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Abstract

This investigation focuses on the multiobjective optimization of a crash box subjected

to static loading by using a validated numerical model and an analytical approach. The

crash box is made with a unique combination of three materials: an aluminium tube filled

with polyethylene terephthalate (PET) foam and a glass-fibre reinforced polymer (GFRP)

skeleton. A finite element model was calibrated based on the results obtained in a mate-

rial testing campaign using appropriate constitutive equations. A J2–plasticity model was

used for the material behaviour of the aluminium alloy, and the PET foam was modelled

using Deshpande and Fleck’s model. Regarding the short-fibres GFRP, a Voce plastic-

ity model was fitted to the experimental data. After a successful validation of the finite

element model, the filled aluminium tube was subjected to a structural optimization to

achieve the best crash performance. Three relevant design variables were selected: the

thickness of the outer aluminium cylinder, the thickness of the GFRP and the density

of the PET foam, the last being related to the crushing strength of the foam. Given the

high computational cost of each finite element model, a multi-adaptive regression splines

metamodel was fitted to a large-scale sampling. Optimum pairs were obtained for the

absorbed energy, the specific energy absorption, the peak load and the mass of the com-

ponent; stating the relative contribution of each design variable to the crashworthiness of

the crash box and enabling the choice of a balanced optimum design. A semi-empirical

model based on Hanssen’s interaction formula was calibrated with the data from a vali-

dated finite element model. This analytical model was able to reproduce the behaviour of
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the component over the design region selected for the optimization, and was also used for

its optimization with satisfactory results.

Keywords: Finite element, crashworthiness, glass fibre, polymeric foam, multiobjective

optimization.

1. Introduction

Composites, synthetic foams and aluminium structures are gaining ground over struc-

tural steel in the automotive industry due to weight reduction and hence a decrease of

pollutant emissions. However, the newer, lighter structures must also meet the criteria

and standards for structural and occupant safety. More specifically, the structural parts

dedicated to the absorption of the kinetic energy during an impact, in particular frontal

crash boxes, must be designed so that a satisfactory level of crashworthiness is achieved

with the lowest possible weight.

Foam-filled metal extrusions substantially alter the crushing behaviour of the outer

thin-walled column compared to an empty tube, improving the performance of the overall

structure. During axial crushing the foam acts as an elastic foundation for the metal

walls, reducing the local buckling length and, therefore, enabling more progressive folds

to be developed. Early works by Reid and Reddy [1, 2] investigated the axial crushing of

straight and tapered mild steel tubes filled with polyurethane foam of different densities.

These experimental results were used to validate the theoretical expressions for the mean

crushing load later proposed by Abramowicz and Wierzbicki [3]. Numerical simulations

on the axial crushing of foam-filled extrusions published in 1997 by Seitzberger et al. [4]

had a good agreement with experimental results for the compression of steel tubes filled

with aluminium foam. An extensive experimental campaign was carried out in the next

three years (1998-2001) by Langseth et al. [5] and Hanssen et al. [6, 7] on square and

circular foam-filled aluminium extrusions in different tempers and foam densities. These

authors proposed an expression for the mean crushing force taking into account the strong

interaction effect between the foam and the walls of the extrusions. An optimization of

the filled crash boxes was published in [8]. In parallel, Santosa et al. [9] carried out an

experimental and numerical study of the previous designs and validated the interaction

formulas. The main conclusion from these works was that the absorbed energy can be

increased with foam filler, but the increase in weight generally decreases the specific

efficiency of the filled tube compared to an empty extrusion, expressed in relative terms.

Recent work on foam-filled sections trends to incorporate natural materials [10].
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The numerical optimization of foam-filled extrusions has been an active research topic

during the past decade. Zarei and Kröger [11] optimized the crashworthiness of square

hollow sections filled with aluminium foam or honeycomb using finite element simu-

lations and surrogate models. A similar work was published in 2009 by Hou et al.

[12]. Multi-tubular foam-filled structures were optimized by Bi et al. [13] and a series

of research articles were published from 2010 on the optimization of sections filled with

graded foams [14], foam-filled conical tubes [15], bi-tubal structures [16], tapered square

tubes [17] and single and bi-tubal polygonal geometries [18]. A recent state-of-the-art

review of crashworthiness optimization can be found in [19].

Considerable research effort has also been focused on the use of fibre-reinforced plas-

tics in combination with metals for crashworthiness applications due to their superior

specific energy absorption. Fibre-resin composites have high strength-to-weight ratios

compared to metals, but their crushing is typically dominated by brittle, unstable fail-

ure modes. A relatively recent advent in crashworthiness engineering is the design of

externally-wrapped, fibre-reinforced metal tubes. This innovation means that the ductile

metal crushing modes are combined with the high strength and brittle fracture of the fi-

bres, with no impairment of the predictability or stability of the overall system [20]. The

first theoretical study on the progressive axial crushing of externally reinforced fibre-metal

tubes was published by Hanefi and Wierzbicki [21] in 1996, where the authors proposed

a theoretical model based on Alexander’s idealization for metal tubes [22]. Further exper-

imental studies were conducted by Song et al. [23] and Shin et al. [24] in 2000 and 2002,

respectively. More recent works by Bambach and Elchalakani studied the theoretical [25]

and experimental crushing [26, 27] of CFRP-wrapped steel tubes. The general conclusion

is that the mean crushing load and the specific energy absorption can be increased with

this kind of external reinforcement compared to the sum of the contributions from each

material without considering any interaction effect.

