@NTNU

Norwegian University of
Science and Technology

A theoretical and empirical assessment
of probabilistic multiple choice tests

Torunn Kval Bakken

Master of Science
Submission date: June 2017
Supervisor: Jarle Tufto, IMF

Norwegian University of Science and Technology
Department of Mathematical Sciences






A theoretical and empirical assessment of
probabilistic multiple choice tests
NTNU

Torunn Kval Bakken

June 2017



ii




Preface

This thesis concludes my master’s degree in natural science with teacher education
at the Norwegian University of Science and Technology (NTNU), with specialisa-
tion in mathematics and physics. The work on the thesis has been carried out
during my ninth and tenth semester at the Department of Mathematical Sciences,
from September 2016 to June 2017.

I would like to thank my supervisor Jarle Tufto for all his help and feedback
during this process. I am very grateful for Truls Midthun who is always there for
me when I need him the most. Last but certainly not least; my parents who always
believe in me.

Torunn Kval Bakken

Trondheim, June 2017

iii



iv




Abstract

In this thesis, the probabilistic multiple choice test is analysed empirically and
theoretically. It is suggested as an alternative to the traditional multiple choice
test. The probabilistic multiple choice test has a long history. However, there
are no known published research papers on the subject based on test results from
Norwegian students.

We will compare the theoretical performance of the traditional and probabilistic
multiple choice test. In addition, we will analyse their performance as estimators of
level of knowledge. To estimate the level of knowledge, we want to be sure that the
students estimate their abilities accurately. We will therefore analyse what may
influence students to inaccurately estimate their abilities in a probabilistic multiple
choice test. We call it overconfidence if the students overestimate their abilities,
and conversely underconfidence if the students underestimate their abilities. Fur-
thermore, we will take a closer look at score functions that could be suitable for
the probabilistic multiple choice test.

This thesis is a quantitative research study of the probabilistic multiple choice
test. The empirical research is done by a test administered to a group of students
enrolled for the subject TMA4240 Statistics at NTNU, because of their knowledge
of probability and statistics. Since the test was voluntary, an incentive to take the
test was given in the form of a possibility to win one of two gift cards. The data
provides a basis for analysis and inference on the probabilistic multiple choice test
and the participant’s overconfidence. The Dirichlet distribution is used to model
the theoretical properties of the test. In addition, it is used to analyse the score
functions that we evaluate the student’s performance with.

The results show that the probabilistic multiple choice test with a logarithmic
score function is an unbiased estimator of the level of knowledge of a participant.
The participant’s ability to correctly estimate their own level of confidence is in-
fluenced by their sex, the requirement of obtaining a minimum score, feedback and
the score function their score is calculated by. We find that a good test for both
female and male participants has a logarithmic score function and gives feedback
during the test.

In the field of education, the probabilistic multiple choice method has the po-
tential of redefining the use of multiple choice tests. First of all because it provides
an accurate quantification of the student’s level of confidence, and second of all by
making the student’s knowledge transparent to the educator.
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Sammendrag

I denne oppgaven vil den probabilistiske flervalgsprgven analyseres empirisk og
teoretisk. Den er foreslatt som et alternativ til den tradisjonelle flervalgsprgven.
Den probabilistiske flervalgsprgven har en lang historie. Det er likevel ingen kjente
publiserte artikler om emnet basert pa testresultater fra norske studenter.

Vi vil sammenlikne den teoretiske ytelsen av den tradisjonelle og probabilistiske
flervalgsprgven. I tillegg vil vi analysere deres ytelse som estimatorer av kunnskap-
sniva. For & estimere kunnskapsnivaet vil vi veere sikre pa at studentene estimerer
deres egen evne ngyaktig. Vi vil derfor analysere hva som kan pavirke studenter
til & estimere sine evner ungyaktig under en probabilistisk flervalgsprgve. Vi kaller
det overkonfidens hvis studentene overestimerer sine evner, og tilsvarende under-
konfidens hvis studentene underestimerer sine evner. Videre vil vi ta en nsermere
titt pa score-funksjoner som kan veere egnet for den probabilistiske flervalgspraven.

Denne masteroppgaven er en kvantitativ undersgkelse av den probabilistiske
flervalgsprgven. Den empiriske undersgkelsen er gjort ved & gi en prgve til en
gruppe studenter som tar faget TMA4240 Statistikk pa NTNU, pa grunn av deres
kunnskap om sannsynlighet og statistikk. Ettersom prgven var frivillig, ble et in-
sentiv for & ta prgven gitt i form av en mulighet for & vinne et av to gavekort.
Dataene danner et grunnlag for analyse og inferens om den probabilistiske flerval-
gsproven, og deltakerens overkonfidens. Dirichlet-fordelingen er brukt til & mod-
ellere de teoretiske egenskapene ved prgven. I tillegg blir den brukt til & analysere
score-funksjonene som vi evaluerer studentenes prestasjon med.

Resultatene viser at den probabilistiske flervalgsprgven med logaritmisk score-
funksjon er en forventningsrett estimator av kunnskapsnivaet til en deltaker. Deltak-
erens evne til a4 korrekt estimere deres eget kunnskapsniva er pavirket av deres
kjgnn, kravet om & oppnéa en minimum score, tilbakemelding og score-funksjonen
deres score er regnet ut med. Vi finner at en god prgve for bade kvinnelige og
mannlige deltakere har en logaritmisk score-funksjon og gir tilbakemelding under
préven.

Innenfor utdanning har den probabilistiske flervalgsprgven potensialet til & re-
definere bruken av flervalgsprgver. For det forste fordi den gir en ngyaktig kvan-
tifisering av elevens konfidensniva og for det andre fordi den gjor elevens kunnskap
synlig for leereren.
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Chapter 1

Introduction

In this thesis we will take a closer look at what is called the probabilistic multiple
choice test. This is an interesting topic to investigate because multiple choice tests
are frequently used in the Norwegian education system. Multiple choice tasks are
even included in the national tests given to 5th, 8th and 9th graders. According to
the Norwegian Directorate for Education and Training, the test results are used by
the teachers to review their students development, and in guiding their own work.
The municipalities and schools use the results from national tests as a foundation
for further developing the quality of learning. Even researchers can access the
results to use in their studies (Utdanningsdirektoratet, 2016).

Given that multiple choice tasks and tests are common and often used, it is
important that they work in a satisfying manner. One of the main objectives of
these tests is to give information about how well the students are performing and
where the students need further guidance.

The Kansas silent reading test is acknowledged as the first multiple choice
test used in a school, which was a reading test administered to selected children
attending schools in Kansas. The exercises from this test were aimed to meet
three qualifications. First of all, the interpretation of the exercise must be unique.
That is to say, the exercises should be well defined and without ambiguous wording.
Secondly, the answers must be right or wrong and nothing in between. Finally, they
were to test the ability to obtain meaning from written material (Kelly, 1916).

In the traditional multiple choice test, the optimal decision for the participant
is to choose the alternative that he/she finds most likely to be correct. In the
case of complete ignorance, the participant might feel encouraged to guess which
alternative is the correct one. Unless the participant can eliminate at least one
alternative, the probability of successfully guessing the correct answer is then 1/m,
where m is the number of alternatives. Guessing is a serious flaw in the test design
and should be avoided in order to properly evaluate the level of knowledge. The
assessor has no way of knowing if a correct answer comes from a participant who
understands the material, or from a participant who has been lucky and guessed
the correct alternative. Penalty for incorrect answers or no penalty for leaving a
question blank are some of the solutions to discourage participants from guessing
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(Espinosa and Gardeazabal, 2010).

Some authors (e.g. Bernardo (1998), Ben-Simon, Budescu, and Nevo (1997))
have proposed that probabilistic multiple choice tests could be the answer to some
of the shortcomings of traditional multiple choice tests. In probabilistic mul-
tiple choice tests the participants report a level of confidence for each alterna-
tive. The participant can then report a complete lack of knowledge by reporting
(1/m,1/m,...,1/m). A participant with perfect knowledge can report a distri-
bution as for example (0,1,0,...,0), indicating that alternative (b) is the correct
alternative. The reported level of confidence on each alternative can take any
real value on an (m — 1)-simplex, in contrast to binary true/false alternatives in
traditional multiple choice tests (Bernardo, 1998).

The reported level of confidence is not necessarily a correct estimate of the
participant’s true knowledge of a topic. The participant may overestimate their
abilities, thus reporting a level of confidence much higher than they should. Con-
versely, their estimate may also be too conservative, thus making the reported level
of confidence too low. We will respectively call this behaviour overconfidence and
underconfidence. This is an important part of the probabilistic multiple choice
test, because as mentioned previously, the tests are supposed to provide informa-
tion about the student. If the information given by the participant is not correct,
the information is less valuable and more difficult to interpret directly.

The probabilistic multiple choice test has been implemented at the University
of Stavanger by Bratvold (Unpublished). This has provided an interesting basis
for the work carried out in this thesis.

We will attempt to analyse the performance of the probabilistic multiple choice
test compared to the traditional multiple choice test. An important part of the
probabilistic multiple choice test is the score function used to calculate the obtained
score. We want to find a score function that will provide the best estimate of the
participant’s knowledge. We will also try to find a statistical model of what might
influence the participants to incorrectly estimate their level of confidence. The
combined analyses may be used to propose a probabilistic multiple choice test that
performs well.

The outline of the thesis is as follows: In Chapter 2 Bayesian decision theory is
provided as a framework for further analysis. In Chapter 3 the method for the test
and data are presented. In Chapter 4 the method and results of the theoretical
analysis is presented. In Chapter 5 a method for analysing the empirical data is
introduced and in Chapter 6 the results of this analysis is presented. In Chapter 7
we discuss our results and suggestions for further work. All data analysis is done
with R (R Core Team, 2016).



Chapter 2

Score functions

2.1 Bayesian decision theory

Any situation where choices are to be made among alternative courses with un-
certain consequences are decision problems (Bernardo and Smith, 1994, p. 16-19).
For a participant, each question in a probabilistic multiple choice test is therefore
a decision problem. First, some general elements of the decision problem must be
defined:

e A set of events, E
e A set of consequences, C
e A set of options/acts, A

e < is a preference order, taking the form of a binary relation between the
elements of A

In this thesis we want to analyse the decision problem quantitatively. In order
to do so, we assume that the participants act rational when faced with a decision
problem. Rationality is a principle of what is called quantitative coherence. By
this, we mean that a preference order must be quantitatively precise and based on
logical forms of behaviour (Bernardo and Smith, 1994, p. 23).

A prescription of what constitutes coherent behaviour can be made, but this
does not imply that participants automatically behave coherent. It is merely a
framework for analysing the decision problem. The three axioms, as stated by
Bernardo and Smith (1994, p. 23-26), that prescribes rational behaviour is

e Axiom 1: comparability of consequences and dichotomised options
e Axiom 2: transitivity of preferences

e Axiom 3: consistency of preferences.
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Axiom 1 states that the participant must be able to distinguish between the
consequences in the decision problem at hand. This means that there are at least
two consequences, for example ¢; and ¢z, such that one of them is preferred over the
other. The same applies for the dichotomised options. Thus, for two events with
corresponding consequences, there exist at least two options where one of them is
preferred over the other (Bernardo and Smith, 1994, p. 23-24).

Axiom 2 simply states that if option 1 is not preferred over option 2, and option
2 is not preferred over option 3, then option 1 is obviously not preferred over option
3 (Bernardo and Smith, 1994, p. 24-25).

Axiom 3 states that a preference pattern in consequences is not affected by
knowing more about the uncertain events. Also, a preference pattern in conse-
quences, and a corresponding preference pattern in options, will ultimately decide
which event is evaluated to be most probable. Meaning that if an individual prefers
to win rather than lose, and a choice of A is more preferable than choosing B, then
the individual would evaluate B as more likely. Lastly, the axiom states that if
two situations are such that the outcome of the first is not preferred over the sec-
ond, then the second situation is preferable overall (Bernardo and Smith, 1994,
p. 25-26).

In order to evaluate decision problems quantitatively we make an assumption of
the existence of standard events (Bernardo and Smith, 1994, p. 29-30). A standard
event can be compared with the use of standard units of measurement and the
quantification is the numerical value of that unit. A person is weighed in kilograms
and it is quantified by a numerical value, e.g. 60 kg. For the decision problem, a
standard event is for example that we estimate an event as equally likely as a coin
flip, and the quantification of this is 0.5.

