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Summary 
 

1. Migration is present in all animal taxa and is defined as a periodic movement pattern 

between given ranges. Migratory individuals generally move more directional and with higher 

speed than stationary individuals during the migration seasons. It is suggested that migratory 

individuals in these periods encounter more risk factors, and therefore experience a higher 

mortality. 

2. I studied the variation in the speed of movement and the number of times migratory and 

stationary moose were crossing elements associated with mortality risk, i.e. water bodies, 

roads and railroads, in Central Norway. This was done by examining the movement pattern of 

121 GPS-collared moose. I also examined whether realized mortality differed between the 

two movement strategies.  

3. The results only partly supported my hypothesis that migratory moose experience higher 

costs of movement and are confronted with more risk elements than stationary moose. As 

predicted, migratory moose moved faster than stationary moose, particularly during the 

migratory season. However, stationary moose had higher densities of risk elements within 

their home ranges, and crossed risk elements more frequently than migratory moose. For a 

given density of risk elements, migratory moose crossed more frequently, supporting the 

hypothesis that migratory moose are less risk adverse. This pattern was present throughout the 

year, suggesting that the behavior is not only related to higher movement during the migratory 

period. 

 4. I found no effect of movement strategy on the mortality rates, but the sample size was low. 

However, the trend of realized mortality was opposite of what I expected, with migratory 

moose having a lower mortality rate than stationary moose. 

5. My results suggest that migratory moose experience a higher risk of mortality by their 

movement strategy compared to stationary moose. However, this varies between individuals. 

By considering individual differences in costs of migration, it is possible to increase our 

understanding of partial migration. Increased human induced risks such as roads, will most 

likely increase the number of road crossings. The differences between the two movement 

strategies in number of crossings will most likely decrease as risk density increase, resulting 

in a high crossing frequency of risk factors performed by moose.    
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Introduction 

 
Migration is a phenomenon occurring in all animal taxa. Examples are birds that seasonally 

migrate between continents (Cox 1985), large ungulates such as the caribou Rangifer 

tarandus of north America (Ferguson and Elkie 2004), the large herds of wildebeest 

Connochaetes taurinus in Serengeti (Thirgood et al. 2004), fish utilizing different parts of the 

sea between seasons (Misund et al. 1998) and insects moving south to escape harsh winters 

(Brower and Malcolm 1991).  

  Overall, it is hard to give a general and precise definition of migration due to 

differences in behavioral traits among taxa and that there is often a continuous scale of 

movement pattern from stationary via nomadic to highly migratory individuals (Bunnefeld et 

al. 2011). Moreover, different external factors such as climate conditions and forage 

opportunities influence movement behavior (Dingle 1996). However, it is suggested through a 

survey of a broad array of organisms that four different, but overlapping concepts of 

migration can be used to distinguish it from other forms of movement (Dingle and Drake 

2007). First, migration concern a type of locomotory activity that is persistent, undistracted by 

resources that would normally halt it and it is straightened out (in contrast to stationary 

behavior where a lot of turning or backtracking may occur). Second, it contains a movement 

of longer duration with a distinct departing and arriving behavior and a relocation of greater 

scale than normal daily activity. Third, it involves seasonal movement between two regions 

with alternatively favorable and unfavorable conditions, both for foraging and breeding. Last, 

it includes movement leading to redistribution of individuals within a spatially extended 

population (Dingle 1996, Dingle and Drake 2007). 

  It is assumed that individuals migrate to obtain a fitness benefit (Stearns 1992, Clobert 

2001). Benefits with respect to foraging are one reason to migrate since there is often seasonal 

variation in spatial distribution and quality of forage. For instance, rain season is an important 

factor influencing the migrations at the Serengeti plains (Holdo et al. 2009), while large 

temperate ungulates such as moose Alces alces and roe deer Capreolus capreolus, often 

undergo seasonal altitudinal migrations (Mysterud 1999, Rolandsen et al. 2010). These ranges 

from lowland areas occupied during winter to high elevation areas occupied during summer 

(Fryxell and Sinclair 1988, Mysterud 1999, Mysterud et al. 2001, Rolandsen et al. 2010). 

Timing and duration of migration are most likely determined by environmental differences 

between years more than by individual character (Bunnefeld et al. 2011). Migratory 

individuals benefit by a prolonged period of newly emergent forage, giving them an 
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advantage over stationary individuals seen from a nutritional point of view (Mysterud et al. 

