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Abstract 
The financial crises and global change have caused setbacks to the improvements in many 

undeveloped countries. To be able to achieve the ‘Millennium developmental goals’ within 

2015, it will require a higher effort. Sub-Saharan African countries show the slowest 

economic growth and have experienced the highest setbacks. Malawi is one of these 

countries and is struggling with a high share of poverty and poverty related issues. Trade is 

believed to be the most prominent tool to fight world poverty, as it will provide economic 

growth and employment.  

Cichlid fishes from Lake Malawi are popular ornamentals for hobby aquarist’s world wide, 

representing yearly turnover of 340 million US dollars. It is suggested that ornamental 

Malawi cichlids can be developed into an industry benefiting country and the local poor 

people. This can be achieved without pressure upon the lake biodiversity if the wild-

collected fishes are used for breeding purpose and not for export.  

To be able to deliver a high quality fish, it will be necessary to establish proper handling 

strategies that will ensure fish health and welfare. Stress from handling procedures is known 

to have negative impact on fish growth, reproduction, immune function and survival. 

Anesthetics may be a useful tool during handling procedures of the fish, as it can reduce the 

perception of the stressor and thus prevent activation of the hypothalamus-pituitary-

interrenal (HPI) axis. In this study the three commercial anesthetics; MS-222, Benzoak® and 

Aqui-S™ were evaluated for; (1) anesthetic efficacy, (2) safety margin, (3) prolonged 

exposure and (4) stress-reducing capacity on the Malawi cichlid, red zebra (Metriaclima 

estherae). The overall results show that concentration of 150 mg/L MS-222, 120 mg/L 

Benzoak® and 50 mg/L Aqui-S™ gave satisfying introduction and recovery time for 

anesthesia. Both MS-222 and Aqui-S™ gave high safety margins as no fish mortality was 

recorded after anesthetic exposure for 30 minutes. Benzoak® gave a lower safety margin as 

there was recorded 50 % mortality following 10 minutes exposure. High mortality rate and 

sign of insufficient blockage upon the red zebra fish, suggested that prolonged exposure to 

the tested sedative dosages did not benefit the fish. MS-222 exposure reduced the stress 

response while Benzoak® and Aqui-S™ seemed to self-induce an increase in plasma cortisol 

concentration after anesthetic exposure. In conclusion; for short-term treatment on red 

zebra fish, a concentration of 150 mg/L MS-222 is recommended.    
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Introduction 

The International Ornamental Trade 

The colorful ornamental fishes have become a popular “pet” for many hobby aquarists world 

wide (UNEP, 2007). The highest share of fishes for ornamental purpose originates from 

tropical freshwaters. Earlier the trade was based on wild fishes collected form their natural 

habitat, but as the interest and demand has increased the wild fishes has been exchanged 

with captive-bred fishes. Today 90 % of freshwater ornamental fish is bred in farming 

facilities (Watson and Moreau, 2006, UNEP, 2007).  

Previously the ornamental fish trade 

involved only a small number of 

countries, but recently the industry 

has expanded (Figure 1) and today 

there are more than a hundred 

countries involved in the trade. The 

expansion has led to a multi-million 

dollar business world wide (Watson, 

2000, UNEP, 2008, Rodriguez, 2006, 

Ploeg, 2007). Due to large 

irregularities and discrepancies, the 

true value of this industry is not 

accurately known (Ploeg, 2008), but 

FAO estimated an export value at 340 

million US dollars for 2008.  

The highest share of wild collected fishes occur in the tropics where the biodiversity is 

highest (Watson and Moreau, 2006). A common problem in these areas is open access and 

no regulation (Konings, 2009). This has in many cases caused over-collection of fish stocks 

and environmental destruction. There has been raised concern about harvesting in these 

exposed areas, as well as on the methods and techniques used for catching the fish. The 

concern has caused ban on this kind of trade, as well as the promotion of the trade of 

captive-bred fishes (Watson and Moreau, 2006). 

The price ratio for sale of ornamental fish compared to sale of food fish has been estimated 

at a level of 100:1 (Ploeg, 2007), and it is believed to have the potential to improve the living 

conditions in many poor and rural communities. Today, the wild collected ornamentals are 

collected for two main purposes; direct sale and renewal of the genetic material for captive-

bred ornamentals. To increase the benefits for the poor at the same time reduce impact on 

the lake environment, the wild collected ornamentals should be used for local breeding 

purposes.  
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Figure 1: World total export and re-export value of fish 
for ornamental purposes, giving in million USD (FAO, 
2008). 
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World poverty 

Finance capital is extremely unevenly distributed throughout the world. According to 

Frienden (2007) and Aridas (2010), the wealthiest 10 %  in the world control 85 % of global 

asset, while the world poorest 50 % only manage 1 % of global assets. Its estimated that 30 

% of the world population is living below the national poverty on 1.25 US dollar a day (Figure 

2)(UNDP, 2010b), and that half of the world population is living on less than 2.50 US dollar a 

day (Shah, 2011). 925 million people are hungry, and 16 000 children die from hunger-

related causes every day (Bred-for-the-world, 2010a).  

 

 

 

 

 

 

 

 

 

To fight world poverty, the United Nation (UN) launched eight goals1 in 2000. These were 

called the ‘Millennium Development Goals’ (MDG) and were set to be archived by 2015 by 

the world leaders. The aim of these goals is to save millions of peoples from poverty with 

giving them access to human needs and basic rights (UNDP, 2010b).  

Since the announcement, livelihood improvements have been reported up till 2007. For this 

year the situation turned, as the global community was subjected to a financial crisis. The 

monetary breakdown affected the poorest countries (sub-Saharan Africa, South-Eastern 

Asia, Southern Asia and Oceania) the most. The financial crisis caused declines in trade and 

investment, and forced people to vulnerable employment or out of work. Some countries 

also experienced setbacks due to natural disasters like floods and earthquakes. As a cause of 

this, the World Bank has estimated that 53 million fewer people will be able to escape from 

poverty than projected in the MDG’s (UNDP, 2010b).  

                                                           
1
 (1) Eradicate extreme poverty and hunger (2) achieve universal primary education (3) promote gender  

equality and empower women (4) Reduce child mortality (5) improve maternal health (6) combat HIV/AIDS, 
malaria and other diseases (7) ensure environmental sustainability (8) Develop a global partnership for 
equality and empower women (4) Reduce child mortality (5) improve maternal health (6) combat HIV/AIDS, 
malaria and other diseases (7) ensure environmental sustainability (8) Develop a global partnership for 
development (UNDP, 2010b). 

Figure 2: Percentage of people living below the national poverty line defined as 1.25 
USD a day (based on data from CIA, 2008) (websters-online-dictionary.org). 

 

http://upload.wikimedia.org/wikipedia/commons/a/a6/Percent_poverty_world_map.png
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Trade is believed to be the most prominent tool against poverty, and thus, trade of products 

on the international market will provide economic growth and jobs (Bene et al., 2010, Doney 

and Wroe, 2005, Frieden, 2007). Many of the Eastern-Asian countries have experienced fast 

economic growth due to exporting their goods abroad (Doney and Wroe, 2005). Since 1990 

to 2009 the poverty percentage in Eastern-Asia has been reduced from 60 % to 13 % (UNDP, 

2010b). As for sub-Saharan African countries there have been a slower growth, and since 

1990, the trade of poverty has increased from 58 % to 64 % in 2009 (UNDP, 2010b). Heavy 

farm subsides in developing countries prevent African counties to take a bigger part at the 

world market, as their main export products are based on agriculture (UNDP, 2010a). In a UK 

campaign written by Doney and Wroe (2005) they declare that if the trade should be able to 

benefit poor countries, the global trading system should give everyone a fair chance to 

compete.  

According to UNDP (2010b) are sub-Saharan African countries are growing slowly, and it is 

assumed that they will not archive the MDG targets within 2015. Even though there is 

progress, they still represent the highest percentage of extreme hunger and poverty, and the 

greatest incidence of people dying from water- and food-related diseases, malaria and 

HIV/AIDS. Sub-Saharan-African countries make up 22 out of 30 high-risk countries that are 

dependent on food assistance (Bred-for-the-world, 2010b). These countries are also 

expected to face big challenges in future, due to climate change and environmental 

degradation. The climate change is believed to increase extreme weather patterns, making 

agriculture production difficult (UNDP, 2010a). It’s expected that climate change will cause a 

50 % reduction in the agriculture production by 2020 (Bred-for-the-world, 2010b). The 

climate change will also cause water shortages, and it is assumed that 75-250 million people 

will be affected (UNDP, 2008). 

Malawi and the cichlids 

The Republic of Malawi is ranked as nr 172 out of 182 countries based on Gross Domestic 

Product (GDP)2 (Aridas, 2010). Malawi is known as a landlocked and resource poor country, 

and is heavily dependent on financial support (CIA, 2010, NORAD, 2003). Today Malawi 

struggles with half of the population living under the national poverty line, rapid growth of 

HIV/AIDS, a population where 45 % is below the age of 15, undernourished children, low 

rates of education, environmental degradation, food scarcity and low availability of safe 

drinking water (FAO, 2010, CIA, 2010). Agriculture is the dominating employment and 

accounts for 90 % of the export revenues (FAO, 2010). Variable climatic seasons and climate 

change are challenging the agriculture production in Malawi. They are also believed to facing 

big challenges as tobacco accounts for half of the export (NORAD, 2003). 

                                                           
2
 GDP is defined as the market value of total good and service produced in a country in a given time 

(wikibooks.org, 2009). 
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Lake Malawi (Figure 3), one of the African Rift 

Valley lakes, has a surface area of 29,600 km2 and 

makes up approximately 20 % of the land area of 

Malawi (CIA, 2010). The lake is most known for its 

enormous content of endemic cichlid fishes. There 

are over 450 described species (Genner et al., 

2004), and it is believed to contain more than 1000 

(Kocher, 2004). The cichlids represent the 

vertebrate group with most rapid radiation and 

highest speciation, and are considered an 

important model in evolutionary studies. Many of 

the cichlids are distinguished from each other only 

by minor differences and this makes it possible to 

explore the fundamental processes of speciation 

and diversification (Genner and Turner, 2005, 

Kocher, 2004, Stauffer et al., 2002, Kornfield and 

Smith, 2000). This enormous biodiversity is 

believed to have evolved over a short time scale, as 

studies indicate that the lake was 100 meters 

shallower only 200 – 300 years ago (Smith and 

Kornfield, 2002).  

The wide variety of cichlid fishes in color and form has made them attractive for hobby 

aquarist world wide. In the 1970s and 80s the demand of wild-caught cichlid fishes from 

Lake Malawi was high. But subsequently the trade of wild-collected fish has declined as it 

became possible to buy cheaper captive-bred cichlids form south-east Asian countries and 

the United States (Watson, 2000). Today only a small trade connected to wild-collected 

cichlid fish from Lake Malawi is kept alive (Konings, 2009). 

Habitat destruction, introduced species, pollution, population growth and overfishing are all 

factors affecting and threatening the enormous biodiversity in the three African Rift Valley 

lakes (Stiassny and Meyer, 1999). Open access and poor regulation in combination with 

widespread poverty constitute big challenges to the unique biodiversity Lake Malawi 

supports (Konings, 2009, Nyambose, 1997, Chafota et al., 2005). 

Malawi cichlids provide a valuable resource that has the potential to improve the living 

conditions in Malawi. To increase the economic benefit, and at the same time, reduce the 

impact on the lake environment, the wild-collected fishes should be used for local breeding 

purpose. Fish production will, however, require proper handling procedures that will ensure 

fish health and welfare.     

Figure 3: Topographic map of Malawi 
(junglephoto.com, 2005). 

http://www.junglephotos.com/africa/afmaps/afcountrymaps/afcountrymaps.shtml
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Stress tolerance and fish welfare 

Stress is a well known concept and is defined by Wendelaar Bonga (1997) ‘as a condition in 

which the dynamic equilibrium of animal organisms called homeostasis is threatened or 

disturbed as a result from actions of stressors’. The response is in itself beneficial to the fish, 

as behavioral and physiological changes allow it to avoid or cope with the challenges (Iwama, 

2004). The stress response in fish is separated into two concepts defined as ‘adaptive’ or 

‘maladaptive’. Acute stress commonly caused by handling or abrupt environmental changes, 

are designated as adaptive as the fish most likely will be able to recover (Figure 4). When 

subjected to high density and bad quality water, 

stress response might become maladaptive as 

the fish are unable to escape. If the stress load 

gets chronic, the metabolic energy will be 

reallocated from the investment activity toward 

activity for restoring homeostasis (Bonga, 1997). 