Thus, a rational participant can state their degree of beliefs for a set of events as
a probability distribution. According to Bernardo and Smith (1994, p. 33-35), any
probability in this distribution is then a personal degree of belief. It is a numerical
value of the personal uncertainty relation between events, and will for the rest
of this thesis be referred to as level of confidence. We use the notation “level of
confidence” because, during a test, the participant will evaluate the alternatives by
his/her confidence that they are correct.

By applying the principle of quantitative coherency, a utility can be defined
for the set of consequences. The utility is a function that maps the consequence
of a decision problem to a numerical value. Assuming the utility gain is positive,
a rational participant will have a preference pattern that maximises the expected
value of the utility (Bernardo and Smith, 1994, p. 70-71). For the probabilistic
multiple choice test, let (01,d2,...,0,,) be the set of alternatives for a question,
where m is the number of alternatives. Let r = {(ri,...,rm), 7 > 0,2, 1 =
1} be the individual’s reported probability distribution over the set of possible
answers. These are the decision variables in a probabilistic multiple choice test. For
now, there is no reason to assume that the probability distribution, =, accurately
describes the true level of confidence of the participant. Therefore, we assume that
p is the participant’s honest probability distribution, where p; is the probability
the participant perceives alternative ¢ to be correct. Each question has its own
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probability distribution. The expected value of utility for the test is the expected

score,
m

u(r) = Z u(r, 0;)pi,

i=1

where wu(r,d;) is the score awarded to a participant who marks the probability
distribution r when the correct answer is J; (Bernardo, 1998, p. 4-5).

Ordinarily, the utility function is concave for monetary values, but is approxi-
mately linear for small amounts of money. For the test in this thesis, the monetary
gain is kept small, resulting in an approximately linear utility function in the score
function.

2.2 Different score functions

In order to encourage honesty, a score function should have a maximum expected
value if and only if the participant sets » = p. A score function that satisfies this
property is called a proper score function. Another property of the score function,
that is preferable in pure inference situations, is that the score function is local.
Pure inference problems are situations where we are only concerned with the truth.
The local score function is therefore purely a function of the probability assigned
to the correct alternative. The score function can provide a basis to quantify the
participant’s level of knowledge in a multiple choice test (Bernardo and Smith,
1994, p. 70-72).

Let the row vector d = (dy,...,d,,) be a vector of indicator variables indicat-
ing which answer alternative is correct. If alternative 4 is correct, then d; = 1
and d; = 0, for i # j. The stochastic variable d = (d,...,dy,) is multinomially
distributed with d ~ Mult(1, p). From known relations of the multinomial distri-
bution, E(d;) = p;, E(d¥) = p;, where k = 1,2,... and E(d;d;) = 0 when i # j
(Bernardo and Smith, 1994, p. 433).

2.2.1 Simple score function

Neyhart and Abrassart (1984, p.74) suggest a simple score function with range
[0,1]. In this case, the score obtained for each question is equal to the proba-
bility reported by the participant for the correct alternative. With the notation
introduced above, the simple score function is

m

S(’I",d) = Z’/‘idi. (21)

i=1
We can now find the simple conditional expected score,

m

E(s(r,d)|p) = E(ZTidi) = ZE(Tidz‘) = rii.

i=1 =1
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We consider the expectation conditional on p as we will later model p as a random
variable in Chapter 3.

Notice how E(s(r,d)|p) varies linearly with rq,...,7,,. Thus, it follows that
in order to maximise the expected score, the participant should set r; = 1 for the
alternative with the largest p;, and all other r; = 0. We can therefore conclude
that the simple score function is not proper.

2.2.2 Quadratic score function

The quadratic score function with range [0, 1] is according to Winkler and Murphy
(1968, p. 754) defined as

Qr,d) =1-) (ri —d;)*. (2:2)
We can find that the quadratic conditional expected score is

m

BQerlp) = £(1= Y~ 0l
=1- in:E(rz2 — 2ryd; + d7|p)

i=1
=1- ZE(T?U?) + 2ZE(Tidi|p) - ZE(dﬂP) (2.3)
=1 i=1 =1
=1- er —i-QZn-pi - Zpi
i=1 i=1 i=1
=y = (ri—p)*
=1 =1

Note that the participant, in order to maximise his/her expected subjective score,
must set r equal to p. Thus the quadratic score function is proper.

2.2.3 Spherical score function

The spherical score function S(r,d) with range [0, 1] is according to Winkler and
Murphy (1968, p. 754) defined as

i rid;
S(r,d) = —=— (2.4)

()"
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Hence, the spherical conditional expected score is

m

> it
E(S(r,d)lp) = —=

(£1)"

From Cauchy-Schwarz’s inequality (Casella and Berger, 2002, p. 187),
m 1/2 , m 1/2
Sons(30) (L#)
i=1 i=1 i=1

thus, .,
E(S(r, d)lp)) (Zpl)

with equality holding if and only if r; = kp; for all i, where k is a constant.
The participant’s expected score is maximised if equality holds. Since 2111 p; =
it ri =1, k equals one and the spherical score function is proper.

2.2.4 Logarithmic score function

The logarithmic score function with range [—oo, 0] is according to Winkler and
Murphy (1968, p. 754-755) defined as

d) = Zdi In(r;). (2.5)

The logarithmic conditional expected score is

E(L(r,d)|p) = Zpl Inr; (2.6)

Maximising E(L(r,d)|r)) in (2.6) is equivalent to maximising

E(L(r,d)|p) —A<§;m - 1) - imnm _A<§;ri - 1), (2.7)

sinced ", r; = 1 and A is a Lagrange multiplier. Differentiating (2.7) with respect
to r; and setting the result equal to zero yields

1
Ty = sz'-
Since > 7 = Y it pi = 1, A equals one, the optimal decision is to set r = p,
and the logarithmic score function is proper.
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2.2.5 Summary

We see directly from (2.1), (2.2), (2.4) and (2.5) that only the simple and the
logarithmic score functions are local.

The different score functions can be made more comparable by linear trans-
formations such that a score equal to 0 corresponds to complete ignorance and
score equal to 1 corresponds to perfect knowledge. The score functions that are
transformed to the mutual range are the quadratic and logarithmic score function,
which are the two score functions used in the empirical study in this thesis. In
order to find the proper linear transformation of the logarithmic and quadratic
score functions we multiply by a constant and add a constant:

Q(pa d) = Cq0 + Cq1 Z(]% - d1)2
1=1

L(p,d) = cio+cin Y_(di log(py))-
=1

We want the score function to have value 0 when p = (1/m,...,1/m), and value
1 when p; = 1 for alternative ¢, where d; = 1. Therefore,

Q(p,d) = Cq0 T Cq1 Z(l/m — di)2 =0
i=1

Q(p,d) = cqo + ca((m = 1)(0-0)* + (1 -1)%) =1,

implying that
Cq0 = 1

Cql = ———

and m
L(p,d) = cip +cin Yy _(d;ilog(1/m)) =0
i=1
L(p,d) = cio +cinlog(1) =1,
implying that
Clop = 1
1 _ 1
log(1/m)  log(m)’

In Table 2.1 the score functions are listed with their respective properties.

i1 =
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Score function Function Range Proper | Local

Simple (r,d) = Z rid; [0, 1] No Yes
i=1

Quadratic Q(p,d) = [ m Z mi Yes No
Z pid;

Spherical S(p,d) = —"———75 [0,1] Yes No

Logarithmic L(p,d) =1+ 10g}m) 2 (d; log(pi)) [—00,1] Yes Yes

Table 2.1: Summary table of the four different score functions
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Chapter 3

Theoretical analysis

We will theoretically analyse some properties of probabilistic and traditional mul-
tiple choice tests. We assume that the probabilities reported by the participants
are unbiased, i.e. the different answer alternatives turns out to be correct with
probabilities equal to the probabilities reported by the participants.

The probabilities are the participant’s level of confidence. The score functions
can then be viewed as estimators of the participant’s level of knowledge. The level
of knowledge a participant has for different questions can vary in many ways. In
this thesis we have chosen to model it by the Dirichlet distribution, as it has some
of the properties we see in the test regime.

A random vector @ is Dirichlet distributed, Dir(«x), for a = (a1,...,@m),

a; > 0, if its sample space is ; > 0, z,,, = 1 — Z:’:ll x;, and its density is

r(s" o) m
f(l’l,...,xml)—lw 1.;11'—1

i= i=1

(Bernardo and Smith, 1994, p. 134). First of all, the random vector « is the open
(m — 1)-dimensional simplex and corresponds to the probability distribution, p,
given by the participants for each question. Secondly, the concentration parameters
i, ...,y are used as concentration of knowledge for each question, where we
assume ag = ... = Qu; = Q.

The distribution is used to model how the participant’s knowledge is distributed
between different questions. For a — oo the probability density will be concen-
trated in the point (p1,...,pm) = (1/m,...,1/m). When the p;’s are distributed
like this, between different randomly selected questions, we have a participant with
no knowledge. Conversely, in the limit when a — 0 the probability density is
concentrated in each of the m corners of the (m — 1)-simplex, i.e. the points
(1,0,...,0,0),(0,1,0,...,0),...,(0,0,...,0,1) with probability 1/m in each cor-
ner. This corresponds to a person with perfect knowledge. When a ~ 1, this
will correspond to something in between these two extrema. In this framework
we assume that the concentration of knowledge for each participant is constant

11
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throughout the test. A different assumption could be that a participant has per-
fect knowledge about some questions and no knowledge for others. This would
lead to a different relationship between expectation and variance. This relation-
ship, however, is not investigated any further in this thesis. The Dirichlet model is
an attempt to model this variation somewhat realistically.

3.1 Derived expressions for subjective expected
score and variance

A theoretical analysis of the traditional multiple choice test (MCT) and of the score
functions suggested for the probabilistic MCT, can provide a basis to determine
which is most effective. Key elements in this analysis are expected score and the
variance of this score.

We have already found the conditional expected score for both the quadratic and
the logarithmic score function. In order to find the expected score, and the variance
of score analytically, we need a distribution that can be used for a probabilistic
multiple choice test. From now on we assume that p ~ Dir(a, m). We can find
the unconditional expected score and variance by the law of total expectation and
total variance for any given score function U (Kendall et al., 1991, p. 66). Thus,

Ep(U(p, d)) = E,(E(U(p, d)|p))
is the expected score for score function U, and
Var, (U(p, d) = Var,(E(U(p,d)|p)) + Ep(Var(U (p, d)|p))

is the variance of the score for score function U, where

Var(U(p, d)|p) = E(U(p. d)?|p) — E(U(p, d)|p)*.

For the traditional multiple choice test a participant will choose alternative
with the largest probability p; from a vector p. Under the assumption made in the
beginning of the chapter, the probability of guessing the correct alternative is thus
max(p1, ..., Pm) conditional on p. The unconditional probability is then given by
the law of total probability (Kendall et al., 1991, p. 288-289) by integration over
the vector p of the Dirichlet distribution,

/"'/max(plw~~»pm)f(p17"‘7pmfl)dp1"‘dpmfb

To the best of my knowledge there is no closed form solution for this integral.
Therefore, we will find the expectation and variance numerically, by the use of the
binomial distribution and Monte Carlo integration. The probability is estimated by
sampling from the Dirichlet distribution, we find the maximum value of each sample
and take the average of them. We then have an estimated value for the probability
that the correct answer is chosen. The score is then binomially distributed with



CHAPTER 3. THEORETICAL ANALYSIS 13

this estimated probability and number of questions as parameters. For R-code, see
Appendix D.2.

For the adjusted range of the logarithmic and quadratic score function, with
n = 27 questions, m = 4 alternatives, the expectation and variance of the total
score are, respectively

n 4(a+1)

E,(Q(p,d)) = 3 +nm

@ m Q ma?2 m o
VMNQ@mm:”ﬂa +1)<(2H) +3  3(ma®+ (m+4)a+6)

9 (ma + 1)2 (ma + 1)(ma + 2)(ma + 3)

2((m+2)a + 6)
(ma + 1)(ma + 2)

and

(Y(a@+1) — ¢(ma + 1))
log(m)

E,(L(p,d))=n+n

(Wila+1) = ¢y (ma+1))
log(m)? '
The range of the traditional MCT is adjusted such that the expected score is 0

when a participant is ignorant and 1 when a participant has perfect knowledge.
Thus, the expected score and variance is

Var, (L(p,d)) =

(1) = n TP
Ve, (7(p,d)) = n PO

See Appendix B for a more in-depth mathematical derivation of these expressions
and Appendix D.2 for R-code.