2001). Ungulates in temperate regions often experience harsh winters, and by migrating to 

lower elevations they can seek shelter from heavy weather and find areas with less snow and 

thereby more accessible forage (Lundmark and Ball 2008). From this perspective, it seems 

like seasonal and spatial variations in food quality and availability are very important factors 

selecting for migratory behavior (Fryxell and Sinclair 1988, Mysterud et al. 2001). In 

addition, migrating individuals can be less exposed to predation because predators tend to be 

territorial and not follow migratory prey over long distances (Fryxell et al. 1988, Fryxell and 

Sinclair 1988, Hebblewhite and Merrill 2007, 2009).  

  Migration also involves costs. For instance, moose differ considerably in distance and 

speed of movement (Bunnefeld et al. 2011). By moving away from familiar surroundings and 

moving into new environments, migratory individuals expose themselves to unknown ranges. 

This may lead to increased risk of mortality due to less experience with new potential risks. In 

addition, directional movements will most likely result in an increased exposal to risk of 

mortality in form of crossing risk barriers such as water bodies (rivers, lakes, fjords etc.) and 

mountain ranges.  

  In a number of large herbivores only part of the population is migratory (Ball et al. 

2001, White et al. 2007, Robinson et al. 2010). In moose, for instance, some individuals are 

relatively stationary all their lives, while other migrate shorter or longer distances between 

summer and winter ranges (Ball et al. 2001, Rolandsen 2010, Bunnefeld et al. 2011). A 

relevant question is therefore why not all individuals follow the same strategy, given its 

assumed advantages. One reason could be the trade-offs between costs and benefits of 

migration, making the migratory and stationary strategy equal in terms of fitness (Hansen et 

al. 2010).  

  Migration behavior is a well known phenomenon, but there is still much knowledge 

lacking to fully understand the movement patterns of migrants, and how these movement 

patterns are influenced by the surrounding environment. By understanding why animals 

migrate, and their migration patterns, conservation of migratory species and their habitats can 

get more efficient (Bowlin et al. 2010). Where partial migration occurs in the population, 

there is still poor knowledge of what determines who become migratory and who stay 

stationary, as well as at which proportion the different strategies occur. Knowledge about 

individual differences in mortality risks is important for understanding how several strategies 

can persist within a population.  
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 Moose are large and highly mobile animals that can move over large distances. Some 

individuals do not seem to show strong fidelity to any area, but rather follow some kind of a 

dispersing or nomadic strategy (Ball et al. 2001). Andersen (1991) showed that migration 

routes and winter ranges of moose are traditional, and it may take many generations to evolve 

a different route even if the browse supply is depleted and by such the benefits of migration 

has become absent. Migrating moose often move between a highly nutritional summer range 

with deciduous trees and herbs, and a winter range with lower nutritional value, but with 

higher browse availability when snow cover limits foraging in the summer area (Månsson 

2009). Moose with summer home range within a pine dominated forest will stay relatively 

stationary and are less likely to migrate (Histol and Hjeljord 1993).  

  Risk factors can be divided into natural risks and human induced risks. Natural risks 

are risks that occur in nature and may have been modified by humans, but not been developed 

by humans, for instance water bodies. Human induced risks include railroads and roads, and 

these risk layers have been upgraded the last decades (Solberg et al. 2009). The number of 

traffic accidents involving moose has increased over the last four decades in Norway 

following the general increase in moose density (Solberg et al. 2009). The numbers of traffic 

accidents involving moose have increased over the last four decades in Norway following the 

general increase in moose density (Solberg et al. 2009). Studies suggest traffic volume on 

roads has a great influence on collision rates with animals (van Langevelde and Jaarsma 2004, 

Seiler 2005, Litvaitis and Tash 2008, Gunson et al. 2011) indicating that most collisions occur 

at roads with a higher traffic volume. In addition to traffic accidents, drowning is a known 

mortality factor of moose and other ungulates. In most cases, drowning occurs when 

individuals cross lakes with thin ice in fall and spring (Miller and Gunn 1986, Hansen et al. 

2010, Rolandsen et al. 2010). Especially migratory individuals may be exposed to this risk of 

mortality as they show particularly high movement rate in the period with thin ice in autumn 

and unsafe ice in spring.  

