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Preface

This report is the result of my master thesis in MA3911 at NTNU, which was conducted during
the period between September 2016 and June 2017. The statistics program involves learning of
the time series models and computer intensive methods for statistical inference. The curriculum
of TMA4300 - Computer Intensive Statistical Methods gave me an introduction about the INLA
framework. When I approached Prof H̊avard Rue to know more about the INLA framework and
research work in this field, I got an opportunity to work with him on a studforsk project. The
topic of studforsk project was ”Small Study on the Penalized Complexity Priors for stationary
auto regressive (AR) for order 1”. After completing the studforsk project, I decided to extend
this work for other time series models as my master thesis.
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Abstract

The autoregressive process of order 1 (AR(1)), moving average process of order 1 (MA(1)) and
autoregressive moving average process of order (1, 1) (ARMA(1,1)) are the central models in
time series analysis. A Bayesian approach requires the user to define a prior distribution for the
dependencies of these models. Understanding and interpretation of the priors is quite difficult in
general, although it is very much desired to ensure that the priors behave according to the users
prior knowledge about the process. In this report, we approach this problem using the recently
developed ideas of the penalized complexity (PC) priors. These priors have important properties
like robustness and invariance to reparameterisations, as well as a clear interpretation. A PC
prior is computed based on the specific principles, where the model component complexity is
penalized in terms of deviation from simple/base model formulations. In this report, the PC
prior framework is applied to construct the prior distributions for dependencies of the AR(1)
processes, the MA(1) processes and the ARMA(1,1) processes.
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1 Introduction

In the Bayesian statistical inference of time series models, we assign prior distributions for all the
hyper parameters of the model. The prior distribution about the hyper parameters represents
our prior beliefs/understanding about the hyper parameter space. In general, it is very hard to
express exact prior information about the hyper parameters. An expert knowledge is required
to mention the concrete probabilistic information about the hyper parameters. More commonly
the prior distributions used in general are not subjective and are open to criticism.

There are several reasons for using non-subjective priors ranging from the lack of expert infor-
mation, to the difficulty in eliciting information about structural parameters that are further
down the model hierarchy, such as precision or correlation parameters. As models grow more
complex, the difficulty in specifying expert priors on the parameters increases. Martyn Plum-
mer, the author of JAGS software for Bayesian inference [1] goes so far as to say

“[...] nobody can express an informative prior in terms of the precision[...]”

Apart from the fully subjective expert priors, there are three main methods of selecting priors.
The method of prior selection furthest from expert elicitation priors are “objective” priors
(Bernardo, 1979 [2]; Berger, 2006 [3]; Berger et al., 2009 [4]; Ghosh, 2011 [5]). These priors try to
provide as little information as possible into the inference procedure. Objective priors strongly
depend on the design and have philosophical issues amongst Bayesians; example discussion
contributions to Berger, 2006 [3] and Goldstein, 2006 [6], but results can still be useful in
practice.

Jeffreys’ non-informative priors and their extension “reference priors” (Berger et al.,2009 [4])
are most common in the family of objective priors. These priors are typically improper, and
require attention to ensure posteriors to be proper. If chosen carefully it leads to correct
estimates as shown by Kamary, 2014 [7]. However, objective priors are model dependent and
difficult to derive except for the simple cases. Further, it is highly sensitive to the likelihood
changes. The entire prior must be recomputed for small changes in the likelihood, in order
to ensure propriety. This does not suit well with the practice of “building block” approach
type’s statistical applications. In spite of shortcomings, the reference prior framework is the
only complete framework for specifying the prior distributions.

Between subjective and objective priors there is a realm of “weakly informative” priors (Gelman,
2006 [8]; Gelman et al., 2008 [9]; Evans and Jang, 2011 [10]; Polson and Scott, 2012 [11]). These
priors are constructed by having weak prior knowledge about the process which is generating
data. It is rare to be completely ignorant about the process. The use of weak prior knowledge is
sufficient to regularize the extreme inferences that can be obtained using maximum likelihood
or non-informative priors.

There is a third approach to prior selection that is to select priors from the literature. In the
best cases, the chosen prior was originally selected in a careful, problem independent manner
for a similar problem to the one the statistician is solving. More commonly, these priors have
been carefully chosen for the problem they were designed to solve and are inappropriate for
the new application. Other priors in the literature have been selected for purely computational
reasons.

Penalized Complexity priors (PC priors) (Simpson et al., 2016 [12]) belong to the realm of
weakly informative priors, where users have some useful information about the process. The
information in these priors is specified in terms of four underlying principles. These principles
help to communicate the exact information that is encoded in the prior in order to make it
interpretable. PC priors have a single parameter that the user must set, which controls the
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amount of flexibility that parameter can specify in the model. This parameter can be set using
“weak” information. The second purpose of building these priors from a set of principles is
to allow us to change these principles when needed. This gives the PC prior framework the
advantage of flexibility without sacrificing its simple structure. PC priors are general enough
to be used in realistically complex statistical models and are straightforward enough to be used
by general practitioners. Using only weak information, PC priors represent a unified prior
specification with a clear meaning and interpretation. The underlying principles are designed
so that desirable properties follow automatically: invariance regarding reparameterisations,
connection to Jeffreys’ prior, support of Occam’s razor principle, and empirical robustness to
the choice of the flexibility parameter. The PC prior approach is not restricted to any specific
computational method as it is a principled approach to the prior construction and therefore
relevant to any application involving Bayesian analysis.

In this report, we will develop PC priors for time series models such as auto regressive process
of order 1 i.e. AR(1), moving average process of order 1 i.e. MA(1) and auto regressive and
moving average process of order (1,1) i.e. ARMA(1,1). PC priors for stationary auto regressive
process have already been developed by Sørbye and Rue, 2016 [13], while PC priors for MA(1)
and ARMA(1,1) are developed for the first time here.

To best present this report, it is divided into these sections: In Section 2, preliminaries such as
definitions and notations related to the time series models are discussed. This gives us the basic
idea about the processes that are dealt in this report. In Section 3, the fundamentals to develop
the PC priors have been explained with an example. This will prepare us to use the principles
to construct PC priors for the processes of our interest. In Section 4, PC priors are constructed
for the dependency factor of the time series processes in the following order: AR(1), MA(1) and
ARMA(1,1). In Section 5, based on the developed PC priors in section 4, simulated time series
data is fit using the INLA framework. This section provides insight about how to use the PC
priors in the INLA framework. Section 6, concludes the work done in this report with future
recommendations.
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2 Preliminaries

Basic building blocks of time series models consist of AR(1) process and MA(1) process and
ARMA(1,1) process, these models are widely applied to model time-varying stochastic processes,
for example within finance, biostatistics and natural sciences (Brockwell and Davis, 2002 [14] ;
Chatfield, 2003[15]; Prado and West, 2010[16]).

2.1 AR(1) Process

Generally, an AR(1) process is defined by the equation 1:

xt = φxt − 1 + at, (1)

where at ∼ N (0, κ−1), for t = 2, 3, . . . , n. x1 is assumed to follow mean 0 and marginal precision
τ = κ(1− φ2). In the AR(1) process, dependency is governed by the factor φ. An AR process
is a stationary process if roots of the characteristic polynomial lie inside the unit circle. In case
of the AR(1) process the characteristic polynomial is represented by

z − φ

We have to limit |φ| < 1 for stationary AR(1) process. Figure 1 shows two random realizations
of the stationary AR(1) process with correlation factor φ = 0.1 and φ = 0.9 mixed with noise
with standard deviation (σe) of .1 respectively.

AR(1) process with φ =.1
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Figure 1: Random realizations of the AR(1) process with φ = .1 and φ = .9 mixed with noise
with σe = 0.1
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2.2 MA(1) Process

The MA(1) process is generally defined by the equation 2:

xt = θat−1 + at, (2)

where at ∼ N (0, σ2), for t = 2, 3, . . . , n. a1 is assumed to be 0. In the MA(1) process depen-
dency is governed by the factor θ. An MA process is called invertible MA process if it can
be represented in term of AR series, for invertibility of the MA(1) process, constraint |θ| < 1
must be followed. Figure 2 shows two random realizations of the invertible MA(1) process
with correlation factor θ = 0.1 and θ = 0.9 mixed with noise with standard deviation(σe) of .1
respectively

MA(1) process with θ =.1
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Figure 2: Random realizations of the MA(1) process with θ = .1 and θ = .9 mixed with noise
with σe = 0.1

2.3 ARMA(1,1) Process

The ARMA(1,1) process is generally defined by the equation 3:

xt = φxt−1 + θat−1 + at, (3)

where at ∼ N (0, σ2), for t = 2, 3, . . . , n. a1 is assumed to be 0. In an ARMA(1,1) pro-
cess auto regressive dependency is governed by the factor φ and moving average part depen-
dency is governed by θ, we have to limit |φ| < 1 and |θ| < 1 for stationary and invertible the
ARMA(1,1). The ARMA(1,1) process with |φ| = 0 is equivalent to MA(1) process and similarly,
the ARMA(1,1) process with |θ| = 0 is equivalent to AR(1) process.

Figure 3 represents random realizations of the ARMA(1,1) process with correlation factors
(φ, θ) = {(.1, .1), (.4, .9), (.9, .4), (.9, .9)} respectively mixed with noise with standard deviation
(σe) of .1
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ARMA(1,1) with φ =.1 and θ =.1
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ARMA(1,1) with φ =.4 andθ =.9
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ARMA(1,1) with φ =.9 and θ =.4
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Figure 3: Random realizations of the ARMA(1,1) process with (φ, θ) = (.1, .1), (φ, θ) = (.4, .9),
(φ, θ) = (.9, .4), (φ, θ) = (.9, .9) mixed with noise with σe = 0.1
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3 Penalized Complexity (PC) Priors Framework

Penalized complexity priors [12] assign prior distributions for the hyper parameters of the model,
based on the complexity of the model. As the name suggests, PC priors penalize priors for having
more complex model. The basic idea for the construction of PC priors is that the priors for the
base model (simpler model) are more probable then the priors for the complex models (flexible
model). PC priors are constructed with the help of the following four principles:

3.1 Principle 1: Occam’s Razor:

The principle of parsimony says that the simpler model formulation should be preferred until
there is enough support for a more complex model. In this framework, the simpler model is the
base model, so the priors will be penalized for deviating from the base model. This hints that as
the complexity of the flexible model increases the priors for the flexible model will become less
probable when compared to the priors for the base model, which imply that the prior densities
of the hyper parameters should decay as the complexity of the flexible model increases. The
complexity of the flexible model compared to the based model is also a measure of the distance
between two models. But there arises the question how to measure the distance between two
models or what are the measure of complexity in this framework. This introduces the next
principle for measuring the complexity between two models.

3.2 Principle 2: Measure of Complexity:

The Kullback -Leibler divergence (KLD) is used to measure of the increased complexity between
two probability distributions. Between two probability densities f and g, KLD is defined by
equation 4:

KLD(f ||g) =

∫
f(x) log

f(x)

g(x)
dx (4)

KLD is a measure of the information lost when the base model g is used to approximate the
flexible model f . Note, that this is an asymmetric function, which means, the measure of
complexity is non symmetric, hence the distance considered by the KLD is not a metric. Since,
this measure of complexity is generated through integration of densities; it doesn’t match with
the notion of the distance dimensionally. Hence, the unidirectional measure of the distance
d(f ||g) =

√
(2KLD(f ||g)) is used. d is considered to be measure of the distance based on the

complexity of the model f when compared to the model g. The factor of ”2” is chosen for the
sake of convenience.

Now, a suitable measure of the distance between the base model and the flexible model, in the
form of the KLD measure, is established.

It is known that the priors are to be penalized with reference to this measure of distance. But,
the framework is still not prepared to construct the PC prior, as how much prior distribution
need to be penalized quantitatively is not known as of now. This leads to the third principle.

3.3 Principle 3: Constant rate penalization:

While choosing the prior distribution for the distance measure d, it is natural to assume that
the mode of the prior distribution should be located at the distance which corresponds to the
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base model i.e. d = 0, while the density decays as the distance from the base model increases,
so that the prior densities for distance d must satisfy the equation 5:

πd(d+ δ)

πd(d)
= rδ, d, δ ≥ 0 (5)

for some constant r with 0 < r < 1. The idea behind constant rate penalization is that the
relative change in the prior densities doesn’t depend on the distance d when the complexity of
the flexible model increases from the distance d to the distance d ± δ. Since it is known that
the distance d = 0 represent the base model, this idea of constant rate penalization assumption
implies an exponential prior on the distance scale. So, it results in the prior distribution for the
distance scale mention at equation 6

πd(d) = λ exp(−λd)

r = exp(−λ)
(6)

It should be noted that the distance (d) between the base model and the flexible model is
measured using the KLD, is a function of ξ (hyper parameters for the model). Let’s say, the
distance d is denoted as a function of ξ as d(ξ). Now, from the constant rate penalization, it is
known that the distance d(ξ) ∼ exp(λ). So, by applying transformation of random variable to
the prior distributions, the prior distribution for hyper parameters is given by equation 7:

π(ξ) = π(d(ξ))|∂d(ξ)

∂ξ
| (7)

Now, the PC prior for our hyper parameter of interest ξ is constructed, the PC prior density
is also a function of λ, which is unknown as of now. This introduces the next principle, for
interpretation of λ.

3.4 Principle 4: User defined scaling:

This discussion was started by saying that the PC priors are the weakly informative priors,
however till now no information about the hyper parameters space has been introduced, con-
struction till now is generic and may be applied for the hyper parameters of any particular class
of models, however in the real life situation, it would be applied to a particular problem or a
particular model. For the particular problem or a model of interest, user must have a broad
idea about the sensible upper bound U for the parameter of interest and α the tail event which
is put about this sensible upper bound. The use of U,α also give a significance to the unknown
parameter λ. This prior knowledge is used at equation 8 for finding out the unknown scaling
factor λ for the constructed PC prior.

Pr (Q(ξ) > U) = α (8)

Where Q(ξ) is an interpret-able transformation of the flexibility parameter.

It should be noted that the idea of applying the PC prior is very useful, when the user has some
vague idea about the the hyper parameters available. The vague idea can be in the following
form,

. . . it is unlikely that parameter is larger than some number . . .

