough to detect that it is
unbounded for λ > 1.

To address this, we consider y-smooth reproducing kernels. Let P+(n) denote
the largest prime factor of n. The integer n is called y-smooth if P+(n) ≤ y. The
y-smooth reproducing kernels, kyw are defined for Re(w) > 0 and y ≥ 1, by cutting
off prime numbers larger than y. This means that we set kyw(s) := ζ (s+ w, y),
where

ζ (s+ w, y) :=
∏

p≤y

(
1− p−s−w

)−1
.

Notice that we already used another variant of cut-off kernels in the proof of
Theorem 3.3. Following Gál’s construction, we tested against a finite-dimensional
kernel at σ = 0, cut off to be smooth (in the sense of primes) and retaining
only suitable small powers of each prime. Our motivation for turning to the
more involved investigation of the reproducing kernels kyw(s) is that they provide
slightly better estimates than the rougher argument stemming from Gál’s work.
More specifically, we will see that the multiplicative symbol g from Theorem 3.3
with λ = 1 provides the only concrete example of a non-compact Tg-operator in
this paper. As in Section 3, we consider without loss of generality the operator
T̃g instead of Tg, the difference between the two being compact.
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Suppose that f(s) =
∑

n≥1 ϕ(n)n
−s, where ϕ is a non-negative completely

multiplicative function and that g(s) =
∑

n≥1 bnn
−s has non-negative coeffi-

cients. A computation shows that
∥∥T̃gf

∥∥2
H 2

=
∞∑

m=2

∞∑

n=2

(bm logm)(bn log n)ϕ

(
mn

(m,n)2

) ∞∑

k=1

ϕ(k)2
(
log k + log mn

(m,n)

)2 .
(7.1)

We will now choose f to be a y-smooth reproducing kernel and estimate the
innermost sum.

Lemma 7.3. Let ϕ(n) be the completely multiplicative non-negative function
defined by setting

ϕ(n) :=

{
n−σ, if P+(n) ≤ y,

0, otherwise.

Fix α, 0 < α < 1. If yα ≥ 1/σ, then for sufficiently large y (depending on α),
we have

Sϕ(m,n) :=
∞∑

k=1

ϕ(k)2
(
log k + log mn

(m,n)

)2

�
∥∥kyσ

∥∥2
H 2(

(1 + o(1)) (1− 2σ)−1y1−2σ + log mn
(m,n)

)2 ,

where o(1) tends to 0 as y → ∞.

Proof. We may assume that 0 < σ < 1/2. Observe first that ‖kyσ‖2H 2 = ζ(2σ, y).
For simplicity of notation, we write a := log mn

(m,n) . By Abel summation, we see
that

Sϕ(m,n) ∼ 2σ

∫ ∞

1

Ψ(x, y)x−2σ

(log x+ a)
2

dx

x
,

where as usual Ψ(x, y) denotes the number of y-smooth integers less than or equal
to x. Observe that ζ(s, y) is the Mellin transform of Ψ(x, y),

ζ(s, y) = s

∫ ∞

0

xs−1Ψ(x, y) dx.

Hence by writing Ψ(x, y) as the inverse Mellin transform of ζ(s, y), integrating
over the vertical line Re s = ξ for some 0 < ξ < 2σ, and then changing the order
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of integration, we obtain

I :=

∫ ∞

1

Ψ(x, y)x−2σ

(log x+ a)
2

dx

x
=

∫ ∞

1

(
1

2πi

∫ ξ+i∞

ξ−i∞
ζ(s, y)xs

ds

s

)
x−2σ

(log x+ a)
2

dx

x

=
1

2πi

∫ ξ+i∞

ξ−i∞
ζ(s, y)

(∫ ∞

1

xs−2σ

(log x+ a)
2

dx

x

)

︸ ︷︷ ︸
J

ds

s
.

By substituting x = et, using the identity
1

(t+ a)2
= − d

da

∫ ∞

0

e−(t+a)xdx,

and interpreting the resulting integral as a Laplace transform, we find that

J =

∫ ∞

0

e−t(2σ−s)

(t+ a)2
dt = − d

da

(
e2σa

∫ ∞

2σ

e−atL {es·} (t)dt
)

=

∫ ∞

2σ

e−a(t−2σ)(t− 2σ)
dt

s− t
.

Therefore, by changing the order of integration again, we obtain that

I =

∫ ∞

2σ

e−a(t−2σ)(t− 2σ)

(
1

2πi

∫ ξ+i∞

ξ−i∞
ζ(s, y)

ds

s(s− t)

)
dt.

We evaluate the inner integral by residues, capturing the simple pole in s = t, to
see that

I =

∫ ∞

2σ

e−a(t−2σ)(t− 2σ)
ζ(t, y)

t
dt =

∫ ∞

0

ζ(t+ 2σ, y)

t+ 2σ
te−at dt.

Hence, to prove the statement of the lemma, we need to estimate
2σ

ζ(2σ, y)
I =

2σ

ζ(2σ, y)

∫ ∞

0

ζ(t+ 2σ, y)

t+ 2σ
te−at dt

from below. Observe that

ζ(t+ 2σ, y)

ζ(2σ, y)
≥ exp

(
− Ct

∑

p≤y

p−2σ log p

)
≥ exp

(
−C(1− 2σ)−1ty1−2σ

)

when, say, t ≤ 2y−α. Here 1 < C = 1 + o(1). Assuming that σ ≥ y−α, we have
that 2σ/(t+ 2σ) ≥ 1/2, and we therefore obtain

2σ

ζ(2σ, y)

∫ ∞

0

ζ(t+ 2σ, y)

t+ 2σ
te−atdt�

∫ 2y−α

0

t exp
(
−
(
a+ C(1− 2σ)−1y1−2σ

)
t
)
dt

≥ 1

2 (a+ C(1− 2σ)−1y1−2σ)
2
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for sufficiently large y. On the other hand, the same type of estimates carried
out in reverse order shows that

2σ

ζ(2σ, y)

∫ ∞

0

ζ(t+ 2σ, y)

t+ 2σ
te−atdt�

∫ ∞

0

t exp
(
−
(
a+ C ′(1− 2σ)−1y1−2σ

)
t
)
dt

=
1

(a+ C ′(1− 2σ)−1y1−2σ)
2 ,

where 1 > C ′ = 1 + o(1). �

Applying (7.1) and Lemma 7.3 to a symbol of multiplicative type (3.1), we
find that

∥∥T̃gk
y
σ

∥∥2
H 2∥∥kyσ

∥∥2
H 2

�
∑

P+(m)≤y

∑

P+(n)≤y

ψ(mn)
(m,n)2σ

(mn)σ

×
(
(1 + o(1)) (1− 2σ)−1y1−2σ + log

mn

(m,n)

)−2

.

(7.2)

under the assumptions on y and σ from Lemma 7.3.

Theorem 7.4. For 0 < λ < ∞, let g be the Dirichlet series (3.1), where
ψ(n) is the completely multiplicative function defined on the primes by ψ(p) :=
λp−1(log p). Fix α, 0 < α < 1. If σ = y−α, then

(7.3)

∥∥T̃gk
y
σ

∥∥2
H 2∥∥kyσ

∥∥2
H 2

� y2(λ−1).

In particular, Tg is not compact when λ = 1.

Proof. Let µ(n) denote the Möbius function, the only property of which we need
is that µ(n) = 0 unless n is square-free. Restricting the sums in (7.2) to square-
free numbers and using that (m,n)2σ ≥ 1, we find that

∥∥T̃gk
y
σ

∥∥2
H 2∥∥kyσ

∥∥2
H 2

�
∑

P+(m)≤y
µ(m) 6=0

∑

P+(n)≤y
µ(n) 6=0

ψ(mn)

(mn)σ

×
(
(1 + o(1)) (1− 2σ)−1y1−2σ + log

mn

(m,n)

)−2

.

(7.4)

Now using that m and n are y-smooth and square-free, so that both logm and
log n are bounded by π(y) log y ≤ (1 + o(1))y by the prime number theorem, we
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obtain from (7.4) that
∥∥T̃gk

y
σ

∥∥2
H 2∥∥kyσ

∥∥2
H 2

� 1

y2

∑

P+(m)≤y
µ(m) 6=0

∑

P+(n)≤y
µ(n) 6=0

ψ(mn)

(mn)σ

=
1

y2

∑

P+(m)≤y
µ(m) 6=0

ψ(m)

mσ

∑

P+(n)≤y
µ(n) 6=0

ψ(n)

nσ
=

(
1

y

∑

P+(m)≤y
µ(m) 6=0

ψ(m)

mσ

)2

.

We may now complete the proof of the estimate (7.3) by the following computa-
tion:

∑

P+(m)≤y
µ(m) 6=0

ψ(m)

mσ
=
∏

p≤y

(
1 +

ψ(p)

pσ

)
� exp

(∑

p≤y

ψ(p)

pσ

)

≥ exp


 λ

yσ

∑

p≤y

log p

p


 � exp

(
λ

yσ
log y

)
.

In the last step, we used Mertens’s first theorem, which asserts that
∑

p≤y
log p
p −

log y is bounded in absolute value by 2. Now (7.3) follows because y−σ log y =
log y + o(1) when y → ∞ by our choice of σ.

Finally, let {σj}j≥1 and {yj}j≥1 be sequences such that σj → 0 and yj → ∞
as j → ∞. Then for every Dirichlet polynomial P , we have that 〈P, kyj

σj 〉H 2

converges as j → ∞. On the other hand, we have that ‖kyj
σj‖H 2 → ∞. Therefore

k
yj
σj/‖kyj

σj‖H 2 converges weakly to 0 in H 2. Hence, the estimate shows, for
suitably chosen σj and yj , that Tg is not compact for λ = 1. �
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HARDY SPACES OF DIRICHLET SERIES AND
PSEUDOMOMENTS OF THE RIEMANN ZETA FUNCTION

ANDRIY BONDARENKO, OLE FREDRIK BREVIG, EERO SAKSMAN, KRISTIAN SEIP,
AND JING ZHAO

Abstract. We study Hp spaces of Dirichlet series, called H p, for 0 <

p < ∞. We begin by showing that H p may be defined either by tak-
ing an appropriate Lp closure of all Dirichlet polynomials or by requiring
the sequence of “mte Abschnitte” to be uniformly bounded in Lp. After
showing that these definitions are equivalent, we proceed to establish upper
and lower weighted `2 estimates (called Hardy–Littlewood inequalities) as
well as weighted `∞ estimates for the coefficients of functions in H p. We
discuss some consequences of these estimates and observe that the Hardy–
Littlewood inequalities display what we will call a contractive symmetry
between H p and H 4/p. The relevance of the Hardy–Littlewood inequali-
ties for the study of the dual spaces (H p)∗ is illustrated by a result about
the linear functionals generated by fractional primitives of the Riemann zeta
function. We deduce general estimates of the norm of the partial sum oper-
ator

∑∞
n=1 ann

−s 7→ ∑N
n=1 ann

−s on H p with 0 < p ≤ 1, supplementing
a classical result of Helson for the range 1 < p < ∞. Finally, we discuss
the relevance of our results for the computation of the so-called pseudo-
moments of the Riemann zeta function ζ(s) (in the sense of Conrey and
Gamburd). We apply our upper Hardy–Littlewood inequality to improve
on an earlier asymptotic estimate when p → ∞, but at the same time we
show, using ideas from recent work of Harper, Nikeghbali, and Radziwiłł
and some probabilistic estimates of Harper, that the Hardy–Littlewood es-
timate for p < 1 fails to give the right asymptotics for the pseudomoments
of ζα(s) for α > 1.

1. Introduction

Hp spaces of Dirichlet series, to be called H p in what follows, have been
studied extensively in recent years but mostly in the Banach space case p ≥ 1,
with a view to the operators acting on them. In the present paper, we explore
H p in the full range 0 < p <∞, which in part can be given a number theoretic
motivation: The interplay between the additive and multiplicative structure of
the integers is displayed in a more transparent way by the results obtained without

The research of Bondarenko, Brevig, Seip, and Zhao is supported by Grant 227768 of the
Research Council of Norway.
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any a priori restriction on the exponent p. As an example, we mention that the
multiplicative estimates of Section 3 of this paper exhibit what we will call a
contractive symmetry between Hp and H4/p, which is particularly significant for
the study of H p. We refer to these estimates as multiplicative because they are
obtained by multiplicative iteration via the Bohr lift (see below) of estimates for
Hp spaces of the unit disc. We note in passing that, surprisingly, there remain
basic problems related to the contractive symmetry that are still open in the case
of the unit disc.

By a basic observation of Bohr, the multiplicative structure of the integers
allows us to view an ordinary Dirichlet series of the form

f(s) =
∞∑

n=1

ann
−s

as a function of infinitely many variables. Indeed, by the transformation zj = p−s
j

(here pj is the jth prime number) and the fundamental theorem of arithmetic,
we have the Bohr correspondence,

(1) f(s) :=

∞∑

n=1

ann
−s ←→ Bf(z) :=

∞∑

n=1

anz
κ(n),

where we use multi-index notation and κ(n) = (κ1, . . . , κj , 0, 0, . . .) is the multi-
index such that n = pκ1

1 · · · p
κj

j . This transformation—the so-called Bohr lift—
gives an isometric isomorphism between H p and the Hardy space Hp(D∞). We
will come back to the details of this relation in the next section, where we will show
that it ensures an unambiguous definition of H p in the full range 0 < p < ∞.
The Bohr lift is of fundamental importance in our subject, and will in particular
be what we need in Section 3 and Section 4 to lift coefficient estimates in one
complex variable to obtain results for H p.

The additive structure of the integers plays a role whenever we restrict atten-
tion to the properties of f(s) viewed as an analytic function in a half-plane or
when we consider any problem for which the order of summation matters. A
particularly interesting example is that of the partial sum operator

SNf(s) :=
N∑

n=1

ann
−s,

viewed as an operator on H p. By a classical theorem of Helson [30], we know
that it is uniformly bounded on H p when 1 < p < ∞. In Section 5, we will
give bounds that are essentially best possible in the range 0 < p < 1 and an
improvement by a factor 1/ log logN on the previously known bounds when p = 1.
We are however still far from knowing the precise asymptotics of the norm of SN

when it acts on either H 1 or H ∞.
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We have found it interesting to relate our discussion and to apply part of our
results to a number theoretic problem that deals with the interplay between the
additive and multiplicative structure of the integers. Thus in the final Section 6
we consider the computation of the so-called pseudomoments of the Riemann
zeta function ζ(s) which were studied by Conrey and Gamburd [15] when p is an
even integer. In our terminology, the pseudomoments of ζ(s) are pth powers of
the H p norms of the Dirichlet polynomials

ZN (s) :=

N∑

n=1

n−1/2−s.