3.2 Score functions as estimators of knowledge

A commonly used measure of information is Shannon’s expected information. Ac-

cording to Bernardo and Smith (1994, p. 79-81), this expected information of a
discrete distribution given by p, is defined as

B(I(p)) =Y Bllogpy) = Y pilogp (3.1
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Within the framework of decision theory, maximising the Shannon information is
a particular instance of maximising expected utility (Bernardo and Smith, 1994,
p. 81). This particular instance is the pure inference experiment, which is an
experiment where we are only interested in the truth. The experiment in this case is
the quiz, where we are only interested in the correct alternatives (the truth). In the
context of multiple choice tests, the Shannon information is arguably a reasonable
measure of the level of knowledge that a participant has about a particular question.
Obtained scores based on different score functions can be viewed as estimates of the
expected information and the score functions as such estimators can be compared
by assessing their bias, variance and mean square error.

A good estimator is usually an unbiased estimator, however even though an
estimator is unbiased or the bias is small, the variance could still be large, thus
making the estimator unfit. We will use the mean square error as a measure of the
tradeoff between bias and variance of an estimator. The mean square error (MSE)
of an estimator W of a parameter @ is the function of § defined by E(W —6)? | i.e.

EW —0)? = VarW + (EW — 0)? = Var W + (Bias W)?

(Casella and Berger, 2002, p. 330).

3.3 Analysis

In Figure 3.1 the expected score and variance are plotted against each other. The
traditional MCT has consistently a larger variance than the probabilistic MCT
with logarithmic score function, and slightly smaller variance than the quadratic
score function when the expected score is high (= 18 or higher). As expected,
the variance of the score for the traditional MCT is large when the participant is
highly misinformed. We see this where the expected score is close to 0. Misinformed
means that the participant is sure that the incorrect alternative is the correct one.
This result is intuitively clear since the participant would consistently put a high
probability for the wrong alternatives. The large peak at around E,(T'(p,d)) =
n/m ~ 7 is also as expected since the participant is highly unsure and will therefore
guess the alternative, thus making the variance the largest.

The probabilistic MCT shows promising result, both for the quadratic and log-
arithmic score function. The logarithmic score function has, however, consistently
smaller or equal variance to the quadratic score function. The variance is largest
when the expected score is around E, = n/2 = 13.5. Intuitively we would expect
the variance to be small for both correctly informed and misinformed participants.
The reason is that the participants would personally be quite sure and consistent
about what they think is correct. The variance is intuitively at its largest for par-
ticipants who do not know what is correct. The Dirichlet distribution appears to
be a good fit for the properties of multiple choice tests.
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Figure 3.1: Plot of the expected score and variance for the probabilistic MCT when
we use logarithmic (green) and quadratic (red) score function, and the traditional MCT
(black). The variance of the traditional MCT is the largest of the three. The probabilistic
MCT with quadratic score function has slightly larger variance than with logarithmic score
function.

The logarithmic score function is an unbiased estimator of the information
because the expected score from the logarithmic score function is the same as the

information, E(L(p,d)|p) = Y pilogp;. The quadratic score function and the
i=1

traditional MCT are not unbi;sed estimators of the information. To evaluate the
bias of the quadratic score function and the traditional MCT, a plot of the two
different biases are shown in Figure 3.2 and Figure 3.3 respectively. From Figure
3.2, the quadratic score function appears to be nearly unbiased towards the far
right and far left. In the middle of the plot we see some sign of the quadratic score
function being a little biased.

From Figure 3.3, we see that the traditional MCT is biased, and therefore does
not appear to be a good estimator of level of knowledge. The bias is seen in the non-
linear relationship between the probabilistic MCT with logarithmic score function
and the traditional MCT. To investigate further, the mean square error is plotted
for the unbiased estimator (logarithmic) and the two biased estimators (quadratic
and traditional). The mean square error of the logarithmic score function is ob-
viously just the variance of the score function since it is an unbiased estimator of
knowledge (information).
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Figure 3.2: Plot of the bias between the expected score of the logarithmic and quadratic
score function. The quadratic score function appears to be close to unbiased towards the
far left and right. Some signs of a little bias in the middle.

Expected score for traditional MCT
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Figure 3.3: Plot of the bias between the expected score of the logarithmic score function
and the traditional MCT. The traditonal MCT appears to be biased.
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Figure 3.4: Plot of the mean square error of the estimators of information, namely the
logarithmic score function (green), the traditional MCT (black) and the quadratic score
function (red).

From Figure 3.4 it is clear that the traditional MCT is not only a biased es-
timator, but also has the largest MSE out of the three, except for high expected
score. For high expected scores, there is only a small difference between the three
estimators, where the logarithmic score function still outperforms the other two.
The MSE of the traditional MCT is relatively large for low to average expected
scores. When the expected score is & 5, the MSE of the traditional MCT is at an
all time high where the MSE is 4—5 times larger than the MSE of the quadratic and
logarithmic. Thus, for the traditional MCT to be as accurate as the probabilistic
MCT, the test has to have 4 — 5 times as many questions.
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Chapter 4

Empirical study

4.1 Methods

4.1.1 Participants

The participants in this experiment were 89 students at NTNU, taking the class
TMA4240 Statistics. The test was voluntary, but had a prize for two winners (gift
card of value 500 NOK). Each participant were randomly chosen for quadratic/log-
arithmic score function, feedback/no feedback and minimum score/maximum score,
see Appendix E. The two prizes were divided between the minimum score group
and the maximum score group. The minimum score group had to get a “passing”
grade, which was equivalent to getting a score of 10.8, and the winner was chosen
at random from the participants who managed to get at least the minimum score.
The winner in the maximum score group was chosen with a probability dependent
on the obtained score, thus the higher score the higher probability of winning the
prize. The participants were made aware of which score function they were scored
by, if they had to get a minimum score and if they received feedback, before the
test started. A web page (https://wiki.math.ntnu.no/probquiz) was created for
the participants with a description of the two score functions, and some theoretical
background for why they should report their level of confidence honestly.

The reason for picking participants taking a statistical course was to make sure
that the participants taking the test understood the theoretical background for the
score functions, and the probabilistic part of the multiple choice test. A certain
level of knowledge about probability is required in order to take the test. The
participant has to be able to grasp the concept of why reporting their honest level
of confidence will maximise the expected score. In order to accurately estimate
how much the participant knows, it is important that the probabilistic method
is understood such that it does not influence the variance of the score (Poizner,
Nicewander, and Gettys, 1978, p. 84).

19
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4.1.2 Factors, levels and measurements of data

Factors are used to denote any treatment or therapy applied to the subjects being
measured, or any relevant feature characteristic of those subjects. Different ver-
sions, extents, or aspects of a factor are referred to as levels. In this case there
are different factors with different levels. Whenever measurements are made, they
can be classified as either quantitative or qualitative measurements. Quantitative
measurements are for example height in m or weight in kg. A qualitative measure-
ment is for example to state your mood as happy or sad. Two measurements are
said to be similar if their units are the same and dissimilar otherwise (Larsen and
Marx, 2014, p. 449-452). The probability distribution marked by the participants
for each question is therefore a quantitative measurement of similar units.

Prior to the experiment, four categories were chosen for further study:

Sex with three groups/levels: male/female/not chosen

Score function is binary: logarithmic/quadratic

Feedback is binary: true/false

e Minimum score is binary: true/false

4.1.3 About the test

The test in this thesis was based on a wide range of knowledge areas. This was a
conscious choice to make sure the participants would be able to answer regardless
of their interests. Therefore, the questions were based on different areas of common
quiz-related questions. The reason for providing the test in a quiz-based form was
to make sure that as many participants as possible would take the test, since it was
not possible to make the test a mandatory part of the class. Therefore, a middle
ground was met by making the test short and with a small monetary reward for
two winners. The test was short because the participants could be less likely to
finish the test if it was long and demanding. The small monetary reward was to
provide some incentive to do the test at all.

Upon taking the test, each alternative and question were permuted in a random
order such that the participants could not easily compare their tests. In addition,
the random permutation was important in order to analyse possible trends in over-
confidence over time. If the overconfidence becomes smaller during the test, it is
easier to see the effect if the questions and alternatives are given to the participants
in a random order.

Every question and alternative used for the test that was performed can be
found in Appendix G. For simplicity, alternative (a) is the correct alternative for
every question. This will not matter while the test is carried out since the order
of the alternatives and questions are randomly permuted. The layout of the online
test, from now on referred to as the quiz, is shown in Figure 4.1.
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Figure 4.1: Screenshot of the web app where the quiz was issued with participant being
scored by the logarithmic score function, receiving feedback and obtaining at least a
minimum score of 10.8 (see https://jtufto.shinyapps.io/multiple-choice/).


https://jtufto.shinyapps.io/multiple-choice/
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4.2 Data

Because the experiment involved students volunteering to take a somewhat time
consuming test with only a modest expected benefit, some participants may not
report their own subjective probabilities in a truthful way. Another possibility is
cheating, that is, students finding the correct answers to different questions via
various online resources while taking the test. As an attempt to exclude such cases
from the data analysis, outliers were identified as in the following paragraphs.

Information about a participant is limited, and they had the possibility of being
completely anonymous. As a consequence of this, it was optional for the partic-
ipants to state their gender. Each participant could therefore choose to set their
sex to be “not chosen” or “female” /“male”.
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Figure 4.2: Box-plot of probabilities with covariates Sex: Feedback, Sex:Minimum score
and Sex: Score function. In the upper left corner we have six boxes for the interaction
covariate Sex: Feedback. For the first box we have sex “not chosen” and no feedback,
second box we have sex “not chosen” and feedback, third we have sex “female” and no
feedback, fourth we have sex “female” and feedback, fifth we have sex “male” and no
feedback and sixth we have sex “male” and feedback. We have the same order of the
boxes for the boxplots in the upper right corner and lower left corner.

From Figure 4.2 we can see that the sex “not chosen” display behaviour that
is opposite of the other sexes. Male and female participants have an increase in
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probability value when they get feedback or their score function is quadratic. Par-
ticipants with unknown sex display a decrease in probability for the same covariates,
notice especially how it plummets when feedback is TRUE. This type of behaviour
seems counter-intuitive as participants with unknown sex, naturally must be either
male/female or transgender, i.e. their behaviour should be somewhat similar. The
group of participants with unknown sex consisted of only 10 individuals in compar-
ison to 50 men and 29 women. Therefore, the participants which we do not know
the sex of has been omitted from further analysis.

From inspecting the responses, some of them seemed to be out of place. Es-
pecially response 3,48, 59,68 and 69 were peculiar. These six subjects spent very
little time on the test, (< 6 min, < 3min, < 5min, < 9min, < 7min), in compari-
son to the average ~ 18 min. In addition, participant 3 answered every question
perfectly in less than 6 minutes which is definitely strange. By spending less than
nine minutes on the test, the subject spends, on average, less than 20 seconds on
each question. This hardly leaves any time left to evaluate the answers. Therefore,
the participants mentioned are omitted from further analysis.

From Figure F.1 in the appendix, the probabilities assigned to each alternative
for every question and participant is plotted against covariates. The covariate sex
does not appear to be significant on its own. Covariates feedback, minimum score
and score function does however appear to have some effect on the probabilities.

From Figure F.2 in the appendix, the interaction between sex and the score
function appears to have an effect, but the effect is more or less the same for men
and women. The most noticeable effect appears to come from the interactions
between covariates. Notice how for example women who get feedback have an
increased probability value.

From Figure F.3 in the appendix, the interaction between the score function
and the minimum score appears to have an effect. Notice especially for participants
with quadratic score function and requirement of a minimum score. The interaction
effect minimum score and feedback appears to have an influence on the probability
values when both are set to FALSE. The interaction between feedback and the score
function shows that the effect is most noticeable for change in the score function
and less effect for change in the feedback covariate.
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Chapter 5

Method for statistical
analysis of the empirical data

In this chapter the statistical method for analysing the empirical data is presented.
We will introduce a new statistical model as a suggestion for modelling the level of
confidence provided by the participants.

Real value of score

T T T T T
5 10 15 20 25

Expected value of score

Figure 5.1: Obtained score vs expected value of score for the quadratic score function.

In Figure 5.1 the obtained score on the y-axis and the expected value of score
on the x-axis are plotted for the participant’s score by the quadratic score function.
The straight line serves as a reference for when participants can accurately estimate
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their level of confidence. When the obtained score is the same as the expected
score, the participant has not overestimated nor underestimated his/her own level
of confidence. Points above the straight line indicates underconfident behaviour,
where the participant achieves a higher score than he/she expected. Overconfident
behaviour is indicated by points below the straight line, where the obtained score
is lower than the participant expected.

