
A Simulated Annealing Based Method for
Generating Random Metabolic Networks

Siri Haftun Overn

Biotechnology (5 year)

Supervisor: Eivind Almaas, IBT

Department of Biotechnology and Food Science

Submission date: May 2017

Norwegian University of Science and Technology

Preface

The work presented in this master’s thesis was carried out at the Norwegian University of Sci-

ence and Technology (NTNU). This thesis is a part of the Systems Biology specialization of the

five-year M.Sc. program in Biotechnology.

Siri Haftun Overn

Trondheim, May 30, 2017

i

Acknowledgements

First and foremost, I want to thank my supervisor Professor Eivind Almaas at Department of

Biotechnology for his invaluable assistance, patience, support, and encouragement over the

past two years. His positivity and motivational words have been crucial in this process, as well

as his strict voice each time I just pretended to understand things.

I would also like to thank all the members of the Network Biology group for making our

weekly meetings worth to attend. In particular, I would like to express my gratitude to PhD can-

didate Snorre Sulheim at SINTEF Materials and Chemistry for his help with parallel computing.

I had no chance to implement this alone. I also appreciate the assistance from previous group

member, constructor of the reaction universe, and PhD candidate Ove Øyaas at ETH Zürich.

He helped me finding the right metabolic models for my study. I am also grateful for his quick

responses by email each time I thought I had messed things up.

Gratitude is also given to Senior Engineer Sandor Zeestraten and PhD candidate Oddgeir

Lingaas Holmen at K.G. Jebsen Centre for their assistance with getting my software up and run-

ning on the Almaas Lab computers.

To Mikkel Berg Strømstad: Thank you very much for proofreading this thesis. To all of you

who have contributed to five good years in Trondheim: Thank you!

S.H.O.

iii

Abstract

A new method for randomization of metabolic networks was developed. The method was based

on a Simulated Annealing algorithm, which is a well known technique for approximating opti-

mal solutions to optimization problems. By modifying the original algorithm to include two

temperature parameters instead of one, two different properties of the networks could be opti-

mized at the same time. Compared to the original metabolic networks for microbes, previously

generated random metabolic networks have had an extremely high fraction of blocked reac-

tions. This was the motivation to develop a new method.

In this new method, both the total number of reactions and the fraction of blocked reactions

in the networks were kept at their optimal levels. In addition to these requirements, the net-

works should also be viable, which means they should be able to produce biomass. Metabolic

networks from three different microbes of varying sizes were chosen for randomization: Es-

cherichia coli, Mycobacterium tuberculosis, and Helicobacter pylori. The content of these net-

works was randomized by replacing the metabolic reactions with new reactions from a reaction

universe.

Extensive testing of the two temperature parameters established that the method was able

to generate random networks with a lower number of blocked reactions while the total number

of reactions remained stable. The disadvantage of this method is that it took a very long time

to generate new random networks. Nevertheless, it is possible to save huge amounts of time by

making some improvements in the algorithm. Suggestions for such improvements are given,

but not implemented here.

Although the fraction of blocked reactions was lower than in the previous networks gen-

erated, the fraction of essential reactions was virtually unchanged. Visualization of the random

networks pointed out that the majority of them had formed multiple clusters of reactions, which

v

vi

explained the unexpected high fraction of essential reactions.

The random metabolic networks were also tested for growth in different growth media. These

results indicated that the random networks were only able to produce biomass in the growth

medium they were generated in, and otherwise not. This supports that metabolic reactions and

pathways that are not in use will be lost in the randomization process.

Sammendrag

En ny metode ble utviklet for randomisering av metabolske nettverk. Denne metoden var basert

seg på en standard Simulated Annealing-algoritme, som er en kjent teknikk for å finne tilnærme-

de optimale løsninger for optimaliseringsproblemer. Ved å modifisere den originale Simulated

Annealing-algoritmen slik at den inneholdt to temperaturparametre i stedet for én, kunne fle-

re av egenskapene til nettverkene optimaliseres samtidig. De tilfeldige metabolske nettverkene

som er blitt generert tidligere har hatt en veldig høy andel blokkerte reaksjoner sammenlignet

med de originale metabolske nettverkene. Dette var motivasjonen for å utvikle en helt ny meto-

de til dette formålet.

I den nye metoden ble både det totale antallet reaksjoner og andelen blokkerte reaksjoner

holdt på et optimalt nivå. I tillegg til dette var det også et krav om at de nye nettverkene skulle

være levedyktige, som betyr at de skulle være i stand til å produsere biomasse. Metabolske nett-

verk for tre ulike mikrober av varierende størrelse ble valgt ut: Escherichia coli, Mycobacterium

tuberculosis og Helicobacter pylori. Reaksjonsinnholdet i disse nettverken ble randomisert ved å

erstatte de metabolske reaksjonene med nye reaksjoner tatt fra et reaksjonsunivers.

Omfattende testing av de to temperaturparametrene slo fast at metoden var i stand til å ge-

nerere tilfeldige nettverk med et lavere antall blokkerte reaksjoner, samtidig som det totale an-

tallet reaksjoner ble holdt seg stabilt. Ulempen med denne metoden var derimot at det tok vel-

dig lang tid å generere nye tilfeldige nettverk. Det er imidlertid mulig å spare mye tid ved å gjøre

noen forbedringer i algoritmen. Forslag til slike forbedringer er gitt, men ikke implementert her.

Selv om andelen blokkerte reaksjoner var lavere enn i tidligere genererte nettverk, forble an-

delen essensielle reaksjoner tilnærmet uendret. Visualiseringen av nettverkene viste at de fleste

tilfeldige nettverkene som var blitt generert hadde dannet flere reaksjonsklynger, som forklarer

den uventede høye andelen essensielle reaksjoner.

vii

viii

De tilfeldige metabolske nettverkene ble også testet i ulike næringsmiljø. Disse resultatene

viste at de tilfeldige nettverkene kun var i stand til å produsere biomass i de vekstmediene de var

generert i, og ikke ellers. Dette indikerte at metabolske spor og reaksjoner som ikke var aktive i

randomiseringsprosessen, forsvant.

Contents

Preface . i

Acknowledgement . iii

Abstract . v

Sammendrag . vii

Contents . ix

List of Figures . xiv

List of Tables . xv

1 Introduction 1

1.1 Systems Biology . 1

1.2 Metabolic Engineering . 2

1.3 Antibiotic Targets . 3

1.4 Genome-Scale Modelling . 4

1.5 Optimization Techniques . 4

1.6 Thesis Objective . 5

2 Theory and Literature Review 9

2.1 Linear Programming . 9

2.1.1 Problem Definition . 10

2.1.2 Solutions to LP Problems . 11

2.1.3 Solving LP Problems . 12

2.1.4 Graphical Example of the Simplex Method . 13

2.2 Simulated Annealing . 14

2.2.1 Local Search Algorithms . 14

ix

x CONTENTS

2.2.2 Basic SA and the Metropolis Algorithm . 15

2.2.3 SA as an Optimization Method . 16

2.2.4 The Ising Model . 18

2.3 Constraint-Based Reconstruction and Analysis . 20

2.3.1 Genome-Scale Metabolic Reconstructions . 20

2.3.2 The Stoichiometric Matrix . 24

2.3.3 Steady State Mass Balance . 24

2.3.4 Flux-Balance Analysis . 25

2.4 Robustness of Metabolic Networks . 26

2.4.1 Essentiality and Superessentiality . 26

2.5 Random Viable Metabolic Networks . 28

2.5.1 The Reaction Universe . 28

2.5.2 The Wagner Method . 29

3 Software and Methods 31

3.1 Software . 31

3.1.1 Python . 31

3.1.2 COBRApy . 31

3.1.3 Gurobi . 32

3.1.4 libSBML . 32

3.1.5 Joblib and Multiprocessing . 32

3.1.6 Cytoscape . 32

3.2 Computing Resources . 32

3.3 FBA . 33

3.3.1 Growth Rate . 33

3.3.2 Blocked Reactions . 33

3.3.3 Essential Reactions . 33

3.4 Metabolic Models and the Reaction Universe . 34

3.5 Adaptation of the Simulated Annealing Algorithm . 35

3.5.1 First Step: Total Number of Reactions. 35

CONTENTS xi

3.5.2 Second Step: Number of Blocked Reactions. 35

3.6 Randomization of Metabolic Networks . 36

3.7 Construction of Minimal Growth Media . 39

4 Results and Discussion 41

4.1 Testing and Validation of Traditional SA . 42

4.1.1 Solving the 2D Ising Model . 42

4.1.2 Optimizing the Number of Reactions Using a Number Generator 43

4.1.3 Optimizing the Number of Reactions Using a Reaction Model 44

4.1.4 Summary . 45

4.2 Testing and Validation of Tb . 46

4.2.1 Summary . 47

4.3 Testing and Validation of the Program . 48

4.3.1 Optimal Solutions . 48

4.3.2 Fluctuation in the Number of Reactions . 49

4.3.3 Computation Time . 51

4.3.4 Summary . 55

4.4 Analysis of Random Viable Metabolic Networks . 56

4.4.1 Evaluation of the Randomization of Reaction Content 57

4.4.2 Evaluation of Blocked Reactions . 58

4.4.3 Evaluation of Essential Reactions . 60

4.4.4 Growth in Different Environments . 61

4.4.5 Summary . 63

4.5 Software challenges . 65

4.5.1 Troubleshooting . 65

4.5.2 Limitations . 66

4.5.3 Summary . 66

5 Conclusions 67

Bibliography 69

xii CONTENTS

A Simulated Annealing Code 77

B Growth Medium for iIT341 79

C Program Parameters 81

C.1 Temperature Parameters . 81

C.1.1 Parameter Tr . 81

C.1.2 Parameter Tb . 82

C.1.3 Cooling Schedule . 83

C.1.4 Stop Criterion . 83

C.2 Number of Iterations . 84

D Metabolic Networks 87

List of Figures

2.1 The feasible region of an LP problem. The region is enclosed by the non-negativity

and the functional constraints. 11

2.2 The concept of the simplex method illustrated as a flow chart. 12

2.3 Local search algorithms are often terminated in local optima because they are not

allowed to continue when none of the adjacent solutions are better. 14

2.4 Flowchart illustrating the Simulated Annealing algorithm that is used to optimize

a lot of optimization problems . 16

2.5 The acceptance rate of Simulated Annealing as a function of the decreasing tem-

perature T. 17

2.6 Ising model for one, two and three dimensions . 18

2.7 The average magnetization in the Ising model as a function of the temperature T. . 19

2.8 Summary of constraint-based modelling. Reconstruction, converting to mathe-

matical format, and formation of the solution space. 20

2.9 Overview of metabolic pathways illustrated as a metabolic network. 21

2.10 Rank plot illustrating the superessentialities for 1,400 reactions in 500 different

random metabolic networks on glucose. 27

3.1 The concept of randomizing the reaction content in metabolic networks using a

reaction universe. 36

3.2 Flowchart illustrating the complete method for generating random viable metabolic

networks. 38

xiii

xiv LIST OF FIGURES

4.1 Simulated Annealing used to optimize a 2d Ising Model. Figure shows average

magnetization as a function of the temperature. 43

4.2 A simulation of the addition/deletion process using a number generator instead

of an actual reaction model. 44

4.3 Simulation of the addition/deletion process as a function of the SA temperature

parameter. A number generator is used for adding/removing the reactions. 45

4.4 The addition/deletion process for the iIT341 H. pylori model as a function of Tr . . 46

4.5 The number of blocked reactions and the acceptance rate for generation of ran-

dom metabolic models from the iNJ661 M. tuberculosis model for four different

values of Tb: 500, 100, 10 and 1 . 47

4.6 Total number of reactions and number of blocked reactions in the randomized

networks compared to the original networks. 49

4.7 The fluctuation in the total number of reactions and in the number of blocked

reactions as functions of Tr . 50

4.8 The alternative way of computing blocked reactions when a reaction is removed. . 54

4.9 Average fraction of metabolic reactions in different categories found in random

viable metabolic networks generated from the models iIT341, iNJ661 and iAF1260. 58

4.10 The idea of different growth media for random metabolic networks. The three

drawings illustrate different media compositions. 62

4.11 The growth rates of the random metabolic networks generated from the iIT341 H.

pylori model in different growth media. 64

C.1 The probability of accepting worse solutions as a function of Tr. 82

C.2 Cooling procedure: Two different approaches for lowering Tr 85

D.1 Visualization of the original metabolic network of the iAF1260 E. coli model. 88

D.2 Visualization of the random metabolic network of the iAF1260 E. coli model. 88

D.3 Visualization of the original metabolic network of the iNJ661 M. tuberculosis model. 89

D.4 Visualization of the random metabolic network of the iNJ661 M. tuberculosis model. 89

D.5 Visualization of the original metabolic network of the iIT341 H. pylori model. . . . 90

D.6 Visualization of the ranom metabolic network of the iIT341 H. pylori model 90

List of Tables

3.1 The metabolic reconstructions from MetaNetX.org used in this thesis. 34

3.2 The predefined parameters for generating random viable metabolic networks . . . 37

4.1 Computation time for iNJ661 given in seconds. The total time and time spent per

hit are shown together with the percentage time for each function. 52

4.2 Overview of the metabolic networks generated from iIT341, iNJ661, and iAF1260.

For each of the original models, three different types of randomized networks were

generated. 55

4.3 The fraction of blocked reactions in the original models, in the random metabolic

networks generated by Wagner’s method, and the random metabolic LB-networks

generated by SA. 60

4.4 Average fraction of reactions that are neither essential nor blocked in the random

metabolic networks generated. 61

4.5 Seven different growth media for iIT341; standard uptake reactions, all uptake re-

actions, and five minimal growth media. 62

B.1 Overview of uptake reactions that are turned on by default for the iIT341 H. pylori

model. This table also shows an example of the MNXref id system. 80

xv

Chapter 1

Introduction

Systems biology emerged as an own field for about 15 years ago. Thanks to this, it has become

possible to model the properties of biological systems [1]. An example of such a system is a

metabolic network, which is illustrated at the front of this thesis. Metabolic networks include

the metabolic reactions and pathways that are catalyzed by enzymes encoded in the organism’s

genome. When such networks are reconstructed into a mathematical model, they are called

genome-scale metabolic models [2].

Here, an introduction to systems biology and metabolic networks is given together with

some applications for genome-scale metabolic models. Due to the purpose of this thesis, a brief

introduction to optimization theory will also be provided.

1.1 Systems Biology

Being able to predict a cellular function from a given genotype is a fundamental goal in bi-

ology. Due to the development of powerful molecular biology tools in the latter half of the

20th century, the reductionist approaches dominated the practice of biology and the genotype-

phenotype relationship was explained from individual components [1, 3, 4]. Reductionism is

the idea of breaking problems down to its individual parts and understand them in detail [5, 6].

These approaches provided detailed understanding of biological components, but missed out

the systemic interactions between biological and environmental components that underlie phe-

notypes [1].

1

2 CHAPTER 1. INTRODUCTION

At the beginning of the 21st century, a paradigm shift in biology was unfolding [2, 5, 7]. The

development of high throughput technologies forced biologists to stop focusing on individual

cellular components and rather begin to view cells as systems [2, 8, 9, 10]. The first sequenced

genome in 1995 and the birth of functional genomics made large quantities of high quality data

available [9]. Microarrays allowed high throughput screening of cellular components, which re-

vealed the components’ status at any given time. Protein chips and yeast two-hybrid screens

helped to determine how these components interacted with each other. Different types of bio-

chemical networks emerged from these interactions, e.g. protein-protein interaction networks,

metabolic networks, and signalling networks [11]. As a consequence of new technologies and

the collection of comprehensive data sets, systems biology emerged as a new field [2, 8].

Systems biology spans many areas of modern science, ranging from biology and chemistry

to mathematics and computing. This field is using a holistic approach instead of reductionist,

which considers biological systems as a whole rather than the sum of its components [5]. One

of the aims of systems biology is modelling and analyzing cellular functions as a system and un-

derstanding the interactions between biological components [3, 5, 9, 12, 13]. The development

of computational methods was important for understanding these interactions in biochemical

networks [8, 12].

1.2 Metabolic Engineering

Metabolic engineering is defined as the directed improvement of cellular properties through the

modification of specific biochemical reactions or introduction of new ones [14]. The vision of

defining metabolic engineering as an own discipline was first suggested by Bailey in 1991 [15].

Since then, the strategy has been used in many areas, production of e.g. amino acids, antibiotics,

and vitamins. The development of molecular biological techniques for bringing together DNA

material from different sources was crucial for the emergence metabolic engineering [14]. Some

of the applications of metabolic engineering are improvement of the yield and productivity of

native products synthesized by microorganisms [7, 16] and production of new products [14].