Now, the framework based on these 4 principles is ready for construction of the PC priors, con-
struction of the PC prior for the precision parameter (τ) for a multivariate normal distribution
is an example before starting construction of the PC priors for the dependencies of the time
series models.
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Example : Construction of the PC Priors for the precision parameter (τ) in
the multivariate Normal distribution:

Let N p
0 (µ0,Σ0) denote the base model which follows a multivariate normal distribution with

dimension p. And the flexible model is of the form N1
p(µ1,Σ1), using the KLD to calculate the

measure of the distance between two models,

KLD(N p
1 ||N

p
0 ) =

1

2
{tr(Σ−10 Σ1) + (µ0 − µ1)TΣ−10 (µ0 − µ1)− p− log

|Σ1|
|Σ0|
} (9)

The PC priors are formulated for the precision parameter (τ), so simplest assumption for the
base model is that it is a model with no random effect and for the flexible model is to add random
effects to the base model i.e. Σ0 = 0, which is not useful directly for calculating the distance
between two models. So, Σ0 = R

τ0
and Σ1 = R

τ is assumed and then the limit lim τ0 →∞ is
taken to make the base model with no random effect. R is assumed to be full rank fixed matrix.
µ0 and µ1 are assumed to be 0 vectors. The KLD based distance between the base model and
the flexible model is formulated at equation 11:

KLD =
p

2

τ0
τ
{1 +

τ

τ0
log(

τ

τ0
)− τ

τ0
} (10)

Now, as τ0 � τ i.e. equivalent to that when τ0 goes to∞, then τ
τ0
, ττ0 log( ττ0 ) will go to 0, which

gives

d(τ) =

√
pτ0
τ

(11)

Now, the distance between two models in formulated in terms of the hyper parameter, principle
3 and principle 4 is applied to get the exact prior distribution for the precision parameter (τ)
in this situation. Since, d(τ) is a function of τ and it is also known that the distance between
two models follows exponential distribution with rate λ so by transforming the variables, the
prior distribution for precision τ is constructed at equation 12 :

|∂d(τ)

∂τ
| = 1

2

√
pτ0
τ3

π(d(τ)) = λ exp−λd(τ)

π(τ) =
δ

2
τ

−3
2 exp

−δ√
τ

(12)

where δ = (−λ√pτ0). This prior distribution is type -2 Gumbel distribution. To find the
significance of the scaling parameter δ , principle 4. (i.e. probability statement) is applied

Pr (
1√
τ
> U) = α

δ = − logα

U

For the different values of the scaling parameter δ = c(.2, 1, 10) plots of the PC prior for the
precision parameter (τ) are shown at the Figure 4,
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different scaling parameters

4 Construction of the PC priors for the dependencies of time
series models

As discussed in the Section 2, building blocks for the time series models are the AR(1) processes,
the MA(1) processes and the ARMA(1,1) processes. In this section, the PC prior is developed
for the dependency factor at lag one of an AR(1) process and an MA(1) process. In case of the
ARMA(1,1) process, the joint prior distribution for the dependencies of AR part and of MA
part is constructed. Key in constructing the PC priors lie in the way, the base model is selected.
This will become clearer with the progress of the section.

4.1 Construction of the PC prior for the dependency at lag one of an AR(1)
process

The general representation of an AR(1) process is defined by equation 1. In the case of an
AR(1) process, there are two choices for the base model, i.e. φ = 0 or φ = 1. Depending on
the particular problem user may choose any one of them. One can choose the base model to
be independent with reference to time i.e. no dependency in time that corresponds to φ = 0
for the base model. And one can also choose the base model to be no change with reference
to to time that corresponds to the case when φ = 1 for the base model. Construction of the
PC priors for the dependency factor (φ) in each case will follow the same principles; however
both approaches will lead to the different prior distributions for φ. For simplification of the
calculations, the precision for the noise is assumed to be known and fixed.
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4.1.1 Construction of the PC priors for the dependency at lag one of an AR(1)
process when the base Model: No dependency in time

Let’s say p is the dimension of the data-set, the base model is considered with the dependency
parameter φ = 0 and the flexible model is considered with the dependency parameter φ. For
calculating the distance d(φ) based on the KLD, values of µ0 and µ1 and Σ0 and Σ1 are required.
µ0 = µ1 = 0 and Σ0 is an identity matrix of order p multiplied by a factor of 1

τ , and Σ1 is such

that (Σij) = 1
τ φ
|i−j|,

Σ1 =
1

τ


1 φ φ2 . . . φp−1

φ 1 φ2 . . . φp−2

φ2 φ 1 . . . φp−3

...
...

...
. . .

...
φp−1 φp−2 φp−3 . . . 1

 (13)

Σ1
−1 =

τ

(1− φ2)



1 −φ 0 · · · · · · · · · · · · 0

−φ (1 + φ2) −φ . . .
...

0 −φ (1 + φ2) −φ . . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

...
. . . −φ (1 + φ2) −φ 0

...
. . . −φ (1 + φ2) −φ

0 · · · · · · · · · · · · 0 −φ 1


(14)

det(Σ1) =
1

τp
(1− φ2)p−1 (15)

det(Σ0) =
1

τp
(16)

Using the above information the KLD between the base model and the flexible model is formu-
lated at equation 17 :

KLD(N p
1 ||N

p
0 ) =

1

2
{tr(Σ−10 Σ1) + (µ0 − µ1)TΣ−10 (µ0 − µ1)− p− log

|Σ1|
|Σ0|
}

KLD(N p
1 ||N

p
0 ) =

1

2
(1− p) log (1− φ2)

d(φ) =
√

(1− p) log (1− φ2)
(17)

Since, the distance is formulated as a function of φ, using the principle 3, the prior distribution
for the φ is constructed at equation 19:

|∂d(φ)

∂φ
| = 1

2

√
1− p

log (1− φ2)
2|φ|

(1− φ2)

π(d(φ)) = λ exp(−λd(φ))

(18)

π(φ) = δ exp (−δ
√
− log (1− φ2)) φ

(1− φ2)
√
− log (1− φ2)

(19)

13



Where the scaling parameter δ = λ
√
p− 1. To find significance of the scaling parameter δ,

principle 4 is applied. The probability statement is defined by Pr (|φ| > U) = α which gives
significance to the scaling parameter at equation 20:

δ =
− logα√

− log (1− U2)
(20)

Plots of the PC priors for correlation at lag one are shown by the Figure 5, we have set three
different values of the scaling paramter δ = c(100, 10, 1)
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PC Prior for autocorrelation when distance calculated considering φ=0 for the base model

Figure 5: PC Prior for correlation at lag 1 (φ), of an AR(1) process with different scaling
parameters

It is observed that for different values of the scaling parameter δ, the PC prior behaves both
like an informative prior and an uninformative prior. From the Figure 5, it is observed that
when the scaling parameter δ is set to 100, then, the PC prior shows shrinkage and becomes
informative prior whereas in the case when the scaling parameter was set to 1 it becomes a flat
prior.

4.1.2 Construction of the PC priors for the dependency at lag one of an AR(1)
process when the Base Model: No change in time

An alternative approach for considering the base model can be such that the base model does
not change with time (φ = 1). This represents the limiting case of random walk, which is a
non stationary and a singular process. So dependencies for the base model and the for flexible
model are assumed to be φ0 and φ, such that φ0 > φ. And the limiting case will be discussed
when the limit limφ0 → 1. In this situation, Σ0 and Σ1 for our base and flexible models are
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given by equation 21:

Σ0 =
1

τ


1 φ0 φ20 . . . φp−10

φ0 1 φ20 . . . φp−20

φ20 φ0 1 . . . φp−30
...

...
...

. . .
...

φp−10 φp−20 φp−30 . . . 1

 Σ1 =
1

τ


1 φ φ2 . . . φp−1

φ 1 φ2 . . . φp−2

φ2 φ 1 . . . φp−3

...
...

...
. . .

...
φp−1 φp−2 φp−3 . . . 1

 (21)

This gives

KLD(N p
1 ||N

p
0 ) =

1

2

[ 1

1− φ20
{p− 2(p− 1)φ0φ+ (p− 2)φ20} − p− (p− 1) log

(1− φ2)
(1− φ20)

]
(22)

While considering the limiting case limφ0 → 1, we have

d(φ) =
√

2KLD =

√
2(p− 1)(1− φ)

1− φ20
= c
√

1− φ (23)

where |φ| < 1 and c is independent from φ. It should also be noted that d(φ) ≤ c
√

2. Since,
d(φ) now has a range so we have to use truncated exponential distribution. In this case, the
prior for φ is constructed at equation 27:

d(φ) = c
√

1− φ (24)

π(φ) =
λ exp (−λd(φ))

1− exp (−
√

2λc)
(25)

|∂d(φ)

∂φ
| = c

2
√

1− φ
(26)

π(φ) =
1

2

δ exp (−δ
√

1− φ)

(1− exp (−
√

2δ))
√

1− φ
(27)

Where δ = λc. However, we have to use principle 4 for the significance of the scaling parameter
δ, the probability statement Pr(|φ| > U) = α is defined to give significance to the scaling
parameter δ at equation 28:

α =
1− exp (−δ

√
1− U)

(1− exp (−
√

2δ))
(28)

We must note:

αmin =

√
1− U

2
(29)

Plots of the PC priors for correlation at lag one are shown at the Figure 6, we have set three
different values of the scaling parameter δ = c(.1, 1, 5) It is observed that for the different
values of the scaling parameter δ, the PC prior behaves both like an informative prior and an
uninformative prior. It is also noticed that increasing values of the scaling parameter δ increases
the amount of information about the data, which corresponds to more shrinkage of the prior
towards the base model. However, by changing the user defined scale, PC prior can easily
constructed as an uninformative/flat prior also.
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PC Prior for autocorrelation when distance calculated considering φ=1 for the base model

Figure 6: PC Prior for correlation at lag 1 (φ), of an AR(1) process with different scaling
parameters

4.1.3 Comparison of the PC Priors of AR(1) process with the Reference and the
Jeffery’s Priors

In this section, the PC priors developed for correlation of an AR(1) process are compared with
the existing priors. In Bayesian setting, some time priors are preferred that doesn’t strongly
influence the posterior distributions. These priors are called uninformative priors. We can assign
uniform prior to our hyper parameter but that may not be invariant towards reparameterization.
So the Jeffery’s priors are the generalization of the idea of uninformative priors. And the Jeffery’s
priors are based on the principle of invariance. Jeffery’s prior are calculated at equation 30 -
equation 33 [19]:

πJ(θ) =
√
det(I(θ)) (30)

where Iij(θ) = Fisher Information matrix = −Eθ(∂
2 log (pX|θ)
∂θi∂θj

), in the case of AR(1) process,

det(I(θ)) = ({ n

1− φ2
+

1− φ2n

1− φ2
{E(

X2
0

σ2
) +

1

1− φ2
}}) (31)

which gives us

π(φ) ∝ (1− φ)2

σ2

√
1

1− φ2
(n+

1− φ2n
1− φ2

) (32)

which is an un-normalized density, which simplifies for large values of n:

π(φ) ∝

√
1− φ
1 + φ

(1− φ) (33)

It is desired to construct prior distribution for the notion of the distance using the Jeffery’s
prior distribution. We have two notions of the distance depending on the base model. In the
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first case when the base model with φ = 0 is considered, resulted d(φ) =
√

(1− p) log (1− φ2)
which gives

φ =

√
1− exp (− d2

n− 1
) (34)

prior distribution for this notion of distance is formulated at equation 36:

πJ(d) = πJ(φ)|∂(φ)

∂d
| (35)

which gives

πJ(d) ∝
exp −d2

2(n−1)(1−
√

(1− exp −d2
(n−1)))

2(d)√
(1− exp −d2

(n−1))
(36)

Plot of the prior distribution for the notion of distance is given by the Figure 7:
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Figure 7: Jeffrey’s prior for the notion of distance

Now, the prior distribution is constructed for the case when base model is assumed with φ = 1,
d(φ) = c

√
1− φ. which gives us

φ = 1 +
−d2

c
(37)

for the sake of simplicity, assume c = 1, which will put a constraints on d that d ≤ 1. The prior
distribution is formulated for notion of distance at equation 39:

πJ(d) = πJ(φ)|∂(φ)

∂d
| (38)

which gives

πJ(d) ∝ d4√
(2− d2)

(39)

Plot of the prior for the notion of the distance is given by the Figure 8:
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Figure 8: Jeffrey’s prior for the notion of distance

It is observed that for both choices of the base models, prior distribution constructed for the
notion of the distance considering Jeffreys prior distribution for the parameter overfits. It gives
zero probability mass for the cases when d is close to 0, which contradicts the assumptions of
the Occam’s Razor. It is observed that the prior distribution makes some distances which are
not close to the base model more probable. Jeffrey priors are often used for defining the prior
distributions for the dependency factor of an AR(1) process. It should be considered that origin
of the Jeffreys prior is to give uninformative priors which are invariant under reparameterization.
However, if they are looked with the perspective of the distance from the base model, they don’t
support the idea that the base model is more probable.

Now, prior distribution for the notion of distance is constructed considering the reference prior
distribution for the parameter (φ) of the model. The idea behind the reference priors is to
formalize what exactly meant by an ”uninformative prior”. It is a function that maximizes
some measure of distance or divergence between the posterior and prior. Reference Prior for
correlation at lag 1 of an AR(1) process are given at equation 40 [20]:

πR(φ) =
1

π

1√
(1− φ2) (40)

There are two notions of the distance available depending on the base model. In the first case
when the base model is considered with φ = 0, d(φ) =

√
(1− p) log (1− φ2) which leads to

φ =

√
1− exp (− d2

n− 1
) (41)

So prior distribution for the notion of distance is formulated at equation 43:

πR(d) = πR(φ)|∂(φ)

∂d
| (42)

Which gives

πR(d) =
1

π

exp (− d2

2(n−1))(1− exp− d2

n−1)−.5d

(n− 1)
(43)

Plot of the prior distribution for this notion of distance is given by the Figure 9:
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Figure 9: reference prior for the notion of distance

Now, prior distribution is constructed for the case when base model is assumed with φ = 1,
d(φ) = c

√
1− φ. which gives

φ = 1 +
−d2

c
(44)

for the sake of simplicity we assume that c =1. Which will put a constraints on d that d ≤ 1.
The prior distribution for this notion of distance is formulated at equation 46:

πR(d) = πR(φ)|∂(φ)

∂d
| (45)

which gives

πR(d) =
2

π

1√
2− d2

(46)

Plot of the prior distribution for this notion of distance is given by Figure 10:
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Figure 10: reference prior for the notion of distance

The reference prior looks reasonable when we consider the distance from the base model corre-
sponding to φ = 0, as it doesn’t overfit distances close to 0. It supports the idea that models
close to the base model are more probable than the model far from the base model. However, if
the base model is chosen with φ = 1, reference prior doesn’t looks that reasonable as it makes
probable those models which are far from the base model. Clearly, when the φ is close to 0,
reference prior may be used. But φ is close to 1 for a particular problem, the reference prior
approach may not be suitable. PC Priors are based on constant rate penalization principle
hence they support both base models and can be used for any general or specific setting of φ.
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4.2 Construction of the PC priors for the dependency at lag one of an MA(1)
process

The general representation of MA(1) process is defined by equation 2. In this section, the
objective is to construct prior distribution for the parameter θ. There are two choices for the
base model: θ = 0 or θ = 1. However, choosing the base model to be independent with reference
to time i.e. no dependency in time which corresponds to θ = 0 is more natural and intuitive for
the MA processes. Choosing the base model to be no change with reference to to time which
corresponds to the case when θ = 1, but it is counter intuitive. This can be understood by the
fact that measurement of the statistical signal is done assuming initial error to be 0, and the
MA(1) process is statistically modelled using the difference of signals at consecutive time unit.
It is natural and simpler to believe that the base model will have no dependency with time, and
by observing the data it is sensed that there is a dependency among the signals in terms of the
correlation factor (θ).