The increased metabolic cost for coping with the 

stress, will eventually cost the fish its health and 

well-being (Barton, 2002, Davis, 2010). Overall 

the stress load will affect its physiological 

system, causing reduced growth, inhibit 

reproduction and suppress its immune function. 

Eventually the fish will be exhausted and is likely 

to incur disease and die (Barton, 2002, Bonga, 

1997, Barton and Iwama, 1991, Portz et al., 2006, 

Davis, 2010, Adams, 1990, Crosby et al., 2006).  

Fish welfare is a concept that recently raised public concern, as aquaculture and scientific 

research have exploited (Ashley, 2007). There is still an ongoing discussion about fish as a 

sensing vertebrate, if it capable of suffering and feeling pain (Ross and Ross, 2008, Carter et 

al., 2010, Neiffer and Stamper, 2009). Iwama (2004) suggests that fish welfare should be 

based on its physiology rather than its capability to feeling pain or not. Lund and coworkers 

(2007) defined welfare as good when the animal’s biological coping system is not being 

overloaded. This suggests that welfare status of animals can be identified or measured by 

using health and physiological indicators (Brattelid, 1999b, Conte, 2004). Its increased focus 

on stress physiology as studies show that stress has effect upon other hormones: in male 

songbird testosterone level was reduced by 37 - 52 % in response to acute stress (Deviche et 

al., 2010), in red-sided garter snake it was demonstrated that increased glucocorticoids 

inhibit melatonin synthesis (Lutterschmidt and Mason, 2010) and in rainbow trout prolactin 

levels were reduced up to 60 % when subjected to chronic stress (Pottinger et al., 1992). 

Considering fish welfare will not only benefit the fish, but also its owner, as a healthy fish wil 

increase profit (Lund et al., 2007, Crosby et al., 2006). 

Figure 4: A schematic illustration of the 
possible outcome for fish subjected to acute 
and/or chronic stress (Davis, 2010) 
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Figure 5: Overview of the stress reaction, illustrating the 
two component systems; Hypothalamic-Sympathetic-
Chromaffin axis and Hypothalamic-Pituitary-Interrenal (HPI) 
axis and the following physiological changes. Modified from 
(Sigholt and Staurnes, 1992, Brattelid, 1999a, Portz et al., 
2006)  

The stress response in fish 

The physiological stress reaction follows the same basic pattern in all vertebrates; initiated 

with elevated levels of catecholamine’s and corticosteroids. But the magnitude will vary 

according to duration and severity of the stressor, as well as species (Huntingford et al., 

2007, Barton, 2002, Barcellos et al., 1999). In some species concentration of corticosteroids 

will fluctuate with diel and annual rhythms, as it may control other body processes (Davis 

and Parker, 1986). However, the physiological changes that occur during a stress reaction 

was first described in a non-specific way by Selye (1950) through the ‘General Adaption 

Syndrome’ (GAS). This GAS concept describes the stress reaction through three stages; the 

alarm reaction, the stage of resistance and the stage of exhaustion. In later studies, the 

stress response has been categorized into primary (neural and endocrine changes), 

secondary (the physiological changes) and tertiary response (changes on the whole 

individual and population level) (Iwama, 2004, Barton and Iwama, 1991, Bonga, 1997, 

Barton, 2002, Sigholt and Staurnes, 1992, Pickering, 1981). 

The stressor activates a two 

component system (Figure 5) in the 

fish: the hypothalamic-sympathetic-

chromaffin axis, release of 

catecholamine’s (adrenalin and nor-

adrenalin), and the hypothalamus-

pituitary-interrenal (HPI) axis, 

producing and secreting 

corticosteroids (mainly cortisol in 

teleostean fish) (Pickering, 1992). 

The sympathic nerve fibers will 

stimulate the chromaffin cells in the 

head kidney to release their storage 

of catecholamines.  The level of 

circulating catecholamines will 

increase immediately after stress 

exposure. On the other hand is the 

release and circulation elevation of 

cortisol a more delayed process. 

The initiation of cortisol 

production, by the interrenal cells 

in the head kidney, follows a three 

stage endocrine pathway. This 

pathway is initiated by external 

stimuli that will stimulate 

hypothalamus to release  
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corticotrophin-releasing-factor (CRF). CRF will stimulate corticotrophin cells in the anterior-

pituitary to secrete adrenocorticotropin hormone (ACTH), which stimulates the interrenal 

cells to produce and secret corticosteroids, mainly cortisol. The elevated cortisol 

concentration in the circulatory system functioning as a control mechanism, giving negative 

feedback in all steps of HPI axis (Barton, 2002). 

The increased concentration of circulating catecholamines and cortisol will in turn cause 

physiological changes on blood and tissue level, referred to as the secondary response. The 

increased hormone concentration will activate several metabolic pathways that will 

compensate for the changed condition (Iwama, 2004). Catecholamine’s will cause increased 

ventilation rate and blood flow for increased oxygen uptake and consumption, as well as 

initiate glycogenolysis (Portz et al., 2006). The main function of cortisol is energy metabolism 

and hydromineral balance (Bonga, 1997). While catecholamines will cause a short and 

immediate change with a concentration peak in less than 10 minutes, cortisol will provide a 

prolonged and delayed effect. The concentration peak of circulating cortisol will occur 30 to 

60 minutes after the stress stimulation, and the concentration will generally reach normal 

values within 5 to 10 hours after acute stress (Brattelid, 1999b). The function of cortisol is to 

maintain the hyperglycemia in addition to post-stress, after the catecholamine’s have 

subsided (Iwama, 2004). Cortisol is also important for restoration of the osmotic balance and 

prevent overstimulation of the immune system (Bonga, 1997, Portz et al., 2006). 

If the stress becomes chronic it may become maladaptive as the physiological changes will 

remain elevated over an extended period. This is known as the tertiary response. The 

physiological compensation for the stress reaction will cause suppression of the non-vital 

processes; growth, reproduction and immune function, affecting fish welfare and health 

(Iwama, 2004). The degree of the tertiary response is related to the intensity and duration of 

the stressor (Portz et al., 2006), but the increased metabolic cost will eventually go beyond 

its health and welfare. The fish is more susceptible to disease and survivability is reduced 

(Pickering, 1992).  

Anesthesia 

Anesthetizing the fish is often useful during handling 

procedures to reduce trauma and injury (Neiffer and 

Stamper, 2009). ‘Anesthesia’ means loss of sensation or 

insensibility (Ross and Ross, 2008), and can be introduced 

to fish through physical or chemical techniques. Physical 

anesthetics are applied through electric tension or 

refrigeration (Brattelid, 1999c), while chemical 

anesthetics are based on immersing the fish in a water 

solution containing a chemical agent. These techniques 

will cause general anesthesia as they affect the fish 

sensitivity, equilibrium and consciousness. Mostly this is introduced through ‘inhalation 

anesthesia’ (Figure 6), where the active agent mixed in the water is ventilated through the 

Figure 6: Illustrates uptake and CNS 
effect from an active agent (Ross 
and Ross, 2008)  
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fish gills (minor through the skin). The agent will pass the blood-brain barrier and have an 

effect upon the fish central nerve system (CNS) (Brattelid, 1999c, Ross and Ross, 2008). The 

chemical agent interacts with membrane components and will causes blockage or 

depression of nerve impulses (Ross and Ross, 2008). This cause loss of mobility, equilibrium 

and muscle reflexes (Brattelid, 1999c).  

Anesthetic treatment may reduce fish’s perception of the stressor and thus prevent the 

nervous input to the CNS (Woods et al., 2008, Brattelid, 1999b). This is desirable because it 

will block or reduce the cortisol synthesis. Cortisol elevation is known to depend upon 

intensity and duration of the stressor, and may be detrimental to the fish as the cascade of 

physiological changes may persist for days or weeks. However, improper dosages and 

anesthetic drugs may have undesirable side effects upon the fish and may self induce 

unnecessary stress. It is therefore necessary to find the anesthetic and dosage that is 

appropriate and have desirable effects on the fish (Carter et al., 2010). An appropriate 

anesthetic dosage will provide a smooth and rapid anesthesia and recovery (Woods et al., 

2008), and should not cause any undesirable side-effects. In addition, the anesthetic agent 

should provide a satisfying blockage upon the HPI-axis, in order to prevent cortisol elevation 

when anesthesia subsides (Brattelid, 1999b). 

The degree of chemical blockage upon the nervous system varies according to chemical 

agent, dosage and duration (Burka et al., 1997, McFarland and Klontz, 1969). McFarland 

(1969) was the first to classify this chemical effect into stages based on behavioral signs 

(Table 1). The anesthetic effect is ranged from ‘sedation’, giving a calming effect, to ‘surgical 

anesthesia’, giving full immobilization. The analgesic effect of the anesthetics is, however, 

still unknown (Ross and Ross, 2008). 

Table 1: Stages of anesthesia; modified from (McFarland and Klontz, 1969, Burka et al., 1997) 

 

The basic procedure for introducing anesthesia in fish is divided into three phases; 

introduction, maintenance and recovery (McFarland and Klontz, 1969, Ross and Ross, 2008). 

The dept of the introduced anesthesia will vary according to dosage and duration. In order 

Stage Description Behavior sign 

0 Normal Active swimming patterns; reactive to external stimuli; 
normal equilibrium; normal muscle tone. 

1 Light sedation Reduced swimming activity; slight loss of reactivity to 
visual and tactile stimuli.  

2 Light narcosis  Slightly loss of equilibrium 
3a Deep narcosis Total loss of equilibrium; decreased muscle tone; reactivity 

to strong tactile stimuli; decreased respiratory rate 
3b Surgical anesthesia Total loss of reactivity; total loss of muscle tone; low 

respiratory rate 
4 Medullary collapse Respiration creases, cardiac arrest; death ensures 
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to not traumatize and stress the fish, the introduction phase should last for a few minutes. 

However, too rapid introduction is neither desirable as it will harm and kill the fish. The most 

desirable anesthesia is set to be achieved within 3 minutes (Ross and Ross, 2008, Marking 

and Meyer, 1985). In some procedures like transportation or surgery, it will be necessary to 

maintain anesthesia. It should be kept in mind, thought, that different species will have 

different tolerance to dosage and duration of anesthetic drugs. Maintenance of deep 

anesthesia for too few minutes is likely to cause death from ventilation and circulatory 

arrest. Flaring and spasms of the opercula function as warning signals to medullary collapse 

(McFarland and Klontz, 1969, Ross and Ross, 2008).  

Recovery from anesthesia will occur when the fish is immersed in freshwater. The anesthetic 

agent is then excreted through the gills. As with the introduction of anesthesia, recovery is 

also divided into different stages based on behavioral sign (Table 2). The recovery should be 

attained within few minutes to prevent stress and harmful effects on the fish (Woods et al., 

2008). The most desirable recovery is set to be retained within 5 minutes (Marking and 

Meyer, 1985, Ross and Ross, 2008). Higher concentrations and longer exposure time of the 

anesthetic correspond with longer recovery time (McFarland and Klontz, 1969). After 

attained an anesthetic procedure the fish is recommended to be under closer observation 

for 24-72 hours, as death can occur (Ross and Ross, 2008).  

Table 2: Stages of recovery; modified from (Hikasa et al., 1986) 

 

 

 

 

 

 

There are several different chemical drugs that can immobilize fish, but not all are described 

as safe and effective for use on fish. Marking and Meyer (1985) listed up six criteria for an 

ideal anesthetic; permit reasonable duration of exposure, produce anesthesia within 3 

minutes or less, allow recovery within 5 minutes or less, cause no toxicity to fish at 

treatment levels, present no mammalian safety problems and leave no tissue residues after 

a withdrawal time of 1 hour or less.  

Biological and environmental factors 

The time to introduce anesthesia depends on both biotic and abiotic factors. Age, lipid 

content, size and metabolism are biological factors that will affect the anesthetic effect. The 

anesthetic can also have different effects within the same species due to biological 

differences between sex, life-stage and season (Brattelid, 1999c).  