Cellular functions rely on multiple gene products [9]. One of the important aspects of metab-

olic engineering is its emphasis of the interactions between biochemical reactions instead of

1.3. ANTIBIOTIC TARGETS 3

individual enzymatic reactions [10, 14]. The complete set of metabolic reactions, metabolic

pathways, and their regulatory interactions is called a cell’s metabolic network. Here, nodes rep-

resent the metabolites and the links between them illustrate their interactions. In metabolic en-

gineering, the most significant contribution has been the study of movement of matter through

metabolic networks, also called metabolic fluxes. Metabolic fluxes represent the reaction rates

in metabolic pathways and carry valuable information about a cell’s metabolism. They describe

the activities of metabolic networks and the metabolic state of a cell [10, 14, 17]. Because of this,

metabolic flux was stated as the most fundamental measure of cell physiology already in the

1990s [18].

1.3 Antibiotic Targets

Horizontal gene transfer is a frequent process in prokaryotes, where genetic material is moved

from one organism to another. This leads to new reactions being introduced, which over time

will cause metabolic networks to differ in their reaction content. Horizontal gene transfer is

therefore considered as an important factor of the evolution of metabolism [19, 20, 21].

Many antibiotics target the metabolism of pathogens and are therefore called antimetabolic

drugs [22]. Resistance to antimetabolic drugs is developed through de novo mutation or hori-

zontal gene transfer. In the latter case, the acquisition of genes from other organisms may enable

the pathogens to produce enzymes that destroy the drug, proteins that transport the drug out

of the cell, or alternative metabolic pathways that bypass the target of the antimetabolic drug

[19, 23].

Antibiotic resistance has emerged as a serious threat to human health over the past few

decades [24]. Enormous investments are needed to develop new and better antibiotic drugs

[19, 25]. An ideal enzymatic drug should inhibit enzymes that are absolutely necessary for the

organism to live, so-called essential enzymes. However, horizontal gene transfer is able to in-

troduce new reactions and enzymes that bypass the essential ones, which makes them non-

essential. Enzymatic drugs are therefore vulnerable to antibiotic resistance, unless it is possible

to find reactions and enzymes that are essential in absolutely all metabolic networks. To find

these, extremely many metabolic networks need to be tested for essential reactions in different

4 CHAPTER 1. INTRODUCTION

growth media [19].

1.4 Genome-Scale Modelling

The availability of complete genome sequences and the ability to determine when a cell ex-

presses particular genes provide an opportunity to develop metabolic models on a genomic

scale [2, 7, 9, 10]. These network reconstructions contain all of the known metabolic reactions

in an organism together with the genes that encode each enzyme [26]. The first genome-scale

metabolic network was reconstructed in 1999 [27]. Since then, genome-scale metabolic models

have been constructed for multiple organisms [10, 17, 28]. The genome-scale metabolic mod-

els have shown some promise in connecting genotype with phenotype and predict phenotypic

changes as a results of genetic modification [7, 9, 10, 29]. Metabolic phenotypes can be pre-

dicted by observing how the cell is affected by external changes, i.e. changes to its environment

[2, 5, 7].

To understand metabolic networks and be able to study the metabolic capability in a par-

ticular condition, modeling and simulation play an important role [10, 29]. A number of ap-

proaches have been developed in order to predict how metabolic fluxes are distributed, which is

critical information in metabolic engineering [30]. Analysis of genome-scale metabolic models

has allowed researchers to understand the metabolic status in a cell and improve the production

of desired products [10, 17]. Some models have been used for the identification of metabolic

engineering targets for increased production of amino acids [31, 32] and identification of drug

targets in pathogens [10, 33].

The growth of computational approaches and the increased availability of high quality met-

abolic reconstructions have made the in silico analysis of metabolism to an invaluable part of

systems biology [34].

1.5 Optimization Techniques

Since the industrial revolution, the size and complexity of organizations have increased a lot.

Along with all its blessing, the increased specialization has created new problems that are still

1.6. THESIS OBJECTIVE 5

current issues. When the complexity increases, it becomes more and more difficult to allocate

resources to the various activities. Problems like this and the attempt to solve them led to the

emergence of a new field called Operations Research (OR) [35, 36].

Although OR emerged around the late 1700s, good methods for solving such problems did

not exist until World War II. The British and U.S. military management asked a large number of

scientist, the worlds first OR team, to apply a scientific approach to allocate scarce resources to

various military operations in an effective manner. Their effective methods of how to manage

convoy and antisubmarine operations played a major role in winning the Battle of the North

Atlantic [35].

When the war ended, an industrial boom followed. There was great interest in the OR meth-

ods, especially when people realized that there were many similarities between the problems

caused by the increased complexity in organizations and the problems the OR team solved dur-

ing the war. Before the end of the 1950s, many of the current standard tools of OR, such as the

well known Simplex method, was developed [35].

The development of electronic digital computers in the 1980s was another huge step for OR.

Today, all computers are able to solve OR problems, even small laptops. Most people are more

familiar with the term optimization theory, which has mostly replaced the use of OR over the

years [35, 36].

Today, optimization theory is a large area of applied mathematics and has found a wide-

spread use in economics, business, and engineering. Optimization problems exist within any

field, and efforts are continuously being made to find ways to solve new problems or to stream-

line already existing methods [35].

1.6 Thesis Objective

The main focus of this project is to develop a new method for generating random viable met-

abolic networks. Random metabolic networks are generated by replacing and randomizing

their reaction content. The requirement that they must be viable means they should be able

to produce biomass in a prescribed chemical environment, thus emulating a normal metabolic

network.

6 CHAPTER 1. INTRODUCTION

A key question is how it is biologically relevant to change the reaction content in metabolic

networks and making random ones. The answer is to investigate the new phenotypes of such

random networks. Changing the reaction content is a way of simulating the evolution of metabo-

lism, which is a central part of metabolic engineering. Varying the reaction content simulates

the loss and acquisition of enzyme-coding genes, while the organism’s ability to synthesize

biomass is preserved. By analyzing a large number of random networks it is also possible to

study which reactions are always essential in that organism’s metabolic network. Reactions that

are always essential will most likely not be bypassed by new reactions, and will therefore be a

good target for antimetabolic drugs.

Previously, random viable metabolic networks have been generated by a method based on a

Markov Chain Monte Carlo (MCMC) algorithm that was developed by the Andreas Wagner Lab-

oratory at the University of Zürich [19]. Later, it was used by Ove Øyaas in his master thesis at

NTNU [37]. He discovered that the networks had a very large fraction of blocked reactions com-

pared to the original networks. The percentage of blocked reactions is usually around 30 % in

already existing networks, but routinely reached 70 % in the networks generated by the Wagner

method. This means that the vast majority of the reactions in the networks were not connected,

and thus, could not carry flux.

Another relevant question that should be asked is why the Wagner method is not adapted

to lower the number of blocked reactions instead of developing a completely new method. The

answer to this is that it is not entirely in line with metabolic evolution that the number of re-

actions is kept at the same level all the time, which is the case for the Wagner method. A new

method that allows some fluctuations in the number of reactions would therefore be much more

realistic.

The method in this project is based on a procedure developed in the field of physics called

Simulated Annealing. Simulated Annealing accepts major fluctuations but also guarantees an

optimal solution if implemented correctly. It was first described by Kirkpatrick et al. [38] in 1983,

and has been used to solve many optimization problems since.

Consequently, this thesis provides a new method based on Simulated Annealing for gener-

ating random viable metabolic networks with a controllable fraction of blocked reactions. To

test this method, random metabolic networks have to be generated to see how the number of

1.6. THESIS OBJECTIVE 7

blocked reactions affects the other properties of the networks.

Chapter 2

Theory and Literature Review

In this chapter, theory and research relevant for this thesis is presented. The concepts of lin-

ear programming will be explained, focusing on problem definition and the simplex method.

Another optimization technique relevant for this thesis is the Simulated Annealing algorithm,

which will be presented in detail. Due to later use, a well known optimization problem from the

field of physics called the Ising model will also be introduced here. When these optimization

techniques have been explained, genome-scale metabolic reconstructions will be described to-

gether with a method that uses linear programming to obtain optimal solutions for such met-

abolic models. Finally, robustness in metabolic networks and an introduction to random viable

metabolic networks will be given. All of these topics are relevant for this thesis, either for devel-

oping the new method or for analyzing the resulting metabolic networks.

2.1 Linear Programming

Linear programming (LP) is a method used to solve optimization problems where the require-

ments can be formulated as linear relationships. The most common application type of LP is

the allocation of scarce resources among competing activities in an optimal way. Definition of

LP problems and solving these with use of the simplex method will be presented in this section,

all based on Hillier and Lieberman [35].

9

10 CHAPTER 2. THEORY AND LITERATURE REVIEW

2.1.1 Problem Definition

An LP problem is defined by determining the appropriate objectives and the restrictions on what

can be done. To make the problem convenient for analysis, the problem should be represented

as a mathematical model with linear functions. One of the two standard ways to express an LP

problem is:

maximize z =
n∑

j=1
c j x j (2.1)

subject to
n∑

j=1
ai j x j = bi , i = 1, ...,m (2.2)

and x j ≥ 0, j = 1, ...,n (2.3)

where n is the number of variables and m is the number of constraints. Equation 2.1 is the func-

tion that specifies the problem’s objective, which in this case is to maximize the objective value z.

c j is the model’s objective coefficients for the variable x j . The constraints in the model are given

in Equation 2.2, often defined as the problem’s functional constraints. In the i th constraint, ai j is

the coefficient value for the variable x j . All constraints also involve a right hand side which is de-

noted bi . All coefficients and constants in an LP model are known data. Equation 2.3 defines the

allowed values for the decision variable x j , often referred to as the non-negativity constraints.

LP problems can also be expressed in a matrix form. The general programming problem

presented above will look like this in matrix notation:

maximize Z = cTx (2.4)

subject to Ax ≤ b (2.5)

and x ≥ 0 (2.6)

Here, Equation 2.4 is the model’s objective function to be maximized. cT is the transposed n ×1

vector of the objective coefficients corresponding to the values of c j in Equation 2.1. x is a n ×1

vector of decision variables. A in Equation 2.5 is the matrix of coefficients and b is a m×1 vector

of the right hand side constants.

The functionality constraints and non-negativity constraints in an LP model define the prob-

2.1. LINEAR PROGRAMMING 11

Figure 2.1: The feasible region of an LP problem with the two decision variables x1 and x2. The
feasible region is defined by the model’s constraints that formulate the edges surrounding the
gray area. The black dots correspond to the extreme points for the LP problem, which are poten-
tial optimal solutions to the problem. The enumeration of vertices correspond to a suggested
order for solving the LP problem, which is explained in Section 2.1.4.

lem’s feasible region, which is illustrated in Figure 2.1. The feasible region of a problem has as

many dimensions as there are decision variables in the model.

Any set of values for the decision variables corresponds to a solution to the LP problem, even

though the values are not allowed considering the problem’s constraints. It is thus necessary to

define different types of solutions. If a solution violates at least one of the constraints, that solu-

tion is said to be infeasible. For feasible solutions, all constraints in the model are satisfied. An

optimal solution is the feasible solution that has the most favorable value of the objective func-

tion, i.e. the largest value possible for maximization problems and the smallest value possible

for minimization problems.

2.1.2 Solutions to LP Problems

LP problems can have zero, one, or an infinite number of optimal solutions. The optimal so-

lution for an LP problem is always obtained at the boundary of the feasible region, which is

beneficial when the solving the problem. This means that if the problem has exactly one opti-

mal solution, the solution must be in one of the corners of the feasible region. Corner points are

often referred to as extreme points. If the problem has multiple optimal solutions, all of them

12 CHAPTER 2. THEORY AND LITERATURE REVIEW

Figure 2.2: The concept of the Simplex method presented in a flow chart. The optimality test
is repeated for the best CPF solution in each iteration. The figure is adapted from Hillier and
Lieberman [35].

lie along the edge between two extreme points. If the objective is unbounded or there does not

exist any feasible solutions, there will be no optimal solutions for the problem. An unbounded

objective means that the feasible region is not closed, implying that the objective value Z can

have infinitely high or low values.

2.1.3 Solving LP Problems

A consequence of that the optimal solutions of LP problems always lie in one of the extreme

points is that only the corners have to be investigated when searching for the best solution.

Solutions found in the extreme points of a feasible region are referred to as corner-point feasible

(CPF) solutions. One of the most common procedures for solving LP problems is the simplex

method. This method repeats a series of steps until the optimal solution is obtained. Each

of these series is called an iteration, which is illustrated in the flow chart in Figure 2.2. The

procedure for the simplex method is as follows:

1. Initialization. In the initialization process, a random CPF solution must be chosen. When

possible, the origin is picked as initial CPF solution. If the origin is infeasible for the prob-

lem, there exists special procedures to find another initial CPF solution. The simplex al-

2.1. LINEAR PROGRAMMING 13

gorithm considers the CPF solution’s neighbors when moving from one possible solution

to the next.

2. Optimality test. The rate of improvement in the objective must be computed to determine

the direction when moving between different CPF solutions. A positive rate of improve-

ment in Z implies that the CPF solution in the other end of that edge is better than the

current one. Similarly, a negative rate of improvement means that the corresponding CPF

solution is worse.

3. Iterate: The algorithm stops if no better CPF solution is found among the adjacent ones,

and hence the current CPF is the optimal solution for the LP problem. If the optimality

test finds a better CPF solution, the algorithm continues to this solution. Repeat from step

2.

2.1.4 Graphical Example of the Simplex Method

Even though the simplex method is an algebraic procedure, the concepts are geometric. When

the method is explained, it is often easier to illustrate it graphically. In Figure 2.1, the simplex

method would start by picking the origin as the initial CPF solution, and then examine which

one of the associated edges that gives the largest rate of improvement of Z . If the objective is

to maximize Z and the objective function is Z = 4x1 + 2x2, the edge that lies along the x1 axis

would give the largest rate of improvement in Z . The CPF solution marked 2 will be the new

current solution, and the procedure will continue counterclockwise around the gray area until

the optimal CPF solution is found and the algorithm stops.

14 CHAPTER 2. THEORY AND LITERATURE REVIEW

2.2 Simulated Annealing

Simulated annealing (SA) is an optimization technique that belongs to a class called Local Search

Algorithms (LSA) [39, 40, 41]. SA has several positive features: Its implementation is quite easy

compared to other optimization algorithms, and statistically it can promise to deliver an opti-

mal solution [40].

This section will explain the underlying concepts of LSA, give insight to how SA is able to

solve optimization problems, and introduce an example of a well known problem from physics

that can be solved using SA.

2.2.1 Local Search Algorithms

As its name suggests, LSA is a class of methods that use various search schemes to find an op-

timal solution. The search is guided by a neighborhood function, which is an essential part of

these algorithms. The neighborhood N of solution i , N (i), is defined as a set of solutions that are

in some sense close to i . LSA is an iterative algorithm that explores the neighborhood N (i) for a

better solution than the current one, i . If a better solution is found, solution i is replaced by this

one. If a better solution cannot be found in N (i), the procedure stops. Often, the search process

is terminated in a local optimum due to this neighborhood function. Local optima are not the

problem’s optimal solution, but LSA is not allowed to continue because none of the adjacent

solutions is better [42, 43]. A local optimum is illustrated in Figure 2.3.

Figure 2.3: An illustration of the global and local optimum for a maximization problem. LSAs
will often terminate in such local optima because there are no better solutions in their neigh-
borhood. The figure is adapted from Burke, Newall and Weare [44].

.

2.2. SIMULATED ANNEALING 15

2.2.2 Basic SA and the Metropolis Algorithm

The concepts of SA were introduced by Kirkpatrick et al. [38] in the early 1980’s . The method

was inspired by an analogy between physical annealing of solids and solving large optimization

problems [41, 42]. The physical annealing process includes increasing the temperature at which

the solid melts and slowly decreasing the temperature until the particles arrange themselves

in an ordered low-energy structure [38, 41]. If the temperature is lowered too fast, the solid

will freeze in a non-optimal structure where the particles are still arranged randomly and the

corresponding energy is not minimal [42]. This annealing process of melted solids is simulated

by a procedure known as the Metropolis algorithm [41, 45]:

1. Find an initial solution i with corresponding energy Ei . Set the temperature parameter T

to a high value to simulate the melting process.

2. Generate a new state j from i , which is in the neighborhood of solution i . This is done by

random perturbations, for example by displacement of one particle. Compute the energy

E j corresponding to solution j .

3. Compute the energy difference between the two states, E j −Ei . State j is accepted if the

difference is less than or equal to zero. If the difference is greater than zero, state j is

accepted with a probability given by:

P(accept j) = exp

(
E j −Ei

kB T

)
(2.7)

4. After N iterations of step 2 and 3, lower the temperature and return to step 2.

Equation 2.7 is known as the Metropolis criterion, which is a probability proportional to

the energy difference and the current temperature [41, 45]. kB is a physical constant named

the Boltzmann constant, which is related to the kinetic energy in particles. If the number of

perturbations at each temperature is equal to the number of particles in the system (N), thermal

equilibrium is reached [42].