  A way of measuring risk related to a potential mortality event is to quantify the 

amount of risk elements within the environment of individuals. An individual with a high 

density of risk elements within their home range is more likely to have a risk encounter. How 

individuals behave when encountering a risk element can thus be used as a measure of risk 

behavior. A risk-prone individual would have more crossings per risk density than a risk-

adverse individual. In moose, migratory individuals are assumed to be less risk-adverse than 

stationary individuals (Neumann 2009) and are expected to cross risk elements more 

frequently. If the differences in number of crossings between migratory and stationary 
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individuals are due to a higher movement rate of migratory moose in the seasonal migrations, 

we would see different crossing patterns between the different seasons of the year. For 

example, more frequent crossings of rivers and lakes should occur by migratory individuals 

during spring and fall, while there should be a smaller difference in crossings between 

migratory and stationary moose during summer and winter. However, if the differences in 

number of crossings are due to permanent differences between migratory and stationary 

moose, the differences in the number of risk crossings of the two strategies should be constant 

over the year. A similar pattern may be observed between sexes. Males are known to be less 

risk-adverse than females and move more throughout the year (Rolandsen et al. 2010). 

Therefore, they are also likely to be exposed to more risk elements.  

  In this study, I will examine the large scale movement (migration) pattern of moose in 

a Norwegian population with particular emphasis on the costs of migration. I will do this by 

following GPS-collared individuals to investigate to what extent the movement strategy 

(migratory vs. stationary) influences costs in terms of locomotion and mortality risk. The 

migratory strategy is assumed to provide better nutritional feeding opportunities, but these 

benefits should be affected by increased energetic costs and risk of mortality. According to 

this, I expect 1) that migratory moose will move at a higher average speed and thus 

experience higher costs of locomotion, and 2) that the mortality rate is higher among 

migratory than among stationary moose. However, given the relatively low rate of natural 

mortality found in Scandinavian moose (Solberg et al. 2005), it can be difficult to show this 

effect based on the realized mortality alone. I will therefore also focus on the risk of mortality 

experienced by individuals following the different movement strategies – expecting 3) 

migratory moose to expose themselves more often to mortality risk elements than stationary 

moose.  

   Moreover, we may expect females with calves to be more risk adverse than males and 

also to move less through the year than males because of the generally lower mobility of the 

smaller calves, as well as the higher risk involved when calves are crossing intersecting 

obstacles (e.g. rivers, lakes). According to this, I will expect 4) to see generally higher 

movement rates of males than females with calves, and similarly that males are willing to take 

more risks to achieve their goals than do females. 
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Methods and materials 
 

Study area 

My study area is the county Nord-Trøndelag in the central parts of Norway, as well as the 

municipalities Bindal and Grane in the county of Nordland, and the municipalities Rissa, 

Osen, Malvik and Selbu in the county of Sør-Trøndelag. It also includes some areas in 

Jämtland in Sweden (Figure 1). The study area is located within 63º and 65.5º N and 10º and 

16º E.   

 

Figure 1. The study area includes central Norway and parts of Jämtland in Sweden. 

 

 The study area ranges from coastal areas in the boreonemoral zone to alpine zones. It is 

dominated by coniferous forest which is mostly used for commercial forestry. The main tree 

species are Norway spruce Picea abies, Scots pine and downy birch Betula pubescens. . In the 

area there are also many bogs with sparse or no tree vegetation, creating a heterogeneous 

forest landscape. Cultivated land, mainly used for grass or grain production, is found at lower 
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altitudes (Moen et al. 1999). Scots pine is an important forage source for moose, but is less 

preferred than rowan Sorbus aucuparia, willow Salix ssp. and aspen Populus tremula 

(Månsson et al. 2007). When the forage availability of preferred forage species increase, the 

browsing pressure on Scots pine decrease (Månsson 2009). The preferred tree species are less 

abundant than Scots pine, and also shed their leaves during the winter. Moose therefore select 

for deciduous forest when available in spring, summer and fall, while pine forests are selected 

for in winter (Bjørneraas et al. 2011). 

 

Data collection 

Location data of moose were collected by the project “Elgundersøkelser I Nord-Trøndelag, 

Bindal og Rissa, 2005-2010”, conducted by NINA naturdata (Rolandsen et al. 2010). The 

location data included information about moose ID, geographic coordinates and the time of 

sampling. In total, data were sampled from 169 GPS-collared individuals, but the lack of 

distinct movement strategies or individuals with data for less than a full year reduced the 

sample size to 121 individuals. For several individuals data were available for more than one 

year, generating a sample of 186 moose-years with data.  

  The location points were collected by GPS-collars manufactured by Vectronic 

Aerospace GmbH and Followit Lindesberg AB. The sampling intervals were set to collect a 

position every hour to every second hour. The locations were sent to NINA as an SMS over 

the GSM network, for every fifth or sixth position recorded, depending on manufacture. If the 

collars lost connection with the GSM network, the positions were sent when connection was 

retrieved. Obvious location errors were removed by a method developed by Bjørneraas et al. 

2010.  