We observe that if we write

(2) fN (s) :=
∏

pj≤N

1

1− p−1/2−s
j

,

then ZN = SNfN . Hence ZN can be obtained by applying the partial sum oper-
ator to a Dirichlet series whose coefficients represent a completely multiplicative
function. This comes as no surprise of course, but the interesting point is how to
estimate the norm of SNfN . We have essentially two methods, one relying on the
multiplicative estimates from Section 3 and another relying on an additive esti-
mate of Helson used in Section 5. We will show that our multiplicative estimates
improve on the known estimates from [8] in the range p > 2. In general, however,
we know the right order of magnitude only when p > 1, there being a huge gap
between the additive and multiplicative estimates in the range 0 < p < 1. We are
not able to remedy this situation, but we will shed light on it by showing that the
Nth partial sum of [fN (s)]α for α > 1 has H p norm of an order of magnitude
larger than what is suggested by our multiplicative estimates, provided that p is
sufficiently small.

Our study of the pseudomoments of ζ(s) and more generally ζα(s) highlights
another important aspect of the spaces H p, namely a probabilistic interpretation
of the Bohr correspondence and the use of probabilistic methods. Our work on
pseudomoments in the range 0 < p < 1 is inspired by the recent paper [26] and
relies crucially on some delicate probabilistic estimates due to Harper [25].

To close this introduction, we note that there are many questions about H p

that are not treated or only briefly mentioned in our paper. Our selection of topics
has been governed by what appear to be significant and doable problems for the
whole range 0 < p <∞. We have chosen to be quite detailed in the groundwork
in Section 2, dealing with the definition of H p, because the infinite-dimensional
situation and the non-convexity of the Lp quasi-norms for 0 < p < 1 require some
extra care. In that section, we also summarize briefly some known facts and easy
consequences, such as for instance how some results for H 2 can be transferred
to H p when either p = 2k or p = 1/(2k) for k = 2, 3, ... In Section 3, which deals
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with upper and lower weighted `2 estimates for the coefficients of functions in
H p, we will record some functional analytic consequences concerning respectively
duality and local embeddings of H p into appropriate Bergman spaces when 0 <
p < 2. For further information about known results and open problems, we refer
to the monograph [37] and the recent papers [12, 44].

Notation. We will use the notation f(x)� g(x) if there is some constant C > 0
such that |f(x)| ≤ C|g(x)| for all (appropriate) x. If we have both f(x) � g(x)
and g(x)� f(x), we will write f(x) � g(x). If

lim
x→∞

f(x)

g(x)
= 1,

then we write f(x) ∼ g(x). As above, the increasing sequence of prime numbers
will be denoted by (pj)j≥1, and the subscript will sometimes be dropped when
there can be no confusion. The number of prime factors in n will be denoted
by Ω(n) (counting multiplicities). We will also use the standard notations bxc =
max{n ∈ N : n ≤ x} and dxe = min{n ∈ N : n ≥ x}.

2. Definitions and basic properties of the Hardy spaces H p and
Hp(D∞)

2.1. Definition of Hp(D∞). We use the standard notation T := {z : |z| = 1}
for the unit circle which is the boundary of the unit disc D := {z : |z| < 1} in
the complex plane, and we equip T with normalized one-dimensional Lebesgue
measure µ so that µ(T) = 1. We write µd := µ × · · · × µ for the product of d
copies of µ, where d may belong to N ∪ {∞}.

We begin by recalling that for every p > 0, the classical Hardy space Hp(D)
(also denoted by Hp(T)) consists of analytic functions f : D→ C such that

‖f‖pHp(D) := sup
0<r<1

∫

T
|f(rz)|p dµ(z) <∞.

This is a Banach space (quasi-Banach in case 0 < p < 1), and polynomials are
dense in Hp(D), so it could as well be defined as the closure of all polynomials in
the above norm (or quasi-norm). We refer to [19] or the first chapters of [21] for
the definition and basic properties of the Hardy spaces on D.

For the finite dimensional polydisc Dd with d ≥ 2, the definition of Hardy
spaces can be made in a similar manner: For every p > 0, a function f : Dd → C
belongs to Hp(Dd) when it is analytic separately with respect to each of the
variables z1, . . . , zd and

‖f‖p
Hp(Dd)

:= sup
r<1

∫

Td

|f(rz)|p dµd(z) <∞.
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The standard source for these spaces is Rudin’s monograph [41]. As in the one-
dimensional case, for almost every z in Td, the radial boundary limit

f∗(z) := lim
r→1−

f(rz)

exists, and we may write

(3) ‖f‖p
Hp(Dd)

=

∫

Td

|f∗(z)|p dµd(z).

This means that Hp(Dd) is a subspace of Lp(Td, µd). Moreover, again as in the
one-dimensional case, for every f in Hp(Dd), we have that

(4) lim
r→1−1

‖f − fr‖Hp(Dd) = 0,

where fr(z) := f(rz). This implies that the polynomials are dense in Hp(Dd),
so that the space could equally well be defined as the closure of all polynomials
with respect to the norm on the boundary given by (3).

Both (3) and (4) are most conveniently obtained by applying Lp-boundedness
of the radial maximal function on Hp(Dd) for all p > 0, a result which can be
obtained by considering a dummy variable w in D and checking first that, given
f in Hp(Dd), the function

w 7→ f(wz1, . . . , wzd)

lies in Hp(Dd) for almost every (z1, . . . zd) ∈ Td. By Fubini’s theorem, the bound-
edness of the maximal function then reduces to the classical one-dimensional
estimate.

In order to define Hp(D∞), some extra care is needed because functions in
Hp(D∞) will in general not be well defined in the whole set D∞. To keep
things simple, we henceforth consider the set D∞

fin which consists of elements
z = (zj)j≥1 ∈ D∞ such that zj 6= 0 only for finitely many k. A function
f : D∞

fin → C is analytic if it is analytic at every point z in D∞
fin separately with

respect to each variable. Obviously any analytic f : D∞
fin → C can be written by

a convergent Taylor series

f(z) =
∑

κ∈N∞
fin

cκz
κ, z ∈ D∞

fin,

and the coefficients cκ determine f uniquely. The truncation Amf of f onto the
first m variables Amf (called “der mte Abschnitt” by Bohr) is defined as

Amf(z1, z2, . . .) = f(z1, . . . , zm, 0, 0, . . .)

for every z in D∞
fin. By applying the fundamental estimate |g(0)| ≤ ‖g‖Hp(Dd),

obtained by iterating the case d = 1, we deduce that

(5) ‖Amf‖Hp(Dm) ≤ ‖Am′f‖Hp(Dm′ )
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whenever m′ ≥ m.

Definition. Let p > 0. The space Hp(D∞) is the space of analytic functions on
D∞

fin obtained by taking the closure of all polynomials in the norm (quasi-norm
for 0 < p < 1)

‖f‖pHp(D∞) :=

∫

T∞
|f(z)|p dµ∞(z).

Fix a compact set K in Dd and embed it as the subset K̃ of D∞ so that

K̃ := {z = (z1, . . . , zd, 0, 0, . . .) ∈ D∞ : (z1, . . . , zd) ⊂ K} .

For all polynomials g we clearly have supz∈K̃ |g(z)| ≤ CK‖g‖Hp(D∞). It follows
that any limit of polynomials is analytic on D∞

fin, whence Hp(D∞) is well defined.
This also implies that every element f in Hp(D∞) has a well-defined Taylor series
f(z) =

∑
κ cκz

κ and, in turn, this Taylor series determines f uniquely. Namely,
by recalling (5), we have that Amf is in Hp(Dm) for every m ≥ 1 and the Amf are
certainly determined by the Taylor series. Finally, by polynomial approximation,
it follows that

lim
m→∞

‖f −Amf‖Hp(D∞) = 0.

Obviously, if a function f in Hp(D∞) depends only on the variables z1, . . . zd,
then we have ‖f‖Hp(D∞) = ‖f‖Hp(Dd).

Cole and Gamelin [15] established an optimal estimate for point evaluations
on Hp(D∞) by showing that

(6) |f(z)| ≤




∞∏

j=1

1

1− |zj |2




1/p

‖f‖Hp(D∞).

Thus the elements in the Hardy spaces continue analytically to the set D∞ ∩ `2.
If f is an integrable function (or a Borel measure) on T∞, then we denote its

Fourier coefficients by

f̂(κ) :=

∫

T∞
f(z)z̄κdµ∞(z)

for multi-indices κ in Z∞
fin. When p ≥ 1, it follows directly from the definition of

Hp(D∞) that it can be identified as the analytic subspace of Lp(T∞), consisting
of the elements in Lp(T∞) whose non-zero Fourier coefficients lie in the positive
cone N∞

fin (called the “narrow cone” by Helson [31]).
The following result verifies that, alternatively, Hp(D∞) may be defined in

terms of the uniform boundedness of the Lp-norm of the sequence Amf for m ≥ 1,
and the functions Amf approximate f in the norm of Hp(D∞).
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Theorem 2.1. Suppose that 0 < p < ∞ and that f is a formal infinite dimen-
sional Taylor series. Then f is in Hp(D∞) if and only if

(7) sup
m≥1
‖Amf‖Hp(Dm) <∞.

Moreover, for every f in Hp(D∞), it holds that ‖Amf−f‖Hp(D∞) → 0 as m→∞.
Proof for the case p ≥ 1. When p > 1, the statements follow from the fact that
(Amf)m≥1 is obviously an Lp-martingale sequence with respect to the natural
sigma-algebras. It follows in particular that there is an Lp limit function (still
denoted by f) of the sequence Amf on the distinguished boundary T∞, which
has the right Fourier series, and the density of polynomials follows immediately
from the finite-dimensional approximation. In the case p = 1, this fact is stated
in [1, Cor. 3], and is derived as consequence of the infinite-dimensional version of
the brothers Riesz theorem on the absolute continuity of analytic measures, due
to Helson and Lowdenslager [32] (a simpler proof of the result from [32] is also
contained in [1]). The approximation property of the Amf then follows easily. �

The case 0 < p < 1 requires a new argument and will be presented in the next
subsection.

2.2. Proof of Theorem 2.1 for 0 < p < 1. Our aim is to prove Lemma 2.3
below, from which the claim will follow easily. In an effort to make the compu-
tations of this section more readable, we temporarily adopt the convention that
‖f‖Lp(Td) = ‖f‖p, where it should be clear from the context what d is. We start
with the following basic estimate.

Lemma 2.2. Let 0 < p < 1. There is a constant Cp <∞ such that all (analytic)
polynomials f on T satisfy the inequality

(8) ‖f − f(0)‖pp ≤ Cp

(
‖f‖pp − |f(0)|p + |f(0)|p−p2/2

(
‖f‖pp − |f(0)|p

)p/2)
.

Proof. In this proof, we use repeatedly the elementary inequality |a+b|p ≤ |a|p+
|b|p, which is our replacement for the triangle inequality. We see in particular,
by this inequality and the presence of the term ‖f‖pp− |f(0)|p inside the brackets
on the right-hand side, that (8) is trivial if, say, ‖f‖pp ≥ (3/2)|f(0)|2. We may
therefore disregard this case and assume that f satisfies f(0) = 1 and ‖f‖pp = 1+ε
with ε < 1/2. Our aim is to show that, under this assumption,

(9) ‖f − 1‖pp ≤ Cpε
p/2.

We begin by writing f = UI, where U is an outer function and I is an inner
function, such that U(0) > 0. By subharmonicity of |U |p, we have 1 ≤ |U(0)| ≤
(1 + ε)1/p ≤ 1 + cpε. This means that I(0) ≥ (1 + cpε)

−1 ≥ 1 − cpε. We write
f − 1 = (U − 1)I + I − 1 and obtain consequently that

(10) ‖f − 1‖pp ≤ ‖U − 1‖pp + ‖I − 1‖pp.
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In order to prove (9), it is therefore enough to show that each of the two summands
on the right-hand side of (10) is bounded by a constant times εp/2.

We begin with the second summand on the right-hand side of (10) for which
we claim that

(11) ‖I − 1‖pp ≤ C ′
pε

p/2

holds for some constant C ′
p. We write I = u+ iv, where u and v are respectively

the real and imaginary part of I. Since 1− u ≥ 0, we see that

(12) ‖1− u‖1 =

∫

T
(1− u(z))dm(z) = 1− I(0) ≤ cpε.

Using Hölder’s inequality, we therefore find that

(13) ‖1− u‖pp ≤ cPp εp.
In view of (12) and using that |I| = 1 and (1− u2) ≤ 2(1− u), we also get that

‖v‖pp ≤ ‖v‖p2 = ‖1− u2‖p/21 ≤
(
2‖1− u‖1

)p/2 ≤ (2cp)
p/2εp/2.

Combining this inequality with (13), we get the desired bound (11).
We turn next to the first summand on the right-hand side of (10) and the

claim that

(14) ‖U − 1‖pp ≤ C ′′
p ε

p/2

holds for some constant C ′′
p . By orthogonality, we find that

‖Up/2 − U(0)p/2‖22 ≤ ε
and hence

(15) ‖Up/2 − 1‖2 ≤ ‖Up/2 − U(0)p/2‖2 + (U(0)p/2 − 1)1/2 ≤ 2ε1/2.

Since |Up/2 − 1| ≥ ||U |p/2 − 1| ≥ (p/2) log+ |U | and U(0) ≥ 1, this implies that

(16) ‖ log |U |‖1 = 2‖ log+ |U |‖1 − log |U(0)| ≤ 8p−1ε1/2.

It follows that

m ({z : | log |U(z)|| ≥ λ}) ≤ 8(pλ)−1ε1/2,

m ({z : | argU(z)| ≥ λ}) ≤ Cλ−1ε1/2,

where the latter inequality is the classical weak-type L1 estimate for the conju-
gation operator. We now split T into three sets

E1 := {z : |U(z)| > 3/2} ∪ {z : |U(z)| < 1/2} ,
E2 := {z : 1/2 ≤ |U(z)| ≤ 3/2, | argU(z)| ≥ π/4} ,
E3 := T \ (E1 ∪ E2).
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It is immediate from (15) that

‖χE1
(U − 1)‖pp � ε.

Since m(E2) ≤ Cε1/2, we have trivially that

‖χE2
(U − 1)‖pp ≤ C(5/2)pε1/2.

Finally, on E3, we have that |Up/2− 1| ' |U − 1|, and so it follows from (15) and
Hölder’s inequality that

‖χE3(U − 1)‖pp � εp/2.