16 CHAPTER 2. THEORY AND LITERATURE REVIEW

Figure 2.4: An overview of the SA algorithm. This is an iterative method that explores the whole
solution space. A predefined number of iterations is repeated before the temperature parameter
is lowered. When the temperature parameter reaches a desired value, the search terminates, and
the optimal solution is found.

2.2.3 SA as an Optimization Method

By the following assumptions, the Metropolis algorithm can be used to solve general optimiza-

tion problems [42]:

1. The physical states correspond to solutions in the optimization problem.

2. The energy E of a state corresponds to the objective value Z of a solution.

Figure 2.4 illustrates how the SA algorithm solves optimization problems. The same acceptance

rule is used in SA as in the Metropolis algorithm. Instead of the Boltzmann constant and the

actual temperature T that is used in in Equation 2.7, an artificial temperature parameter is in-

2.2. SIMULATED ANNEALING 17

Figure 2.5: The acceptance rate of SA as a function of the temperature parameter T. For low Ts,
almost none of the new solutions will be accepted. When T is high, approximately 100 % of the
new solutions are accepted. The figure is adapted from Aarts, Korst and Michiels [42].

troduced [42, 46]. The probability of retaining a worse solution than the previous one then be-

comes:

P(accept new solution) = exp

(
−∆Z

T

)
(2.8)

where ∆Z is the difference in objective value between the two solutions. When the control pa-

rameter T is high, solutions far from the optimum are explored and deteriorations have a notable

probability of being retained. The acceptance rule will become more stringent as the parameter

T is lowered, which effectively reduces the probability of retaining worse solutions. When the

control parameter approaches zero, only solutions that are better than the current one will be

accepted [41, 42]. The acceptance rate as a function of T is shown in Figure 2.5.

18 CHAPTER 2. THEORY AND LITERATURE REVIEW

(a) one-dimensional (b) two-dimensional (c) three-dimensional

Figure 2.6: Examples of the Ising model in one, two, and three dimensions. a) One-dimensional
Ising model. The sites 1 to N are arranged in a chain. Each spin σ has two neighbors: one at the
left side and one at the right side. By definition σ1 and σN are neighbors. b) Two-dimensional
Ising model. The sites are arranged in a lattice where each spin has four neighbors. This di-
mension will be explained in more detail later. c) Three-dimensional Ising model. This will not
be explained any further here because of its complexity, and is viewed just as an example of an
Ising model with higher dimensions than two. The figures are obtained from Cipra [49].

2.2.4 The Ising Model

The Ising model was introduced by Ising [47] in 1925 and is a mathematical model for ferromag-

netism. The Ising model can have a variety of dimensions, as illustrated in Figure 2.6. The idea

of this model is a lattice of "spin" variables, σk , that can take the values +1 or -1 only, where k

refers to a site in the lattice. The values +1 and -1 are referred to as a site’s configuration. The

Ising model is a well known optimization problem from the field of physics that can be solved

by using SA [48].

One-Dimensional Ising Model

The one-dimensional Ising model is the easiest to explain because each spin has only two neigh-

bors. As shown in Figure 2.6, all spins are arranged in a chain.

The energy corresponding to configuration σ can be expressed as:

E =− ∑
<i , j>

Ji jσiσ j −µ
∑

j
Hσ j (2.9)

where i and j are adjacent sites and Ji j is the interaction between them. If σi and σ j have

opposite configurations, the interaction energy is +J . If they have the same configuration, the

interaction energy is −J . H is the external magnetic field and µ is the magnetic moment. For

2.2. SIMULATED ANNEALING 19

Figure 2.7: The average magnetization in the Ising model as a function of the temperature. When
the temperature is high, the spins are randomly aligned resulting in an average magnetization of
zero. When the temperature is lowered, the average magnetization approaches one. The figure
is obtained from Witthauer and Dieterle [50].

simplicity, the external magnetic field is often set to zero thus eliminating the last sum.

A typical quantity of interest when working with Ising models is the average magnetization

in the system, given by:

M = 1

N

∑
i=1

σi (2.10)

where N is the total number of spins in the system.

The optimal solution can be found by using SA to minimize the total energy in the system.

After the chain of randomly aligned spins have been generated, the initial temperature have

been set to a high value, and the initial starting energy and magnetization have been calculated,

the simulation can start. One spin at a time is flipped. If the new energy is lower than the pre-

vious, the new solution will always be accepted. If the new energy is higher, the corresponding

solution will be accepted with a probability given in Equation 2.8. As the temperature is low-

ered, the energy in the system will also become lower. When finished, all spins have the same

configuration.

20 CHAPTER 2. THEORY AND LITERATURE REVIEW

Figure 2.8: An overview of constraint-based modelling. In the reconstruction process, the
metabolic network is converted to a mathematical format known as the stoichiometric ma-
trix. This conversion is necessary in order to make computations on the network. The flow
of metabolites is controlled by internal and external constraints. These constraints "shrink" the
solution space, previously referred to as the feasible region, to a more biological relevant size.
LP is used to find an optimal solution based on this solution space and the objective function.
This figure is adapted from Bordbar et al. [1] and Orth, Thiele and Palsson [26].

2.3 Constraint-Based Reconstruction and Analysis

The ability to sequence whole genomes has made it possible to formulate metabolic models at

genome scale. Constraint-based reconstruction and analysis (COBRA) is the reconstruction of

metabolic networks from annotated genomes and experimental literature as well as analysis of

their metabolic functions [1]. This section includes an explanation of the reconstruction pro-

cess, the applications of genome-scale metabolic networks, how the reconstructions are con-

verted into a mathematical format for computation, and optimization of biological phenotypes

using flux-balance analysis (FBA). The reconstruction, mathematical representation, and the

concept of FBA are summarized in Figure 2.8.

2.3.1 Genome-Scale Metabolic Reconstructions

Metabolic networks differ from other cellular networks in that their interaction topology is well

established. Most reactions, how they interact stoichiometrically, the enzymes that catalyze

them, and the genes that encode the enzymes are well known [1, 12, 26]. This is far beyond any

other cellular network and makes it possible to create metabolic models representing nearly

entire microbial genomes [12, 29].

A genome-scale metabolic reconstruction contains all the metabolic reactions known to take

place in an organism. Metabolic pathways represented as a network is illustrated in Figure 2.9.

2.3. CONSTRAINT-BASED RECONSTRUCTION AND ANALYSIS 21

Figure 2.9: An overview of metabolic pathways found in the KEGG PATHWAYS illustrated as a
metabolic network. The figure is obtained from the KEGG API [52].

The number of network reconstructions is rapidly increasing and the range of their usage is

broadening [28, 51]. The following subsections will take a closer look at the reconstruction pro-

cess and the applications of genome-scale metabolic models.

The Reconstruction Process

Genome-scale metabolic reconstructions represent structured information of all the biologi-

cal transformations taking place in a specific organism. By converting genome-scale metabolic

reconstructions into mathematical models, the metabolic capabilities can be investigated us-

ing computational methods [51, 53]. The reconstruction process is an iterative procedure that

relies on both automatic and manual collection of organism-specific information [53]. Thiele

and Palsson [53] have designed a detailed protocol for generating a high quality genome-scale

metabolic reconstruction. This procedure comprises four stages:

1. Creating a draft reconstruction. The metabolic genes are automatically retrieved from the

genome annotation of the target organism [51, 53]. Biochemical reaction databases are

22 CHAPTER 2. THEORY AND LITERATURE REVIEW

used to find the metabolic reactions catalyzed by the enzymes encoded in the genome.

The draft reconstruction is a list of all metabolic reactions found here. Because of these

automatic procedures for collecting information, some of the metabolic functions may be

falsely included or missing [53].

2. Manual reconstruction refinement. The draft reconstruction needs to be re-evaluated and

improved. This correction process is done manually and is therefore very time-consuming

[51]. Due to potential errors related to genome annotation and the organism unspe-

cific biochemical databases used in stage one, the presence of each annotated gene and

its function should be supported by experimental data or organism-specific literature

[53]. By manual curation, network gaps are filled and information that is mistakenly in-

cluded or misplaced is removed [51]. In addition to the metabolic reactions, the organ-

ism’s biomass reaction is connected to the reconstruction. This reaction is needed for

growth simulations and accounts for all the biomass constituents, which is derived from

experimental data, and how they contribute to the overall cellular biomass [53].

3. Conversion to a mathematical model. The network reconstruction must be converted

to a mathematical format before computations of the network properties can be done

[54, 55]. This conversion makes a true genome-scale metabolic model [51]. Computa-

tional tools can analyze network properties and evaluate which functions a reconstructed

network can carry out and perform under the physiochemical constraints placed on the

cell [51]. This approach has led to the constraint-based reconstruction and analysis (CO-

BRA) framework [56].

4. Network evaluation. The last stage in the process is the final debugging stage where the

network is verified and validated. The mathematical model made in the third step is tested

for its ability to synthesize metabolic precursors, which may reveal areas of disagreement

between the model’s behavior and experimental observations. These gaps are filled by

repeating steps two and three until model predictions are similar to the phenotypic [53].

2.3. CONSTRAINT-BASED RECONSTRUCTION AND ANALYSIS 23

Applications of Genome-Scale Metabolic Models

In 1999, the first genome-scale metabolic reconstruction was published [27]. Since then, this

field has expanded rapidly and genome-scale metabolic reconstructions have shown a grow-

ing influence on biomedical and biological research. The focus is therefore shifting from the

development of its methods to the development of its applications. The application areas for

genome-scale metabolic models are [3]:

1. Contextualization of high-throughput data. Genome-scale metabolic models can be used

as a framework on which other data types can be overlaid to organize and contextual-

ize them. For example, gene microarray data overlaid on genome-scale metabolic recon-

structions can be used to determine condition-dependent cell phenotypes.

2. Guidance of metabolic engineering. Traditional metabolic engineering has been performed

on a small scale based on literature-derived metabolic pathway maps or intuitive knowl-

edge. The use of genome-scale metabolic models makes it possible to perform system-

level analyses to determine optimal engineering strategies, for example for production of

cellular compounds.

3. Directing hypothesis-driven discovery. Genome-scale metabolic models represent collec-

tions of existing hypotheses. Taken together as a broad context they enable systematic

identification of new hypotheses that can be tested and resolved.

4. Interrogation of multi-species relationships. Comparative network-level analysis either

compares metabolic reconstructions of highly related species or use models of interacting

species to predict common phenotypes.

5. Network property discovery. One of the most direct contributions of metabolic models to

the understanding of metabolism has been its enabling to study otherwise inaccessible

network properties using computational methods. Examples of network properties are:

loops, optimal pathway usage, and metabolite connectivity.

24 CHAPTER 2. THEORY AND LITERATURE REVIEW

2.3.2 The Stoichiometric Matrix

As already mentioned, a mathematical representation is crucial for analyzing the metabolic net-

work using computational methods. The metabolic network is automatically translated into a

stoichiometric matrix, often referred to as an S-matrix, in order to apply FBA [7, 12, 26]. Each

row in the matrix corresponds to a metabolite and each column corresponds to a reaction. The

entries in each column corresponds to the stoichiometric coefficients of the metabolites in the

given reaction. A positive coefficient means that the metabolite is produced in that reaction and

a negative coefficient implies a consumed metabolite. If a metabolite does not participate in the

reaction, the coefficient is zero [26, 51].

A general S-matrix has the dimension m ×n:

S =

c1,1 c1,2 · · · c1,n

c2,1 c2,2 · · · c2,n

...
...

. . .
...

cm,1 cm,2 · · · cm,n

 (2.11)

where m is the number of metabolites, n is the number of reactions, and ci j is the stoichiometric

coefficient of metabolite i in reaction j [7, 51].

2.3.3 Steady State Mass Balance

The concentration of each of the m metabolites in the system is expressed in a concentration

vector x. Assuming mass balance at steady state (dx/dt = 0), the total amount of the m metabo-

lites being produced is equal to the amount of metabolites being consumed [7, 12, 26]. The

system of mass balance equations is given by:

Sv = 0 (2.12)

where S is the S-matrix in Equation 2.11 and the flux vector v corresponds to the movement

of metabolites through the n reactions [1]. This equation is fundamental to constraint-based

modeling [12].

2.3. CONSTRAINT-BASED RECONSTRUCTION AND ANALYSIS 25

2.3.4 Flux-Balance Analysis

FBA was the first constraint-based method for biological predictions. It is a widely used mathe-

matical approach for harnessing the knowledge encoded in biochemical networks, in particular

the genome-scale metabolic network reconstructions [1, 7, 26]. Successful FBA includes predic-

tion of optimal metabolic states, among other network capabilities [12, 57]. By calculating the

flow of metabolites through metabolic networks it is possible to predict the growth rate of an

organism [3, 7, 26, 28].

Constraint-based modeling with FBA allows steady-state analysis without large fitted pa-

rameter sets, as opposed to dynamic models that often require detailed kinetic parameters,

which are often inaccessible [7, 8, 12, 29, 58]. This is possible due to the assumption that net-

works modeled at steady state is able to yield valuable information [3]. Predictions of FBA are in

good agreement with experimental results [57, 59].

Optimization of Phenotype

The phenotype associated with the problem to be solved has to be defined in the form of a bi-

ological objective. An objective function include the variables, or metabolic reactions, that are

being maximized or minimized [1]. Mathematically, the objective function is used to define

how much each reaction in the model contributes to the phenotype [26]. To identify optimal

solutions, the objective functions are defined to solve a system of linear equations representing

mass balance constraints [12]. In the case of predicting growth rate, the biological objective is

biomass production. A biomass reaction, which is an artificial reaction that simulates metabo-

lites consumed during biomass production, is added to the S-matrix in Equation 2.11.

The objective function and the mass balance constraints from Equation 2.12 define the fol-

lowing LP problem:

maximize Z = cTv (2.13)

subject to Sv = 0 (2.14)

and v lb
i ≤ vi ≤ vub

i (2.15)

26 CHAPTER 2. THEORY AND LITERATURE REVIEW

where Z is the objective function and cT is the transposed vector of coefficients indicating how

much each reaction contributes to Z . vi is the flux of metabolite i , and v l b
i and vub

i are the cor-

responding lower and upper bounds respectively [12, 26]. S and v are already defined in Equa-

tion 2.12. The upper and lower bounds in Equation 2.15 and the mass balance in Equation 2.14

define the problem’s constraints, similar to the general programming problem in Equation 2.5-

2.6. The LP problem above can be solved as described in Section 2.1.3, yielding a flux distribu-

tion that optimizes the system for its objective. The flux distribution is the set of all calculated

flux values for all reactions [1]. Typically, the objective is to maximize the growth rate. This

gives an optimal set of metabolic flux values that achieves the highest possible flux through the

biomass reaction [3, 12, 26].

In any realistic metabolic model, there are more reactions than compounds (n > m). Be-

cause of this, there are a multitude of solutions that satisfy the LP problem, i.e. multiple intra-

cellular flux distributions that underlie the same optimal value [12, 26, 60]. As most optimization

methods, FBA will return only one of these optimal solutions within the feasible region [26]. Op-

posed to picking just one optimal solution, an extension of FBA called flux variability analysis

(FVA) is able to explore the entire feasible region [3, 60].

2.4 Robustness of Metabolic Networks

Generally, robustness is a measure of the complexity of a network. In biology, network robust-

ness is important for the studying of mutations. The network-based view in biology that has

emerged over the past few decades has altered the way mutations and other genetic defects are

studied. The damage of a protein or a gene often spreads through the network, leading to loss

of function in one or several functional modules [61].

Robustness in metabolic networks is often associated with the concept of essential reactions

and how easy it is to bypass defects and mutations [61, 62].

2.4.1 Essentiality and Superessentiality

A metabolic reaction is essential if removal of this reaction renders the network unable to syn-

thesize all biomass molecules that are necessary for growth and survival in a given environment.

2.4. ROBUSTNESS OF METABOLIC NETWORKS 27

Figure 2.10: Rank plot of ISE of 1,400 reactions in 500 random metabolic networks, where all
reactions were essential in at least one of them. The plateau to the left corresponds to the 2.3%
absolutely superessential reactions (ISE = 1). The figure is obtained from Barve, Rodrigues, and
Wagner [19].

Reactions that can be bypassed of other reactions or metabolic pathways in the network are con-

sidered non-essential [19, 61].

