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Abstract 

An experiment was performed in four artificial stream channels during summer and autumn to 

investigate the effects of biotic and abiotic factors on habitat choice of juvenile Atlantic 

salmon (Salmo salar). To investigate factors determining habitat choice, the stream channels 

had sloped river beds creating two distinct habitats (shallow and deep). The main factor, large 

Atlantic salmon present (large present), was the most important factor affecting juvenile 

habitat choice during summer experiments. During autumn experiments, the two main factors 

large Atlantic salmon present and time of day (exclusive for autumn experiments), were 

important factors affecting habitat choice. The highly significant effect on juvenile habitat 

choice of having a large Atlantic salmon present identifies inter-cohort competition and/or 

risk of predation as important factors affecting habitat choice in juveniles. This, in turn, could 

have direct or indirect effects on juvenile survival and growth. The differences between 

proportions of fish in the deep between night and day highlights a diel change in habitat use 

by juveniles.  

 

Key-words: Habitat choice, density-dependence, diel differences, inter-cohort competition, 

hydro-peaking. 
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Introduction  

Many organisms of different species have to compete for limited resources at one, or several, 

stages during their life cycle. Individuals will thus have to compete with other individuals of 

the same, and of different, species for that given resource. The strength of the intra-specific 

(within species) competition will depend on population density, habitat availability and the 

given competitive interactions within the population (Campbell & Reece, 2005). Individuals 

incapable of acquiring such limited resources, like shelters/territories, will have reduced 

fitness compared to individuals inhabiting suitable territories (Andreo et al., 2009; Hasegawa 

& Yamamoto, 2010)  

 

A suitable territory/habitat is a defendable, limited resource. Because of the limitations in 

regards to resources like habitat availability, many organisms have developed territoriality 

(Stamps & Tollesrud, 1983). A territorial individual typically inhabits a preferred area and 

defends it against conspecifics and/or other species. When competing for territories, 

individuals physically interact with one another and a more dominant individual will usually 

chase a less dominant individual away (Mathis, 1990). The size of a given individual often 

plays an important role when considering competitive ability, where larger size leads to 

competitive dominance (Schwinning & Weiner, 1998; Schmitt & Holbrook, 1999; Serrano-

Meneses et al., 2007). Inter-cohort competition, in such cases, will favour older cohorts since 

they have a larger body size than younger age-classes (Maki-Petays et al., 2004). Increased 

density will in turn lead to increased intensity of the competition for habitat. The amount 

and/or quality of the habitat can thus contribute to setting the boundaries for the population-

size (carrying capacity), and the population density will have strong influence on the intensity 

of the competition for a suitable patch within the habitat. Habitat quality, together with high 
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population density, can in this way act as a limiting factor on the population (Clark & Hare, 

2002).  

 

A well documented example of such territorial individuals, where inter-cohort competition for 

limited habitat plays an important role in regulating populations, are Atlantic salmon (Salmo 

salar) juveniles (Finstad et al., 2008; Gibson et al., 2008; Steingrimsson & Grant, 2008). A 

juvenile Atlantic salmon typically defends a specific area in the river, foraging on drifting 

prey that enters the territory (Keeley & Grant, 1995). Territory size is positively correlated to 

body size (Steingrimsson & Grant, 2008). After attacking a prey-item, the fish typically 

returns to its previous position (Steingrimsson & Grant, 2008). If another individual enters the 

territory, the fish already inhabiting it will try to defend it by chasing the intruder away. 

Hungry fish tend to be more aggressive than satiated fish, hence the strength of the 

territoriality and territory size increases when food becomes scarce (Symons, 1968, Imre et 

al., 2005). Territoriality in Atlantic salmon is not only a mechanism for protecting a good area 

for foraging, but also important for protecting shelters (predator avoidance). Densities of 

YOY (young-of-year) after emergence can be very high locally, since Atlantic salmon does 

not disperse very well during this early life-stage (Einum & Nislow, 2005; Teichert et al., 

2010). Shelter is therefore crucial for the survival of newly emerged fish. The lack of 

dispersal ability is believed to be caused by high predation risk and high energetic costs 

related to the actual dispersal. This leads to strong density-dependent survival during the first 

