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specific RAC-like GTPase that has only evolved in flowering plants. Structural analysis 
showed that like human Rho GTPases, AtROP9 is based on an evolutionarily conserved G 
domain architecture. However, the AtROP9 structure shows some structural distinctness in 
the Rho GTPase defining insert region and the protein interacting switch II domain. The 
switch II region of AtROP9 is more flexible since it does not adopt a helical structure like 
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Introduction 

The Ras superfamily of GTPases 
 

A large proportion of proteins that bind and utilize guanine nucleotides (GTPases) are 

characterized as binary molecular switches, being in an activated conformation when bound to 

guanosine triphosphate (GTP) and inactivated by hydrolysis of GTP to guanosine diphosphate 

(GDP). Among the more evolutionary conserved groups of GTPases is the Ras superfamily of 

GTPases which is found in all eukaryotes studied to date. Ras superfamily GTPases are 

instrumental in relaying intracellular signals that ultimately change cell behavior in 

eukaryotes. 

The Ras superfamily of GTPases has evolved immensely in eukaryotes and were until 

recently classified into five functionally distinct families; Ras, Rab, Rho, Ran and the Arf 

family [1]. However the recent discovery of mitochondria associated GTPases adds a "new" 

GTPase family to the Ras superfamily. Initially discovered through a database search for 

novel proteins with Rho consensus motifs, these proteins where classified as Rho GTPases 

and was therefore named as mitochondrial Rho GTPases [2]. Phylogenetic analysis shows that 

Miro GTPases branched out before Rho GTPases and therefore constitute a Ras family of 

their own. This is further supported by the overall sequence divergence of Miro GTPases from 

Rho family GTPases and their lack of the Rho family specific insert region [3-4]. 

The six families of Ras superfamily GTPases (including Miro) have each evolved to regulate 

specific signaling tasks in cell life: Ras GTPases regulates cell proliferation, Rho GTPases 

regulate actin organization/gene regulation/cell cycle progression, Rab and Arf GTPases 

regulate vesicle trafficking, Ran GTPases regulate nuclear trafficking/cytokinesis and Miro 

GTPases regulate mitochondrial transport and morphology (Figure 1) [1, 5]. 

 
Figure 1: Overview of the Ras superfamily in eukaryotes and their nomenclature  
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The Rho family of GTPases 
 

Rho family GTPases are only found in eukaryotes and have primarily expanded in the 

metazoan lineages. A recent phylogenetic analysis of 26 eukaryotic genomes showed that 

members of this family fall into 4 distinct clusters (I-IV) with 8 subfamilies; (I) Rho, Rnd and 

RhoD/RhoF, (II) Rac/RhoG, CDC42/RhoJ/RhoQ and RhoU/RhoV, (III) RhoH and (IV) 

RhoBTB1-2 (Table 1). The presence of all 8 eight subfamilies have to date only been found in 

mammals. However, Rac-like GTPases are found in all organisms ranging from yeast to 

animals. Indeed, the diversification of Rho family GTPases is thought to have originated and 

evolved from an ancestral Rac-like GTPase [4]. It should be mentioned that Miro GTPases 

most likely also originates from this ancestral RAC-like GTPase and that phylogenetic 

analyses may have placed Miro GTPases in the root together with other divergent RHOs due 

to long branch attraction (P. Winge personal communication). Nonetheless, most Rho family 

GTPases distinguish themselves structurally from other Ras-like GTPases by having an 

insertion of 13 amino acid residues between the fifth � strand and the fourth � helix in the G 

domain which is suitably called the Rho insert region. Typical Rho family GTPases are small 

monomeric proteins (20-40 kD) containing a G domain that facilitates the switching 

mechanism. Rho family GTPases undergo post-translational modification at the C-terminal 

with isoprenoid lipids, which is important for membrane targeting and thus the function of the 

proteins. RhoBTBs are an exception regarding domain composition by containing two BTB 

domains in addition to the G domain. RhoBTBs, together with RhoU/V are, not subject to 

post-translational modification with isoprenoid lipids [3].    

 
Table 1: The Rho subfamilies in eukaryotes  

Rho family 
I II III IV 

Rho 
Rnd 

(Rnd for “round” [6]) 
 RhoD/RhoF 

 

Rac/RhoG 
(Ras related C3 
botulinum toxin 

substrate) 
CDC42/RhoJ/RhoQ 
(Cell division control 
protein 42 homolog) 

RhoU/RhoV 
 

RhoH 
 

RhoBTB 
(BTB: Broad-Complex, 

Tramtrack and  
Bric-a-Brac [6]) 

 
 



 9

Rho family GTPase cycle: activation/inactivation 
 

The intrinsic GTPase activity of Rho family GTPases is slow, and inactivation of the G 

domain by hydrolysis of GTP to GDP is accelerated by GTPase activating proteins (GAPs) 

(Figure 2). Activation of the G domain by dissociation of GDP and the subsequent binding of 

GTP are accelerated by guanine nucleotide exchange factors (GEFs). In the GTP bound state 

the G domain is in an activated conformation and thus able to interact with downstream 

effectors[7]. Rho and Rab-family GTPases are regulated by a third class of regulatory proteins 

in addition to GAPs and GEFs, the guanine nucleotide dissociation inhibitors (GDIs). Rho-

GDIs act on Rho GTPases in three way: (1) they prevent the dissociation of GDP by GEFs 

and maintain the inactive conformation of the G domain, (2) GDIs can also interact with the 

GTP-bound form of the G domain, preventing both intrinsic and GAP-mediated GTP 

hydrolysis and simultaneously preventing interaction with downstream effectors, and (3) 

GDIs regulate the cycling of Rho family GTPases between the membrane and cytosol, 

thereby inactivating the GTPase by sequestering it in the cytosol [8].   

 

 
Figure 2: A schematic overview of Rho family G domain activation and inactivation by Rho regulatory 
proteins. The Rho G domain is anchored to cellular membranes via a lipid modification on the C-terminal. 
The C-terminal polybasic region (PBR) contains positively charged basic residues that interact with 
negatively charged membrane lipids to further enhance membrane association. 
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Figure 3: The overall structure of human Rac1 [9] (pdb: 1MH1) bound to a non-hydrolysable form of 
GTP, guanosine-5'-(beta gamma-imino)triphosphate (GMPPNP). A-B) The 1-5 �-helices (blue) surrounds 
the six �-sheets (red) that together constitute the G domain. The �i helix between �-sheet 5 and �4-helix 
defines the Rho specific insert region. The switch regions are labelled Sw I and Sw II. B) Different 
perspective of the human Rac1 crystal structure. Note the �2 helix in the switch II region and the �i helix 
protruding from the G domain.   

 

Rho family G domain structure 
 

The G domain fold (Figure 3A-B) is a conserved protein domain shared by Ras superfamily 

members, heterotrimeric G protein �-units and translation elongation factors. The G domain 

itself consist of a hydrophobic core with a six stranded �-sheet surrounded by hydrophobic 

loops and �-helices (alpha/beta structure). Five loops of the G protein structure are 

instrumental in GDP- to GTP-exchange, GTP-induced conformational change and GTP-

hydrolysis. These polypeptide loops are designated G-1 to G-5 and contain highly conserved 

sequences that define the G domain protein superfamily (Figure 4). The G1 region or P-loop 

connects the �1 strand with �1 helix and is recognized by a GxxxxGK(S/T) motif (aka 

Walker A motif) that contacts the �- and �-phosphate on the guanine nucleotide through 

main-chain interactions and the amino group of the conserved lysine residue. The G2 region is 

found at the N-terminal of the �-2 strand and the preceding loop; the sequence motif of this 

region is highly conserved within each GTPase family. The G2 sequence contains a conserved 

threonine residue involved in Mg2+ coordination which is important for GTP hydrolysis. 
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The G3 motif (aka Walker B motif) at the N-terminal of the �2 helix contains a DxxG 

sequence where the conserved aspartate binds Mg2+ through a water molecule and the 

conserved glycine binds to the �-phosphate of GTP. The G4 region is recognized by a 

conserved NKxD motif found between the �-5 strand and the �-4 helix. The conserved 

aspartate contacts the guanine ring of the nucleotide. The G5 region located between the �-6 

strand and the �-5 helix and has a E(A/C/S/T)(C/S)A(K/L) motif. This motif supports guanine 

base recognition mainly trough main chain interactions, hence the observed variation in 

primary structure. 

It should be noted that the Walker A and B motifs are also found in other nucleotide binding 

proteins that are not G-protein homologues [10-11]. 

 

 
 
Figure 4: The position of the polypeptide loops G1 to G5 in human Rac1 (pdb: 1MH1) that contains the 
highly conserved sequence motifs that are universal for the Ras superfamily of GTPases.  
 

The switch mechanism and G domain protein-protein interactions 
 

In most cases, the structural differences between the GTP and GDP bound states within 

members of the Ras superfamily are small and for the most part confined to two sections 

called the switch regions (switch I and II)(Figure 3A). The switch I region is identical to the 

G2 loop of the G domain. This section is also referred to as the effector loop. The switch II 

section is comprised of the G3 and the following �2-helix. The switch regions show large 

variation in the GDP conformation, whereas the GTP conformation is more ordered and 

similar between Ras superfamily members [7, 11]. The �-phosphate oxygen of GTP is 
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positioned through hydrogen bonds to invariant Thr and Gly residues in switch region I and II 

respectively. The conformational change upon GTP binding has been described as a loaded 

spring mechanism where hydrolysis of GTP releases the switch regions into a more "relaxed" 

state [7].  