A model of the overconfidence can be proposed to further investigate how a
probabilistic MCT performs in practice. Linear regression could possibly be used
in the analysis of the quadratic score function, but the logarithmic score function
can not be modelled properly using that method. The problem arises because the
range of the logarithmic score function is [—00, 1], where —oo of course is not a finite
limit. It would be naive to assume that all participants in a test can correctly asses
their probabilities such that none of them will put probability 0 to an alternative
that turns out to be correct. Also, the assumption of normally distributed residuals
with homoscedastic variance of an ordinary linear regression model may not hold
(Fahrmeir, Kneib, Lang, and Marx, 2013, p. 75).

5.1 Statistical model

Below, an alternative method to model the probability distribution is suggested.
The goal is to estimate the probability that each alternative is correct as a function
of the subjective probabilities reported by each participant, using the known correct
alternatives as the data. Let r;;; denote the reported probability of participant 4
on question j for alternative k. We consider a model where the probability that a
given alternative k, on question j, for participant 7 turns out to be correct is given
by

r(?:ia) + e¥iB

ngk(aa B) == - )

Here, x; and y; are vectors of numerical covariates and dummy variables encoding
categorical variables. They are the i-th row-vectors of the model matrices X and
Y. To see how these model matrices are created and used in R code for fitting the
model, see Appendix D.3.

The two functions x; and y; 8 are linear predictors, as defined by McCullagh
and Nelder (1989, p. 56-60). In this case, the column vector of coefficients are
a and B. The explanatory variables are the row vectors of covariates, «; and y;
for participant i, where ¢ = 1,...,74. The linear predictors predict how much the
probabilities given by the participant should be adjusted for under-/overconfidence.

Similar to the linear regression analysis, the aim of modelling the probability
distribution is to estimate the parameters a and 8. This can be done by maximising
the multinomial likelihood

_ /odj1 1 dj2 /o dja
L(oz,ﬂ)—l_[rij1 Tijo oo Tija s

]
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or equivalently the log likelihood

l(aaﬁ) = szjk lnrgjk;(a7ﬂ)a
i k

where d; = (dj1,...,djn) are indicator variables indicating which alternative is
correct and incorrect for question j.

Note that for ;a0 = 0 and y; 8 = —oo, the modified probabilities r; K are equal
to the probabilities reported by the participant. This corresponds to a participant
that has inferred his/her subjective probabilities correctly, such that he/she is
neither over- nor underconfident.

Negative x;a deflates high reported probabilities 75 to smaller values and in-
flates low non-zero reported probabilities, with the modified predicted probabilities
tending towards identical values as ;¢ — —oo. This models a form of overconfi-
dence, where the probability that the correct alternative is k is closer to 1/m than
expected from the probabilities reported by the participant.

Conversely, positive x;a inflates high reported probabilities ;5 and deflates
low non-zero reported probabilities. As x;a — 0o, the modified predicted proba-
bilities will have one probability approaching 1, and the others approaching zero.
This models a form of underconfidence, where the probability that the correct al-
ternative is k is closer to 1 than expected from the probabilities reported by the
participant.

The additional term e¥# models overconfidence of a different form. This term
is necessary in order to make alternatives that have been assigned a probability
of zero, possible outcomes. This models how for example some participants may
be more likely than others to overconfidently set some probabilities to zero. When
the term e¥:# is positive (y;8 > —o0), reported zero-probabilities are replaced by
a small value. Depending on B, the predicted probability that an alternative is
correct, given that a zero-probability is reported, is equal to some small number
which is estimated from the empirical data. This number may again depend on
the covariates in y;.

5.1.1 Probability integral transform residuals

We will use the probability integral transform residuals to analyse the fit of the
proposed model (Gamerman and Lopes, 2006, p. 13). These residuals are defined as
the probability that the score is lower than what the participant actually obtained,
thus, the residual is u = P(score < s). If the model of overconfidence fits the
data set well, these residuals should follow an approximately continuous uniform
distribution. We know from linear regression that for a model that fits well to
the data, the residuals should be approximately normally distributed. They are
only approximately normally distributed because the residuals are the observed
differences from the estimated model and the response in the data set (Fahrmeir
et al., 2013, p. 79). We can use the same logic for the statistical model in this
thesis as well, where the residuals are the probability of the simulated score being
lower than the observed score. This is only one of many different types of residuals
that we could have defined.
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First of all, simulations are needed in order to estimate the probability because
the score function can take 274 different discrete values. Secondly, there is only
one test for each participant, so for this thesis there is not enough data to find the
distribution based on the empirical data.

The correct alternative is sampled at random without replacement, with proba-
bility from the probability distribution given by the participant, for each question.
From the sample of correct alternatives and the given probabilities, the score is
calculated using the score function that the participant was scored by during the
test. From this, the values of w and the distribution of the score can be found for
each participant. In addition, the expected score from the distribution of the score
predicted by the statistical model can be found. See Appendix D.4 for R-code of
the statistical model and the probability integral transform residuals.

5.2 Find and evaluate the model

The stepwise selection is a combination of forward selection and backward elim-
ination (Fahrmeir et al., 2013, p. 151). The statistical model suggested in this
thesis is based on two model matrices. The stepwise selection appears to be the
most intuitive way of finding an estimated model to fit the data. For each step of
finding the model, the covariates must be evaluated for both linear predictors in
the model, i.e. the X and Y model matrix. Here, the model matrices X and Y
are used to estimate the parameter values of the vectors a and 8. One sub-model
is to remove e¥# entirely from the model. However, the data has probability zero
under this sub-model, so this can be rejected immediately in favour of a different
model where it is included.

Likelihood ratio tests as defined by Casella and Berger (2002, p. 375) is used
in order to evaluate if the null hypothesis should be rejected for the alternative
model. This is done by first finding the maximum likelihood for each model and
use the likelihood ratio. The likelihood ratio is defined as

sgp L(0)x)
STy RS

The asymptotic distribution of the likelihood ratio test is,
—2log A(z) ~ X

where the degrees of freedom v is equal to the difference in number of parame-
ters in the Hy and Hy hypothesis. The null hypothesis is rejected if and only if
—2log A(z) > X7, (Casella and Berger, 2002, p. 490).

The Akaike information criterion (AIC) is defined as

AIC = —2-1(6) + 2k,
where () is the maximum value of the log-likelihood and k is the number of free
parameters to be estimated (Fahrmeir et al., 2013, p. 148). Smaller values of the
AIC represent a better model fit.
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There is no exact method of detecting an outlier. However, an outlier is an
observation that does not follow the model fitted to the data. One way of detecting
outliers is therefore to look for large residuals (Fahrmeir et al., 2013, p. 160).
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Chapter 6

Statistical analysis of
empirical data

In this chapter we will use the methods developed and described in Chapter 5 to
analyse the empirical data.

6.1 Quiz data

The average of every participant’s probabilities per problem and for the correct
alternative can be seen in Figure 6.1. Because alternative (a) is the correct one, it
is to be expected that the probability reported for this alternative is the largest for
each question. Notice, however, that this is not the case for question 7. Further,
question 20, 22, 26 and 27 are also problematic (see Appendix E.1 and Figure
6.2). Here, we see that multiple alternatives has nearly the same average reported
level of confidence. The participants may have found it difficult to single out one
alternative that they have a larger level of confidence is correct, compared to the
other alternatives. We see this as questions where more than one alternative has
large reported probabilities. For question 26, we can see that all four alternatives
has almost the same average probability. Notice in particular question 27, where
the average level of confidence for one of the wrong alternatives is larger than for
the correct alternative.

To analyse what it would look like if this was a traditional MCT, the alternative
with the highest marked probability for each question can be replaced by the value
of 1 and the other alternatives set to 0. The average probability assigned to the
correct alternative plotted against the fraction of participants who successfully
assigned the highest probability on the correct alternative is shown in Figure 6.3.

We can see from Figure 6.3 that there is a difference between the traditional
and probabilistic multiple choice test. The largest difference between them is for
question 6 and 24 (highlighted in red), which are 0.82 vs 0.66 and 0.81 vs 0.65
respectively. Thus, for a traditional MCT, a teacher may assume that more than
80% of the students in a class understand problem 6 and 24 well enough. However,
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Figure 6.1: Plot of the average probability assigned to the correct alternative for every
problem in the quiz. The dotted line represents a probability of 0.25, i.e. (1/m) where
m = 4 in this quiz.

for the probabilistic MCT, the average student has 0.66 and 0.65 level of confi-
dence that this alternative is correct. Even though the difference is not as large
as this for every question, it is crucial for a teacher to have convincing evidence of
understanding among the students, in order to move forward.

Entropy is a widely accepted measure of uncertainty, which is the negative
value of Shannon’s information that was introduced in Section 3.2 (Bernardo and
Smith, 1994, p. 79). A plot of the entropy for each question is shown in Figure
6.4. Clearly, the average participant is relatively certain, particularly question 8,
12 and 19 (shown in red), which have the highest average probability assigned to
them. The largest entropy can be seen for question 22 and 26 (shown in blue),
indicating confusion for the average participant. This is also seen in the average
probability assigned to the correct alternative which is close to 1/m. Thus, the
average participant has been able to correctly identify when he/she is confused
and thus assign a uniform distribution over the alternatives.
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Figure 6.2: Plot of the average probability assigned to each alternative for question 20,
22, 26 and 27.The dotted line represents a probability of 0.25, i.e. (1/m) where m =4 in
this quiz.
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Figure 6.3: Average probability assigned to the correct alternative in a probabilistic
MCT plotted against the fraction of participants who would mark the correct alternative
in a traditional MCT. Question 6 and 24 (highlighted in red)
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Figure 6.4: Plot of the average entropy for each question.
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6.2 Model selection

A model without covariates is fitted to the data in order to estimate the parameters
and log-likelihood for the null hypothesis. The results are shown in Table 6.1. The
log-likelihood is Iy = —1693.287 for Hy and AICy; = 3390.574. The parameter
estimates ap = —0.093 and By = —3.212 indicate that without any explanatory
covariates, the probabilities marked by the participants are too extreme. Thus,
from Section 5.1, large probabilities are deflated and small probabilities are inflated.
For example, if the reported probabilities on a particular question are 0.6, 0.3, 0.1
and 0, then the predicted probabilities based on this model become proportional

to
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0.6 +e 3212 =0.6"1 £ 0.04 = 0.66
0.3¢ " 43212 — (030911 | ()04 = 0.37
0.1 " 473212 — 010911 L 9,04 = 0.16
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0¢ " +e 3212 =04 0.04 = 0.04,
respectively, and equal to 0.540, 0.300, 0.130 and 0.032 after normalisation.

Table 6.1: Estimated parameters for the Hop model.

Parameter | Covariate | Estimate | Standard error
Qg Intercept —0.093 0.092
Bo Intercept —-3.212 0.112

An alternative model was found by considering different models with degrees of
freedom (2,...,10). Starting with 2 parameters (the Hy model), parameters were
added successively for both X and Y. For every subset, the model with the lowest
AIC was found. Ultimately, the AIC became larger for more than 9 parameters.
Therefore, the model with 9 parameters with the lowest AIC is the one that is
suggested as the alternative H; model. The only covariates that were considered
in this method were sex, feedback, minimum score and score function.

The two linear predictors in symbolic notation (McCullagh and Nelder, 1989,
p. 56-60) of the suggested alternative model is

x;¢ = minimum score + sex + feedback + sex : feedback 6.1)
y; B = score function + feedback + score function : feedback. '

With a log-likelihood of [; = —1680.886 and 9 degrees of freedom, the result of
the likelihood ratio test (LRT) is

L
—2log A(z) = —2log Lo(a, Blz) =-2-(lp — l1) = 24.802,

Ll(aa 5|(E)

where X%972)10.05 = 14.067 < —2log A(z). Thus, the Hy model should be rejected
at a = 0.05 level of significance. From Table 6.3 and Table 6.4, the AIC of the H;
model is 3379.772 and has the lowest AIC of the nearest model suggestions. The
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Table 6.2: Estimated parameters for the alternative H; model with lowest AIC

Parameter | Covariate Estimate | Standard error
o Intercept 0.283 0.211
[e%1 Minimum score TRUE 0.383 0.159
(e % Sex Male —0.768 0.231
a3 Feedback TRUE —0.080 0.273
gy Sex Male:Feedback TRUE 0.513 0.322
Bo Intercept —4.473 0.522
51 Scorefunction quadratic 1.491 0.559
B2 Feedback TRUE 1.545 0.560
B3 Scorefunction quadratic: Feedback TRUE —1.910 0.615

nearest models are the models where one covariate (1 degree of freedom) is either
added to or dropped from the model.