2 months after emergence (Einum & Nislow, 2005). Older fish swim better and are usually 

less exposed to predation as a direct effect of their larger size. The quality of the habitat, both 

in regards to foraging and finding shelter from predators, therefore plays an important role in 

regulating Atlantic salmon populations.   
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Salmonid fish use a wide variety of habitats and are flexible when adjusting to habitat 

variation (Maki-Petays et al., 1997). Habitat use in Atlantic salmon is affected by many 

variables, and several of the given factors may affect habitat choice simultaneously: Habitat 

availability, substrate-size, fluctuations in water flow, depth and water-current, time of 

day/night, season, temperature, food availability, risk of predation, fish size, mode of activity 

and rate of inter-/intra-specific competition (Maki-Petays et al., 1997). Activity levels are 

often linked to feeding behaviour; an important factor when considering habitat use of 

Atlantic salmon. Atlantic salmon are visual predators (Ali, 1961), leading to reduced drift 

feeding efficiency when light levels decrease (Fraser & Metcalfe, 1997). Even though drifting 

invertebrates are numerous at night (Brittain & Eikeland 1988), juveniles most likely respond 

to this reduced foraging-efficiency by switching to benthic feeding behaviour when it gets 

dark (Amundsen et al., 2000). In autumn, as nights get longer and darker, an increase in 

nocturnal activity can be observed in juveniles as a response to increased night activity in 

invertebrate prey (Amundsen et al., 1999; Amundsen et al., 2000). Habitat choice thus varies 

between day and night and also between seasons.  

 

Habitat choice in juvenile Atlantic salmon also differ among different age classes, where 

YOY have a tendency of positioning themselves closer to the river bank and also closer to the 

substrate than individuals of larger size (Bremset & Berg, 1999). The behavioral tendency in 

juvenile salmonids to choose habitats close to the river bank/substrate is a combination of 

many factors like finding shelter from strong currents, inter-cohort competition and risk of 

predation. This leads to a size-dependent segregation where different size-classes of fish 

inhabit different depths (Vehanen & Hamari, 2004; Maki-Petays et al., 2004). As an example, 

preferred depth during summer and autumn for small (4-6cm), medium (7-10cm) and large 

(11-17cm) Atlantic salmon has been reported to be 5-20 cm, 5-35 cm and 25-60 cm, 
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respectively (Maki-Petays et al., 2004). This segregation is believed to be caused mainly by 

risk of predation and/or inter-cohort competition where larger and more dominant individuals 

are capable of restricting smaller individuals to less favorable habitats. When taking into 

account that competition for good, or less good, shelters/habitats in Atlantic salmon is 

density-dependent (Armstrong & Griffiths, 2001), it becomes clear that inter-cohort 

competition and population density are important when considering habitat choice. In winter 

and spring the segregation between the different size classes is less obvious due to similar 

habitat preferences between all cohorts (Maki-Petays et al., 2004). These seasonal differences 

in habitat choice indicate a well documented shift in behavior in Atlantic salmon between 

winter and summer (Fraser et al., 1993; Maki-Petays et al., 1997; Valdimarsson & Metcalfe, 

1997; Whalen et al., 1999; Vehanen & Hamari, 2004; Huusko et al., 2007). Choosing a 

habitat close to the river bank in shallow water, could have effects on survival when water 

flow/discharge varies. Human activity, like hydropower production, is known to affect these 

physical features (Ugedal et al., 2006; Hansen et al., 2008; Irvine et al., 2009).    

 

Much effort has been done to investigate natural habitat choice of Atlantic salmon. However, 

few experiments have been conducted to investigate the actual factors affecting the habitat 

selection. The present study was conducted to test the effects of density, large Atlantic salmon 

present and time of day on habitat choice in juvenile Atlantic salmon. This was achieved by 

using an artificial river-channel under controlled conditions.  