Now the desired inequality (14) follows by combining the latter three estimates.
�

One may notice that that in the last step of the proof above we could have
used (16) and the fact that the conjugation operator is bounded from L1 to Lp.
It seems that the exponent p/2 is the best we can get. It is also curious to note
that with p = 2/k and k ≥ 2 an integer, one could avoid the use of the weak-
type estimate for argU and get a very slick argument by simply observing that if
g = Up/2 and ω1, . . . , ωk are the kth roots of unity, then by Hölder’s inequality,

‖U − 1‖p ≤
k∏

j=1

‖g − ωj‖2,

and on the right hand side one L2-norm is estimated by ε1/2 and the others by
a constant since we are assuming ε ≤ 1/2. Again one could raise the question if
one can interpolate to get all exponents.

Lemma 2.3. Suppose that 0 < p < 1. If g is a polynomial on T∞, then

‖Am+kg −Amg‖pp ≤ Cp

(
‖Am+kg‖pp − ‖Amg‖pp

+ ‖Amg‖p−p2/2
p

(
‖Am+kg‖pp − ‖Amg‖pp

)p/2 )

holds for arbitrary positive integers m and k, where Cp is as in Lemma 8.

Proof. We set h := Am+kg and view h as a function on Tm × Tk so that
Amg(w,w

′) = h(w, 0). Now fix arbitrary points w in Tm and w′ in Tk. We
apply the preceding lemma to the function

f(z) := h(w, zw′),
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which is an analytic function on D. This yields
∫

T
|h(w, zw′)− h(w, 0)|p dµ(z) ≤ Cp

(∫

T
|h(w, zw′)|p dµ(z)− |h(w, 0)|p

+ |h(w, 0)|p−p2/2

(∫

T
|h(w, zw′)|p dµ(z) − |h(w, 0)|p

)p/2
)
.

The claim follows by integrating both sides with respect to (w,w′) over Tm+k

and applying Hölder’s inequality to the last term on the right-hand side. �

Proof of Theorem 2.1 for 0 < p < 1. If f is inHp(D∞), then clearly (7) holds. To
prove the reverse implication, we start from a formal Taylor series f for which (7)
holds. Then by assumption Amf is in Hp(D∞), and we have that Am(Am′f) =
Amf whenever m′ ≥ m ≥ 1. Therefore the quasi-norms ‖Amf‖Hp(D∞) constitute
an increasing sequence, and hence (7) implies that

lim
m→∞

sup
k≥1

(
‖Am+kf‖Hp(D∞) − ‖Amf‖Hp(D∞)

)
= 0.

By Lemma 2.3, we find that (Amf)m≥1 is a Cauchy sequence in Hp(D∞), whence
f = limm→∞Amf in Hp(D∞) since an element in Hp(D∞) is uniquely deter-
mined by the sequence Amf . �

2.3. Definition of H p. The systematic study of the Hilbert space H 2 began
with the paper [29] which defined H 2 to be the collection of Dirichlet series

f(s) =

∞∑

n=1

ann
−s,

subject to the condition ‖f‖2H :=
(∑∞

n=1 |an|2
)1/2

<∞. The space H 2 consists
of functions analytic in the half-plane C1/2 := {s = σ + it : σ > 1/2}, since
the Cauchy–Schwarz inequality shows that the above Dirichlet series converges
absolutely for those values of s. Bayart [5] extended the definition to every p > 0

by defining H p as the closure of all Dirichlet polynomials f(s) :=
∑N

n=1 ann
−s

under the norm (or quasi-norm when 0 < p < 1)

(17) ‖f‖H p :=

(
lim

T→∞
1

2T

∫ T

−T

|f(it)|p dt
)1/p

.

Computing the limit when p = 2, we see that (17) gives back the original defi-
nition of H 2. However, at first sight it is not clear that the above definition of
H p is the right one or that it even yields spaces of convergent Dirichlet series in
any right half-plane.
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The clarification of these matters is provided by the Bohr lift (1). By Birkhoff’s
ergodic theorem (or by an elementary argument found in [43, Sec. 3]), we obtain
the identity

(18) ‖f‖H p = ‖Bf‖Hp(D∞) :=

(∫

T∞
|Bf(z)|p dµ∞(z)

)1/p

.

Since the Hardy spaces on the infinite dimensional torus Hp(D∞) may be defined
as the closure of analytic polynomials in the Lp-norm on T∞, it follows that the
Bohr correspondence gives an isomorphism between the spaces Hp(D∞) and H p.
This linear isomorphism is both isometric and multiplicative, and this results in
a fruitful interplay: Many questions in the theory of the spaces H p can be
better treated by considering the isomorphic space Hp(D∞), and vice versa. An
important example is the Cole-Gamelin estimate (6) which immediately implies
that for every p > 0 the space H p consists of analytic functions in the half-plane
C1/2. In fact, we infer from (6) that

|f(σ + it)|p ≤ ζ(2σ)‖f‖pH p

holds whenever σ > 1/2, where ζ(s) is the Riemann zeta function. Moreover,
since the coefficients of a convergent Dirichlet series are unique, functions in
H p are completely determined by their restrictions to the half-plane C1/2. This
means in particular that H p can be thought of as a space of analytic functions
in this half-plane.

To complete the picture, we mention that H ∞ is defined as the space of
Dirichlet series f(s) =

∑∞
n=1 ann

−s that represent bounded analytic functions in
the half-plane σ > 0. We endow H ∞ with the norm

‖f‖H ∞ := sup
σ>0
|f(s)|, s = σ + it,

and then the Bohr lift allows us to associate H ∞ with H∞(D∞). We refer to [37]
for this fact and further details about the interesting and rich function theory of
H ∞.

2.4. A probabilistic interpretation of the Bohr lift. It is frequently fruitful
to think of the product measure µ∞ on T∞ as a probability measure and the
infinitely many variables zk as independent identically distributed (i.i.d.) random
variables. From the viewpoint of the Bohr correspondence, we then associate with
the sequence of primes (pj)j≥1 a sequence of independent Steinhaus variables
z(pj), which are random variables equidistributed on T. This sequence defines a
random multiplicative function z(n) on the positive integers N by the rule

z(n) = (z(pj))
κ(n),

where we again use multi-index notation. Functions in H p can then, via the
Bohr lift, be thought of as linear combinations of these random multiplicative
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functions. Indeed, we may write the Bohr lift as

f(s) =

∞∑

n=1

ann
−s ←→ F ((z(pj)) =

∞∑

n=1

anz(n)

and hence express ‖f‖pH p as the pth moment of |F |:
‖f‖pH p = E|F |p.

In the final section of this paper, we will make crucial use of this alternate view-
point, and we then find it natural to switch to this probabilistic terminology.

2.5. Summary of known results. The function theory of the two distinguished
spaces H 2 and H ∞ is by now quite well developed; we refer again to [37, 44]
for details. The results for the range 1 ≤ p < ∞, p 6= 2, are less complete. In
this section, we mention briefly some key results that extend to the whole range
0 < p < ∞, as well as some familiar difficulties that arise in our attempts to
make such extensions.

We begin with the theorem on multipliers that was first established in [29] for
p = 2 and extended to the range 1 ≤ p <∞ in [5]. We recall that a multiplier m
for H p is a function such that the operator f 7→ mf is bounded on H p, and the
multiplier norm is the norm of this operator. The theorem on multipliers asserts
that the space of multipliers for H p is equal to H ∞, and this remains true for
0 < p < 1, by exactly the same proof as in [5]. Another result that carries over
without any change, is the Littlewood–Paley formula of [7, Sec. 5]. The latter
result was already used in [12].

For some results, only a partial extension from the case p = 2 is known to
hold. A well known example is whether the Lp integral of a Dirichlet polynomial
f(s) =

∑N
n=1 ann

−s over any segment of fixed length on the vertical line Re s =
1/2 is bounded by a universal constant times ‖f‖pH p . This is known to hold for
p = 2 and thus trivially for p = 2k for k a positive integer. As shown in [36], this
embedding holds if and only if the following is true: The boundedly supported
Carleson measures for H p satisfy the classical Carleson condition in C1/2.

There is an interesting counterpart for p < 2 to the trivial embedding for
p = 2k and k a positive integer > 1. This is the following statement about
interpolating sequences. If S = (sj) is a bounded interpolating sequence in C1/2,
then we can solve the interpolation problem f(sj) = aj in H p when

∑

j

|aj |p(2σj − 1) <∞

and p = 2/k for k a positive integer. Indeed, choose any kth root a1/kj and solve
g(sj) = a

1/k
j in H 2. Then f = gk solves our problem in H p. We do not know

if this result extends to any p which is not of the form p = 2/k. Comparing the
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two trivial cases, we observe that there is an interesting “symmetry” between the
embedding problem for H p and the interpolation problem for H 4/p. A similar
phenomenon will be explored in the next section.

Before turning to the next two sections which will deal with respectively
weighted `2 and `∞ bounds for the coefficients, we would like to point out that
there are certainly other interesting problems of a similar kind. An interesting
example is whether the `1 estimate

∞∑

n=2

|an|√
n log n

≤ C‖f‖H 1

holds when f(s) =
∑∞

n=1 ann
−s. We refer to [13] for background on this problem

and again to [44] for a survey of other open problems.

3. Coefficient estimates: Weighted `2 bounds

3.1. Contractive Hardy–Littlewood inequalities in the unit disc. We be-
gin with some estimates of the Hp(D) norms (or quasi-norms when 0 < p < 1)
in terms of weighted `2 norms of the coefficient sequence. Such inequalities were
first studied systematically by Hardy and Littlewood.

For α > 1, the weighted Bergman space Ap
α(D) is the space of analytic func-

tions on D for which

‖f‖Ap
α(D) :=

(∫

D
|f(z)|p (α− 1)

(
1− |z|2

)α−2 dm(z)

π

) 1
p

<∞,

where m denotes Lebesgue area measure on C. We set

dmα(z) := (α− 1)
(
1− |z|2

)α−2 dm(z)

π
.

The Hardy space Hp(D) is the limit of the weighted Bergman spaces Ap
α(D) as

α→ 1+, in the sense that

‖f‖Hp(D) = lim
α→1+

‖f‖Ap
α(D).

We will therefore find it convenient to write Hp(D) = Ap
1(D) in some formulas,

such as in (22) below. For α ≥ 1 and a non-negative integer j, we define

(19) cα(j) :=

(
j + α− 1

j

)
=

α−1∏

l=1

(j + l)

l
.

Notice that c1(j) = 1 for every j. Identifying cα(j) as the coefficients of the
binomial series (1− z)−α, we find that

(20) cαk(j) =
∑

j1+j2+···+jk=j

cα(j1)cα(j2) · · · cα(jk).

297



In particular, if α is a positive integer, then cα(j) is the number of ways to write
j as a sum of α non-negative integers. We will also require the simple estimate

(21) cα(j + k) ≤ cα(j)cα(k)
which can be deduced by comparing factor by factor in the product (19). A
computation gives that if f(z) =

∑
j≥0 ajz

j , then

(22) ‖f‖A2
α(D) =




∞∑

j=0

|aj |2
cα(j)




1
2

.

The following inequality is due to Burbea [14, Cor. 3.4], but we include a short
proof in the special case we require, based on (20).

Lemma 3.1. Suppose that f is in H2(D), and let k be an integer ≥ 2. Then

‖f‖A2k
k (D) =

(∫

D
|f(z)|2k dmk(z)

) 1
2k

≤ ‖f‖H2(D).

Proof. Suppose that f(z) =
∑∞

j=0 ajz
j . We write |f |2k = |fk|2 and use (22),

followed by the Cauchy–Schwarz inequality with (20), to get

‖f‖2kA2k
k (D) =

∞∑

j=0

1

ck(j)

∣∣∣∣∣∣
∑

j1+···+jk=j

aj1 · · · ajk

∣∣∣∣∣∣

2

≤
∞∑

j=0

∑

j1+···+jk=j

|aj1 |2 · · · |ajk |2 =




∞∑

j=0

|aj |2



2k

= ‖f‖2kH2(D). �

It is possible to use Lemma 3.1 and Riesz–Thorin interpolation to prove that

(23) ‖f‖A2k
k (D) =

(∫

D
|f(z)|2k dmk(z)

) 1
2

≤ Ck‖f‖H2(D)

holds for every real number k > 1, but the interpolation process gives a constant
Ck > 1 when k is not an integer. Numerical evidence has been supplied elsewhere
[11] for the conjecture that in fact Ck = 1 for all k > 1. So far, we have not been
able to prove this extension of Lemma 3.1. As a remedy for this situation, we
will establish a weaker version for all k which will be satisfactory for the num-
ber theoretic applications to be discussed later. For this, we need the following
remarkable contractive estimate of Weissler [53, Cor. 2.1] for the dilations

fr(z) := f(rz), r > 0,

of functions f in Hp(D).
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Lemma 3.2. Let 0 < p < q <∞. The contractive estimate

‖fr‖Hq(D) ≤ ‖f‖Hp(D)

holds for every f in Hp(D) if and only if r ≤
√
p/q.

We are now ready to state and prove the main result of this section. To this
end, we set

(24) ϕα(j) := cbαc(j)

(
α

bαc

)j

, α ≥ 1.

Theorem 3.3. Suppose that 0 < p <∞ and that f(z) =
∑∞

j=0 ajz
j is in Hp(D).

Then

‖f‖Hp(D) ≤




∞∑

j=0

|aj |2ϕp/2(j)




1
2

, p ≥ 2,(25)




∞∑

j=0

|aj |2
ϕ2/p(j)




1
2

≤ ‖f‖Hp(D), p ≤ 2.(26)

Here the respective parameters α = p/2 and α = 2/p are optimal for contractivity.

Proof. We begin with (25). We will use Lemma 3.2 in reverse with exponents
bp/2c = k and p/2, so we choose r2 = bp/2c/(p/2) and assume that f is a
polynomial. Hence

‖f‖Hp(D) =
∥∥f2

∥∥1/2
Hp/2(D) ≤

∥∥f21/r
∥∥1/2
Hk(D) =

∥∥fk1/r
∥∥ 1

k

H2(D).
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The right-hand side can be computed at the level of coefficients. We use the
Cauchy–Schwarz inequality with (20), and finally (21), to get

∥∥fk1/r
∥∥ 1

k

H2(D) =




∞∑

j=0

∣∣∣∣∣∣
∑

j1+···+jk=j

aj1r
−j1 · · · ajkr−jk

∣∣∣∣∣∣

2



1
2k

≤




∞∑

j=0

ck(j)
∑

j1+···+jk=j

|aj1 |2r−2j1 · · · |ajk |2r−2jk




1
2k

≤




∞∑

j=0

∑

j1+···+jk=j

|aj1 |2ck(j1)r−2j1 · · · |ajk |2ck(jk)r−2jk




1
2k

=




∞∑

j=0

|aj |2ck(j)r−2j




1
2

.

This completes the proof of (25), since k = bp/2c and r2 = bp/2c/(p/2), so

ck(j)r
−2j = cbp/2c(j)

(
p/2

bp/2c

)j

= ϕp/2(j).