Let’s say p is the dimension of the data-set, θ = 0 is considered for the base model and θ for
the flexible model. For calculating the KLD and the distance d(θ) between the base model and
the flexible model, values of µ0 and µ1 and Σ0 and Σ1 are required. µ0 = µ1 = 0 and Σ0 is an
identity matrix of order p multiplied by a factor of σ2, and Σ1 is represented by equation 47:

Σij =


σ2(1 + θ2) |i− j| = 0,
σ2(θ) |i− j| = 1,
0 otherwise

 (47)

Σ1 = σ2



(1 + θ2) θ 0 · · · · · · · · · · · · 0

θ (1 + θ2) θ
. . .

...

0 θ (1 + θ2) θ
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . . θ (1 + θ2) θ 0
...

. . . θ (1 + θ2) θ
0 · · · · · · · · · · · · 0 θ (1 + θ2)


(48)

It is quite difficult to formulate the divergence between the the flexible model and the base
model using the KLD by the given Σ1, as it requires determinant of Σ1 to be formulated in the
closed form, however the determinant of Σ1 doesn’t have a closed form and it depends on the
dimension of the Σ1, numerical methods are required to find the determinant of Σ1.

But after a keen observation of Σ1, an interesting structure is found in Σ1. It has the same
structure as the inverse matrix shown at the equation 14. The only structural difference between
the inverse matrix referred and the Σ1 is the first and last entry of the matrix. The first and
last entry in the matrix Σ1 is (1 + θ2), and the referred matrix has those entries as 1. The
determinant of the referred matrix is available in the closed form.

This gives us the idea to approximate Σ1 by Σapprox by changing Σ1(1,1) and Σ1(p,p) to 1 instead of

(1+θ2), this approximation will result into a closed form of the determinant of Σapprox. Σapprox,
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its inverse and its determinant are represented at equation 49, equation 50 and equation 51:

Σapprox = σ2



1 θ 0 · · · · · · · · · · · · 0

θ (1 + θ2) θ
. . .

...

0 θ (1 + θ2) θ
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . . θ (1 + θ2) θ 0
...

. . . θ (1 + θ2) θ
0 · · · · · · · · · · · · 0 θ 1


(49)

Σapprox
−1 =

1

σ2(1− θ2)


1 (−θ) (−θ)2 . . . (−θ)p−1

−θ 1 (−θ)2 . . . (−θ)p−2

(−θ)2 (−θ) 1 . . . (−θ)p−3
...

...
...

. . .
...

(−θ)p−1 (−θ)p−2 (−θ)p−3 . . . 1

 (50)

det(Σapprox) = (σ2)
p
(1− θ2) (51)

However, the approximation needs to be verified with reference to the measure of distance
between the base model and the flexible model. The comparison of the actual distance and the
approximated distance between the base model and the flexible model is studied by R Code at
Appendix A.1. The actual distance is calculated using Σ1 and approximated distance has been
calculated using Σapprox.
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Figure 11: Comparison between the actual distance (considering Σ1) with the approximated
distance (considering Σapprox) for different values of θ

It is observed from the Figure 11 that the approximation works well with reference to the KLD
measure of the distance for almost all values of θ except very high values of θ. Hence, the
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approximation proposed is used for constructing the PC prior in this case:

KLD(N p
1 ||N

p
0 ) =

1

2
{tr(Σ−10 Σ1) + (µ0 − µ1)TΣ−10 (µ0 − µ1)− p− log

|Σapprox|
|Σ0|

} (52)

KLD(N p
1 ||N

p
0 ) =

1

2
((p− 2)(θ2)− log (1− θ2)) (53)

d(θ) =
√

((p− 2)(θ2)− log (1− θ2)) (54)

This can be further simplified using the approximation log (1− θ2) ≈ −θ2 when |θ| < 1:

d(θ) =
√

((p− 1)(θ2)) (55)

This gives distance as a function of θ and the prior distribution for the θ is formulated at
equation 57:

π(d(θ)) = λ exp(−λd(θ)) (56)

π(θ) = δ exp (−δ|θ|) (57)

where δ = λ
√
p− 1. Since, there is a condition that |θ| < 1 for invertible MA (1) process, the

prior distribution formulated at equation 57 needs to be truncated.Truncated prior distribution
is shown at equation 58

π(θ) =
δ

2(1− exp (−δ))
exp (−δ|θ|) (58)

To find significance of δ, the probability statement is defined:

Pr (|θ| > U) = α

which needs to be solved with the help of numerical methods for δ. It is also be represented at
equation 59

α exp (−δ) + exp (−Uδ)− α = 0 (59)

Uniroot command has been used to find the solution of this equation in the R-generic code for
MA(1) process.

Plots of the PC prior for the correlation at lag one for the MA(1) process are shown at the
Figure 12 for three different values of the scaling paramter δ i.e. 30, 10, 2.

For the different values of the scaling parameter δ, the PC prior for θ behaves both like an
informative prior and also like an uninformative/flat prior. In the Figure 12, for δ = 30, the
PC prior shows shrinkage and becomes informative prior whereas in the case when δ is set to
2, the PC prior behaves like a flat prior. It is also observed that as δ increases, the PC prior
becomes more and more informative resulting into more shrinkage towards the base model.

4.3 Construction of the joint PC priors for the dependencies of the ARMA(1,1)
process

The general representation of an ARMA(1,1) process is defined by equation 3. In this section,
the objective is to construct PC prior distributions for the parameters θ and φ. There are three
methods to approach this problem, the first method tries to construct the PC priors assuming
the base model to be i.i.d., the second method formulates the PC priors, assuming the base
model to be an AR(1) process and third method formulates the PC prior assuming the base
model to be an MA(1) process. To formulate the joint PC priors for the ARMA(1,1) process
in the first case, the base model is defined with θ = 0 and φ = 0. In the second case, the base
model is defined to be an AR(1) process with φ. In the third case, the base model is defined to
be MA(1) process with θ.
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Figure 12: PC Prior for the correlation (θ) at lag 1, for MA(1) process for different scaling
parameters

4.3.1 Construction of the joint PC priors for the dependencies of the ARMA(1,1)
process for the base model to be iid

Let’s say p is the dimension of the data-set, (φ = 0, θ = 0) is considered for the base model and
parameters (φ, θ) represents dependencies of the flexible ARMA(1,1) model. For calculating the
distance d(φ, θ) based on the KLD, values of µ0 and µARMA and Σ0 and ΣARMA are required.
µ0 = µARMA = 0 and Σ0 is an identity matrix of order p multiplied by a factor of σ2, and
ΣARMA is represented by equation 60 and equation 61:

Σij =


γ0 |i− j| = 0,
γ1 |i− j| = 1,

φ|i−j|−1γ1 otherwise

 (60)

where
γ0 = σ2 (1+θ

2+2θφ)
(1−φ2)

γ1 = σ2 (1+θφ)(φ+θ)
(1−φ2)

ΣARMA =


γ0 γ1 φ1γ1 . . . φp−2γ1
γ1 γ0 γ1 . . . φp−3γ1
φ1γ1 γ1 γ0 . . . φp−3γ1

...
...

...
. . .

...
φp−2γ1 φp−2γ1 φp−3γ1 . . . γ0

 (61)

It is quite difficult to formulate the the distance based on the KLD measure between the
base model and the flexible model analytically using ΣARMA, as it requires the determinant of
ΣARMA to be formulated in the closed form, however the determinant of ΣARMA doesn’t have a
closed form, the determinant of ΣARMA depends on the dimension of the matrix, and numerical
methods are required to find the determinant of ΣARMA. But ΣARMA posses an interesting
structure in it. It has the pattern of the co-variance matrix of the AR(1) process along with the
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subtle structural attributes similar to the co-variance matrix of the MA(1) process also. But
it is dense unlike the co-variance matrix of an MA(1) processes because of the AR part in the
ARMA(1,1) process. And unlike the AR(1) processes, it has a dense precision matrix because
of the MA part in the ARMA(1,1) process.

A suitable, approximation of ΣARMA needs to be found in order to formulate its determinant
in the closed form. While searching for a suitable approximation, the idea of approximation
ΣARMA ≈ ΣARΣMA [17] came across. This approximation might lead to a smooth solution to
the problem of finding determinant in the closed form. The determinant of ΣAR has a closed
form, whereas determinant of ΣMA was formulated in the closed at equation 51. However, the
approximation ΣARMA ≈ ΣARΣMA needs to be verified with reference to the measure of the
distance between the base model and the flexible model. The comparison of the actual distance
and the approximated distance between the base model and the flexible model is studied by R
Code at Appendix A.2. The approximated distance, between the base model and the flexible
model is calculated using the approximation that ΣARMA ≈ ΣARΣMA.
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Figure 13: Comparison between the actual distance (considering ΣARMA) with the approxi-
mated distance (considering ΣARΣMA) when n = 10
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Figure 14: Comparison between the actual distance (considering ΣARMA) with the approxi-
mated distance (considering ΣARΣMA) when n = 50
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Figure 15: Comparison between the actual distance (considering ΣARMA) with the approxi-
mated distance (considering ΣARΣMA) when n = 100
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Figure 16: Comparison between the actual distance (considering ΣARMA) with the approxi-
mated distance (considering ΣARΣMA) when n = 500

−0.5 0.0 0.5

−
0

.5
0

.0
0

.5

Actual distance 

φ

θ

0

50

100

150

−0.5 0.0 0.5

−
0

.5
0

.0
0

.5

1st level Approximated distance 

φ

θ

0

50

100

150

−0.5 0.0 0.5

−
0

.5
0

.0
0

.5

Approximated distance −Actual distance

φ

θ

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 17: Comparison between the actual distance (considering ΣARMA) with the approxi-
mated distance (considering ΣARΣMA) when n = 1000

It is observed from the Figure 13 to the Figure 17 that the approximation (ΣARMA ≈ ΣARΣMA)
is a good approximation, with the increasing number of points in the data set the approximation
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improves significantly. This is observed by looking at the contour plots of difference between
approximated distance and actual distance. Hence, the approximation proposed is used for
constructing the PC prior in this case:

KLD(N p
1 ||N

p
0 ) =

1

2
{tr(Σ−10 Σ1) + (µ0 − µ1)TΣ−10 (µ0 − µ1)− p− log

|Σ1|
|Σ0|
} (62)

KLD =
1

2
{tr(Σ−10 ΣARMA) +−p− log

|ΣARMA|
|Σ0|

} (63)

KLD =
1

2
{tr(Σ−10 ΣARΣMA) +−p− log

|ΣARΣMA|
|Σ0|

} (64)

KLD =
1

2
{pθ2 + 2(p− 1)θφ− (p− 1) log (1− φ2)− log (1− θ2)} (65)

Here approximation log (1− x) ≈ −x is used (for high values of p), which gives

KLD =
1

2
{(p− 1)(φ+ θ)2 − 2θ2} (66)

And for high values of p:

KLD =
1

2
{(p− 1)(φ+ θ)2} (67)

d(φ, θ) =
√

(p− 1)|θ + φ| (68)

Based on the formulated distance at equation 68, plots are generated for comparing the actual
distance and formulated distance between the base model and the flexible model. R code at
Appendix A.2 generates these plots of comparison. Actual distance and formulated distance
comparison plots are shown the Figure 18 to the Figure 22:
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Figure 18: Comparison between the actual distance considering (ΣARMA) with the formulated
distance (KLD based) when p = 10
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Figure 19: Comparison between the actual distance considering (ΣARMA) with the formulated
distance (KLD based) when p = 50
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Figure 20: Comparison between the actual distance considering (ΣARMA) with the formulated
distance (KLD based) when p = 100
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Figure 21: Comparison between the actual distance considering (ΣARMA) with the formulated
distance (KLD based) when p = 500
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Figure 22: Comparison between the actual distance considering (ΣARMA) with the formulated
distance (KLD based) when p = 1000

It is observed from the Figure 18 to the Figure 22 that for the lower values of p (number of data
points), the formulated distance represent the actual distance well for almost all the points of the
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domain. However, for the higher values of p, the formulated distance does not fully represents
the nature of the actual distance, to be more precise it is a good approximation around the
base model. But for the flexible model far away from the base model the approximation does
not work well, it is also observed that the KLD based distance between the base model and
the flexible model increases rapidly if ΣARMA is used where as the formulated distance between
base model and flexible model grows much slower.

The main reason for this behavior is that the formulation of the KLD based distance, uses more
level of approximations on the initial approximation (ΣARMA ≈ ΣARΣMA), and in the process
of more approximations, the measure of the divergence between the base model and the flexible
model looses it shape from elliptical to circular. And due to this reason, the actual distance
grows much faster than the formulated distance. However, in the vicinity of the base model the
formulated distance works well for higher p also.

The notion of the distance is found as a function of (φ, θ) by using approximation, construction
of joint PC prior is done at equation 75:

π(d(ξ)) =
λ exp(−λd(ξ))|detJ(ξ)|

Sd(ξ)
(69)

where
Jij = ∂di

∂dj
and Sd(ξ) length of the level sets of equidistant points. In this case

ξ = (φ, θ) (70)

d(ξ) = d(φ, θ) =
√

((p− 1)|θ + φ| (71)

|detJ(ξ)| = (p− 1) (72)

Sd(ξ) = 2
√

2(2− |θ + φ|) (73)

π(φ, θ) =
λ(p− 1) exp(−λ

√
((p− 1)|θ + φ|)

2
√

2(2− |θ + φ|)
(74)

π(φ, θ) =
λ0 exp(−λ1|θ + φ|)

(2− |θ + φ|) (75)

where we have limitation |θ| < 1, |φ| < 1,

λ1 =
√

((p− 1)λ

λ0 =
λ(p− 1)

2
√

2C
=

1

12.78

(76)

where

C =

∫ +1

−1

∫ +1

−1
π(φ, θ)dφdθ =

12.78λ(p− 1)

2
√

2
(77)

Plots of the joint PC prior for ARMA (1,1) process for three different values of the scaling
parameter λ1 = c(.1, 1, 10) are shown in the Figure 23 to Figure 25 :
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Figure 23: Joint PC priors of dependencies (φ, θ) of ARMA(1,1) process when the scaling
parameter λ1 = .1
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Figure 24: Joint PC priors of dependencies (φ, θ) of ARMA(1,1) process when the scaling
parameter λ1 = 1
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Figure 25: Joint PC priors of dependencies (φ, θ) of ARMA(1,1) process when the scaling
parameter λ1 = 10

For different values of the scaling parameter λ1, the joint PC prior behaves both like an infor-
mative prior and a flat prior. From the Figure 23 to the Figure 25, it is observed that when
the scaling parameter λ1 = 10, the joint PC prior shows shrinkage and becomes informative
whereas in the case when it was set to .1 the prior behaves like a flat prior.