 

Based on the literature outlined above it is hypothesized that;  

(i) habitat choice of Atlantic salmon is density-dependent. Altering the densities will thus 

have an effect on habitat choice,  

(ii) large Atlantic salmon (dominant) will have an effect on habitat choice of juveniles and  
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(iii) shifts in foraging behaviour and varying risk of predation will lead to diel differences in 

habitat choice.   
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Materials and methods 

 

Study site and experimental design 

A 2x2x2 factorial design (density high/low, large fish present/absent, and time day/night) was 

used to investigate factors affecting habitat choice in Atlantic salmon juveniles. All 

experiments, both summer and autumn trials, were performed from May to September 2010, 

at the NINA Research Station at Ims (58° 54'N, 5° 57'E), in southwestern Norway.  

 

Experimental facilities 

The four circular arenas (Fig. 1a) used as stream channels in the experiments were located 

outdoors in a fenced area preventing people from disturbing the fish. Diel differences 

(day/night) in habitat choice could thus be investigated by conducting natural night time/day 

time experiments. To simulate a natural river system within the arenas, a natural streambed 

substrate consisting of stones/cobbles of different sizes was used. Water was drawn from a 

nearby lake. A sloped river bed within the stream channels created a shallow habitat in the 

inner parts of the arenas, and a deep habitat in the outer parts (Fig. 1b). The four arenas were 

constructed similarly and thus had similar appearance. Each arena was divided into three 

sections of 10 m
2
, with escape proof mesh separating both the sections and water 

inlets/outlets. Physical features (water depth, current at bottom and current at 60% deep) were 

measured using a Schiltknecht water velocity meter (Table I). Eight transects stretching from 

shallow to deep, with each transect containing 5 measuring-points, were used to measure 

physical features in each section. Each section thus contained 80 measuring-points, 40 in the 

shallow habitat and 40 in the deep. 40 spots thus created a mean value for the shallow or deep 

habitat in a single section. Depths and currents varied slightly between arenas and sections, 

and this was controlled for in the statistical analysis by using section number as a random 
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factor (see statistics). Water temperature during summer experiments ranged from 13.3-

20.8°C (mean 17.1 ± 1.7 SD) and from 10.7-17.3°C (mean 15.7 ± 0.8 SD) during autumn. 

White plastic tarp was used to simulate overhead cover along the river bank, with each tarp 

covering half of the total area of each section (Fig. 1c). This created overhead shelter and 

shadow from the sun. No food was added during the experiments, restricting fish to forage on 

food items on the substrate or entering through the water inlet.  

 

Table I. Mean values for physical features (depth, current velocity at bottom and current 

velocity at 60% depth) for all sections, as well as standard deviation between the sections. 

Anemometer details: Schiltknecht Messtechnik; Gossau, Switzerland; MiniAir 20 Multiprobe 

anemometer with water probe; precision ± 1 cm·sec
-1

; 3 seconds measurement time. 

  Mean ± SD 

Deep Habitats:   

Depth (cm)  31.20 (3.39) 

Current bottom (m·s
-1

) 0.06 (0.03) 

Current 60% (m·s
-1

) 0.10 (0.03) 

Shallow Habitats:   

Depth (cm)  18.00 (3.16) 

Current bottom (m·s
-1

) 0.03 (0.01) 

Current 60% (m·s
-1

) 0.05 (0.01) 
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Fig. 1. Illustrations/photos of experimental stream channels showing (a) schematic drawing 

where water from the water inlet flows counter-clockwise towards the water outlet. All 

sections (1-3) have the same total area (10 m
2
), (b) sloped river bed creating deep/shallow 

habitat. A “curtain” for separating the two habitats is held in place by metal pins attached to 

ropes. The curtain is let down by pulling the ropes. (c) three sections of a single arena, where 

half of the total area of each section is covered by a white plastic tarp, creating overhead 

shelter and shadow from the sun. Ropes attached to curtains for separating the habitats can be 

seen attached to the centre of the stream channel.  

 

To determine juvenile habitat choice (deep/shallow), it was possible to separate the 

shallow/deep habitats using an escape proof wooden “curtain” (Fig. 1b). A curtain was closed 

by pulling 2 ropes attached to it, thus sliding it into a frame extending well above the water 

line. This made it impossible for fish to cross between the two habitats.  