To prove (26), we first assume that f(z) 6= 0 for every z in D so f1/k is an
analytic function for k = b2/pc. We then use Lemma 3.2 with exponents kp and
2, followed by Lemma 3.1, to get

(27) ‖f‖Hp(D) =
∥∥f1/k

∥∥k
Hkp(D) ≥

∥∥f1/kkp/2

∥∥k
H2(D) ≥

∥∥fkp/2
∥∥
A2

k(D)
.

If f 6≡ 0, we factor f = Bg, where B is a Blaschke product and g has no zeros in
D. Then

‖f‖Hp(D) = ‖g‖Hp(D) and
∥∥fkp/2

∥∥
A2

k(D)
≤
∥∥gkp/2

∥∥
A2

k(D)
.

It therefore follows that (27) is valid for every f in Hp(D). The right hand side
of (27) can be computed at the level of coefficients, and since k = b2/pc we find
that

∥∥fkp/2
∥∥
A2

k(D)
=




∞∑

j=0

|aj |2
ck(j)

(
kp

2

)j



1
2

=




∞∑

j=0

|aj |2
ϕ2/p(j)




1
2

,

which completes the proof of (26). To see that α = p/2 and α = 2/p are optimal,
we recall that ϕα(1) = α and, for 0 < ε < 1, compute

‖1 + εz‖2Hp(D) =
∥∥(1 + εz)p/2

∥∥4/p
H2(D) =

(
1 +

p2

4
ε2 +O(ε4)

) 2
p

= 1+
p

2
ε2 +O(ε4).
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We complete the proof by letting ε tend to 0. �

When 1 < p ≤ 2 or 2 ≤ p < 4, the result of Theorem 3.3 is simply Lemma 3.2,
which gives the inequalities

‖f‖Hp(D) ≤




∞∑

j=0

|aj |2
(p
2

)j



1
2

, q ≥ 2,




∞∑

j=0

|aj |2
(
2

p

)j



1
2

≤ ‖f‖Hp(D), p ≤ 2.

The virtue of Theorem 3.3, compared to what Lemma 3.2 will give for every
0 < p <∞, is that the geometric factor (α/bαc)j is always dominated by (2−δ)j
for some δ = δ(α) > 0. It will become clear why this is crucial in Subsection 3.3.

3.2. Hardy–Littlewood inequalities for H p. We recall the definition of the
Riemann zeta function,

ζ(s) :=
∞∑

n=1

n−s =
∞∏

j=1

1

1− p−s
j

, σ > 1.

Using the Euler product formula, we may define the general divisor function
dα(n) by the rule

(28) ζα(s) =
∞∑

n=1

dα(n)n
−s, σ > 1.

A basic observation is that dα(n) is a multiplicative function, which means that
it is completely determined by its values at powers of the prime numbers. The
Euler product formula shows that, in fact,

(29) dα(p
j) = cj(α)

for every prime p and every nonnegative integer j, and in general

dα(n) = (cj(α))
κ(n)

in multi-index notation. We may thus think of dα(n) as a multiplicative extension
of (29).

We will now make a multiplicative extension of Theorem 3.3, similar to the
extension from (29) to dα(n). This will be done by an iterative procedure intro-
duced by Bayart [5] which relies crucially on the contractivity of the estimates
of Theorem 3.3. We begin by noting that the multiplicative extension of Theo-
rem 3.3 is known when either p/2 or 2/p is an integer. If p/2 is an integer, (our
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version of) the inequality in [45, Lem. 8] is

(30) ‖f‖H p ≤
( ∞∑

n=1

|an|2dp/2(n)
) 1

2

.

On the other hand, it was observed in [8, pp. 203–204], that (26) can be used to
prove the corresponding lower inequality

(31)

( ∞∑

n=1

|an|2
d2/p(n)

) 1
2

≤ ‖f‖H p ,

where it is required that 2/p is an integer. The case p = 1 in (31) is often
called Helson’s inequality [31]. For both (30) and (31), it is easy to see that the
parameters α = p/2 and α = 2/p are best possible — a similar statement will be
proved in Theorem 3.4.

Both (30) and (31) rely on Theorem 3.3, and we do not know whether any of
them extend to the case when either p/2 > 1 or 2/p > 1. We now turn to what we
are able to prove, namely the multiplicative extension of Theorem 3.3 for general
p. To this end, in accordance with (24), we introduce the multiplicative function

(32) Φα(n) := dbαc(n)

(
α

bαc

)Ω(n)

,

where Ω(n) denotes the number of prime factors in n, counting multiplicity. We
will see later that Φα(n) has the same average order as dα(n), a fact that for our
purposes makes it a satisfactory substitute.

The multiplicative extension of Theorem 3.3 reads as follows.

Theorem 3.4. If f(s) =
∑N

n=1 ann
−s, then

‖f‖H p ≤
(

N∑

n=1

|an|2Φp/2(n)

) 1
2

, p ≥ 2,(33)

(
N∑

n=1

|an|2
Φ2/p(n)

) 1
2

≤ ‖f‖H p , p ≤ 2.(34)

The respective parameters α = p/2 and α = 2/p are optimal.
Observe that Φα(n) = dα(n) whenever α is an integer, so (33) and (34) encom-

pass (30) and (31), respectively. Note also that Φα(n) = dα(n) if n is square-free.
Theorem 3.4 is an improvement of results1 from [8, 45]. Indeed, it is proved

in [8] that (31) holds if we only consider square-free integers in the lower bound.

1The Hardy–Littlewood inequalities in [8, 45] are stated with a weight of the form [d(n)]β ,
where d(n) = d2(n) denotes the usual divisor function. The difference between [d(n)]β and
dα(n) is marginal, but we have found it more natural to use dα(n).
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Using the Möbius function µ(n), which is the multiplicative function that is 0 if
n is square-free and −1 at each prime number, the Hardy–Littlewood inequality
of [8] can be written as

(35)

( ∞∑

n=1

|an|2
|µ(n)|
d2/p(n)

) 1
2

≤ ‖f‖H p ,

for p ≤ 2. We will see in Section 6 that certain estimates obtained from (35)
cannot be improved (substantially) by using (34). Nevertheless, the fact that
Φα(n) > 0 for every n allows us to extend an embedding theorem from [6] from
1 ≤ p < 2 to 0 < p < 2. This cannot be achieved using (35), since the lower
bound is supported on square-free integers.

In [45], Riesz–Thorin interpolation between the integers p/2 in (30) is used to
the prove that

‖f‖H q ≤
( ∞∑

n=1

|an|2dα(n)
) 1

2

,

where α = α(p) > p/2 (unless p/2 is an integer). Thus the average order of dα(n)
is larger than that of dp/2(n) and hence than that of Φp(n) as well, as we will see
in the next subsection.

We now turn to the proof of Theorem 3.4. It uses a technique which has
become standard by now (see e.g. [5, 6, 8, 31]), and we will therefore be brief.
For applications of this result, we refer to the subsequent Subsections 3.4 and 3.5
and Sections 5 and 6.

Proof of Theorem 3.4. By (18), we may replace f by Bf , and we may assume
that Bf =: F is a polynomial. We wish to apply Theorem 3.3 iteratively to
the finitely many variables zj on which F depends. To carry out the iterative
argument, we need the following integral version of Minkowski’s inequality. Let
X and Y be measure spaces, and let g be a measurable function on X × Y . If
r ≥ 1, then

(36)
(∫

X

(∫

Y

|g(x, y)| dy
)r

dx

) 1
r

≤
∫

Y

(∫

X

|g(x, y)|r dx
) 1

r

dy.

We use the Euler product of the Riemann zeta function in (28) and recall that
cα(j) are the coefficients of the binomial series (1− z)−α, to conclude that Φα is
the multiplicative function defined by

Φα(p
k) = ϕα(k).

Fix d ≥ 2, and define the invertible linear operator Tα by

(37) Tα
(
zκ(n)

)
:=
√

Φα(n) z
κ(n) =

d∏

j=1

√
ϕα(κj) z

κj .
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Let T−1
α denote the inverse operator. In view of (18), it is sufficient to prove that

if F is an analytic polynomial in d variables, then

‖F‖Lp(Td) ≤
∥∥Tp/2F

∥∥
L2(Td)

, p ≥ 2,
∥∥T−1

2/pF
∥∥
L2(Td)

≤ ‖F‖Lp(Td), p ≤ 2.

Note that Theorem 3.3 is simply the case d = 1. We find it convenient to argue by
induction on d, and we will only consider the case p ≥ 2. We factor the operator
Tα as Tα = RαSα, such that Rα acts on zj for 1 ≤ j ≤ d− 1 and Sα acts on zd.
This is well-defined in view of (37).

The induction hypothesis becomes ‖g‖Lq(Td−1) ≤ ‖Rp/2g‖L2(Td−1). To simplify
the notation, set zd = w. We begin by using Theorem 3.3 to the effect that

‖F‖Lp(Td) =

(∫

Td−1

∫

T
|F (z1, . . . , zd−1, w)|p dµ(w) dµd−1(z1, . . . , zd−1)

) 1
p

≤
(∫

Td−1

(∫

T

∣∣Sp/2F (z1, . . . , zd−1, w)
∣∣2 dµ(w)

) p
2

dµd−1(z)

) 1
p

.

We now apply (36) with X = Td−1, Y = T and r = p/2, and find that

≤
(∫

T

(∫

Td−1

∣∣Sp/2F (z1, . . . , zd−1, w)
∣∣p dµd−1(z)

) 2
p

dµ(w)

) 1
2

.

We complete the proof by using the induction hypothesis on g = Sp/2f .
That the parameter α = p/2 is optimal, follows at once from the example

considered in the proof of Theorem 3.3, applied multiplicatively. �

3.3. The average order of Φα(n). From (28) it follows by standard techniques
(see e.g. [50, Ch. II.5]) that the average order of dα(n) is given by

(38)
1

N

N∑

n=1

dα(n) =
1

Γ(α)
(logN)α−1 +O

(
(logN)α−2

)
.

We will now show that Φα(n) has the same average order, up to a bounded factor.
To investigate the average order of Φα(n), we consider the associated Dirichlet
series and factor out a suitable power of ζ(s) from the Euler product, to obtain

Fα(s) :=
∞∑

n=1

Φα(n)n
−s = ζα(s)

∏

p

(
1− p−s

)α



∞∑

j=0

ϕα(j) p
−js


 .
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For |z| < bαc/α, it is now convenient to set

(39) Gα(z) := (1− z)α
∞∑

j=0

ϕα(j)z
j = (1− z)α

(
1− α

bαcz
)−bαc

so that Fα(s) = ζα(s)Gα(s), where

Gα(s) :=
∏

p

Gα(p
−s).

From (39) we easily find that the Dirichlet series representing Gα(s) is absolutely
convergent for

Re s > max
(
1/2, log2(α/bαc)

)
.

To prove the desired size estimate for Φα(n), we require the following simple
estimates.

Lemma 3.5. If α ≥ 1 and 0 ≤ x < bαc/α, then

(40) Gα+1(x) ≤ Gα(x).

Moreover, Gα enjoys uniform estimates for 0 ≤ x ≤ 1/2,

1 ≤ Gα(x) ≤ 1 + x2

{
16(α− 1)/(2− α)3, 1 ≤ α < 2,

384, α ≥ 2.

Proof. To prove (40), we look at the Taylor expansion of the logarithm

log
(
Gα(x)

)
=

∞∑

j=2

xj

j

(
bαc

(
α

bαc

)j

− α
)
.

It is sufficient to show that Cj(α+ 1) ≤ Cj(α), where

Cj(α) := bαc
(
α

bαc

)j

− α.

Clearly Cj(bαc) = Cj([α + 1]) = 1. We set α = bαc + t for 0 ≤ t < 1, and
differentiate to find that

d

dt
Cj(α) = j

(
α

bαc

)j−1

− 1 ≥ j

(
α+ 1

[α+ 1]

)j−1

− 1 =
d

dt
Cj(α+ 1).

The lower bound in the second statement is just Bernoulli’s inequality,
(
1− α

bαcx
)bαc/α

≤ 1− x.

The upper bounds can be computed with Taylor’s theorem. By (40), we only
need to consider 1 ≤ α < 2 and α ≥ 2. The precise value of the constants are
unimportant; we have obtained ours by rather coarse estimates. �
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Using standard techniques (see e.g. [50, Ch. II.5]), we now deduce that the
average order of Φα(n) is the same as the average order of dα(n) given by (38).

Lemma 3.6. Let Φα(n) denote the weight (32) for fixed α ≥ 1. Then
1

x

∑

n≤x

Φα(n) =
Gα(1)

Γ(α)
(log x)α−1 +O

(
(log x)α−2

)
.

3.4. A theorem on local embedding for 0 < p < 2. We will now use The-
orem 3.4 and Lemma 3.6 to prove an embedding theorem for the Hardy spaces
of Dirichlet series H p, when p < 2. Let T denote the following conformal map
from D to C1/2,

T (z) :=
1

2
+

1− z
1 + z

.

For α > 1, define the conformally invariant Bergman space A2
α,i(C1/2) as the

space of analytic functions f in C1/2 such that f ◦T is in A2
α(D). In particular,

set

‖f‖A2
α,i(C1/2)

=
∥∥f ◦T

∥∥
A2

α(D)

=

(∫

C1/2

|f(s)|2 (α− 1)

(
σ − 1

2

)α−2
4α−1dm(s)

π|s+ 1/2|2α

) 1
2

.

We are able to extend [6, Thm. 1] from 1 ≤ p < 2 to p < 2 using Theorem 3.4.
Note that this is a Dirichlet series version of (23) in the half-plane C1/2.

Corollary 3.7. Let 0 < p < 2. There is a constant Cp ≥ 1 such that

‖f‖A2
2/p,i

(C1/2)
≤ Cp‖f‖H p

for every f ∈H p. The parameter α = 2/p is optimal.

Proof. Define Hα as the Hilbert space of Dirichlet series f(s) =
∑∞

n=1 ann
−s

that satisfy

‖f‖Hα :=

( ∞∑

n=1

|an|2
Φα(n)

) 1
2

<∞.

Here it is crucial that Φα is strictly positive. By Lemma 3.6 and [35, Thm. 1] it
follows that there is some Cα such that

‖f‖A2
α,i(C1/2)

≤ Cα‖f‖Hα
,

whenever α > 1. The proof of the first statement is completed using (34). For
the proof that α = 2/p is optimal, we can follow the argument given in the proof
of [6, Thm. 1]. We set

fp,ε(s) = ζ2/p(1/2 + ε+ s) =
∞∑

n=1

d2/p(n)

n1/2+ε
n−s,
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which satisfies

fp,ε(s) =

(
1

1/2 + ε+ s− 1

)2/p

+O
(
|1/2 + ε+ s− 1|−(2/p−1)

)

when 1/2 < Re s = σ < 1 and 0 < Im s = t < 1. Then clearly

‖fp,ε‖2A2
α,i(C1/2)

�
∫ 1

1/2

∫ 1

0

∣∣∣∣
1

σ − 1/2 + ε+ it

∣∣∣∣
4
p
(
σ − 1

2

)α−2

dtdσ � εα−4/p.