An apparent feature of small GTPases is their ability to interact with different proteins in both 

the GDP and GTP state. Structural analyses of Rho proteins in complex with their respective 

regulators and effectors have revealed that all proteins interacting with the G domain do so 

mainly through the switch regions. Both regulators and effectors bind to conserved elements 

of the flexible switch regions and are able to adopt different conformations upon protein 

interactions. Regulators that interact with the "relaxed" GDP form of the G domain induce 

substantial induced fit on the switch regions, whereas interaction with GAP and effectors do 

not induce large changes upon interaction. The malleability of the switch regions thus enables 

a single G domain to adopt conformations that complements binding sites of various 

regulators and effectors [12]. 

 

The Rho insert region 
 

The key structural feature that distinguishes Rho family GTPases from other members of the 

Ras superfamily is a 13 amino acid helical insertion between �-5 and �-4 (Figure 3 A-B), 

which has solvent exposed and highly charged structure. The amino acids that constitute the 

region are different in the Rho, Rac and CDC42 subfamilies, which imply that the insert 

region is important for specificity towards Rho, Rac and CDC42 targets, respectively. In 

contrast, structural studies show that the insert region is not influenced by the nucleotide state 

of the G domain [13].  

Studies performed on human Rac1 without the insert region showed that the remaining G 

domain retained all its intrinsic GTPase functions, performed nucleotide exchange by GEFs 

and interacted with GDIs. Also, the overall structure was not affected in the absence of the 

insert region. However, the insert-less Rac1 was not able to induce lamellipodia formation in 

NIH3T3 cells, thus implying a role for the insert region during Rac1-mediated regulation of 

the actin cytoskeleton [14]. Several studies have also showed that the insert region is 

important for Rac1-mediated activation of Nox-family NADPH oxidases [15-17]. In contrast 

to these findings, a recent study showed that activation of Nox-family NADPH oxidases are 

not dependent on the insert region. Observations reported in previous studies may be due to 
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the removal of the insert helix, which leads to incorrect protein folding, subsequently resulting 

in reduced effector binding and activation capacity. The same study also showed that the 

insert region of Rac1 is not necessary for proper membrane targeting [18]. 

RhoA has been shown to bind with Rho kinase in an insert independent manner, although 

kinase activation however seems to be dependent on the insert region [19]. RhoA is also 

shown to directly contact its target mDia, a formin related protein, partially through the insert 

region [20]. Similar to RhoA activation of Rho kinase, CDC42 activation of phospholipase 

D1 (PLD1) is dependent on the insert helix and a serine residue in the insert is critical for 

activation of PLD1 [21].  

 

Post-translational modification and membrane localization of Rho GTPases 
 

An important biochemical feature of most of the Rho family GTPases (as well as other Ras 

superfamily members) is post-transitional modification by lipids, which is important for 

correct sub-cellular membrane localization (Figure 2). Rho GTPases have a C-terminal CaaX 

motif (C; Cys. a; aliphatic side group, X; any amino acid) which is recognized by either 

farnesyltransferase and/or geranylgeranyltransferase type I. The transferases covalently attach 

a farnesyl or a geranylgeranyl isoprenoid to the cysteine of the CaaX motif. Next the aaX is 

proteolytically cleaved off and finally the prenylated cysteine is methylated. In addition, some 

Rho GTPases (RhoB, RhoQ) undergo post-translational modification at one or two cysteine 

residues upstream of the CaaX motif by covalent addition of the fatty acid palmitate [22]. 

In addition to lipidation, another sequence element plays a secondary role for membrane 

association and is therefore functionally important. Preceding the CaaX motif, clusters of 

adjacent lysine or arginine residues make up the so called polybasic region (PBR). Positively 

charged basic residues in PBR interact with negatively charged phosphatidylinositide lipids 

and provide additional specificity to the overall membrane association of Rho GTPases 

(Figure 2) [23-24].  

 

 

 

 
 



 14

Biological functions of metazoan Rho GTPases 
 

Metazoan Rho GTPase have been studied extensively because of their pivotal roles in 

fundamental processes of cell biology and some Rho GTPases are implicated in cancer 

development which naturally has triggered extensive research on their role in this context. 

Most of the biochemical and structural knowledge acquired to date is based on the highly 

conserved Rho GTPases; RhoA, Rac1 and CDC42. The main strategy for elucidating 

biological function of Rho GTPases has come from studying the effect of overexpression of 

dominant negative and constitutive active forms of Rho GTPases in various model systems. 

CDC42 has a conserved role in regulating the actin cytoskeleton and cell polarity through 

activation of several downstream effectors. CDC42 induces formation of filopodia by 

activating actin related protein 2/3 (ARP2/3) through the Wiskott-Aldrich syndrome protein 

(WASP), Insulin-receptor substrate p53 (IRSp53) kinase and the mammalian formin 

diaphanous-2 (mDia2). 

Rac regulates the actin cytoskeleton and the formation of lammellipodia by activating ARP2/3 

through WASP-family verprolin-homologous protein (WAVE) complex and possibly through 

mDia2.  

Both Rac and CDC42 regulate actin polymerization by activating p21-activating kinase 

(PAK) that phosphorylates LIM-kinase (LIMK), which inhibits cofilin and subsequently 

regulates actin turnover. In neuronal development both CDC42 and Rac are instrumental in 

regulating the actin cytoskeleton to promote axon growth, filopodia formation and axon 

guidance respectively. Rac is also instrumental in membrane ruffling and lammellipodia 

formation that facilitates phagocytosis. During phagocytosis of bacteria, reactive oxygen 

species are produced to facilitate bacterial killing, and Rac is important both for assembly and 

activation of the NADPH oxidase complex on the phagosome membrane. 

Rho subfamily GTPases are involved in stress fiber formation through the actin cytoskeleton 

and also regulate endocytotic vesicle trafficking. Constitutive activated or dominant negative 

RhoB changes both endocytotic trafficking of epidermal growth factor receptor (EGF) in 

epidermal cells and endosomal trafficking of platelet-derived growth factor receptor (PDGF-

�) in smooth muscle cells. [Rho GTPase functions in metazoa are reviewed in 25, 26-27]. 

Mutated forms of Ras GTPases (constitutively activated) are found in 15% of human tumors. 

The Rho GTPases, on the other hand, are rarely mutated in human cancers, but in some forms 

of cancer several Rho GTPases show upregulated expression levels and increased activity. 

Since Rho GTPases are involved in regulation of the cytoskeleton, they most likely assist in 
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cancer cell migration and invasion. Furthermore, Rho GTPases may affect tumors through 

regulation of gene transcription, cell division, cell survival, intracellular transport or cell-to-

cell interaction [28].  

     

The Rho family of GTPases in plants 
 

In plants only five of the six functionally distinct families of the Ras superfamiliy GTPases 

have been identified: Rab, Rho, Ran, Arf and the Miro family, with the Ras family being 

absent in plants. In addition, the Rho family in plants lacks the Cdc42 and Rho sub-families 

Instead plants have evolved a novel group of Rac-like GTPases that most likely act as bona 

fide signaling molecules to the Ras family and the Cdc42 and Rho subfamilies in metozoan 

counterparts [29].  

The Rac-like GTPases found in plants are most likely from a monophyletic origin, where an 

ancestral Rac-like gene evolved into plant specific Rac-like GTPases. The Rho and Cdc42 

subfamilies on the other hand have only evolved in fungal and metozoan lineages after the 

split from an ancestral organism that eventually evolved into terrestrial plants [30]. The Rac-

like GTPases in Viridiplantae have only recently diversified into new subfamilies/groups. The 

major diversifications, which occurred in spermatophyta (seed plants) before the split into 

monocotyledons and dicotyledons, divided the Rac-like GTPases into two major subgroups 

based on the primary structure of the C-terminal motif. The Group 1 Rac-like GTPases have a 

geranylgeranylation/farnesylation motif: CaaX. In vascular plants, an ancestral Rac-like 

GTPase gene acquired an additional intron at the far 3' end of the gene, thereby generating a 

new subfamily of Rac-like GTPases. As a result the the CaaX motif was lost, but these genes 

have retained a cysteine-containing motif, suggesting a different type of C-terminal 

modification for the Group 2 of Rac-like GTPases. Futhermore, several gene/genome 

duplications have resulted in the formation of several other distinct sub-groups of Rac-like 

GTPases in both monocots and dicotyledons [30-31].  

Interestingly, the fact that the Ras-family is absent from Viridiplantae may indicate that the 

Rac-like GTPases in plants have evolved to function in processes that is otherwise regulated 

by Ras family GTPases in metozoa, fungi, mycetozoa and entamoeba. This may have been a 

part of the selection pressure in the evolution of a Rac-like multigene family in plants [30]. 

In the dicotyledonous plant Arabidopsis thaliana the genome contains 93 small GTPases 

belonging to the Ras superfamily (96 members if Miro GTPases are included) [32], of which 
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11 Rac-like GTPases constitute the Rho family (8 Group I GTPases and 3 Group II GTPases) 

[29-30]. Mainly two nomenclatures have been used for Rho GTPases in plants since they 

were first characterized in Pisum sativum (Garden pea) [33]. The terminology ROP (Rho like 

GTPases from plants) was first used by Lin and colleagues [34] and Winge and colleagues 

used AtRAC nomenclature based on the protein sequence similarities with human Rac 

GTPases [29]. For clarity, the more widely used ROP nomenclature will be used henceforth 

and the corresponding RAC numbering is shown in table 2. 