Stage Behavior sign 

1 Reappearance of opercula movement; weak muscle tone 
visible 

2 Reappearance of swimming activity but still loss of 
equilibrium  

3 Partial recovery of equilibrium 
4 Full recovery of equilibrium; reaction in response to visual 

and tactile stimuli; still stolid behavioral response 
5 Total behavior recovery; normal swimming activity 
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The chemical properties of anesthetics may depend upon environmental factors like 

temperature, pH, salinity, chemical additives and oxygen content (Burka et al., 1997). Lipid-

soluble anesthetics may depend upon temperature or solvent for resolution, and some 

anesthetic will in turn have affect upon water parameters. Fish is a poikiloterm animal and 

temperature will affect its biological functions. Both temperature and pH will affect gill 

perfusion, which in turn affect uptake and clearance rate of the anesthetic agent  (Ross and 

Ross, 2008, Burka et al., 1997). To avoid undesirable effects on the fish, the anesthetic 

treatment is recommended to be carried in water close to the fish biological optima 

(Brattelid, 1999c). 

Anesthetics and ornamental fish 

Use of anesthetic is well established within the aquaculture sector for food fish during 

handling, transport, confinement, vaccination, grading, etc. However, the wide variety in 

anatomy, physiology and behavior in the fishes, make the anesthetic treatment potential 

harmful (Neiffer and Stamper, 2009). Regarding tropical ornamentals there is insufficient 

information available for anesthetic use (Pramod et al., 2010, Crosby et al., 2006), however, 

there are some publication emphasize on the anesthetic efficacy on some species (Bircan-

Yildirim et al., 2010, Young, 2009, Grush et al., 2004, Kaiser and Vine, 1998). 

High post-transport mortality of ornamentals from rural communities is a common problem 

(Tlusty et al., 2005, Watson, 2000). Mortalities during and after transportation events are 

presumably caused by osmoregulatory dysfunction or stress-mediated diseases. A stressed 

fish will have increased metabolic rate, which gives increased metabolic load that in turn will 

give bad quality water. As a warranty for the buyer, the industry standard states that the 

exporter are expected to compensate for losses that exceeds 5 % death of arrival (DOA) (Lim 

et al., 2003). High DOA results in low quality products and low economical benefit for the 

exporter (Pramod et al., 2010). This is often the case in fish transported from rural 

communities due to absence of equipment, holding facilities and undeveloped infrastructure 

in combination with poor handling techniques. To supply a resistant and healthy fish, it is 

necessary to establish proper handling management that will avoid handling-related stress.  

The anesthetics selected for this study were; MS-222, Benzoak® and Aqui-S™. MS-222 and 

Benzoak® are the most used within the Norwegian aquaculture sector, and are generally 

considered effective and safe in use (Hseu et al., 1998, Gilderhus and Marking, 1987). MS-

222 (tricaine methane-sulphonate) is the most commonly anesthetic applied on fish, and is 

the only anesthetic verified by the U.S. Food and Drug Administration (FDA). It occurs as 

white crystalline powder directly applied to the water. The disadvantages with MS-222 

include high cost, acidity and a required withdrawal period of 21 days for food fish due to 

lack of mammalian safety data. Benzocaine (the active compound in Benzoak®) is an isomer 

of tricaine methane-sulphonate. However, compared to MS-222 are benzocaine ≈ 250 times 

less soluble in water, neutral (Ross and Ross, 2008) and effective at lower concentrations 

due to hydrophobic properties (Hseu et al., 1998, McFarland and Klontz, 1969). Both MS-222 

and benzocaine are classified as local anesthetic agents, as they block neuronal Na+-



Introduction 
 

11 
 

channels, which mean that transmission of action potential are prevented (Kiessling et al., 

2009, Burka et al., 1997).  

Aqui-S™ is a newer anesthetic developed in New Zealand. It is based on features from 

naturally produced clove oil that contains 70 – 90 % of the active substance, eugenol. Aqui-

S™ contain the isomer, iso-eugenol (50 %), as it has been shown to give more effective and 

controlled anesthesia compared to clove oil. Aqui-S™ is considered an effective and “stress 

free” anesthetic, as well as having the advantages of being inexpensive and safe for humans 

(Ross and Ross, 2008, Kildea et al., 2004, Coyle et al., 2004). Aqui-S™ is approved as 

anesthetic in Australia, Chile, New Zealand, South Korea and Honduras with no withdrawal 

period before slaughter (AQUI-S, 2010). The U.S FDA has categorized Aqui-S™ as GRAS 

(generally regarded as safe) (Ross and Ross, 2008), but it still has not been approved as an 

anesthetic with no withdrawal period (Young, 2009). No required withdrawal period will 

mean that Aqui-S™ can be used for “rested-harvest” of fish ready for slaughter (Bosworth et 

al., 2007, Forgan and Forster, 2010) and field collected fish can be released back to their 

natural environment immediately after treatment (Stehly and Gingerich, 1999, Young, 2009).  

Aim of study 

The aim of this study is to assist development and improvement of living conditions in 

Malawi. To be able to deliver a healthy and resistant fish of high value, it is necessary to 

establish proper handling strategies that will take care of the fish. Anesthetics may be a 

useful tool, as they have the potential to both reduce physical injuries and perception of the 

stressor during handling and transport procedures. To find the efficacy and stress-reducing 

capacity of MS-222, Benzoak® and Aqui-S™ on the ornamental cichlid fish, Metriaclima 

estherae, the chosen study objectives are as follow  

I. Which concentrations satisfy anesthesia and recovery?  

II. What is the safety margin for the anesthetics and their chosen concentration? 

III. What tolerance does the red zebra fish have for prolonged exposure to diluted 

concentrations? 

IV. Will the anesthetic treatment reduce stress reaction in red zebra fish? 
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Materials and methods 

Study site and object 

The cichlid fish, red zebra (Metriaclima estherae), was used as test animal for this study. The 

fish was supplied from a fish hobbyist in Levanger (Sør-Trøndelag). The fish were kept in 250 

and 180 liter aquaria at NTNU (Figure 7). The room maintained a temperature at 23˚C and 

the light followed a photoperiod regime of 12L: 12D (turned on 8 o’clock in the morning and 

of 6 o’clock in the evening, giving one hour of dusk and dawn). 

All of the aquaria were equipped with a water pump, thermometer, magnetic algae scratch 

and aquaria lamp, as well as housing items such gravel substrate (calcareous sand and river 

gravel), stones, brick stones and polyethylene tubes. The sides of the aquaria were black-

coated to prevent visual impact from neighboring aquaria. The first supply of fishes arrived 

to the animal room 14.05.2009, containing 15 adults (≈1 year) and 39 fry (≈2 months). The 

juveniles were divided into two aquaria, while the adults were placed in social groups 

consisting of one male and three to four females (male express territorial and aggressive 

behavior). The fish were a mixture of normal colored (orange) and color polymorphism 

(orange blotch) fish. The number of fishes increased during the study period, due to 

breeding in some of the aquaria.  

The daily routine work was feeding and temperature recording. The fishes were fed once a 

day with commercial flake food (Tetra and Ocean nutrition™), while the fries were feed 

twice a day with a mix of commercial flake food and Artemia. Weekly routine include water 

change, while water pumps were cleaned monthly.  

Red zebra fish 

The red zebra fish, Metriaclima estherae (also called Maylandia or Pseudotropeus), used in 

this study is distributed throughout Lake Malawi. The red zebra is known as a rock-dwelling 

Figure 7: The holding aquaria containing red zebra fish. The picture to the left shows four females and two males 
of juvenile-adult red zebra. 



Materials and methods 
 

13 
 

mbuna3, since they are found in the rocky areas in Lake Malawi. Their natural food consists 

of algae and invertebrates (Tornøe, 1992). The red zebra fish is a common aquarium fish 

where the regular females are orange red while the males are blue, but orange males and 

orange blotch (OB) color phenotype also appear within this specie. The orange males can be 

distinguished from the female by a light blue shade and the OB fish have orange and black 

spots for the females. The red zebra fish is a social fish where the females are attracted to 

dominant males. The dominant males differentiate from the subordinated males as they 

have a lighter and clearer blue color. The dominant males are also larger and more 

aggressive. The females are mouth-brooders and will keep the eggs and fry (Figure 8) in her 

mouth for three weeks before she releases them. The clutch size will depend upon the 

female size, but range from 15 to 40 eggs.  The red zebra fish can have a life-span of 10 years 

(Pagan, 2008).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Natural environment vs. laboratory conditions 

Seasonal rhythms in the tropics are not always clearly marked, and the growth and 

reproduction seem to be continuous year-round (Oduleye, 1982). This is also partly true for 

the lake environment the red zebra fish originate from. During the dry period (June to 

August), the water temperature is around 20˚C due to upwelling from deeper water. During 

the rain period (November to April) the water temperature can be as high as 30˚C. The 

annual mean water temperature (surface) is 25˚C.  The pH varies between 7.8 – 8.6 and the 

hard water (carbonate) has a value at 3 dKH (Konings, 2003)  

                                                           
3
 Mbuna (“rockfish”) makes up one out of three groups within the haplochromine group. In Lake Malawi the 

cichlids are divided into the two sub-groups; haplochromine (represents the ornamental fish) and tilapiine 
(represents the food fish) (Tornøe, 1992). 

Figure 8: Yolk sack fry of red zebra fish. Photo Per Olsen 



Materials and methods 
 

14 
 

In the holding facilities the temperature was held at 24 (± 3) ˚C, pH ranged between 7.71 – 

8.63 and water hardness was approximately 3 dKH (Tetratest kit, freshwater). The fishes 

showed vigorous feeding, breeding behavior and absence of diseases. Young (2009) refers to 

this as an indication that the fish thrives in the captive conditions.  

Anesthesia 

Anesthetics used 

The anesthetic drugs selected for this study was: MS-222 (tricaine methane-sulphonate 100 

% w/w; PHARMAQ Ltd. Fordingbride, United Kingdom), Benzoak® (200 mg/mL benzocaine, 

E.131 and additives; A. C. D PHARMACEUTICALS, Leknes, Norway) and Aqui-S™ (540 g/L 

isoeugenol + emulator; Scan Aqua, Årnes, Norway). All anesthetics are expressed in mg/L in 

relation to the active substance. MS-222 was measured by use of a gram-scale (Precisa 240A, 

NERLIENS, Oslo, Norway), while Benzoak® and Aqui-S™ was measured by use of a 50 mL 

glass cylinder. MS-222 and Benzoak® was applied directly to the temperate water, while 

Aqui-S™ was prepared as a stock solution at a ratio of 1 part Aqui-S™ solution to 10 parts 

temperate water.  

Dose determination 

The package recommended concentration was first tested on a smaller number of 

fish. These recommended dosages were based on introducing anesthesia on salmonids, 

which are generally more vulnerable for the anesthetics than tropical fishes. Due to little 

anesthetic effect on the red zebra fish, the package recommended concentration was 

chosen as the lowest (Table 3). 

Table 3: The three anesthetic drugs and the concentrations tested in experiment 1a and b upon fry 
and juvenile-adult red zebra fish. 

Anesthetics Concentrations (mg/L) 

MS-222 50 100 150 
Benzoak® 40 80 120 
Aqui-S™ 10 25 50 

 

Experimental procedure 

During the implementation of the different experimental procedures (described below), 80 

liters glass aquaria were used, each equipped with aeration stone. The water in these 

aquaria was mixed (half from holding aquaria and half new freshwater stored on barrels). 

The fish was unfed for 24 hours prior to the experiments. The water temperature (aquatic 

mercury thermometer) and pH (MP220 pH-meter, Mettler Toledo) was recorded before and 

after the experiments.  

Experiment 1a: Anesthetic efficacy of MS-222, Benzoak® and Aqui-S™  

Groups of red zebra fish from two size classes (fry; 0.4 ± 0.3 gram, juvenile-adult; 6.1 ± 2.1 

gram, n = 12) were exposed to one of three different concentrations of MS-222, Benzoak® 
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and Aqui-S™ (Table 3). The fish were transferred to an acclimation aquarium two hours prior 

to the experiment performance. When performing the experiments, single fish were quietly 

scooped and transferred from the acclimation aquaria and immersed to the anesthetic 

solution in the experimental aquarium. The time lapsed for introduction of the different 

anesthetic stages followed Table 1. After reaching the final stage, surgical anesthesia (stage 

3b), the fish were weighed (Sartorius BP4100, Kebo-Lab) before transferred to the 

resuscitation aquaria containing only aerated freshwater. Total observation time was 10 

minutes.  

Experiment 1b: Recovery from MS-222, Benzoak® or Aqui-S™ exposure 

The recovery tests were run independently from the anesthetic experiments, in order to give 

all fishes the same starting point. The exposure time was selected based on the average 

introduction time achieved from experiment 1a (Table 4). Groups of red zebra fish from two 

size classes were used (fry; 0.4 ± 0.3 gram, juvenile-adult; 6.1 ± 2.1 gram, n = 6). After the 

desirable exposure time of the chosen anesthetic and its concentration, the fish were 

transferred to the resuscitation aquarium for recovery. The time to intrigue the different 

recovery stages (according to Table 2) were recorded for each individual fish.   