  Roads, railroads and open water were considered to be risk elements. For Norway, 

map layers were provided by the Norwegian Mapping Authority whereas Swedish data was 

obtained from the Swedish Mapping Authority. Roads were classified into private and public 

roads, where private roads include for instance forest and tractor roads. Public roads include 

larger roads owned by the government, such as highways.  

 

Spatial analyses 

Annual home ranges were created by merging monthly minimum convex polygons (MCP) for 

each moose each year. By this method, overestimations of the home ranges were reduced. A 

moose year was set to start in April and end in March the year after. This was to correct for 
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different starting times in migration, where spring migration starts more or less at the same 

time for all animals, with only few exceptions (Rolandsen 2010). Fall migration varies much 

more. However, by setting the end of year to March all migratory moose were back in their 

winter area. To examine the seasonal pattern in crossing frequency, I made a season variable 

based on when migration mainly occurs, i.e: i) winter (December – March), ii) spring (April-

May), iii) summer (June-September) and iv) fall (October-November).  

  For roads and railways, risk density within home ranges was defined as meters of road 

or railroad per km
2
, whereas for water it was m

2
 water per km

2
. This generated monthly and 

seasonal estimates of risk density for each moose. Similarly, I calculated the number of 

crossings of roads, railroads and open water for each moose on a monthly and seasonal basis. 

Number of crossings compared to risk density was then used as a measure of risk prone 

behavior.  

  The Swedish map layers for water were of lower resolution than the Norwegian. 

Rivers in Sweden were represented by lines, whereas in the Norwegian map layers rivers were 

represented by polygons. To be able to calculate density of Swedish water, I assumed a mean 

width of 30 meters for Swedish rivers. The mean width for Swedish rivers was set after visual 

comparison with Norwegian rivers.  

 

Migratory and stationary categories 

Migratory moose was defined as any moose where a distinct spring- and fall migration pattern 

can be seen. The spring- and fall migration pattern was based on change in the net 

displacement from 1
st
 of April within the individual home range of the moose. The net 

displacement for each individual was calculated as the distance between the location at 1
st
 of 

April to the location in question. Stationary moose are moose that use more or less the same 

area throughout the year, without ranging between distinct summer and winter ranges. Here I 

defined stationary moose as individuals lacking a directional movement pattern between two 

seasonal ranges, whereas migratory moose were individuals with a directional movement 

pattern towards seasonal ranges (Rolandsen 2010). Starting at 1
st
 of April, migratory 

individuals moved away during the spring migration, stayed in a the summer area before 

moving back to the winter range. This movement pattern generated a distinct pattern in the net 

displacement (Figure 2). Stationary individuals had no variation in net displacement during 

the year.  
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Figure 2. Mean net displacement throughout the year. Grey represent stationary moose, while black 

represent migratory moose. Females and males are represented with circles and triangles respectively. 

Bars indicate ± 1 standard deviation. 

 

This method involved some subjective decisions because of the interpretation of directional 

movements, as well as the visual considerations made from the positions on the map. Some 

individuals were difficult to classify to either migratory or stationary. The analyses only 

include moose that were either stationary or migratory, while moose without clear movement 

strategy were excluded from the analyses. 

 

Statistical analyses 

The variables of risk density and number of crossings were ln-transformed to reduce 

heteroscedasticity. By so doing, it was possible to test if the crossing frequency increased 

proportionally to an increase in risk density within individual moose home ranges. A 

proportional increase in ln(crossing) with ln(density) would give a slope of one. Some home 

ranges did not have one or several of the risk elements within their home range, giving a 

density of 0. These were excluded from the analyses of that particular risk element. I only 

included home ranges with risk elements present in my analyses since these were the only 

ones where crossings were possible. One was added to the number of crossings to allow ln-

transformation of individuals that did not cross risk elements.  

The risk elements were analyzed separately. I tested if the frequency of crossing of 

risk elements was related to their density, while also considering strategy, season and sex in a 
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multiple linear model. Strategy, season and sex were treated as categorical variables whereas 

density was added as a continuous variable. In addition, I expected the relationship between 

crossing and density to differ between season, sex and strategy, which were tested for by 

adding two-way interactions between all explanatory variables. I also expected that the effect 

of season on the density-crossing relationship would differ between the two strategies, which 

were represented by a three-way interaction between the variables. A difference between 

males and females among seasons are expected in the relationship of risk density and 

crossings. This leads to a three-way interaction between season, sex and density was included. 

Finally, I included a three-way interaction between sex, strategy and season. For description 

of the full models, see Table 1.  