 
Table 2: AtRAC vs. ROP nomenclature (Group II RACs/ROPs are underlined) 

AtRAC1 AtRAC2 AtRAC3 AtRAC4 AtRAC5 AtRAC6 AtRAC7 AtRAC8 AtRAC9 AtRAC10 AtRAC11 

Winge 
et al. 
[29-
30] 

ROP3 ROP7 ROP6 ROP2 ROP4 ROP5 ROP9 ROP10 ROP8 ROP11 ROP1 

Li et al. 
[35], 

Yang et 
al. [36] 

 
 

Arabidopsis ROPs: activation/inactivation 
 

Extracellular signals are thought to activate receptor-like kinases (RLK) in the plasma 

membrane of plant cells. RLKs activate ROPGEFs that in turn activate ROPs through 

nucleotide exchange (Figure 5). 

Plant RLKs generally contain an N- terminal extracellular domain that recognize specific 

ligands and a C- terminal serine/threonin kinase-like intracellular domain. Upon activation the 

RLKs mediate signaling to downstream target proteins. The Arabidopsis genome encodes 

more than 600 RLK family members, including receptor-like cytoplasmic kinases (RLCK). 

RLKs vary greatly in their domain architecture and are phylogenetically divided into 45 

subfamilies based on these differences [37-38]. The abundance and expansion of RLKs in 

plants is in sharp contrast to human receptor tyrosine kinases (RTK), of which there are 58 

known members categorized into 20 subgroups [39]. 

ROP GTPases play a significant role in establishing cell polarity in various cell types in plants, 

especially during pollen tube growth. Studies have shown that AtROPGEF12, through its C- 

terminus, interacts with a pollen-specific receptor kinase; AtPRK2a. A model has been 

proposed to explain how PRK2a regulate pollen specific ROPGEFs leading to the subsequent 

activation of ROP (Figure 5). The C-terminal of ROPGEF is thought to act in an auto-

inhibitory manner on the nucleotide exchange properties of GEF, preventing an interaction 
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with ROP. The intracellular kinase domain of PRK2a interacts and phosphorylates an 

invariant serine residue at the C- terminal domain of ROPGEF. This exposes the catalytic 

domain of the ROPGEF and facilitates activation of ROP, ultimately leading to polarized 

pollen tube growth [40]. 

 

 
Figure 5: A model suggesting how AtPRK facilitates activation of AtROPGEF12 that subsequently leads 
to ROP nucleotide exchange. Putatively, the activated PRK kinase domains phosphorylates the C-terminal 
domain of ROPGEF, which exposes the catalytic GEF (PRONE)–domain [40]. 
 

Guanine nucleotide exchange and activation of ROP is facilitated by a plant-specific ROP 

nucleotide exchanger domain (PRONE) that share no homology with RhoGEFs found in 

animals [41-42]. In Arabidopsis there are 14 ROPGEFs that share a central PRONE domain. 

In addition one ortholog to the more widely conserved Dock180 GEF domains exists in 

Arabidopsis, namely SPIKE1 (Figure 6) [43]. Recently, it was demonstrated that SPIKE1 has 

GEF activity towards ROPs [44].  

The molecular mechanisms behind how the PRONE domain catalyses the nucleotide 

exchange has been studied extensively. The crystal structure of ROP4•GDP in complex with 

the PRONE domain of ROPGEF8 revealed that two PRONE domains form a constitutive 

dimer with two ROPs. The two ROP•GDP GTPases makes contacts with both PRONE 

domains, which explain why dimerization is necessary for catalytic activity. The structure 

also gave insight into how GEFs in general weakens nucleotide affinity through removal of 

the Mg2+ ion and through remodeling of the two switch regions in the G domain [45]. Another 

structural study of PRONE in complex with a nucleotide-free ROP showed that the complex 

facilitates the interaction between a conserved lysine in the ROP P-loop and a conserved 

glutamate in switch II. This interaction replaces the P-loop lysine interaction with the �-
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phosphate on the guanine nucleotide, resulting in low nucleotide affinity and subsequent loss 

of GDP. The nucleotide-free state is stabilized by a conserved WW-motif in the PRONE 

domain, which most likely also promotes the association with GTP. Taken together, these two 

studies show the molecular steps of the GEF reaction by the PRONE domain [46]. 

 

Like yeast and metozoan Rho GTPases, the intrinsic GTPase activity of ROPs is low and is 

enhanced several fold by plant ROP GTPase activating proteins (ROPGAPs). Compared to 

yeast and metozoa, where the number of RhoGAPs is 2-3 times larger than the number of 

RhoGTPases [47], there are relatively few ROPGAPs compared to the number of ROPs in 

plants. In addition, the diversity of functional domains associated with the GAP domain is 

greatly limited in plants compared to animals (Figure 6).  

In Arabidopsis 9 ROPGAPs exists, which are divided into 2 subfamilies [31]. One subfamily 

with 6 members of ROPGAPs has an unusual domain composition that is not found in yeast 

or animals. ROPGAP1-6 has an N-terminal Cdc42/Rac interactive binding (CRIB) domain 

that in animals usually is associated with Cdc42/Rac effectors like PAK and WASP. 

The AtROPGAPs show about 27% sequence homology to RhoGAPs in yeasts and animals, 

and the GAP domain itself is more similar to p50 RhoGAP, which preferably activates Cdc42 

GTPases [48]. The ROPGAP domain is functionally similar to RhoGAPs from yeast and 

animals by containing a conserved catalytical arginine residue (a.k.a. the arginine finger) that 

is inserted into the active site that facilitates hydrolysis of GTP [7]. How the CRIB-domain 

functions in association with the ROPGAP domain is not yet fully known. In Cdc42/Rac 

effectors like PAK and WASP, the CRIB domain is a part of a larger auto-inhibitory switch 

domain (IS). Binding of Cdc42/Rac•GTP to these CRIB-domains invokes structural changes 

to the IS-domain that results in effector activation [49]. In vitro studies show that the 

ROPGAP CRIB domain enhance the GAP activity, demonstrating that the N-terminal part of 

the ROPGAP containing the CRIB-domain does not inhibit the GAP activity like the PAK 

and WASP IS domain, but rather that the CRIB domain is necessary for maximum GAP 

activity. Further studies suggested that the explanation for this observation might be that the 

ROPGAP CRIB domain assists in the formation of or stabilization of the transitional state of 

ROP•GTP, which is important for the overall GAP activity [48, 50]. How the GAP and CRIB 

domains interact together towards ROPs is not known, but several interesting scenarios may 

exist. Structural studies have shown that the CRIB domain mainly interacts with the �2 and 

�5 region of Rho GTPase, as well as the switch regions [49, 51]. This fact may allow for the 

binding of two ROPs to ROPGAP where possibly one ROP binds to the CRIB domain, 
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recruiting ROPGAPs to the plasma membrane, where the GAP domain deactivates another 

ROP. The CRIB domain of ROPGAP can also bind to GDP-bound ROP [48] which may 

function as a negative regulator of the GAP domain. Biochemical and structural studies with 

ROP in complex with ROPGAP are needed to clarify the function for this plant specific 

domain combination. 

The second group of 3 GAPs in Arabidopsis contains a conserved RhoGAP domain in 

combination with an N-terminal Pleckstrin homology (PH) domain, which is also observed in 

several RhoGAPs ranging from yeast to humans [31, 47]. These PH-GAPs have also been 

named ROP Enhancer (REN) [52]. PH-domains have the ability to bind to various forms of 

phosphoinositides on the plasma membrane or other structural membranes. Upon activation of 

cell surface receptors, phosphoinositides act as second messengers, transiently recruiting 

signaling proteins to the plasma membrane where they perform their function [53]. Several 

lipid binding domains are found in Arabidopsis, and 53 proteins are predicted to contain a PH 

domain together with other functional domains including ArfGAP, phospholipase D or 

phosphatidylinositol 3/4 kinases [54]. Interestingly, ArfGAPs in both mammals and 

Arabidopsis have a phosphoinositide-dependent activation of the GAP domain through 

allosteric regulation by a PH domain [55]. The Arabidopsis VAN3 ArfGAP is in addition to 

being allosterically regulated through the PH domain, deactivated by binding of inositol 

triphosphate (IP3) [56]. It remains to be investigated if a similar allosteric regulatory 

mechanism exists for ROP(PH)GAPs in Arabidopsis. 

 

Rho guanine nucleotide dissociation inhibitors (RhoGDI) are in general single domain 

proteins and not as abundant as other Rho GTPase regulatory proteins in eukaryotes. In 

humans only three RhoGDI family members are found, whereas several other eukaryotic 

organisms have only one copy of RhoGDI, suggesting a more general regulatory role for these 

proteins [57]. The Arabidopsis genome encodes 3 RhoGDIs. One of the three GDIs, 

RhoGDI1 is expressed ubiquitously in all plants tissues and stages, but shows especially high 

expression in pollen during development and germination. The two other RhoGDIs in 

Arabidopsis (At1g62450 and At1g12070) shows very low expression during sporophytic 

growth, but relatively high (albeit lower than RhoGDI1) expression in pollen development 

and germination (data obtained from Arabidopsis eFP Browser [58]). The Arabidopsis 

RhoGDIs are predicted to have the same domain structure as RhoGDIs in other species, which 

facilitates binding of the G domain and the C-terminal end containing the PM-interacting 

prenyl lipid moiety of the GTPase (usually geranylgeranyl). This prevents interaction with the 
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PM as the lipid moiety becomes shielded in a hydrophobic pocket in the GDI domain. 

RhoGDI interaction leads to the release of the Rho GTPase from the PM into the cytosol, 

restricting the Rho GTPase from accessing GAPs, GEFs and downstream effectors. 

The N-terminal part of the RhoGDI contains a region that is referred to as the regulatory arm. 