Table 4: The anesthetic concentrations and the corresponding exposure time tested on fry and 
juvenile-adult red zebra fish. 

MS-222 Benzoak® Aqui-S™ 

Concentration 
(mg/L) 

Duration 
(min) 

Concentration 
(mg/L) 

Duration 
(min) 

Concentration 
(mg/L) 

Duration 
(min) 

50  10 40 10 10 10 
100 6  80 6 25 5 
150 3 120 3 50 2.30 

 

Experiment 2: Safety margin; exposure to full anesthetic concentration of MS-222, 

Benzoak® and Aqui-S™ in time interval of 10, 20 and 30 minutes.  

Groups of juvenile-adult (6.7 ± 1.3 grams, n = 6) red zebra fish were exposed to full 

anesthetic concentration of the three respective anesthetics in 10, 20 and 30 minutes (Table 

5). Two hours prior to the experiment, the fishes were transferred to the acclimatization 

aquarium. Eighteen fishes were netted at a time to the anesthetic containing aquarium. 

After the desirable time intervals, six fishes were transferred to the resuscitation aquaria. 

Behavior was monitored. 

Table 5: The concentration and time interval used for testing safety margin of the three anesthetic 
dosages on juvenile-adult red zebra fish. 

 

 

Anesthetic  Concentration Duration (min)  

MS-222  150 mg/L 10 20 30 
Benzoak®  120 mg/L 10 20 30 
Aqui-S™  50 mg/L 10 20 30 
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Experiment 3: Tolerance test; 48 hours exposure to diluted concentrations of MS-222, 

Benzoak® and Aqui-S™. 

Groups of fry (0.4 ± 0.3 gram, n = 8) red zebra fish were exposed to one out of four sedative 

concentrations of MS-222, Benzoak® and Aqui-S™. The fishes were transferred to 

acclimation aquaria two hours prior to the experiment. Eight fishes were first transferred 

from the acclimatization aquarium to an aquarium containing full anesthetic dosage. After 

obtained surgical anesthesia, the fish were moved to the sedative maintenance solution 

(Table 6). During the exposure fish behavior were monitored and dead fish were removed. 

After 48 hours exposure the fish were transferred to the resuscitation aquaria. Fish observed 

with abnormal behavior still after 24 hours recovery was killed with an anesthetic overdose 

(300 mg/L). Fish that attained normal behavior were transferred back to their holding 

aquarium.  

Table 6: The anesthetic introduction concentration and subsequent sedative concentration for 
maintenance exposure on red zebra fry.  

 

 

 

 

Stress test  

Cortisol is widely used as an endocrine stress indicator in fish (Martinez-Porchas et al., 2009, 

Bolasina, 2006, Crosby et al., 2006, Barton and Iwama, 1991). Cortisol is documented to have 

a delayed concentration peak 30 to 60 minutes after stress (Iwama, 2004), and as well the 

magnitude and extent of cortisol concentration usually reflect the intensity and duration of 

the stressor (Barton and Iwama, 1991). In order to elicit a cortisol elevation in red zebra fish, 

the fish were exposed to air for 1 minute. The same procedure has documented significant 

cortisol elevation for cobia (Rachycentron canadum) 30 minutes after stress (Trushenski et 

al., 2010).  

Experiment 4: The stress-reducing capacity of MS-222, Benzoak® and Aqui-S™ 

Groups of adult (≈ 2-3 years) red zebra fish (22.08 ± 7.9 gram; 10.4 ± 1.3 cm, n = 7) of both 

sexes were exposed to MS-222 (150 mg/L), Benzoak® (120 mg/L) and Aqui-S™ (50 mg/L). 

Fish group of eight were transferred to the acclimation aquarium the day before. There was 

no human interaction with the fishes in the last 12 hours before the experiment. The 

anesthetic drug was applied through a plastic hose connected to the aquarium from the 

neighbor room. MS-222 was dissolved in 1 liter temperate water before applied. After the 

desired introduce time (MS-222: 3 minutes; Benzoak®: 3 minutes; Aqui-S™: 2.5 minutes) the 

fish were transferred to the resuscitation aquarium. 30 minutes from the anesthetic drug 

was applied, the fish were transferred to a bucket containing anesthetic overdose (300 mg/L 

MS-222). When equilibrium was lost, the fish was picked up and given a subsequent blow to 

Anesthetic Introduction 
(mg/L) 

Diluted concentrations 
(mg/L) 

MS-222 125 75 50 25 12.5 
Benzoak® 100 50 25 12.5 6 
Aqui-S™ 25 25 12 6 3 
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the head. Blood was sampled from the caudal vasculature by heparinized (Heparin LEO, 25 

000 IE/mL) syringes (BD plastipak™: 1 mL, Madrid, Spain) cannula (BD Microlance™ 3: blue: 

0.6 x 25 mm and yellow: 0.3 x 12 mm, Fraga, Spain). The blood samples were centrifuged 

(Mikro 22R, Hettich Zentrifugen) at 4500 rpm for 5 minutes, and the plasma were collected 

and frozen at -20 ˚C.  

Analytic procedures 

Cortisol concentration (nmol/L, nM) was quantified from the plasma samples by use of Radio 

Immunoassay kit (RIA) (Coat-A-Count Cortisol, Simens). This RIA kit used cortisol marked 

with radioactive I125 (iodine). The RIA method is based on a competition between labeled 

(Ag*, tracer) and unlabeled antigen (Ag, the hormone to be quantified) to a constant deficit 

concentration of a specified antibody (Ab). The kit supply pre-coated antibody tubes. The 

binding kinetics follows equilibrium equation and can be expressed by the following 

equation: 

Ag + Ag* + Ab ⇄ AgAb + Ag*             Ag*Ab + Ag                    (1) 

Ag*Ab and AgAb demonstrate the bound fraction, while Ag* and Ag demonstrate the free 

antigen fraction (Chard, 1995). In this study the Ag*Ab was counted by use of a gamma 

counter (Packard COBRA™II Auto-gamma). The unknown cortisol amount was quantified 

using a curve constricted from kit standards. The cortisol concentration was automatically 

calculated, and the counting time was 1 minute for each sample. 

The samples were run as singles. In addition, control cortisol samples (Lyphochek 

Immunoassay Pluss Control, cortisol level 2, BioRad, France) were run in duplicates. 

In order to evaluate the quality of the results obtained from RIA; sensitivity, precision and 

accuracy were defined. The detection limit (sensitivity) was defined by the gamma counter, 

while precision and accuracy of the assay was defined though calculating the coefficient of 

variation (CV = (SD/mean x 100 %)) for triplet samples. Preferably, the CV value should be ≤ 

10%.  

Conversion factor 

Cortisol concentration given in ng/mL or µg/dL in other published papers was converted to 

nM   

To convert ng/mL to µg/dL: 

ng/mL / 10 = µg/dL        (2) 

The convesion factor for µg/dL to nM is given as: 

µg/dL = nM/27.95        (3) 
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Graphic and statistics  

All graphic presentations are presented as mean ± standard deviation (SD) and are produced 

by use of SigmaPlot 11.0 for Microsoft Windows. All statistical analysis are performed by use 

of SPSS 18.0.  

Because of non-normalized data, Mann-Whitney U-test was used to run the statistical 

analyze for comparison of size classes (introduction and recovery time) and cortisol 

concentration between control/stress group and the anesthetic treated groups. p < 0.05 was 

designated as significant difference between groups. 
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Results 

Anesthesia 

Experiment 1a and b: Anesthetic efficacy and recovery from MS-222, Benzoak® and Aqui-S™ 

Figure 9 shows the average introduction and recovery times attained for the three different 

dosages tested of MS-222, Benzoak® and Aqui-S™ on two size classes of red zebra fish (fry; 

0.4 ± 0.3 gram, juvenile-adults; 6.1 ± 2.1 gram). Temperature and pH had a mean value of 

20.9 ˚C (± 0.8) and 8.0 (± 0.5) during the experiment.  

The concentrations tested for MS-222 was 50, 100 and 150 mg/L (tricaine methane-

sulphonate). Exposure to 50 mg/L MS-222 for 10 minutes was not sufficient to introduce red 

zebra fish to surgical anesthesia (stage 3b). Exposure to 100 mg/L MS-222 induced surgical 

anesthesia, but gave a long introduction time for both size classes (08:04 ± 01:20, 06:33 ± 

1:43), while recovery was obtained within the desirable time (02:37 ± 00:23, 04:03 ± 01:52). 

Concentration of 150 mg/L MS-222 was chosen as the most satisfying concentration, as it 

gave the most suitable introduction and a desirable recovery time. For the fry, the 

introduction and recovery was within the desirable time (03:16 ± 00:34, 03:04 ± 00:31), 

while for juvenile-adults introduction time slightly extended the desirable criteria (04:32 ± 

01:40). Recovery time was, however, suitable (04:03 ± 01:52).  

The concentrations tested for Benzoak® was: 40, 80 and 120 mg/L (benzocaine). A 

concentration of 40 mg/L was not sufficient to introduce red zebra fish to surgical 

anesthesia. Concentration at 80 mg/L introduced surgical anesthesia, but extended the 

desirable time for both size classes (05:50 ± 00:51, 06:53 ± 00:58), while recovery remained 

within for the fry (04:03 ± 00:37) it slightly extended for juvenile-adults (05:32 ± 00:46). 

Concentration of 120 mg/L was chosen as the most satisfying concentration, as it induced 

surgical anesthesia within desired introduction time for both fries (1.93 ± 0.91) and juvenile-

adults (2.83 ± 0.42). The fry obtain recovery within the desirable time (04:52 ± 01:37), while 

juvenile-adults slightly extended it (06:41 ± 00:33).  

The concentrations tested for Aqui-S™ was: 10, 25 and 50 mg/L (iso-eugenol). The 

concentration of 10 mg/L Aqui-S™ was not sufficient to induce surgical anesthesia for 

juvenile-adults, while 41 % of the fry reached the stage. However, it was not observed any 

sedative traits and unbalance for the fry transferred to freshwater, while 67 % of the 

juvenile-adults struggled with the balance (stage 2 or 3). The concentration of 25 mg/L 

introduced surgical anesthesia for both fries (05:49 ± 00:55) and juvenile-adults (05:09 ± 

01:10). While recovery time extended for juvenile-adults (07:52 ± 02:21), the fry recovered 

surprisingly fast (03:11 ± 00:31). Concentration of 50 mg/L was chosen as the most satisfying 

concentration, as it induce surgical anesthesia within the desirable time for both fries (02:38 

± 00:21) and juvenile-adults (02:31 ± 00:21). The recovery time for the fry (06:15 ± 01:40) 

exceeded slightly the desirable time, while it gave considerably longer recovery for juvenile-

adults (09:23 ± 01:38).    
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Figure 9: Average time to introduction of surgical anesthesia (stage 3b) and time to retain full 
recovery (Stage 4) for two size classes (fry; 0.4 ± 0.3 gram, juvenile-adults; 6.1 ± 2.1 gram) red zebra 

fish exposed to three different dosages of MS-222, Benzoak® and Aqui-S™ (values are given as mean 
± SD, introduction n = 12, recovery n = 6). 

Figure 10 shows the overall average introduction and recovery times for both size classes of 

red zebra fish at the chosen concentration of MS-222, Benzoak® and Aqui-S™. The efficient 

dosage of Aqui-S™ and Benzoak® gave the shortest introduction times (02:34 ± 00:21, 02:38 

± 00:43). MS-222 introduction time (03:54 ± 00:57) slightly exceeded the desirable time. 

Furthermore, Aqui-S™ gave the longest recovery time (07:49 ± 02:17) and MS-222 gave the 

shortest (03:34 ± 00:46). Recovery time for Benzoak® (05:46 ± 01:30) slightly exceeded the 

desirable time. 
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Figure 10: Chosen dosages and resulting introduction and recovery time for three anesthetics used to 
anesthetize different size red zebra (fry; 0.4 ± 0.3 gram, juvenile-adults; 6.1 ± 2.1 gram); the overall 
average introduction and recovery time (values are given as mean ± SD, introduction n = 24, recovery 
n= 12).  