The inner reinforcement of metal tubes with composite structures has been recently

studied by Costas et al. [28, 29], motivating the present investigation. The beneficial con-

tribution of an inner GFRP skeleton to the crashworthiness of a steel tube was stated, but

it was also observed that the efficiency of the design could be significantly enhanced with

some kind of constraining or confinement system which prevented the GFRP parts from

falling apart after incipient fracture. Thus, an additional PET foam filler was added to a

GFRP-reinforced aluminium tube in order to improve the performance of the component

(Figure 1). The experimental campaign carried out [30] produced promising results as a
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remarkable interaction between both filler materials (GFRP and PET foam) was found.

This was also quantified by means of a modification of Hanssen’s formula [6, 7].

Polymeric
foam

GFRP

Aluminium
tube

Figure 1: Cross-section of the proposed crash box, experimentally investigated in [30].
Dimensions in millimetres.

The new contribution in the present work is the structural optimization of quasi-static

behaviour of the crash box shown in Figure 1, with a unique combination of three ma-

terials. The optimization was carried out using numerical simulations and an analytical

approach developed to reproduce the behaviour of the component. Thus, a finite element

model was built using material testing data to fit the appropriate constitutive models. A

novel treatment was given to the short-fibres GFRP; an elastic-plastic model was con-

sidered as a constitutive equation for simplicity, which provided the desired behaviour.

The response of the finite element model at a set of points in the selected design region

was then recorded, and an adequate metamodel was fitted to the results. The analytical

approach was developed by means of Hanssen’s modified equation recently proposed in

[30], which was also fit to the sample data from the simulations with a good degree of

accuracy. A genetic multiobjective optimization algorithm was run on the metamodel

and the analytical model, and different Pareto sets were obtained for selected objective

functions matching the crashworthiness criteria. These optimum sets contain the best-

performing designs and provide a valuable tool to understand the influence of the design

variables on the performance of the component.
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2. Finite element simulations

2.1. Material models and identification of parameters

This section presents the fit of selected material constitutive models to the obtained

experimental results. Each model takes into account the most relevant characteristics of

each material.

2.1.1. AA6063-T5 aluminium alloy

A von Mises yield condition with isotropic hardening was employed:

f (σ, p) = σeq (σ) − (σ0 + R (p)) , (1)

where σeq is the von Mises equivalent stress, p is the equivalent plastic strain defined in

terms of the incremental plastic strains dεp
i j as p =

∫ √
2
3dεp

i jdε
p
i j, σ0 is the initial yield

strength and the term R (p) controls the isotropic hardening, which consisted of a two-term

Voce law [31]:

R (p) =

2∑
j=1

Q j

[
(1 − exp

(
−b j p

)]
. (2)

In this equation, Q j and b j are material parameters to be calibrated through tensile tests

in the extrusion direction. As no failure was observed in the extrusions during component

testing, this was not accounted for in the numerical model.

The values for the model parameters obtained from the tensile tests described in [30],

with a least-squares fit up to diffuse necking, are provided in Table 1.

Table 1: Material properties and model parameters of aluminium alloy AA6063-T5 in
circular extrusion.

Property or parameter Value

Density, ρ [t/m3] 2.56
Young’s modulus, E [GPa] 53.84
Poisson ratio, ν 0.33

σ0 [MPa] 204.94
Q1 [MPa] 60.28
b1 19.24
Q2 [MPa] 3.95
b2 3078.86

True stress-strain curves from tensile experiments [30] and simulations are provided

in Figure 2, and show an excellent correlation between numerical and experimental data
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up to diffuse necking. For larger strains beyond this point, the model extrapolated the

stress values according to the Voce parameters previously fitted.
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Figure 2: AA6063-T5 true stress-strain curves obtained from experimental tensile tests
[30] and numerical simulation.

2.1.2. Glass-fibre reinforced polyamide

The Ultramid A3WG10 BK00564 GFRP was modelled isotropically with a failure

criterion governed by the equivalent plastic strain. The von Mises yield criterion was used,

and the hardening was described with a Voce law with two terms to fit the experimental

curve, shown in Figure 3. Thus, the equation governing hardening reads:

σy = σ0 +

2∑
j=1

Q j

[
1 − exp

(
−b j p

)]
, (3)

where σ0 is the initial yield stress, set to 25 MPa, p is the equivalent plastic strain, and

Q j, b j are the parameters to be calibrated.

Fracture of GFRP was modelled through a criterion based on the value of the equiv-

alent plastic strain [32, 33]. The finite element code activates the damage in an element

if its accumulated equivalent plastic strain reaches pu at all section points at any one inte-

gration point, i.e., ∫
dp
pu

= 1, (4)

removing the element from the mesh. The value of the integral, which is discretized for

each increment in the finite element code, increases monotonically with each increment of

the plastic strain. The reader is referred to [32, 33, 34] for details. From the experimental
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Table 2: Material properties and model parameters of the GFRP Ultramid A3WG10
BK00564.

Property or parameter Value

Density, ρ [t/m3] 1.55 [35]
Mean Young’s modulus, E [GPa] 15.52
Poisson ratio, ν 0.4 [35]

σ0 [MPa] 25.00
Q1 [MPa] 132.03
b1 272.49
Q2 [MPa] 52.01
b2 4758.28

campaign in [30], a value of pu = 0.0107 was adopted for the ultimate equivalent plastic

strain, which corresponds to a total strain of 0.0238 (sum of the elastic an plastic strains).