Upon G domain binding, this region forms a stable helix-loop-helix motif containing residues 

that form contacts with key amino acids in the switch regions of the GTPase. These 

interactions can maintain the G domain in either nucleotide conformation and prevent G 

domain interaction with other proteins. The C-terminal part of the RhoGDI contains an 

immunoglobulin-like fold (IGL-fold) that upon binding to the Rho GTPase forms a cavity 

between two �-sheets that is lined with conserved hydrophobic residues that can 

accommodate the prenyl moiety [57, 59].  

The mechanisms behind the subsequent dissociation of RhoGDI from ROP GTPases and the 

re-association of the ROP GTPase with the PM have not been investigated in plants. However 

based on biochemical and in vitro studies on mammalian RhoGTPase-RhoGDI complexes, 

the dissociation may involve active displacement by putative proteins (GDFs: GDI 

displacement factors), membrane lipids and/or phosphorylation of GDI [reviewed in 8]. 

 
Figure 6: A schematic overview of Rop family G domain activation and inactivation by Rop regulatory 
proteins in plants.  
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ROP structure 
 

ROP GTPases, like their orthologs in yeast and animals, are approximately 20-24 kD and 

consist of around 200 amino acids. Within the ROP primary structure, the highly conserved 

G1-G5 loops are present in addition to the hypervariable polybasic region and the C-terminal 

cysteine containing motif. The three dimensional crystal structure resolved for Arabidopsis 

ROP9 (Figure 7 A-B) shows that the structure of ROPs is based upon a conserved G domain 

architecture that is basically the same as in human Rho family orthologs. There are, however, 

some distinct structural features for AtROP9 in switch II region and the insert region (Paper I). 

 

 
Figure 7: The overall structure of Arabidopsis ROP9 (pdb: 2J0V) bound to GDP. A) The plant G-domain 
is basically the same as in human Rho family orthologs. In the ROP9 structure, 4 �-helices (red) 
surrounds the 5 �-sheets (orange) which makes up the G-domain. Note the missing �-2 helix in the switch 
II (Sw II) region of the ROP9 structure. B) Different perspective of the ROP9 structure. Note the smaller 
�i helix in the ROP9 structure compared to the human Rac1 structure in Figure 3.  
 

Unlike crystal structures of its human orthologs, the switch II region of the ROP9 crystal 

structure does not adopt a helical conformation, but a loop-shaped structure (Figure 7). The 

switch II region could only be modeled into density in one of the four ROP9 molecules in the 

crystallographic asymmetric unit. Similar flexibility of the switch region has only been 

observed in solution structures of Rho subfamily GTPases, and this suggests that the switch II 

region in AtROP9 is more flexible compared to human orthologs (Paper I). However, it has 

been argued that the observed lack of structure in switch II of ROP9 may be an artifact of 

molecular interactions within the crystallographic unit [51]. In paper 1, we discuss that a 

serine residue (Ser68ROP9) in switch II, which is conserved in plant ROP9 orthologs, is 
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disruptive in formation of a helical structure in this region (Figure 8 B). Serine68 in ROP9 

substitutes an aspartic acid residue (Asp65HsRAC1) in human Rho GTPases and aspargine 

residue (Asn68ROP5) in non ROP9 orthologs in plants. In HsRAC1 (Figure 8 A), Asp65 makes 

ion pair interactions with Arg68HsRAC1 and with Lys96HsRAC1 and Glu100 HsRAC1 in the 

adjacent �4-helix, which may be crucial for helix formation and stabilization. In a crystal 

structure of AtROP5, there is a helical structure in switch II, where Asn68 make stabilizing 

interactions similar to those found in HsRAC1 (Figure 8 C). This supports the idea that the 

conserved serine residue is disruptive for a helix conformation in switch II. Serine is also 

considered to have low helix formation propensities compared to aspargine and aspartic acid 

[60]. The lack of an �-helix in ROP9 switch II results in the region being more flexible than 

other ROPs and human Rho orthologs. The higher flexibility of switch II in ROP9 is 

supported by its higher intrinsic GTPase capabilities, where ROP9 showed a 2.5-fold higher 

intrinsic GTPase activity compared to ROP4 [61].  

This flexibility may be important for specificity in downstream effector interactions and 

suggests that ROP9 orthologs have evolved to perform similar roles in other plants (Paper I). 

 

 
Figure 8: The switch II region and adjacent �3 helix of A) HsRAC1, B) AtROP9 and C) AtROP5. 
Hydrogen bonds are shown in black dotted lines. Note how ASP65 and ASN68 in HsRAC1 (A) and 
AtROP5 (C) respectively, forms helix-stabilizing interactions with an arginine residue in the �2 helix and 
a glutamate residue in the �4 helix. In AtROP9 (B) these helix-forming interactions are most likely 
disrupted by a conserved serine residue (SER68).   
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ROP insert region 
 

The insert region in ROPs has a two amino acid deletion compared to their human 

counterparts, whereas AtROP9 orthologs within the Brassicaceae family have a four amino 

acid deletion [30]. Structurally, the ROP insert consists of less charged amino acids and the 

AtROP9 insert helix is slightly displaced (Figure 7) compared to human counterparts [51]. 

Overall the primary structure is more variable in plant ROPs, suggesting that it is necessary 

for specificity in protein-protein interactions. To date, only a few studies of ROPs and their 

interacting proteins support a function for the ROP insert helix in protein-protein interaction 

and effector activation. 

The specificity of the ROPGEF PRONE domain towards ROPs is in part attributed to 

interactions with the insert helix. This was experimentally shown by making a 

HsRAC1/AtROP4-insert (Asp65Asn/Pro73Arg) chimera that functioned as a true substrate 

for PRONE8 with acceleration of nucleotide exchange. Notably, the conserved aspargine 

(Asn68) together with a conserved arginine (Arg76) in the switch II region are also important 

for substrate specificity and nucleotide exchange. The HsRAC1/AtROP4-insert chimera alone 

did not accelerate nucleotide exchange; instead, a deceleration of nucleotide exchange below 

intrinsic rates was observed. This indicates that the PRONE domain binds to the chimera, but 

that the interaction does not induce structural change in the G domain and thereby actually 

slows the intrinsic nucleotide exchange. The importance of the insert helix in PRONE 

specificity was further demonstrated by mutating serine 68 with aspargine in AtROP9, which 

did not increase the PRONE8 mediated nucleotide exchange above intrinsic rates. The result 

suggested that binding does not occur, possibly since the shorter AtROP9 insert helix does not 

structurally fit into PRONE8 [61].  

Two receptor-like cytoplasmic kinases named RBK1 and RBK2 (ROP binding kinase, RLCK 

class VI), together with a cysteine rich receptor kinase (NCRK) have been found to be 

potential downstream effectors of ROPs in Arabidopsis. Unlike animal and yeast Rho 

GTPases that interact with kinases through a CDC42/RAC interactive binding (CRIB) domain, 

plant ROPs seem to interact directly with the kinase domain [62]. A Medicago truncatula 

ROP6CA/HsRAS-insert chimera interacted with MtRRK1 (Rop-interacting receptor-like 

kinase) in a yeast two-hybrid system, but the MtROP6 chimera could not activate the kinase 

in vitro. The ROP insert region has been implicated in activation of RLCK [63]. Based on 

currently available data, it seems that the ROP insert region may have evolved to facilitate 
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protein interaction specificity through activation of the target protein. In theory it could 

function as a third switch region. 

 

Post-translational modification of ROPGTPases and membrane association 
 

Intracellular localization studies show that ROP GTPases are localized to the plasma 

membrane due to post-translational modification with hydrophobic side groups.  

As mentioned earlier, ROP GTPases are divided into two subgroups based on the primary 

structure of the C-terminal motif. Group I ROPs have a geranylgeranylation/farnesylation 

motif; CaaX . Group II ROPs have lost their CaaX motif but have a cysteine-containing box, 

GC-CG. The two cysteins are flanked by glycine residues and separated by five to six resides 

(mostly alipahtic). Both of the cysteins most likely undergo stable S-acylation and results in 

attachment of acyl lipids that facilitate PM association [64-65].  

The cysteine residue in the CaaX motif of group I ROPs are primarily prenylated in the 

cytosol by geranylgeranyltransferase I, which results in a covalently bound geranylgeranyl 

(C20) isoprenoid lipid. After prenylation, group I ROPs are most likely targeted to the 

endoplasmatic reticulum where they undergo further CaaX processing. The first step involves 

proteolytic removal of the three last amino acids by CaaX proteases and finally the prenylated 

cysteine is methylated [Reviewed in 66]. 

Sorek and colleagues have investigated the relationship between the nucleotide state of ROPs 

and plasma membrane localization. Their studies have revealed that in addition to being 

prenylated, ROPs are also subjected to transient S-acylation upon GTP binding and activation. 

Plants overexpressing constitutively activated AtROP6 showed that AtROP6CA undergoes S-

acylation by addition of palmitate (C16) or stearate (C18) to a conserved cysteine residue in 

the G domain (AtROP6C156). Importantly, the S-acylation resulted in accumulation of 

AtROP6 in detergent-resistant membranes (DRM), whereas AtROP6CA/Cys156Ser was 

accumulated in Triton-X soluble membranes (TSM). These results show that group 1 ROPs 

are most likely S-acetylated and possibly relocated to PM microdomains (a.k.a. “lipid rafts”) 

upon GTP binding and activation [67]. Two other highly conserved cysteine residues are 

found in ROPs and their orthologs (AtROP6C9/C21), and recently it was discovered that a 

subpopulation of AtROP6CA are S-acylated at Cys21. Whether S-acylation occurs 

simultaneously on both cysteins within the G domain or whether there exists two 

subpopulations of ROPs S-acylated at either cysteine is not known. Functional studies 
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revealed that replacing the conserved cysteins with serine in ROP6 (AtROP6CA/C21S+C156S) 

reduced the deleterious effect of over expressing constitutively active AtROP6 on cell polarity 

in leaf pavement cells and root hair growth. Thus, S-acylation appears to be necessary for 

ROP signaling. Analyses showed that loss of S-acylation increases the membrane-to-cytosol 

exchange rate compared to WT and ROP6CA, indicating that an S-acylation switch stabilize 

PM interactions, presumably by directing ROPs into lipid rafts (Figure 9) [68].  