Experiment 2: Safety margin; exposure to full anesthetic concentration of MS-222, 

Benzoak® and Aqui-S™ in 10, 20 and 30 minutes 

Table 7 shows the survival rate of juvenile-adults red zebra fish (6.7 ± 1.3 gram) exposed to 

the chosen anesthetic concentration of MS-222 (150 mg/L), Benzoak® (120 mg/L) and Aqui-

S™ (50 mg/L) for 10, 20 and 30 minutes. The aim of this experiment was to determine the 

safety margin of the anesthetics for red zebra fish, as the chosen anesthetic concentration 

should not be toxic to the fish for extended exposure time. Temperature and pH had an 

average value of 21.8˚C (± 0.4) and 7.8 (± 0.2) during the experiment.  

There were not recorded any mortalities for red zebra fish exposed to MS-222 (150 mg/L). 

For the fish exposed for 10 and 20 minutes the fish was observed to retain recovery (stage 4) 

within 6 minutes, while fish exposed for 30 minutes were observed to obtain recovery within 

8 minutes. Based on these results and observation, it is suggested that MS-222 has high 

safety margin for red zebra fish. 

Mortalities were recorded for red zebra fish exposed to Benzoak® (120 mg/L). There were 

recorded 30 % mortality for fish group exposed for 20 minutes and 70 % mortality in fish 

group exposed for 30 minutes. There was large variation in recovery time between individual 

fish in all three groups. For the fishes in the 10 minutes group, recovery was retained within 
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7 minutes, while this time extended and became more variable for the fish exposed for 20 

and 30 minutes. Because of wide variation in recovery time and because of death 

occurrence, the safety margin of Benzoak® is considered to be low for red zebra fish.   

There were not recorded any mortalities in fish groups exposed to Aqui-S™ (50 mg/L). But 

Aqui-S™ exposed fish had extended recovery time compared to MS-222 and Benzoak®. The 

fish laid motionless for several minutes in the resuscitation aquaria before any gill 

movement or muscle tone was observed. For the fish groups exposed for 10 and 20 minutes, 

regular gill movement was not observed before 3 minutes had past. Recovery seemed to be 

retained within 10 minutes, but in spite of their high swimming activity the fishes showed 

stolid behavior for a longer period. Stolid behavior means; swimming with its abdomen 

touching the ground and swimming on all obstacles. For the fish group exposed for 30 

minutes, gill and muscle tone was not observed before 5 minutes had past, and recovery 

was retained within 13 minutes. Despite the long recovery time and the stolid behavior, is 

Aqui-S™ suggested to have high safety margin for red zebra fish. 

Table 7: Survival and mortality for juvenile-adult (6.7 ± 1.3 g) red zebra fish exposed to the selected 
dosages of MS-222, Benzoak® and Aqui-S™ for time intervals of: 10, 20 or 30 minutes (n = 6). 

Anesthetic Time of exposure 
(min) 

# surviving # not surviving 

MS-222: 150 mg/L 
 10 6 - 

20 6 - 
30 6 - 

Benzoak®: 120 mg/L 
 10 6 - 

20 4 2 
30 2 4 

Aqui-S™: 50 mg/L 
 10 6 - 

20 6 - 
30 6 - 

 

Experiment 3: Tolerance test; 48 hours exposure to diluted concentrations of MS-222, 

Benzoak® and Aqui-S™ 

Table 8 shows the survival rate for groups of red zebra fry (0.4 ± 0.3 g) exposed to one out of 

four sedative concentrations (Table 6) for MS-222, Benzoak® and Aqui-S™ for a period of 48 

hours. Temperature and pH had an average value of 20.9˚C (± 0.4) and 8.2 (± 0.3) during the 

experiment. 

In all three anesthetics, the two least diluted concentrations caused 100 % mortality (or in 

the case of Benzoak® the whole group was killed after the exposure). For the second most 

sedated concentrations, there were recorded 100 % mortality overall for MS-222, 25 % 

mortality for Benzoak® and 75 % in total for Aqui-S™. The most sedated concentrations gave 

considerably low mortality rate for all three anesthetics. For MS-222 (12 mg/L), 25 % was 
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killed in retrospect due to abnormal behavior still observed after 24 hours. Benzoak® (12 

mg/L) corresponds with the result obtained from same concentration of MS-222. For 

Benzoak® (6 mg/L) there was no mortality recorded, and during the exposure the fish 

seemed not to be affected by the anesthetic. For Aqui-S™ (3 mg/L) there was one death 

(12.5 %) recorded between 24 - 48 hours. During the exposure period the fish seemed to be 

sedated, as some lost equilibrium while others were lying on their abdomen. The fish also 

showed hyperactive response to visual stimuli. Red zebra fry showed little tolerance to 

prolonged exposure of diluted anesthetic concentrations. In this experiment they seemed to 

be most sensitive to MS-222 and Aqui-S™.  

Table 8: Survival and mortality of red zebra fish (0.4 ± 0.3 gram) exposed to sedative concentration of 
MS-222, Benzoak® and Aqui-S™ for 48 hours. The column “killed after” refers to fry that not 
recovered back to normal behavior within 24 hours from end of exposure (n = 8). 

Concentration 
(mg/L) 

# mortality (0 - 24 h) # mortality (24 - 48 h) # killed after 

MS-222: 125 mg/L 

12 0  0  2 

25 0  6 2 

50 4 4 - 

75 8 - - 

Benzoak®: 100 mg/L 

6 0  0  0 

12 0  0  2  

25 0  0  8 

50 8 - - 

Aqui-S™: 25 mg/L 

3 0  1 0  

6 2  1 3 

12 8 - - 

25 8 - - 

 

Experiment 4: The stress-reducing capacity of MS-222, Benzoak® and Aqui-S™ 

Figure 11 shows the plasma levels of cortisol for adult fish (22.0 ± 8.0 gram, 10.4 ± 1.3 cm) 30 

minutes after treatment with MS-222 (150 mg/L), Benzoak® (120 mg/L) and Aqui-S™ (50 

mg/L). Temperature and pH had an average value of 22.2 (± 1.3) and 7.6 (± 0.2) during the 

experiment. 

The plasma cortisol level from control fish (523.40 ± 303.06 nM) appear to be significant (p < 

0.05) different from the stress group (1130.33 ± 339.79 nM), Benzoak® exposed group 

(1146.11 ± 372.63 nM) and Aqui-S™ exposed group  (1391.25 ± 569.06 nM). MS-222 exposed 

group (789.23 ± 159.33 nM) was not significant different from the control group. None of 

the anesthetic treated groups was significantly different from the stress group.  
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Figure 11: Plasma cortisol levels in adult red zebra fish (22 ± 8.0 gram, 10.4 ± 1.3 cm) 30 minutes 

after inflicted anesthesia (and subsequent recovery) with 150 mg/L MS-222, 120 mg/L Benzoak® and 
50 mg/L Aqui-S™(values are given as mean (± SD), * mark significance (p < 0.05) from the control 
group).  

Quality parameters  

The sensitivity (detection limit) of the assay was 0.4 nM, the precision had a CV value of 3 % 

(from triplicate with a concentration of 130.55 ± 3.93 nM) and the accuracy of the known 

control sample (Lyphochek Immunoassay Pluss Control) was within the defined range (CV at 

4.5 % overall from the stated mean value).  

Because of high values in the first run, RIA was run twice. In the second run the plasma was 

diluted 10 times. In all samples from the second run, cortisol concentration had fallen and 

the inter-assay CV value was estimated at 24 %. There are, however, two important 

differences to account for the two assay runs; plasma values was thawed for the second 

time (cortisol may have been degraded by enzymes present in the plasma) and in the second 

run the values were present in the steep part of the curve while in the flat end of the curve 

in the first run (the accuracy of the values are different).   
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Discussion  
The cichlid fishes of Lake Malawi are considered to be a “world living treasure” due to their 

importance within evolutionary and behavioral studies. However, today their biodiversity is 

in danger due to poor peoples overfishing and pollution (Chafota et al., 2005, Nyambose, 

1997). The Malawi fishes are popular as ornamentals on the world basis, but sale of wild-

collected cichlids has leveled off due to strong competition of cheaper farmed raised cichlids 

from other countries (Watson, 2000). In order to preserve the biodiversity and at the same 

time utilize this valuable resource, the wild-collected fishes should be used for breeding 

purposes instead of export. Breeding will, however, require procedures for proper keeping, 

handling and also transport to be able to deliver a high quality ornamental fish at the world 

market. Today there is little knowledge about the effect of stress on the cichlid fish 

physiology. Accordingly, this thesis has studied how different anesthetics can reduce stress 

handling reactions on the cichlid fish, Metriaclima estherae.  

The endocrine stress response 

Selye (1950) described the general response in the following three stages; the alarm reaction 

(change at the endocrine level), stage of resistance (change at blood and tissue level) and 

stage of exhaustion (appear if the stress persists). Cortisol and catecholamine’s represent 

the endocrine change when subjected to a stressor. These stress hormones will 

subsequently cause a cascade of metabolic and physiological changes, making the animal 

ready and capable to cope with the undesirable situation. If the stressor persists and the 

stress hormones remain elevated, the increased energy demand by the life-vital organs will 

go beyond non-life vital processes like growth and reproduction (Martinez-Porchas et al., 

2009). If this continues, the stage of exhaustion will eventually occur and the animal is more 

susceptible to disease and survivability will be reduced (Pickering, 1992). 

Cortisol concentration is often used as a stress indicator to the degree of stress in fish 

(Martinez-Porchas et al., 2009, Barton, 2002). Air-exposure has in other studies proven to 

elicit cortisol elevation (Trushenski et al., 2010), and was chosen as the stress test for red 

zebra fish. The air-exposed fish demonstrated a doubling of cortisol concentration compared 

to the control group. This proves that the red zebra fish also elicit a physiological stress 

reaction.  

Acute stressor has also proven to elicit increased cortisol concentration for nil tilapia 

(Oreochromis niloticus) (Vijayan et al., 1997), Mozambique tilapia (Oreochromis 

mossambicus) (Foo and Lam, 1993, Galhardo et al., 2011, Galhardo et al., 2008) and N. 

pulcher (Mileva et al., 2009). While the red zebra fish gave a doubling in cortisol 

concentration, gave Neolamprologus pulcher a fourteen-fold increase (Mileva et al., 2009) 

and Mozambique tilapia a twelve-fold increase after confinement stress (Foo and Lam, 

1993). 

The control group of red zebra fish represents an extremely high resting level of cortisol 

concentration compared to other related species. For Mozambique tilapia basal level of 
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cortisol was reported to be less than 27 nM (Foo and Lam, 1993). For the same specie in 

another study, the basal level was reported at 70 nM (Vijayan et al., 1997). Also for nil tilapia 

basal level around 60 – 70 nM is reported (Barcellos et al., 1999). One possible suggestion 

for the high basal concentration measured in red zebra fish may be connected to a rapid 

cortisol response. For Mozambique tilapia, Foo and Lam (1993) reported a significant cortisol 

rise already 4 minutes after sampled by netting. A rapid and pronounced cortisol elevation 

has also been reported for N. pulcher, where cortisol concentration raised to 1372 nM after 

10 minutes confinement stress (Mileva et al., 2009). For salmonids the plasma cortisol 

concentration are characteristically reported between 110 – 560 nM after stressor (Barton 

and Iwama, 1991). In this experiment, the blood sampling procedure took about 8 minutes 

to finish, and where the cortisol concentration increase following the individual fish 

collected (except for one). This suggests that the physiological change has been induced 

before the blood sampling procedure was finished.   

Another factor that may explain the high cortisol concentration is the consequence of 

changed environment. The cichlid fishes social system is regulated by aggressive interactions 

(Clement et al., 2005). Dominant males are territorial and aggressive toward other fish in the 

group (Galhardo et al., 2008), and it is therefore believed that replacement of the red zebra 

fish from their holding aquaria to a new aquaria have caused changes in the internal social 

rankings. At this point the exact cause of the high basal concentration of cortisol measured 

for red zebra fish is not clear, and it is suggested to be reinvestigated.   

Anesthetic efficacy 

Affecting factors  

The efficacy and toxicological effect of an anesthetic will depend upon species and its body 

size, fat deposits and age. These biological features may also vary according to season, life 

stage and maturation (Burka et al., 1997, Brattelid, 1999c, McFarland, 1959).  