Essentiality is an organism- and environment-specific property. This means that a reaction

that is essential in one environment or in one organism not necessary is essential in another

environment of in another organism. When comparing essential reactions in different envi-

ronments and multiple metabolic networks, it may be established whether they are essential in

none, all, or just a few of them. If a biochemical reaction is essential in all random metabolic

networks with a given phenotype, it is said to be superessential [19, 59, 61]. A measure for the

superessentiality of a reaction is the superessentiality index (ISE). This index is a number be-

tween zero and one, where a value of zero means that the reaction is non-essential in all tested

networks, and a value of one means that it is essential in absolutely all. Barve, Rodrigues and

Wagner [19] calculated the superessentiality indices for over 1,400 reactions, illustrated in Fig-

ure 2.10. The horizontal plateau at the left shows the 139 essential reactions with ISE = 1, also

called absolutely superessential reactions. These reactions can never be bypassed. The lowest

ISE in the plot was 0.02, which indicates that the corresponding reactions were essential in only

28 CHAPTER 2. THEORY AND LITERATURE REVIEW

1 of 500 networks. This plot points out that most of the essential reactions can be bypassed,

which makes metabolic networks quite robust to changes [19, 59].

2.5 Random Viable Metabolic Networks

An organism’s metabolism evolves through deletion of reactions caused by loss of function mu-

tations and addition of new reactions caused by horizontal gene transfer. Over time, this dele-

tion and addition of reactions lead to metabolic networks that differ in their genotypes. Because

the metabolic phenotype is very robust to genotypic changes, the organisms may still be able to

synthesize biomass in the same chemical environment [19, 20, 21].

Random metabolic networks are made using algorithms based on principles of metabolic

evolution. Previously, they have been generated using a method developed by the Andreas Wag-

ner Lab [19], hereinafter referred to as the Wagner method. These random metabolic networks

were generated by replacing reactions with alternatives taken from a collection of metabolic re-

actions called a reactions universe [19, 37]. Both the reaction universe and the Wagner method

will be explained in this section.

2.5.1 The Reaction Universe

Randomization of reaction content is possible due to the construction of a metabolic reaction

universe, which is the set of all reactions that are known to take place in a metabolic system

[19]. The FBA method has made it possible to compute an organism’s metabolic phenotype

from its metabolic genotype [63]. An organism’s metabolic genotype is all the reactions that are

catalyzed by enzymes encoded in the organism’s genome. The reaction universe is thus also

referred to as a metabolic genotype space, because it comprises all possible metabolisms [64].

The reaction universe constructed by Øyaas in 2015 [37] include 13,849 metabolic reactions

from the MNXref namespace available at MetNetX.org [65].

2.5. RANDOM VIABLE METABOLIC NETWORKS 29

2.5.2 The Wagner Method

Random metabolic networks have previously been generated using a method based on Markov

Chain Monte Carlo (MCMC) [66]. The Wagner method performs a random walk in a genotype

network, which is a networks that consists of all metabolic genotypes that encodes the same

phenotype [59, 63]. The genotype network is organized so that each node represents a metabolic

genotype and the edges represent genotypic changes. Two nodes are connected if they differ

from each other by only one reaction [59]. What the method actually does is removing and

adding a metabolic reactions in each "walk", with the only requirement that the networks must

still be able to produce biomass. Reactions are taken from the reaction universe [63].

Chapter 3

Software and Methods

This chapter presents the software tools and methods used to generate and present the results

in this thesis. The modifications and adaptations of already existing procedures will also be

described.

3.1 Software

Here, the computer programs and software tools used in this project is presented.

3.1.1 Python

The computer programs used to generate results were written in the Python programming lan-

guage (version 2.7) [67]. An example of a Python script is included in Appendix A, where the SA

algorithm is implemented.

3.1.2 COBRApy

COBRApy [68] is a Python module for COBRA methods, which are widely used in genome-scale

modeling. In this project, both versions 0.4, 0.5, and 0.6 were used.

31

32 CHAPTER 3. SOFTWARE AND METHODS

3.1.3 Gurobi

The Gurobi Optimizer [69] was used to solve the optimization problems in this project. Gurobi

is a commercial mathematical programming solver that supports Python through the module

Gurobipy. COBRApy includes an interface to Gurobi.

3.1.4 libSBML

All models in this project were stored in the Systems Biology Markup Language (SBML) file for-

mat. Working with SBML files in this study was facilitated by the libSBML library. With libSBML

installed, SBML files could be read and written by built-in COBRApy functions [70].

3.1.5 Joblib and Multiprocessing

The Joblib package [71] is a set of tools that provide pipelining in Python. Joblib can be used for

writing parallel loops, which makes it possible to perform multiple computations on different

CPUs at the same time. Mutliprocessing [72] is another Python package that supports this.

3.1.6 Cytoscape

Visualization of metabolic networks were performed using Cytoscape [73]. This is a platform for

visualizing complex networks that supports multiple file formats, such as SBML.

3.2 Computing Resources

All simulations in this study were run on computers in the Almaas Lab set up with Ubuntu 16.04

LTS operating systems (OS). Two different platforms with this OS were accessed:

• Dell Precision Optiplex T7500 with 12x Intel Xeon X5690 @ 3.47 GHz. 130 GB RAM.

• Three machines, each consisting of PoerEdge R730xd with 2x Intel Xeon E5-2680 v4 @ 2.4

GHz containing 56 threads with 448 GB RAM.

3.3. FBA 33

3.3 FBA

FBA with Gurobi set as solver was used to predict growth rates, find essential reactions, and to

compute the number of blocked reactions in the models.

3.3.1 Growth Rate

The prediction of a model’s growth rate was performed using FBA with maximization of the

biomass reaction as objective function. This is a measurement of whether the model could pro-

duce biomass with the current reaction content or not. In this study, networks were considered

as viable if they had a growth rate above 20 % of the growth rate in the original network.

3.3.2 Blocked Reactions

Blocked reactions are those reactions in the network that cannot carry flux. They were identified

according to this procedure:

1. The model was imported into COBRApy and optimized.

2. The reactions with nonzero flux were identified. Reactions that carry flux can not be

blocked, and were excluded from further analysis.

3. The remaining reactions, which had zero flux in the optimized model, were maximized

and minimized. If both the maximum and minimum flux were below ±10−8, the corre-

sponding reaction were considered as blocked.

Due to numerical uncertainty, the ±10−8 value is standard for computations like this. Without

this uncertainty, the value would have been zero for both the lower and upper bound [68].

3.3.3 Essential Reactions

Essential reactions were identified through single reaction deletion. The idea behind this method

is to study what happens if a certain reaction in the network is not allowed to carry flux, i.e. up-

per and lower bound set to zero. By studying how this affects the model as a whole, some of the

reactions’ characteristics can be analyzed.

34 CHAPTER 3. SOFTWARE AND METHODS

Single reaction deletion was performed according to the following steps:

1. The model of interest was imported into COBRApy.

2. The wild-type growth rate was calculated.

3. Reactions with zero flux were definitely not essential, and were excluded from further

analysis.

4. The remaining reactions were removed in an iterative manner. In each iteration, the new

growth rate was computed. If the growth rate after deletion was less than 10−3 [68], the

corresponding reaction was classified as essential. Each reaction was added again before

next one was removed.

3.4 Metabolic Models and the Reaction Universe

The genome-scale metabolic reconstructions used in this project are presented in Table 3.1.

They were downloaded from MetaNetX.org, which is an online platform "for accessing, analyz-

ing and manipulating genome-scale metabolic networks and biochemical pathways" [65].

The reaction universe was made by Øyaas in 2015 [37]. The universe includes 13,849 bal-

anced biochemical reactions taken from the same website as the models listed in Table 3.1.

Thus, both the reaction universe and reconstructions are using MNXref, which is a common

namespace for the metabolites, reactions and cellular compartments [74]. This standardization

in nomenclature makes it possible to move reactions smoothly between the reaction universe

and the metabolic models. An example of metabolic reactions using the MNX id is presented in

Appendix B.

Table 3.1: Three high quality genome-scale metabolic reconstructions and their corresponding
number of reactions, metabolites, and genes. The year of publication is also included.

Model Organism name Reactions Metabolites Genes Year of publ.

iIT341 Helicobacter pylori 556 414 340 2005 [75]
iNJ661 Mycobacterium tuberculosis 1028 825 662 2007 [76]
iAF1260 Escherichia coli 2374 1668 1261 2007 [77]

3.5. ADAPTATION OF THE SIMULATED ANNEALING ALGORITHM 35

3.5 Adaptation of the Simulated Annealing Algorithm

Random viable metabolic networks were generated from the already existing metabolic models

presented in Table 3.1 using a modification of the SA algorithm. The traditional SA method is

explained in Section 2.2. Unlike this original method, which has one temperature parameter,

the modified algorithm has two such parameters. This means that each new solution had to go

through two approval steps in order to be accepted. Both approval steps were adapted from the

Metropolis criterion presented in Equation 2.7.

This section will explain how the two approval steps work.

3.5.1 First Step: Total Number of Reactions.

In the first approval step, the recent change in reaction content is approved based on the new

number of reactions in the model. The probability of accepting the recent change is given by

the following equation:

Pr = exp

(
−∆R

Tr

)
(3.1)

where ∆R is the difference between the optimal number of reactions and the current number

of reactions. Like the temperature parameter in the traditional algorithm, Tr is high when the

simulation starts. This leads to a high probability of accepting non-optimal solutions. As Tr is

lowered, the probability of accepting a number of reactions that are far from the optimum also

decreases.

3.5.2 Second Step: Number of Blocked Reactions.

The second step of approval is based on the number of blocked reactions. The probability of ac-

cepting a solution that contains a higher number of blocked reactions than the optimal number

is:

Pb = exp

(
−∆B

Tb

)
(3.2)

36 CHAPTER 3. SOFTWARE AND METHODS

Figure 3.1: The concept of randomizing the reaction content in the metabolic models. As the
figure illustrates, metabolic reactions are replaced by reactions from the universe.

where∆B is the difference between the number of blocked reactions in the current solution and

the optimal number of blocked reactions. The optimal number of blocked reactions is the same

as the number of blocked reaction in the original model, which must be computed before the

generation process starts. Unlike the temperature parameter in Equation 3.1, Tb is kept constant

at a low value throughout the process.

3.6 Randomization of Metabolic Networks

This section will explain how the random viable metabolic reactions are generated using SA.

As shown in Figure 3.1, the reaction content is randomized by adding and withdrawing reac-

tions from the reaction universe. The modified implementation of SA in Python can be found in

Appendix A, and the whole randomization process is shown in Figure 3.2. The procedure is as

follows:

1. The reaction universe and a reaction model was imported into COBRApy.

2. Initial parameters were set. The predefined parameters are presented in Table 3.2

3. A random intracellular reaction was either added or removed from the model, both with a

probability of 50 %.

3.1. Adding a reaction: a randomly chosen reaction was moved from the reaction uni-

verse to the reaction model.

3.6. RANDOMIZATION OF METABOLIC NETWORKS 37

3.2. Removing a reaction: a randomly chosen intracellular reaction was removed from

the reaction model and added to the universe. The deletion of a reaction from the

model could only be done if the model was still able to produce biomass (see Sec-

tion 3.3.1).

4. The change in reaction content in the model was accepted by the following rules:

4.1. If the number of reactions in the model is higher than the optimal number of reac-

tions, a deletion will always be accepted.

4.2. If the number of reactions in the model is lower than the optimal number of reac-

tions, an addition will always be accepted.

4.3. Otherwise, the addition/deletion is accepted by a probability given in equation 3.1

5. The number of blocked reactions in the model were calculated (see Section 3.3.2). If the

number of blocked reactions was below the optimal number of blocked reactions, the

current model was always accepted. If the number was higher than the optimal number,

the new model was accepted by ha probability given in Equation 3.2.

6. T1 in Equation 3.1 was lowered by 10 %.

7. Step 3-6 was repeated until Tr reached zero.

Table 3.2: The predefined parameters for generating random viable metabolic networks. The
reason why these values were chosen is discussed in Appendix C.

Parameter Value

Tr 50
Tb 0.5
Stop 1.0
Iterations num of reactions in original network
Optimal num of reactions num of reactions in original network
Optimal num of blocked reactions num of blocked reactions in original network

38 CHAPTER 3. SOFTWARE AND METHODS

Figure 3.2: Flowchart illustrating the complete method for generating random viable metabolic
networks. The top box illustrates the initialization process and the import of the model and
universe into COBRApy. The bottom box illustrates the lowering of Tr. Everything in between
those two illustrates one iteration of the method. The algorithm stops when Tr reaches its stop
criterion.

3.7. CONSTRUCTION OF MINIMAL GROWTH MEDIA 39

3.7 Construction of Minimal Growth Media

Different growth media were constructed for two of the models iIT341 H. pylori and iNJ661 M.

tuberculosis. The following procedure were used for construction of a given medium:

1. The reaction model was imported to COBRApy.

2. The uptake reaction for the carbon source of interest were identified for construction of

anaerobic media. For aerobic, the uptake reaction for oxygen was also identified.

3. While the boundary reactions for uptake of the carbon source and oxygen were allowed to

carry flux, all the other uptake reactions were switched on and off in an iterative manner.

If the growth rate dropped below 2.0, the corresponding reaction was saved for later use.

If the growth rate was still higher than 2.0, the reaction was turned off permanently.

4. The constructed growth medium included all the stored uptake reactions together with

the carbon source and oxygen.

Chapter 4

Results and Discussion

In this chapter, obtained results are presented and discussed. The chapter is divided into the five

following main parts, where the first three is testing and validation of the developed method:

• Testing and validation of traditional SA. The traditional SA algorithm, as explained in Sec-

tion 2.2, was implemented and tested on both a 2D Ising model and the addition/deletion

process of reactions. Here, only one temperature parameter was used.

• Testing and validation of the second temperature parameter. The second temperature pa-

rameter, Tb, was used to control the fraction of blocked reactions in the networks. Random

networks were generated for multiple values of Tb.

• Testing and validation of the program. The whole program was tested to ensure that both

the total number of reactions and the number of blocked reactions were kept at their de-

sired levels. Some of the disadvantages of the method along with some suggestions on

how these can be improved in the future are also presented here.

• Analysis of the random viable metabolic networks. The reaction content of three existing

genome-scale metabolic models was randomized using the adapted SA algorithm. The

requirements for the generating random metabolic networks were that they should:

– have approximately the same size as the original networks.

– have approximately the same number of blocked reactions as the original networks.

41

42 CHAPTER 4. RESULTS AND DISCUSSION

– produce the precursors necessary for biomass production.

• Software challenges. During the production phase, some unforeseen problems with CO-

BRApy were revealed. In this section, the troubleshooting process and some suggested

solutions will be explained.

4.1 Testing and Validation of Traditional SA

The method used for generating random viable metabolic networks in this thesis was based on

the SA algorithm presented in Section 2.2. The purpose of testing the SA algorithm was to verify

that the method was understood and implemented correctly before the second temperature

parameter was introduced. First, the method was used to solve a 2D Ising model. After this

problem was solved, it was tested whether the method could be used to keep the number of

reactions in a network at the desired level.

4.1.1 Solving the 2D Ising Model

The Ising model, explained in Section 2.2.4, is a well known optimization problem that can be

solved with SA. In this example, a two dimensional version of the problem was used. In this

version of the problem, the spins are arranged in a lattice, as illustrated in Figure 2.6. For conve-

nience, the external magnetic field was turned off. The total energy in the system, as expressed

in Equation 2.9 can thus be simplified to:

E =− ∑
<i , j>

Ji jσiσ j (4.1)

where the magnetic part is eliminated. The objective in this optimization is to minimize the E

in Equation 4.1.

In the implementation process 1 and −1 were used to denote the direction of 100 atomic

spins, which were organized in a 10× 10 lattice. Initially, these spins were randomly aligned,

meaning around half of the atomic spins had the value 1 and the other half the value −1. This

caused the average magnetization in the system, M from Equation 2.10, to be approximately

zero. As long as the temperature was high, worse solutions had a high probability of being ac-

4.1. TESTING AND VALIDATION OF TRADITIONAL SA 43

Figure 4.1: A 2D Ising model was optimized with SA. The optimization is illustrated with the
average magnetization in the system as a function of the decreasing temperature.

cepted. As the temperature parameter was lowered, the probability of accepting worse solutions

also decreased and neighboring atomic spins were aligned. This decreased the overall energy in

the system. At the end, all atomic spins were aligned, meaning they all had the value 1 or −1.

This corresponds to a average magnetization of 1.

The average magnetization in Figure 4.1 compared to the figure obtained from literature

(see Figure 2.7) shows that they are almost identical. This indicates that the SA algorithm was

implemented correctly.

4.1.2 Optimizing the Number of Reactions Using a Number Generator

The next step was to see if the same algorithm was able to optimize the number of reactions in

a network. A number generator was used to simulate the addition and deletion of reactions, as

shown in Figure 4.2. There were two reasons for this:

1. By avoiding usage of COBRApy and the actual reaction models, the method itself was

tested instead of COBRApy specific functions.