Table 2 summarizes the material properties and the model parameters of the glass-fibre

reinforced polymer Ultramid A3WG10 BK00564. Stress-strain curves obtained from the

tests and simulations are compared in Figure 3.
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Figure 3: True stress-strain curves obtained from experimental uniaxial tests and numeri-
cal simulations of Ultramid A3WG10 BK00564.

2.1.3. PET-based polymeric foam

The polymeric foam ArmaFORM PET/W AC 135 is an orthotropic material due to its

manufacturing process involving extrusion. If this foam is crushed along its manufactured

direction a higher crushing strength is observed. In [30], the foam was placed inside the

aluminium extrusion so that it was crushed in a direction orthogonal to the manufactured
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direction, resulting in a lower crushing strength. In the current investigation, both direc-

tions were considered separately for the optimization of the component. The foam was

modelled isotropically using the following two approaches; 1) using the properties in the

weak direction, and 2) with the properties in the strong direction. The stress-strain curves

and relevant mechanical properties were thus obtained for specimens taken parallel and

normal to the manufactured direction of the foam. The foam was modelled through an

elastic-plastic model with isotropic hardening originally developed for metallic foams by

Deshpande and Fleck [36] and included in Abaqus as crushable foam. The yield surface f

includes pressure dependency in addition to deviatoric stresses. In particular, the expres-

sion for f is an origin-centred ellipse in the σH–σeq plane which evolves proportionally

in hardening governed by the equivalent plastic strain p. The expression for this yield

surface f reads

f =

√
σeq

2 + α2σH
2 − B = 0, (5)

where σeq is the von Mises equivalent stress and σH = Iσ/3 is the hydrostatic stress.

The factor α defines the shape of the ellipse according to the ratio of the initial yield

strength in uniaxial compression to the initial yield strength in hydrostatic compression

(see [36, 34]). The latter was obtained experimentally in a triaxial compressive test (see

Figure 4), leading to a value of α = 0.729. This ratio of yield strengths was assumed

to be the same in both working directions. Given that the gaps between the foam and

the extrusion walls in the component were not closed, the lateral confinement levels of

the foam parts were not expected to be high enough to imply relevant differences derived

from this assumption. It is worth remarking that in [30], the major contribution to the

interaction between different materials to the crushing strength of the component was

observed between the foam and the GFRP (more fracture was observed in the GFRP due

to the interaction with the foam), whereas a negligible interaction was reported between

the foam and the aluminium tube due to these gaps.

In Equation (5), B is the current size of the vertical (σeq) axis of the yield ellipse,

defined in [36, 34] as a function of the current compressive yield stress and α.

A flow potential g was adopted, reading

g =

√
σeq

2 + β2σH
2 = 0, (6)

so that the model was flexible enough to represent non-associated flow. This equation is
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Figure 4: Triaxial compression machine for the experimental determination of the param-
eter α of Deshpande and Fleck’s model, depending on the ratio of the uniaxial yield stress
to the hydrostatic yield stress.

in the same form as f , but with a different shape parameter, meaning that if β = α then
∂g
∂σ

=
∂ f
∂σ

, and the flow is associated. According to [36, 34], the factor β can be expressed

in terms of the plastic Poisson’s ratio νp as follows:

β =
3
√

2

√
1 − 2νp

1 + νp . (7)

This allowed β to be obtained from a simple uniaxial compression test in which the trans-

verse plastic strains were measured.

Meeting the requirements of ISO 844:2014 [37], foam specimens were extracted and

subjected to uniaxial compression along the directions parallel and orthogonal to the ex-

trusion direction in the foam production line. An assumption was made when it came to

obtaining the plastic Poisson’s ratio νp, customarily defined for isotropic materials as the

ratio of the transverse plastic strains to the plastic strain in the load direction. The mean

value of both transverse directions was used to obtain the transverse plastic strain. Ac-

cording to this, the values of νp and β for both directions are the ones provided in Table 3.

The value of β is different from α, so the material exhibits non-associated plastic flow.

The hardening curve has been included in the finite element model through a direct in-

put of the yield stress–uniaxial plastic strain pairs obtained from the uniaxial compression

tests.

Table 3 contains a summary of the mechanical properties of the PET foam in the weak

and strong directions. The experimental and numerical stress-strain curves for quasi-static
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Table 3: Material properties and model parameters of ArmaFORM PET/W AC 135 PET-
based foam for different loading directions. An asterisk indicates that the value was ob-
tained assuming the same α coefficient obtained for the weak direction of the foam.

Property or parameter Orthogonal to extrusion Parallel to extrusion

Density, ρ [t/m3] 0.135 0.135
Young’s modulus, E [MPa] 20.41 59.01
Elastic Poisson ratio, ν 0.1 0.1

σC
0.3 [kPa] 982.98 2529.97

σH
0.3 [kPa] 1383.30 *3465.71

α 0.73 *0.73
Plastic Poisson’s ratio νp 0.09 0.07
β 1.84 1.72

loading are plotted in Figure 5. In Table 3, σC
0.3 and σH

0.3 represent the plateau stresses –

obtained for a true strain of 0.3– under uniaxial and hydrostatic compression, respectively.
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Figure 5: True stress-strain compressive curves from uniaxial tests and simulations for
Armaform PET/W AC 135 PET-based foam in different directions.