Environmental factors like temperature, pH, salinity, chemical additives and oxygen content 

may also have affect upon anesthetic efficacy. Fish is a poikilothermic animal, and its 

biological functions will in most cases depend upon ambient temperature. Temperature and 

pH is also known to affect gill perfusion area (Burka et al., 1997). Water quality can have 

affect on the agent’s chemical properties (McFarland, 1959), and on the other hand may 

some anesthetic have affect on the  water quality (Ferreira et al., 1979). Accordingly, testing 

of anesthetic efficacy should ideally be excluded at the fish’s known physiological optima 

(Sylvester, 1975).  

Introduced anesthesia 

Behavioral observation out of the three concentrations (50, 100 and 150 mg/L) tested for 

MS-222, showed that 150 mg/L gave the most satisfying introduction time of 4 minutes for 

both size classes of red zebra fish. This result correspond with Smith and Hattingh (1979) 

study on Sarotherodon mossambicus (tilapia) reporting that 150 mg/L MS-222 also gave a 
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mean introduction time of 4.50 minutes. Concentration at 100 mg/L MS-222 is reported to 

give a suitable introduction time for both S. mossambicus, Cyprinus carpi (carp) (Ferreira et 

al., 1979) and goldlined sea bream (Sparus sarba) (Hseu et al., 1998). Warm water species 

seems to require higher concentration to get anesthetized compared to cold water species. 

This correlates with the higher metabolic rate expressed in warm water species, causing a 

faster metabolic clearance (Young, 2009). Typically concentration of MS-222 is 

recommended between 60 – 80 mg/L for salmonids (steelhead-trout, Oncorhynchus mykiss 

(Pirhonen and Schreck, 2003), rainbow trout, Oncorhynchus mykiss Walbaum (Wagner et al., 

2003), arctic charr, Salvelinus alpinus (Andersen, 2005), snow-trout, Schizothorax 

plagiostomus (Hveding, 2008) and Atlantic salmon, Salmo salar (Kiessling et al., 2009)) while  

100 – 200 mg/L for warm water species C. carpio (Hikasa et al., 1986), S. mossambicus (Smit 

and Hattingh, 1979) and goldlined sea bream (Hseu et al., 1998)). 

Behavioral observation out of the three concentrations (40, 80 and 120 mg/L) tested for 

Benzoak®, showed that 120 mg/L gave the most satisfying introduction time at 2.50 minutes 

for both size classes of red zebra fish. This is consistent with results from a study on nil 

tilapia, where 120 mg/L benzocaine gave an introduction time at approximately 2 minutes 

(Okamura et al., 2010). For O. mossambicus gave 100 mg/L benzocaine hydrochloride 

anesthesia within 3 minutes (Ferreira et al., 1984). For S. mossambicus and C. carpi 

concentration > 80 mg/L benzocaine was reported to be sufficient (Ferreira et al., 1979). 

Concentration at 100 mg/L benzocaine was also reported for both tambaqi (Colossoma 

macropomum) (Gomes et al., 2001) and Crucian carp (Carassium carassium) (Heo and Shin, 

2010), while concentration down to 50 mg/L was reported as sufficient to anesthetize the 

goldlined sea bream (Hseu et al., 1998). As for MS-222, tropical species generally require 

higher dosages of Benzoak® compared to species adapted to lower temperatures. For 

temperate species like rainbow trout (Salmo gairdneri) (Gilderhus and Marking, 1987) and 

Atlantic salmon (Iversen et al., 2003), concentration of 35 and 40 mg/L benzocaine is 

recommended. In comparable studies, benzocaine has shown to be more effective at lower 

concentrations compared to MS-222 (Andersen, 2005, Hveding, 2008, Hseu et al., 1998, 

Ferreira et al., 1979). Ferreira and coworkers (1979) found that 50 mg/L benzocaine 

hydrochloride corresponded to the effect of 80 mg/L MS-222, with study based on carp and 

tilapia. This correlates with observations in this study, as 80 mg/L Benzoak® and 100 mg/L 

MS-222 both induce surgical anesthesia of juvenile-adults between 6 - 7 minutes. 

Benzocaine is more lipid-soluble than MS-222 and will penetrate the blood-brain barrier 

easier, giving a faster and more pronounced effect. However, it was observed that fish 

immersed in Benzoak® seemed to attain stage 2 (slightly loss of equilibrium) before stage 1 

(slightly loss reactivity to visual and tactile stimuli), and the fish seemed to be more 

conscious even though equilibrium was lost. This is in contrast to Kiessling and coworkers 

(2009) study, as they report quicker visual effect in fish (Atlantic salmon) treated with 

benzocaine compared to MS-222. They relate this observation to the easier penetration of 

benzocaine through the blood-brain barrier. Why the opposite were observed in this study is 
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not known, but may be a consequence of the physiological difference between red zebra fish 

and Atlantic salmon.  

Behavioral observation out of the three concentrations (10, 25 and 50 mg/L) tested for  

Aqui-S™, showed that 50 mg/L gave the most satisfying introduction time of 2.50 minutes 

for both size classes of red zebra fish. There were not found any studies testing Aqui-S™ on 

related species in the literature. However, a study on nil tilapia found that 250 mg/L clove oil 

was the most suitable concentration (Simoes et al., 2010). For zebra fish (Danio rerio) 100 

mg/L clove oil was reported as most suitable concentration (Grush et al., 2004). For the small 

freshwater fish, Melanotaenia australis, concentration of 80 mg/L Aqui-S™ caused 

introduction in less than 3 minutes, while a concentration of 40 mg/L gave extended 

introduction time for 10 minutes (Young, 2009). A concentration of 20 mg/L Aqui-S™ is 

reported to be satisfying for bluegill (Lepomis macrochirus), channel catfish (Ictalurus 

punctatus), lake-trout (Salvelinus namaycush), rainbow trout and yellow perch (Perca 

flavescens), while concentration at 50 mg/L Aqui-S™ was required for walleye (Stizostedion 

vitreum) (Stehly and Gingerich, 1999). Even though there are fewer comparable studies with 

Aqui-S™, it seems like red zebra fish requires lower concentration of iso-eugenol/eugenol 

compared to other tropical species. The concentration satisfying red zebra fish seems to 

correspond more with species like rainbow trout (Wagner et al., 2003) and Chinook salmon 

(Hill and Forster, 2004) where concentration at 40 mg/L clove oil and 60 mg/L Aqui-S™ has 

been reported as satisfying concentrations. In the sections above, studies on salmonids 

report lower dosages for MS-222 and benzocaine compared to red zebra fish (Strange and 

Schreck, 1978, Hill and Forster, 2004, Gilderhus and Marking, 1987). This “lower” optimal 

dosage found for Aqui-S™ may be related to the irritating effect it seemed to have on the 

red zebra fish. When the red zebra fish was immersed in the Aqui-S™ solution, it showed 

frequently “coughing” reflex and expressed frantic swimming behavior. These behavioral 

signs are also observed for zebra fish exposed to clove oil (Grush et al., 2004) and for 

tambaqui immersed in higher than optimal concentrations of benzocaine (> 200 mg/L) 

(Gomes et al., 2001). For tambaqui this behavioral observation corresponded with increased 

plasma glucose. Ross and Ross (2008) defined the coughing behavior as an external stress 

indicator, where the purpose of the coughing reflex is to reverse the water flow over the 

gills. One suggestion for the rapid anesthesia introduction obtained at the 50 mg/L Aqui-S™ 

concentration may therefore be related to an inflicted stress reaction. Ventilation and heart 

rate will change immediately during stress, which in turn may facilitate the uptake and affect 

of the anesthetic. Furthermore, iso-eugenol has another mode of action compared to MS-

222 and benzocaine, where it is described to block nerve signals by disturbing membrane 

function, while MS-222 and benzocaine will block on specific ion-shuttles (Kiessling et al., 

2009). The rapid and pronounced anesthetic effect upon the red zebra fish is believed to be 

a combination of iso-eugenol mode of action, highly lipid-soluble features and stress impact 

upon the fish.  
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For both MS-222 and Benzoak®, introduction time for fry was significantly lower than for 

juvenile-adult. For Aqui-S™ exposure, there was no significant difference between the two 

size classes. The quicker introduction time for fry in MS-222 and Benzoak® exposure, is 

related to the larger gill surface in relation to body mass present in smaller fish. A larger 

surface area will cause faster uptake and therefore faster effect (Ross and Ross, 2008, 

Brattelid, 1999c). This has also been observed for channel catfish (Stehly and Gingerich, 

1999) and common carp (Basavaraju et al., 1998). However, Durve (1975) reports that fish 

size has little relation to introduction time for mullet (Liza tade) exposed to MS-222. The 

opposite has also been reported for bluegill (Lepomis macrochirus) where juvenile-young 

succumbed faster to Aqui-S™ exposure than fry-fingerlings. This is suggested to be in relation 

to disproportionate changes in gill area present in the juvenile-young fish (Stehly and 

Gingerich, 1999). This is unknown for the red zebra fish, but it is suggested that Aqui-S™ 

different mode of action may be one explanation for no significant difference recorded 

between the two size classes.   

Recovery from anesthesia  

Higher concentrations will introduce faster anesthesia than lower concentrations, but will 

hence correspond with longer recovery time (Hveding, 2008, Gomes et al., 2001, Hoskonen 

and Pirhonen, 2004). McFarland and Klontz (1969) argued that the recovery time was 

proportional to the concentration and exposure time of the anesthetic. This is connected to 

the increased drug accumulation, which has shown to be in accordance with the study on 

mullet fingerlings (Durve, 1975). Recovery time will, however, depend upon chemical, 

dosages and exposure time.  

Exposure of 150 mg/L MS-222 for 3 minutes gave desirable recovery time of 3.50 minutes 

for both size classes of red zebra fish. This correlates with Smith and Hattingh (1979) study 

on the cichlid fish, S. massambicus that obtained recovery within 2.50 minutes exposed to 

same concentration. The same study show that C. carpi and Salmo gairdneri (trout) retained 

recovery within less than 3 minutes. A concentration of 100 mg/L MS222 gave recovery time 

of 2.50 minutes for tilapia (Ferreira et al., 1979), while goldliner sea bream retained recovery 

within 1 minute for the same concentration (Hseu et al., 1998). MS-222 consist of both non-

polar and polar metabolites, and where the non-polar are rapidly metabolized and excreted 

trough the gills. This rapid elimination gives a quick recovery (Carter et al., 2010, Burka et al., 

1997).  

Exposure of 120 mg/L Benzoak® for 3 minutes gave recovery time at approximately 6 

minutes for both size classes of red zebra fish. For nil tilapia the same concentration gave a 

recovery time of 4.50 (Okamura et al., 2010). S. mossambicus and C. carpio introduced to 

anesthesia with concentration of 100 mg/L benzocaine, retained recovery within 2.50 and 3 

minutes (Ferreira et al., 1984). Also tambaqui subjected to 100 mg/L benzocaine retained 

recovery within desirable time of 5 minutes, while concentration of 150 mg/L gave extended 

recovery time of 9 minutes. The slightly longer recovery time for fish exposed to benzocaine 
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solution seems to correspond with other related studies. This was also expected due to the 

more lipid-soluble properties of benzocaine compared to MS-222.  

The concentration of 50 mg/L Aqui-S™ gave a more extended recovery time of 

approximately 8 minutes for both size classes of red zebra fish. This longer recovery phase 

has also been reported in other studies (Kiessling et al., 2009, Hveding, 2008, Keene et al., 

1998), and is probably related to iso-eugenol highly lipid-soluble characteristics. However, 

Young (2009) report satisfying short recovery time at 3 minutes for the small freshwater fish 

M. australis exposed to 80 mg/L Aqui-S™. Stehly and Gringerich (1999) report recovery time 

at ≤ 7.3 minutes for all five species (bluegill, channel catfish, lake-trout, rainbow-trout and 

yellow perch) subjected to 20 mg/L Aqui-S™. Also Aqui-S™ exposure on snow-trout (Hveding, 

2008) and Arctic charr (Andersen, 2005) gave recovery time of 6-7 minutes. In other studies, 

the criteria for sufficient recovery have been set to be attained within 10 minutes (Stehly 

and Gingerich, 1999, Gilderhus and Marking, 1987, Hveding, 2008). Kiessling and coworkers 

(2009) even suggest that too rapid clearance from anesthesia may make the fish more 

subjected to stress during the recovery phase. The slow clearance rate and rapid 

accumulation of iso-eugenol is also demonstrated in the lower concentrations. From the 

result on red zebra fish, juvenile-adults got anesthetized even though they didn’t attain 

surgical anesthesia. Young (2009) demonstrated that under-dosing of Aqui-S™ caused 

extensive introduction and recovery times. 