The LRT is used to test whether a null hypothesis should be rejected. The model
in the null hypothesis is always the model with the least amount of covariates. Thus,
from Table 6.3 we can conclude that minimum score and the interaction covariate
of score function and feedback is significant. However, we do not find evidence
to reject the null hypothesis that sex and feedback should be excluded. None of
the alternative hypothesis of adding a covariate resulted in rejection of the null
hypothesis. We can therefore, in this case, conclude to keep the suggested model
in Table 6.2.

An interesting covariate is the interaction between feedback and question posi-
tion. This was evaluated after the alternative H; model was found and is therefore
an added covariate to the existing model. The question position is a variable that
tells us in what order the questions were presented to the participant. Feedback
was given to some participants. It is of interest to see whether the feedback covari-
ate shows signs of influence on over- or underconfidence in the participants, i.e. if
the feedback influences the students to adjust their expectations during the course
of the test. In Table 6.5 we can see the results of adding the interaction covariate
of feedback and question position. There is no clear evidence that the interaction
between feedback and question position is a better fitted model of the probabilities
than the suggested H; model.

Table 6.3: Drop one covariate from the suggested H; model. For likelihood ratio test:
X%,0_05 = 3.841.

Linear predictor | Covariate dropped LRT AAIC
Minimum score 6.008 > X7 0.05 4.008
e -
‘ Sex : Feedback 2.436 < X305 | 0.436
i3 Score function : Feedback | 12.732 > X%,o.os 10.732

From Table 6.2 we see that the standard error is larger than the estimated
parameter value for the covariate feedback. This might suggest that it is not
significant. Further testing by dropping covariates feedback and interaction be-
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Table 6.4: Add one covariate to the suggested H; model. For likelihood ratio test:
Xi()‘(m = 3.841.

Linear predictor | Covariate added LRT AAIC
Score function 0.710 < X3 0.05 | 1.290

T Sex : Minimum score 0.200 < x3 g.05 | 1.800
Minimum score : Feedback | 0.694 < x% g 05 | 1.306

_ Sex 1.312 < x7 005 | 0.688

yiP Minimum score 0.058 < x3 905 | 1.942

Table 6.5: Add the interaction between the covariates question position and feedback.
For likelihood ratio test: xg’oﬂg) = 5.991.

Linear predictor | Covariate added LRT AAIC
T Question position + Question position : Feedback | 1.401 < X%,o.os 2.599
yi3 Question position + Question position : Feedback | 2.130 < X3 ¢.05 1.870

tween sex and feedback resulted in a log-likelihood of —1683.779. The LRT gives
x? = 5.786 > X§’0_05. Based on the LRT we would conclude not to reject this
model vs the suggested model in Table 6.2. However, we will use AIC as the model
selection criterion in this thesis and proceed with the suggested model in Table 6.2.

From the method described in Section 5.1, for the linear predictor x;a, we know
that negative parameter values will increase the adjustment for overconfidence, and
positive parameter values will decrease the adjustment. Negative predicted values
will adjust the probability distribution towards the discrete uniform distribution.
Let us again assume that the reported probabilities on a particular question are
0.6, 0.3, 0.1 and 0, but this time it is reported by two people with different sex.
The male participant will have predicted probabilities proportional to

0.283—0.768

0.66 -+ 674'473 =0.742
0.360'283_0'768 + 674'473 = (0.488
0.160'283_0'768 + 674‘473 =0.254

e0.283—0.768

0 +e 4473 = 0.011,

and equal to 0.496, 0.326, 0.170 and 0.007 after normalisation. The female partic-
ipant will have predicted probabilities proportional to

0.283

0.6° +e %3 =0.519

0.283

0.3¢ +e 4478 = 0.214

0.283

0.1°7 +e 1™ = 0.058
0% 4 1473 _ 0.011,

and equal to 0.647, 0.267, 0.072 and 0.013 after normalisation. Thus, given that
all other covariates are kept at their reference level, we can see that the female
participants are underconfident and male participants are overconfident.
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We can use the results from Table 6.2 to discuss the other covariates in the
linear predictor x;cx. It is interesting to note that male participants are under-
confident if they must achieve a minimum score and get feedback during the test.
Female participants, however, are underconfident regardless of which level the other
covariates are set to. Female participants appear to become more underconfident
if they must achieve a minimum score. Male participants however, will become
less overconfident if they must achieve a minimum score. Female participants are
least underconfident and male participants are least overconfident if they receive
feedback during the test.

We can see from Table 6.2 that the predicted value of the linear predictor y;3
will always be negative. Therefore, a small positive constant is added for every
participant. How large this added constant is, depends on the score function and
if feedback is given to the participant. According to the model, the added constant
will be largest if the participant received feedback during the test and was scored
by the logarithmic score function. The added constant is almost as large if the
participant did not get feedback, and was scored by the quadratic score function.

This suggests that participants who were scored by the logarithmic score func-
tion and received feedback during the test more often put zero probability on
alternatives. Since this linear predictor models a type of overconfidence, it then
suggests that these participants are overconfident. It is interesting to note that
the smallest value of the added constant is found when the participant was scored
by the logarithmic score function and did not get feedback during the test. This
may suggest that a test that influences the participants to correctly estimate their
level of confidence is a test without feedback, where their score is calculated by the
logarithmic score function.

6.3 Residual analysis

From Figure 6.5 we can see the residuals of the Hy model fitted to the uniform
distribution, and it is clearly ill-fitted showing signs of large discrepancies. Thus,
the residuals are not approximately uniformly distributed. From Figure 6.6 the
residuals u of the suggested H; model is fitted to the uniform distribution. It
seems highly reasonable that the residuals of the suggested model approximately
follow the assumption of the continuous uniform distribution. The over- and un-
derconfidence are satisfactory modeled by the H; model with the given covariates.
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Density
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Data Data

Figure 6.5: Empirical and theoretical probability density function (right) and cumula-
tive distribution function (left) for the residuals of the Hp model (black dots) and the
continuous uniform distribution (red line).
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Figure 6.6: Empirical and theoretical probability density function (right) and cumula-
tive distribution function (left) for the residuals of the H; model (black dots) and the
continuous uniform distribution (red line).
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6.4 Over-/underconfidence analysis

The probabilities can be modelled by using the covariates from Section 6.2 and
samples are simulated with the method described in Section 5.1.1. The distribution
of the score can be seen for participant 1 in Figure 6.7. The distribution of the
score is shown at the bottom of Figure 6.7 are simulated from the probability
distributions that are adjusted with the linear predictors for participant 1. As we
can see, the distribution of the score is shifted towards a higher score. Participant
1 achieved an actual score of 9.8.

We want to investigate the participant’s under- or overconfidence. The sub-
jective expected score and the obtained score are found numerically by using the
probability distribution provided by the participant. The statistical model pre-
sented previously is used to predict a distribution of the score. From the predicted
distribution we can find an estimate of the score. This predicted estimate can then
be plotted against the subjective expected score. This is shown in Figure 6.8 for
the quadratic score function and in Figure 6.9 for the logarithmic score function.
The subjective expected score vs the obtained score are shown in black and the
subjective expected score vs the estimated score are shown in red for the score
function used during the test. The corresponding values are shown in grey and
pink for the participants that were scored by the opposite score function during
the test.

Overconfident participants will have expected scores that are higher than what
they actually obtained, i.e. points below the straight line. The straight line illus-
trates the “perfect” participant that correctly estimates their abilities such that
the subjective expected score exactly matches the obtained score.

The statistical model predicts the distribution of the observed scores well. We
see this as red and pink points which are surrounded by the black and grey points
for the quadratic score function. Thus, the linear predictors model the under-
/overconfident behaviour well. For the logarithmic score function we still have some
issues with infinitely negative score when we estimate the score. It is therefore not
as easy to see the effect of the statistical model in this plot.
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Figure 6.7: Distribution of the score for the probabilities given by participant 1 (top).
Distribution of the score for the inflated/deflated probabilities given by participant 1
(bottom).
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Figure 6.8: Expected score vs obtained score. Expected values based on reported
subjective probabilities for participants scored by the quadratic score function are shown
in black. Subjective expected value of score vs predicted expected value of score based on
the statistical model are shown in red. Participants who were scored by the logarithmic

score function during the test are shown respectively in grey and pink.
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Figure 6.9: Expected score vs obtained score. Expected values based on reported
subjective probabilities for participants scored by the logarithmic score function are shown
in black. Subjective expected value of score vs predicted expected value of score based
on the statistical model are shown in red. Participants who were scored by the quadratic
score function during the test are shown respectively in grey and pink.
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Discussion

Based on the results from analysis of both the empirical and simulated data, a
probabilistic multiple choice test appears to perform better than the traditional
multiple choice test. First of all, based on the theoretical analysis in Section 3.3
the amount of data required is 4 — 5 times larger for a traditional multiple choice
test to be as accurate as the probabilistic multiple choice test (logarithmic score
function). Secondly, with the probabilistic multiple choice test we have the ability
to investigate the understanding of each individual separately, without taking a
mean of the entire group. Finally, with the logarithmic score function and proba-
bilistic multiple choice we have an unbiased estimator of the level of knowledge. In
addition, this estimator has, partly for this reason, the lowest variance of all three
estimators.

From the statistical model of the empirical data, the logarithmic score function
and no feedback appears to have a positive effect on the type of overconfident
behaviour that is modeleld by the linear predictor y;3. The predicted constant
that is added to the probabilities given by the participants, is smallest when the
participants do not get feedback during the test and are scored by the logarithmic
score function. Fischer (1982, p. 367) found that the logarithmic score function
encourages better estimation, but underlines that the logarithmic score function
may be worse at encouraging better estimation when using larger probabilities. We
do not get the same result in this thesis for the logarithmic score function, since the
score function’s predicted effect is not dependent on the probability distribution.
The score function is a covariate only in the linear predictor y;8, and not in the
linear predictor x;c in the exponent of p. Thus, even if the probability becomes
larger, the linear predictor that depends on the score function will stay the same.

We take a look at the type of overconfidence that is modelled by the linear
predictor x;a as well. From the results of this linear predictor, we find that the
female/male participants will be least underconfident/overconfident if they receive
feedback during the test. It is important that a test is fair for both genders, and
we can therefore conclude that a well-constructed test may be a test that gives
feedback during the test, scores are calculated by the logarithmic score function,
and there is no demand of a minimum score.

45
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A reservation against the probabilistic multiple choice tests, and in particular
with logarithmic score function, is that it is computationally more demanding.
However, with the access to computers we have today, this is hardly an obstacle
to overcome. The test can easily be administered online as we have done in this
thesis, or the answers can be transferred manually from paper to computer.

We can therefore conclude, based on the results found in this thesis, that the
probabilistic multiple choice test appears to be a good alternative to the traditional
multiple choice test. Furthermore, the logarithmic score function is an unbiased
estimator of level of knowledge, in addition to affect the participants to more ac-
curately estimate their level of confidence.

7.1 Improvements

To make sure that the participants actually understood the score functions and
the reasoning behind why they should be honest, a test prior to the quiz should
probably have been given to the participants. Since this was not done, it could
have contributed to the variability in the score.

Another improvement suggested is to use curriculum-specific questions and not
typical quiz-related questions. The participants could have taken the test more se-
riously and spent more time on the test to make sure their answers clearly depicted
their level of knowledge. If it was curriculum-specific, it could have been used as
a test to grade student’s performance in a class, in stead of providing a monetary
value as incentive to take the test.

We suspect that the participants could have restarted the app until they were
picked to be scored by the quadratic score function. They may have wanted to avoid
the logarithmic score function because they did not want to risk getting —oco as
score, from which it is impossible to recover from. A score of —oco would ultimately
exclude them from the chance of winning a gift card. That is probably why a much
larger group of participants, to be exact 17 females and 31 males, were scored by
the quadratic score function. In comparison, the group of participants that were
scored by the logarithmic score function consisted of only 12 females and 19 males.
Therefore, it may be best to administer a test with just the logarithmic score
function. The participants could then be urged to not assign 0 to any alternative,
as it is more or less impossible in any situation to be absolutely sure that something
is wrong. This is a solution that Bratvold (Unpublished) has used for his students,
which seems to be a good idea. Another solution to this problem, as suggested by
Bickel (2010, p. 350), is that the students replace probabilities that are zero with
a small number, for example 0.001. This way they would avoid getting a score
which is impossible to recover from, while still displaying their level of confidence
precisely.