2. Only one reaction can be added or removed in each iteration. By setting the number gen-

erator to return only +1 or −1, the process could be simulated in a very realistic way.

44 CHAPTER 4. RESULTS AND DISCUSSION

Figure 4.2: This figure shows one iteration of the simulation of the deletion/addition process of
reactions using a number generator. The generator returns +1 or -1 by a probability of 50%.

The optimal number of reactions was set to 500, which is shown by the blue horizontal line

in Figure 4.3. New solutions were always accepted if the total number of reactions approached

this line from either above or below. Otherwise the new number of reactions was accepted by

a probability given in Equation 3.1. The average number of reactions for each temperature pa-

rameter value was stored and plotted in Figure 4.3. As expected, the number of reactions had a

high fluctuation around the optimum for high parameter values and approached the optimum

as the temperate parameter was lowered. By comparing the acceptance rate from this simula-

tion (Figure 4.3) to the theoretical acceptance rate from Figure 2.5, it clearly shows that this is in

line with the behavior of a traditional SA algorithm.

In addition to validating the algorithm, this simulation gave valuable information about ini-

tialization of the parameters. Referring to the reaction numbers in Figure 4.3, the optimal value

was reached long before the simulation was terminated. If efficiency is taken into account, the

algorithm spent an unnecessary amount of time doing changes that were not accepted. By set-

ting a stop criterion earlier, a lot of time could be saved.

4.1.3 Optimizing the Number of Reactions Using a Reaction Model

After the method was tested for the reaction number using a number generator, real networks

were introduced. The difference between this test and the previous one was that biomass pro-

duction was tested each time a reaction was removed. If the network could not produce biomass

4.1. TESTING AND VALIDATION OF TRADITIONAL SA 45

−2.5 −2.0 −1.5 −1.0 −0.5 0.0
log(1/Tr)

420

440

460

480

500

520

540

560

580

nu
m
be

r o
f r
ea

ct
io
ns

20

40

60

80

100

ac
ce

pt
an

ce
 ra

te
 (%

)

Figure 4.3: The average number of reactions (blue) and the acceptance rate (red) shown for
each value of the Tr parameter. The number generator was used for the addition/removal. The
horizontal line illustrates the optimal value, which was set to 500. Tr was lowered by 5% each
500th iteration, from its start value (500) to the stop criterion (0.5). The number of reactions is
shown as the average of all the 500 measurements for each value of Tr. The acceptance rate is
shown as the fraction of accepted changes per total number of changes for each value of Tr.

after removal of a reaction, the method would try to remove another one. Due to this extra step,

it was expected to see that the acceptance rate was lower than in Figure 4.3.

The model chosen for this test was the iIT341 H. pylori model. Its metabolic network consists

of 557 reactions, which is illustrated with the blue horizontal line in Figure 4.4. Not surprisingly,

more of the total changes were rejected due to the additional requirement for viability. How-

ever, the method was still able to optimize the network with respect to the number of metabolic

reactions.

4.1.4 Summary

• The implemented SA method was able to optimize the 2D Ising model. This was con-

cluded when the average magnetization measured in this test was compared to the one

obtained from literature.

• The same algorithm were able to simulate the addition/deletion process of reactions us-

46 CHAPTER 4. RESULTS AND DISCUSSION

−1.75 −1.50 −1.25 −1.00 −0.75 −0.50 −0.25 0.00
log(1/Tr)

545

550

555

560

565

570

575

nu
m
be

r o
f r
ea

ct
io
ns

25

30

35

40

45

50

ac
ce

pt
an

ce
 ra

te
 (%

)

Figure 4.4: The addition/deletion of reactions using the iIT341 H. pylori model. The average
number of reactions (blue) and acceptance rate (red) are shown for each value of the parameter
Tr. The total number of reactions in iIT341 H. pylori is 557, illustrated with the blue horizontal
line. Tr was set to 50 and was lowered with 5% each 500th iteration until the parameter reached
0.5.

ing both a number generator and an actual metabolic network. This was concluded by

comparing the acceptance rates for the two tests with the one obtained from literature.

• Based on these three observations, it can be concluded that the SA algorithm with one

temperature parameter (Tr) works properly.

4.2 Testing and Validation of Tb

The next step in the validation process was to test the second temperature parameter, Tb. The

purpose of this test was to ensure that the number of blocked reactions was kept at approxi-

mately the same level as in the original models after randomization.

The test was performed by randomizing the reaction content in the iNJ661 M. tuberculosis

model for different values for Tb. That means, the whole program was executed once for each of

the Tb values chosen. It was expected that both the acceptance rate and the number of blocked

reactions would decrease for low values of Tb, whereas high values would cause almost no re-

striction on the number of blocked reactions at all.

4.2. TESTING AND VALIDATION OF TB 47

log(1/T
b
)

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5

B
lo

c
k
e
d
 r

e
a
c
ti
o
n

s

200

300

400

500

600

700

800

A
c
c
e
p

ta
n
c
e

 r
a

te
 (

%
)

20

40

60

80

Figure 4.5: The number of blocked reactions (blue) and the acceptance rate (red) for generation
of random metabolic models from the iNJ661 M. tuberculosis model for four different values
of Tb: 500, 100, 10 and 1. The blue horizontal line illustrates the optimal number of blocked
reactions, which is 285. Tr was set to 50 and was lowered by 10% each 1028th iteration until 1.0
was reached.

The results from this test are shown in Figure 4.5. The optimal number of blocked reactions

for the iNJ661 M. tuberculosis model is 285, which corresponds to 28% of the reaction content.

When Tb was set to 500, which means that the number of blocked reactions was virtually un-

restricted, as many as 66% of the reactions in the random metabolic network were blocked. As

expected, the number of blocked reactions decreased for lower values of Tb. For Tb = 1, the

proportion of blocked reactions was 32%. These results show that the modified version of SA

succeeds in controlling the number of blocked reactions in the randomized networks, as op-

posed to the Wagner method.

The acceptance rate for the four executions are also shown in Figure 4.5. To be able to plot

the acceptance rate for the Tb parameter, only the reaction changes that were accepted from

the first approval step were considered. The acceptance rate in the figure represent the average

acceptance rate for the whole generation process of a new network.

4.2.1 Summary

• The Tb parameter can control the fraction of blocked reactions in a metabolic network.

48 CHAPTER 4. RESULTS AND DISCUSSION

4.3 Testing and Validation of the Program

After both temperature parameters had been studied, the performance of the whole program

was tested. Testing of Tr and Tb have already shown that optimal values are reached after

randomization of reaction content for both the total number of reactions and the fraction of

blocked reactions. The purpose of testing the whole program was to confirm if this also applied

when both of these factors were studied at the same time. In this section, attention is also paid

to the fluctuation in reaction number and the computation time.

4.3.1 Optimal Solutions

For testing the number of reactions and number of blocked reactions after randomization, 100

random metabolic networks should be generated for the three original networks. Nevertheless,

for the iAF1260 E.coli model only 10 networks were generated. For more info about this, see

Section 4.5 about software challenges.

Figure 4.6 shows the results from this test. Here, both the optimal values and the average

values for the random metabolic networks are represented. The dark blue and the dark red

bars illustrate the total number of reactions and the number of blocked reactions, respectively.

The same applies to the light blue and the light red bars, just that these illustrate the average

numbers for the random networks.

It appears that the program works optimally when it comes to generating networks of the

same size as the original networks, that is, networks with the same number of reactions. This

can be seen clearly in Figure 4.6 where the blue bars show approximately the same values for

both the original networks and the random ones. The number of blocked reactions proved to be

approximately the same in the random networks as in the original ones for the models iIT341

H. pylori and iNJ661 M. tuberculosis. The number of blocked reactions in the random metabolic

networks generated from the iAF1260 E. coli model was however much lower than in the original

network. This was not expected, but it should again be noted that only 10 networks were gen-

erated from this model compared to 100 from the other two. Nevertheless, this concludes that

this method succeeded in producing networks with a much lower number of blocked reactions

than the Wagner method did.

4.3. TESTING AND VALIDATION OF THE PROGRAM 49

iI
T

3
4
1

iI
T

3
4
1

iN
J
6
6
1

iN
J
6
6
1

iA
F

1
2
6
0

iA
F

1
2
6
0

iI
T

3
4
1

iI
T

3
4
1

iN
J
6
6
1

iN
J
6
6
1

iA
F

1
2
6
0

iA
F

1
2
6
0

n
u
m

b
e
r

o
f
re

a
c
ti
o
n
s

0

500

1000

1500

2000

2500

number of reactions (original network)

number of reactions (randomized network)

blocked reactions (original network)

blocked reactions (randomized network)

Figure 4.6: The total number of reactions (blue) and number of blocked reactions (red) in the
random networks compared to the original ones. The numbers for the random networks from
the models iIT341 H. pylori and iNJ661 M. tuberculosis show the average of 100 measurements.
The values for randomization of iAF1260 E. coli are average values of 10 measurements.

4.3.2 Fluctuation in the Number of Reactions

To study the fluctuations in the total number of reactions and in the number of blocked reac-

tions, every change in the reaction content was measured for five random network generations

from the iIT341 H. pylori model. The averages of both the number of reactions and the number

of blocked reactions were calculated for each value of Tr. The result is shown in the two subplots

in Figure 4.7, where the fluctuations in the total number of reactions is shown in the upper one

and the fluctuation in the number of blocked reactions is shown in the lower one. The plots in

Figure 4.7 reveal two very important features of this method, where one being a strength and

the other one a limitation.

The Limitation

One of the limitations of the program can be seen in the upper subplot in Figure 4.7. Although

the number of reactions should be able to rise high above the optimal value, that was not the

case. The number of reactions in the network was either around the optimal value or below it

for all five executions. This may be a weakness in terms of randomizing the reaction content. If a

higher number of reactions were allowed, it would be more likely that the added reactions could

bypass some of the essential reactions, which would allow a larger proportion of the reaction

50 CHAPTER 4. RESULTS AND DISCUSSION

-1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0to
ta

l
n

u
m

b
e
r

o
f
re

a
c
ti
o
n

s

450

500

550

600

log(1/T
r
)

-1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0

n
u
m

b
e
r

o
f

b
lo

c
k
e

d
 r

e
a

c
ti
o

n
s

110

120

130

140

150

Figure 4.7: The fluctuations of total number of reactions and number of blocked reactions as
functions of the decreasing parameter Tr. These numbers were measured for 5 executions of
the program. Tr was set to 50 and was lowered by 10% until it reached 2. For each value of Tr,
the average number of reactions and blocked reactions are shown. The error bars illustrate the
fluctuation for each value of Tr. The horizontal lines show the optimal values for iIT341. The
error bars indicate one standard deviation.

content to be replaced. This trend was not seen when reactions were added and removed with-

out the requirement of blocked reactions, as shown in Figure 4.4. Then it was equally likely that

the number of reactions was above the optimal value as below it. Based on this, it is assumed

that there is the requirement for a low number of blocked reactions that restricts the total num-

ber of reactions. This makes sense, because a low total number of reactions gives a low number

of blocked reactions.

Up to this point, the optimal number of blocked reactions has been set as the same as the

number of blocked reactions in the original model. For the iIT341 H. pylori model, this number

is 118, which corresponds to 21% of the total reaction content. An attempt to allow greater

fluctuations was done by setting the optimal number of blocked reactions equal to 21% of the

total number of reactions. Then the optimal number of blocked reactions would be updated

each time a reaction was added or subtracted. Unfortunately, this proved not to be the case.

Perhaps this is idea can be further investigated in the future. Another explanation may also be

4.3. TESTING AND VALIDATION OF THE PROGRAM 51

that the Tr was lowered too quickly in the first part of the executions. In the future it may be

interesting to look at other ways of lowering this parameter.

The Advantage

The clear advantage is that although the number of blocked reactions rose above the optimum

value, it was able to sink again. The whole purpose of this project was to generate a method that

could generate networks with a low percentage of blocked reactions, and it certainly works. This

can be seen clearly in both Figure 4.7 and Figure 4.6 where the the number of blocked reactions

was approximately either at or below the optimal values.

4.3.3 Computation Time

In terms of efficiency, one of the major challenges of this method is its computation time. This

section presents measures that have been implemented and tested as well as ideas for what can

be done better in the future.

Reset to Previous Model

If the change in reaction content is not accepted, the new solution will be replaced by the previ-

ous one. In the first version of the program, this was done by taking copies of the entire network

and the universe in each iteration. If the change was rejected, the previous network would be

set as the current one. The copying of such large models was extremely time consuming; ap-

proximately 70-80% of the total running time was spent here.

The solution of this challenge was to remember the reaction that was added or removed

in each iteration, and return to the previous version of the network by resetting the relevant

reaction only.

Adding and Deletion of Reactions

Although adding and removing reactions are not the most time-consuming part of the pro-

gram, it should still be streamlined due to the high number of iterations. As seen in Figure 4.5,

52 CHAPTER 4. RESULTS AND DISCUSSION

Table 4.1: Total time and time spent per hit given in seconds for the different functions in the
program. The time usage was measured for the mid-sized iNJ661 M. tuberculosis model, and is
the average of three executions of the program.

Total time spent (s) Time spent per hit (s) % Time Functions/function contents

29 29.0 0.03 Import reaction model and reaction universe
378 0.02 0.48 Add reaction to network
4344 0.24 5.59 Remove reaction from network
73260 1.98 93.9 Compute the number of blocked reactions
1 1.10 0.0 Save random networks

78012 Total

fewer and fewer changes are accepted as Tr is lowered. The result is that much time is spent on

changes that will not be accepted.

The solution was to accept or reject new changes before they were made by calculating ∆R

in Equation 3.1 beforehand. This caused only changes that were already accepted to be made.

This is especially time-saving when Tr is low, because very few changes will be accepted at this

point anyway.

Parallel Programming

After the two improvements mentioned above, the most time-consuming function was the cal-

culation of blocked reactions. The time spent for each of the functions is presented in Table 4.1.

The time usage is not directly transferable to the other models because of the difference in size,

but it is a good indicator of where the bottleneck in the program is. For models that are either

smaller or larger it will take shorter or longer time to calculate the number of blocked reactions,

respectively.

The idea was to run this function in parallels to make the computation of blocked reactions

more effective. Both Joblib and the Multiprocessing package for Python were tested.

• Parallel programming with Joblib was tested on 12 processors. It was expected to see that

the program would run significantly faster, but it turned out that the relevant function

became five times slower instead.

• The Multiprocessing package was tested because of the non-expecting results after par-

allel processing with Joblib. The computation of blocked reactions was spread out on 8

4.3. TESTING AND VALIDATION OF THE PROGRAM 53

processors, but this only made the function run 10% faster. It is a waste of resources to use

multiple processors for such a small improvement in speed, and the multiprocessing step

was removed from the program.

A possible explanation for these results is that it takes a lot of time to divide all the reactions

into subsets and process the information that comes back from the processors compared to

computing the blocked reactions as before. For this reason, the idea of parallel programming

was discarded.

Alternative Ways of Computing Blocked Reactions

In the current version of the program, the number of blocked reactions is computed by an-

alyzing all reactions in the model in each iteration, as explained in Section 3.3.2. As already

mentioned, this is very time-consuming. This function could have been implemented in an

alternative way that will be outlined here:

• Adding a reaction can never increase the number of blocked reactions by more than 1.

That is, if the added reaction itself is blocked. If the added reaction is blocked, no other

reactions needs to be analyzed. If the reaction is not blocked, it must be investigated

whether it may have made some of the blocked reactions unblocked.

• Removing a reaction can never make blocked reactions unblocked. The reactions that

are directly connected to the reaction being removed need to be investigated. The idea

is checking these adjacent reactions in a stepwise manner as shown in Figure 4.8. The

first step is looking at the reactions that were directly connected to the removed reaction

and see if they are still able to carry flux. Those that cannot are illustrated with gray color,

which in this case were all of them. The next step is looking at their directly connected

reactions to see if any of these are still able to carry flux. This procedure is continued until

no more adjacent reactions is blocked.

Another method for computation of the number of blocked reactions has been developed

by Vlassis et al. [78]. This procedure is completely different from the one used in this thesis.

The idea is to maximize the number of feasible fluxes in the system, which can be explained

54 CHAPTER 4. RESULTS AND DISCUSSION

(a) Removal of reaction

(b) Blocked reactions in step one

(c) Blocked reactions in step two

Figure 4.8: The alternative way of computing blocked reactions when a reaction is removed.
Here, the reaction with the X is removed from the network. Then, the reactions illustrated by
gray arrows are not able to carry flux, and will be considered as blocked. The dashed arrows are
connected to the rest of the network.