As it is seen that the joint prior distribution leads to an inexact integration, hence marginal-
ization analytically is not a fruitful idea.
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4.3.2 Construction of the joint PC priors for the dependencies of the ARMA(1,1)
process for the Base Model: AR(1) model

Let’s say p is the dimension of the data-set, and the base model is considered to be an AR(1)
process with parameter φ and the flexible model is considered an ARMA(1,1) process with
parameter (φ, θ). For calculating the distance d(φ, θ) based on the KLD, values of µ0 and
µARMA and Σ0 and ΣARMA are required. In this case µ0 = µARMA = 0 and Σ0 = ΣAR. Since,
it is difficult to formulate the the distance (based on the KLD measure) between the base model
and the flexible model analytically using ΣARMA, as it requires the value determinant of ΣARMA

to be formulated in the closed form, however determinant of ΣARMA doesn’t have a closed form,
determinant of ΣARMA depends on the dimension of data, and numerical methods are required
to find the determinant of ΣARMA. Hence, the approximation ΣARMA ≈ ΣARΣMA is suggested
to use here as well. However, the approximation ΣARMA ≈ ΣARΣMA needs to be verified with
reference to the measure of the distance between the base model and the flexible model.

For verification of the approximation, the distance comparison needs to be studied between the
actual distance and the approximated distance between the base model and the flexible model.
The approximated distance, between the base model and the flexible model is calculated using
the approximation that ΣARMA ≈ ΣARΣMA.

Distance comparisons plots between the actual and the approximated distances are shown in
the Figure 26 to the Figure 30:
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Figure 26: Comparison between the actual distance (considering ΣARMA) with the approxi-
mated distance (considering ΣARΣMA) when n = 10
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Figure 27: Comparison between the actual distance (considering ΣARMA) with the approxi-
mated distance (considering ΣARΣMA) when n = 50
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Figure 28: Comparison between the actual distance (considering ΣARMA) with the approxi-
mated distance (considering ΣARΣMA) when n = 100
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Figure 29: Comparison between the actual distance (considering ΣARMA) with the approxi-
mated distance (considering ΣARΣMA) when n = 500
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Figure 30: Comparison between the actual distance (considering ΣARMA) with the approxi-
mated distance (considering ΣARΣMA) when n = 1000

It is observed from the Figure 26 to the Figure 30, that the approximation works pretty well
for almost every point of the domain, except very high values of the parameters. With higher
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number of points in data set, the quality of the approximation improves significantly. This is
observed from looking at the contour plots of the difference between the approximated distance
and the actual distance. Hence, the approximation proposed is used for constructing the PC
prior in this case:

KLD(N p
1 ||N

p
0 ) =

1

2
{tr(Σ−10 Σ1) + (µ0 − µ1)TΣ−10 (µ0 − µ1)− p− log

|Σ1|
|Σ0|
} (78)

KLD(θ|φ) =
1

2
{tr(Σ−1ARΣARMA)− p− log

|ΣARMA|
|ΣAR|

} (79)

KLD(θ|φ) =
1

2
{tr(Σ−1ARΣARΣMA)− p− log

|ΣARΣMA|
|ΣAR|

} (80)

KLD(θ|φ) = KLD(MA(1)θ) (81)

which will lead to the PC prior formulated at Section4.2. It can be summarized by equation 82:

π(θ|φ) = πPC(θ) (82)

It is observed that if the base model is assumed to be an AR(1) process and the ARMA(1,1) pro-
cess represents the flexible model, then the joint PC prior for the dependencies of the ARMA(1,1)
process is given by equation 83:

πPC(φ, θ) = (πPC(φ), πPC(θ)) (83)

4.3.3 Construction of the joint PC priors for the dependencies of the ARMA(1,1)
process for the Base Model: MA(1) model

Let’s say p is the dimension of the data-set, and the base model is considered to be an MA(1)
process with the parameter θ and the flexible model is considered an ARMA(1,1) process with
the parameters (φ, θ). For calculating the distance d(φ, θ) based on the KLD, values of µ0 and
µARMA and Σ0 and ΣARMA are required. In this case µ0 = µARMA = 0 and Σ0 = ΣMA. Since,
it is difficult to formulate the the distance (based on the KLD measure) between the base model
and the flexible model analytically using ΣARMA, as it requires the value determinant of ΣARMA

to be formulated in the closed form, however determinant of ΣARMA doesn’t have a closed form,
determinant of ΣARMA depends on the dimension of the data-set, and numerical methods are
required to find the determinant of ΣARMA. Hence, the approximation ΣARMA ≈ ΣARΣMA

is suggested to use here as well. However, the approximation ΣARMA ≈ ΣARΣMA needs to
be verified with reference to the measure of distance between the base model and the flexible
model.

For verification of the approximation, the distance comparison needs to be studied between the
actual distance and the approximated distance between the base model and the flexible model.
The approximated distance, between the base model and the flexible model is calculated using
the approximation that ΣARMA ≈ ΣARΣMA.

Distance comparisons plots between the actual and the approximated distances are shown in
Figure 31 to Figure 35:
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Figure 31: Comparison between the actual distance (considering ΣARMA) with the approxi-
mated distance (considering ΣARΣMA) when n = 10
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Figure 32: Comparison between the actual distance (considering ΣARMA) with the approxi-
mated distance (considering ΣARΣMA) when n = 50
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Figure 33: Comparison between the actual distance (considering ΣARMA) with the approxi-
mated distance (considering ΣARΣMA) when n = 100
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Figure 34: Comparison between the actual distance (considering ΣARMA) with the approxi-
mated distance (considering ΣARΣMA) when n = 500
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Figure 35: Comparison between the actual distance (considering ΣARMA) with the approxi-
mated distance (considering ΣARΣMA) when n = 1000

It is observed from Figure 31 to Figure 35, that the approximation works pretty well for almost
every point of the domain, except very high values of the parameters. With higher number of
points in the data set, the quality of the approximation improves significantly.This is observed
by looking at the contour plots of the difference between the approximated distance and the
actual distance. Hence, the approximation proposed is used for constructing the PC prior in
this case:

KLD(N p
1 ||N

p
0 ) =

1

2
{tr(Σ−10 Σ1) + (µ0 − µ1)TΣ−10 (µ0 − µ1)− p− log

|Σ1|
|Σ0|
} (84)

KLD(φ|θ) =
1

2
{tr(Σ−1MAΣARMA)− p− log

|ΣARMA|
|ΣMA|

} (85)

KLD(θ|φ) =
1

2
{tr(Σ−1MAΣMAΣAR)− p− log

|ΣARΣMA|
|ΣMA|

} (86)

KLD(θ|φ) = KLD(AR(1)φ) (87)

which will lead to the PC prior formulated at Section4.1.1. It can be summarized by equation
88:

π(φ|θ) = πPC(φ) (88)

It is observed that if the base model is assumed to be an MA(1) process and the ARMA(1,1) pro-
cess represents the flexible model, then the joint PC prior for the dependencies of the ARMA(1,1)
process is given by equation 89:

πPC(φ, θ) = (πPC(φ), πPC(θ)) (89)
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5 Application of the PC priors in the INLA framework

The PC priors have been constructed analytically in the Section 4, for various time series models,
in this section, the PC priors developed are used as prior distribution in the INLA (Rue at el
2009)[18] framework. In this section some time series data sets have been simulated and fitted
using the PC priors.

5.1 Fitting of the data-set in case of an AR(1) process

The PC prior for an AR(1) process are developed in Section4.1.1, in this section, simulated
data-set of an AR(1) process are fit using the PC prior distributions in the INLA framework.

Effect of the the user defined scale when the PC priors are constructed assuming
the base model to be iid (Φ = 0):

The time series data-set of an AR(1) process is simulated using the φ = 0.4 mixed with the error
signal. The standard deviation (σe) of the error signal is set to .1. Different user defined scales
are chosen to fit the data and to observe the effect of user defined scales on the PC priors, we
have considered three user defined scales, probability statement in this case is given by equation
90

Pr (|φ| > U) = α (90)

We have defined three scales for α = (0.5, 0.05, 0.005), where the upper bound U is set to 0.4.
R Code at Appendix A.3 is executed in this case and following estimates are obtained:

>r1$summary.hyperpar

mean sd 0.025quant 0.5quant 0.975quant mode

Rho for z 0.4714221 0.1070131 0.2316688 0.4826291 0.6483609 0.5058364

> r2$summary.hyperpar

mean sd 0.025quant 0.5quant 0.975quant mode

Rho for z 0.3842134 0.1259087 0.1105257 0.395138 0.5988609 0.4208695

> r3$summary.hyperpar

mean sd 0.025quant 0.5quant 0.975quant mode

Rho for z 0.2769954 0.1357531 0.02481314 0.2811809 0.5297283 0.3031576
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Figure 36: Plot of PC Priors(in Blue) when user defined scales are U = 0.4 and α = 0.5

It is seen from the Figure 36 that the PC Prior behaves like a flat prior, as weakly informative
user defined scale is used. It has allowed 50% of probability mass for φ away from the maximum
limit of 0.4 for φ.
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Figure 37: Plot of the PC Priors(in Blue) when the user defined scales are U = 0.4 and α = 0.05

When the user defined scale is changed to the more informative condition i.e. set α = 0.05,
resulting the plots in the Figure 37. It is seen that the PC Prior shows excellent shrinkage
towards the base model. It is also observed that the estimates for φ are closer towards the base
model as the prior has shown shrinkage towards the base model.
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Figure 38: Plot of the PC Priors(in Blue) when the user defined scales are U = 0.4 and α = 0.005

In this case only 0.5 % probability mass of φ is allowed to be away from the maximum limit
of 0.4. Stronger shrinkage is expected for the prior distribution and the estimates for φ will
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be more close to the base models, as the PC prior in this case is highly informative. Plots are
shown in the Figure 38 in this case. It is observed that the PC Priors are exhibiting the strong
shrinkage towards the base models and the estimates for φ are closer towards the base model.

We observed that the PC Priors can be both highly informative or non informative based on the
idea we have about the data set/process. The estimation for the parameter of interest depends
on the prior distribution. It should be noted that the estimation will be more towards the base
model if the prior distribution has the stronger shrinkage towards the base model.

Effect of the user defined scale when the PC priors are constructed assuming the
base model to be No change in time (φ = 1):

The time series data-set of an AR(1) process, is simulated using the φ = 0.95 mixed with the
error signal. The standard deviation (σe) of the error signal is set to .1. Different user defined
scales are chosen to fit the data and observe the effect of user defined scales on the PC priors, we
have considered three user defined scales, probability statement in this case is given by equation
91

Pr (|φ| > U) = α (91)

We have defined three scales for α = (0.3, 0.7, 0.9), where is the upper bound U is set to 0.95.
R Code at Appendix A.4 is executed in this case and following estimates are obtained:

> r11$summary.hyperpar

mean sd 0.025quant 0.5quant 0.975quant mode

Rho for z 0.9296304 0.01739504 0.8891834 0.9319316 0.9568544 0.9361719

> r12$summary.hyperpar

mean sd 0.025quant 0.5quant 0.975quant mode

Rho for z 0.9318041 0.01659387 0.893326 0.9339559 0.9579153 0.9379378

> r13$summary.hyperpar

mean sd 0.025quant 0.5quant 0.975quant mode

Rho for z 0.9342175 0.01572893 0.8978609 0.9362119 0.9591127 0.9399193
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Figure 39: Plot of the PC Priors(in Blue) when the user defined scales are U = 0.95 and α = 0.3

It is seen from Figure 39 that probability mass of the prior distribution for φ is concentrated
between .9 and .95, since the mild conditions are put on the prior, in this case that only 70%
probability mass can stay below the U = .95
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Figure 40: Plot of the PC Priors(in Blue) when the user defined scales are U = 0.95 and α = 0.7

In the Figure 40, more strong user defined scale is considered for constructing the PC Prior,
only 30% probability mass of φ can stay below the U = .95. So the estimation for φ is closer to
the base model.
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Figure 41: Plot of PC the Priors(in Blue) when the user defined scales are U = 0.95 and α = 0.9

In the Figure 41, stronger user defined scale is considered for constructing the PC prior, only
10% probability mass of φ can stay below the 0.95. So the estimation for φ is closer to the base
model.

It is observed that the PC priors are sensitive towards the user defined scales. So, the better
user defined scale (the better idea we have about the process), will lead priors to become more
informative. More informative priors show excellent shrinkage towards the base model. Based
on the degree of informativeness of the prior distributions, the estimation of the parameter will
be more towards the base model. It is worth mentioning that the PC priors may behave like
flat priors or uninformative priors if the suitable user defined scales are used for construction,
in those cases estimation of the parameter will be governed by the likelihood.

5.2 Fitting of the data-set in case of an MA(1) process

The PC prior for dependency at lag one for an MA(1) process is constructed analytically in
Section 4.2. In this section, simulated data-set of an MA(1) process are fit using the PC prior
distributions in the INLA framework.
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Effect of the user defined scale when the PC prior are constructed assuming
the base model to be iid i.e. (θ = 0):

The time series data-set of an MA(1) process is simulated using the θ = 0.4 mixed with the error
signal. The standard deviation (σe) of the error signal is set to 1. Different user defined scales
are chosen to fit the data and observe the effect of user defined scales on the PC priors, we have
considered three user defined scales, probability statement in this case is given by equation 92

Pr (|θ| > U) = α (92)

R Code at Appendix A.5 is executed in this case.