  The importance of the explanatory variables and their interactions on the crossing 

frequency of risk elements was evaluated using the Akaikes Information Criteria (AIC) 

corrected for low sample size (AICc; Burnham and Anderson 2002). The AICc value is based 

on the principle of parsimony to find the best fitted model while avoiding over-

parameterization, and models differing with ΔAICc ≤ 2 were considered to have similar 

empirical support by the data (Burnham and Anderson 2002). AICc weights were interpreted 

as probability that the model is best for the given data and models (Burnham and Anderson 

2002).  

  For survival analyses, I used the Cox proportional hazards analysis. For this analysis, 

94 adult females were included with 10 mortality events. The highest risk of mortality of 

males is hunting in fall, so as a measure of natural mortality causes, females give a better 

overview due to little hunting pressure on adult females (Solberg et al. 2006). Individuals 

were censored when GPS-collars failed, or when individuals were shot for various reasons. 

All analyses were run in R version 2.12.1 (R Development Core Team 2011). 



Results 

 

Movement speed  

Movement speed varied over the year, and differed between migratory and stationary moose 

(Figure 3). During winter, migratory and stationary moose moved with relatively low speed 

and I found a trend towards males moving faster than females. In May, the differences in 

speed increased, with migratory moose moving faster than stationary, and males moving 

faster than females. These differences persisted through the summer and early fall. The larger 

intersexual differences occurred in June, September and October (Figure 3). 

 

Figure 3. Mean speed of moose through the year, measured as meter per hour. Grey symbols represent 

stationary while black are migratory. Circles and triangles represent females and males, respectively. 

Bars indicate ± 1 standard deviation. 

 

Density of risk elements within home ranges 

Over all, stationary moose had a higher density of risk elements within home range through 

the year (Figure 4, left columns). Stationary moose had a significant higher density of 
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railroads within home ranges compared to migratory moose (F1, 127=4.17, p=0.04; Figure 4a). 

There was no difference in railroad density between months (F1, 127=0.05, p=0.83), nor did 

monthly densities of railroad differ between the strategies (F1, 127=0.43, p=0.52). Similarly, 

stationary moose had a significant higher density of public roads (F1, 1455=7.89, p=0.005; 

Figure 4c) and private roads (F1, 1654=44.76, p<0.001; Figure 4e) within their home ranges 

compared to migratory moose, and the difference in density of these risk elements between 

months were also significant (public roads: F1, 1455=38.29, p<0.001, private roads: F1, 

1654=22.08, p<0.001). Private road density within home ranges between months depended on 

the strategy (F1, 1654=12.32, p<0.001), while the density of public roads did not (F1, 1455=0.25, 

p=0.62). Water was present at a significant higher proportion in migratory moose home range 

(F1, 1840=18.58, p<0.001) than in stationary moose home ranges (Figure 4g). There was a 

significant difference in the water density between months (F1, 1840=13.48, p<0.001), where 

the magnitude of difference varied with the strategy of the moose (F1, 1840=5.61, p=0.018). 

 

Crossings of risk elements 

There was no significant difference between migratory and stationary moose in the number of 

railroad crossings (F1, 127=2.89, p=0.092; Figure 4b). The number of railroad crossings varied 

between months (F1, 127=5.76, p=0.018), but the difference did not vary between the two 

strategies (F1, 127=0.31, p=0.58). Stationary moose crossed roads more often than migratory 

moose (public roads: F1, 1455=26.21, p<0.001, private roads: F1, 1654=16.38, p<0.001, Figure 4 

d, f). There was a significant difference in the general number of crossings among months 

(public roads: F1, 1455=12.65, p<0.001, private roads: F1, 1654=10.31, p=0.0014), but the two 

strategies did not differ in number of road crossings within months (public roads; F1, 

1455=2.78, p=0.095, private roads; F1, 1654=1.95, p=0.16). There was no difference between 

strategies in number of crossings of water (F1, 1840=0.04, p=0.84, Figure 4f). However, there 

was a significant difference in number of water crossings between months (F1, 1840=38.16, 

p<0.001), which was not dependent on strategy of the moose (F1, 1840=2.83, p=0.093).   



14 
 

 

 

 

 

Figure 4. Mean density of risk elements within moose home ranges (left panels) and frequency of 

crossings (right panels) separated by month and strategy (gray = stationary, black = migratory). Bars 

represent standard deviation of the means. The dashed lines give the annual mean values. Panel a and 

b show railroad, c and d show public roads, e and f show private road while g and h show water. Bars 

indicate one standard deviation. 
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Risk crossing in relation to risk density 

The AICc-based model selection indicated that the most parsimonious model explaining the 

number of crossings of railroad, included railroad density and movement strategy as 

explanatory factors (AICc weight = 0.33, Table 1). The second best model also included an 

interaction between the density and sex, and had a ΔAIC of 1.97 compared to the highest 

ranked model (Table 1). The frequency of railroad crossings increased with railroad density 

within the home range, and for a given density of railroads, migratory moose cross railroads 

more often than stationary moose (Figure 5a-d). Since sex was not included in the most 

parsimonious model for railroad, the differences between males and females in the 

relationship between railroad density and railroad crossings is not considered further.  