4.3. TESTING AND VALIDATION OF THE PROGRAM 55

as "pushing" flux through as many reactions as possible. In this way, the number of non-zero

entries in the flux vector v will be maximized (see Section 2.3.4 about FBA for more information

about the flux vector). The number of zero entries in v corresponds the number of blocked

reactions. A single iteration of this method will find all the blocked and unblocked reactions in

the network in a much more effective way than the method implemented in this thesis.

The two alternative procedures described above are suggestions for how the program can be

more effective in the future and were not implemented in this thesis.

4.3.4 Summary

• It has been proven that the implemented method can generate networks of the same size

as the original networks.

• The method was also able to keep the fraction of blocked reactions at or below the set

limit.

• The fluctuations in the number of reactions were smaller as expected. Alternative ways to

lower Tr should be investigate in the future.

• The most time consuming part of the program was the computations of blocked reactions.

Two faster alternatives have been outlined.

Table 4.2: Overview of the generated metabolic networks. From each of the original models,
three different types of randomized networks were generated. They differ from each other in
the fractions of blocked reactions that were set as optimum in the initialization process, shown
as the percentage on top of each column. * For info about the low number of generated networks
from the iAF1260 E. coli model, see Section 4.5 about software challenges.

Original 65% 200%

iIT341 H. pylori 100 100 100
iNJ661 M. tuberculosis 100 100 100
iAF1260 E. coli 10* 6* 11*

56 CHAPTER 4. RESULTS AND DISCUSSION

4.4 Analysis of Random Viable Metabolic Networks

Random viable metabolic networks were generated from the three existing models iIT341 H.

pylori, iNJ661 M. tuberculosis, and iAF1260 E. coli. These networks were produced by changing

their reaction content, as explained in Section 3.5. Three requirements were formulated for the

generation of new networks:

• The first requirement was that the networks should consist of approximately as many re-

actions as the original network.

• The second requirement was that the networks should be able to produce biomass so that

they could be considered viable.

• The third requirement was to keep the proportion of blocked reactions at a certain level.

The third requirement was not formulated in the Wagner method, so the number of blocked

reactions in the networks generated by this method was much higher than expected. Therefore,

extra attention was paid to the number of blocked reactions in this thesis.

An overview of the random viable metabolic networks that were generated is given in Ta-

ble 4.2. Note that for each of the three models, random networks were generated with three

different levels of blocked reactions. For the lowest level, the upper limit of blocked reactions

was set as the same as in the original models, which are 21 %, 28 %, and 34 % for the three mod-

els iIT341, iNJ661 and iAF1260, respectively. For the highest level, the number was thus set to

200 % of the total reaction number to ensure that it did not put any restrictions on the random-

ization. For the middle level, the upper limit of blocked reactions was set to 65 %. For simplicity,

these variations in the networks will be separated from each other in the remaining text with

these abbreviations:

• LB - low level of blocked reactions. Optimal value was set to the same as the proportion of

blocked reactions in the original models.

• MB - medium level of blocked reactions. Optimal value was set to 65 % of the total number

of reactions.

4.4. ANALYSIS OF RANDOM VIABLE METABOLIC NETWORKS 57

• HB - high level of blocked reactions. Optimal value was set to 200 % to ensure no restric-

tion on the randomization process.

The purpose of generating networks for different levels of blocked reactions was to study

how the networks’ properties changed as a function of blocked reactions and how it affected the

randomization.

This section presents some of the properties of the random viable metabolic networks that

were generated. Many of the same properties were measured in Øyaas’ master thesis [37], where

random metabolic networks were generated using the Wagner method. The average random-

ization degree, fraction of blocked reactions, and fraction of essential reactions were calculated

for all the random metabolic networks generated. These results are plotted in Figure 4.9. Then,

the random metabolic networks were tested for biomass production in different growth media.

4.4.1 Evaluation of the Randomization of Reaction Content

The randomization degree was determined as the fraction of metabolic reactions in the random

network that did not participate in the original model.

The average degree of randomization is illustrated with blue triangles in the Figure 4.9. The

degree was highest in the HB-networks, which virtually had no restriction on the number of

blocked reactions. The lowest degree of randomization was measured in the networks with the

lowest proportion of blocked reactions. For these networks, fewer reactions could be replaced

compared to the HB- and MB-networks. The observation that the randomization degree cor-

related with the proportion of blocked reactions was therefore expected. From optimization

theory, it is also known that the solution space of a problem can never be increased by adding

more constraints [35]. By imposing the restriction on blocked reactions, the randomization de-

gree could therefore never be higher than in the unrestricted networks.

The size of the models also appeared to be an important factor of the degree of randomiza-

tion. The large iAF1260 E. coli model had a higher average randomization degree than the small

iIT341 H. pylori model, and the mid-sized iNJ661 M. tuberculosis model’s randomization degree

was placed between those two. Due to small models’ few reactions, they have fewer alterna-

tive ways of producing the biomass precursors needed for growth than larger models, imply-

58 CHAPTER 4. RESULTS AND DISCUSSION

iI
T

3
4
1
,
L
B

 (
2
1
%

)

iI
T

3
4
1
,
M

B
 (

6
5
%

)

iI
T

3
4
1
,
H

B
 (

2
0
0
%

)

 i
N

J
6
6
1
,
L
B

 (
2
8
%

)

iN
J
6
6
1
,
M

B
 (

6
5
%

)

iN
J
6
6
1
,
H

B
 (

2
0
0
%

)

iA
F

1
2
6
0
,
L
B

 (
3
6
%

)

iA
F

1
2
6
0
,
M

B
 (

6
5
%

)

iA
F

1
2
6
0
,
H

B
 (

2
0
0
%

)

F
ra

c
ti
o
n

 o
f

m
e

ta
b
o

lic
 r

e
a
c
ti
o

n
s

0

0.2

0.4

0.6

0.8

1

blocked reactions essential reactions randomization degree

Figure 4.9: Average fraction of metabolic reactions in the three different categories; blocked
reactions, essential reactions, and reactions not found in the original networks. The models
from which randomized networks were generated are indicated along the horizontal axis. The
number of networks in each category is shown in Table 4.2. Measurements were done for three
different levels of blocked reactions to study how the proportion of blocked reactions affect the
other properties. The error bars indicate one standard deviation.

ing larger share of essential reactions. The randomization process used to generate these net-

works repeatedly removed nonessential reactions from the networks and added new ones. For

networks with few reactions, only a small fraction of reaction was actually possible to remove.

Therefore, a higher randomization degree is difficult to obtain. This trend is further enhanced

by the fact that the number of reactions rarely rises above optimal value during the generation

process, which causes essential reactions to be even more difficult to bypass. This limitation is

shown in the upper subplot in Figure 4.7. If the method can be improved so that higher numbers

of reactions are allowed, the randomization degree will probably increase for all three models.

4.4.2 Evaluation of Blocked Reactions

The average fraction of blocked reactions is illustrated with green circles in Figure 4.9. The num-

ber of blocked reactions is interesting to study in this project, both in terms of the generated

4.4. ANALYSIS OF RANDOM VIABLE METABOLIC NETWORKS 59

networks’ structure and the developed method’s functionality.

Random metabolic networks generated from the iIT341 H. pylori model had an overall low

fraction of blocked reactions. For the LB-networks, the average fraction was 0.23, which was

approximately the same as in the original model (0.21). For the MB-networks and the HB-

networks, the average fractions were 0.42 and 0.45, respectively.

Random networks generated from the iNJ661 M. tuberculosis model had higher shares of

blocked reactions than those generated from iIT341 H. pylori. The random metabolic LB-networks

had a fraction of 0.33, which was a little bit higher than that of the original model (0.28). For the

two others, the average fractions of blocked reactions were 0.55 for the MB-networks and 0.61

for the HB-networks.

Networks generated from iAF1260 E. coli had the greatest spread in blocked reactions, raging

from an average fraction of 0.13 to 0.62. The random metabolic LB-networks generated from

this model were also the only ones that had fewer blocked reactions than the original metabolic

network has.

Networks containing large fractions of blocked reactions have relatively few reactions that

are able to carry flux. A consequence of this is that the networks are sparsely connected and

hence little robust for intracellular and extracellular changes. On the other hand, networks with

low fraction of blocked reactions have many reactions that can carry flux, which leads to robust

and densely connected networks that can easily adapt to changes. It is obvious that the latter

topological structure is preferred for metabolic networks. All generated random metabolic LB-

networks had approximately as many blocked reactions as in the original model, or fewer.

Compared to the random networks generated using the Wagner method, the LB-networks

were definitely more similar to the original models with respect to the fraction of blocked re-

actions. This is shown in Table 4.3. The HB-networks are those that were most similar to the

previous networks generated in Øyaas’ master thesis. This was expected because both of them

were generated with no restrictions on the number of blocked reactions.

One last thing that may be worth noting is the low numbers of blocked reactions in the LB-

networks generated from the iAF1260 E. coli model compared to the others. The implemented

method does not try to force the number of blocked reactions to the exact same value as in the

original networks, as is done for the total number of reactions. All numbers of blocked reactions

60 CHAPTER 4. RESULTS AND DISCUSSION

Table 4.3: The fraction of blocked reactions in the original models together with the average frac-
tions for random metabolic networks generated by Wagner’s method and SA. For the networks
generated by SA, the average value for the LB-networks is shown.

Original Wagner’s method SA method

iIT341 0.21 0.50 0.22
iNJ661 0.28 0.55 0.33
iAF1260 0.36 0.75 0.13

are considered as optimal as long as they are equal to or below the set limit. A low fraction

of blocked reactions is therefore not wrong according to the method, just a bit surprising. An

obvious weakness of these results is that very few random metabolic networks were generated

from the iAF1260 E. coli model due to unforeseen challenges with COBRApy. Therefore, more

networks should be generated in order to say something quite sure about these results. If this

is done and the results remain the same, it might be interesting to see if this happen in other

metabolic networks of similar size as well.

4.4.3 Evaluation of Essential Reactions

The average fraction of essential reactions in the generated metabolic networks is illustrated

with red squares in Figure 4.9. On average, the fraction of essential reactions is higher in small

metabolic networks than in large ones. This is already discussed in the paragraph about ran-

domization degree.

When it comes to the LB-networks generated using this method compared to those gener-

ated with the Wagner method, the fraction of reactions considered as blocked versus essential is

worth noting. For the networks generated in Øyaas’ thesis, almost all reactions were considered

either as blocked or essential. This was also observed for the HB-networks in this study. Many

reactions were neither considered as blocked nor essential in the LB-networks. An overview of

these reactions is viewed in Table 4.4.

These results were very surprising. As the number of blocked reactions was lowered, it was

expected that there would be fewer essential reactions because the network would contain more

alternative pathways for biomass production. Due to these results, the networks were visualized

to study if there were any obvious differences between the original networks and the random

4.4. ANALYSIS OF RANDOM VIABLE METABOLIC NETWORKS 61

Table 4.4: The average fraction of reactions that are neither essential nor blocked in the random
metabolic networks generated.

LB-networks MB-networks HB-networks

iIT341 0.17 0.02 0.0
iNJ661 0.26 0.05 0.0
iAF1260 0.66 0.48 0.23

ones. The original networks and one of the LB-networks from each of the three models were

imported into Cytoscape and visualized. These six network can be found in Appendix D. These

network structures explain why the number of essential reactions was higher than expected. In

many of the random metabolic networks, multiple clusters of reactions formed. This explains

why so many of the reactions could not bypass the essential ones. For future network genera-

tion, the method should be modified to withstand formation of additional sub-networks.

4.4.4 Growth in Different Environments

Adding and removing metabolic reactions is a way of simulating metabolic evolution in organ-

isms. In nature organisms pay no effort in keeping reactions that are not used. Over time, these

will disappear.

To see if this happens when generating random metabolic networks, different growth media

were constructed for the iIT341 H. pylori model. In the randomization process, only intracellular

reactions were replaced, which means that all exchange reactions were intact in the random

metabolic networks. By testing the networks’ growth rate in different growth media, it would

be clarified whether unused metabolic pathways were preserved in the randomization process

or not. Figure 4.10 shows the concept of changing growth media for a metabolic networks. The

arrows represent the boundary reactions that transport metabolites from the extracellular space

and into the cytoplasm. New media were constructed by turning desired uptake reactions on

or off. The different growth media used in this study are presented in Table 4.5. The original

metabolic network of the iIT341 H. pylori model was able to produce the biomass precursors

required for growth in all of them.

The average growth rates for the LB-networks, MB-networks, and HB-networks in different

growth media are shown in Figure 4.11. The highest growth rate for all the three types of net-

62 CHAPTER 4. RESULTS AND DISCUSSION

(a) all uptake reactions (b) standard uptake reactions (c) minimal growth media

Figure 4.10: The concept of different growth media. Red arrows represent uptake reactions
turned on, black arrows represent uptake reactions turned off, and the circle represents the in-
tracellular space of metabolic reactions.

Table 4.5: The seven different growth media tested for networks generated from the iIT341 H.
pylori model. Medium 1 consists of all uptake reactions, medium 2 is the uptake reactions that
are standard for the iIT341 model, and medium 3-7 are minimal growth media constructed for
different carbon sources. The standard uptake reactions for iIT341 are listed in Appendix B.

type of medium

medium 1 all uptake reactions
medium 2 standard uptake reactions
medium 3 minimal glucose aerobic
medium 4 minimal glucose anaerobic
medium 5 minimal succinate aerobic
medium 6 minimal pyruvate aerobic
medium 7 minimal acetate aerobic

works were measured when all uptake reactions were turned on. For iIT341 H. pylori there are a

total of 77 uptake reactions, which are the boundary reactions that move metabolites from the

extracellular space and into the organism. The second highest growth rate was measured when

the only the standard uptake reactions for the iIT341 H. pylori were turned on. This is the com-

position of uptake reactions used when the random metabolic networks were generated. These

standard uptake reactions for iIT341 H. pylori are listed in Appendix B. No growth was measured

for the five minimal growth media.

That the highest growth rate was measured when all the uptake reactions were turned on

4.4. ANALYSIS OF RANDOM VIABLE METABOLIC NETWORKS 63

was not surprising. Here, all extracellular metabolites were made available for the metabolic

networks, which enabled them to generate all biomass precursors that the networks still had

the metabolic pathways to produce. That the second highest growth rate was measured for the

standard composition of uptake reactions was also expected because these pathways had to be

preserved in the generation process due to the requirement of biomass production. That no

growth rate was measured for any of the minimal growth media means that the metabolic path-

ways that synthesize biomass precursors from these compounds were lost in the randomization

process.

For later studies, this means that networks should be generated for a variety of uptake reac-

tions turned on to be able to study other pathways in the networks.

4.4.5 Summary

• The randomization degree was lower in small networks than in large ones because a smaller

fraction of the reaction content can be replaced.

• The fraction of essential reactions was much higher than expected. When the random

networks were visualized, it could be concluded that the formation of multiple clusters

caused this surprising results.

• Networks were only able to produce biomass in the same growth media they were gener-

ated in. Unused reactions were lost in the randomization process.

64 CHAPTER 4. RESULTS AND DISCUSSION

m
e
d
iu

m
 1

m
e
d
iu

m
 2

m
e
d
iu

m
 3

m
e
d
iu

m
 4

m
e
d
iu

m
 5

m
e
d
iu

m
 6

m
e
d
iu

m
 7

g
ro

w
th

 r
a
te

 (
h

-1
)

-0.1

0

0.1

0.2

0.3

0.4

0.5

(a) LB-networks generated from the iIT341 H. pylori model.

m
e
d
iu

m
 1

m
e
d
iu

m
 2

m
e
d
iu

m
 3

m
e
d
iu

m
 4

m
e
d
iu

m
 5

m
e
d
iu

m
 6

m
e
d
iu

m
 7

g
ro

w
th

 r
a
te

 (
h

-1
)

-0.1

0

0.1

0.2

0.3

0.4

0.5

(b) MB-networks generated from the iIT341 H. pylori model.

m
e
d
iu

m
 1

m
e
d
iu

m
 2

m
e
d
iu

m
 3

m
e
d
iu

m
 4

m
e
d
iu

m
 5

m
e
d
iu

m
 6

m
e
d
iu

m
 7

g
ro

w
th

 r
a

te
 (

h
-1

)

-0.1

0

0.1

0.2

0.3

0.4

0.5

(c) HB-networks generated from the iIT341 H. pylori model.

Figure 4.11: The growth rates of the random metabolic networks generated from the iIT341 H.
pylori model in different growth media. The error bars indicate one standard deviation. The
growth media are listed in Table 4.5.

4.5. SOFTWARE CHALLENGES 65

4.5 Software challenges

During the production phase, some unforeseen problems with COBRApy were revealed. Those

problems were first discovered during simulation of the random networks on the Almaas Lab

machines in March 2017. The testing and validation of the method were done on a private com-

puter, and the same problems were never seen here.