Since ‖fp,ε‖2H p � ε−2/p, we get that α− 4/p ≥ −2/p is necessary. �

3.5. Fractional primitives of ζ(s) and duality. It was asked in [13, Sec. 5]
whether the primitive of the half-shift of the Riemann zeta function

ϕ(s) := 1 +

∞∑

n=2

1√
n log n

n−s

defines a bounded linear functional on H 1, or equivalently: Is there a constant
C such that

(41)

∣∣∣∣∣a1 +
N∑

n=2

an√
n log n

∣∣∣∣∣ ≤ C‖f‖H p

for every Dirichlet polynomial f(s) =
∑N

n=1 ann
−s when p = 1? Clearly, (41) is

satisfied if p = 2, and it was shown in [6] that (41) holds whenever p > 1.
It was also demonstrated in [6] that ϕ is in H p if and only if p < 4. We are

still not able to answer the original question from [13, Sec. 5], but we will prove
some complementary results that shed more light on this and related questions
about duality.

For β > 0, consider the following fractional primitives of the half-shift of the
Riemann zeta function:

(42) ϕβ(s) := 1 +

∞∑

n=2

1√
n(log n)β

n−s.

We are interested in the following questions.
(a) For which β > 0 is ϕβ in H p, when p ≥ 2?
(b) For which β > 0 is ϕβ in (H p)∗, when p ≤ 2?

Before proceeding, let us clarify question (b). The linear functional generated by
ϕβ can be expressed as

〈f, ϕβ〉H 2 := a1 +
∞∑

n=2

an√
n(log n)β

,
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when f(s) =
∑∞

n=1 ann
−s. We say that the linear functional generated by ϕβ

acts boundedly on H p, or equivalently that ϕβ is in (H p)∗, if there is a constant
C > 0 such that

|〈f, ϕβ〉H 2 | ≤ C‖f‖H p

for every Dirichlet polynomial f . Our result is:

Theorem 3.8. Suppose that β > 0.
(a) Let p ≥ 2. Then ϕβ is in H p if and only if β > p/4.
(b) Let p ≤ 2. If β > 1/p then ϕβ is in (H p)∗ and if β < 1/p then ϕβ is

not in (H p)∗.

It is well-known that the dual space (H p)∗ for 1 < p <∞ is not equal to H q

with 1/p+ 1/q = 1 (see [43, Sec. 3]). Theorem 3.8 provides additional examples
illustrating this fact.

Before proving Theorem 3.8, we note that only the case β = 1 in Theorem 3.8
can be proved completely using results from [6, 8, 45], and that (33) or (34) are
required for either (a) or (b) when β 6= 1.

Proof of Theorem 3.8 (a). To begin with, we notice that (33) implies that

‖ϕβ‖2H p ≤ 1 +
∞∑

n=2

Φp/2(n)

n(log n)2β
.

The series on the right-hand side is convergent when 2β > p/2, by Lemma 3.6 and
Abel summation, and we have thus proved that ϕβ is in H p whenever β > p/4.

To settle the case β = p/4, we set k = [p], q = p/k, and

log∗ n =

{
log n, n > 1

1, n = 1,

and use (35) to the effect that

‖ϕβ‖pH p = ‖ϕk
β‖qH q ≥

( ∞∑

n=1

|µ(n)|
d2/q(n)

1

n

∣∣∣∣
∑

n1···nk=n

1

(log∗ n1)β · · · (log∗ nk)β
∣∣∣∣
2
) r

2

≥
( ∞∑

n=2

|µ(n)|
d2/q(n)

[dk(n)]
2

n(log n)2kβ

) r
2

=

( ∞∑

n=2

|µ(n)|dp[p]/2(n)
n(log n)p[p]/2

) r
2

,

where we used thrice that |µ(n)|dα(n) = |µ(n)|αΩ(n). To see that the final series
is divergent, we use Abel summation and the fact that

1

x

∑

n≤x

|µ(n)|dα(n) = Cα(log x)
α−1 +O

(
(log x)α−2

)
,
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which follows at once from standard techniques since
∞∑

n=1

|µ(n)|dα(n)n−s =
∞∏

j=1

(
1 + αp−s

j

)
. �

Proof of Theorem 3.8 (b). The first statement follows from (34). The Cauchy–
Schwarz inequality gives that

|〈f, ϕβ〉H 2 | ≤
( ∞∑

n=1

|an|2
Φ2/p(n)

) 1
2
( ∞∑

n=1

Φ2/p(n)

n(log n)2β

) 1
2

.

Abel summation again gives that the final sum is convergent if 2β > 2/p.
For the second part, suppose that β < 1/p and set

f(s) =


 ∏

pj≤N

1

1− p−1/2−s
j




2/p

.

Clearly, ‖f‖H p � (logN)1/p. We use Abel summation and (38) and find that

〈f, ϕβ〉H 2 ≥
N∑

n=2

d2/p(n)

n(log n)β
� (logN)2/p−β .

We conclude that
〈f, ϕβ〉H 2

‖f‖H p

� (logN)1/p−β

is unbounded as N →∞, since by assumption β < 1/p. �

The proof of Theorem 3.8 (b) does not provide any insight into the critical
exponent β = 1/p, except for the trivial case p = 2. The final part of this
subsection is devoted to some observations on this interesting problem. We begin
by considering the corresponding problem for Hardy spaces on the unit disc. To
this end, we introduce

(43) ψβ(z) :=

∞∑

j=0

zj

(j + 1)β
,

which are fractional primitives of (1− z)−1, a function which plays the same role
as ζ(s) in the theory of Hardy spaces in the unit disc. Equivalently, one could
consider the linear functional with weights given by

Beta

(
β,
j + 1

2

)
�β (j + 1)β .
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These weights are sometimes more convenient, due to the fact that the associated
functional Lβ admits the integral representation

(44) Lβ(f) :=

∫ 1

0

f(r) 2(1− r2)β−1 dr.

We compile the following result:

Theorem 3.9. Let ψβ be as in (43). Then

(a) If 1 < p < ∞, then ψβ is in
(
Hp(D)

)∗
= Hp/(p−1)(D) if and only if

β > 1/p.
(b) If p ≤ 1, then ψβ is in

(
Hp(D)

)∗ if and only if β ≥ 1/p. Moreover, if
β ≥ 1, then ψβ is in Hp(D) for every p <∞.

Proof. We begin with (a). That
(
Hp(D)

)∗
= Hp/(p−1)(D) for 1 < p < ∞ is

well-known (see [19]). We will investigate when ψβ is in Hp/(p−1)(D). To do this,
we use a result of Hardy and Littlewood [23]: If f(z) =

∑∞
j=0 ajz

j has positive
and decreasing coefficients and 1 < q <∞, then

‖f‖Hq(D) �q




∞∑

j=0

(j + 1)q−2aqj




1
q

.

Setting q = p/(p− 1) we find that

‖ψβ‖qHqD) �q

∞∑

j=0

(j + 1)
p

p−1 (1−β)−2,

which is finite if and only if β > 1/p.
For (b), we begin with the case β = 1. A stronger version of our statement

can be found in [19, Thm. 4.5]. It is also clear that since ψ1 is in
(
H1(D)

)∗, ψ1

is in Hq(D) for every p <∞.
To investigate the case p < 1, we require the main result in [20] for which

we refer to [19]. We conclude that ψβ ∈
(
Hp(D)

)∗ if and only if β ≤ 1/p by
combining [19, Thm. 7.5] with [19, Ex. 1 and Ex. 3 on p. 90]. If β < 1, then ψβ

is a bounded function, so ψβ is in Hp(D) for every p <∞. �

In analogy with Theorem 3.9, we offer the following conjecture.

Conjecture. Let p ≤ 2. The Dirichlet series ϕ1/p from (42) defines a bounded
linear functional on H p if and only if p ≤ 1.

Let us now explain how this conjecture is related to another open problem for
Hardy spaces of Dirichlet series. Define the space Hp

i (C1/2) in the same way as
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A2
α,i(C1/2) from Corollary 3.7. A computation gives that

‖f‖p
Hp

i (C1/2)
=

1

π

∫ ∞

−∞
|f(1/2 + it)|p dt

1 + t2
.

An equivalent formulation of the embedding problem mentioned in Section 2.5 is
the following. Is there is a constant Cp > 0 such that

(45) ‖f‖p
Hp

i (C1/2)
≤ Cp‖f‖pH p

holds for every Dirichlet polynomial f ? As mentioned in Section 2.5, the embed-
ding (45) is known to hold only when p is an even integer. See [10] for a simple
proof of this fact, which also gives the optimal constant2 Cp = 2. Note that (45)
is a stronger statement than Corollary 3.7, since from (23) we get that

‖f‖A2
2/p,i

(C1/2)
≤ Cp‖f‖Hp

i (C1/2)

for 0 < p < 2. The linear functional generated by ϕβ can also be expressed as

(46) 〈f, ϕβ〉H 2 = a1 +

∫ ∞

1/2

(
f(σ)− a1

) (
σ − 1

2

)β−1
dσ

Γ(β)
.

Translating (44) from D to C1/2 we find that

L̃1/p(F ) :=

∫ 1

1/2

F (σ)

(
σ − 1

2

)1/p−1

dσ

defines a bounded linear functional on Hp
i (C1/2) if and only if p ≤ 1. Note that

the contribution in (46) for σ ≥ 1 can be handled by trivial estimates. Hence
we conclude that if (45) holds for p ≤ 1, then (46) (and hence ϕ1/p) defines a
bounded linear functional on H p.

4. Coefficient estimates: Weighted `∞ bounds

We now turn to weighted `∞ estimates of the coefficient sequence (an)n≥1 for
elements f(s) =

∑∞
n=1 ann

−s in H p. Phrased differently, we are interested in
estimating the norm of the linear functional f 7→ an for every n ≥ 1, i.e., the
quantity

C (n, p) := sup
‖f‖p=1

|an|.

When p ≥ 1, an can be expressed as a Fourier coefficient, implying that this
norm is trivially 1 for all n. We will therefore mainly be concerned with the case
0 < p < 1.

The first observation we make is that, again, it suffices to deal with the one-
dimensional situation because the general estimates will appear by multiplicative

2The proof given in [10] that C2 = 2 extends effortlessly to show that Cp = 2 when p is an
even integer.
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extension. Before we prove this claim, we recall what is known about the coef-
ficients of f(z) =

∑∞
k=0 akz

k in Hp(D) when 0 < p < 1. For 0 < p < ∞ and
k ≥ 1, we set

(47) C(k, p) := sup

{ |f (k)(0)|
k!

: ‖f‖Hp(D) = 1

}
.

By a classical result [19, p. 98], C(k, p) � k1/p−1 and ak = o(k1/p−1) for an
individual function in Hp(D) when 0 < p < 1. By a normal family argument,
there are extremal functions fk in Hp(D) for (47).

Turning to the multiplicative extension, we begin by noting that it suffices to
consider an arbitrary polynomial

F (z) =
∑

κ

cκz
κ

on T∞ and to estimate the size of cκ for an arbitrary multi-index

κ = (κ1, . . . , κm, 0, 0, . . .).

Recall that AmF denotes the mte Abschnitt of F . For 0 < p < 1 we use (5) to
find that

|cκ|p =

∣∣∣∣
∫

Tm

AmF (z)z1
κ1 · · · zmκmdµm

∣∣∣∣
p

≤ C(κm, p)p
∫

T

∣∣∣∣
∫

Tm−1

AmF (z)z1
κ1 · · · zm−1

κm−1dµm−1

∣∣∣∣
p

dµ1

≤ C(κ1, p)p · · ·C(κm, p)p‖AmF‖pp
≤ C(κ1, p)p · · ·C(κm, p)p‖F‖pp.

This is a best possible estimate because if fk in Hp(D) satisfies |ak|/‖fk‖p =
C(k, p), then clearly the function

m∏

j=1

fκj (zj)

will be extremal with respect to the multi-index κ = (κ1, . . . , κm). Hence we
conclude that n 7→ C (n, p) is a multiplicative function that takes the value C(k, p)
at n = pkj for every prime pj .

To the best of our knowledge, the exact values of C(k, p) from (47) have not
been computed previously for any k ≥ 1 when 0 < p < 1, and we have therefore
made an effort to improve this situation. We begin with the case k = 1 which is
settled by the following theorem.

Theorem 4.1. We have

(48) C(1, p) = 1 if p ≥ 1, and C(1, p) =

√
2

p

(
1− p

2

) 1
p− 1

2

if 0 < p < 1.
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The extremals (modulo the trivial modifications f(z) 7→ eiθ1f(eiθ2z)) are
(a) f(z) = z for p > 1;
(b) the family fa(z) = (a +

√
1− a2z)(

√
1− a2 + az) with 0 ≤ a ≤ 1 for

p = 1;
(c) f(z) =

(√
1− p/2 + z

√
p/2
)2/p for 0 < p < 1.

Proof. As already pointed out, it is obvious that C(1, p) = 1 when p ≥ 1. The
uniqueness of the extremal function for p > 1 is immediate by the strict convexity
of the unit ball of Lp(T).

To find the extremal functions when p = 1, we start from the fact that functions
f in the unit ball of H1(T) can equivalently be written in the form f = gh,
where h, g are in the unit ball of H2(T). Writing g(z) =

∑∞
k=0 gkz

k and h(z) =∑∞
k=0 hkz

k, our task is to maximize

f ′(0) = g0h1 + g1h0,

under the sole condition that
∑∞

k=0 |gk|2 = 1 and
∑∞

k=0 |hk|2 = 1. By the
Cauchy–Schwarz inequality, we must have |g0|2 + |g1|2 = |h0|2 + |h1|2 = 1 and
also (g0, g1) = λ(h1, h0) for a unimodular constant λ. We may choose (g0, g1) as
an arbitrary unit vector, and hence we get the stated extremals.

We turn to the case 0 < p < 1. By invoking the inner-outer factorization of f ,
we may write an arbitrary element f with in the unit ball of Hp(D) equivalently as
f = gh2/p−1, where g, h are in the unit ball of H2(T) and h has no zeros in D. We
denote the coefficients of g and h as before. By applying a suitable transformation
f(z) 7→ eiθ1f(eiθ2z), we may assume that h0, h1 ≥ 0, and, moreover, that f(0) =
g0h

2/p−1
0 , where h2/p−1

0 ≥ 0 is chosen to be real and nonnegative. Hence

C(1, p) = sup

(
h
2/p−1
0 g1 +

(
2

p
− 1

)
h
2/p−2
0 h1g0

)
,

where the supremum is over all pairs (g0, g1) with |g0|2 + |g1|2 = 1 and pairs of
nonnegative numbers (h0, h1) with h20 + h21 = 1 and h0 ≥ h1 since h is zero-free.