2.2. Component model

A detailed finite element model of the crash box subjected to quasi-static loading has

been constructed using the Abaqus Explicit package. This model was validated against

the quasi-static experimental results obtained in [30].

The metal tube, with a thickness of 1.9 mm in the baseline design, was modelled using

a fine mesh of 1.5 × 1.5 mm, four-node linear shell elements with five integration points
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through the thickness and with reduced integration, which allowed the tube to develop

the correct folding pattern while keeping a good thickness-to-length ratio. The contact

algorithm accounted for the element thickness to avoid any undesired shifting of the force-

displacement curves due to self-contact during folding. The end of the tube in contact with

the loading plate was triggered according to the ring pattern applied to the experimental

specimens [30] to ensure that the same collapse mode was initiated, Figure 6b. These

triggers were formed at a previous step by imposing a radial displacement of 1.2 mm

directed inwards at the edge of the tube.

GFRP sheets, with a thickness of 3 mm in the baseline design, were modelled using

the same four-node linear shell elements with an element size of 3 mm. Given that a

fracture algorithm based on element deletion was adopted, the element size had to be

small enough to represent fracture in the GFRP parts. The GFRP structure was modelled

respecting the mechanization process in which three independent sheets were assembled

together without any adhesive, in the way shown in [30]. It is also worth mentioning that

in the same way as it was done in [30] the height of the GFRP parts is 2 mm lower than

the height of the aluminium tube and the foam. This was done to avoid an overlap of the

initial peak forces.

Finally, the foam prisms were modelled with eight-node, linear solid elements with

an average size of 5 mm. The critical aspect governing the element size of these parts is

the fact that the foam should be able to be captured inside the folds during crushing. This

was also a challenge for the convergence of the analysis, since some elements captured in

the folds experienced extreme distortions which decreased the stable time increment and

influenced the overall convergence. To avoid or minimize this problem, a distortion con-

trol for the foam parts was included, which locked those elements undergoing volumetric

deformation greater than 95 %. It was observed that only a few elements had to be locked

in order to guarantee the convergence of the simulations.

Two additional parts were included in the model: a support reaction plate and a mov-

ing loading plate, which crushed the component. These were modelled through rigid

elements and a rigid body constraint. A friction coefficient of 0.2 was assumed in the

contact between the plates and the component. In order to speed up the simulations and

reduce the required number of time increments, a time scaling factor of 1200 was applied

to the loading rate, meaning that the quasi-static experimental crushing at 50 mm/min

was simulated at 10 m/s. In order to avoid undesired inertial effects, the speed of the

moving plate was smoothly ramped up from 0 to 10 m/s. Additionally, the kinetic energy
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(a) Finite element model of the crash box. The differ-
ent parts have been partially disassembled for a better
view.

1.2 mm

10 mm

(b) Detail of the triggering applied to the
top of the aluminium tube.

Figure 6: Finite element model: geometry, mesh, and detail of the triggering scheme.

was checked during the simulation so that it did not exceed a small percentage of the

total energy at any time. The maximum percentage was 2 % in the current simulations.

This technique was used in other investigations for the simulation of quasi-static crushing

[38]. The component was crushed to a total length of 245 mm, which equated a 70 %

of its total length. Analyses were run in parallel with two cores dedicated to each simu-

lation. Despite being considerably slower, loop parallelization was preferred to a faster

domain-based strategy, due to the fact that the latter can produce differences in the results

depending on the number of domains.

A view of the finite element model is shown in Figure 6a. Loading and support plates

are removed for a better view, and the different parts are partially disassembled.

2.3. Validation of the finite element model of the component

The finite element model was validated against the quasi-static crushing tests per-

formed at 50 mm/min [30]. Figures 7a and 7c show that good agreement was obtained,

with the exception of the initial peak. In Figure 7c, the average force of the simulation

is provided as a function of the axial crushing length, which is the integral of the force-

displacement curve divided by the current displacement δ , as follows:

Favg(δ) =

∫ δ

0
F(δ) dδ

δ
. (8)

The average force is lower than that of the experimental tests in the first part of the crush-

ing, but it eventually reaches the experimental curves at the end of the crushing. The

average force at the end of the crushing was used to obtain the values of energy absorp-
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tion shown in Figure 7a.

The GFRP sheets used for the experimental components in [30] presented imperfec-

tions due to the use of a single inlet for the injection of the parts, and also due to the high

fibre content. These imperfections had a wavelike form and caused also some misalign-

ment with respect to the longitudinal axis of the component when assembled. To account

for these combined geometrical imperfections in the numerical model, these defects were

represented in the numerical model as shown in Figure 8. As no direct measurements

were carried out to reveal the magnitude of these imperfections, a sensitivity analysis was

performed by varying the amplitude in Figure 8. To that end, simulations were run with

initial imperfections of 1.0, 2.0 and 3.0 mm applied to the top part of the GFRP sheets

according to the pattern depicted in Figure 8, resulting in the initial peak loads provided

in Table 4 and the force-displacement curves presented in Figure 7b. When imperfections

were applied, the remaining part of the curve was even more similar to the experimen-

tal behaviour of the component. This could indicate that the imperfections in the GFRP

sheets actually enable a more progressive degradation of the composite. This has been

checked in the simulations and it has been found that the imposed imperfections in the

GFRP triggered a stronger interaction with the foam, leading to a more intensive degra-

dation of the GFRP and a higher crushing force. The effects derived from a misalignment

of the GFRP were also observed in [28].