Case-I: when user defined scales are U = 0.4 and α = 0.5
It is observed from the Figure 42 that the PC Priors behaves like a flat prior, since weakly
informative user defined scales are used to construct them. User defined scales allowed only
50% of probability mass for θ in the limit formed by −0.4, 0.4.
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Figure 42: Posteriors using the PC priors when U=.4 and alpha=.5

In this case, estimates for θ are:

> summary(r1);

Call:

c("inla(formula = formula, family = \"gaussian\",

data = data.frame(y, ", " z = 1:n),

verbose = TRUE,

control.family = list(hyper = list

(prec = list(initial = log(1/s^2), ", " fixed = TRUE))))")

Time used:

Pre-processing Running inla Post-processing Total

5.2401 12.0182 0.4688 17.7271

The model has no fixed effects

Random effects:

Name Model

z RGeneric2

Model hyperparameters:

mean sd 0.025quant 0.5quant 0.975quant mode
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Theta1 for z 0.7508 0.241 0.2538 0.7599 1.195 0.7797

Expected number of effective parameters(std dev): 49.34(0.1001)

Number of equivalent replicates:1.013

Marginal log-Likelihood: -188.21

> r11=inla.hyperpar(r1);

> 2/(1+exp(-r11$summary.hyperpar$mean))-1

[1] 0.3592295

Case-II: when user defined scales are U = 0.4 and α = 0.05
In this case, the user defined scale are changed to the a more informative condition i.e. set to
α = 0.05, resulted the plots in the Figure 43. It is observed that the PC Prior shows excellent
shrinkage towards the base model. Since, the prior is more informative, the estimates for θ are
closer towards the base model.
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Figure 43: Posteriors using the PC priors when U=.4 and alpha=.05

In this case, estimates for θ are:

> summary(r2)

Call:

c("inla(formula = formula, family = \"gaussian\",

data = data.frame(y, ", " z = 1:n),

control.family = list(hyper = list

(prec = list(initial = log(1/s^2), ", " fixed = TRUE))))")

Time used:

Pre-processing Running inla Post-processing Total

2.8706 5.8753 0.2049 8.9508

The model has no fixed effects

Random effects:

Name Model

z RGeneric2

Model hyperparameters:

mean sd 0.025quant 0.5quant 0.975quant mode
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Theta1 for z 0.5973 0.2512 0.1092 0.6003 1.076 0.6137

Expected number of effective parameters(std dev): 49.40(0.0848)

Number of equivalent replicates : 1.012

Marginal log-Likelihood: -188.77

> r12=inla.hyperpar(r2)

> 2/(1+exp(-r12$summary.hyperpar$mean))-1

[1] 0.2886385

Case-III: when user defined scales are U = 0.4 and α = 0.005
The user defined scales are changed to a more informative condition i.e. are set to α = 0.005 in
this case, resulted the plots in the Figure 44. It is observed that the PC prior shows excellent
shrinkage towards the base model. Since the prior is more informative in this case, the estimates
for θ are closer towards the base model.
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Figure 44: Posteriors using the PC priors when U=.4 and alpha=.005

In this case, estimates for θ are:

> summary(r3)

Call:

c("inla(formula = formula, family = \"gaussian\",

data = data.frame(y, ", " z = 1:n),

control.family = list(hyper = list(

prec = list(initial = log(1/s^2), ", " fixed = TRUE))))")

Time used:

Pre-processing Running inla Post-processing Total

2.6066 5.4645 0.2339 8.3050

The model has no fixed effects

Random effects:

Name Model

z RGeneric2

Model hyperparameters:

mean sd 0.025quant 0.5quant 0.975quant mode

Theta1 for z 0.4277 0.2351 0.0204 0.4113 0.9093 0.32
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Expected number of effective parameters(std dev): 49.44(0.0623)

Number of equivalent replicates : 1.011

Marginal log-Likelihood: -189.54

> r13=inla.hyperpar(r3)

> 2/(1+exp(-r13$summary.hyperpar$mean))-1

[1] 0.209396

It is observed that the PC priors are sensitive towards the user defined scales. The better user
defined scales (the better idea we have about the process), will lead priors to become more
informative. More informative priors show excellent shrinkage towards the base model. Based
on the degree of informativeness of the prior distribution, the estimation of the parameter will
be more towards the base model. It is worth mentioning that the PC prior may behave like a
flat prior or an uninformative prior if the suitable user defined scales are used for constructing
them, in those cases the estimation of the parameter will be governed by likelihood.
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6 Conclusions and Recommendations

Conclusions

Prior selection is a crucial issue in the Bayesian setting. Priors are the strength of Bayesian
statistical inference at the same time the method of prior selections becomes a point of critical
discussions. In this report, we have explained a systematic approach to construct the prior
for the parameter of interest for some time series models. Key for constructing the PC prior
lies in the way the base model is selected. As it is seen in the case of an AR(1) process that
different base models result into different shapes of the prior distribution, the same has also
become evident when the different base models in case of the ARMA(1,1) process led to the
different joint PC priors for the dependencies of the model. So the most important part of
whole construction is to find a suitable base model for the given problem. There can be several
approaches to select the base model and based on the selection of the base model the prior
distribution for the hyper parameter will change. Another important factor while constructing
the PC prior is that the distance based on the KLD should be formulated in such a way that
the distance factorizes with respect to hyper parameters and number of points. In this way,
the user defined scales take care of the scaling parameter for the particular PC prior. If the
distance becomes implicit function with reference to number of points and hyper parameter,
then constructing PC prior analytically will be quite difficult.

Recommendations

R -generic function for the PC priors developed for dependencies of the MA(1) process and of the
ARMA(1,1) process can be implemented in the INLA framework. Based on the results in this
report, the PC prior for the higher order MA process may be formulated. Better approximation
method should be found for the ARMA(1,1) process so that support for prior distribution can
be extended. PC prior for the non stationary AR processes and non invertible MA process
should also be developed.
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Appendices

A Appendix A.1

Following code contains R code for comparing actual distance and approximated distance for
MA(1) process, generates curves for PC priors for MA(1) process.

r e q u i r e (MASS)
#r e q u i r e ( so s )
l i b r a r y (INLA)
l i b r a r y ( spam)
#l i b r a r y (MASS)

d i s t anc e compar is ion = func t i on (n , theta ) {

sigma1 = matrix (0 , nrow = n , nco l = n)
sigma1 approx = matrix (0 , nrow = n , nco l = n)
f o r ( i in 1 : n ) {

i f ( i ==1) {

sigma1 [ i , i ] = 1
sigma1 [ i , i +1] = theta
sigma1 approx [ i , i ] = 1+( theta ) ˆ2
sigma1 approx [ i , i +1] = theta

}
e l s e i f ( i == n) {

sigma1 [ i , i ] = 1
sigma1 [ i , i −1] = theta
sigma1 approx [ i , i ] = 1+( theta ) ˆ2
sigma1 approx [ i , i −1] = theta

}
e l s e {

sigma1 [ i , i ] = 1+( theta ) ˆ2
sigma1 [ i , i −1] = theta
sigma1 [ i , i +1] = theta

sigma1 approx [ i , i ] = 1+( theta ) ˆ2
sigma1 approx [ i , i −1] = theta
sigma1 approx [ i , i +1] = theta

}
}

Distance ac tua l = (sum( diag ( sigma1 ) ) − n − l og ( det ( sigma1 ) ) ) ˆ . 5
Distance approximated = (sum( diag ( sigma1 approx ) ) − n −
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l og ( det ( sigma1 approx ) ) ) ˆ . 5

re turn ( c ( Distance actua l , Distance approximated ) )

}

d i s t a n c e s = matrix (0 , nrow = 20 , nco l = 2)

par ( mfrow=c (2 , 3 ) )

##### f o r theta = 0 .1
d i s t a n c e s = matrix (0 , nrow = 20 , nco l = 2)

f o r (n in seq (5 ,100 , by = 5) ) {

a= d i s t ance compar is ion (n , 0 . 1 )
d i s t a n c e s [ n/ 5 , 1 ] = a [ 1 ]
d i s t a n c e s [ n/ 5 ,2]= a [ 2 ]

}
p lo t ( seq (5 ,100 , by = 5) , d i s t a n c e s [ , 1 ] , x lab = ” dimension o f square matrix

” ,
ylab = ”KLD Distance ” , type=”p” , c o l=” black ” ,
main = ” Comaprision o f d i s t a n c e s f o r theta 0 .1 ” , cex . main = . 6 )

l i n e s ( seq (5 ,100 , by = 5) , d i s t a n c e s [ , 2 ] , c o l=” green ” )

legend ( ” t o p l e f t ” ,
l egend=c ( ” Actual d i s t ance ” , ”Approximated d i s t anc e ” ) ,
c o l=c ( ” black ” , ”Green” ) ,
l t y=c (1 , 1 ) , cex =0.5)

##### f o r theta = 0 .3
d i s t a n c e s = matrix (0 , nrow = 20 , nco l = 2)

f o r (n in seq (5 ,100 , by = 5) ) {

a= d i s t ance compar is ion (n , 0 . 3 )
d i s t a n c e s [ n/ 5 , 1 ] = a [ 1 ]
d i s t a n c e s [ n/ 5 ,2]= a [ 2 ]

}
p lo t ( seq (5 ,100 , by = 5) , d i s t a n c e s [ , 1 ] , x lab = ” dimension o f square matrix

” ,
ylab = ”KLD Distance ” , type=”p” , c o l=” black ” ,
main = ” Comaprision o f d i s t a n c e s f o r theta 0 .3 ” , cex . main = . 6 )

l i n e s ( seq (5 ,100 , by = 5) , d i s t a n c e s [ , 2 ] , c o l=” green ” )

legend ( ” t o p l e f t ” , l egend=c ( ” Actual d i s t anc e ” , ”Approximated d i s t ance ” ) ,
c o l=c ( ” black ” , ”Green” ) , l t y=c (1 , 1 ) , cex =0.5)
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########## f o r theta = 0 .5

f o r (n in seq (5 ,100 , by = 5) ) {

a= d i s t ance compar is ion (n , 0 . 5 )
d i s t a n c e s [ n/ 5 , 1 ] = a [ 1 ]
d i s t a n c e s [ n/ 5 ,2]= a [ 2 ]

}
p lo t ( seq (5 ,100 , by = 5) , d i s t a n c e s [ , 1 ] , x lab = ” dimension o f square matrix

” ,
ylab = ”KLD Distance ” , type=”p” , c o l=” red ” ,
main = ” Comaprision o f d i s t a n c e s f o r theta 0 .5 ” ,
cex . main = . 6 )

l i n e s ( seq (5 ,100 , by = 5) , d i s t a n c e s [ , 2 ] , c o l=” green ” )

legend ( ” t o p l e f t ” , l egend=c ( ” Actual d i s t anc e ” , ”Approximated d i s t ance ” ) ,
c o l=c ( ” red ” , ”Green” ) , l t y=c (1 , 1 ) , cex =0.5)

##### f o r theta = 0 .7
d i s t a n c e s = matrix (0 , nrow = 20 , nco l = 2)

f o r (n in seq (5 ,100 , by = 5) ) {

a= d i s t ance compar is ion (n , 0 . 7 )
d i s t a n c e s [ n/ 5 , 1 ] = a [ 1 ]
d i s t a n c e s [ n/ 5 ,2]= a [ 2 ]

}
p lo t ( seq (5 ,100 , by = 5) , d i s t a n c e s [ , 1 ] , x lab = ” dimension o f square matrix

” ,
ylab = ”KLD Distance ” , type=”p” , c o l=” black ” ,
main = ” Comaprision o f d i s t a n c e s f o r theta 0 .7 ” , cex . main = . 6 )

l i n e s ( seq (5 ,100 , by = 5) , d i s t a n c e s [ , 2 ] , c o l=” green ” )

legend ( ” t o p l e f t ” , l egend=c ( ” Actual d i s t anc e ” , ”Approximated d i s t ance ” ) ,
c o l=c ( ” black ” , ”Green” ) , l t y=c (1 , 1 ) , cex =0.5)

##### f o r theta = 0 .9
d i s t a n c e s = matrix (0 , nrow = 20 , nco l = 2)

f o r (n in seq (5 ,100 , by = 5) ) {

a= d i s t ance compar is ion (n , 0 . 9 )
d i s t a n c e s [ n/ 5 , 1 ] = a [ 1 ]
d i s t a n c e s [ n/ 5 ,2]= a [ 2 ]

}
p lo t ( seq (5 ,100 , by = 5) , d i s t a n c e s [ , 1 ] , x lab = ” dimension o f square matrix

” ,
ylab = ”KLD Distance ” , type=”p” , c o l=” red ” ,
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main = ” Comaprision o f d i s t a n c e s f o r theta 0 .9 ” , cex . main = . 6 )
l i n e s ( seq (5 ,100 , by = 5) , d i s t a n c e s [ , 2 ] , c o l=” green ” )

legend ( ” t o p l e f t ” , l egend=c ( ” Actual d i s t anc e ” , ”Approximated d i s t ance ” ) ,
c o l=c ( ” red ” , ”Green” ) , l t y=c (1 , 1 ) , cex =0.5)

##### f o r theta = 0.95
d i s t a n c e s = matrix (0 , nrow = 20 , nco l = 2)

f o r (n in seq (5 ,100 , by = 5) ) {

a= d i s t ance compar is ion (n , 0 . 9 5 )
d i s t a n c e s [ n/ 5 , 1 ] = a [ 1 ]
d i s t a n c e s [ n/ 5 ,2]= a [ 2 ]

}
p lo t ( seq (5 ,100 , by = 5) , d i s t a n c e s [ , 1 ] , x lab = ” dimension o f square matrix

” ,
ylab = ”KLD Distance ” , type=”p” , c o l=” red ” ,
main = ” Comaprision o f d i s t a n c e s f o r theta 0 .95 ” , cex . main = . 6 )

l i n e s ( seq (5 ,100 , by = 5) , d i s t a n c e s [ , 2 ] , c o l=” green ” )

legend ( ” t o p l e f t ” , l egend=c ( ” Actual d i s t anc e ” , ”Approximated d i s t ance ” ) ,
c o l=c ( ” red ” , ”Green” ) , l t y=c (1 , 1 ) , cex =0.5)

curve ( ( 3 0 ) /2∗(1−exp(−30) ) ∗exp(−30∗abs ( x ) ) ,
from = −1, to = 1 ,
c o l = ” blue ” , xlab = ” Cor r e l a t i on Sca l e ” ,
ylab = ”PC p r i o r Point Den i s i ty Function ” )

curve ( ( 1 0 ) /2∗(1−exp(−10) ) ∗exp(−10∗abs ( x ) ) ,
from = −1, to = 1 ,
c o l = ” red ” , xlab = ” Cor r e l a t i on Sca l e ” ,
ylab = ”PC p r i o r Point Den i s i ty Function ” , add = TRUE)

curve ( ( 2 ) /2∗(1−exp(−2) ) ∗exp(−2∗abs ( x ) ) ,
from = −1, to = 1 ,
c o l = ” black ” , xlab = ” Cor r e l a t i on Sca l e ” ,
ylab = ”PC p r i o r Point Den i s i ty Function ” , add = TRUE)

legend ( ” top r i gh t ” , l egend=c ( ”lambda1 =2” , ” lambda1 =10” , ” lambda1 =30” ) ,
c o l=c ( ” black ” , ” red ” , ” blue ” ) , l t y=c (1 , 1 , 1 ) , cex =0.8)

t i t l e ( main = ”PC Pr ior f o r c o r r e l a t i o n f o r MA(1) ” )

### comapris ion f o r va r iu s n when f i x i n g lambda =1
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curve ( exp(− s q r t (100 ∗xˆ2− l og (1−x ˆ2) ) ) ∗abs ((100 ∗x+(x/(1−x ˆ2) ) ) ) / ( s q r t (100 ∗
xˆ2− l og (1−x ˆ2) ) ) ,

from = 0 , to = 1 ,
c o l = ” blue ” ,
xlab = ” Autocore l a t i on Sca l e ” , ylab = ”PC p r i o r Point Den i s i ty