The maximum occurs when (g0, g1) is a multiple of
((

2
p − 1

)
h
2/p−2
0 h1, h

2/p−1
0

)

and hence

C(1, p)2 = max
h2
0+h2

1=1,h0≥h1≥0

(
h
4/p−2
0 +

(
2

p
− 1

)2

h
4/p−4
0 h21

)
.

Suppressing the condition h0 ≥ h1, we find that

C(1, p)2 ≤ max
x∈[0,1]

(
x4/p−2 +

(
2

p
− 1

)2

x4/p−4
(
1− x2

)
)

=
2

p

(
1− p

2

)2/p−1
(49)
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by an elementary calculus argument. Since the solution to the extremal problem
in (49) corresponds to h0 =

√
1− p/2, we also have h0 ≥ h1, and the inequality

sign in (49) can therefore in fact be replaced by an equality sign. �

For future reference, we notice that the following asymptotic estimates hold:

(50) C(1, p) =

{
1 + (1− log 2)(1− p) +O((1− p)2), p↗ 1
1√
p ·
(√

2/e+O(p)
)
, p↘ 0.

For k ≥ 2, the method used in the preceding proof will lead to a similar finite-
dimensional extremal problem. The solution to this problem is plain for all k ≥ 2
when p = 1, but in the range 0 < p < 1, the complexity increases notably with k,
and we have made no attempt to deal with it. Instead, we supply (non-optimal)
estimates obtained from the Cauchy integral formula and Lemma 3.2 (Weissler’s
inequality).

Lemma 4.2. Suppose that 0 < p < 1 and k ≥ 1. Then

C(k, p) ≤ min
p≤x<1

x−k/2(1− x)1/x−1/p.

Proof. Suppose that f(z) =
∑∞

k=0 ckz
k is in Hp(D) with ‖f‖p = 1. Then, by

Cauchy’s formula,

|ck| ≤
1

2πr

∫

|z|=r

|z−kf(z)||dz|

for every r, 0 < r < 1. Using the pointwise estimate |f(z)| ≤ (1− |z|2)−1/p‖f‖p,
we therefore find that

|ck| ≤ r−k((1− r2)1/p
)q−1‖f‖1−q

p

∫

T
|f(rz)|qdµ(z)

whenever 0 < r < 1 and 0 < q < 1. Choosing p < q ≤ 1 and r2 = p/q and
invoking Lemma 3.2, we obtain the desired result. �

We notice that (26) of Theorem 3.3 yields the alternate bound3

(51) C(k, p) ≤
√
cd2/pe(k)

which is useful when p is close to 0.
We will now use the information gathered above to prove a result about the

maximal order of the multiplicative function n 7→ C (n, p). To begin with, we
notice that, by Theorem 4.1,

C (n, p) = C(1, p)ω(n)

3Notice that the bound C(k, p) ≤
√

ϕ2/p(k) is of no interest in this context because ϕ2/p(k)

grows exponentially with k when 2/p is not an integer.
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when n is a square-free number and hence

(52) lim sup
µ(n) 6=0,n→∞

logC (n, p)

log n/ log log n
= logC(1, p)

since

lim sup
µ(n) 6=0,n→∞

logω(n)

log n/ log log n
= 1.

It seems reasonable to expect that the lim sup in (52) is unchanged if we drop
the restriction that µ(n) 6= 0. The next theorem is as close as we have been able
to get to confirming this conjecture, based on our general bounds for C(k, p).

Theorem 4.3. Assume that 0 < p < 1. Then

0 < lim sup
n→∞

logC (n, p)

log n/ log log n
<∞.

Moreover,

lim sup
n→∞

logC (n, p)

log n/ log log n
=

{
1
2 | log p|(1 +O(p)), p↘ 0

cp(1− p), p↗ 1,

where 1− log 2 +O(1− p) ≤ cp ≤ 1/2 +O(1− p).

Proof. The general lower bound for the lim sup follows from (52), while the lower
bounds

lim sup
n→∞

logC (n, p)

log n/ log log n
≥
{

1
2 | log p|(1 +O(p)), p↘ 0

(1− log 2)(1− p) +O((1− p)2), p↗ 1

follow from (52) along with (50). To get an upper bound for the lim sup when
p↘ 0, we use (51) and the fact that

lim sup
n→∞

log dα(n)

log n/ log log n
= logα.

Trivially, (51) also gives a general upper bound for the lim sup.
To get an upper bound for the lim sup when p↗ 1, we argue as follows. Set

n =
∏

j

p
κj

j .

For κj ≤ 1/(1− p), we set x = p in Lemma 4.2 and get

(53) C(κj , p) ≤ p−κj/2.
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We note that
∑

j:κj≤1/(1−p)

κj ≤
1

1− p
∑

j≤log n/(log log n)2

1 +
(1 + o(1))

log log n

∑

j:κj≤1/(1−p)

κj log pj

=
log n

(1− p)(log log n)2 +
(1 + o(1))

log log n

∑

j:κj≤1/(1−p)

κj log pj .(54)

For κj > 1/(1− p), we set x = 1− (1− p)/κj in Lemma 4.2 so that

(55) C(κj , p) ≤
(
1− (1− p)

κj

)−κj/2

·
(
1− p
κj

)1−1/p

≤ e1−pκ
2(1/p−1)
j .

We observe that, given ε > 0, we will have if p is close enough to 1, then
∑

j:κj≥1/(1−p)

log κj ≤ log(log n/ log 2)
∑

j≤log n/(log log n)3

1

+
ε

log log n

∑

j:κj>1/(1−p)

κj log pj

≤ (1 + o(1)) log n

(log log n)2
+

ε

log log n

∑

j:κj>1/(1−p)

κj log pj(56)

if p is close enough to 1. Putting (54) into (53) and (56) into (55), respectively,
we find that

logC (n, p) =
∑

j

logC(κj , p) =
∑

j:κj≤1/(1−p)

C(κj , p) +
∑

j:κj>1/(1−p)

C(κj , p)

≤ o(1) log n

log log n
+
| log p|

2 log log n

∑

j:κj≤1/(1−p)

κj log pj

+
2(1/p− 1)ε

log log n

∑

j:κj>1/(1−p)

κj log pj

holds for arbitrary ε > 0, if p is close enough to 1. Choosing ε < 1/4, we obtain
the desired upper bound for the lim sup. �

We mention finally a consequence of the classical bound C(k, p)� k1/p−1 that
was already used in [9], related to the decomposition of a holomorphic function
on T∞ into a sum of holomorphic functions with homogeneous power series. Thus
we are interested in the orthogonal projection of a Dirichlet series

f(s) =
∞∑

n=1

ann
−s
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onto the space of m-homogeneous functions, namely

Pmf(s) :=
∑

Ω(n)=m

ann
−s.

The result in question, to be used in Subsection 6.3, is as follows.

Lemma 4.4. Suppose that 0 < p <∞. Then

‖Pmf‖H p ≤
{
‖f‖H p , p ≥ 1,√
e(m+ 1)1/p−1‖f‖H p , 0 < p < 1

holds for every f in H p.

Proof. We may assume that f is a Dirichlet polynomial, so that Bf(z) is con-
tinuous on T∞. We introduce the transformation wz := (wzj) on T∞, where w
is a point on the unit circle T. We may then write

(Bf)(wz) =

∞∑

m=0

(BPmf)(z)w
m.

It follows that we may consider the functions (BPmf)(z) as the coefficients of a
function in one complex variable. We set k = m and x = max(p, 1− 1/(m+ 1))
in Lemma 4.2 and get

|(BfPm)(z)|p ≤
∫

T
|(BPmf)(wz)|pdµ1(w) 1 ≤ p <∞,

and

|(BfPm)(z)|p ≤ (m+ 1)1−p

(1− 1/(m+ 1))pm/2

∫

T
|(BPmf)(wz)|pdµ1(w) 0 < p < 1.

Integrating this inequality over T∞ with respect to µ∞ and using Fubini’s theo-
rem, we obtain the desired estimate. �

5. Estimates for the partial sum operator

Assume that f(s) =
∑∞

n=1 ann
−s is a Dirichlet series in H p for some p > 0.

For given N ≥ 1, the partial sum operator SN is defined as the map

SN

( ∞∑

n=1

ann
−s

)
:=

N∑

n=1

ann
−s.

It is of obvious interest to try to determine the norm of SN when it acts on the
Hardy spaces H p. Helson’s version of the M. Riesz theorem [30] shows that SN

is bounded for 1 < p < ∞, and, moreover, its norm is bounded by the norm of
the one-dimensional Riesz projection acting on functions in Hp(D). Furthermore,
by the same argument of Helson [30], we have the following.
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Lemma 5.1. Suppose that 0 < p < 1. We have the estimate

‖SNf‖H p ≤ A

(1− p)‖f‖H 1

for f in H p, where A is an absolute constant.

We refer to [2, Sec. 3], where it is explained how the lemma follows from Hel-
son’s general result concerning compact Abelian groups whose dual is an ordered
group [30]. See also Sections 8.7.2 and 8.7.6 of [42]. In our case, the dual group
in question is the multiplicative group of positive rational numbers Q+ which is
ordered by the numerical size of its elements. This means that the bound for
‖SN‖H p→H p in the range 1 < p < ∞ relies on the additive structure of the
positive integers.

When 0 < p ≤ 1 or p =∞, a natural question is to determine the asymptotic
growth of the norm ‖SN‖H p→H p when N →∞. It is known from [4] and [7] that
the growth of both ‖SN‖H 1→H 1 and ‖SN‖H ∞→H ∞ is of an order lying between
log logN and logN . We will confine our discussion to the range 0 < p ≤ 1 and
begin with a new result for the case p = 1.

Theorem 5.2. We have

log logN � ‖SN‖H 1→H 1 � logN

log logN
.

Proof. Using Hölder’s inequality with p = (1 + ε)/ε and p′ = 1 + ε, we get

‖g‖1−ε
H 1 ≤

(‖g‖H 2

‖g‖H 1

)2ε

‖g‖1−ε
H 1−ε .

Setting g = SNf and applying Lemma 5.1, we get

‖SNf‖1 ≤ A
1

ε

(‖SNf‖2
‖SNf‖1

)2ε/(1−ε)

‖f‖1.

Now we need to understand how large the ratio ‖f‖2/‖f‖1 can be when f is a
Dirichlet polynomial of length N . A precise solution to this problem can be found
in the recent paper [18]. For our purpose, the following one-line argument suffices.
By Helson’s inequality (which is (34) for p = 1) and a well-known estimate for
the divisor function, we have

‖f‖2 ≤ max
n≤N

√
d(n)‖f‖1 ≤ ec

log N
log log N ‖f‖1

for an absolute constant c. This means that we can choose ε = (log logN)/ logN
so that we get

‖SN‖1 � (logN)/ log logN,

as desired.
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The lower bound is obvious from the classical one-dimensional result: The
Bohr lift maps Dirichlet series in H p of the form

∑∞
k=0 ck2

−ks to functions in
Hp(D). �

It is interesting to notice that our improved upper bound relies on both an
additive argument (Lemma 5.1) and a multiplicative argument (Theorem 3.4).
We now turn to the case 0 < p < 1 which will again require a mixture of additive
and multiplicative arguments.

Theorem 5.3. Suppose that 0 < p < 1. There are positive constants αp ≤ βp
such that

eαp
log N

log log N � ‖SN‖H p→H p � eβp
log N

log log N .

Moreover, we have

lim inf
N→∞

log ‖SN‖H p→H p

logN/ log logN
≥
{

1
4 | log p|+O(1), p↘ 0
1
2 (1− log 2)(1− p) +O((1− p)2), p↗ 1

and

lim sup
N→∞

log ‖SN‖H p→H p

logN/ log logN
≤
{

1
2 | log p|+O(1), p↘ 0

c(1− p) +O((1− p)2), p↗ 1,

where c is an absolute constant.

We have made no effort to minimize the constant c, but mention that our proof
gives the value log 2 times the norm of the operator f 7→ f∗ from H1(D) to L1(T),
where f∗ is the radial maximal function of f . Comparing with Theorem 4.3, we
notice that log ‖SN‖H p→H p has essentially the same maximal order as that of
logC (N, p).

We will split the proof of Theorem 5.3 into three parts. We begin with the
easiest case.

Proof of the upper bound in Theorem 5.3, with asymptotics for p↘ 0. We begin
by seting α := d2/pe and apply the Hardy–Littlewood inequality from Theo-
rem 3.4:

‖SNf‖H p ≤ ‖SNf‖H 2 ≤
(
max
n≤N

√
dα(n)

)( ∞∑

n=1

|an|2
dα(n)

) 1
2

� α
log N

2 log log N (1+o(1))‖f‖H 2/α ,

where we in the last step used that

dα(n) ≤ α
log n

log log n (1+o(1))

when n → ∞. We conclude by using that ‖f‖H 2/α ≤ ‖f‖H p , which holds
because 2/α ≤ p. This argument gives both βp = log(1 + 2/p)), say, and the
desired asymptotic estimate when p↘ 0. �
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We need a more elaborate argument to get the right asymptotic behavior
when p ↗ 1. We prepare for the proof by first establishing an auxiliary result
concerning polynomials on T. Here we use again the notation fr(z) := f(rz),
where f is an analytic function on D and r > 0.

Lemma 5.4. Suppose that 0 < p ≤ 1. There exists an absolute constant C,
independent of p, such that if 1− r = C−1/pn−1, then

(57) ‖Q‖pHp(D) ≤ 2‖Qr‖pHp(D)

for every polynomial Q(z) =
∑n

k=0 ckz
k.

Proof. For this proof, we write ‖Q‖p = ‖Q‖Hp(D). By the triangle inequality for
the Lp quasi-metric, we have

(58) ‖Q‖pp ≤ ‖Q−Qr‖pp + ‖Qr‖pp.
Since

|Q(z)−Qr(z)| =
∣∣∣∣
∫ z

rz

Q′(w)dw

∣∣∣∣ ≤ (1− r) max
0≤ρ≤1

|Q′(ρz)|,

we find that
‖Q−Qr‖pp ≤ A(1− r)p‖Q′‖pp

for an absolute constant A by theHp boundedness of the radial maximal function.
Using Bernstein’s inequality for 0 < p ≤ 1 [3, 52], we therefore get that

‖Q−Qr‖pp ≤ A(1− r)pnp‖Q‖pp.
Returning to (58), we see that we get the desired result by setting C = 2A. �

Proof of the upper bound in Theorem 5.3 when p↗ 1. Set

m = m(N) := [logN/(log logN)3]

and write z := (u, v) for a point on T∞, where u = (z1, ..., zm) and v =
(zm+1, zm+2, ...), so that u corresponds to the first m primes. Let ξ and η be
complex numbers and set ξu := (ξz1, ...ξzm) and ηv = (ηzm+1, ηzm+2, ...). Also,
if F is a function on T∞ and 0 < r, ρ ≤ 1, we set Fr,ρ(z) := F (ru, ρv).