There was no significant difference found in recovery time between the two size classes for 

any of the three anesthetics. There is, however, a tendency of shorter recovery time for fry 

in all three anesthetics. As with the introduction time, the quicker recovery time is likely a 

cause of larger gill surface present in smaller fish. As the larger fish often struggled long to 

attain equilibrium, the fry seemed to attain recovery surprisingly quickly. The fry was also 

calmer after attained equilibrium, unlike the juvenile-adult fish which was more restless. 

Sedative signs were more visible in juvenile-adults compared to the fry, which made it more 

difficult to ascertain recovery stage 4 for fry. This represents some uncertainties about the 

recovery time.  

Overall, Benzoak® and Aqui-S™ gave the most satisfying introduction time, while MS-222 

gave the fastest recovery. Furthermore, Aqui-S™ gave the longest recovery time, in addition 

to have an unpleasant effect on the fish. Based on these observations Aqui-S™ is suggested 

to be less suitable for red zebra fish. Due to sufficient efficacy and no abnormal behavioral 

signs, MS-222 and Benzoak® is suggested to comply with the demand as an efficient 

anesthetic on red zebra fish. 

Toxicological effect of the anesthetics 

The toxicity of the anesthetic is a function of waterborne concentration and time of 

exposure (Stehly and Gingerich, 1999). A high safety margin is designated when the effective 

dosage are lower than the toxic dosage (Ross and Ross, 2008). Gilderhus and Marking (1987) 
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had a third criteria for the efficacy dosage; giving no mortality after 15 minutes in the 

anesthetic solution.  

Safety margin 

In this experiment, neither full exposure to MS-222 (150 mg/L for 30 minutes) nor Aqui-S™ 

(50 mg/L in 30 minutes) caused any mortality for juvenile-adult red zebra fish. Exposure to 

full dosage of Benzoak® (120 mg/L) gave mortalities for fish exposed longer than 10 

minutes. For Benzoak® there were recorded 30 % mortality for fish exposed for 20 minutes, 

and 70 % mortality for fish exposed for 30 minutes. For juvenile tambaqui there were not 

recorded any mortalities for fish exposed to 100 mg/L benzocaine in 10, 20 and 30 minutes 

(Gomes et al., 2001). Hence, the safety margin for benzocaine appears to vary between 

studies and species, where some report about its effective properties (Gilderhus and 

Marking, 1987, Iversen et al., 2003), while other refers to its negative effects (Carneiro et al., 

2002, Robertson et al., 1988, Basavaraju et al., 1998). The death occurrence in this study 

may be a consequence of too high effective concentration chosen for Benzoak®, giving an 

overdose. Medullary collapse is described as a combination of the agent affect upon the CNS 

and hypoxia in the ventilation musculature (Brattelid, 1999c). The high mortality rate 

recorded for Benzoak® exposure indicates a lower safety margin on red zebra fish.  

MS-222 seems to have high safety margin for red zebra fish, as there were no mortality 

recorded. In contrast, it was reported 100 % mortality for mullet fingerlings exposed to 150 

mg/L MS-222 for 10 minutes, while no mortality for mullet exposed to 100 mg/L MS-222 for 

30 minutes (Durve, 1975). Typically, MS-222 is considered to have low safety for fish, as the 

effective and toxic concentrations tend to be close (Ross and Ross, 2008, Gilderhus and 

Marking, 1987, Burka et al., 1997). The rapid elimination of the non-polar metabolites 

implies that it requires a higher concentration in order to immobilize the fish (Burka et al., 

1997). In this study it is believed that MS-222 has high safety margin for red zebra fish. 

Due to the rapid and irritating effect Aqui-S™ seems to have on red zebra fish, the high 

survival rate came more as a surprise. In other studies, Aqui-S™ has been reported to have 

high safety margin for fish. Stehly and Gingerich (1999) found that the toxic dosage of Aqui-

S™ concentration was at least 2.5 times the selected efficacious concentration for young-

adult, while 1.4 times the selected efficacious for fingerlings of; bluegill, channel catfish, 

lake-trout, rainbow-trout, walleye and yellow perch. Exposure to concentration < 50 mg/L 

Aqui-S™ for 60 minutes gave no mortalities for channel catfish (Bosworth et al., 2007). For 

M. australis there were reported 10 % mortality after 15 minutes exposure to 80 mg/L Aqui-

S™ (Young, 2009). In contrast, Sladky and coworkers (2001) found the opposite to be true for 

red pacu (Piaractus brachypomus) exposed to different concentration of eugenol. They 

discussed the low safety margin of eugenol to be a result of its oily characteristics, as it may 

coat the fish’s gill epithelium and further inhibit gas exchange. In accordance with this study, 

it was observed that the exposure gave irregular and long recovery. Even when equilibrium 

was fully obtained and the swimming activity increased, the fishes seemed confused as they 

constantly swam on to each other and other objects. Aqui-S™ is believed to have a high 
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safety margin for red zebra fish, but should be used with care due to irregular recovery and 

lasting effect on the red zebra fish.  

The high survival rate for juvenile-adult red zebra fish was unforeseen as the fish was 

observed to have no gill movement (or only occasionally) through the exposure. Cardiac 

contractions has been documented to continue for 3 to 5 minutes after opercula movement 

has ceased (McFarland, 1959). For the red zebra fish, the opercula movement was observed 

to cease when exposure exceeded 10 to 15 minutes. Despite this, most of the fishes 

recovered within few minutes in resuscitation aquarium. It is suggested that the high 

survival for red zebra fish may be related to its high tolerance to hypoxia. From previous 

experiment (unreported) oxygen level has been measured down to 3 mg/L for red zebra fish 

without showing any visible effect on the fish. Study on Astonotus Ocellatus (Amazonian 

cichlid fish) demonstrate survival up to 16 hours exposed for hypoxia (Muusze et al., 1998).  

Tolerance test   

Lower concentrations of the anesthetic can be used to induce sedation in fish, which may be 

beneficial during longer handling procedures and transportation. Sedation can induce a 

calming effect on the fish causing reduced metabolism, oxygen consumption and metabolic 

waste (Coyle et al., 2004, Ross and Ross, 2008, Forgan and Forster, 2010). In this regard it 

would therefore be interesting to see if prolonged exposure to sedative anesthetic 

concentrations would benefit the red zebra fish.  

The prolonged sedative treatment for 48 hours did not seem to benefit the fry of red zebra 

fish, due to the high mortality rate recorded. It was recorded 100 % mortality in the two 

highest concentrations for all three anesthetics. This was evidently early as the fish did not 

wake up when it was placed in the sedative concentration. During the exposure, fading of 

ventilation and irregular opercula movement was observed, which is referred to as warning 

signs for medullary collapse (Hikasa et al., 1986, Hajek et al., 2006). The second highest 

concentration of Benzoak® (25 mg/L) did not, however, cause any death during the 

exposure, but seemed to have incurred damaging effect on the fish in retrospect. The 

statement of dysfunctional effect on the fish is based on the abnormal behavior observed, 

still expressed after 24 hours recovery. Abnormal behavior was observed as low swimming 

activity (with the abdomen on the bottom), stolid behavior and frequently shifting between 

upright and lying position. This is most likely to be a consequence of prolonged hypoxia. 

Thomas and Robertson (1991) report that anesthetics can act as asphyxiate on fish, due to 

their possible depressive effect on respiration and autonomous function. Prolonged oxygen 

depletion will cause physiological and hematological changes, and cause arrhythmia that is 

damaging to the heart (Brattelid, 1999c). A number of fish in the lower concentration was 

also killed after the anesthetic exposure, as some of them seemed to have incurred 

damaging effect as well. Hence, most of these fishes were observed to be in imbalance both 

during the exposure and recovery. It is therefore believed that fish had low tolerance to 

prolonged anesthetic exposure, since the fishes that were most affected was the ones that 

incurred damaging effect in retrospect.   



Discussion 
 

33 
 

In this experiment, MS-222 and Aqui-S™ exposed fish tend to have higher mortality rate 

compared to Benzoak® exposed fish, which is in contrast to the safety margin experiment. 

The concentration of 25 mg/L MS-222 caused mortality during the exposure, while 25 mg/L 

Benzoak® exposed fish was killed after due to incomplete recovery. Hence, gave 

concentration of 12 mg/L, for both of the anesthetics, 25 % mortality. The lower mortality 

rate represented by Benzoak® may be related to its neutral properties. MS-222 has a 

sulphonate side-chain that makes it acidic (Iversen et al., 2003, Ross and Ross, 2008). In MS-

222 exposure, it was observed that the pH value increased from start to end of exposure. In 

the two lowest concentrations for MS-222 (12 and 25 mg/L) the pH value increased from 

7.95 to 8.35 and 7.64 to 8.18, respectively. This is most likely because of rapid degradation 

on MS-222. McFarland (1959) reported that Fundulus parvipinnis sedated by MS-222 

seemed not to be affected by the anesthetic, and the rapid breakdown of MS-222 was 

suggested to be the cause. Furthermore, this means that there should be expected a lower 

mortality rate for MS-222 exposed red zebra fish. Change in pH during the exposure might 

be a reason for the higher mortality recorded in MS-222, but a pH change of 0.5 and 1.0 

should normally not give any adverse affect on fish (Alpharma, 2001). It is therefore believed 

that the pH change had little effect on fish survivability. The higher death represented for 

MS-222 exposed fish are still unknown. Nevertheless, for Puntius filamentosus (ornamental 

freshwater fish) it was reported more pronounced mortality for fish exposed to benzocaine 

in 48 hours compared to MS-222 (Pramod et al., 2010).  

Aqui-S™ concentration at 3 mg/L caused one death after 24 hour exposure, while 

concentration ≥ 12 mg/L gave 100 % mortality for red zebra fish. This correlates with the 

study on zebra fish, where no mortality was recoded in 2 mg/L clove oil, one death in 5 mg/L 

clove oil and 100 % mortality in 30 mg/L clove oil for 96 hours exposure (Grush et al., 2004). 

From previous experiment, Aqui-S™ treatment is believed to not benefit red zebra fish. 

During the exposure in 3 mg/l Aqui-S™ the fish was observed to be sedated, due to low 

swimming activity. The sedation on red zebra fish seemed, however, to be inappropriate as 

the fish showed hyperactive reaction to visual stimuli. The hyperactive response was 

observed as a “jumpy” reaction, and where the fish seemed exhausted after the incident. 

The same observation was made for fish exposed to 12 mg/L Benzoak®. This hyperactive 

response observed for the red zebra fish is likely to be a consequence of improper blocking 

on the CNS. Burka and coworkers (1997) explain stage 2 of anesthesia as a level of 

hyperexcitability as the agent first will block the inhibitory neurons. Both 3 mg/L Aqui-S™ 

and 12 mg/L Benzoak® seem to induce an undesirable sedation stage on the red zebra fish.  

The prolonged exposure to sedative concentrations did not seem to benefit the fry of red 

zebra fish, due to high mortality rate either during or after exposure. The reason for the high 

mortality is likely to be a consequence of too high concentrations combined with long 

exposure time. Benzoak® concentration at 6 mg/L was the only sedative concentration that 

gave no fish mortality. From the observations it is unknown if the concentration had any 

tranquilizing effect on the fish, as the fish seemed to have normal swimming activity and 
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behavior throughout the exposure. All the lower concentrations of the anesthetics (12 mg/L 

MS-222, 12 mg/L Benzoak® and 3 mg/L Aqui-S™) seem to induce sedation on the fish, as 

sedative traits were observed during the exposure. Furthermore, both Benzoak® and Aqui-

S™ exposed fish showed hyperactive reaction to external stimuli. Hyperactivity is termed as 

a external signal for stress on fish (Ross and Ross, 2008). Stress during prolonged periods of 

oxygen starvation is also reported to have detrimental effect (Basavaraju et al., 1998). It has 

also been reported incidents were anesthetics self-induce physiological changes (Davis and 

Griffin, 2004, Ross and Ross, 2008, Carneiro et al., 2002). Physiological changes were not 

demonstrated in this experiment, but underlying changes may have affected fish 

survivability.  

In overall, for the toxicological experiment, MS-222 and Aqui-S™ seems to have high safety 

margin for short time treatment on red zebra fish. The safety margin for Benzoak® is 

believed to be lower, due to mortality occurrence. The red zebra fish seem to have low 

tolerance for long-term exposure.  