Function ” )

curve ( exp(− s q r t (10 ∗xˆ2− l og (1−x ˆ2) ) ) ∗abs ( (10 ∗x+(x/(1−x ˆ2) ) ) ) / ( s q r t (10 ∗x
ˆ2− l og (1−x ˆ2) ) ) ,

from = 0 , to = 1 ,
c o l = ” black ” ,
add=TRUE)

curve ( exp(− s q r t (1 ∗xˆ2− l og (1−x ˆ2) ) ) ∗abs ( (1 ∗x+(x/(1−x ˆ2) ) ) ) / ( s q r t (1 ∗xˆ2−
l og (1−x ˆ2) ) ) ,

from = 0 , to = 1 ,
c o l = ” red ” ,
add=TRUE)

curve ( exp(− s q r t (1000 ∗xˆ2− l og (1−x ˆ2) ) ) ∗abs ((1000 ∗x+(x/(1−x ˆ2) ) ) ) / ( s q r t
(1000 ∗xˆ2− l og (1−x ˆ2) ) ) ,

from = 0 , to = 1 ,
c o l = ” green ” ,
add=TRUE)

curve ( exp(− s q r t (100000 ∗xˆ2− l og (1−x ˆ2) ) ) ∗abs ((100000 ∗x+(x/(1−x ˆ2) ) ) ) / (
s q r t (100000 ∗xˆ2− l og (1−x ˆ2) ) ) ,

from = 0 , to = 1 ,
c o l = ” ye l low ” ,
add=TRUE)

legend ( ” top r i gh t ” , l egend=c ( ”n=102” , ”n =12” , ”n =3” , ”n=1002” , ”n=100002” )
,

c o l=c ( ” blue ” , ” black ” , ” red ” , ” green ” , ” ye l low ” ) , l t y=c (1 , 1 , 1 , 1 , 1 ) ,
cex =0.8)

t i t l e ( main = ”PC Pr ior f o r a u t o c o r r e l a t i o n f o r MA(1) p roce s s ” )

B Appendix A.2

Following code contains R code for comparing actual distance and approximated distance for
ARMA(1,1) process, generates curves for Joint PC priors for ARMA(1,1) process.

l i b r a r y ( f i e l d s ) ;
l i b r a r y ( geoR ) ;
l i b r a r y (MASS)
#i n s t a l l . packages (” akima ”)
l i b r a r y ( akima )
l i b r a r y ( ” s p a t i a l ” , l i b . l o c=”˜/R/x86 64−pc−l inux−gnu−l i b r a r y / 3 .3 ” )
#i n s t a l l . packages (” matr ixStats ”)
l i b r a r y ( ” matr ixStats ” )
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d i s t anc e compar is ion = func t i on (n , theta , phi ) {

sigma ar = matrix (0 , nrow = n , nco l = n)
sigma ma = matrix (0 , nrow = n , nco l = n)
sigma arma = matrix (0 , nrow = n , nco l = n)
sigma arpprox = matrix (0 , nrow = n , nco l = n)

#sigma1 approx = matrix (0 , nrow = n , nco l = n)
f o r ( i in 1 : n ) {

f o r ( j in 1 : n) {

i f ( abs ( i−j ) ==0) {
tmp = (1+ theta ˆ2+2∗phi ∗ theta ) /(1−phi ˆ2)
tmp ma = (1+ theta ˆ2)
tmp ar = 1/(1−phi ˆ2)

}
e l s e i f ( abs ( i−j )==1) {

tmp = ( phi+theta ) ∗(1+phi ∗ theta ) /(1−phi ˆ2)
tmp ma = theta
tmp ar = phi ∗1/(1−phi ˆ2)

}

e l s e {
tmp = ( phi ) ˆ( abs ( i−j )−1)∗ ( phi+theta ) ∗(1+phi ∗ theta ) /(1−phi ˆ2)
tmp ma = 0
tmp ar =(phi ) ˆ( abs ( i−j ) ) ∗1/(1−phi ˆ2)

}

sigma arma [ i , j ] = tmp
sigma ma[ i , j ] = tmp ma
sigma ar [ i , j ] = tmp ar

}

}

sigma approx = sigma ar %∗% sigma ma

Distance ac tua l = (2 ∗ ( abs (sum( diag ( sigma arma ) ) − n − l og ( det ( sigma
arma ) ) ) ) ) ˆ . 5

Distance approximated =(2∗ ( abs (sum( diag ( sigma approx ) ) − n − l og ( det (
sigma approx ) ) ) ) ) ˆ . 5

re turn ( c ( Distance actua l , Distance approximated , sum( diag ( sigma approx ) )
) )

}

par ( pty=” s ” )
par ( mfrow=c (1 , 3 ) )

phi a x i s = seq ( from =−0.9, to =.9 , by=.1 )

54



theta a x i s = seq ( from =−0.9, to =.9 , by=.1 )

## For n =10
d i s t anc e g r id 10 = matrix (0 , nrow = 19 , nco l = 19)
d i s t anc e g r id approx 10 =matrix (0 , nrow = 19 , nco l = 19)
#diag sum = matrix (0 , nrow = 20 , nco l = 20)
d i s t anc e f i n a l approximation 10 = matrix (0 , nrow = 19 , nco l = 19)

f o r ( s in 1 : 1 9 ) {
f o r (p in 1 : 1 9 ) {

n=10
k= ( s−10)/10
l= (p−10)/10
a= d i s t ance compar is ion (n , k , l )
#d i s t a n c e s [ n/ 5 , 1 ] = a [ 1 ]
#d i s t a n c e s [ n/ 5 ,2]= a [ 2 ]
d i s t anc e g r id 10 [ s , p ] = a [ 1 ]
d i s t anc e g r id approx 10 [ s , p ] = a [ 2 ]
#diag sum [ s , p ] = a [ 3 ]
d i s t anc e f i n a l approximation 10 [ s , p ] = s q r t (9 ) ∗abs ( k+l )

#pr in t ( s , p )
}

}
image . p l o t ( phi ax i s , theta axis , d i s t anc e g r id 10 , xlab= expr e s s i on ( paste

( phi ) ) , y lab= expr e s s i on ( paste ( theta ) ) , main = ” Actual d i s t anc e ” ,
cex =0.8)

contour ( phi ax i s , theta axis , d i s t anc e g r id 10 , add = TRUE)
image . p l o t ( phi ax i s , theta axis , d i s t anc e g r id approx 10 , xlab=

expr e s s i on ( paste ( phi ) ) , y lab= expr e s s i on ( paste ( theta ) ) , main = ”1 s t
l e v e l Approximated d i s t ance ” , cex =0.8)

contour ( phi ax i s , theta axis , d i s t anc e g r id approx 10 , add = TRUE)

#d i s t anc e f i n a l approximation = matrix (0 , nrow = 20 , nco l = 20)
#image . p l o t ( d iag sum)
#image . p l o t ( phi ax i s , theta axis , d i s t anc e f i n a l approximation 10 , main =

” f i n a l Approximated d i s t anc e ” , cex =0.8)
image . p l o t ( phi ax i s , theta axis , d i s t anc e g r id approx 10 − d i s t anc e g r id

10 , xlab= expr e s s i on ( paste ( phi ) ) , y lab= expr e s s i on ( paste ( theta ) ) ,
main = ”Approximated d i s t anc e −Actual d i s t anc e ” , cex =0.8)

contour ( phi ax i s , theta axis , d i s t anc e g r id approx 10 − d i s t anc e g r id
10 , add = TRUE)

## For n =50
d i s t anc e g r id 50 = matrix (0 , nrow = 19 , nco l = 19)
d i s t anc e g r id approx 50 =matrix (0 , nrow = 19 , nco l = 19)
d i s t anc e f i n a l approximation 50 = matrix (0 , nrow = 19 , nco l = 19)

f o r ( s in 1 : 1 9 ) {
f o r (p in 1 : 1 9 ) {

n=50
k= ( s−10)/10
l= (p−10)/10
a= d i s t ance compar is ion (n , k , l )
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#d i s t a n c e s [ n/ 5 , 1 ] = a [ 1 ]
#d i s t a n c e s [ n/ 5 ,2]= a [ 2 ]
d i s t anc e g r id 50 [ s , p ] = a [ 1 ]
d i s t anc e g r id approx 50 [ s , p ] = a [ 2 ]
d i s t anc e f i n a l approximation 50 [ s , p ] = s q r t (49) ∗abs ( k+l )
#pr in t ( s , p )

}
}

image . p l o t ( phi ax i s , theta axis , d i s t anc e g r id 50 , xlab= expr e s s i on ( paste
( phi ) ) , y lab= expr e s s i on ( paste ( theta ) ) , main = ” Actual d i s t anc e ” ,
cex =0.8)

contour ( phi ax i s , theta axis , d i s t anc e g r id 50 , add = TRUE)
image . p l o t ( phi ax i s , theta axis , d i s t anc e g r id approx 50 , xlab=

expr e s s i on ( paste ( phi ) ) , y lab= expr e s s i on ( paste ( theta ) ) , main = ”1 s t
l e v e l Approximated d i s t ance ” , cex =0.8)

contour ( phi ax i s , theta axis , d i s t anc e g r id approx 50 , add = TRUE)
#t i t l e ( main = ” Distance Comparision when n =50”)

#d i s t anc e f i n a l approximation = matrix (0 , nrow = 20 , nco l = 20)
#image . p l o t ( d iag sum)
#image . p l o t ( phi ax i s , theta axis , d i s t anc e f i n a l approximation 10 , main =

” f i n a l Approximated d i s t anc e ” , cex =0.8)
image . p l o t ( phi ax i s , theta axis , d i s t anc e g r id approx 50 − d i s t anc e g r id

50 , xlab= expr e s s i on ( paste ( phi ) ) , y lab= expr e s s i on ( paste ( theta ) ) ,
main = ”Approximated d i s t anc e −Actual d i s t anc e ” , cex =0.8)

contour ( phi ax i s , theta axis , d i s t anc e g r id approx 50 − d i s t anc e g r id
50 , add = TRUE)

#mtext (”KLD Comparision f o r n =50” , outer = FALSE, cex = 1)

## For n =100
d i s t anc e g r id 100 = matrix (0 , nrow = 19 , nco l = 19)
d i s t anc e g r id approx 100 =matrix (0 , nrow = 19 , nco l = 19)
d i s t anc e f i n a l approximation 100 = matrix (0 , nrow = 19 , nco l = 19)

f o r ( s in 1 : 1 9 ) {
f o r (p in 1 : 1 9 ) {

n=100
k= ( s−10)/10
l= (p−10)/10
a= d i s t ance compar is ion (n , k , l )
#d i s t a n c e s [ n/ 5 , 1 ] = a [ 1 ]
#d i s t a n c e s [ n/ 5 ,2]= a [ 2 ]
d i s t anc e g r id 100 [ s , p ] = a [ 1 ]
d i s t anc e g r id approx 100 [ s , p ] = a [ 2 ]
d i s t anc e f i n a l approximation 100 [ s , p ] = s q r t (99) ∗abs ( k+l )
#pr in t ( s , p )

}
}
image . p l o t ( phi ax i s , theta axis , d i s t anc e g r id 100 , xlab= expr e s s i on (

paste ( phi ) ) , y lab= expr e s s i on ( paste ( theta ) ) , main = ” Actual Distance
” , cex =0.8)

contour ( phi ax i s , theta axis , d i s t anc e g r id 100 , add = TRUE)
image . p l o t ( phi ax i s , theta axis , d i s t anc e g r id approx 100 , xlab=

expr e s s i on ( paste ( phi ) ) , y lab= expr e s s i on ( paste ( theta ) ) , main = ”1 s t
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l e v e l Approximated Distance ” , cex =0.8)
contour ( phi ax i s , theta axis , d i s t anc e g r id approx 100 , add = TRUE)

#d i s t anc e f i n a l approximation = matrix (0 , nrow = 20 , nco l = 20)
#image . p l o t ( d iag sum)
#image . p l o t ( phi ax i s , theta axis , d i s t anc e f i n a l approximation 10 , main =

” f i n a l Approximated d i s t anc e ” , cex =0.8)
image . p l o t ( phi ax i s , theta axis , d i s t anc e g r id approx 100 − d i s t anc e

g r id 100 , xlab= expr e s s i on ( paste ( phi ) ) , y lab= expr e s s i on ( paste ( theta
) ) , main = ”Approximated d i s t anc e −Actual d i s t anc e ” , cex =0.8)

contour ( phi ax i s , theta axis , d i s t anc e g r id approx 100 − d i s t anc e g r id
100 , add = TRUE)

#mtext (”KLD Comparision f o r n =100” , outer = TRUE, cex = 1)

#image . p l o t ( phi ax i s , theta axis , d i s t anc e f i n a l approximation −
d i s t anc e g r id )

## For n =500
d i s t anc e g r id 500 = matrix (0 , nrow = 19 , nco l = 19)
d i s t anc e g r id approx 500 =matrix (0 , nrow = 19 , nco l = 19)
d i s t anc e f i n a l approximation 500 = matrix (0 , nrow = 19 , nco l = 19)

f o r ( s in 1 : 1 9 ) {
f o r (p in 1 : 1 9 ) {

n=500
k= ( s−10)/10
l= (p−10)/10
a= d i s t ance compar is ion (n , k , l )
#d i s t a n c e s [ n/ 5 , 1 ] = a [ 1 ]
#d i s t a n c e s [ n/ 5 ,2]= a [ 2 ]
d i s t anc e g r id 500 [ s , p ] = a [ 1 ]
d i s t anc e g r id approx 500 [ s , p ] = a [ 2 ]
d i s t anc e f i n a l approximation 500 [ s , p ] = s q r t (99) ∗abs ( k+l )
#pr in t ( s , p )

}
}
par ( pty=” s ” )
par ( mfrow=c (1 , 3 ) )

image . p l o t ( phi ax i s , theta axis , d i s t anc e g r id 500 , xlab= expr e s s i on (
paste ( phi ) ) , y lab= expr e s s i on ( paste ( theta ) ) , main = ” Actual d i s t anc e
” , cex =0.8)

contour ( phi ax i s , theta axis , d i s t anc e g r id 500 , add = TRUE)
image . p l o t ( phi ax i s , theta axis , d i s t anc e g r id approx 500 , xlab=

expr e s s i on ( paste ( phi ) ) , y lab= expr e s s i on ( paste ( theta ) ) , main = ”1 s t
l e v e l Approximated d i s t ance ” , cex =0.8)

contour ( phi ax i s , theta axis , d i s t anc e g r id approx 500 , add = TRUE)

#d i s t anc e f i n a l approximation = matrix (0 , nrow = 20 , nco l = 20)
#image . p l o t ( d iag sum)
#image . p l o t ( phi ax i s , theta axis , d i s t anc e f i n a l approximation 10 , main =

” f i n a l Approximated d i s t anc e ” , cex =0.8)
image . p l o t ( phi ax i s , theta axis , d i s t anc e g r id approx 500 − d i s t anc e

g r id 500 , xlab= expr e s s i on ( paste ( phi ) ) , y lab= expr e s s i on ( paste ( theta )
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) , main = ”Approximated d i s t anc e −Actual d i s t anc e ” , cex =0.8)
contour ( phi ax i s , theta axis , d i s t anc e g r id approx 500 − d i s t anc e g r id

500 , add = TRUE)
#mtext (”KLD Comparision f o r n =100” , outer = TRUE, cex = 1)

## For n =1000
d i s t anc e g r id 1000 = matrix (0 , nrow = 19 , nco l = 19)
d i s t anc e g r id approx 1000 =matrix (0 , nrow = 19 , nco l = 19)
d i s t anc e f i n a l approximation 1000 = matrix (0 , nrow = 19 , nco l = 19)

f o r ( s in 1 : 1 9 ) {
f o r (p in 1 : 1 9 ) {

n=1000
k= ( s−10)/10
l= (p−10)/10
a= d i s t ance compar is ion (n , k , l )
#d i s t a n c e s [ n/ 5 , 1 ] = a [ 1 ]
#d i s t a n c e s [ n/ 5 ,2]= a [ 2 ]
d i s t anc e g r id 1000 [ s , p ] = a [ 1 ]
d i s t anc e g r id approx 1000 [ s , p ] = a [ 2 ]
d i s t anc e f i n a l approximation 1000 [ s , p ] = s q r t (99) ∗abs ( k+l )
#pr in t ( s , p )