 

Experimental fish 

In total, 3404 fish were tested during summer experiments, and 3771 during autumn. Two 

cohorts, YOY and 1+ were used in all experiments, with fork lengths ranging from 35 to 235 

c) 
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mm. Two timing groups of YOY (hatched at different time periods) were used to create 

experimental size-variation (body length early timing group: 35-48 mm, body length late 

timing group: 41-47 mm). YOY were termed “juveniles” and the 1+ smolt cohort was termed 

“large”. Large fish was always twice the size of medium/small fish, making them potential 

predators for the smaller size classes (L`Abèe-Lund et al., 1992; Sandlund & Næsje, 1992; 

Henderson & Letcher, 2003; Finstad et al., 2006). Stomach content was investigated during 

summer experiments, but no predation on juveniles was observed. Experimental fish was 

never re-used. All treatments of fish and experimental procedures were conducted according 

to national and international rules for animal welfare. 

 

All size classes had a rapid growth from early summer to autumn, causing a considerable size-

difference between seasons (mean body length summer = 47 ± 1 mm, mean body length 

autumn = 82 ± 1 mm). Since there was no overlap in body length between large and 

medium/small, it was possible to do experiments where large fish still had an effect on 

juveniles during autumn. 

 

Experimental procedures 

Fish sizes used (fish composition) and densities varied between different experiments. 

Experiments were completed by separating the deep and shallow habitat (closing of curtains), 

and electro-fishing all sections thereafter. Habitat choice was determined by counting the 

number of juvenile salmon in the shallow habitat versus the number in the deep habitat for 

each section, yielding a “proportion of fish in the deep”. The fork length of each fish was 

measured immediately after recapture (precision 1 mm) as the fish was easy to handle while 

still stunned. Fork lengths were measured to control for effects of size-difference on habitat 
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choice.  By investigating whether proportions of fish in the deep varied between different 

treatments, factors affecting habitat choice could be identified.  

 

The same fish composition/density was always used in an entire arena (3 sections) for a single 

experiment, making stocking and fishing easier. Treatments with “large Atlantic salmon 

present” were never done in the same arena simultaneously to treatments where large was 

absent. This was done to avoid changes in behavior in juveniles caused by possible “predator 

detection” between neighboring sections (Mirza & Chivers, 2001; Kelley & Magurran, 2003). 

10 juveniles per section (1 fish per m
2
) were stocked for low-density treatments, and 30 

juveniles per section (3 fish per m
2
) were stocked for high-density treatments (Grant & Imre, 

2005; Imre et al., 2005; Imre et al., 2010). For experiments including large Atlantic salmon 

present, 10 juveniles and 2 large were stocked for low-density treatments, and 28 juveniles 

and 2 large were stocked for high-density treatments. Different treatments for density and fish 

composition could thus be stocked in a controlled way. In total, 12 different treatments were 

performed in the final summer and autumn experiments (Table II). Four treatments were 

performed during summer, and 8 during autumn.  
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Table II.  Overview of all treatments performed during summer and autumn, as well as the 

amount of experiments (trials) conducted for each treatment (n).  

Season Density 
Large 

present Day/Night n (trials) 

Summer Low No Day 21 

Summer Low Yes Day 61 

Summer High No Day 21 

Summer High Yes Day 63 

Autumn Low No Day 20 

Autumn Low Yes Day 24 

Autumn High No Day 21 

Autumn High Yes Day 24 

Autumn Low No Night 24 

Autumn Low Yes Night 21 

Autumn High No Night 24 

Autumn High Yes Night 24 

Total - - - 348 

 

 

The summer experiments were performed from 25 May - 29 June, and the autumn 

experiments from 31 August - 17 September. When performing night time experiments, the 

arenas were stocked at about 02:00 at night, and curtains were closed and fished at 00:00 the 

following night. At closing (00:00), it had thus been completely dark for about three hours. 