We will now apply Lemma 5.4 in two different ways. We begin by applying
it to the function ξ 7→ (BSNf)(ξu, v), which is a polynomial of degree at most
logN/ log 2. This gives

∫

T
|(BSNf)(ξu, v)|pdµ(ξ) ≤ 2

∫

T
|(BSNf)(rξu, v)|pdµ(ξ)

for every point (u, v) and hence

‖BSNf‖pp ≤ 2‖BSNfr,1‖pp
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by Fubini’s theorem, with 1 − r = C−1/p(logN/ log 2)−1. Next, we apply (57)
to the function η 7→ (BSNfr,1)(u, ηv), which is a polynomial of degree at most
(1 + o(1)) logN/ log logN . Hence we find that

‖BSNf‖pp ≤ 22‖BSNfr,ρ‖pp
with 1− ρ = C−1/p(1+ o(1)) log logN/ logN . Applying (57) k times in this way,
we therefore get that

(59) ‖BSNf‖pp ≤ 2k+1‖BSNfr,ρk‖pp.
We choose k such that ρk ≤ √p, which is done because our plan is to use
Lemma 3.2 (Weissler’s inequality). Since 1−ρ = C−1/p(1+o(1)) log logN/ logN ,
we therefore obtain the requirement that

(60) k =
log p

2 log ρ
= | log p| ·

(
1/2 + o(1)

)
C1/p logN/ log logN.

We now apply Lemma 5.1 to the right-hand side of (59), which yields

‖BSNf‖p ≤ K(k, p)‖Bfr,ρk‖1,
where

K(k, p) : = Ap2(k+1)/p(1− p)−1

= Ap(1− p)−1 exp

(( log 2
2

+ o(1)
)
| log p|p−1C1/p logN

log logN

)
;

(61)

here we took into account (60) to get to the final bound for K(k, p). Note that,
in view of (5), we may assume that v is a vector of length d := π(N) − m. It
follows that

‖BSNf‖p ≤ K(k, p)

∫

Td

∫

Tm

∣∣(Bf)(ru, ρkv)
∣∣ dµm(u)dµd(v)

≤ K(k, p)(1− r2)−m(1−p)/p

∫

Td

(∫

Tm

∣∣(Bf)(u, ρkv)
∣∣p dµm(u)

)1/p

dµd(v),

where we in the last step used the Cole–Gamelin estimate (6). Using Minkowski’s
inequality (36) as before, we thus get

‖BSNf‖pp ≤ K(k, p)p(1− r2)−m(1−p)

∫

Tm

(∫

Td

∣∣(Bf)(u, ρkv)
∣∣ dµd(v)

)p

dµm(u).

We now iterate Weissler’s inequality along with Minkowski’s inequality d times
in the same way as in the proof of Theorem 3.4 and get the bound

‖BSNf‖p ≤ K(k, p)(1− r2)−m(1−p)/p‖f‖p.
Now taking into account our choice of r and m, we find that

lim sup
N→∞

log ‖SN‖H p→H p

logN/ log logN
≤ lim sup

N→∞

logK(k, p)

logN/ log logN
.
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Using finally (61), we conclude that

lim sup
N→∞

log ‖SN‖H p→H p

logN/ log logN
≤ C1/p| log p| log 2

2p
,

and hence we get the desired asymptotics when p↗ 1 with c = (C log 2)/2. �

Proof of the lower bound in Theorem 5.3. We consider first the special case when
M is the product of the first k prime numbers, M = p1 · · · pk. By the prime
number theorem, we have k ∼ logM/ log logM . We use then the function

fM (s) :=

k∏

j=1

(√
1− p/2 + p−s

j

√
pj/2

)2/p

.

We recognize each of the factors of this product as the extremal function from
Theorem 4.1. Hence ‖fM‖p = 1 and

fM (s) =
∞∑

n=1

ann
−s

with

aM = C(1, p)k =

(√
2

p

(
1− p

2

) 1
p− 1

2

)k

.

Consequently, by the triangle inequality for the Lp quasi-metric,

(62) C(1, p)pk ≤ ‖SM−1fM‖pp + ‖SMfM‖pp ≤ 2max
(
‖SM−1fM‖pp, ‖SMfM‖pp

)
,

and therefore at least one of the quasi-norms ‖SM−1fM‖p or ‖SMfM‖p is bounded
below by

1

2
C(1, p)(1+o(1)) log M

log log M .

Suppose now that an arbitrary N is given. Set nj := p1 · · · pj and

J := max{j : N/nj ≥ nj + 1}.
It follows that log nJ = (1/2 + o(1)) logN . There are now two cases to consider:

(1) Suppose ‖SnJ
fnJ
‖p is large. We set xN := [N/nJ ] and define

gN (s) := x−s
N fnJ

(s).

Then (SNgN )(s) = x−s
N (SnJ

fnJ
)(s) because xN = N/nJ − ε for some

0 ≤ ε < 1, and so

xN (nJ + 1) = (N/nJ − ε)(nJ + 1) = N +N/nJ − ε(nJ + 1) > N,

where we in the last step used the definition of J .
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(2) Suppose ‖SnJ−1fnJ
‖p is large. We set xN := dN/nJe and define gN as

in the first case. Then (SNgN )(s) = x−s
N (SnJ−1fnJ

)(s) because xN =
N/nJ + ε for some 0 ≤ ε < 1, and so

xN (nJ − 1) = (N/nJ + ε)(nJ − 1) = N −N/nJ + ε(nJ − 1) < N,

where we in the last step again used the definition of J .
In either case, since (62) holds for M = nJ and log nJ = (1/2 + o(1)) logN ,

we conclude that

lim inf
N→∞

log ‖SN‖H p→H p

logN/ log logN
≥ 1

2
logC(1, p).

The proof is finished by invoking the asymptotic estimate (50). �

Up to the precise values of αp and βp, the problem of estimating ‖SN‖H p→H p

for 0 < p < 1 is solved by Theorem 5.3. This result is, however, somewhat decep-
tive because it is of no help when we need to estimate ‖SNf‖H p for functions f
of number theoretic interest, such as (2). In fact, in that case, Lemma 5.1 gives
a much better bound. The problem of estimating such norms (or quasi-norms)
is the topic of the final section of this paper.

6. Pseudomoments of the Riemann zeta function and related
Dirichlet series

6.1. Generalities about moments and pseudomoments of ζ(1/2+it). This
section is partially motivated by our desire to understand the distribution of large
values of the Riemann zeta function ζ(s) on the critical line σ = 1/2. We begin
by recalling the classical approximation

ζ(σ + it) =
∑

n≤x

n−σ−it − x1−σ−it

1− σ − it +O(x−σ),

which holds uniformly in the range σ ≥ σ0 > 0, |t| ≤ x (see [51, Thm. 4.11]).
This means that

∣∣ζ(1/2 + it)−
∑

n≤2T

n−1/2−it
∣∣ = O(T−1/2), T ≤ t ≤ 2T,

and so our problem is about the size of
∑

n≤2T n
−1/2−it on the interval [T, 2T ].

We recall briefly some known facts about the distribution of |ζ(1/2 + it)| on
[T, 2T ]. First, by a celebrated result of Selberg (see [46, 48]), log |ζ(1/2 + it)|
has an approximate normal distribution with mean zero and variance 1

2 log log T
on [T, 2T ]. This implies that a “typical” value of |ζ(1/2 + it)| and hence of
|∑n≤2T n

−1/2−it| on [T, 2T ] is e
√

(1/2) log log T . More precise information about
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the distribution of |ζ(1/2 + it)| can be acquired from the size of the moments.
One expects that

Mk(T ) :=
1

T

∫ 2T

T

|ζ(1/2 + it)|2kdt ∼ Ak(log T )
k2

for some constant Ak for which one even has precise predictions [16]. This as-
ymptotic behavior is known to hold when k = 1, 2 by results of respectively
Hardy and Littlewood [22] and Ingham [34]. An unconditional lower bound
Mk(T ) � (log T )k

2

is known in the range k ≥ 1 [38], and this is known to hold
conditionally for all k > 0 by work of Ramachandra (see [39, 40]) and Heath-
Brown [27]. Harper [24], building and improving on

work of Soundararajan [49], showed that the upper bounds of optimal order
Mk � (log T )k

2

also hold conditionally for all k > 0.
By the Bohr correspondence, we may think of the interval [T, 2T ] as a sub-

set of T∞, and an interesting question is then to understand the distribution of
|∑n≤2T n

−1/2−it| on the entire torus T∞ and, in particular, to compare with
what we have on the subset [T, 2T ]. We use again the notation ZN (s) :=∑

n≤N n−1/2−s and, following Conrey and Gamburd [16], refer to the correspond-
ing moments

Ψk(N) := lim
T→∞

1

T

∫ 2T

T

|ZN (it)|2k dt = lim
T→∞

1

2T

∫ T

−T

|ZN (it)|2k dt = ‖ZN‖2kH 2k

as the pseudomoments of ζ(s). Conrey and Gamburd found that

(63) Ψk(N) = Ck(logN)k
2

+O
(
(logN)k

2−1
)

when k is an integer, and a precise value for the constant Ck was given (see the
next subsection). For general k > 0, one may expect a similar behavior. To this
end, it is known from [8] that

(64) Ψk(N) �k (logN)k
2

, k > 1/2

and that

(65) Ψk(N)�k (logN)k
2

, k > 0.

However, we know only that Ψ1/2(N)� (log logN)(logN)1/4 and that

Ψk(N)�k (logN)k/2, 0 < k < 1/2.

Here the upper bounds are established by Helson’s theorem on the partial sum
operator, and the lower bounds are deduced from Hardy–Littlewood inequalities.
We refer to [8] for the details.

There are several remaining problems. The most obvious of these is to get a
better upper bound when 0 < k ≤ 1/2. Another problem, to be considered next,
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is to sharpen the asymptotic bounds in (64); we will obtain fairly precise bounds
on the implied constants in this relation.

Unfortunately, we have not been able to improve the estimates in the range
0 < k ≤ 1/2. Instead, we have considered the closely related problem of the
pseudomoments of ζα(s) for α > 1. The somewhat surprising conclusion is that,
in this case, the lower bound obtained from the Hardy–Littlewood inequality (the
“multiplicative bound”) does not give the right asymptotic order for small k.

6.2. Bounds for the pseudomoments of ζ(1/2 + it) for k ≥ 1. For k a
positive integer, Conrey and Gamburd [16] computed the constant Ck in (63):
They found that Ck = akγk, where ak is an arithmetic factor defined by

ak :=
∏

p

(
1− 1

p

)k2 ∞∑

j=0

c2k(j)

pj

and γk is a geometric factor (the volume of a convex polytope). Bondarenko,
Heap, and Seip [8] investigated the asymptotic behavior of Ψk(N)/(logN)k

2

and
found a lower bound of super-exponential decay using (35) and an upper bound
of super-exponential growth using Helson’s theorem for the partial sum operator.

From the result in [16] one suspects that super-exponential decay is correct,
and this was conjectured in [8, Sec. 5]. We will now verify that for k ≥ 1,
the lower bound is indeed of the correct order. We will do this by replacing
the estimates for the partial sum operator with Theorem 3.4. We also include
additional details in the computation of the lower estimate from [8] to obtain an
explicit lower bound for comparison.

Theorem 6.1. Suppose that k ≥ 1. Then

Ψk(N)

(logN)k2 ≤
1

Γ(k + 1)k

∏

p

(
1− 1

p

)k2 (
1− k

[k]

1

p

)−k[k]

,

Ψk(N)

(logN)k2 ≥
1

Γ
(
[2k]k + 1

) k
[2k]

∏

p

(
1− 1

p

)k2 (
1 + [2k]k

1

p

) k
[2k]

.

In particular, as k →∞, we get that

(66) exp
((
− 2 + o(1)

)
k2 log k

)
≤ Ψk(N)

(logN)k2 ≤ exp
((
− 1 + o(1)

)
k2 log k

)
.

It is interesting to observe the similarity between the lower bound in (66) and
the unconditional bound

Mk(T ) ≥ exp
((
− 2 + o(1)

)
k2 log k

)
(log T )2
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obtained by Radziwiłł abd Soundararajan [38]. Likewise, we observe that the
upper bound in (66) is in agreement with the expected behavior

Mk(T ) ∼ exp
((
− 1 + o(1)

)
k2 log k

)
(log T )2,

conjectured by Conrey and Gonek [17].

Proof of the upper estimate in Theorem 6.1. Inserting ZN into (33), we get

Ψk(N) = ‖ZN‖H 2k
2k
≤
(

N∑

n=1

d[k](n)

n

(
k

[k]

)Ω(n)
)k

.

Using Lemma 3.6 and Abel summation, we find that
N∑

n=1

d[k](n)

n

(
k

[k]

)Ω(n)

=
Gk(1)

Γ(k + 1)
(logN)k +O

(
(logN)k−1

)
.

We complete the proof by inspecting the Euler product for Gk(1) and (39). For
the asymptotic estimate, we may safely assume k ≥ 2, in which case Lemma 3.5
gives Gk(1) � 1. Hence the main contribution to the decay comes from the
Gamma function, and the desired result follows from Stirling’s formula:

Γ(k + 1)k = exp
(
(1 + o(1)) k2 log k

)
. �

The following argument can be extracted from [8, pp. 201–202], but we include
some details here for the reader’s benefit.

Proof of the lower estimate in Theorem 6.1. We want to use (35), but k = p/2 ≥
1. To remedy this, we write 2k = `r where ` ≥ [2k] is an integer to be chosen
later that ensures that r < 2. Note that if n ≤ N , then

|µ(n)|
d2/r(n)

∣∣∣∣
∑

n1···n`=n
n1,...,n`≤N

1√
n1
· · · 1√

nk

∣∣∣∣
2

=
|µ(n)|
d2/r(n)

d2`(n)

n
=
|µ(n)|
n

d`k(n).

Using (35) and removing all terms in the sum for which N < n ≤ N `, we get the
lower bound

‖ZN‖2k2k = ‖Z`
N‖rr ≥

(
N∑

n=1

|µ(n)|
n

d`k(n)

) k
`

.