The analytical value of the mean crushing force obtained by the fit of Hanssen’s mod-

ified equation provided in Section 3.2 is also given in Figure 7c. This is in agreement with

the experimental and numerical data. The value of the analytical mean crushing force was

obtained for the total crushing length.

Table 4: Effect of an initial misalignment of the GFRP parts (FE) on the initial peak during
the axial crushing of the component, according to Figure 8.

Initial misalignment [mm] Initial peak force Ppeak [kN]

0.0 (straight edges) 158.67
1.0 144.06
2.0 132.80
3.0 126.51

In Figure 9, the predicted crushing process is shown and compared with the images

from the quasi-static experimental tests. Overall, the agreement between the finite element

model and the experimental tests was very good, thus the model was considered to be
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(a) Force-displacement curves and absorbed energy of the quasi-static axial crushing of the exper-
imental components C1, C2 and C3 (see [30]), and the finite element model.
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Figure 7: Crushing force-displacement curves of experimental components C1, C2 and
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Imperfection
(1, 2 or 3 mm)

Figure 8: Scheme of the imperfections applied to the top of the GFRP sheets (scaled).
Red dotted lines represent the undeformed geometry. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article).

(a) Quasi-static test, δ =

67.5 mm.
(b) Quasi-static test, δ =

126.77 mm.
(c) Quasi-static test, δ =

228.33 mm.

(d) Simulation, δ = 67.5 mm. (e) Simulation, δ = 126.77 mm. (f) Simulation, δ = 228.33 mm.

Figure 9: Image sequence of the experimental test and the finite element simulation. The
same crushing mechanism was observed.
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accurate and reliable enough to be used for the optimization of the component. Moreover,

given that the behaviour of the component was almost similar when subjected to quasi-

static and impact loading conditions [30], the current finite element model could be safely

employed for impact simulations up to 10 m/s.

3. Multiobjective optimization

3.1. Problem statement and methodology

Five metrics were initially considered as candidates to become the objective functions

for the optimization problem:

• The component mass m.

• The absorbed energy Ea, defined as the integral of the measured force F(δ) over the

crushed distance δ, i.e.,

Ea =

∫ δmax

0
F(δ) dδ. (9)

• The specific energy absorption SEA, defined as the ratio of the absorbed energy Ea

to the mass of the component m,

SEA =
Ea

m
. (10)

• The initial peak load Ppeak.

• The crush force efficiency CFE, defined as the ratio of the mean crushing force Pm

to the initial peak load Ppeak,

CFE =
Pm

Ppeak
. (11)

All of these are quantities that should be either minimized (m, Ppeak) or maximized

(Ea, SEA, CFE) in a design optimization procedure. Given that some of these metrics

oppose each other (e.g. absorbed energy vs. mass), an unconstrained, multi-objective

optimization was set out for pairs Ea vs. m and SEA vs. Ppeak for different material

configurations. The crush force efficiency was discarded from the optimization given the

relative inaccuracy of the surrogate model, which was unable to precisely reproduce the

behaviour of this function (see values of the likelihood estimators in Tables 7 and 8). It is

convenient to indicate here that the algorithm searched the maximum force in the initial
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15 % of the filtered force-displacement curves to account for among other factors possible

secondary peak force produced by the GFRP plates.

Regarding the design variables, it was considered that the thicknesses of the tube

and the GFRP sheets, together with the foam density (proportional to its yield stress),

were the most interesting aspects of the current design. The diameter of the aluminium

tube, measured from the middle of the walls, was kept constant. The width of the GFRP

sheets was modified accordingly so that they fitted into the tube in all cases. Regarding

the foam density, even though the supplier provides six different possible densities for

the PET foam [39], each with a different yield stress, this variable was considered to be

continuous. The relationship between the foam density and its yield stress in the extrusion

direction could be established by a simple linear fit of the products in the brochure (see

Figure 10). This gave the following expression for the initial yield stress σy
0:

σ
y
0 [MPa] = 0.0021899ρ

[
kg/m3

]
− 0.7219274. (12)

Here, it was assumed that the yield stresses of the foam loaded in its weak direction follow

the same linear relationship, scaled by the ratio of the plateau stresses σC
0.3 of the strong

and weak directions, i.e. 2.57.

50 100 150 200 250
Density [kg/m3]

0

1

2

3

4

Y
ie

ld
st

re
ss

in
un

ia
xi

al
co

m
pr

es
sio

n
[M

Pa
]

Data points [39]
Linear fit (eq. (12))

Figure 10: Linear fit to the density-yield stress pairs provided for Armaform PET/W AC
PET-based foams, load direction parallel to extrusion direction. R2 = 0.99416.

Two different optimization cases were studied:

• Case I consisted of the optimization of the same component experimentally studied

in [30], i.e. the foam was placed so that it was crushed along its weak direction.

17



• Case II consisted of the same optimization as in Case I, but with the foam loaded in

its strong direction.

The ranges of the design variables are presented in Table 5.

Table 5: Ranges of the design variables for the optimization algorithm.