Curtains were closed without using artificial light. The same procedures were used for day 

time and night time fishing. Since night in Norway during summer is very short, night time 

experiments were only conducted during autumn. Day time experiments, however, were 

conducted during both seasons.  

 

Acclimation 

Pre-experiments and observational studies were necessary to establish acclimation time, 

which was set to twenty hours. Observational studies recording feeding/feeding attempts 

during 10 minutes of every hour showed that fish started feeding consistently after 5 hours in 

7 out of 7 studies. Based on this, an acclimation time of 20 hours seemed to be more than 

enough.  
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Statistics 

The effect of density, mean size, presence of large Atlantic salmon, time of day (day time or 

night time) and their interactions on proportions of fish in the deep were tested using linear 

mixed effect models. Section numbers 1-12 were used as random effect allowing mean 

differences between sections. Visual inspection of the residuals from the summer experiments 

indicated no violations of the assumptions.  

Inspection of the residuals from autumn experiments indicated residual differences between 

treatments with/without large present. Variance was stabilized by allowing different residual 

spreads for this variable (varIdent function). This model performed better than the initial 

model which did not allow for different residual spreads.  

Habitat use was modelled using data from the summer experiments, with the following initial 

full model:  

 

PSij = α + β1Dj+ β2Lj + β3Mj + β 4DjLj + β5DjMj + β6LjMj + ai + εj     (1)                                         

 

PS is the proportion of fish inhabiting the deep part in section i, for replicate j, where α and 

β´s are the fixed parameters, the random intercept ai ~ N(0, d
2
), and  the residual ij ~ N(0, 2

). 

D is density, L is large fish present, M is mean size and DL, DM and LM are the interaction 

terms.  

 

For the autumn experiments, where observations were done during both day and night, we 

also included a term for time of day in the initial full model:  

 

PAij = α + β1D+ β2Lj + β3Mj + β4Tj +β 5DjLj + β6DjMj + β7LjMj + β8DjTj+   (2) 

β9LjTj + β10MjTj + ai + εj 
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PA is the proportion of fish inhabiting the deep part of the arena, for replicate j at section i, 

Where α and β´s are the fixed parameters. D is density, L is large fish present, M is mean size, 

T is time of day and DL, DM, LM, DT, LT and MT are the interaction terms. The random 

intercept ai ~ N(0, d
2
), the residual ij ~ N(0, 2

), where the model allows for different spreads 

for large present/absent. 

 

The “protocol” for model selection from Zuur et al. (2009) was used for evaluating fixed 

effects using sequental backward removal of terms tested by ML. The lme command from the 

nlme package (Pinheiro et al., 2008) in R v2.11.1 was used for the analyses.    
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Results 

 

Summer 

For the summer experiments, all interactions could be removed (p-values > 0.3310). Also, the 

main effects mean size and density could be removed (p-values > 0.1145). The last effect, 

large present, was highly significant (p-value < 0.001). The optimal model for explaining the 

proportions of fish in the deep during summer was therefore a linear mixed effect model with 

section number as random factor and the main term large present (Fig. 2). 

 

Autumn 

When evaluating the optimal model for the autumn experiments, all interactions could be 

removed (p-values > 0.1302). Also, the main effects mean size and density could be removed 

(p-values > 0.7390). The remaining main effects, large present and night time, were highly 

significant with both p-values < 0.001. A linear mixed effect model with section number as 

random factor and the main effects large present and night time was therefore the best 

performing model for explaining the proportions of fish in the deep during autumn (Fig. 2).   
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Fig. 2. Mean proportions of fish in the deep and standard deviations for experiments including 

significant factors for both summer and autumn (large present and time of day). Large 

Atlantic salmon present and night time led to more fish inhabiting the shallow areas.    

 

Significant results from both model selections (autumn and summer) are summarized in Table 

III. The highly significance of having a large fish present during both summer and autumn 

experiments shows that fish is more likely to choose the shallow habitat if a larger fish is 

inhabiting the deep habitat. During summer experiments, only 3 out of 272 large fish were 

caught in the shallow habitat. For autumn experiments, 14 out of 188 large fish were caught in 

the shallow habitat. Night time was also highly significant, indicating that fish more often 

choose the shallow habitat at night compared to day time (Fig. 2).  
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Table III. Summary of the best linear mixed effects models for summer and autumn 

experiments. The summary shows which factors affected the proportions of fish in the deep. 