Instead of replacing zero probabilities with some arbitrary small number such
as 0.001, a potentially useful application of the statistical model (chapter 5) is to
use it in such probability adjustments. In Figure 7.1 and 7.2 we can see what the
obtained score would have been if the probability distributions had been adjusted
according to the statistical model. The black points are the actual obtained scores
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and the red points are the scores if we adjust the probability distributions according
to the statistical model. As we can see, the obtained score would have been closer to
the diagonal line in the plot. The diagonal line represents the score of participants
who are neither over- nor underconfident. Notice in particular that none of the
participants who were scored by the logarithmic score function would get an infinite
negative score, if the probabilities would have been adjusted before calculating the
obtained score.

Logarithmic score function

Obtained score

T T T T T T
0 5 10 15 20 25

Subjective expected value of score

Figure 7.1: Subjective expected value of score vs obtained score. Black points repre-
sent the original obtained score calculated from the probability distribution provided by
the participant. Red points represent the obtained score calculated from the adjusted
probability distribution according to the statistical model.
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Figure 7.2: Subjective expected value of score vs obtained score. Black points repre-
sent the original obtained score calculated from the probability distribution provided by
the participant. Red points represent the obtained score calculated from the adjusted
probability distribution according to the statistical model.
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7.2 Further work

In this thesis we used a multiple choice test in the form of a quiz, which was not
curriculum-specific. For further research, it would be interesting to explore what
the result would have been if the test had been issued in a class for a curriculum-
specific test. Especially within national tests that are used specifically to get an
overview of how well the Norwegian students are doing, it would be relevant to
implement the probabilistic multiple choice in certain areas of the test.

Another area to investigate is how young the participants can be and still under-
stand the theoretical background of the test such that their behaviour is rational.
Intuitively, the younger the participants are when they learn how the test works,
the easier it is to implement it smoothly when they get older.

Further, it would be interesting to examine the use of probabilistic multiple
choice tests over an extended period of time. The ability to evaluate uncertain
events takes practice and skill to be accurate. A research area could be to follow a
group of students and measure their development in estimating their own knowl-
edge. Does a probabilistic multiple choice test contribute to individuals being
better at decision making in a situation with uncertainty?

The method of the probabilistic multiple choice tests can be transferred to
other areas of expertise. As an example, medical diagnosis can be treated as a
decision problem with uncertain outcomes and consequences of actions. The score
function can in this sense be used as a score of certainty from the professional deci-
sion maker. These type of situations have been researched for weather forecasting
by Winkler, Muiioz, Cervera, Bernardo, Blattenberger, Kadane, Lindley, Murphy,
Oliver, and Rios-Insua (1996), Winkler (1971), Winkler (1969) and Winkler and
Murphy (1968). Johnstone (2007) has researched a method for scoring financial
analysts according to their ability to predict uncertain events, much like weather
forecasters. These examples show that the results that are found in this thesis are
applicable to other areas than education.
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Appendix A

Probability distributions

Here we present the probability distributions and their properties that are used in
this thesis.

A.1 Dirichlet distribution

A random vector « is Dirichlet(«) distributed for a = (avy, ..., ), a; > 0, if its
sample space is x; > 0, z,, =1 — Z:’;}l x; and its density is

F( Z:r;l ai) ﬁ x?i*l

=1

f(.’L'h e 71‘m—1) = W

i=1

(Bernardo and Smith, 1994). Let z; = p;, > .oy p; = 1 and assume oy = ... =
Q= o, then

I'(ma)

I'(e)™

(63

f(plap?a"'ap’rrb) :pl_l pgrl

For the rest of this section all the results are from Wikipedia (2017). The mean
of p; and In p; is

The covariance is

Covllog(pi), log(p;)] = ¥1(i)di; — 1(an) = ¥1(a)dij — P1(a).

The different moments of the Dirichlet distribution can be found by the following
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function

IGE F(za> ) (A1)
i=1 1"{ S (i + BZ)} r {ma + 1;1 ﬁi:|

=1

.

A.2 Beta and binomial distribution

The results presented in this section are found in Casella and Berger (2002). The
beta family of distributions is a continuous family on (0,1) indexed by two param-
eters. The Beta(a, 8) probability density function is

f(x|a7ﬁ):Bl M1 -2)P7l 0<z<l, a>0, >0 (A.2)

(a, B)

where B(a, 8) denotes the beta function,
1
Bla, 8) = / 2211 = 2)P)da.
0

The beta function is related to the gamma function through the following identity

INCUNE)

Bled) = 1655

The moments of the beta distribution, for n > —a, is

1 1
E(X™ = 2"z N1 — 2)P
) = gy J, e
1 ' (a1 B-1
= et =1 — )P~y
5, =
We recognizee the intergrand as the kernel of a Beta(a + n, §) pdf; hence,
Mo+ B +n)l(a)

Using this and the relation between expected value and variance with n=1 and
n=2, we can calculate the mean and variance of the Beta(a, 8) distribution as

« B af
avp  md Vel = o A

E(X) =
The binomial distribution is defined as

P(Y =y|n,p) = <Z>py(1—p)”y, y=0,1,2,...,n.
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Expected score and variance

Here, I use the Dirichlet distribution to model variation in the state of knowledge.
Assuming the participants are honest, the probabilities used in the Dirichlet dis-

tribution are the same as the honest subjective probabilities, p1,...,pm. The a is
a level of knowledge the candidate has, which is assumed equal for all alternatives.
Consider a test with m alternatives for question j, where j € {1,...,n}, then the
distribution of p1,...,p, for question j is defined as

m

i=1 i

f(p177pm):m771—[p? 1’ m =4
F(Oéi) i=1

Il
=

i

The marginal distribution of p;, for a particular alternative i, assuming that
the distribution is symmetric such that all oy = ... = a,;, = @, is then

I(ma)
()T ((m —1)a)

fo(p) = Py (L = py) (et (B.1)

Let (V1,Va,..., Vi) be the event that alternative 1,2,...,m is chosen as the
answer. Assuming that the participants has derived their subjective probabilities
by correct statistical inference, we then have that

P(Vi|p17 cee 7pm) = I{pl = max(pl, cee 7pm)}7 (BQ)

where I{p; = max(p1,...,pm)} is an indicator function which has value 1 when p;
is the maximum, and value 0 otherwise. Equation (B.2) expresses that alternative
1 is chosen as the correct answer by a rational participant, with probability 1 only
if p; is the largest. The conditional probability that alternative ¢ is correct, given
the confidence p;, is P(R;|p;) = p;.

95
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The probability of the event that the correct answer is chosen is

P(ViNRyU...UVy N Ry) =Y P(R;NV;)
=1

=mP(R;NV})

(B.3)
:m/.../P(Vl NRip1, -y Pm)f(P1y -« s Pm)dD1 -« - dPm—1

zm/-.-/pl {pi = max(pr,...,pm) } (D1, Dm)dp1 - . - dpp—1.

Because of the indicator function, the integrand is zero within the area where
p1 > P2, ..., Pm. This comes from the assumption that all participants act rational
according to the axioms of rational behaviour. To the best of my knowledge there
is no closed form solution for this integral, except in the case of a = 1 and m = 2,
where Equation (B.3) simplifies to 3/4. We will therefore find the expectation and
variance numerically by the use of the binomial distribution and Monte Carlo inte-
gration. We estimate the probability by sampling from the Dirichlet distribution,
find the maximum value of each sample and take the average of them. We then
have an estimated value for the probability that the correct answer is chosen. The
score is then binomially distributed with this estimated probability and number of
questions as parameters,

Bin(n, PViN R UVaNRyU... UV, N Ry)).
Let p=P(ViNRUVoaNRyU...UV,, N Ry,), then
E(pi|R;) = np
is the expected score and,
Var(p;|R;) = np(1 —p)

is the variance of the score for the traditional MCT.

B.1 Quadratic score function

Let the quadratic score function be defined as Q(r,d) =1 — Y (r; — d;)?, where r;

i=1
are the probabilities given by the participant. Assuming the participant’s behaviour
is rational, the conditional expected score is

E(Q(p,d)|p) = Zp?

To find the subjective expected score we need to consider the distribution of p,
which is assumed to be Dirichlet distributed. By using the expressions for moments
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and mean of the Dirichlet distribution from Appendix A.1 we find that the expected
value of the quadratic score function is

Ey(Q(p,d)) = E,(E(Q(p, d)|p)

A ($7)

1=

"d
—_

s

Ey (pf)

(a+1)
< m(ma +1)

:(onrl)

~ (ma+1)

1

.
I

tnqs

3

The conditional variance of the subjective expected score given the probability
distribution p is

Var(Q(p, d)|p) = E(Q(p,d)*|p) — E(Q(p,d)|p)*,

where

E(Q(p, d)|p) = E(( VZj d)
= E<1 - ZZ(pi —d;)? + (i(pi - di)Z)Q

—1—2ZE (p? — 2pyd; + d?|p) + Z ‘Ip)
+2ZZE d;)?|p)

1<J
:1—2Zp?+4zp?—22p1+2p?—42p?+6zpf’

; i i i=1 i=1 i=1
—42]31—4—14—2221? ? = 2pid; + dF)(p? — 2p;d; + d3)|p)

1<J

Z 321% JrGX:pz +2) 0 (=3pip + pips + pipl)-

=1 1<J
(B.4)
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Hence, using what we found in Equation (2.3) and Equation (B.4), the condi-

tional variance of the score is

Var(Q(p, d)|p) =

E(Q(p,d)’|p) — E(Q(p, d)|p)*

=—2) pi- 3sz+62pz+2zz —3p?p? + pip; + pip}) — (Zm)
i=1

m
:_Qsz

—sz —2> ) v

1<j

SZPZ +GZPz +23 > (=3p2p? + pip; + pipd)

1<J

1<J

From a general formula for expectations of moments of the Dirichlet distribution

(A.1), we find

E(p;) = %

oy _ _(at1)
E(p;) = m(ma + 1)

5 (a+1D(a+2)
E(p}) = m(ma + 1)(ma + 2)

o (et+1)(a+2)(a+3)
Ew) = et Dma + 2)(ma 1 3) (B.5)
Elws) = 2ona D

, , ala+1)

E(pip;) = E(pip;) = m(ma + 1)(ma + 2)

oo a(a+1)?
Ewip)) = e T D) ma + 2(ma 1 3)
Var(p;) = (m—1)

m2(ma + 1)
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The subjective variance of the score can thus be found by using the equations
in (B.5),

Var(Q(p,d)) = Ep Var(Q(p; d)|p) + Var, E(Q(p; d)|p)

= <—2Zp1—32p1+62p1 +QZZ 3P1P1+P1PJ+P2PJ)

i<j

prz 22217110]) + Vary( sz

1<J

(2217 7321& +6sz +23 > (=3pip} +pips +pip))

i<j

Zm?Zme) <(2p2) )Ep(zm:p?)z

2(a+1) _3 (a+1)(a+2)(a +3) 6 (a+1)
(ma+1) (ma + 1)(mo + 2)(ma + 3) (ma+1)

9 ala+1) _3 (a+1)
(ma+ 1)(ma + 2) (ma + 1)(ma + 2)(ma + 3)

_ tD@+2)(@+3) g afa+1)°
(ma—I— 1)(ma + 2)(ma + 3) (ma + 1)(ma + 2)(ma + 3)
(a+ 1D (a+2)(a+3) (m—Da(a+1)2
) )

(ma+ 1)(ma+2
(a+1)?
(ma +1)2
2(+1)  3(a+1(a+2)(a+3)+3(m— Da(a +1)?
~ (ma+1) (ma + 1)(ma + 2)(ma + 3)
6+ 1D(a+2)+2(m—Dala+1) (a+1)°
(ma+ 1)(ma +2) (ma+1)2
(a+1)(2ma+2+a+1)  3(a+1)((a+2)(a+3)+ (m—1a(a+1))
(ma+1)2 B (ma+ 1)(ma + 2)(ma + 3)
2(a+1)((3a+6) + (m — o
(ma +1)(ma + 2)
_ (a+1)< @2m+1Da+3  3(ma’+ (m+4)a+6) 2((m + 2)a + 6) )
(ma + 1) (ma+ 1) (ma+2)(ma+3)  (ma+1)(ma+2)

(ma+3) (ma+1)(ma+2)(ma+3)

+

B.2 Logarithmic score function

Let the logarithmic score function be defined as

i d; In( rz
=1
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Assuming the participant’s behaviour is rational, the conditional expected score is

m

E(L(r,d)|p) = Z (d; In(r;)) sz In(r;).

i=1

The optimal decision is to set 7 = p, thus

E(L(p,d)|p) = Zpi In(p;).