Design variable Lower bound Upper bound

Tube thickness [mm] 1.00 4.00
GFRP thickness [mm] 1.00 5.00
Foam density [kg/m3] 80.00 200.00

The optimization algorithm was run on metamodels of the objective functions given

the high computational cost of each evaluation of the function. In order to build these

metamodels, the design space was seeded with 400 sample points following a Latin hy-

percube sampling distribution (LHS). The sample size is relatively large for this kind of

study, but as long as all the simulations were computed in parallel in a high-performance

cluster, the computational cost of the sampling was acceptable. The use of a relatively

large number of sample points can also be beneficial for obtaining a reliable Pareto front

because the boundaries of the feasible region should be accurately defined.

The objective functions were obtained from the sample points and the resulting set

was utilized to build a surrogate model for each response function. The computation

time for each simulation was between 20–50 minutes. Given the good results found in

[29, 40], a multivariate adaptive regression splines (MARS) model [41, 42] was fitted to

the sampling results with acceptable likelihood estimators, provided in Section 4 for each

optimization case. A description of this metamodel is provided in [43].

The genetic multi-objective optimization proposed by Eddy and Lewis [44] was used,

with a population size of 300 individuals, a mutation rate of 0.1, a crossover rate of 0.8,

50 elitist individuals and a maximum number of function evaluations equal to 500 000.

With this configuration, the execution time of the optimization algorithm was about 30

minutes.

3.2. Fitting of Hanssen’s modified equation to the FE sample points

Hanssen et al. [6, 7] proposed an equation to predict the average crushing force of

foam-filled aluminium tubes, reading

Favg = F0
avg + Afσf + Cavgσ

α
f σ

(1−α)
0 bβmh(2−β), (13)
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where Favg is the total average crushing force, F0
avg is the average crushing force of the

empty aluminium tube, σf is the yield stress of the aluminium foam, Af is the cross-

sectional area of the foam, σ0 is the yield stress of the aluminium alloy, bm = b − h, and

b and h are the outer diameter and wall thickness of the aluminium tube, respectively.

Lastly, Cavg, α and β are parameters to be calibrated.

In [30], a modification of the original formula was proposed in order to account for an

inner GFRP reinforcement interacting with the foam. Unlike the aluminium tube and the

foam, the contribution of this GFRP reinforcement is exclusively linked to the interaction

part of the formula because the GFRP skeleton would buckle and fracture if crushed alone.

Therefore, its contribution was included adding the ultimate tensile stress of the GFRP in

the interaction parameter of Equation (13), i.e.

Favg = F0
avg + σfAf + Cavg

3
√
σfσ0σubmh. (14)

In the current investigation, this last formula in its general form was fitted to the results

from the simulations in the FE sampling and used for the optimization of the component,

in addition to the MARS metamodel. To account for the effects of different thicknesses of

the GFRP parts on the crushing force, the term g, representing the GFRP thickness, was

added to the interaction term of the formula together with its corresponding exponent as

a parameter to calibrate. Therefore, Equation (14) was generalized into

Favg = F0
avg + σfAf + Cavgσf

ασ0
βσu

γbm
δhηgλ (15)

and fitted to the 400 simulation results of each sampling, i.e., for the strong and the weak

directions of the PET foam equally.

To guarantee the dimensional consistency of Equation (15), the conditions α + β +

γ = 1 and δ + η + λ = 1 had to be enforced. All parameters except Cavg were allowed

to take negative values, as long as the dimensional consistency was ensured. The fit

of the parameters was performed so that the root mean squared error (RMSE) between

the FE-sampled values and Equation (15) was minimized. The likelihood estimators are

presented in Table 6 for the two directions of the foam.

In the light of these results, a better fit was obtained when the foam was placed in

its weak direction, i.e., for lower yield strengths. In any case, the fit was considered

accurate enough to be used for the optimization of the component. The results arising
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Table 6: Best-fitting parameters for Hanssen’s modified equation considering the foam
filler working in its two directions. The generalized equation was fitted to the simulations,
with a crushing length of 245 mm (70 % of the total length). RMSE: root-mean-squared
error, MAE: maximum absolute error.

Foam direction α β γ δ η λ Cavg RMSE [kN] MAE [kN]

Weak 2.27 -1.14 -0.13 0.78 -0.24 0.46 2.76 3.02 12.26
Strong 2.56 -1.73 0.17 0.70 -0.13 0.42 1.69 6.26 22.62

from the optimization of the analytical formula are compared to the MARS prediction in

Section 5.

4. Results of the multiobjective optimization

4.1. Case I: Foam loaded in its weak direction

The likelihood of the surrogate model was checked by means of the goodness indi-

cators provided in Table 7. Good agreement was achieved for all the proposed functions

except the crush force efficiency.

Table 7: Goodness estimators of the MARS surrogate model fitted to the sample points in
optimization case I. RMSE: root-mean-squared error, MeanAE: mean absolute error.