Estimated parameters for random effects are the standard error of random intercept in models 

with standard error of residual variation given in brackets.  

  

Estimate ± 

SE T P     

Summer model      

Random effects      

Section.nr 0.09 (0.19)     

Fixed effects      

Intercept 1.39 (0.04) 34.92 <0.001   

Large present  -0.29 (0.03) -8.76 <0.001   

Autumn model      

Random effects      

Section.nr 0.05 (0.24)     

Fixed effects      

Intercept 1.44 (0.03) 49.30 <0.001   

Large present  -0.18 (0.03) -5.88 <0.001   

Time
1
  -0.27 (0.03) -9.05 <0.001     

      
1 

Estimated parameter is for 

night time.     
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Discussion 

 

Habitat use and experimental fish 

All the fish used in the experiments were hatchery reared Atlantic salmon, with parents 

originating from the local stock (River Imsa). The behavior of hatchery reared salmonids has 

been shown to vary from that of wild fish (Deverill et al., 1999; Sundstrøm & Johnsson, 

2001; Griffiths & Armstrong, 2002). The present experiment must thus be treated 

conservatively when investigating factors affecting habitat choice in wild Atlantic salmon.  

 

Fish used in the experiments were not starved, hence the fish was satiated for some time into 

the experiments (fish that was cut open after an experiment still had pellets in the stomach). A 

starved individual may have to take more risks than a satiated individual to fulfil energy 

demands. In our case, assuming that foraging during the day is more risky than foraging 

during the night (Orpwood et al., 2006), satiated fish should be less diurnal compared to 

hungry fish (hungry fish are more risk prone). In the present study, this could have caused an 

increased sheltering behaviour during the day. No experiments were conducted at dusk or 

dawn, which are considered to be the two time periods when drift feeding is most intense 

(Brittain & Ekeland, 1988; Thorpe et al., 1988; Angradi & Griffith, 1990), and replicates from 

these time-periods may have yielded different results than the night/day time experiments.   

 

For experiments during summer and autumn, investigating habitat choice for juveniles when 

competition was low (low density) and large fish was absent, most of the fish preferred the 

deep habitat (mean proportion summer = 0.95, mean proportion autumn = 0.96). For low 

density treatments, with 1 fish per m
2
, space should not be a limiting factor (Grant & Kramer, 

1990). As large fish was found predominantly in the deep (460 out of 477 large fish 
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recaptured were found in the deep), it is reasonable to assume that all size classes used in the 

experiments preferred the deepest part of the river channel, thus competing for the same 

habitat during the day. Greater depth (providing shelter during the day) together with 

increased current velocity (increasing drift forage efficiency) could have been factors making 

the deep habitat more preferable during day time compared to the shallows (Abrahams & 

Kattenfield, 1997; Armstrong, 2010; Aas et al., 2011).   

 

The stream channels used were created to mimic natural habitats. Current velocity, substrate 

composition and overhead cover were all factors taken into account when creating the river 

channels. Plastic tarp was used to create overhead cover, as trees do in a natural system. In 

nature, trees would also increase the availability of food for salmon juveniles, perhaps making 

shallow areas in nature more preferable compared to the shallows in the present experiment 

(Orpwood et al., 2010).  

 

Large Atlantic salmon present 

Atlantic salmon juveniles more often occupied the shallow habitat when a large Atlantic 

salmon was present. This is consistent with the hypothesis that a large Atlantic salmon has an 

effect on habitat choice of smaller size classes. The highly significant effect of having a large 

Atlantic salmon present during both summer and autumn indicates that inter-cohort 

competition and/or risk of predation has significant impact on the habitat choice of juveniles. 