We assume that a; = ... = «a;, = «, thus we can evaluate the expectation of one
p; and take the summation. We choose to find the expectation of p;, then

Wpl In(py)ps =" .. p tdpy - dpm—1

Ty ? In(py)ps ™" .. pi tdpy - dppm—1,

where we can use that

L(ma)  T(ma)T(ma+1)T(a)" T(a+1)  (ma—1)(a)!  T(ima+1)

I'(a)™  T(a)™ I'(ma+1T(@)™ T(a+1) (a—1)(ma) T(a)™ 1T (a+1)

thus,

Ep(L(p,d)) = Ep(E(L(p, d)|p)
/ / :i; 1ma )T gfnw_l?rtall TyPrin(eOpi Pl dpr - dpis
/ / mm?;(r ) )Plln(pl)p‘f’l-~~p%’1dp1...dpm,1

F(ma+1) 3
/ / m 1F )1 (p )p§a+1) lpg ! -pf; 1dp1.4.dpm,1

From the expected value formula for Inp; in Section A.1,
By(L(p.d)) = ¥+ 1) — (ma +1).
The subjective variance of the score for the logarithmic score function is

Var,(L(p,d)) = E, Var(L(p, d)|p) + Var E(L(p, d)|p).
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Let

Var(L(p, d)|p) = Var ( Z d; In pi)

i=1

_E<<§di1npi)2> _E<§di1npi)2

= sz‘(hlpz) Z lnpz 72221711)] lnpz lnp],

=1 =1 1<j

and let

m

Var, E(L(p,d)|p) = Var, (sz hlpz‘)

i=1

m 2 m 2
=Ep ((Zpi lnpi) ) - Ep(Zpi lnpz)
i=1 =1
m m 2
Ep<2pf(lnp¢)2 +23 ) pipjInp; lnpj> - (ZEp(pi lnpi)>
=1

i<j i=1

then,

Var,(L(p,d)) = E, Var(L(p,d)|p) + Var E(L(p, d)|p)

m m 5
=F (Z p?(Inp;)? —5—222}%@- lnpl-lnp]) — (EPZ (piInp; >
=1

i<j

lnpz sz 1npz _222172]3] lnpzlnpj>
= Varp(lnpl)

@MM

1<j

From the covariance formula for In p; in Appendix A.1,

Vary(L(p,d)) = ¢1(a + 1) — 1 (ma + 1).

The expressions for the expected score and the variance of the score for the logarith-
mic score function can also be found by an alternative way as shown in Appendix
C, which display the same results as shown here.
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Appendix C

Alternative method for the
expected score and variance
of the logarithmic score
function

The probability of an alternative being correct, from now referred to as the event
R;, is P(R;) = %, where m is the number of alternatives. Intuitively, from the
participant’s point of view, the probability that alternative i is correct is equal to
the probability he/she assigns to alternative i is P(R;|p;) = p;. Using this, and
Equation (B.1) we find that

fpi\Ri(p) = W

F(ma) (.a+1)71

mF(Oé)F((m — 1)a)pz (1 - pi>("7l—1)a—1

The distribution of In p;| R; is the marginal Dirichlet distribution, which we see from
Equation (A.2) is just the beta distribution, where Inp;|R; ~ Beta(a+1, (m—1)a).
Thus, the moment generating function of Inp;|R; is

Mipp, g, (t) = E(e""|R;)
_ ml(ma) (a+t41) =11 \(m—T)a—1,
= / F(a)f‘((m — 1)a) b; (1 pz) dp;
B mI'(ma) D(a+t+ 1T ((m—1)a) (C.1)
- T(a)((m - 1)) I'(ma+t+1)
ml(ma) T(a+t+1)
I(a) T(ma+t+1)
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64 AND VARIANCE OF THE LOGARITHMIC SCORE FUNCTION

Note also that the ¢’th conditional moment of p;, E(p}|R;) = My, g, (t). We use
the cumulant generating function to find the logarithm of the conditional moment
generating function (Kendall et al., 1991),

Kinp,|r; (1) = In M p, g, (1)
=Inl(ma)+In(m) — InT(a) — lnF((m — 1)a)
+InT(a+t+1) +1nF((m— 1)a) —InT'(ma+t+1)
=InT'(ma)+In(m) —InT(a) + nD(a+t+1) —InT(ma+t+1)

(C.2)

To find the expected score of the logarithmic score function, we need Equation
(C.1) and use the cumulant generating function in Equation (C.2). Let ¢ (¢) denote
the digamma function, where % InT'(t) = 9(¢), then we get the following expression
for the expected value

d d
E(lnp;|R;) = K'(0) = alnf(a +t+1)— %lnf(ma—l—t—i— 1|t=o

=¢Yla+1) —yp(ma+1).

Let 11 (t) denote the trigamma function, then % InT'(t) = ¢1(t), then we get the
following expression for the variance

d? d?
Var(Inp;|R;) = K"(0) = pre] InT(a+t+1)— pTel InT(ma+t+1)|—0

=1(a+1) —Yi(ma+1).
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R functions

D.1 Reparameterisation of responses to original
and creating a dataframe

# post process incoming responses
quiz <— "torunn—quiz/"

allresponses <— dir(quiz, pattern="response—x*")
allresponses<—allresponses|[—c
(3,48,59,60,68,69,8,16,22,38,44,54,73,82,89)] #Fvery participant
with sex=Ikke valgt is dropped (8,16,22,38,44,54,60,73,82,89) time
spent on test is low (3,48,59,60,68,69)
m <— length(allresponses) # number of responses
n <— 27 # number of questions
allprobs <— array (NA,dim=c(m,n,4)) # store all reported probabilities
in am by n by 4 array
questionposition <— array (NA,dim=c(m,n))
data <— data.frame() # other wvariables
for (j in 1:m) {
load (paste(quiz, allresponses|[j], sep=""))
if (nrow(response$probs) != n)
error ("Incorrect number of questions in response')
probs <— matrix(NA,n,4)
for (i in 1:n) { # permute back to original non—random ordering

probs [response8$order[i],response$answerorder[i,]] <— response$
probs|[i,]
allprobs[j,,] <— probs

questionposition [j,response$order] <— 1:n # also store the random
position of each question
for (varname in names(response)|[—(1:3)])
data[j,varname| <— response [[varname]]
}
# Change all character wvariables in data to factors
for (varname in names(data))
if (class(data|,varname])=—"character")
data[,varname] <— factor(data[,varname])
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# score function rescaled to 0 to m interval where 0 corresponds to
uniform probabilities and n perfect knowledge
data$logarithmic <— n + apply(log(allprobs|[,,1]), 1, sum)/log(4) #
compute logarithmic scores
data$quadratic <— n — apply((allprobs — rep(c(1,0,0,0) ,each=m#n))"2, 1
, sum)*4/3 # compute quadratic scores

# subjective expectations
data$Equadratic <~ n — (n — apply(allprobs™2,1 sum))*4/3 #Subjective
expected quadratic score

Elogarithmic<—c ()
for ( i in 1:m){

tmp<—0

for( j in 1:n){
tmp<—tmptsum(allprobs[i,j,allprobs[i,j,]!=0]*log(allprobs[i,j,
allprobs[i,j,]!=0])/log(4)) #Ezpected score=0 when p_i=0

Elogarithmic [ i |[<-n+tmp

data$Elogarithmic<—Elogarithmic #Subjective ezxzpected logarithmic score
D.2 Dirichlet sampling

#Analysis of Ezxzpected value and wvariance using the dirichlet
distribution

library ("MCMCpack" , lib.loc="/Library/Frameworks/R.framework/Versions/
3.2 /Resources/library")

m<—4

n<—27

a<—1.57((—13):15)#Different values of alpha

k<—length (a)

dirp<—vector ()

for(j in 1:k){

dirp [ j ]<—mean(apply(rdirichlet (n=1e+5,alpha=rep(a[j],m)) ,1 ,max))

#Ezpected score for the traditional MG-test
dirE<—n* (mxdirp —1)/(m—1)

#Variance of the score for the traditional MG-test
dirV<-m 2xnxdirp*(1—dirp)/((m—1)"2)

#Logarithmic theoretical expectation and variance

dirEL<—n+n=* (digamma(a+1)—digamma (m*a+1)) /(log (m) )
dirVL<—nsx* (trigamma (a+1)—trigamma (m+a+1)) / ((log (m) ) ~2)

#Quadratic theoretical expectation and variance

dirEQ<—n/3+n*4x(a+1)/(3* (m*a+1))

dirVQ<—n*16%(—2% (a+1)/ (mxa+1)—3% (a+1)*(a+2)* (a+3)/ ((m*ka+1)s* (mka-+2)* (ms*
a+3))+6%(a+1)*(a+2)/((m+xa+1)* (mka+2))—3%(m—1)*a*x(a+1)"2/((mrat+1)=(
ril;e;;—/%;* (mka+3))+2x (m—1)*a*x(a+1)/ ((mka+1)*(mxa+2))—(a+1)"2/ ((mka+1)
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#Mean squared error
MSEoftradandlog<—dirV+(dirE—dirEL) "2
MSEofquadandlog<—dirVQ+(dirEQ—dirEL) "2

D.3 Maximum likelihood estimation

# Reorganize the data such that questionposition can be used as a
covariate

# reorganize the 7T4x27x4 array allprobs into the 1998x/ matrix p

p <— aperm/(allprobs ,3:1)

dim(p) <— c(4,m*n)

dim(p)

p <— t(p)

# repeat each row of data m times to form a 1998x11 data.frame and add
a column containing questionspositions

bigdata <— data[rep(1:m,each=n) ,]

bigdata$questionposition <— as.vector(t(questionposition))

bigdata$p <— p

dim(bigdata)

names( bigdata)

fitmodel <— function(aformula, bformula, data, method="BFGS") {

InL <— function(par) {
eta.a <— as.vector(Xa %% par[l:na]) # "linear predictor a”
eta.b <— as.vector(Xb %% par[na + 1l:nb]) # "linear predictor b"
p <— data$p exp(eta.a) + exp(eta.b) # note that eta.a and eta.b
are recycled columnwise
p <— p/rowSums(p) # also the rowwise sums are recycled columnwise
sum(log(p[,1])) # first alternative correct is always the "
observed outcome"

}

Xa <— model. matrix (aformula, data)

na <— ncol(Xa)

Xb <— model. matrix(bformula , data)

nb <— ncol(Xb)

start <-rep(—0.5, na + nb)

names(start) <— c(paste("a",colnames(Xa) ,sep="."), paste("b",
colnames (Xb) ,sep="."))
fit <— optim(start, InL, control = list(fnscale = —1), hessian =
TRUE, method = method)
fit
}
fit_0<—fitmodel(~ 1, ~ 1,bigdata)

fit_l<—fitmodel (~minimumscore+sex+feedback+sex:feedback , ~
scorefunctiont+feedback+ scorefunction:feedback ,bigdata)

st .error_0O<-sqrt(—diag(solve(fit_O8$hessian)))

st.error_l<—sqrt(—diag(solve(fit_18$hessian)))

#calculating p_prime of the suggested model and data

Xa <— model. matrix (~sex+minimumscoret+feedback+sex:feedback , bigdata)

na <— ncol(Xa)

Xb <— model. matrix(~ scorefunctiontfeedback+feedback:scorefunction ,
bigdata)

nb <— ncol(Xb)

eta.a <— as.vector(Xa %+% fit_18par[l:na]) # "linear predictor a'

eta.b <— as.vector (Xb %% fit_18$par[na + 1l:nb]) # "linear predictor b"
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p_prime <— bigdata$p exp(eta.a) + exp(eta.b)
bigdata$p prime <— p_prime/rowSums(p_prime)

D.4 Residuals

# Score functions (takes a matriz p and a vector of indices of correct
alternatives as input)
logarithmic <— function(p, correct) {
subset <— cbind (1:nrow(p),correct)
x<—p [subset]
nrow (p)-sum(log (x) ) /log (4)

quadratic <— function(p,correct) {
subset <— cbind (1l:nrow(p),correct)
d <— matrix (0 ,nrow(p) ,ncol(p))
d[subset] <— 1
nrow(p) — 4ssum((p—d)~2)/3