}
}
par ( pty=” s ” )
par ( mfrow=c (1 , 3 ) )

image . p l o t ( phi ax i s , theta axis , d i s t anc e g r id 1000 , xlab= expr e s s i on (
paste ( phi ) ) , y lab= expr e s s i on ( paste ( theta ) ) , main = ” Actual d i s t anc e
” , cex =0.8)

contour ( phi ax i s , theta axis , d i s t anc e g r id 1000 , add = TRUE)
image . p l o t ( phi ax i s , theta axis , d i s t anc e g r id approx 1000 , xlab=

expr e s s i on ( paste ( phi ) ) , y lab= expr e s s i on ( paste ( theta ) ) , main = ”1 s t
l e v e l Approximated d i s t ance ” , cex =0.8)

contour ( phi ax i s , theta axis , d i s t anc e g r id approx 1000 , add = TRUE)

#d i s t anc e f i n a l approximation = matrix (0 , nrow = 20 , nco l = 20)
#image . p l o t ( d iag sum)
#image . p l o t ( phi ax i s , theta axis , d i s t anc e f i n a l approximation 10 , main =

” f i n a l Approximated d i s t anc e ” , cex =0.8)
image . p l o t ( phi ax i s , theta axis , d i s t anc e g r id approx 1000 − d i s t anc e

g r id 1000 , xlab= expr e s s i on ( paste ( phi ) ) , y lab= expr e s s i on ( paste ( theta
) ) , main = ”Approximated d i s t anc e −Actual d i s t anc e ” , cex =0.8)

contour ( phi ax i s , theta axis , d i s t anc e g r id approx 1000 − d i s t anc e g r id
1000 , add = TRUE)

#mtext (”KLD Comparision f o r n =1000” , outer = TRUE, cex = 1)

### Shape o f ARMA(1 ,1 ) p r i o r s
phi a x i s <− seq ( from =−0.9, to =0.9 , by=.1 )
theta a x i s <− seq ( from =−0.9, to =0.9 , by=.1 )
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### when lambda1 = 1

par ( pty=” s ” )
par ( mfrow=c (1 , 1 ) )
pc p r i o r 1 = matrix (0 , nrow = 19 , nco l = 19)

f o r ( s in 1 : 1 9 ) {
f o r (p in 1 : 1 9 ) {

k= ( s−10)/10
l= (p−10)/10
pc p r i o r 1 [ s , p ]=(1 / 12 . 78 ) ∗exp(−1∗abs ( k+l ) ) /(2−abs ( k+l ) )

}
}

image . p l o t ( phi ax i s , theta axis , pc p r i o r 1 , main = ” Jo int PC p r i o r s f o r
ARMA(1 ,1 ) ” , cex =0.8)

persp ( phi ax i s , theta axis , pc p r i o r 1 , c o l = ”BLUE” , main = ” Jo int PC
p r i o r s f o r ARMA(1 ,1 ) ” , cex =0.8)

### when lambda1 = 10

pc p r i o r 2 = matrix (0 , nrow = 19 , nco l = 19)

f o r ( s in 1 : 1 9 ) {
f o r (p in 1 : 1 9 ) {

k= ( s−10)/10
l= (p−10)/10
pc p r i o r 2 [ s , p ]=(1 / 12 . 78 ) ∗exp(−10∗abs ( k+l ) ) /(2−abs ( k+l ) )

}
}

image . p l o t ( phi ax i s , theta axis , pc p r i o r 2 , main = ” Jo int PC p r i o r s f o r
ARMA(1 ,1 ) ” , cex =0.8)

persp ( phi ax i s , theta axis , pc p r i o r 2 , c o l = ”BLUE” , main = ” Jo int PC
p r i o r s f o r ARMA(1 ,1 ) ” , cex =0.8)

### when lambda1 = . 1

pc p r i o r 3 = matrix (0 , nrow = 19 , nco l = 19)

f o r ( s in 1 : 1 9 ) {
f o r (p in 1 : 1 9 ) {

k= ( s−10)/10
l= (p−10)/10
pc p r i o r 3 [ s , p ]=(1 / 12 . 78 ) ∗exp (−.1∗abs ( k+l ) ) /(2−abs ( k+l ) )

}
}

image . p l o t ( phi ax i s , theta axis , pc p r i o r 3 , main = ” Jo int PC p r i o r s f o r
ARMA(1 ,1 ) ” , cex =0.8)

persp ( phi ax i s , theta axis , pc p r i o r 3 , c o l = ”BLUE” , main = ” Jo int PC
p r i o r s f o r ARMA(1 ,1 ) ” , cex =0.8)
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C Appendix A.3

R Code fit simulated AR(1) data using INLA framework, PC prior in this case are used con-
sidering the base model φ = 0.

####Case 1 f o r d i f f e r e n t va lue s o f use de f ined
###s c a l e when base model i s cons ide r ed with model rho =0

r e q u i r e (MASS)
r e q u i r e ( so s )
l i b r a r y (INLA)
l i b r a r y ( spam)
l i b r a r y (MASS)
n = 50
rho = 0 .4
s = 0 .1

#s imulate a AR(1) data f o r a g iven marginal p r e c i s i o n and rho

s imulated t s = s c a l e ( as . numeric ( arima . sim (n = n , l i s t ( ar=c ( rho ) ) ) ) )+
rnorm (n , sd=s )

# d e f i n e va lue s f o r a s u i t a b l e guess
u = . 4
alpha = c ( 0 . 5 , 0 .05 , 0 . 005 )

# d e f i n e p r i o r d i s t r i b u t i o n f o r hyper parameters
# d e f i n e data frame as a input to i n l a
data = l i s t ( y=simulated ts , z =1:n)

#f o r ( i in 1 : 3 ) {

formula1 = simulated t s ˜ −1 + f ( z , model=” ar1 ” ,
hyper = l i s t ( rho = l i s t ( p r i o r = ”pc . cor0

” ,
param = c (u ,

0 . 5 ) ) ,
prec = l i s t ( i n i t i a l = log

(1 ) , f i x e d=TRUE) ) )

formula2 = simulated t s ˜ −1 + f ( z , model=” ar1 ” ,
hyper = l i s t ( rho = l i s t ( p r i o r = ”pc . cor0

” ,
param = c (u ,

0 . 0 5 ) ) ,
prec = l i s t ( i n i t i a l = log

(1 ) , f i x e d=TRUE) ) )

formula3 = simulated t s ˜ −1 + f ( z , model=” ar1 ” ,
hyper = l i s t ( rho = l i s t ( p r i o r = ”pc . cor0

” ,
param = c (u ,

0 . 005 ) ) ,
prec = l i s t ( i n i t i a l = log

(1 ) , f i x e d=TRUE) ) )
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r1 = i n l a ( formula1 , data = data ,
c o n t r o l . f ami ly = l i s t ( hyper = l i s t (

prec = l i s t ( i n i t i a l = log (1 / s ˆ2) , f i x e d = TRUE) ) ) )

r2 = i n l a ( formula2 , data = data ,
c o n t r o l . f ami ly = l i s t ( hyper = l i s t (

prec = l i s t ( i n i t i a l = log (1 / s ˆ2) , f i x e d = TRUE) ) ) )

r3 = i n l a ( formula3 , data = data ,
c o n t r o l . f ami ly = l i s t ( hyper = l i s t (

prec = l i s t ( i n i t i a l = log (1 / s ˆ2) , f i x e d = TRUE) ) ) )
r1=i n l a . hyperpar ( r1 )
r2=i n l a . hyperpar ( r2 )
r3=i n l a . hyperpar ( r3 )

p l o t ( r1 , p l o t . p r i o r= T, s i n g l e=TRUE)
p lo t ( r2 , p l o t . p r i o r= T, s i n g l e=TRUE)

p lo t ( r3 , p l o t . p r i o r= T, s i n g l e=TRUE)

r1 $summary . hyperpar
r2 $summary . hyperpar
r3 $summary . hyperpar

D Appendix A.4

R Code fit simulated AR(1) time series data using INLA framework, PC prior in this cae are
used considering the base model φ = 1.

#Case 2 : f o r d i f f e r e n t va lue s o f use de f ined
###s c a l e when base model i s cons ide r ed with model rho =1

n1 = 50
rho1 = 0.95
s1 = 0 .1

#s imulate a AR(1) data f o r a g iven marginal p r e c i s i o n and rho

s imulated t s1 = s c a l e ( as . numeric ( arima . sim (n = n1 , l i s t ( ar=c ( rho1 ) ) ) ) )
+ rnorm (n , sd=s1 )

# d e f i n e va lue s f o r a s u i t a b l e guess
u1 = .95
alpha1 = c ( 0 . 3 , 0 . 7 , 0 . 9 )

# d e f i n e p r i o r d i s t r i b u t i o n f o r hyper parameters
# d e f i n e data frame as a input to i n l a
data1 = l i s t ( y=simulated ts1 , z =1:n1 )
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#f o r ( i in 1 : 3 ) {

formula11 = simulated t s1 ˜ −1 + f ( z , model=” ar1 ” ,
hyper = l i s t ( rho = l i s t ( p r i o r = ”pc .

cor1 ” ,
param = c ( u1 ,

alpha1 [ 1 ] )
) ,

prec = l i s t ( i n i t i a l = log
(1 ) , f i x e d=TRUE) ) )

formula12 = simulated t s1 ˜ −1 + f ( z , model=” ar1 ” ,
hyper = l i s t ( rho = l i s t ( p r i o r = ”pc .

cor1 ” ,
param = c ( u1 ,

alpha1 [ 2 ] )
) ,

prec = l i s t ( i n i t i a l = log
(1 ) , f i x e d=TRUE) ) )

formula13= simulated t s1 ˜ −1 + f ( z , model=” ar1 ” ,
hyper = l i s t ( rho = l i s t ( p r i o r = ”pc .

cor1 ” ,
param = c ( u1 ,

alpha1 [ 3 ] ) )
,

prec = l i s t ( i n i t i a l = log
(1 ) , f i x e d=TRUE) ) )

r11 = i n l a ( formula11 , data = data1 ,
c o n t r o l . f ami ly = l i s t ( hyper = l i s t (

prec = l i s t ( i n i t i a l = log (1 / s1 ˆ2) , f i x e d = TRUE) ) ) )

r12 = i n l a ( formula12 , data = data1 ,
c o n t r o l . f ami ly = l i s t ( hyper = l i s t (

prec = l i s t ( i n i t i a l = log (1 / s1 ˆ2) , f i x e d = TRUE) ) ) )

r13 = i n l a ( formula13 , data = data1 ,
c o n t r o l . f ami ly = l i s t ( hyper = l i s t (

prec = l i s t ( i n i t i a l = log (1 / s1 ˆ2) , f i x e d = TRUE) ) ) )
#par ( mfrow = c (3 , 2 ) )
r11=i n l a . hyperpar ( r11 )
r12=i n l a . hyperpar ( r12 )
r13=i n l a . hyperpar ( r13 )

r11 $summary . hyperpar
r12 $summary . hyperpar
r13 $summary . hyperpar

p l o t ( r11 , p l o t . p r i o r= T, s i n g l e=TRUE)
p lo t ( r12 , p l o t . p r i o r= T, s i n g l e=TRUE)
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p lo t ( r13 , p l o t . p r i o r= T, s i n g l e=TRUE)

E Appendix A.5

R Code fit simulated MA(1) time series data using INLA framework,

r e q u i r e (MASS)
#r e q u i r e ( so s )
l i b r a r y (INLA)
l i b r a r y ( spam)

‘ i n l a . r g e n e r i c . ma1 . model ‘ = func t i on (
cmd = c ( ”graph” , ”Q” , ”mu” , ” i n i t i a l ” , ” l og . norm . const ” , ” l og . p r i o r ” ,

” qu i t ” ) ,
theta = NULL, args = NULL)

{
i n t e r p r e t . theta = func t i on (n , theta , pars )
{

## i n t e r n a l he lper−f unc t i on to map the parameters from the i n t e r n a l−
s c a l e to the

## user−s c a l e
re turn ( l i s t ( prec = . 0 1 , # marginal p r e c i s i o n f o r MA process ,

rho = 2∗exp ( theta [ 1L ] ) /(1+exp ( theta [ 1L ] ) ) − 1 . 0 ) )
# unconstra ined t rans fo rmat ion f o r rho in theta

}

graph = func t i on (n , theta , pars )
{

re turn ( i n l a . as . spa r s e ( matrix (1 , n , n ) ) )
}

Q = func t i on (n , theta , pars )
{

par = i n t e r p r e t . theta (n , theta )
S = t o e p l i t z ( c (1 , par$ rho/ (1 + par$ rho ˆ2) , rep (0 , n−2) ) )
S [ 1 , 1 ] = S [ n , n ] = 1/ (1 + par$ rho ˆ2)
# S = S / p $ prev
S = S / par $ prec
Q = s o l v e (S)
re turn ( i n l a . as . spa r s e (Q) )

}

mu = func t i on (n , theta , pars )
{

re turn ( numeric (0 ) )
}

l og . norm . const = func t i on (n , theta , pars )
{

re turn ( numeric (0 ) )
}

l og . p r i o r = func t i on (n , theta , pars )
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{
## return the log−p r i o r f o r the hyperparameters . the ’+ theta [ 1L ] ’ i s

the l og ( Jacobian )
## f o r having a gamma p r i o r on the p r e c i s i o n and convert i t i n to the

p r i o r f o r the
## log ( p r e c i s i o n ) .
param = i n t e r p r e t . theta (n , theta )
#va l = (dgamma( param$ prec , shape = 1 , ra t e = 1 , l og=TRUE) + theta [ 1L

] +
# dnorm( theta [ 2L ] , mean = 0 , sd = 1 , l og=TRUE) )
i f ( i s . n u l l ( pars ) ) { stop ( ” stopped as pars are n u l l ” ) }

fun f i n d lambda = func t i on ( x ) { re turn ( exp(−x ) ∗pars [ 2 ] +exp(−x∗abs (
pars [ 1 ] ) ) − ( pars [ 2 ] ) ) }

t t= un i root ( fun f i n d lambda , c (0 , 1 ) , extendInt = ” yes ” )
lambda = t t $ root

#lambda = −l og (1−pars [ 2 ] ) / pars [ 1 ]

#lambda = −l og ( 0 . 0 5 )
va l = log (2 ∗ lambda ) − lambda∗ abs ( param$rho ) − theta [ 1 ] − 2∗ l og (1+

exp(− theta [ 1 ] ) )−l og (2 ∗(1−exp(−lambda ) ) )
re turn ( va l )