Large Atlantic salmon used in the experiments were always large enough to be a potential 

predator for the smaller fish (Finstad et al., 2006). Younger cohorts experience the presence 

of a potential predator visually, by chemical cues or by direct interactions with the larger fish 

(Mirza & Chivers, 2001; Kelley & Magurran, 2003). A large and dominant individual will 

control its preferred habitat and also restricts smaller individuals with similar habitat choice to 
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less preferred habitats. The fact that smaller size classes appeared to have similar habitat 

preferences compared to the larger size class (deep), further supports that juveniles loose 

when competing for habitat with larger fish. This, in turn, led to increased juvenile density in 

the shallow habitats (less preferred habitat) and was probably caused by a combination of fish 

physically interfering with each other, and the visual risk of predation smaller fish 

experienced when large fish was present (Kelley & Magurran, 2003).  

 

The increased variation in proportions of juveniles in the deep when a large fish was present, 

as indicated by the higher standard deviations for these experiments (Fig. 2), can be explained 

by individual differences between the large fish used. It is reasonable to assume that an active 

and aggressive large fish would have a more negative effect on juvenile proportions in the 

deep compared to a large individual which was less active. This study highlights that large 

Atlantic salmon are dominating smaller conspecifics when competing for suitable habitat, and 

that juvenile Atlantic salmon choose a wide range of water depths (habitats) as competitive 

interactions and, possibly, risk of predation vary within the habitat.  

 

Time of day  

By conducting autumn experiments which included the main effect time of day, it was shown 

that fish during night time tend to choose the shallow habitat more often than during day time. 

This is consistent with the hypothesis that there are diel differences in habitat choice of 

Atlantic salmon juveniles. The cause of the increased proportions of fish in the deep during 

night time could be that large fish was more active at night, thus chasing more juveniles away 

from the deep habitat, or that the shallows simply become more preferable at night due to 

altered behaviour. The “asset protection principle” (Clark, 1994), claims that individuals with 

larger body size, where a large body equals accumulated fitness, should be more risk averse 
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compared to smaller individuals. Thus “protecting” the energy already gained from earlier 

growth. According to this, larger Atlantic salmon should be less active during day time than 

smaller individuals, as fish foraging during the day is more exposed to visual predators as 

compared to those foraging at dusk, dawn or during the night (Orpwood et al., 2006). Imre & 

Biosclair (2004) found that Atlantic salmon parr were more nocturnal and less day-active 

compared to YOY, thus supporting the asset protection principle. However, no significant 

interaction between night time and large fish present was found in the present study. That is, 

there were no significant differences on proportions of juveniles in the deep between having a 

large Atlantic salmon present during night time compared to day time. This suggests that large 

fish is not more active, when it comes to chasing juveniles away from the deep, at night time 

as compared to day time. Drift feeding efficiency in visual predators like Atlantic salmon 

decreases with decreasing light (Fraser & Metcalfe, 1997; Mazur & Beauchamp, 2003; 

Turesson & Bronmark, 2007). Juveniles most likely switch to benthic feeding behaviour as a 

response to this (Bergersen, 1989; Amundsen et al., 1999; Amundsen et al., 2000). In the 

dark, fish is less exposed to visual predators, and when foraging success is not correlated to 

water current as it is during day time, it is reasonable to assume that the shallow habitat 

simply becomes more preferable at night as feeding behaviour change and risk of predation 

decrease.   

 

 

Density 

No significant effects of density on proportion of juveniles in the deep was found (p-value 

density during summer = 0.11, p-value density during autumn = 0.74). Given that available 

shelters seem to be an important limited resource for juveniles (Finstad et al., 2007; Breau et 

al., 2007) and that juveniles compete for shelters (Armstrong & Griffiths, 2001), the lack of 
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importance of this factor in the present study is surprising. No significant interaction between 

density and any other factor was found (large present/density, density/time of day). That is, 

proportional distribution of fish was similar for low/high density experiments. Shallow 

habitats were more often preferred during night time and when a large fish was present. For 

experiments with large fish present, these controlled a rather large area of the deep, and 

juveniles distributed themselves at equal proportions between the remaining available habitats 

in the deep/shallows for both high- and low density experiments, yielding no effect of density 

on proportions of fish in the deep. The same distribution was found between high/low density 