  The best model explaining the frequency of crossings of public roads included density, 

strategy, sex and season, as well as the interactions between density and strategy, strategy and 

season, and sex and season (AICc weight = 0.20). The second best model did not include the 

interaction between sex and season and had a ΔAICc of 1.56 (Table 1). According to the 

highest ranked model (Table 1), frequency of crossing of public roads increased with the 

density of public roads within the home range (Figure 5e-h). However, this increase was 

steeper for stationary (β = 1.21 ± 0.06) compared to migratory (β = 0.76 ± 0.07) moose. This 

lead to a higher crossing frequency for a given density for migratory moose compared to 

stationary moose at low public road density, whereas at high public road density there were 

less differences in the crossing frequency between the two strategies (Figure 5e-h). There 

were also a difference in number of crossings between males and females among seasons, 

with the largest differences in summer and fall (Figure 5g and h).  

  The best model explaining number of private road crossings included density, strategy, 

sex and season, with interactions between density and strategy, density and sex, density and 

season, and sex and season (AICc weight = 0.14). The next best model also included an 

interaction between strategy and sex, and had a ΔAIC of 0.73 (Table 1). According to the 

highest ranked model, there was a positive relationship between the density of private roads 

within moose home range and number of private road crossings. Stationary moose had a 

steeper increase (β = 0.97 ±0.15) in number of crossings as density increased than migratory 

moose (β = 0.75 ± 0.13). This indicates a higher crossing frequency for a low density of 

private road for migratory moose compared to stationary, whereas at high public road density 

there were less difference in the crossing frequency among the two strategies (Figure 5i-l). 

There was a difference in crossing frequency at a given road density among seasons with a 
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weaker relationship between road density and crossings in spring (winter: β = 0.97 ± 0.15, 

spring: β = 0.72 ± 0.14, summer: β = 1.03 ± 0.14, fall: β = 1.04 ± 0.12), indicating a higher 

crossing frequency at low road densities in spring.  Moreover, the crossing frequency was 

higher among males compared to females at low densities of private roads within moose 

home range, but as private road density increased the difference decreased (Figure 5i-l).   

  To explain crossing of water, the best model based on AICc selection included 

density, strategy, sex and season, as well as an interaction between density and strategy, 

density and sex, and density and season. There was also an interaction between strategy and 

sex, and a three-way interaction between density, strategy and sex (AICc weight = 0.38). The 

second best model did not include the interaction between density and season (ΔAICc = 1.24, 

Table 1). According to the highest ranked model (Table 1), the number of water crossings 

increased with the density of water within moose home range (Figure 5m-p). However, 

migratory moose had a steeper increase (β = 0.71 ± 0.12) in number of crossings per density 

compared to stationary moose (β = 0.16 ± 0.17). Thus, stationary moose had a higher number 

of water crossings at low density of water, but as water density increased, the difference in 

number of water crossings between the two strategies decreased.  

  Males and females differed in number of water crossings, with females having a 

steeper increase with density of water (β = 0.65 ± 0.14) than males (β = 0.16 ± 0.17). 

Moreover, whether the males and females were stationary or migratory also affected the 

relationship between water density and number of crossings (Figure 5m-p). The effect of 

density on crossing frequencies differed between seasons, where the largest difference was 

found between winter and summer (winter: β = 0.16 ± 0.17, spring: β = 0.37 ± 0.16, summer: 

β = 0.41 ± 0.18, fall: β = 0.36 ± 0.18).  
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Table 1. The AICc-based ranking of models explaining the variation in number of crossings. 