4.5.1 Troubleshooting

Initially, the program code was erased and rewritten, to be sure there were no small mistakes in

implementation that triggered the problems. All reaction models were then downloaded again

from MetaNetX.org. Regarding the reaction universe, Øyaas was contacted to ensure that it was

the correct version of the universe that had been received (Ove Øyaas, personal communica-

tion, April 2017). All the procedures and functions in the program were debugged on a private

computer to see that they acted as they should, but the same error messages were not possible

to evoke. This computer had an older version of COBRApy installed. This indicated that there

was nothing wrong with neither the implementation, the models, nor the reaction universe. Ob-

servations from the debugging step indicated that there was nothing wrong with the interaction

between the implemented program and the COBRApy specific functions.

After a closer look at the error messages received during the network generation, it appeared

that they came from other solvers than Gurobi. Gurobi was therefore reinstalled on the Almaas

Lab machines, but the problem was still not resolved. At this point, the COBRApy developer

team was contacted. The developer team had stopped working on the solver interfaces in CO-

BRApy 0.5.0, which is the COBRApy version that was used in this study. A new version that

would probably fix the problems would soon be released (contributor Moritz Beber, personal

communication, May 2017). The new version of COBRApy (version 0.6.0) was released later in

May. After installing and testing the new version, it could be concluded that it was the COBRApy

version 0.5.0 that had caused the problems.

66 CHAPTER 4. RESULTS AND DISCUSSION

4.5.2 Limitations

• Due to problems with the COBRApy solvers, there were not generated as many networks as

intended from the iAF1260 E. coli model. The problems affected these networks the most

because iAF1260 is the largest model. Therefore, these networks took the longest time to

generate. The likelihood that the execution was aborted due to error messages was thus

much higher here. Due to the small number of networks, the results may be considered as

inconclusive.

• Minimal growth media were also constructed for the iNJ661 M. tuberculosis model, as for

the iIT341 H. pylori model in Section 4.4.4. The biomass production in the original M.

tuberculosis model was tested in all growth media and it was observed that it had a positive

growth rate in all of them. However, problems occurred when all the random networks

should be tested for growth on the Almaas Lab machines. None of the networks, not even

the original M. tuberculosis network, were able to produce biomass in any of the growth

media. This test was therefore postponed until the new version of COBRApy was released.

Unfortunately, many of the COBRApy specific functions were renamed so that the original

program code could not be used.

4.5.3 Summary

• Challenges related to COBRApy delayed the generation and testing of random metabolic

networks.

• After the new version of COBRApy was installed, the problems disappeared.

• There was nothing wrong with the implemented method, the metabolic networks, or the

reaction universe.

Chapter 5

Conclusions

A method for generating random viable metabolic networks was developed. The method was

based on the SA algorithm and was adapted to contain two temperature parameters instead

of one. The verification of the implemented method was done by performing three tests: One

for the first temperature parameter, one for the second temperate parameter, and one for the

completed program. Random viable metabolic networks were generated for different levels of

blocked reactions. The purpose was to study how the fraction of blocked reactions affected the

networks’ properties. It was particularly interesting to investigate whether a higher fraction of

non-blocked reactions led to a lower fraction of the essential reactions. I that case, it would

indicate that the reactions added from the reaction universe were able to bypass some of the

essential reactions.

By testing the first temperature parameter, Tr, it was confirmed that the SA algorithm was

implemented correctly. Results were compared to algorithm specific characteristics from litera-

ture, for instance the average magnetization of an Ising model and the acceptance rate for SA. It

was also concluded that SA was able to optimize the number of reactions in an actual metabolic

network by randomizing a iIT341 H. pylori network.

Testing of the second temperature parameter, Tb, revealed that the method succeeded in

controlling the number of blocked reactions in the networks. This test was performed by gener-

ating random networks from the iNJ661 M. tuberculosis model for different values of Tb.

When the program was completed, it was extensively tested before production of the ran-

dom networks started. The measurements of fluctuations in reaction number indicated that Tr

67

68 CHAPTER 5. CONCLUSIONS

may have been lowered in a non-optimal way. Investigation of the computation time revealed

that one calculation caused over 90 % of the time usage. Alternative ways to perform this calcu-

lation have been suggested.

When the random metabolic networks were generated, a limitation of the COBRApy soft-

ware was revealed. However, most of the networks were generated and tested. Surprisingly,

the fraction of essential reactions were not lower than in previous network generations. There-

fore, the networks were visualized to study their structure. It appeared that many of the random

metabolic networks had formed multiple reaction clusters, which explains the non-expected

number of essential reactions.

Finally, the random networks generated from the iIT341 H. pylori model were tested for

growth in different growth media. As expected, the networks could not produce biomass in

other growth media than the one they had been generated for. For future investigation of metabol-

ic pathways or growth media, different uptake reactions should be turned on.

A possible extension of the work done here would be a better implementation of the method.

Other cooling schedules for the Tr parameter should be considered together with another algo-

rithm for the calculation of blocked reactions (see Section 4.3.3 for suggestions). The method

should also withstand formation of several clusters. Otherwise, the idea behind the method is

good, as the fraction of blocked reactions was reduced significantly.

Bibliography

[1] Aarash Bordbar, Jonathan M Monk, Zachary A King, and Bernhard O Palsson. Constraint-

based models predict metabolic and associated cellular functions. Nature Reviews Genet-

ics, 15(2):107–120, 2014.

[2] Bernhard Ø Palsson. Systems Biology - Properties of Reconstructed Networks. Cambridge

University Press, 2006.

[3] Matthew A Oberhardt, Bernhard Ø Palsson, and Jason A Papin. Applications of genome-

scale metabolic reconstructions. Molecular Systems Biology, 5(1), 2009.

[4] Rama S Singh. Darwin to dna, molecules to morphology: the end of classical population

genetics and the road ahead. Genome, 46(6):938–942, 2003.

[5] Eberhard O. Voit. A First Course in Systems Biology. Garland Science, 1st edition, 2013.

[6] Fulvio Mazzocchi. Complexity in biology. EMBO Reports, 9(1):10–14, 2008.

[7] Kiran Raosaheb Patil, Mats Åkesson, and Jens Nielsen. Use of genome-scale microbial

models for metabolic engineering. Current Opinion in Biotechnology, 15(1):64–69, 2004.

[8] Hiroaki Kitano. Systems biology: a brief overview. Science, 295(5560):1662–1664, 2002.

[9] Bernhard Ø Palsson. Systems biology. Cambridge University Press, 2015.

[10] Jong Myoung Park, Tae Yong Kim, and Sang Yup Lee. Constraints-based genome-

scale metabolic simulation for systems metabolic engineering. Biotechnology Advances,

27(6):979–988, 2009.

69

70 BIBLIOGRAPHY

[11] Albert-Laszlo Barabasi and Zoltan N Oltvai. Network biology: Understanding the cell’s

functional organization. Nature Reviews Genetics, 5(2):101–113, 2004.

[12] Robert Schuetz, Lars Kuepfer, and Uwe Sauer. Systematic evaluation of objective functions

for predicting intracellular fluxes in escherichia coli. Molecular Systems Biology, 3(1):119,

2007.

[13] R Aebersold. Molecular systems biology: a new journal for a new biology? Molecular

Systems Biology, 1(1), 2005.

[14] Gregory Stephanopoulos. Metabolic fluxes and metabolic engineering. Metabolic Engi-

neering, 1(1):1–11, 1999.

[15] James E Bailey. Toward a science of metabolic engineering. Science, 252(5013):1668–1676,

1991.

[16] Masato Ikeda and Ryoichi Katsumata. Metabolic engineering to produce tyrosine or

phenylalanine in a tryptophan-producing corynebacterium glutamicum strain. Applied

and Environmental Microbiology, 58(3):781–785, 1992.

[17] Hyun Uk Kim, Tae Yong Kim, and Sang Yup Lee. Metabolic flux analysis and metabolic

engineering of microorganisms. Molecular BioSystems, 4(2):113–120, 2008.

[18] George Stephanopoulos, Aristos A Aristidou, and Jens Nielsen. Metabolic engineering: prin-

ciples and methodologies. Academic Press, 1998.

[19] Aditya Barve, João Frederico Matias Rodrigues, and Andreas Wagner. Superessential

reactions in metabolic networks. Proceedings of the National Academy of Sciences,

109(18):E1121–E1130, 2012.

[20] Carlton Gyles and Patrick Boerlin. Horizontally transferred genetic elements and their role

in pathogenesis of bacterial disease. Veterinary Pathology, 51(2):328–340, 2014.

[21] Jeremy S Edwards and Bernhard O Palsson. Robustness analysis of the escherichia coli

metabolic network. Biotechnology Progress, 16(6):927–939, 2000.

BIBLIOGRAPHY 71

[22] Andanappa K Gadad, Chanabasappa S Mahajanshetti, Sudarshan Nimbalkar,

and Anandkumar Raichurkar. Synthesis and antibacterial activity of some 5-

guanylhydrazone/thiocyanato-6-arylimidazo [2, 1-b]-1, 3, 4-thiadiazole-2-sulfonamide

derivatives. European Journal of Medicinal Chemistry, 35(9):853–857, 2000.

[23] Fred C Tenover. Mechanisms of antimicrobial resistance in bacteria. The American Journal

of Medicine, 119(6):S3–S10, 2006.

[24] WHO et al. Antimicrobial resistance: global report on surveillance 2014. geneva, switzer-

land: Who; 2014, 2014.

[25] David J Payne, Michael N Gwynn, David J Holmes, and David L Pompliano. Drugs for bad

bugs: confronting the challenges of antibacterial discovery. Nature Reviews Drug Discovery,

6(1):29–40, 2007.

[26] Jeffrey D. Orth, Ines Thiele, and Bernhard O. Palsson. What is flux balance analysis? Nature

Biotechology, 28(3):245–248, March 2010.

[27] Jeremy S Edwards and Bernhard O Palsson. Systems properties of the haemophilus influen-

zaerd metabolic genotype. Journal of Biological Chemistry, 274(25):17410–17416, 1999.

[28] Adam M Feist and Bernhard Ø Palsson. The growing scope of applications of genome-

scale metabolic reconstructions using escherichia coli. Nature biotechnology, 26(6):659–

667, 2008.

[29] Nathan D Price, Jennifer L Reed, and Bernhard Ø Palsson. Genome-scale models of mi-

crobial cells: evaluating the consequences of constraints. Nature Reviews Microbiology,

2(11):886–897, 2004.

[30] Weng H Chan, Mohd S Mohamad, Safaai Deris, and Rosli M Illias. A review of computa-

tional approaches for in silico metabolic engineering for microbial fuel production. Cur-

rent Bioinformatics, 8(2):253–258, 2013.

[31] Priti Pharkya, Anthony P Burgard, and Costas D Maranas. Exploring the overproduction of

amino acids using the bilevel optimization framework optknock. Biotechnology and bio-

engineering, 84(7):887–899, 2003.

72 BIBLIOGRAPHY

[32] Jin Hwan Park, Kwang Ho Lee, Tae Yong Kim, and Sang Yup Lee. Metabolic engineering of

escherichia coli for the production of l-valine based on transcriptome analysis and in silico

gene knockout simulation. Proceedings of the National Academy of Sciences, 104(19):7797–

7802, 2007.

[33] Iwei Yeh, Theodor Hanekamp, Sophia Tsoka, Peter D Karp, and Russ B Altman. Compu-

tational analysis of plasmodium falciparum metabolism: organizing genomic information

to facilitate drug discovery. Genome Research, 14(5):917–924, 2004.

[34] Christopher S Henry, Matthew DeJongh, Aaron A Best, Paul M Frybarger, Ben Linsay, and

Rick L Stevens. High-throughput generation, optimization and analysis of genome-scale

metabolic models. Nature Biotechnology, 28(9):977–982, 2010.

[35] Frederick S Hillier and Gerald J Lieberman. Introduction to operations research. McGraw-

Hill Education, 10th edition, 2012.

[36] J Lundgren, M Rönnqvist, and P Värbrand. Optimization. Studentlitteratur, 2010.

[37] Ove Øyås. Identification of antimicrobial drug targets from robustness properties of

metabolic networks. Master’s thesis, NTNU, 2015.

[38] Scott Kirkpatrick, C Daniel Gelatt, Mario P Vecchi, et al. Optimization by simulated anneal-

ing. science, 220(4598):671–680, 1983.

[39] E.H.L. Aarts and J.K. Lenstra. Local Search in Combinatorial Optimization. Princeton Uni-

versity Press, 2003.

[40] Lester Ingber. Simulated annealing: Practice versus theory. Mathematical and Computer

Modelling, 18(11):29–57, 1993.

[41] Dario Floreano and Claudio Mattiussi. Bio-inspired Artificial Intelligence: theories, meth-

ods, and technologies. MIT press, 2008.

[42] Emile Aarts, Jan Korst, and Wil Michiels. Simulated annealing. In Search Methodologies,

pages 265–285. Springer, 2014.

BIBLIOGRAPHY 73

[43] Nico Ulder, Emile Aarts, Hans-Jürgen Bandelt, Peter van Laarhoven, and Erwin Pesch. Ge-

netic local search algorithms for the traveling salesman problem. Parallel Problem Solving

from Nature, pages 109–116, 1991.

[44] E Burke, James Newall, and R Weare. A memetic algorithm for university exam timetabling.

Practice and Theory of Automated Timetabling, pages 241–250, 1996.

[45] Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H Teller, and

Edward Teller. Equation of state calculations by fast computing machines. The journal of

chemical physics, 21(6):1087–1092, 1953.

[46] Emile HL Aarts and Jan HM Korst. Simulated annealing. ISSUES, 1:16, 1988.

[47] Ernst Ising. Beitrag zur theorie des ferromagnetismus. Zeitschrift für Physik A Hadrons and

Nuclei, 31(1):253–258, 1925.

[48] Barry M McCoy and Tai Tsun Wu. The two-dimensional Ising model. Courier Corporation,

2014.

[49] Barry A Cipra. An introduction to the ising model. American Mathematical Monthly,

94(10):937–959, 1987.

[50] Lilian Witthauer and Manuel Dieterle. The phase transition of the 2d-ising model. Summer

Term, 2007.

[51] Adam M Feist, Markus J Herrgård, Ines Thiele, Jennie L Reed, and Bernhard Ø Palsson.

Reconstruction of biochemical networks in microorganisms. Nature Reviews Microbiology,

7(2):129–143, 2009.

[52] Minoru Kanehisa and Susumu Goto. Kegg: kyoto encyclopedia of genes and genomes.

Nucleic Acids Research, 28(1):27–30, 2000.

[53] Ines Thiele and Bernhard Ø Palsson. A protocol for generating a high-quality genome-scale

metabolic reconstruction. Nature protocols, 5(1):93–121, 2010.

[54] Irina Borodina and Jens Nielsen. From genomes to in silico cells via metabolic networks.

Current Opinion in Biotechnology, 16(3):350–355, 2005.

74 BIBLIOGRAPHY

[55] Richard A Notebaart, Frank HJ Van Enckevort, Christof Francke, Roland J Siezen, and Bas

Teusink. Accelerating the reconstruction of genome-scale metabolic networks. BMC bioin-

formatics, 7(1):296, 2006.

[56] Jennifer L Reed, Iman Famili, Ines Thiele, and Bernhard O Palsson. Towards multidimen-

sional genome annotation. Nature Reviews Genetics, 7(2):130–141, 2006.

[57] Jeremy S Edwards, Rafael U Ibarra, and Bernhard O Palsson. In silico predictions of es-

cherichia coli metabolic capabilities are consistent with experimental data. Nature Biotech-

nology, 19(2):125–130, 2001.

[58] James E Bailey. Complex biology with no parameters. Nature Biotechnology, 19(6):503–504,

2001.

[59] Areejit Samal, João F. Matias Rodrigues, Jürgen Jost, Olivier C. Martin, and Andreas Wagner.

Genotype networks in metabolic reaction spaces. BMC Systems Biology, 4(1):30, 2010.

[60] R Mahadevan and CH Schilling. The effects of alternate optimal solutions in constraint-

based genome-scale metabolic models. Metabolic engineering, 5(4):264–276, 2003.

[61] Adilson E Motter, Natali Gulbahce, Eivind Almaas, and Albert-László Barabási. Predicting

synthetic rescues in metabolic networks. Molecular Systems Biology, 4(1):168, 2008.

[62] Patrick F Suthers, Madhukar S Dasika, Vinay Satish Kumar, Gennady Denisov, John I Glass,

and Costas D Maranas. A genome-scale metabolic reconstruction of mycoplasma genital-

ium, i ps189. PLoS Comput Biol, 5(2):e1000285, 2009.

[63] Joao F Matias Rodrigues and Andreas Wagner. Evolutionary plasticity and innovations in

complex metabolic reaction networks. PLoS Comput Biol, 5(12):e1000613, 2009.