treatments during night time. This result could indicate that competition for habitat in Atlantic 

salmon juveniles in the present experiment not simply occur between shallow/deep (large 

scale), where deep is always better, but that competition for habitat happens on a much 

smaller scale (microhabitats). Some of the microhabitats in the shallows may therefore be 

more preferable compared to some of the microhabitats in the deep (Bremset, 2000). Fish thus 

distribute themselves by occupying the “best” available habitat, or by out-competing an 

individual already inhabiting a territory. As deep is not always the best, the distribution will 

be very similar for high/low density experiments. This, of course, means that the same 

proportion of fish can be found in the shallows irrespective of population density.  

 

It may be argued that the use of starved fish could have been a better approach when 

investigating effects of density. Starved fish are more aggressive than satiated fish, as food 

abundance affects territory size (Symons, 1968; Imre et al., 2005). Higher aggression, in our 

case, could have led to higher competition, especially for experiments with high density. 

Density manipulations yielding similar results when using starved fish would further support 

that juveniles distribute themselves at similar proportions for high/low density populations. 
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Ecological impacts and management implications 

Identifying and understanding factors affecting habitat selection is crucial for understanding 

biological requirements of animals. Knowledge about how species interact with their habitat 

to fulfil biological needs will in turn be essential when considering habitat management, and 

thereby, management of the species living there.   

 

The present study identifies time of day, inter-cohort competition and/or risk of predation as 

significant factors affecting habitat choice in Atlantic salmon juveniles. These results show 

how habitat choice in juveniles varies when competitive interactions change within the 

habitat. They also highlight a diel change in habitat choice, where shallow habitats are 

occupied more often at night compared to day time, probably caused by changes in foraging 

activity and/or reduced risk of predation by visual predators.  

 

The preference to shallow habitats could have severe impacts on the risk of stranding, 

especially in rivers regulated for hydropower production. Hydropower plants running to fulfil 

exact energy demands may cause rapid changes in water levels, referred to as “hydro-

peaking”. In these hydropower rivers, stored water from a reservoir is released according to 

energy demands, where increased energy demands leads to more water being released from 

the reservoir. Together with extreme drops in water levels when energy demand is low, 

hydro-peaking may cause dewatering of the shallow areas along the river bank several times 

during a single day. In Norway, 25% of all rivers are regulated for hydropower production, 

and 1/3 of these catchments contain wild Atlantic salmon (Helleraker et al., 2007). Hydro-

peaking occurs in many rivers in Norway and is expected to increase in near future (Saltveit et 

al., 2001). In regulated rivers, the differences in habitat choice between different age/size 

classes of Atlantic salmon could have impact on the risk of stranding. YOY “hiding” in the 
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substrate close to the river bank are less willing/capable of moving away from their shelters 

than larger fish in the deep and are, during such dewatering events, therefore more vulnerable 

to stranding. Hvidsten (1985) showed that YOY Atlantic salmon were more vulnerable to 

stranding than older individuals as a consequence of their preferred habitat (Bremset, 2000). 

 

The results from the present study suggest that dewatering/ramping down should be avoided 

during night time, as shallow areas close to the river bank appear to be more preferable during 

night time as compared to day time. There was no effect of density on proportion of fish in the 

shallows. That is, the same proportion of the population is at risk of stranding in shallow areas 

whether the density is high or low. This, of course, has important management implications 

for small populations. Further studies, investigating if/how mortality caused by stranding may 

be compensated for by increased growth in the remaining population, together with studies 

investigating direct effects of habitat choice on the risk of stranding is therefore necessary in 

order to evaluate population effects of eventual stranding.  

 

Understanding the effects of varying water flow/discharge on Atlantic salmon populations are 

crucial for future improvements of the way hydropower plants operate. At times, large 

proportions of the juveniles in an Atlantic salmon population occupy shallow areas exposed to 

stranding (Fig. 2). Improvements in the way hydropower plants operate will not only 

strengthen Atlantic salmon populations, but it will also strengthen the general view of 

hydropower as an environmentally friendly source of energy.   

.   
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