Variables included in the candidate models are marked by an X. ΔAICc refer to the difference in AICc 

between the best model and the candidate model. Only models with ΔAICc ≤ 2 are presented in the 

table. 
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ΔAICc AICc weight 

Railroads X  X                  0.00 0.327 

 X X   X          0.97 0.122 

Public roads X X  X  X  X      X X     0.00 0.198 

 X  X X X X     X      1.56 0.091 

 X  X X X X X    X      1.58 0.090 

 X  X X X X X  X X      1.70 0.085 

 X X X X X   X X X     1.75 0.083 

Private roads X  X   X X  X X  X   X     0.00 0.141 

 X  X X X X X X X  X     0.73 0.098 

 X X X  X X  X   X     0.79 0.095 

Water X X X X X X X X   X    0.00 0.384 

 X X X X X X  X   X    1.24 0.207 



 

 

 

 

Figure 5. The relationship between risk density and number of crossings of risk elements in different 

seasons (from left: winter, spring, summer and fall) separated by strategy (gray=stationary, 

black=migratory) and sex (circles/dashed lines=females, triangles/solid lines=males). In the 

relationship between railroad density and number of railroad crossings, only strategy of the moose is 

presented. Panel a-d show railroad, e-h show public roads, i-l show private roads and m-p show water. 
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Realized mortality 

The Cox regression with movement strategy (stationary vs. migratory) indicated that 

migratory females had a 39% reduced weekly hazard of dying compared to stationary 

females, but this difference was not significant (Figure 6, p=0.45).  

 

Figure 6. Estimated cumulative weekly survival (± 95% CI) for stationary (black line) and migratory 

(gray line) female moose. The broken lines show the point-wise 95-percent confidence envelope 

around the survival function for stationary and migratory female moose.  
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Discussion 
 

By using an extensive dataset on moose movement, I documented distinct differences 

between individual moose in potential costs of movement throughout the year. These 

differences were closely related to the movement strategy of the individual moose. Firstly, 

migratory moose moved faster, particularly during spring, summer and fall (Figure 3), 

probably involving a higher energetic cost of the strategy. Second, stationary moose had on 

average a higher density of risk elements within their home ranges (Figure 4, left columns), 

except for water, where migratory moose had on average a higher density. Third, the number 

of crossings of risk elements differed between the two movement strategies (Figure 4, right 

columns). Stationary moose crossed public and private roads more frequently on average, 

while migratory crossed railroads more often on average. Average number of water crossings 

did not differ between the two strategies. However, migratory moose crossed more frequently 

in summer and early winter and stationary crossed more often in late winter and early spring. 

I expected different number of crossings between the two strategies during spring and fall 

migration, but this was not supported by the results. Fourth, propensity to cross for a given 

density was higher for migratory moose (Figure 5), but few differences in crossing frequency 

between seasons were found. There was however a trend that males had a higher probability 

to cross at a given density than females. Last, I did not find any significant results for realized 

mortality (Figure 6).  

  Concerning locomotion speed in moose individuals, the trend suggests a higher 

movement speed in migratory individuals compared to stationary (Figure 3). This is 

especially clear in summer and fall. The segregation appears to start in May, which is part of 

the spring migration. As a consequence of a higher movement speed and most likely a higher 

movement rate, a higher frequency of risk factor crossings is expected. However, stationary 

moose tend to have a higher number of road crossings compared to migratory moose (Figure 

4d, f). This is most likely due to a higher density of roads within stationary home ranges 

(Figure 4c, e). However, it is interesting to see that in May, migratory individuals cross roads 

more frequently (Figure 4d, f). This is possiblya result of the increase in movement speed in 

May (Figure 3). During the summer migratory moose inhabit alpine areas, which have a lower 

density of roads. Migratory moose have a higher number of railroad crossings (Figure 4b), 

even though stationary have a higher density of railroads within their home ranges (Figure 

4a). However, the railroad network in Nord-Trøndelag is sparsely distributed, and only a few 

individuals had railroads within their home range. This gave a low sample size, introducing a 
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lower statistical power compared to the other risk elements. During winter, both migratory 

and stationary moose had a relatively low movement speed, which can be explained by winter 

habitats being relatively homogeneous with respect to food (pine and birch) and the fact that 

deep snow restricts movement (Bjørneraas et al. 2011). However, the patterns of risk 

crossings at a given density of risk were relatively similar in winter compared to the rest of 

the year (Figure 5). The difference in annual pattern of speed between the two movement 

strategies suggests that speed also can be used to separate migratory and stationary moose. 

The trend of speed through the year (Figure 3) is quite similar to the trend of net displacement 

through the year (Figure 2). Net displacement is used for categorizing migratory and 

stationary moose here, but since the trends are so alike, the possibility of strengthen the 

categorizing by using net displacement combined with speed could be considered.  

  Since migratory routes seem to evolve over generations (Andersen 1991), I expected 

migratory moose to cross risks more often than stationary as a result of more directional 

movement on well-established migration routes (Neumann 2009). The number of crossings 

was positively related to the density of risk elements within home range (Figure 5). Given risk 

density within home range, migratory moose cross more frequently than stationary moose 

(Figure 5). At low risk densities, migratory moose have a higher frequency of crossing roads 

(Figure 5e-l) compared to stationary moose. However, at higher risk densities the differences 

in number of crossings are small. This is in accordance with Laurian et al. (2008), suggesting 

that moose avoid crossing roads unless necessary. The differences between the strategies 

decrease as risk density increase, suggest that crossings are difficult to avoid as densities of 

roads increase. Railroad crossings of moose differ between strategies, with migratory 

individuals crossing more frequent than stationary moose at a given of railroad density. 