Group II ROPs are associated with the PM solely through S-acylation of the two cysteins in 

the C-terminal GC-CG motif. Compared to group I ROPs, the S-acylation is thought to be 

stable [65]. The GC and CG pairs are separated by five to six non-polar and hydrophobic 

residues that may be instrumental in forcing the acyl group into the lipid bilayer, thereby 

making the S-acylation stable by preventing removal by S-acyl protein thioesterases [69].  

Studies of group 2 AtROP10 showed that modification of the GC-CG motif or removal of the 

adjacent PBR region resulted in accumulation of AtROP10 in the nucleus, showing that both 

the PBR and GC-CG motifs are necessary for PM localization of group II ROPs [65]. 

S-acylation of ROPs may prevent interaction and regulation of RhoGDIs since the C-terminal 

IGL fold of RhoGDI only accommodates prenyl groups. This indicates that activated group I 

ROPs are not regulated by RhoGDIs and/or that S-acylation of group I ROPs functions as a 

RhoGDI displacement factor. However group II ROPs, which are exclusively palmiotylated 

are not regulated by RhoGDIs and are possibly permanently situated in DRMs suggesting that 

membrane dynamics may be regulated by other plant specific mechanisms [66].  

 

Biological functions of ROPs in plants 
 

Since the first cloning and characterization of a RAC-like GTPase from garden pea back in 

1993 [33], the Rho GTPases of plants have received much scientific attention. Most of our 

knowledge about ROPs originates from research on the model organism Arabidopsis thaliana, 

but functional characterization of ROP GTPases in other plant species have also contributed 

significantly in our understanding of ROP GTPase function. Cumulatively, the scientific 

evidence shows that ROPs are pivotal regulators of many important processes in plant cells 

which will be described below (Figure 9 summarizes some of the known effector interactions 

of ROPs). Experimentally, ROP function has been studied through reverse genetics using both 

T-DNA knockout lines and by making transgenic plants overexpressing various forms of the 

ROP of interest. In particular, overexpressing constitutively active (CA) form of the G domain 
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where usually a conserved glycine (G15 ROP9) in the P-loop (G1) is usually exchanged with 

a valine residue that abolishes the GTPase activity of the G domain. The G domain can also 

be oveexpressed as a dominant negative (DN) form where a conserved threonine (T20 ROP9) 

in the P-loop is usually exchanged with aspargine, which renders the G domain unable to 

perform nucleotide exchange [51, 66].     

 

 
Figure 9: Overview of known plant ROP interacting effectors. Upon activation, ROPs are subjected to 
transient S-acylation of conserved cysteine residues in both the G domain itself and at the C-terminal of 
the protein. The S-acylation presumably enhances the PM association of ROPs by directing the protein 
into detergent resistant membranes (DRMs). The transient S-acylation is necessary during ROP signaling, 
possibly by allowing interactions between ROPs and DRM residing proteins to occur. Therefore the “S-
acylation switch” is most likely an important regulatory step during ROP signaling.   
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Membrane association of ROPs 
 

Through prenylation and S-acylation, ROPs function is tightly associated with the plasma 

membrane in plant cells. It is therefore pertinent to mention current theory on PM 

composition and organization and the possible functional implications this has for proteins 

associated with the PM in eukaryotic cells. It was originally perceived that protein lipid 

modification was as a way of recruiting proteins to cell membranes and that the PM itself was 

a homogenous mix of proteins and lipids.  

However, an increasing body of evidence indicates that the PM composition is heterogeneous 

by forming so called transient lipid rafts or membrane microdomains. PM lipid rafts are 

hypothesized to be transiently occurring sphingolipid-cholesterol rich assemblies that can 

recruit specific membrane proteins while excluding other membrane proteins, thereby 

promoting specific protein-protein interactions. Protein clusters formed in these 

microdomains are thought to have functional roles connected to the proteins that are 

embedded in the lipid rafts. Isolation and analysis of detergent resistant membranes (DRMs) 

reflect the existence and the constituents harboring lipid rafts in PM [reviewed in 70].  

Analyses of PM lipid composition in Arabidopsis have shown that like their counterparts in 

animals and yeast, Arabidopsis DRMs contain significantly higher ratios of sterols and 

sphingolipids to proteins compared to TSMs. Proteins associated with DRMs were 

investigated, and a plant ortholog to Flotillin, a mammalian DRM protein, was identified as 

well as glycosylphosphatidylinositol (GPI) anchored proteins which are also constituents of 

yeast and animal DRMs. These findings suggests that lipid rafts contain conserved 

components in eukaryotic cells [71]. Furthermore, DRMs analyzed from tobacco BY-2 cells 

contained Ras superfamily GTPases like Rab, Arf and more importantly ROPs [72] [for 

reviews on lipid rafts in plants see 73, 74-75]. 

As mentioned earlier, group I ROPs associate with DRMs or lipid rafts in an activation 

dependent manner through transient S-acylation, whereas group II ROPs associate with the 

PM through stable S-acylation. Transient protein S-acylation (Palmitoylation) of target 

proteins increase the membrane affinity, but more importantly it allows for spatiotemporal 

separation of proteins into distinct membrane compartments, presumably lipid rafts. The 

change in membrane affinity is of functional importance and has an important regulatory role 

in several cellular processes by modulating target protein activity. In plants, several PM-

associated proteins besides ROPs such as heterotrimeric G proteins, calcium-dependent 

protein kinases (CPKs), calcineurin B-like proteins (CBKs) and tubulin are modulated by 
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transient S-acylation [review on palmitoylation in plants 76], [review on lipid modification in 

plants 77].  

Current data indicates that group I ROPs function is dependent on transient S-acylation, 

which may lead to the formation of transiently occurring lipid rafts containing "ROP signaling 

protein complexes". The so-called S-acetylation switch [68] and the following partitioning 

into DRMs should therefore be included in the ROP signaling model [77]. Notably, it has 

recently been demonstrated that polyphosphoinositides are enriched in plant DRMs and that 

60% of the phosphatidylinositol 4,5 bisphosphate (PIP2) present in the PM was visualized in 

approximately 25 nm sized clusters on the surface of the PM [78].   

 

ROPs and polar cell growth 
 

By studying ROP expression in cotton fibers back in 1995, Delmer and colleagues suggested 

that like their metazoan counterparts ROPs are also involved in cytoskeleton organization [79]. 

Lin et al. (1996) [34] discovered that Pea ROP1Ps is expressed in the apex of the growing 

pollen tube. When anti-ROP1Ps antibodies were injected into the pollen tube, growth was 

arrested, suggesting that ROPs play an important role during pollen tube elongation [35]. 

Since then, polar tip growth in pollen has become a popular model system for studying ROP-

mediated regulation of the actin cytoskeleton as well as other cellular processes regulated by 

ROPs. Pollen tubes and root hairs exhibit polar growth (tip growth) by vesicle targeting and 

exocytosis to the growth site [80].  

In Arabidopsis, ROP1 is exclusively expressed in mature pollen in addition to a non-exclusive 

and low expression of ROP3 and ROP5 (Data obtained from Arabidopsis eFP Browser [58]). 

GFP-ROP fusion proteins have been shown to accumulate in the PM of the growing pollen 

tube tip. Overexpression of dominant negative (T20N) forms of ROP1 and ROP5 arrested 

pollen tube growth, whereas overexpression of wild type ROP1 and ROP5 lead to depolarized 

pollen tube growth. Overexpression of constitutively active (G15V) ROP1 and ROP5 in 

pollen resulted in an enhanced depolarized growth phenotype [81-82]. Injection of anti-ROP1 

antibodies also disrupted the intracellular tip-focused Ca2+ gradient in growing pollen tubes 

and arrested further growth, suggesting that ROP also regulate Ca2+ influx and Ca2+ gradient 

maintenance [81]. 

Pollen ROP also affects the activity of phosphatidylinositol monophosphate kinase (PtdIns P-

K). Phosphatidylinositol 4,5 bisphosphate (PIP2), the product of PtdIns P-K, accumulates at 
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the tip together with ROP in the PM, which is necessary for pollen tube growth [82]. The 

PBR of ROPs interact with phosphatidyl phosphoinositides to stabilize PM interactions, 

indicating that ROP and PtdIns P-K (with the production of PIP2) could form a positive 

feedback loop that enhances recruitment of ROP to the pollen PM tip and strengthens ROP 

PM (lipid raft) interactions [66]. These results imply that ROP regulates several downstream 

processes during polar growth of pollen tubes. 