Objective function R2 RMSE MeanAE

Absorbed energy 0.9984 0.4309 kJ 0.310 kJ
Mass 0.9999 3.349 × 10−4 kg 2.432 × 10−4 kg
Specific energy absorption 0.9964 0.200 kJ/kg 0.150 kJ/kg
Initial peak load 0.9990 1.871 kN 1.445 kN
Crush force efficiency 0.8066 0.537 0.278

Pareto fronts considering Ea vs. m and SEA vs. Ppeak are provided in Figure 11 and

Figure 12, respectively. The values of the objective functions in the design studied experi-

mentally in [30] are marked with a green star for easy comparison. It is important to warn

the reader about the merely illustrative value of this mark: given the alignment defects

observed in the GFRP structure of the experimental components, the numerical value of

the peak load was preferred to the experimental measurement to be considered here as the

reference value, for a more consistent comparison with the remaining –numerical– results

where the peak load is higher (see Figure 7a). In order to analyse the evolution of the

design variables along the Pareto front, projections on the horizontal axes were done, and

the values of the variables were plotted on these new graphs (Figures 11 and 12).
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(a) Pareto front for optimization case I considering the absorbed energy and the mass of the com-
ponent as objective functions.
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(b) Evolution of the three design variables along the Pareto front. Projection on the mass function.

Figure 11: Optimization results for case I considering the absorbed energy Ea and the
component mass m as objective functions. Pareto set and evolution of the design variables.
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(a) Pareto front for optimization case I considering the initial peak load and the specific energy
absorption as objective functions.

10.0 12.5 15.0 17.5 20.0 22.5 25.0
Specific energy absorption SEA [kJ/kg]

0

1

2

3

4

5

T
hi
ck
ne

ss
[m

m
] A B

Increasing minimized Ppeak

Aluminium thickness
GFRP thickness
PET foam density

50

75

100

125

150

PE
T

fo
am

de
ns
ity

[k
g/

m
3 ]

(b) Evolution of the three design variables along the Pareto front. Projection on the specific energy
absorption function.

Figure 12: Optimization results for case I considering the specific energy absorption SEA
and the peak load Ppeak as objective functions. Pareto set and evolution of the design
variables.
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The obtained results revealed some remarkable facts. First, the aluminium tube plays

the main role in this design. This can be drawn from Figure 11b, where it can be seen that

increasing the aluminium thickness is the best way to achieve the optimum performance

of the component. It was only after this variable reached its upper bound that the remain-

ing variables started to increase. The relative merits of the aluminium tube can also be

observed in Figure 11a, which shows that the slope of the Pareto front increases rapidly

as the aluminium thickness grows, and then increases at a lower rate when this thickness

reaches its upper bound and the other materials come into play. A second remarkable

fact is that the performance of the design studied in [30], marked with the green star, can

easily be improved in one way or another:

• Its absorbed energy can be improved by approximately 52 % if the aluminium thick-

ness is increased to 3.55 mm, the foam density is set to 80 kg/m3 and the GFRP

thickness is reduced to 1.0 mm (lower bounds). This is graphically indicated in

Figure 11 by point A.

• Its mass can be reduced by approximately 20 % maintaining the same absorbed

energy, by increasing the aluminium thickness up to 2.30 mm and reducing the

GFRP thickness and the foam density to their lower bounds. This is graphically

indicated in Figure 11 by point B.

Regarding the SEA–Ppeak front, two characteristic regions could be observed in the

studied range. Firstly, for optimum SEA between 10.5 kJ/kg and 16 kJ/kg, the optimum

pairs are obtained using a foam density of 105 kg/m3, a GFRP thickness between 1.0 and

1.2 mm, and gradually increasing the aluminium thickness from 1 to 2.3 mm. Secondly,

for 16 kJ/kg ≤ SEA ≤ 24 kJ/kg, the optimum pairs show a drop in the foam density to a

value of 90 kg/m3 and a progressive increase of the aluminium thickness, while keeping

the GFRP thickness at its minimum. It can be also observed that the initial peak force can

be significantly reduced in the original design without harming the SEA by reducing the

foam density to 105 kg/m3 and the GFRP thickness to 1.0 mm, and slightly reducing the

aluminium thickness too. This is graphically indicated by point A in Figures 12a and 12b.

Also, the specific energy absorption can be increased by approximately 38 %, keeping

the component mass of the original design, i.e., 1.737 kg. As indicated by point B in

Figure 12b, this is achieved by using an aluminium thickness of 2.7 mm, a foam density

of 90 kg/m3 and a GFRP thickness of 1 mm.
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4.2. Case II: Foam loaded in its strong direction

The goodness estimators used to check the accuracy of the surrogate models are pro-

vided in Table 8. These indicators are in line with those obtained for the optimization case

I.

Table 8: Goodness estimators of the MARS surrogate model fitted to the sample points in
optimization case II. RMSE: root-mean-squared error, MeanAE: mean absolute error.

Objective function R2 RMSE MeanAE

Absorbed energy 0.9975 0.575 kJ 0.398 kJ
Mass 0.9999 1.070 × 10−4 kg 5.160 × 10−5 kg
Specific energy absorption 0.9929 0.276 kJ/kg 0.207 kJ/kg
Initial peak load 0.997 3.547 kN 2.703 kN
Crush force efficiency 0.8691 0.195 0.116

For case II, Pareto fronts are presented in Figures 13 and 14. Similar conclusions to

case I can be drawn from the optimum results regarding the Ea–m front: the performance

of the part can be improved in one way or another by using the strong direction of the foam

and reducing the foam density and the GFRP thickness to their lower bounds (points A

and B in Figure 13). The point beyond which it is worth increasing the GFRP thickness

appears later in Figure 13b than in Figure 11b, given that the foam is used more effectively

now.