}

i n i t i a l = func t i on (n , theta , pars )
{

## return i n i t i a l va lue s
ntheta = 1
return ( rep (1 , ntheta ) )

}

qu i t = func t i on (n , theta , pars )
{

re turn ( i n v i s i b l e ( ) )
}

cmd = match . arg (cmd)
va l = do . c a l l (cmd , args = l i s t (n = as . i n t e g e r ( args $n) , theta = theta ,

pars = args $ pars ) )
re turn ( va l )

}

#simulate a MA(1) data f o r a g iven marginal p r e c i s i o n and rho

n = 50
rho =0.4
s .MA = 10
x = arima . sim (n , model = l i s t (ma = rho ) ) ∗ s .MA/ s q r t (1+rho ˆ2)
#x = s c a l e ( arima . sim (n , model = l i s t (ma = rho ) ) )

s = 0 . 0 1 ;
y = x + rnorm (n , sd = s ) ;
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# d e f i n e p r i o r d i s t r i b u t i o n f o r hyper parameters
# d e f i n e data frame as a input to i n l a

L =0.4
alpha =c ( 0 . 5 , 0 . 05 , 0 . 005 ) ;
#model = i n l a . r g e n e r i c . d e f i n e ( i n l a . r g e n e r i c . ma1 . model , n=n)
model = i n l a . r g e n e r i c . d e f i n e ( i n l a . r g e n e r i c . ma1 . model , n = n , pars = c

( . 4 , . 5 ) ) ;
formula = y ˜ −1 + f ( idx , model=model )
r1 = i n l a ( formula , data = data . frame (y , idx = 1 : n) ,

f ami ly = ” gauss ian ” ,
c o n t r o l . f ami ly = l i s t ( hyper = l i s t ( prec = l i s t ( i n i t i a l = log (1 /

s ˆ2) , f i x e d=TRUE) ) ) ,
verbose = TRUE)

summary( r1 ) ;
r11=i n l a . hyperpar ( r1 ) ;
2/(1+exp(−r11 $summary . hyperpar $mean) )−1

p l o t ( r11 , p l o t . p r i o r= T, s i n g l e=TRUE)
xRange = range ( r11 $ marg ina l s . hyperpar [ [ 1 ] ] [ , 1 ] )
xs = seq ( xRange [ 1 ] , xRange [ 2 ] , l ength . out = 100)
#xs = seq (−5 , 5 , l ength . out = 1000)
ys = xs
f o r ( i in 1 : l ength ( xs ) ) {

ys [ i ] = i n l a . r g e n e r i c . ma1 . model (cmd =’ log . p r i o r ’ , theta = xs [ i ] , a rgs
= l i s t (n = n , pars = c ( . 4 , . 5 ) ) )

}
l i n e s ( xs , exp ( ys ) , c o l = ” blue ” )

p l o t ( i n l a . tmarg ina l ( func t i on ( x ) {2/(1+exp(−x ) )−1} , r11 $ marg ina l s . hyperpar
[ [ 1 ] ] ) , type = ” l ” , xlab = ”Theta” , main = ” P o s t e r i o r dens i ty f o r
Theta in o r i g n a l s c a l e ” )

l i n e s ( i n l a . tmarg ina l ( f unc t i on ( x ) {2/(1+exp(−x ) )−1} , cbind ( xs , exp ( ys ) ) ) ,
c o l = ’ blue ’ )

l egend ( ” t o p l e f t ” , l egend=c ( ” P o s t e r i o r ” , ” Pr io r ” ) ,
c o l=c ( ” black ” , ” blue ” ) , l t y=c (1 , 1 ) , cex =0.8)

## f o r alpha = 0.05
model = i n l a . r g e n e r i c . d e f i n e ( i n l a . r g e n e r i c . ma1 . model , n = n , pars = c

( 0 . 4 , 0 . 0 5 ) )
formula = y ˜ −1 + f ( idx , model=model )
r2 = i n l a ( formula , data = data . frame (y , idx = 1 : n) ,

f ami ly = ” gauss ian ” ,
c o n t r o l . f ami ly = l i s t ( hyper = l i s t ( prec = l i s t ( i n i t i a l = log (1 /

s ˆ2) , f i x e d=TRUE) ) ) )
summary( r2 )
r12=i n l a . hyperpar ( r2 )
2/(1+exp(−r12 $summary . hyperpar $mean) )−1

p l o t ( r12 , p l o t . p r i o r= T, s i n g l e=TRUE)
xRange = range ( r12 $ marg ina l s . hyperpar [ [ 1 ] ] [ , 1 ] )
xs = seq ( xRange [ 1 ] , xRange [ 2 ] , l ength . out = 100)
#xs = seq (−5 , 5 , l ength . out = 1000)
ys = xs
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f o r ( i in 1 : l ength ( xs ) ) {
ys [ i ] = i n l a . r g e n e r i c . ma1 . model (cmd =’ log . p r i o r ’ , theta = xs [ i ] , a rgs

= l i s t (n = n , pars = c ( 0 . 4 , 0 . 0 5 ) ) )
}
l i n e s ( xs , exp ( ys ) , c o l = ” blue ” )

p l o t ( i n l a . tmarg ina l ( func t i on ( x ) {2/(1+exp(−x ) )−1} , r12 $ marg ina l s . hyperpar
[ [ 1 ] ] ) , type = ” l ” , xlab = ”Theta” , main = ” P o s t e r i o r dens i ty f o r
Theta in o r i g n a l s c a l e ” )

l i n e s ( i n l a . tmarg ina l ( f unc t i on ( x ) {2/(1+exp(−x ) )−1} , cbind ( xs , exp ( ys ) ) ) ,
c o l = ’ blue ’ )

l egend ( ” top r i gh t ” , l egend=c ( ” P o s t e r i o r ” , ” Pr io r ” ) ,
c o l=c ( ” black ” , ” blue ” ) , l t y=c (1 , 1 ) , cex =0.8)

## f o r alpha = 0.005
model = i n l a . r g e n e r i c . d e f i n e ( i n l a . r g e n e r i c . ma1 . model , n = n , pars = c

( 0 . 4 , 0 . 005 ) )
formula = y ˜ −1 + f ( idx , model=model )
r3 = i n l a ( formula , data = data . frame (y , idx = 1 : n) ,

f ami ly = ” gauss ian ” ,
c o n t r o l . f ami ly = l i s t ( hyper = l i s t ( prec = l i s t ( i n i t i a l = log (1 /

s ˆ2) , f i x e d=TRUE) ) ) )
summary( r3 )
r13=i n l a . hyperpar ( r3 )
2/(1+exp(−r13 $summary . hyperpar $mean) )−1

p l o t ( r13 , p l o t . p r i o r= T, s i n g l e=TRUE)
xRange = range ( r13 $ marg ina l s . hyperpar [ [ 1 ] ] [ , 1 ] )
xs = seq ( xRange [ 1 ] , xRange [ 2 ] , l ength . out = 100)
#xs = seq (−5 , 5 , l ength . out = 1000)
ys = xs
f o r ( i in 1 : l ength ( xs ) ) {

ys [ i ] = i n l a . r g e n e r i c . ma1 . model (cmd =’ log . p r i o r ’ , theta = xs [ i ] , a rgs
= l i s t (n = n , pars = c (L , 0 . 005 ) ) )

}
l i n e s ( xs , exp ( ys ) , c o l = ” blue ” )

p l o t ( i n l a . tmarg ina l ( func t i on ( x ) {2/(1+exp(−x ) )−1} , r13 $ marg ina l s . hyperpar
[ [ 1 ] ] ) , type = ” l ” , xlab = ”Theta” , main = ” P o s t e r i o r dens i ty f o r
Theta in o r i g n a l s c a l e ” )

l i n e s ( i n l a . tmarg ina l ( f unc t i on ( x ) {2/(1+exp(−x ) )−1} , cbind ( xs , exp ( ys ) ) ) ,
c o l = ’ blue ’ )

l egend ( ” top r i gh t ” , l egend=c ( ” P o s t e r i o r ” , ” Pr io r ” ) ,
c o l=c ( ” black ” , ” blue ” ) , l t y=c (1 , 1 ) , cex =0.8)

#################### change o f e r r o r vara ince

n = 50
rho =0.4
s .MA = 10
x = arima . sim (n , model = l i s t (ma = rho ) ) ∗ s .MA/ s q r t (1+rho ˆ2)
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alpha = 0 .5
s = c ( 0 . 0 1 , 0 . 5 , 1 ) ;
y1 = x + rnorm (n , sd = s [ 1 ] ) ;
y2 = x + rnorm (n , sd = s [ 2 ] ) ;
y3 = x + rnorm (n , sd = s [ 3 ] ) ;

model = i n l a . r g e n e r i c . d e f i n e ( i n l a . r g e n e r i c . ma1 . model , n = n , pars = c
( . 4 , . 5 ) ) ;

formula21 = y1 ˜ −1 + f ( idx , model=model )
r21 = i n l a ( formula21 , data = data . frame ( y1 , idx = 1 : n) ,

f ami ly = ” gauss ian ” ,
c o n t r o l . f ami ly = l i s t ( hyper = l i s t ( prec = l i s t ( i n i t i a l = log (1

/ s [ 1 ] ˆ 2 ) , f i x e d=TRUE) ) ) ,
verbose = TRUE)

summary( r21 ) ;
r21=i n l a . hyperpar ( r21 ) ;
2/(1+exp(−r21 $summary . hyperpar $mean) )−1

p l o t ( r21 , p l o t . p r i o r= T, s i n g l e=TRUE)
xRange = range ( r21 $ marg ina l s . hyperpar [ [ 1 ] ] [ , 1 ] )
xs = seq ( xRange [ 1 ] , xRange [ 2 ] , l ength . out = 100)
#xs = seq (−5 , 5 , l ength . out = 1000)
ys = xs
f o r ( i in 1 : l ength ( xs ) ) {

ys [ i ] = i n l a . r g e n e r i c . ma1 . model (cmd =’ log . p r i o r ’ , theta = xs [ i ] , a rgs
= l i s t (n = n , pars = c ( . 4 , . 5 ) ) )

}
l i n e s ( xs , exp ( ys ) , c o l = ” blue ” )

p l o t ( i n l a . tmarg ina l ( func t i on ( x ) {2/(1+exp(−x ) )−1} , r21 $ marg ina l s . hyperpar
[ [ 1 ] ] ) , type = ” l ” , xlab = ”Theta” , main = ” P o s t e r i o r dens i ty f o r
Theta in o r i g n a l s c a l e ” )

l i n e s ( i n l a . tmarg ina l ( f unc t i on ( x ) {2/(1+exp(−x ) )−1} , cbind ( xs , exp ( ys ) ) ) ,
c o l = ’ blue ’ )

l egend ( ” top r i gh t ” , l egend=c ( ” P o s t e r i o r ” , ” Pr io r ” ) ,
c o l=c ( ” black ” , ” blue ” ) , l t y=c (1 , 1 ) , cex =0.8)

######## when s = 0 .5

formula22 = y2 ˜ −1 + f ( idx , model=model )
r22 = i n l a ( formula22 , data = data . frame ( y2 , idx = 1 : n) ,

f ami ly = ” gauss ian ” ,
c o n t r o l . f ami ly = l i s t ( hyper = l i s t ( prec = l i s t ( i n i t i a l = log (1

/ s [ 2 ] ˆ 2 ) , f i x e d=TRUE) ) ) ,
verbose = TRUE)

summary( r22 ) ;
r22=i n l a . hyperpar ( r22 ) ;
2/(1+exp(−r22 $summary . hyperpar $mean) )−1

p l o t ( r22 , p l o t . p r i o r= T, s i n g l e=TRUE)
xRange = range ( r22 $ marg ina l s . hyperpar [ [ 1 ] ] [ , 1 ] )
xs = seq ( xRange [ 1 ] , xRange [ 2 ] , l ength . out = 100)
#xs = seq (−5 , 5 , l ength . out = 1000)
ys = xs
f o r ( i in 1 : l ength ( xs ) ) {

67



ys [ i ] = i n l a . r g e n e r i c . ma1 . model (cmd =’ log . p r i o r ’ , theta = xs [ i ] , a rgs
= l i s t (n = n , pars = c ( . 4 , . 5 ) ) )

}
l i n e s ( xs , exp ( ys ) , c o l = ” blue ” )

p l o t ( i n l a . tmarg ina l ( func t i on ( x ) {2/(1+exp(−x ) )−1} , r22 $ marg ina l s . hyperpar
[ [ 1 ] ] ) , type = ” l ” , xlab = ”Theta” , main = ” P o s t e r i o r dens i ty f o r
Theta in o r i g n a l s c a l e ” )

l i n e s ( i n l a . tmarg ina l ( f unc t i on ( x ) {2/(1+exp(−x ) )−1} , cbind ( xs , exp ( ys ) ) ) ,
c o l = ’ blue ’ )

l egend ( ” top r i gh t ” , l egend=c ( ” P o s t e r i o r ” , ” Pr io r ” ) ,
c o l=c ( ” black ” , ” blue ” ) , l t y=c (1 , 1 ) , cex =0.8)

######### when s= 1

formula33 = y3 ˜ −1 + f ( idx , model=model )
r33 = i n l a ( formula33 , data = data . frame ( y3 , idx = 1 : n) ,

f ami ly = ” gauss ian ” ,
c o n t r o l . f ami ly = l i s t ( hyper = l i s t ( prec = l i s t ( i n i t i a l = log

(1 / s [ 3 ] ˆ 2 ) , f i x e d=TRUE) ) ) ,
verbose = TRUE)

summary( r33 ) ;
r33=i n l a . hyperpar ( r33 ) ;
2/(1+exp(−r33 $summary . hyperpar $mean) )−1

p l o t ( r33 , p l o t . p r i o r= T, s i n g l e=TRUE)
xRange = range ( r33 $ marg ina l s . hyperpar [ [ 1 ] ] [ , 1 ] )
xs = seq ( xRange [ 1 ] , xRange [ 2 ] , l ength . out = 100)
#xs = seq (−5 , 5 , l ength . out = 1000)
ys = xs
f o r ( i in 1 : l ength ( xs ) ) {

ys [ i ] = i n l a . r g e n e r i c . ma1 . model (cmd =’ log . p r i o r ’ , theta = xs [ i ] , a rgs
= l i s t (n = n , pars = c ( . 4 , . 5 ) ) )

}
l i n e s ( xs , exp ( ys ) , c o l = ” blue ” )

p l o t ( i n l a . tmarg ina l ( func t i on ( x ) {2/(1+exp(−x ) )−1} , r33 $ marg ina l s . hyperpar
[ [ 1 ] ] ) , type = ” l ” , xlab = ”Theta” , main = ” P o s t e r i o r dens i ty f o r
Theta in o r i g n a l s c a l e ” )

l i n e s ( i n l a . tmarg ina l ( f unc t i on ( x ) {2/(1+exp(−x ) )−1} , cbind ( xs , exp ( ys ) ) ) ,
c o l = ’ blue ’ )

l egend ( ” top r i gh t ” , l egend=c ( ” P o s t e r i o r ” , ” Pr io r ” ) ,
c o l=c ( ” black ” , ” blue ” ) , l t y=c (1 , 1 ) , cex =0.8)

par ( mfrow=c (1 , 3 ) )
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