Sexual reproduction in flowering plants requires precise pollen tube guidance towards the 

ovule. Increasing evidence points towards chemotropism as a way of guiding the growing 

pollen tube. Sporophytic cells inside the pistil are believed to produce molecules 

(morphogens) that attract or repel the growing pollen tube, and in the final stages, guidance is 

controlled by the female gametophyte [83]. Characterization of the interaction between the 

cytoplasmic domain of pollen specific receptor protein kinase (PRK) and the PRONE domain 

of ROPGEFs gives an insight into how ROPs may initialize and maintain cell polarity [40, 

84]. PRKs are thought to bind extracellular ligands (morphogens) originating from 

surrounding sporophytic tissues. Upon ligand binding, the cytosolic domain recruits and 

possibly phosphorylates the C-terminal domain of ROPGEFs, which results in exposure of the 

catalytic domain of the ROPGEFs. Subsequently, ROPs are activated and accumulate at a 

distinct region of the cell membrane, possibly towards an increasing gradient of ligands that 

will direct tube growth [40, 83]. Another ROP-associated protein involved in polar cell 

growth is the scaffold-like protein ROP Interactive Partner 1 (RIP1/ICR1). In mature pollen, 

RIP1/ICR1 localizes to the nucleus. Upon pollen hydration, RIP1 re-localize from the PM to 

the cell cortex at the future pollen tube initiation site. RIP/ICRs contain a C-terminal ROP 

binding motif, and bind and target cytosolic ROP to the PM of the tube initiation site. 

Overexpression of RIP1/ICR1 leads to depolarized growth similar to ROP1 overexpression, 

possibly by (over)recruiting ROP to the PM. Therefore, RIP1/ICR1 may in part function as a 

ROP regulatory protein during pollen tube growth through positive feedback regulation of 

ROP localization to the PM. The mechanisms that mediates the re-localization of RIP1/ICR1 

from the nucleus to the the PM of the tube initiation site are not known [85].  

Maintaining polarized growth involve ROPGEF proteins and other ROP regulatory proteins. 

The Arabidopsis ROP PH-GAP named REN1 is localized to exocytic vesicles and the PM tip 

in growing pollen tubes. T-DNA knockout of REN1 resulted in enhanced depolarized growth 

of pollen tubes similar to overexpressing constitutively active AtROP1. REN1 inhibits lateral 

spreading of ROP1 in the PM, thereby restricting the distribution of activated ROP1 to the 

pollen tube tip. Localization of REN1 at the tip is dependent on ROP1 signaling targets such 
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as the actin cytoskeleton and exocytic vesicles, thereby forming a negative feedback loop of 

ROP1 signaling [52]. Interestingly, the PH-domain of REN1 may bind PIP2 to localize REN1 

to ROP signaling complexes on lipid rafts at the pollen tube tip, which could enhance spatial 

specificity. 

Transient overexpression of NtRhoGDI2 in tobacco pollen resulted in tube growth being 

inhibited by transferring inactivated NtROP5 from the flanks of the growing tip into the 

cytosol. Cytosolic inactivated ROP is further thought to be recycled towards the apex of the 

tip [86]. Thus both ROPGAP and ROPGDI play an important role in restricting ROP (spatial) 

activity and accumulating ROP to the pollen tube tip.  

It has been demonstrated that ROPs regulates actin structures at the tip during growth. The 

actin cytoskeleton in wild type pollen tubes consists of thick longitudinally oriented actin 

bundles and fine filamentous (F-actin) structures towards the growing tip. Transient 

overexpression of constitutively active ROP in Arabidopsis pollen tubes resulted in thick 

transverse helical actin bundles, whereas dominant negative AtROP resulted in finer, less 

organized actin filaments. These observations imply that the dynamics of apical F-actin is 

dependent on ROP regulation during polar growth [82, 87]. It was later discovered that ROP1 

controls the F-actin dynamics through balancing two counteracting pathways by interacting 

with a novel family ROP effectors termed RICs (ROP-interactive CRIB containing 

proteins)[88]. These proteins share a conserved CRIB, domain but there is little sequence 

homology outside this domain. In Arabidopsis, the RIC family consists of 11 members that 

are considered to be ROP effectors that link active ROPs to various downstream processes in 

plants [89]. In pollen tube tips it was demonstrated that ROP1 interacts with either RIC3 or 

RIC4 to promote Ca2+-mediated actin disassembly and actin assembly, respectively. The 

ROP-mediated balanced regulation of the two opposing pathways downstream of RIC3 and 

RIC4 is proposed to be crucial for temporal regulation during tip growth [88]. Pollen tubes 

grow in an oscillatory manner; ROP1 activity precedes the growth phase during tip growth by 

interacting with RIC4 which facilitates F-actin assembly. F-actin assembly is thought to be 

important for accumulation of vesicles containing PM and cell wall materials for the 

expanding tip. Paradoxically, the F-actin may function as a barrier that prevents fusion of 

vesicles to the PM. RIC3-mediated Ca2+ influx lags behind RIC4-mediated actin assembly, 

which is possibly due to a longer or slower signaling cascade compared to the ROP1/RIC4 

pathway. The RIC3-mediated increase in cytosolic Ca2+ generates a tip-focused Ca2+ gradient 

which ultimately results in F-actin disassembly and docking/fusion of vesicles to the PM. The 

two opposing pathways most likely affect (feedback) ROP1 activity and may cooperatively 
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set the pace for tip growth oscillation [90]. Proteins that act downstream of RIC3 and RIC4 to 

regulate Ca2+ influx and F-actin assembly in pollen tube growth remains to be indentified. 

As mentioned earlier (page 30), Rac and CDC42 GTPases in mammalian cells regulate actin 

nucleation by activating ARP2/3 through WAVE and WASP proteins respectively. In 

Arabidopsis, both WAVE and ARP2/3 orthologs are present, and several ROPs have been 

shown to interact directly with WAVE proteins [91]. However, none of the 5 WAVE paralogs 

in Arabidopsis are noticeably expressed in pollen (data from the Arabidopsis eFP Browser 

[58]), suggesting that WAVE/ARP2/3 does not mediate actin nucleation during pollen tip 

growth. Formins, which are another group of actin nucleating proteins regulated by Rho 

GTPases in animals, also exists in plants. In Arabidopsis, at least 21 formin like proteins exist 

and 6 formins are expressed in mature pollen [92]. Interestingly, overexpression of 

Arabidopsis formin homology 1 (AFH1) in tobacco pollen tubes lead to depolarized growth 

by formation of thick actin cables protruding from the tip PM into the cytosol [93]. AFH5 has 

been shown to mediate actin assembly from the sub-apical PM that provides actin filaments 

for vesicular transport [94]. However, it remains to be demonstrated if ROP (possibly through 

RIC4) modulate F-actin formation through formins.  

A study on actin binding protein 29 (ABP29) in lily pollen tubes showed that ABP29 binds 

and fragments F-actin in the presence of Ca2+, whereas PIP2 inhibits this process. 

Overexpression of ABP29 in lily pollen tubes lead to tube growth inhibition by disrupting the 

actin cytoskeleton, possibly in a Ca2+-dependent manner. Therefore it is not unlikely that 

ABP29 could act downstream of ROP1/RIC3 signaling during growth [95]. 

It has been shown that ROP GTPases in rice (Oryza sativa) bind and activates NADPH 

oxidases [96]. The formation and accumulation of reactive oxygen species (ROS) at the 

pollen tube tip is important for pollen tube growth [97]. In root hair cells, ROS are thought to 

activate Ca2+ channels that are important for the formation of a tip-focused Ca2+ gradient [98], 

which may be the case in pollen tubes as well. Research has also shown that Ca2+ activates 

NADPH oxidases in pollen and root hairs, possibly forming a positive feedback loop to fortify 

the tip-focused Ca2+ gradient [97, 99]. Interestingly, a recent study on NADPH oxidases in 

Picea meyeri (Meyer spruce) pollen showed that NADPH oxidases partly localize to DRMs in 

the pollen tube tip and that NADPH activity is dependent on the micro-domain sterol 

composition. Chemically induced sterol sequestration in growing pollen tubes led to 

dissipation of the Ca2+ gradient and arrested further growth. The recruitment of ROP and 

NADPH oxidase to PM lipid rafts in the pollen tube tip, may therefore be spatially important 

in forming a ROS gradient that in turn facilitates a tip-focused Ca2+ gradient [100]. 
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Root hair cells have also been used as a model to study polar growth in plants, and not 

surprisingly, ROP signaling is also involved during root hair initiation and elongation. 

Immunolocalization of ROP4 and ROP6 in roots showed that ROP localize to growth sites 

before budding of root hairs in the PM of trichoblasts (root hair forming cells), indicating that 

ROP have a role in root hair initiation. Unlike pollen tip growth, a tip-focused Ca2+ gradient is 

not present during budding of root hairs, suggesting that ROP localization is independent of a 

Ca2+ gradient. Overexpression of constitutively active ROP 4/6 lead to tip swelling and 

delocalized Ca2+ gradients, indicating that ROP alone is not enough to establish a Ca2+ 

gradient in root hairs [101]. Accumulation of ROS is also important during root hair 

development, as Arabidopsis with disruption of an NADPH oxidase (AtRbohC/RHD2) shows 

defects in root hair growth. ROS accumulation is thought to mediate Ca2+ influx through PM 

Ca2+ hyper-polarization channels [98]. Ca2+ has been demonstrated to stimulate NADPH 

oxidase activity, thereby forming a positive feedback loop fortifying the Ca2+ gradient and 

maintaining the polarity [99]. Arabidopsis ROP2 affects ROS production in root hairs through 

indirect activation of RBOHC/RHD2. Overexpression of WT or CA ROP2 increased ROS 

production, which is decreased in DN ROP2 plants [102]. Cumulatively, these results imply 

that the formation of ROS by NADPH oxidase activity is dependent on ROP regulation 

during root hair growth. In support of this hypothesis, it was discovered that rhoGDI1 mutant 

plants were unable to spatially restrict ROP activity leading to depolarized growth and 

enhanced ROS production in trichoblasts [103]. 