Some differences must be highlighted when it comes to the SEA–Ppeak optimum sets,

compared to what was presented in Figure 12. Here, optimum specific energy absorp-

tions are achieved firstly by increasing the aluminium thickness and the foam density (for

15 kJ/kg ≤ SEA ≤ 19 kJ/kg, approximately) up to an approximate value of 190 kg/m3, if

a simultaneous minimization of the peak load is pursued. For higher values of optimum

specific energy absorption minimizing the peak load, the density of the foam should be

kept at its lower bound –with an exception for 20 kJ/kg ≤ SEA ≤ 22 kJ/kg– and the

aluminium thickness should be progressively increased. It is worth mentioning that these

latter designs where the foam drops to its minimum density and the extrusion increases

its thickness have an initial peak load which could be too high for a car crash box.

The design proposed in [30] can be improved keeping one of the objectives constant.

If the initial peak force is to be reduced, the same SEA can be maintained by just placing

the foam in its strong direction and reducing its density to the minimum. The thicknesses

of the aluminium and the GFRP must also be reduced to their minima in this case, which

is indicated by the letter A in Figure 14. This enables a considerable reduction in the
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(a) Pareto front for optimization case II considering the absorbed energy and the mass of the
component as objective functions.
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(b) Evolution of the three design variables along the Pareto front. Projection on the mass function.

Figure 13: Optimization results for case II considering the absorbed energy Ea and the
component mass m as objective functions. Pareto set and evolution of the design variables.
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(a) Pareto front for optimization case II considering the specific energy absorption and the initial
peak load as objective functions.
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(b) Evolution of the three design variables along the Pareto front. Projection on the specific energy
absorption function.

Figure 14: Optimization results for case II considering the specific energy absorption
and the initial peak load as objective functions. Pareto set and evolution of the design
variables.
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initial peak load to be achieved. Point A is out of range because it corresponds to the

SEA of the experimental component, where the foam was placed in its weak direction.

However, all the optimum designs for Case II were carried out with the foam in its strong

direction. This explains why the point lies outside the Pareto front. On the other hand, if

the specific energy absorption of the component is to be increased to its maximum while

keeping the same initial peak force (point B in Figure 14), a foam must be used with a

density of 150 kg/m3 -placed in its strong direction-. In this case, the aluminium thickness

should be 2.55 mm and the GFRP thickness 1 mm.

5. Optimization using Hanssen’s modified analytical formula

As described in Section 3.2, the modified Hanssen’s equation can predict the mean

crushing force of the studied components with a good degree of accuracy. This semi-

empirical model was also used for the optimization of the absorbed energy and the mass

of the component. The absorbed energy was obtained by multiplying the predicted mean

crushing force by the total crushing length (245 mm), and the mass was obtained from

the dimensions of the parts and the material densities. The optimization was run for cases

I and II, using the best-fitting parameters provided in Table 6 and the same evolutionary

algorithm used for the MARS meta-model. The obtained optimum sets are given in Fig-

ure 15a (case I) and Figure 15b (case II), showing the similarity between the FE values

and Hanssen’s analytical prediction.

In view of Figure 15, Hanssen’s modified equation was proved to be an accurate model

for the optimization of the component. The analytical model appeared to be even more

exact than the MARS model at some regions of the Pareto front for case II, where a

small number of FE sample points lay outside the MARS front but were captured by the

analytical prediction.

6. Conclusions

This work presented the numerical modelling and the multi-objective optimization of

a crash box which was previously tested experimentally by the authors. The following

conclusions can be drawn:

• The axial quasi-static crushing of the proposed component was successfully simu-

lated by a numerical model calibrated with the material experimental data. Only a
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(a) Optimization of Hanssen’s modified equation for case I. The Pareto front is compared with the
one obtained with a MARS meta-model.
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(b) Optimization of Hanssen’s modified equation for case II. The Pareto front is compared with
the one obtained with a MARS meta-model.

Figure 15: Comparison of the Pareto fronts obtained with Hanssen’s modified analytical
prediction and the MARS meta-model using the same evolutionary algorithm.
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difference in the initial peak load was remarkable, which was caused by the mis-

alignment of the GFRP plates in the experimental tests. The interaction effect ap-

peared in the finite element model too, given that the response was very similar to

the experimental behaviour.

• Surrogate models constructed with multivariate adaptive regression splines (MARS)

accurately represented the response functions, with the single exception of the crush

force efficiency. Therefore, these models could be safely used by the optimization

algorithm.

• Two different multi-objective optimization cases were studied, where the foam was

crushed along its strong or weak direction. It was shown that if the crushing of the

foam was changed from the weak to the strong direction, the thickness of the alu-

minium tube could be reduced withouth decreasing the specific energy absorption.

• The modified Hanssen’s analytical equation predicting the average crushing force

of aluminium tubes filled with foam and GFRP inserts was fitted to the samples

of the finite element model with a good degree of accuracy, in particular for foams

with low yield strength. Optimum designs were obtained using this formulation and

the evolutionary algorithm, and were compared to those predicted by the MARS

meta-model. The semi-empirical model was able to provide optimum pairs of ab-

sorbed energy and the mass of the component with a similar degree of accuracy as

the MARS model. The satisfactory results proved the ability of the modified an-

alytical prediction to reproduce the average crushing force of a component with a

combination of three materials.

• The thickness of the GFRP plates must be kept at a value of 1 mm, no matter which

objective function is to be optimized. This indicates that a thickness of 1 mm is

enough to enable the interaction with the foam and provide a good crashworthiness

effect for the component, and that the GFRP plates are useful only to trigger this

interaction effect.
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