# given a matriz of reported probabilities p, a matriz of estimated
probabilities
# and a score function fn, compute (using simulation)
# the probability that the score takes a value smaller than s (the
observed score)
uresid <— function(fn, p, p.est=p, s=0, nsim=le+4) {
n <— nrow(p)
m <— ncol(p)
s.sim <— numeric(nsim)
for (i in 1l:nsim) {
correct <— apply(p.est, 1, function(x) sample(1:4,size=1,prob=x))
# simulate the outcome given p.est
s.sim[i] <— fn(p,correct) # compute the corresponding score based
on the reported probability

list (u=mean(s.sim<s), # estimated probability that the score is
smaller than s
inf.prob=mean(is.infinite(s.sim)), # estimated probability that
the score takes a value of —Inf
s=s.sim) # estimated (samples from) distribution of the score
}
U<—rep (0 ,m)#residuals of the estimated probability distribution based
on the model
U_orig<-rep (0 ,m)#residuals of the original probability distribution
Est.log.Score<—rep (0 ,m)#The estimated score
Est.quad. Score<—rep (0 ,m)
Log prime<—rep (0 ,m)
Quad_prime<—rep (0 ,m)
for(j in 1:m){
J<—j*27
p<—bigdata$p[(J—26):J,|#empirical data of the probability
distributions
p.est<—bigdata$p prime[(J—26):J,]#estimated new probability
distributions based on the model
Result_log<—uresid (logarithmic, p, p.est, s=data$logarithmic[j])
Result_quad<—uresid (quadratic, p, p.est, s=data$quadratic[j])
Log prime[j]<-n + sum(log(p.est[,1]))/log(4) # compute logarithmic
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scores based on p prime
Quad_prime[j]<— n — sum((p.est — rep(c(1,0,0,0) ,each=n))"2)%4/3 #
compute quadratic scores based on p prime
Est.log.Score [ j]<—mean(Result_log8$s) #mean value of the estimated
logarithmic scores
Est.quad. Score [ j]<—mean(Result_quad$s) #mean value of the estimated
quadratic scores
if (data$scorefunction|j]=="logarithmic"){
Ulj]<—Result_log$u
U _orig[j]<—uresid (logarithmic, p, s=data$logarithmic[j])$u

else{
Ul[j]<—Result_quad$u
U _orig[j]<—uresid (quadratic, p, s=data$quadratic[j])$u

}

#Estimated expected score
data$Est.log.Score<—Est.log. Score
data$Est.quad. Score<—Est.quad. Score
data$Log prime<—Log prime
data$Quad_prime<—Quad_prime
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Appendix E

Data

Table E.1: Mean taken over all questions, alternatives and participants

Question a b C d
1 0.851 | 0.061 | 0.037 | 0.051
2 0.533 | 0.184 | 0.171 | 0.112
3 0.747 | 0.121 | 0.055 | 0.077
4 0.432 | 0.134 | 0.313 | 0.122
5 0.447 | 0.252 | 0.162 | 0.140
6 0.655 | 0.073 | 0.206 | 0.066
7 0.149 | 0.301 | 0.454 | 0.096
8 0.968 | 0.011 | 0.004 | 0.017
9 0.767 | 0.056 | 0.131 | 0.046
10 0.532 | 0.135 | 0.159 | 0.174
11 0.807 | 0.082 | 0.049 | 0.062

12 0.879 | 0.033 | 0.053 | 0.035
13 0.595 | 0.102 | 0.219 | 0.085
14 0.523 | 0.183 | 0.122 | 0.173
15 0.590 | 0.166 | 0.052 | 0.192
16 0.690 | 0.031 | 0.040 | 0.239
17 0.666 | 0.244 | 0.040 | 0.050
18 0.446 | 0.139 | 0.137 | 0.278
19 0.942 | 0.013 | 0.011 | 0.034
20 0.444 | 0.354 | 0.155 | 0.046
21 0.540 | 0.214 | 0.095 | 0.151
22 0.320 | 0.238 | 0.258 | 0.183
23 0.799 | 0.066 | 0.097 | 0.039
24 0.649 | 0.108 | 0.118 | 0.125
25 0.791 | 0.078 | 0.084 | 0.047
26 0.296 | 0.262 | 0.206 | 0.235
27 0.296 | 0.370 | 0.160 | 0.174

71



72

APPENDIX E. DATA

Table E.2: Mean taken over all questions, alternatives and participants for the traditional

MCT

Question a b c d
1 0.905 | 0.068 0 0.027
2 0.608 | 0.189 | 0.122 | 0.081
3 0.838 | 0.081 | 0.041 | 0.041
4 0.514 | 0.108 | 0.297 | 0.081
5 0.514 | 0.257 | 0.108 | 0.122
6 0.784 | 0.027 | 0.176 | 0.014
7 0.122 | 0.324 | 0.527 | 0.027
8 0.973 | 0.014 0 0.014
9 0.838 | 0.027 | 0.108 | 0.027
10 0.541 | 0.149 | 0.135 | 0.176
11 0.892 | 0.054 | 0.014 | 0.041
12 0.932 | 0.014 | 0.027 | 0.027
13 0.662 | 0.041 | 0.270 | 0.027
14 0.568 | 0.149 | 0.108 | 0.176
15 0.568 | 0.135 | 0.054 | 0.243
16 0.770 | 0.014 0 0.216
17 0.662 | 0.270 | 0.027 | 0.041
18 0.446 | 0.108 | 0.149 | 0.297
19 1 0 0 0
20 0.459 | 0.459 | 0.054 | 0.027
21 0.676 | 0.189 | 0.014 | 0.122
22 0.378 | 0.284 | 0.243 | 0.095
23 0.865 | 0.041 | 0.095 0
24 0.797 | 0.054 | 0.068 | 0.081
25 0.865 | 0.041 | 0.081 | 0.014
26 0.297 | 0.257 | 0.149 | 0.297
27 0.311 | 0.459 | 0.135 | 0.095

Table E.3: Participants with minimum score and feedback

Feedback TRUE

Feedback FALSE

MinimumscoreTRUE
Minimumscore FALSE

15
40

15
19
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Table E.4: Participant’s sex and score function

Logarithmic | Quadratic
Female 12 17
Male 19 31
None 3 7

Table E.5: Participant’s sex and minimum score

Minimumscore TRUE Minimumscore FALSE
Female 9 20
Male 20 30
None 1 9
Table E.6: Participant’s sex and feedback
Feedback TRUE Feedback FALSE
Female 16 13
Male 33 17
None 6 4
Table E.7: Score function and feedback
Feedback TRUE Feedback FALSE
Logarithmic 16 18
Quadratic 39 16

Table E.8: Score function and minimum score

Minimumscore TRUE

Minimumscore FALSE

Logarithmic
Quadratic

14
16

20
39
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Appendix F

Descriptive statistics
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Figure F.2: Box plot of covariates Sex: Feedback, Sex:Minimum score, Sex: Score
function and Minimum score: Feedback. In the upper left corner we have four boxes for
the interaction covariate Sex: Feedback. The boxes have different levels of the interaction
covariate, namely False: False, False: True, True:False and last True: True. We have the
same order of the boxes for the boxplots in the upper right corner and lower left corner.
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Figure F.3: Box plot of covariates Minimum score: Feedback, Minimum score: Score
function and Feedback: Score function. In the upper left corner we have four boxes for
the interaction covariate Minimum score: Feedback. The boxes have different levels of the
interaction covariate, namely False: False, False: True, True:False and last True: True.
We have the same order of the boxes for the boxplots in the upper right corner and lower
left corner.
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Appendix G

Quiz questions

1. Dersom
A={z:0<z <4},
B={z:2<z <6},
C={x:2=0,1,2,..}
hva er

ANBNC?

(a) AnBNC =1{2,3,4},

(b) ANBNC =1{0,1,2,3,4,5,6}
(¢c) AnNBNC={7,8,9,....}

(d) AnNBNC =2,3,4,5

2. T en uniform diskret sannsynlighetsmodell har vi for enhver hendelse A C §
at

3. Hvilket ar er neste skuddar?

(a) 2020
(b) 2018
(c) 2017
(d) 2019

4. Hvilken formel er korrekt for antall ordnede utvalg uten tilbakelegging av
stegrrelse r fra n objekter?

79
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n!
(=)
(b) .
(©) )
%)
(@)

(")

5. Pa en prgve er det 6 spgrsmal, hvert spgrsmal har fire svaralternativer. Hvor
mange permutasjoner av svar finnes det?

46
(b)

64
(c) .

(0
(d)

6!

(6 4)!

6. Blant de 15 elevene i klasse C skal det velges to tillitsvalgte. Hvor mange
mulige kombinasjoner av tillitsvalgte finnes?

@ 15
(=)

(b)
152
(c)
15!
(15 — 2)!
(d)

15+2-1
2

7. I butikken er det jordbeer, peerer og klementiner. Vi skal kjgpe 4 frukter. Pa
hvor mange mater kan dette gjgres?
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(a)

(b) )

(5
(©) y
(@)

4+3-1
3
8. Hvem er statsminister i Norge?
(a)
(b)
(¢) Kjell Magne Bondevik
)

(d) Siv Jensen

Erna Solberg
Jens Stoltenberg

9. Den betingede sannsynligheten for B gitt A er
(a) P(B|A) = P(ANB)/P(A)
(b) P(BJ|A)=P(AUB)/P(A) vP(B|A) = P(ANB)/P(B)
(c) P(A|B) = P(AN B)/P(4)

10. Hva heter Donald Trumps griinder-datter?

a) Ivanka Trump

(a)
(b) Melania Trump
(¢) Ivana Trumpt

(d) Tiffany Trump

11. Hva heter hovedrollen i hgstens sesong av skam?

12. Hvem er rektor pa NTNU?

(a) Gunnar Bovim
(b) Sem Seeland
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13.

14.

15.

16.

17.

18.

(¢) Thorbjgrn Digernes
(d) Eivind Hiis Hauge
Hyvilket ar ble NTNU dannet?

(a) 1996
(b) 1968
(c) 1910
(d) 1955
Hvem ledet den 100 timer lange p3-aksjonen pa Trondheim Torg?

(a) Tuva Fellmann, Ronny Brede Aase, Niklas Baarli og Silje Nordnes
(b

) Tuva Fellmann, Ronny Brede Aase, Markus Neby og Silje Nordnes
(¢) Tuva Fellmann, Ronny Brede Aase, Markus Neby og Chirag Patel
)

(d) Tuva Fellmann, Ronny Brede Aase, Chirag Patel og Silje Nordnes
Hvem vant Tour de France 20167

(a) Chris Froome
(b) Adam Yates

(¢) Thor Hushovd
(d) Mark Cavendish

Hva er det som angis i enheten radian?

a) Stgrrelsen til en vinkel

(a)
(b) Solens intensitet
(¢) Diameter

)

(d) Vinkelbuen
Hvem ble tildelt Nobel fredspris i &r?

Juan Manuel Santos

(a)

(b) Malala Yousafzai
)
)

(¢) Barack Obama
(d) May-Britt og Edvard Moser

Hvilket ar hadde serien South Park T'V-premiere?
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19. Hva er det som angis med maleenheten newton?

(a) Kraft
(b)

(¢) Varme
(d) Friksjon

Akselerasjon

20. I hvilke byer foregar handlingen i den siste Sex og Singelliv-filmen?

(a) New York og Abu Dhabi
(b) New York og Dubai

(¢) New York og Sharjah
(d) New York og Trondheim

21. Hva het kongssgnnen som birkebeinerne Torstein Skevla og Skjervald Skrukka
reddet fra baglerne i 12067

(a) Hakon Hakonsson

(b) Harald Haraldsson

(¢) Christian Christiansson
)

(d) Olav Olavsson
22. Hvilke tre land har veert hardest rammet av Ebola?

a) Sierra Leone, Liberia og Guinea

(a)
(b)
(c) Sierra Leone, Mali og Liberia
(d) Liberia, Mali og Guinea

Sierra Leone, Nigeria og Guinea

23. Hva heter hovedstaden i Australia?

(a) Canberra
(b)

(¢) Melbourne
(d) Perth

Sydney

24. Hvem eier brusmerket Solo?

a

(a) Ringnes
(b) Coca Cola
)

)

(c) Hansa
(d) E.C. Dahls

25. Hvilken by kom The Beatles fra?
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a) Liverpool

(a)
(b) Manchester
(c)
(d) Birmingham

26. Hvilket ar ble internett tilgjengelig for vanlige folk?

27. Hvem er den personen som har blitt googlet mest i Norge i 20157

(a) Caroline Berg Eriksen
(b) Martin Odegaard

(c) Pablo Escobar

(d) Jens Stoltenberg
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