 

ROPs and diffuse cell growth 
 

In contrast to pollen tube and root hair growth, epidermal cells like trichomes and leaf 

pavement cells exhibit diffuse growth to increase cell surface by remodeling specific regions 

of the cell wall [80]. Mature Arabidopsis pavement cells form a jigsaw puzzle-like pattern in 

leaves, where lobes protruding from one cell fit into groves between lobes of neighboring 

cells. During initiation of lobe formation, AtROP2 localize to the specific regions in the PM 

from where the lobe will expand, and persists in the PM during lobe formation. 

Overexpression of CA AtROP2 leads to isotropic growth (analogous to depolarized growth in 

pollen), whereas overexpression of DN AtROP2 inhibited lobe expansion. Early stages of 

lobe expansion are associated with localized formation of F-actin in the cortical region of the 

expanding site. DN ROP overexpression inhibites cortical F-actin formation, indicating ROP 
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also has an important role during diffuse growth [104]. Unlike polar growth in pollen and root 

hairs, the downstream actors of ROP mediated F-actin nucleation has been identified in 

pavement cells and trichomes.  

Trichomes are non-functional unicellular structures that protrude from the leaf epidermis and 

consist of a stalk with three pointed branches. The distorted class of Arabidopsis mutants 

display deformed trichomes due to abnormal F-actin organization [105]; all of these mutants 

have defect genes encoding components of the WAVE or Arp2/3 protein complexes. The 

distorted group of mutants also shows cell morphogenesis defects in cell expansion and cell 

adhesion, which is visible in pavement cells, hypocotyl cells and in some cases in root hair 

cells [106-108].  

A mutant defective in SPIKE1, a plant ortholog of the Dock180 GEF domain, also displays 

deformed trichomes as well as an inability to form lobes in leaf pavement cells. The spike1 

mutants are defective in both microtubule and actin organization, and homozygous plants are 

unable to develop seeds [43]. SPIKE1 has GEF activity towards ROP and research has shown 

that there is a morphogenic pathway where SPIKE1-ROP regulates actin dependent 

morphogenesis through the WAVE and Arp2/3 complexes [44]. In addition to activation of 

ROP, SPIKE associates with WAVE complex components such as NAP1 and SRA1 to 

possibly achieve increased specificity [44]. Interaction between SPIKE1 and the WAVE 

complex has also been demonstrated through yeast two-hybrid and bimolecular fluorescence 

complementation (BiFC) experiments [91]. 

All the distorted mutant alleles as well as the spike1 mutant alleles, are transmitted through 

the male gametophyte and thus demonstrates that the SPIKE1-ROP-WAVE-Arp2/3 

morphogenic pathway is not essential during pollen tip growth [66].  

RICs are also proposed to be downstream effectors of ROPs during pavement cell 

morphogenesis. ROP2 and ROP4/6 interact with RIC4 and RIC1 respectively to regulate 

formation of the jigsaw puzzle shape of pavement cells. ROP2 and RIC4 mediate F-actin 

formation during lobe expansion, whereas AtROP4/6 bind to RIC1, which associates 

microtubules and promotes the formation of ordered cortical microtubule arrays in non 

expanding areas of the cell. The spatial organization and countersignaling of these two 

pathways is responsible for the interdigitating (jigsaw puzzle appearance) cell growth of 

pavement cells [109-110].   

Research in the last decade has clearly demonstrated that ROP signalling regulates F-actin 

dynamics during tip growth, as well as both F-actin dynamics and microtubules ordering 

during diffuse cell expansion. There are still unresolved questions regarding ROP mediated F-
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actin nucleation. What proteins mediate F-actin dynamics during tip growth and how do these 

proteins link to ROP and RIC signaling? What is downstream of the RICs? During diffuse cell 

expansion the SPIKE1-ROP-WAVE-Arp2/3 pathway is important for F-actin formation, but 

parallel to this is the ROP2-RIC4 pathway which also is instrumental in diffuse cell expansion. 

It will be interesting to see how ROPs regulate the two pathways correlatively and 

understanding the relationship between them. 

 

ROPs and membrane trafficking  
 

In addition to binding to ROP, the RIP1/ICR1 (interactor of constitutively active ROP1) also 

recruits SEC3, a component of the exocyst complex whose function is to spatially localize and 

tether post golgi vesicles to the PM [111]. RIP1/ICR1 consists of mostly coiled coil domains 

and shares some similarity to ROCK1 (Rho associated coiled coil making protein kinase). 

RIP1/ICR1 forms homo-oligomers that can interact with both group I and group II ROPs in 

the PM. However PM association with ICR is dependent on ROP lipid modification. 

Importantly RIP1/ICR1-ROP can recruit SEC3 of the exocyst complex and co-localize to the 

PM. RIP1/ICR1 may therefore function as scaffold that mediates interaction between ROP 

and the exocyst complex. On the other hand, overexpression of CA-ROP11 led to swollen 

root hairs that were incapable of endocytosing FM4-64, a tracer used to visualize endocytotic 

membrane internalization, suggesting that ROPs also are involved in endocytosis [112].  

Based on these observations, it is likely that ROPs play a role during both endocytosis and 

exocytosis, and that these processes are linked to maintaining cell polarity during cell growth. 

Notably RHO/CDC42 GTPases in yeast and animals are also involved in regulating subunits 

of the exocyst complex [113-115] and that this mode of regulation is evolutionary conserved 

process. 

 

ROP/RACs in disease resistance 
 

An AtROP9 ortholog in rice, OsRAC1, is a component of the innate immunity response in 

rice by regulating ROS production. Overexpression of CA-OsRAC1 leads to increased ROS 

production and increased resistance to blast fungus and bacterial blight [116]. The increase in 

ROS production is mediated by an NADPH oxidase that binds to OsRAC1 through its N-

terminus [96]. Cinnamoyl-CoA reductase 1 (OsCCR1) is another effector regulated by 
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OsRAC1 during pathogen infection in rice. OsCCR1 catalyzes the first step of the monolignol 

pathway. Monolignols are polymerized to lignin by peroxidases using H2O2. Thus, OsRAC1 

regulate two important elements during lignin synthesis. Lignin synthesis is induced at the 

pathogen infection site due to its resistance towards microbial degradation, and deposits may 

reinforce the cell wall [117]. GTP-bound OsRAC1 also interacts with an ortholog of human 

Receptor for Activated C-kinase 1 (RACK1). OsRAC1 activates RACK1, and overexpression 

of RACK1 results in increased ROS production and enhanced resistance to blast fungus and 

bacterial blight. RACK1 interacts with NADPH oxidase and several other proteins involved in 

OsRAC1-mediated immunity and may therefore functions as a scaffold protein for OsRAC1 

signaling [118]. Interestingly, both OsRAC1 and RACK1 relocate to DRMs after chitin 

elicitor treatment, suggesting that OsRAC1-mediated innate immunity responses are 

associated with lipid rafts in the PM [119]. Recently it was also discovered that OsRAC1 

binds to and is activated by PIT, a Nucleotide-binding domain and Leucine-rich Repeat 

(NLR) family protein that recognizes pathogen derived molecules from rice blast fungus 

[120]. In summary, it seems clear that OsRAC1 is a central component in mediating innate 

immunity responses in rice (monocots). In Arabidopsis, however, it remains to be discovered 

if ROPs regulate similar pathways during pathogen attack. ROP4 interacts with and possibly 

activates the ROP binding kinase1 (RBK1) which shows elevated expression during pathogen 

exposure, suggesting that ROPs may be involved in pathogen defense in some way, although 

the stimulating ligand for RBKs is still unknown and downstream kinase targets remains to be 

identified [62].  

ROPs and plant hormone responses 
 

The plant hormone abscisic acid (ABA) is involved in regulating several growth and 

developmental responses like seed dormancy, stomatal movement and stress responses [121]. 

A rop10 T-DNA mutant showed increased seed dormancy, shorter root growth and increased 

stomatal closure in response to ABA treatment, suggesting that AtROP10 is a negative 

regulator of ABA responses. Overexpression of CA ROP10 and DN ROP10 lead to reduced 

and increased sensitivity towards ABA, respectively [122]. However, transcriptome analysis 

of the rop10 mutant showed that ROP10 only affects a subset of genes at moderate levels of 

ABA exposure and that ROP10 does not directly regulate any major ABA pathways in 

Arabidopsis [123]. These results indicate that ROPs have a more indirect role in ABA 

signaling in Arabidopsis. 
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Auxin (IAA) is another plant hormone that regulates several cellular processes and 

developmental processes in plants [124]. Overexpression of ROP1, ROP3, ROP6 and ROP10 

in tobacco protoplasts lead to auxin-responsive gene expression both in the absence and 

presence of exogenous auxin. Similarly overexpression of CA-NtRAC1 or DN-NtRAC1 in 

tobacco plants resulted in increased and decreased auxin responsive gene expression 

respectively. ROP GTPases therefore seem to regulate a pathway that mediates the auxin 

signal into a gene response [125].  

The rip1/icr1 T-DNA mutant displays phenotypes that are similar to phenotypes caused by 

aberrant auxin distribution [126]. The PINFORMED (PIN) proteins are localized to the PM 

where they act as auxin efflux carriers. They have polar PM localization which is required for 

the directional flow of auxin in cells and tissues [127]. RIP1/ICR1 itself is induced by auxin 

and in the rip1/icr1 mutant, PIN1 and PIN2 localization was compromised, suggesting that 

RIP1/ICR1 together ROPs is required for PM recruitment and polar localization of PIN 

proteins. Therefore it is not unlikely that RIP1/ICR1 function as a scaffold protein in various 

ROP regulated processes [128]. It was recently demonstrated that the plant hormone auxin is 

an instrumental regulator of cellular interdigitation in pavement cells. Auxin-binding protein 1 

(ABP1) acts upstream of ROP GTPase signaling events and in a coordinated fashion lead to 

the subsequent activation of both ROP2 and ROP4 countersignaling pathways [129]. 
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The MIRO GTPases 
 

The relatively recently discovered mitochondrial Rho GTPases or MIRO constitute a distinct 

family within the Ras superfamily. Research has demonstrated that these proteins regulate 

both mitochondrial movement and morphology in various eukaryotic cells [reviewed in 5, 

130]. 