[64] Andreas Wagner, Vardan Andriasyan, and Aditya Barve. The organization of metabolic

genotype space facilitates adaptive evolution in nitrogen metabolism. Journal of Molec-

ular Biochemistry, 3(1), 2014.

BIBLIOGRAPHY 75

[65] Mathias Ganter, Thomas Bernard, Sébastien Moretti, Joerg Stelling, and Marco Pagni.

Metanetx.org: a website and repository for accessing, analysing and manipulating

metabolic networks. Bioinformatics, page btt036, 2013.

[66] Christian P Robert. Monte carlo methods. Wiley Online Library, 2004.

[67] The Python Software Foundation. Python 2.7, 2010.

[68] Ali Ebrahim, Joshua A. Lerman, Bernhard O. Palsson, and Daniel R. Hyduke. Cobrapy:

Constraints-based reconstruction and analysis for python. BMC Systems Biology, 7(1):74,

2013.

[69] Gurobi optimizer reference manual, 2016.

[70] Benjamin J Bornstein, Sarah M Keating, Akiya Jouraku, and Michael Hucka. Libsbml: an

api library for sbml. Bioinformatics, 24(6):880–881, 2008.

[71] G Varoquaux and O Grisel. Joblib: running python function as pipeline jobs. packages.

python. org/joblib, 2009.

[72] Norman Matloff and Francis Hsu. Tutorial on threads programming with python. Univer-

sity of California, 2007.

[73] Melissa S Cline, Michael Smoot, Ethan Cerami, Allan Kuchinsky, Nerius Landys, Chris

Workman, Rowan Christmas, Iliana Avila-Campilo, Michael Creech, Benjamin Gross, et al.

Integration of biological networks and gene expression data using cytoscape. Nature Pro-

tocols, 2(10):2366–2382, 2007.

[74] Sébastien Moretti, Olivier Martin, T Van Du Tran, Alan Bridge, Anne Morgat, and Marco

Pagni. Metanetx/mnxref–reconciliation of metabolites and biochemical reactions to bring

together genome-scale metabolic networks. Nucleic Acids Research, 44(D1):D523–D526,

2016.

[75] Ines Thiele, Thuy D Vo, Nathan D Price, and Bernhard Ø Palsson. Expanded metabolic re-

construction of helicobacter pylori (iit341 gsm/gpr): an in silico genome-scale characteri-

76 BIBLIOGRAPHY

zation of single-and double-deletion mutants. Journal of Bacteriology, 187(16):5818–5830,

2005.

[76] Neema Jamshidi and Bernhard Ø Palsson. Investigating the metabolic capabilities of my-

cobacterium tuberculosis h37rv using the in silico strain inj 661 and proposing alternative

drug targets. BMC Systems Biology, 1(1):26, 2007.

[77] Adam M Feist, Christopher S Henry, Jennifer L Reed, Markus Krummenacker, Andrew R

Joyce, Peter D Karp, Linda J Broadbelt, Vassily Hatzimanikatis, and Bernhard Ø Palsson. A

genome-ccale metabolic reconstruction for escherichia coli k-12 mg1655 that accounts for

1260 orfs and thermodynamic information. Molecular Systems Biology, 3(1):121, 2007.

[78] Nikos Vlassis, Maria Pires Pacheco, and Thomas Sauter. Fast reconstruction of compact

context-specific metabolic network models. PLoS Comput Biol, 10(1):e1003424, 2014.

Appendix A

Simulated Annealing Code

The following Python script is the SA method that were used in this project.

• Python specific keywords are written in magenta.

• Comments are written in green.

• Words or phrases with underscores are variable names.

• Words or phrases written in uppercase and lowercase letters are function names.

1 __author__ = ’ S i r i ’

2 import math

3 import random

4 import cobra

5

6 T_r = 50 # set s t a r t temperature for reactions

7 T_b = 0.5 # set temperature for blocked reactions

8 optimal_reactions = reactionsInOriginalModel ()

9 optimal_blocked = blockedInOriginalModel ()

10 num_iterations = optimal_reactions

11

12 while T_r > 0 . 5 :

13 for i in range (num_iterations) :

14 last_num_reactions = new_num_reactions

15 i f random . random () > 0 . 5 : # 50% probabi l i ty for adding/removing reaction

77

78 APPENDIX A. SIMULATED ANNEALING CODE

16 new_num_reactions += 1

17 delta_r = math . fabs (optimal_reactions − new_num_reactions)

18 probabi l i ty _r = math . exp(−delta_r /T_r) # Metropolis c r i t e r i o n

19 i f new_num_reactions < optimal_reactions :

20 new_num_reactions = addReaction ()

21 else :

22 i f random . random () < pr obabi l i ty _r :

23 new_num_reactions = addReaction ()

24 else :

25 new_num_reactions −= 1

26 delta_r = math . fabs (optimal_reactions−new_num_reactions)

27 probabi l i ty _r = math . exp(−delta_r /T_r) # Metropolis c r i t e r i o n

28 i f new_num_reactions > optimal_reactions :

29 new_num_reactions = removeReaction ()

30 else :

31 i f random . random () < pr obabi l i ty _r :

32 new_num_reactions = removeReaction ()

33 last_blocked = new_blocked

34 new_blocked = numberOfBlockedReactions ()

35 i f new_blocked > optimal_blocked and new_blocked > last_blocked :

36 delta_b = math . fabs (optimal_blocked−new_blocked)

37 probabil ity_b = math . exp(−delta_b /T_b) # Metropolis c r i t e r i o n

38 i f random . random () > probabil ity_b : # changes not accepted

39 i f last_blocked < new_blocked :

40 new_num_reactions = resetModelRemoveReaction ()

41 new_blocked = last_blocked

42 i f last_blocked > new_blocked :

43 new_num_reactions = resetModelAddReaction ()

44 new_blocked = last_blocked

45 T_r = T_r * 0.9

Appendix B

Growth Medium for iIT341

Table B.1 shows the standard uptake reactions for iIT341. The following is included in the table;

name of metabolites, BiGG reaction ids, lower bound values, upper bound values, MNX reaction

ids, and compartment specific reaction ids. MNX reaction id is the generic id system for reac-

tions in models downloaded from MetaNetX. This id refer to the reactions only, and are not im-

plying in which compartment the metabolites are located. On the other hand, the compartment

specific ids specify where in the system the reactions and their metabolites are located. When

different growth media were constructed, these ids were used to identify the reactions of inter-

est. All reactions in Table B.1 transport metabolites from the extracellular region compartment

to the model boundary compartment. BiGG reaction ids are most common in genome-scale

modelling, and are therefore included as well [74].

79

80 APPENDIX B. GROWTH MEDIUM FOR IIT341

Table B.1: The uptake reactions that are standard for the iIT341 H. pylori model. The name of
the metabolites being transported, the reactions’ BiGG id, lower and upper bounds, MNX id, and
compartment specific id are included. It is the latter id system that are used when identifying
reactions in growth media construction.

metabolite BiGG id l. b. u. b. MNX reaction id comp. specific id

D-alanine EX_ala_D(e) -10 1000 MNXR1425 RC96712E3
L-alanine EX_ala_L(e) -10 1000 MNXR639 R555722AC
L-arginine EX_arg_L(e) -10 1000 MNXR788 RD6F7BF7B
Fe2+ EX_fe2(e) -1000 1000 MNXR2212 R15DF7064
Fe3+ EX_fe3(e) -1000 1000 MNXR2228 R8FDD65E8
H+ EX_h(e) -1000 1000 None R47177312
L-histidine EX_his_L(e) -10 1000 MNXR2975 R7BB6BC6B
L-isoleucine EX_ile_L(e) -10 1000 MNXR3097 REEFDC248
L-leucine EX_leu_L(e) -10 1000 MNXR3225 R82521F85
L-methionine EX_met_L(e) -10 1000 MNXR3506 RA7DC31A9
Ammonia EX_nh4(e) -1000 1000 MNXR3814 R65404FB9
Oxygen EX_o2(e) -12 0 MNXR3931 RA65CB13F
Protoheme EX_pheme(e) -10 1000 MNXR78986 R7EAE41AC
Phosphate EX_pi(e) -1000 1000 MNXR4294 R596FDB0E
Pimelate EX_pime(e) -10 1000 MNXR4288 RFBB325D
Sulfate EX_so4(e) -1000 1000 MNXR4873 R4B5145FC
Thiamin EX_thm(e) -10 1000 MNXR5053 RE47D2287
L-valine EX_val_L(e) -10 1000 MNXR5325 RF382895C
S-adenosyl-
L-homocysteine sink_ahcys_c -1000 1000 MNXR580 R1DBDE290
S-adenosyl-
4-methylthio-
2-oxobutanoate sink_amob -1000 1000 MNXR82312 R6D6AB2A7

Appendix C

Program Parameters

The parameters in the SA algorithm are crucial for the method’s performance. The reasons for

the parameter values used in this project are presented in the following sections.

C.1 Temperature Parameters

The temperature parameters are important for accepting new solutions. In this project, the

temperature parameter that controlled the total number of reactions (Tr) was lowered and the

temperature parameter that controlled the number of blocked reactions (Tb) was kept at a con-

stant level.

C.1.1 Parameter Tr

To allow large fluctuations in the number of reactions, the initial value of Tr needs to be high.

Nevertheless, it should not be too high, as shown in Figure D.6. For Tr values above 40, the prob-

ability does not increase much. Therefore, it is unnecessary to set the temperature parameter

much higher than this. Based on this figure, Tr was set to 50 in the initialization process. This

corresponds to a probability of 98 % to accept a worse solution.

This predictability when it comes to the relationship between Tr and the corresponding

probability is caused by the fact that the number of reaction can only differ by 1 in each iter-

ation. The equation used to plot the graph in Figure D.6 is:

81

82 APPENDIX C. PROGRAM PARAMETERS

0 20 40 60 80 100
Tr

40

50

60

70

80

90

100

pr
ob

ab
ilit

y
of
 a
cc
ep

tin
g
a
wo

rs
e
so

lu
tio

n

Figure C.1: The probability of accepting worse solutions as a function of Tr, given in Equa-
tion C.1. From Tr ≈ 40 to Tr = 100 there is no big difference in the probability.

P(accept new solution) = exp

(
− 1

Tr

)
(C.1)

where ∆R from Equation 3.1 is replaced with 1.

C.1.2 Parameter Tb

For keeping the proportion of blocked reaction to approximately the same level as in the original

networks, the value of Tb had to be low. After testing with different values it became apparent

that Tb had to be below 5. It is not possible to make a plot like that in figure D.6 because the

number of blocked reactions does not differ with the same number in each iteration.

After testing random metabolic generation for all Tb values between 0.5 and 5, it became

clear that 0.5 was necessary to keep the percentage of blocked reactions low. See also Figure 4.5

in Section 4.2 for a illustration of how the proportion of blocked reactions differ as a function of

Tb.

C.1. TEMPERATURE PARAMETERS 83

C.1.3 Cooling Schedule

The cooling schedule is a critical part of the SA algorithm. If the temperature parameter is low-

ered too fast, the result often gets trapped in a local optimum. If the temperature parameter is

lowered excessively slow, the computation time will increase drastically.

It may be easier to understand the following reasoning by thinking about the program as two

separate parts, each part having different requirements for optimality and efficiency. The first

part is called the randomization part and the second is named the optimization part.

• In the randomization part, the requirement is that Tr should be high so that as many as

possible of the reactions will be replaced. Here, Tr can be lowered more rapidly than in

the optimization part. The solutions will never get trapped in local optima in this part

because Tr still has a high value. An unnecessary amount of time will also be spent in this

part if Tr is lowered too slow.

• In the optimization part, Tr should be low so that the reactions can approach the optimal

value. To ensure that global optimum is reached, Tr needs to be lowered slowly. Therefore,

most of the time should be spent in the optimization part.

Based on these requirements, it was not appropriate to lower the parameter with the same

number in each part. Instead, the parameter was lowered by 10 % each time, which fulfilled

both requirements mentioned. This procedure ensures that Tr is lowered more slowly when ap-

proaching its stop value, as shown in Figure C.2(a). For comparison, Figure C.2(b) shows how

the cooling schedule would look like if Tr was lowered by the same number in each iteration.

Based on the requirements mentioned above, this would be a non-optimal way to perform this

schedule.

C.1.4 Stop Criterion

The stop criterion decides for which value of Tr the simulation should be stopped. The results

in Figure 4.4 established that the optimal number of reactions was reached around Tr = 1.

84 APPENDIX C. PROGRAM PARAMETERS

C.2 Number of Iterations

From the description of the Metropolis algorithm, which is explained in Section 2.2.2, it was

stated that thermal equilibrium was reached for each temperature when the number of itera-

tions was the same as the number of particles in the solid. Based on this, the number of itera-

tions in this project was set as the same number as reactions in the metabolic networks.

C.2. NUMBER OF ITERATIONS 85

0 10 20 30 40
lowering steps

0

10

20

30

40

50
T r

(a) Tr lowered by 10 %

0 10 20 30 40 50
lowering steps

0

10

20

30

40

50

T r

(b) Tr lowered by 1

Figure C.2: Two different approaches for lowering Tr. The x axis shows the number of lowering
steps and the y axis shows the value of Tr. In C.2(b), Tr was lowered by 1. In C.2(a), Tr was
lowered by 10 %.

Appendix D

Metabolic Networks

This appendix includes visualization of both the original metabolic networks and one of the

random metabolic networks from each of the three models iIT341 H. pylori, iNJ661 M. tuber-

culosis, and iAF1260 E. coli. The networks are visualized as a bipartite graph using Cytoscape.

Blue nodes illustrate metabolites and pink nodes illustrate reactions. Note that reaction clusters

tend to form for the random networks, which explains the large fraction of essential reactions in

the networks. The separate reactions arranged at the bottom of the random network figures are

mainly inactive uptake reactions.

87

88 APPENDIX D. METABOLIC NETWORKS

Figure D.1: Visualization of the original metabolic network of the iAF1260 E. coli model.

Figure D.2: Visualization of the random metabolic network of the iAF1260 E. coli model.

89

Figure D.3: Visualization of the original metabolic network of the iNJ661 M. tuberculosis model.

Figure D.4: Visualization of the random metabolic network of the iNJ661 M. tuberculosis model.

90 APPENDIX D. METABOLIC NETWORKS

Figure D.5: Visualization of the original metabolic network of the iIT341 H. pylori model.

Figure D.6: Visualization of the random metabolic network of the iIT341 H. pylori model.

	Preface
	Acknowledgement
	Abstract
	Sammendrag
	Contents
	List of Figures
	List of Tables
	Introduction
	Systems Biology
	Metabolic Engineering
	Antibiotic Targets
	Genome-Scale Modelling
	Optimization Techniques
	Thesis Objective

	Theory and Literature Review
	Linear Programming
	Problem Definition
	Solutions to LP Problems
	Solving LP Problems
	Graphical Example of the Simplex Method

	Simulated Annealing
	Local Search Algorithms
	Basic SA and the Metropolis Algorithm
	SA as an Optimization Method
	The Ising Model

	Constraint-Based Reconstruction and Analysis
	Genome-Scale Metabolic Reconstructions
	The Stoichiometric Matrix
	Steady State Mass Balance
	Flux-Balance Analysis

	Robustness of Metabolic Networks
	Essentiality and Superessentiality

	Random Viable Metabolic Networks
	The Reaction Universe
	The Wagner Method

	Software and Methods
	Software
	Python
	COBRApy
	Gurobi
	libSBML
	Joblib and Multiprocessing
	Cytoscape

	Computing Resources
	FBA
	Growth Rate
	Blocked Reactions
	Essential Reactions

	Metabolic Models and the Reaction Universe
	Adaptation of the Simulated Annealing Algorithm
	First Step: Total Number of Reactions.
	Second Step: Number of Blocked Reactions.

	Randomization of Metabolic Networks
	Construction of Minimal Growth Media

	Results and Discussion
	Testing and Validation of Traditional SA
	Solving the 2D Ising Model
	Optimizing the Number of Reactions Using a Number Generator
	Optimizing the Number of Reactions Using a Reaction Model
	Summary

	Testing and Validation of Tb
	Summary

	Testing and Validation of the Program
	Optimal Solutions
	Fluctuation in the Number of Reactions
	Computation Time
	Summary

	Analysis of Random Viable Metabolic Networks
	Evaluation of the Randomization of Reaction Content
	Evaluation of Blocked Reactions
	Evaluation of Essential Reactions
	Growth in Different Environments
	Summary

	Software challenges
	Troubleshooting
	Limitations
	Summary

	Conclusions
	Bibliography
	Simulated Annealing Code
	Growth Medium for iIT341
	Program Parameters
	Temperature Parameters
	Parameter Tr
	Parameter Tb
	Cooling Schedule
	Stop Criterion

	Number of Iterations

	Metabolic Networks