As above, one checks that
N∑

n=1

|µ(n)|
n

d`k(n) = C̃k(logN)`k +O
(
(logN)`k−1

)

with

(67) C̃k =
1

Γ(`k + 1)

∏

p

(
1− 1

p

)`k (
1 +

`k

p

)
.
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The asymptotic behavior of the Euler product in (67) has been estimated in [8,
p. 202], where it was found that

∏

p

(
1− 1

p

)`k (
1 +

`k

p

)
= exp

((
− 1 + o(1)

)
`k log log(`k)

)
.

Therefore the decay is again controlled by Γ(`k + 1)k/`. Clearly, choosing ` as
small as possible is optimal, and we therefore set ` = [2k]. The proof is completed
by similar considerations as in the preceding argument. �

Theorem 3.4 allows us to improve the more general results of [8] concerning
Dirichlet series of the form

F (s) =

∞∑

n=1

ψ(n)n−1/2−s

for a suitable multiplicative function ψ(n), in the same way as done above for the
Riemann zeta function, as well as to relax the presumed growth condition on ψ
for k ≥ 3. Since the computations go through as before, we refrain from carrying
out the details.

6.3. Pseudomoments of ζα(s) for α > 1 and small k. We define the pseu-
domoments of ζα(s) as Ψk,α(N) := ‖ZN,α‖2kH 2k , where

ZN,α(s) :=
∑

n≤N

dα(n)n
−s−1/2.

Letting FN be as defined in (2), we see that then ZN,α = (SNF
α
N )(s). We know

from [8] that these pseudomoments satisfy the relation

(68) Ψk,α(N) � (logN)k
2α2

when k > 1/2. We will now show that this result fails for small k < 1/2 when
α > 1. If we agree that the moments of ζα(s) are just the moments of |ζ(s)|α,
then we see that our result implies that, on the Riemann hypothesis, there is
a discrepancy between the behavior of the pseudomoments and the moments of
ζα(s) for small k when α > 1.

Theorem 6.2. Suppose that α ≥ 1. For every k > 0, there exists a constant
c(k) such that

Ψk,α(N)� (logN)k logα2

exp
(
−c(k)

√
log logN log log logN

)

holds for arbitrarily large N .

This is incompatible with (68) when α > 1 and k < (logα2)/α2. From this we
observe that, whenever k < 1/e, we can find α > 1 such that (68) fails.

We prepare for the proof of Theorem 6.2 by establishing two lemmas.
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Lemma 6.3. Suppose that α ≥ 1. Then

E

∣∣∣∣∣∣
∑

M/2<n≤M

dα(n)α
−Ω(n)z(n)n−1/2

∣∣∣∣∣∣
� (log logM)−3+o(1),

where the implicit constant o(1) depends only on M .

Here we applid the probabilistic notation of Subsection 2.4. We defer the proof
of Lemma 6.3 until the end of this subsection.

Our second lemma is a result on the distribution of

N(x,m) :=
∑

n≤x,Ω(n)=m

1,

similar in spirit to the Erdős–Kac theorem, saying that N(x,m) is mainly con-
centrated on the set

IC :=
[
log log x− C

√
log log x log log log x, log log x+ C

√
log log x log log log x

]

when x is large and C is a suitable positive constant. To deduce this result, we
rely on an estimate of Sathe (see [47]) saying that

(69) N(x,m) ≤ C x

log x

(log log x)m−1

(m− 1)!

whenever x > 10 and 1 ≤ m ≤ (3/2) log log x, with C an absolute constant.
Choosing C large enough and using Stirling’s formula, we therefore find that

(70)
∑

m≤(3/2) log log x,m 6∈IC

N(x,m) ≤ x

2(log log x)8

when x is sufficiently large. Using instead of (69) formula (7) from [33], we deduce
that

(71)
∑

m≥(3/2) log log x

N(x,m) ≤ x

(log x)1/100

for x large enough. Combining (70) and (71), we obtain the following.

Lemma 6.4. There exists an absolute constant C > 0 such that
∑

m 6∈IC

N(x,m) ≤ x

(log log x)8

for all sufficiently large x.

Proof of Theorem 6.2. We write

DN,α(s) :=
∑

N/2<n≤N

dα(n)α
−Ω(n)n−s−1/2
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so that
ZN,α(s)− ZN/2,α(s) =

∑

m≥0

αmPmDN,α(s).

By Lemma 4.4, we have for every m and 0 < q < 1

(72) ‖ZN,α − ZN/2,α‖q � αmm1−1/q‖PmDN,α‖q.
We will combine (72) with an estimate that we obtain from the two lemmas
above.

In what follows, we will use that the L2 norm of DN,α can be estimated in a
trivial way because dα(n)α−Ω(n) ≤ 1. First, applying Hölder’s inequality in the
form

‖f‖2−q
1 ≤ ‖f‖qq‖f‖2−2q

2

along with Lemma 6.3 and a trivial L2 estimate, we find that
∥∥ ∑

m≥0

PmDN,α

∥∥q
q
� (log logN)−6+o(1)

whenever 0 < q < 1. Using the triangle inequality for the Lq quasi-norm and the
trivial bound ‖f‖q ≤ ‖f‖2, we obtain from this that

∑

m∈IC

∥∥PmDN,α

∥∥q
q
+
∥∥ ∑

m 6∈IC

PmDN,α

∥∥q
2
� (log logN)−6+o(1).

Hence, by a trivial L2 bound and an application of Lemma 6.4, there exists a
constant C such that

∑

m∈IC

∥∥PmDN,α

∥∥q
q
� (log logN)−6+o(1).

Thus, since |IC | = O(
√
log logN log log logN), there exists an m satisfying

log logN−C
√
log logN log log logN ≤ m ≤ log logN+C

√
log logN log log logN

such that

(73) ‖PmDN,α‖qq ≥ (log logN)−6.5+o(1).

We now set q = 2k. Combining (72) and (73), we find that for some c(k, α)

‖ZN,α − ZN/2,α‖2k2k � (logN)k logα2

exp
(
−c(k, α)

√
log logN log log logN

)
.

Since
‖ZN,α − ZN/2,α‖2k2k ≤ ‖ZN,α‖2k2k + ‖ZN/2,α‖2k2k,

this means that at least one of the pseudomoments Ψk,α(N/2) or Ψk,α(N) satisfies
the lower bound asserted by the theorem. �
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Proof of Lemma 6.3. Let Nx be the set of x-smooth numbers, i.e.,

Nx := {n ∈ N : p a prime such that p|n ⇒ p ≤ x} .

We start with the following identity which holds for every real t:
∫ ∞

1

∑
y/2<n≤y,n∈Nx

dα(n)α
−Ω(n)z(n)n−1/2

y1+1/ log x+it
dy

=

(
1− 2−1/ log x−it

1/ log x+ it

) ∑

n∈Nx

dα(n)α
−Ω(n)z(n)n−1/2−1/ log x−it.

(74)

Our first goal is to estimate the supremum of the right hand side in (74) for t
from a reasonably short interval. We have

∣∣∣
∑

n∈Nx

dα(n)α
−Ω(n)z(n)n−1/2−1/ log x−it

∣∣∣

=
∏

p≤x

∣∣∣1 +
∞∑

j=1

cα(j)α
−jz(p)jp−j(1/2+1/ log x+it)

∣∣∣

� exp

(
Re

(∑

p≤x

z(p)p−1/2−1/ log x−it

)

+
1

2α
Re

(∑

p≤x

z(p)2p−1−2/ log x−2it

))

(75)

for all points of the configuration space (z(p))p≤x. As in [26, Lem. 1], we can
modify the proof of [25, Cor. 2] to show that

sup
1≤t≤2(log log x)2

|1−2−it|≥1/4

(
Re

(∑

p≤x

z(p)p−1/2−1/ log x−it

)

+
1

2α
Re

(∑

p≤x

z(p)2p−1−2/ log x−2it

))

≥ log log x− log log log x+O((log log log x)3/4)

with probability 1 − o(1) as x → ∞. To achieve this, we add a minor technical
detail: In the part of the argument that follows [25, Sec. 6], we only take into
account those integers n, 1 ≤ n ≤ (log log x)2, such that

min
2n+1≤t≤2n+2

|1− 2−it| ≥ 1/4,
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noting that the number of such n is bounded below by C(log log x)2. Combining
the latter inequality with (75), we obtain that with probability 1− o(1)

sup
1≤t≤2(log log x)2

|1−2−it|≥1/4

∣∣∣∣∣
∑

n∈Nx

dα(n)α
−Ω(n)z(n)n−1/2−1/ log x−it

∣∣∣∣∣ ≥ log x(log log x)−1+o(1).

Now taking the supremum of the absolute value of both sides in (74), we find
that

∫ ∞

1

∣∣∣
∑

y/2<n≤y,n∈Nx
dα(n)α

−Ω(n)z(n)n−1/2
∣∣∣

y1+1/ log x
dy ≥ log x(log log x)−3+o(1)

with probability 1− o(1). Hence taking the expectation over the entire configu-
ration space (z(p))p≤x, we finally obtain that, say for all x > 3,

∫ ∞

1

E
∣∣∣
∑

y/2<n≤y,n∈Nx
dα(n)α

−Ω(n)z(n)n−1/2
∣∣∣

y1+1/ log x
dy

≥ log x(log log x)−3+o(1).

(76)

Now we will show that the assertion of the lemma follows from (76). To this
end, we begin by fixing a positive integer M . We will use (76) for x such
that M = x10 log log log x. Applying the Cauchy–Schwarz inequality in the form
(E|X|)2 ≤ E|X|2 and recalling that dα(n)α−Ω(n) ≤ 1, we find that

∫ ∞

√
M

E
∣∣∣
∑

y/2<n≤y,n∈Nx
dα(n)α

−Ω(n)z(n)n−1/2
∣∣∣

y1+1/ log x
dy ≤

√
2

∫ ∞

√
M

1

y1+1/ log x
dy

=
√
2 log x(log log x)−5.

Combining this bound with (76), we find that

∫ √
M

1

E
∣∣∣
∑

y/2<n≤y,n∈Nx
dα(n)α

−Ω(n)z(n)n−1/2
∣∣∣

y1+1/ log x
dy

≥ log x(log log x)−3+o(1),

(77)

which is the relation to be used below.
Set SM,α(z) :=

∑
M/2<n≤M dα(n)α

−Ω(n)z(n)n−1/2, and let N⊥
x be the set of

integers with prime divisors that are all larger than x. Write

SM,α(z) =
∑

n∈N⊥
x ,1≤n≤M

cndα(n)α
−Ω(n)z(n)n−1/2,

where
cy :=

∑

k∈Nx,M/(2y)≤k≤M/y

dα(k)α
−Ω(k)z(k)k−1/2.
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By Helson’s inequality (31), we find that

E|SM,α| ≥ E


 ∑

n∈N⊥
x ,1≤n≤M

|cn|2dα(n)2α−2Ω(n)

d(n)n




1/2

≥ E


 ∑

x<p≤M

|cp|2
2p




1/2

.

(78)

We now want to relate the right-hand side of (78) to the integral

∫ M

x

∣∣∣∣∣∣
∑

M/(2y)≤n≤M/y,n∈Nx

dα(n)α
−Ω(n)z(n)n−1/2

∣∣∣∣∣∣

2

dy

y
=

∫ M

x

|cy|2
dy

y
.

To this end, we begin by considering a short interval [ξ, ξ + ξδ] ⊂ [x,M ], where
7/12 < δ < 1 is a fixed parameter. If ξ is sufficiently large, then by [28], this
interval contains at least ξδ/(2 log ξ) primes. We partition accordingly the interval
into [ξδ/(2 log ξ)] subintervals of equal length ξδ/[ξδ/(2 log ξ)]. We make a one-to-
one correspondence between these subintervals and the first [ξδ/(2 log ξ)] primes
in [ξ, ξ + ξδ], and hence we associate with every y in [ξ, ξ + ξδ] a prime p = p(y)
that is also in [ξ, ξ + ξδ]. We write c̃y := cy − cp(y) and notice that

|cy|2 ≤ 2
(
|cp(y)|2 + |c̃y|2

)
,

where E|c̃y|2 � ξδ−1 � yδ−1. From this we get that

∫ ξ+ξδ

ξ

∣∣∣∣∣∣
∑

M/(2y)≤n≤M/y,n∈Nx

dα(n)α
−Ω(n)z(n)n−1/2

∣∣∣∣∣∣

2

dy

y

� (log ξ)
∑

ξ≤p≤ξ+ξδ

|cp|2
p

+

∫ ξ+ξδ

ξ

|c̃y|2
y

dy.

Repeating this construction and summing over a suitable collection of intervals
[ξ, ξ + ξδ], we then obtain

∑

x<p≤M

|cp|2
p

+

∫ M

x

|c̃y|2
y

dy

� 1

logM

∫ M

x

∣∣∣∣∣∣
∑

M/(2y)≤n≤M/y,n∈Nx

dα(n)α
−Ω(n)z(n)n−1/2

∣∣∣∣∣∣

2

dy

y
.
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By the change of variables u = M/y in the integral on the right-hand side and
using that logM = 10 log x log log log x, we now deduce that

∑

x<p≤M

|cp|2
p

+

∫ M

x

|c̃y|2
y

dy

� 1

log x log log log x

∫ M/x

1

∣∣∣∣∣∣
∑

u/2≤n≤u,n∈Nx

dα(n)α
−Ω(n)z(n)n−1/2

∣∣∣∣∣∣

2

du

u
.

(79)

We are now ready to finish the proof by putting our three basic estimates (77),
(78), and (79) together. First, by the Cauchy–Schwarz inequality, we have

∫ M/x

1

∣∣∣∣∣∣
∑

u/2≤n≤u,n∈Nx

dα(n)α
−Ω(n)z(n)n−1/2

∣∣∣∣∣∣

2

du

u

∫ M/x

1

1

u1+2/ log x
du

≥



∫ √

M

1

∣∣∣
∑

u/2≤n≤u,n∈Nx
dα(n)α

−Ω(n)z(n)n−1/2
∣∣∣

u1+1/ log x
du.




2

Therefore, taking expectation in (79) and applying (78) together with (77), we
find that

E|SM | � E
∣∣∣
( ∑

x<p≤M

|cp|2
p

+

∫ M

x

|c̃y|2
y

dy
)1/2∣∣∣− E

∣∣∣
( ∫ M

x

|c̃y|2
y

dy
)1/2∣∣∣

� E
∣∣∣
( ∑

x<p≤M

|cp|2
p

+

∫ M

x

|c̃y|2
y

dy
)1/2∣∣∣− x−(1−δ)/2

� 1

log x(log log log x)1/2

×
∫ √

M

1

E
∣∣∣
∑

u/2≤n≤u,n∈Nx
dα(n)α

−Ω(n)z(n)n−1/2
∣∣∣

u1+1/ log x
du− x−(1−δ)/2

≥ (log log x)−3+o(1) ≥ (log logM)−3+o(1),

and hence the desired estimate has been established. �
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