However, the differences between the numbers of crossings between the two strategies are 

independent of railroad density. This is most likely also due to an overall low density of 

railroads, so avoidance of railroad crossings is possible, unlike road crossings.  

  Regarding human-induced risk factors such as roads and railroads, there was a 

difference in number of crossings given risk density. For water however, no such difference 

was found. Mortality related to water, such as drowning when trying to cross large rivers or 

falling through the ice, is among the most important causes of natural mortality in Norwegian 

moose (Rolandsen et al. 2010). Since water streams are larger during spring and autumn, and 

these periods are associated with unsafe ice, these seasons may be particular relevant for 

discriminating between the migratory and stationary strategy. Migratory moose had on 

average a higher density of water within individual home ranges (Figure 4g) compared to 
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stationary moose, and migratory individuals also crossed water more frequently in May 

(Figure 4h). This was probably because of a higher movement rate during the spring 

migration. Because the ice conditions may be particularly poor during this period, migratory 

moose are likely to be more at risk than stationary moose with respect to drowning. The lack 

of difference in number of crossings given water density between the strategies (Figure 5) 

may be a result of water being a familiar barrier, such that it not should be considered a risk of 

mortality at the same extent as human induced risks of mortality.  Moose frequently inhabit 

wetlands (Hohle and Lykke 1993), and use ponds as a source of forage (Belovsky 1981). By 

utilizing water regularly, moose may have evolved a reduced fear of water. I did not consider 

different sizes of lakes and rivers, and I interpreted a line between two locations, which 

crossed water as a crossing. This may bias my results to some extent since different sizes of 

lakes or rivers exerts different risks of mortality, and an assumed crossing in my analyses can 

in reality be a moose walking around a lake instead of crossing the lake.  

  Males tended to have a higher movement speed (Figure 3), and may therefore also 

experience a higher encountering of risk factors. Given risk density, males tend to cross more 

frequently compared to females (Figure 5), indicating a less risk-adverse behavior in males. 

The difference in speed between males and females also increase in May and June (Figure 3), 

which could be related to females calving during this period, leading to lower mobility 

compared to males (Rolandsen et al. 2010). Summer also coincides with the most important 

period for body growth in moose (Sæther et al. 1996), In addition, there was a large difference 

in movement speed between males and females in September and October, coinciding with 

time of mating (Leblond et al. 2010).   

  I did not find any significant differences in realized mortality between stationary and 

migratory female moose. There are two possible explanations for this. The mortality rates are 

based on a small sample size in this context. In addition, the individuals are followed over a 

relatively short time period compared to the expected lifespan of a female moose. The natural 

mortality rates of Scandinavian moose are low, mainly due to low densities of predators in 

most of the geographical range of moose (Swenson et al. 2005, Wabakken et al. 2010). 

Moreover, males were not included in my mortality analysis since hunting was not included 

as a mortality factor. Males experience a high hunting pressure (Solberg et al. 2006) and 

because of a high mortality due to hunting, males were excluded. Consequently, few mortality 

factors are left for the individuals included in the mortality analyses. Combined with the short 

sampling period, I probably had too low statistical power to detect small differences in 

mortality rate between migratory and stationary moose. However, given the higher crossing 
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frequency of risk elements of males than females, males seem to be less risk adverse, and the 

trends of realized mortality could be different if males were included.   

  My results suggest a difference in risk encountering and crossing of risk elements 

between migratory and stationary moose. Stationary moose tended to encounter risk elements 

more often while migratory moose crossed more frequently given the density of risk elements. 

In addition, migratory moose tended to experience an increased cost of locomotion as a 

consequence of a higher movement speed than stationary moose. Since the movement rates of 

moose varies between individuals (Bunnefeld et al. 2011), and the cost of moving in snow is 

likely to affect the movement behavior of moose (Lundmark and Ball 2008), the cost of 

locomotion also varies between individuals. Given the costs of migration, more studies on 

benefits should be conducted. By this, a broader view of net gain from migration can be 

investigated. Understanding the movement behavior with its costs and benefits may improve 

our knowledge on partial migration. Such understanding can improve the conservation of 

moose, creating a sustainable harvesting plan considering the migration behavior of moose.  
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