The physiological effect of anesthetics  

In order to establish correct dosage regimes and thereby promote optimal use, physiological 

and pharmacokinetic analyzes are important (Kiessling et al., 2009). The magnitude of stress 

is also known to depend upon duration and intensity of stressor, and cortisol is known as the 

principal endocrine stress response (Molinero and Gonzalez, 1995, Barton and Iwama, 1991, 

Martinez-Porchas et al., 2009, Thomas and Robertson, 1991). Anesthetics might be a useful 

tool mitigating fish handling by immobilization of fish and by reduce/block cortisol release 

(Crosby et al., 2006). In this study it was tested if recovery was accompanied by an increased 

in stress response.  

The anesthetics stress-reducing capacity 

All the anesthetic treated groups surpassed the plasma cortisol concentration for the control 

group. MS-222 with the lowest cortisol concentration was neither significant different from 

the control nor the stress group. Benzoak® and Aqui-S™ treated groups appear to be 

significant different from the control group and exceeded the mean cortisol concentration 

for the stress inflicted group. From the result obtained it seems like Benzoak® and Aqui-S™ 

self-induce an increased cortisol concentration, when recovering from the anesthetic 

treatment. The same anesthetics showed to increase cortisol concentration also for 

cannulated Atlantic salmon 30 minutes after treatment, but where MS-222 gave the most 

pronounced cortisol elevation (Kiessling et al., 2009). A more pronounced cortisol effect has 

also been reported for channel catfish, where 100 mg/L MS-222 gave a eight-fold increase 

while 100 mg/L clove oil gave no significant increase (Small, 2003). Also Bosworth and 

coworkers (2007) reported lower cortisol concentration in channel catfish 30 minutes after 

Aqui-S™ treatment compared to the same procedure for MS-222. For fathead minnows a six-

fold increase in cortisol concentration was reported 30 minutes after treatment with MS-

222, while eugenol gave a smaller increase (Palic et al., 2006). Also other published papers 
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support the theory of MS-222 lacking stress-reducing capacity upon fish (Thomas and 

Robertson, 1991, Wagner et al., 2003, Olsen et al., 1995, Molinero and Gonzalez, 1995). The 

cortisol increase during MS-222 exposure has been suggested as a consequence of reduced 

ventilation causing hypoxia and increased release of hematocrit, which in turn cause 

activation upon the HPI-axis (Kiessling et al., 2009, Bolasina, 2006, Molinero and Gonzalez, 

1995, Brattelid, 1999c). However, it has been demonstrated on Astronotus ocellatus (cichlid 

fish) that hypoxia exposure did not elicit cortisol elevation (Muusze et al., 1998). This might 

explain the lower plasma concentration of cortisol present in red zebra fish after treatment 

with MS-222. Pickering (1993, cited Ross and Ross (2008)) demonstrated that MS-222 

blocked the increase of plasma cortisol concentration for rainbow trout, but that the plasma 

concentration of cortisol increased significantly when anesthesia subsided. Also Strange and 

Schreck (1978) report that MS-222 abolish cortisol elevation in Chinook salmon.  

The high cortisol mean measured for red zebra fish treated with Benzoak® indicate that the 

treatment was accompanied by cortisol elevation. This correlates with a study on Brazilian 

codling (Urophycis brasiliensis), reporting that benzocaine anesthesia induce an acute stress 

response in the fish (Bolasina, 2006). Also a study on Atlantic salmon document increased 

plasma concentration of cortisol after recovered from benzocaine anesthesia (Iversen et al., 

2003). In this study the high cortisol concentration present may be connected to incomplete 

dissolution of Benzoak® present in the aquarium water. It was observed that the fish was 

not fully immobilized after 3 minutes from addition of Benzoak®. The incomplete dissolution 

caused a less effective concentration which in turn caused an extended introduction time at 

7 minutes in total to induce surgical anesthesia. The result obtained form Benzoak® 

exposure should therefore be interpreted with caution.   

The highest cortisol mean was measured from Aqui-S™ treated fish. This corresponds with 

the previous observation of external stress sign during exposure to Aqui-S™. However, Aqui-

S™ is reported to be a good alternative anesthetic for MS-222, due to documented stress-

reducing effect upon many fish species. Aqui-S™ showed to reduce cortisol concentration for 

Atlantic salmon exposed for concentration > 20 mg/L (Iversen et al., 2003). Both Small and 

Chatakondi (2005) and Bosworth and coworkers (2007) reported stress reducing effect of 

Aqui-S™ upon channel catfish. As explained in the previous section, the similar compound, 

clove oil, has also shown to have positive effect upon different fish species. In accordance 

with this study, Davis and Griffin (2004) reported that Aqui-S™ gave significant higher 

cortisol concentration compared to control fish. The higher cortisol concentration for Aqui-

S™ treated fish may also be a result of too high dosage chosen for the red zebra fish. A study 

on juvenile tambaqui showed significant increased cortisol concentration when anesthetized 

with higher than optimal dosages of benzocaine (Gomes et al., 2001). Also for gilthead sea 

bream it is reported that increasing dosages of MS-222 gave an increase in plasma cortisol 

concentration (Molinero and Gonzalez, 1995).  
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This study investigates if the anesthetic treatment is accompanied by an increase in cortisol 

concentration after anesthesia has subsided, and the blocking effect on red zebra fish is 

therefore not known. However, the high cortisol concentration measured in Benzoak® and 

Aqui-S™ treated fish, may be a consequence of insufficient blocking upon the HPI-axis. An 

insufficient blocking may occur at the interrenal level, where this means that anterior 

pituitary will continue secreting and producing ACTH. When the anesthesia subsides and the 

blocking effect is removed, this may give a cortisol boost (Nilssen K. J., pers. com.). Olsen and 

coworkers (1995) demonstrated that the hypnotic drug, metomidate, block at the interrenal 

level on Atlantic salmon. Further research will be necessary to verify or reject this. 

In overall, Benzoak® and Aqui-S™ exposure did not seem to benefit red zebra fish, due to 

high cortisol concentration measured after the exposure. Both anesthetics surpassed the 

cortisol mean represented for the stress group, indicating that the treatment was more 

stressful than air-exposure for 1 minute. The high cortisol concentration for Aqui-S™ did, 

however, correspond with the behavioral observation done in experiment 1. The result 

obtained form Benzoak® exposed fish should, however, be interpreted with caution as the 

longer introduction time might have contributed to the high plasma cortisol. MS-222 was 

not significantly different from the control group, and it is believed to reduce or alleviate the 

cortisol elevation in red zebra fish.  

The most satisfying anesthetic drug 

Based on behavioral observation and the physiological response, MS-222 is believed to be 

the most suitable anesthetics for short-term treatment on red zebra fish. Table 9 shows an 

overall evaluation over the three anesthetics versatility based on the different experiments. 

Although MS-222 came out as the best anesthetic for red zebra fish, the disadvantages of 

high cost and lack of human safety (Pirhonen and Schreck, 2003, Ross and Ross, 2008) raise 

the question if it is suitable for use in Malawi.   

Aqui-S™ is described as inexpensive and totally safe for humans, and is therefore considered 

as the most desirable anesthetic for use in Malawi. Based on the result observed in this 

study, it is believed that Aqui-S™ treatment will not be beneficial for treatment on red zebra 

fish. Benzoak® has also the advantage that it is inexpensive in use (Ross and Ross, 2008), but 

gave low safety margin and failed to reduce cortisol elevation for red zebra fish.  

To ensure the production of cichlid fish in the future, it is suggested that stress management 

with use of anesthetics is further investigated. Fish welfare and health will be essential to 

obtain good results for production and profit.  
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Table 9: An overall overview of the three anesthetics and the effective concentration for red zebra 
fish. Their versatility is categorized according to experimental result obtained in this study. 

 
Anesthetic 

 
Suitable 
concentration 

 
Introduction 

 
Recovery 

 
Safety 
margin 

 
Stress-
reducing 

 
Cost 

MS-222 150 mg/L Moderate Short High Moderate High 
Benzoak® 120 mg/L Short Moderate Low No Low 
Aqui-S™ 50 mg/L Short Long High No Low 

 

As a final comment to the study, the findings should be used as a guideline rather than as a 

manual. Different conditions, fish strain and water quality is all factors that will affect the 

outcome of the anesthetic efficacy. It is therefore recommended to test the anesthetic and 

its corresponding dosage on a small number of fishes prior to the full anesthetic treatment, 

as adjustments may be necessary.  

The importance of sustainable cichlid production in Malawi 

This thesis started with introducing that ‘trade is the most prominent tool against poverty’. 

An increased trade of farm raised cichlids for ornamental purpose is believed to provide a 

poor and undeveloped country like Malawi economic growth and employment. In order to 

reduce poverty, local people from rural communities should be involved in the fish 

production operation. To achieve a sustainable and cost-effective production, the locals 

should be trained in how to (1) collect and keep the wild cichlid fish, (2) farm raise eggs and 

fry, (3) handle the fish and (4) transport the fish. Adequate production of high quality fish 

will provide high profit. 

Sale of farmed raised Malawi cichlids is believed to provide development and improvements 

of living conditions in Malawi. In social terms this means development of schools, health 

care center, infrastructure, and other necessary goods and services. Employment will also 

provide livelihood for poor local families, allowing more children to attend school. Education 

is considered as fundamental for long-term sustainable development, where training local 

poor people in sustainable production can contribute as a model for food production and 

production of other goods. Education is said to ‘empower the peoples to help themselves’ 

(IIASA, 2008).  
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Summary 
The most efficient dosage of the anesthetic drugs tested was chosen to be 150 mg/L MS-

222, 120 mg/L Benzoak® and 50 mg/L Aqui-S™ for both size classes of red zebra fish. Under 

the introduction treatment of Aqui-S™ the fish expressed external stress signs. There was no 

such observation for fish during MS-222 and Benzoak® treatment.  

The chosen anesthetic dosage of MS-222 and Aqui-S™ for 10, 20 and 30 minutes caused no 

mortality, indicating high safety margin for red zebra fish. Benzoak® gave a mortality rate of 

50 % for red zebra fish exposed for longer than 10 minutes, giving Benzoak® a lower safety 

margin for red zebra fish. 

None of the three anesthetics seem to satisfy needs for prolonged sedation of fry because of 

high mortality rate recorded and dysfunctional signs observed for some of the surviving fish. 

Observation during the exposure indicates insufficient blockage on the CNS as the fry 

(especially treated with the lower dosages of Benzoak® and Aqui-S™) showed hyperactive 

response to external stimuli. 

Both Benzoak® and Aqui-S™ treatment is believed to self-induce an increased cortisol 

concentration. Whether MS-222 block at any level in the HPI-axis is still unknown, but it is 

believed that MS-222 reduces or alleviates the stress response in red zebra fish. 

Conclusions 
I. The concentration that gave satisfying introduction and recovery time for anesthesia 

on red zebra fish was 150 mg/L MS-222, 120 mg/L Benzoak® and 50 mg/L Aqui-S™. 

 

II. The safety margin was considered as high for MS-222 and Aqui-S™, while low for 

Benzoak®. 

 

III. The tolerance for prolonged sedation was considered to be low for red zebra fish fry. 

 

IV. The anesthetic treatment of MS-222 seems to reduce the stress response, while 

Benzoak® and Aqui-S™ seems to self-induce an increase in plasma cortisol 

concentration.  
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Perspectives 
A continuation of this study may be to document the true basal cortisol concentration for 

red zebra fish. Furthermore, it should be investigated if the cortisol concentration will vary in 

fishes with different social rankings, and if the red zebra fish has a quicker and more 

pronounced cortisol elevation compared to other fish species.  

In this study it was tested if recovery from anesthetic treatment was accompanied by an 

increased cortisol response. As a further step, the anesthetic could be investigated for their 

blocking effect upon the HPI-axis during surgical anesthesia, and whether it blocks at the 

right level in the HPI-axis. 

Transportation and water quality management is a subject that needs to be investigated. 

High mortality during transportation is a consequence of oxygen depletion, accumulated 

ammonia, reduced pH, increased temperature and bacteria buildups. Overall this gives bad 

transport water. It should be investigated if anesthetic will facilitate transportation of 

cichlids, and whether it reduces occurrence of stress and hyperactivity. Other additives like 

zeolite, diluted salt solution and lower water temperature may also be useful alternatives.   

There is insufficient knowledge when it comes to cichlid fish physiology. To optimize 

production it should be examined if reproduction and growth rate is affected by 

environmental factors. It will also be necessary to examine how to incubate eggs and raise 

fry. Furthermore, it may be interesting to investigate if the mother only functions as a 

shelter for the eggs and fry, or if there is other physiological and endocrine factors involved.  
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