MIRO GTPases are not found in Entamoebidae and Parabasalia, which may not be surprising 

considering the fact that these organisms lack mitochondria. However, MIRO GTPases are 

not present in haptophyceae that contain mitochondria, which indicate that MIRO GTPases 

are not required in some forms of eukaryotic life (Paper II).  

As previously mentioned, MIRO GTPases were discovered through a search for Rho GTPases 

consensus motifs. The N-terminal GTPase domain shares some similarities with other Rho 

GTPases and was therefore classified as such [2]. But MIRO GTPases lack the Rho defining 

insert helix and also differ from other Ras superfamily GTPases by containing two G domains 

separated by two Ca2+ binding EF-hand motifs (Figure 10 A). MIRO GTPases localize to the 

outer membrane of mitochondria with the MIRO GTPase facing towards the cytosol. 

Association to the mitochondrial membrane is achieved through a C-terminal transmembrane 

domain (TM) which does not undergo any post-translational lipid modification like most 

other Ras superfamily GTPases (Figure 10 B) [2, 131]. Based on both functional roles and 

structure, MIRO GTPases are currently considered to form their own family within the Ras 

superfamily [3]. 

 
Figure 10: A) Miro GTPase domain organization. B) Miro GTPases are localized to the outer 
mitochondrial membrane through a trans-membrane motif with the G domains facing the cytosol. 
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MIRO GTPases and mitochondrial movement along microtubules 
 

Mitochondria are a major constituent of the eukaryotic cells cytosol and are essential in 

energy formation through the production of ATP. In addition, mitochondria are also important 

for calcium buffering and during apoptosis. Mitochondria are highly motile and remarkably 

plastic organelles which can also fuse with one another (fusion) or divide (fission).  

In nerve cells, mitochondria accumulate in axons and dendrites which correlate to the energy 

demands at these sites. Energy is needed to pump ions against their electrochemical gradient 

in order to maintain both action and synaptic potentials. These sites are often far from the 

central region of the neuron called soma, where the mitochondrial biogenesis occurs. 

Mitochondria are transported long distances from the soma through axons into dendrites and 

synaptic domains. For example motor neurons in the human body are up to 1 m in length. In 

metazoan cells long distance transport occurs via motor proteins that transport mitochondria 

along microtubules, whereas the actin cytoskeleton is important for short distance movement 

and tethering of mitochondria. Kinesin motor proteins facilitate anterograde transport towards 

the plus end of microtubule away from the cell body to distal parts of the cell, whereas dynein 

motor proteins facilitate retrograde transport in the opposite direction. Observed deficiencies 

in both mitochondrial transport and plasticity associated with neurological diseases such as 

Alzheimer, Parkinson, Huntington and Charcot-Marie-Tooth disease, underline the 

importance of mitochondrial dynamics in neurons [reviewed in 132, 133-134].       

 

 

Homozygous EMS-induced mutations in the Drosophila MIRO (dMIRO) ortholog resulted in 

larvae with reduced crawling capabilities that eventually died. In muscle cells and neurons of 

the dmiro mutant, mitochondria showed abnormal distribution; mitochondria in neurons were 

not transported into dendrites and axons, but aggregated in neuronal soma instead. These 

results suggested that dMIRO is responsible for anterograde kinesin mediated transport of 

mitochondria and distribution in neurons [135]. In support of these findings, Glater and co-

workers [136] demonstrated that dMIRO interacts with the adaptor protein MILTON, which 

recruits Kinesin-1 heavy chain (KHC) to mitochondria. dMIRO and MILTON most likely 

form a protein complex that through KHC facilitates anterograde movement of mitochondria 

along microtubules. These findings also suggested that MIRO may function as a regulatory 

switch in mitochondrial transport, based on the fact that MIRO contains two EF-hands 

flanked by two G domains [136]. However, co-immunoprecipitation experiments showed that 
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the mammalian MILTON like proteins GRIF-1 and OIP106 bind the N-terminal G domain 

and that these interactions are independent of both the nucleotide state of the G domain and 

the Ca-binding capabilities of the EF-hands. These findings suggested that the N-terminal 

MIRO G domain facilitates protein-protein interaction [131]. The results also indicated that 

the MIRO GTPases may not use the nucleotide state discriminately during protein-protein 

interaction, but rather that both the nucleotide state and EF-hands may be important for 

modulating the protein complex activity. It should also be mentioned that there so far has not 

been reported findings of any regulating proteins like GAPs, GEFs or GDIs associated with 

MIRO GTPases. How the nucleotide states of the MIRO G domains are regulated warrants 

further investigation.  

Saotome and colleagues [137] showed that overexpression of human MIRO1, MIRO2, CA-

MIRO1, CA-MIRO2 and MIRO EF hand mutants in H9c2 cardiac cell cultures lead to 

increased anterograde and retrograde mitochondrial movement, whereas silencing of MIRO 

expression had the opposite effect. The study also demonstrated that MIRO-based 

mitochondrial motility was Ca2+-dependent and that a rise in cytoplasmic Ca2+ concentration 

above resting levels (> 100 nM) arrested mitochondrial movement in WT-MIRO1&2 and CA-

MIRO1&2 overexpressing cells. On the other hand, overexpression of MIRO EF mutants and 

DN-MIRO1&2 partially suppressed Ca2+-induced mitochondrial arrest above calcium resting 

levels. These findings demonstrated that MIRO functions as a Ca2+-sensitive switch that 

facilitates mitochondrial motility along microtubules when calcium levels are maintained at 

resting level and that the EF-hands and the nucleotide state of the G domain are important for 

MIRO mediated arrest [137].  

An experimental setup where hMIRO was overexpressed in hippocampal neurons led to 

increased mitochondrial transport into peripheral parts of the neuron. The mitochondrial 

transport was shown to be mediated by GRIF-1/hMIRO interaction, and disrupting the kinesin 

binding domain of GRIF-1 resulted in inhibition of transport. In contrast to earlier findings by 

Fransson and colleagues [131] it was shown that the recruitment of GRIF-1 to MIRO is 

dependent on the nucleotide state of the N-terminal G domain. Co-expression of Grif-1 with 

WT hMIRO and DN-hMIRO (N18) resulted in recruitment of GRIF-1 to mitochondria, 

whereas CA-hMIRO (V13) was incapable of recruiting GRIF-1 to mitochondria. In addition, 

expression of CA-hMIRO in neurons led to reduced transport of mitochondria into peripheral 

parts of the neurons and aggregation of mitochondria in the cell soma [138]. Further 

investigations showed that glutamate receptor-mediated calcium influx in rat hippocampal 

neurons recruited mobile mitochondria to and retained them at synaptic regions. However, 
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cells expressing MIRO EF-hand mutants did not respond to calcium influx mediated by 

activation of glutamate receptors. The same study showed that hMIRO is capable of binding 

Kinesin-1 directly in a Ca2+-dependent manner, where elevated intracellular levels of calcium 

disrupted this interaction. In contrast, GRIF-1 was shown to bind to hMIRO in a Ca2+-

independent manner. The hMIRO/Kinesin-1 interaction may be partially mediated and/or 

modulated by GRIF-1, since all three components are necessary for mitochondrial movement. 

These findings suggest that during neuronal activity, hMIRO assists in localizing 

mitochondria close to postsynaptic membranes to provide ATP and facilitate calcium 

buffering. Elevated Ca2+ concentrations disrupts the hMIRO/GRIF-1 and Kinesin-1 

interaction and uncouples mitochondria from motor proteins, thereby allowing mitochondria 

to accumulate at these intracellular microdomains (Figure 11 A) [139]. 

In contrast to these findings, it was shown that dMILTON functions as the sole link between 

hMIRO and Kinesin 1 ectopically expressed in rat hippocampal neurons. Ca2+-mediated arrest 

of mitochondria in this experimental setup suggested that the Kinesin-1 motor domains 

interact with MIRO in a Ca2+-dependent manner, rather than dissociating from the 

MIRO/dMILTON complex during Ca2+-mediated arrest (Figure 11 B). Also in this 

experimental setup, mitochondrial arrest was dependent upon functional EF-hands [140]. 

However since MILTON shares only 35% similarity with GRIF-1, the different interaction 

between hMIRO/dMILTON, hMIRO/GRIF-1 towards Kinesin-1 in these separate studies 

may reflect a general difference between invertebrates and mammals [139]. 

A common denominator for the studies by Saotome et al. [137], MacAskill et al. [139] and 

Wang and Schwarz [140] is that MIRO functions as a Ca2+-dependent switch that regulates 

mitochondrial arrest of both anterograde and retrograde transport through its EF-hands.  

A closer investigation of bidirectional mitochondrial transport in Drosophila motor axons 

showed that loss of dMIRO activity reduced the effectiveness of both anterograde and 

retrograde mitochondrial transport, depending on the net directional transport of mitochondria.  

Mitochondria move in a “preprogrammed” anterograde or retrograde direction and results 

suggests that dMIRO executes the directional programming that favors one motor activity 

over the other (kinesin vs. myosin). How preprogramming of mitochondrial movement is 

achieved is largely unknown. However, loss of dMIRO function did not affect this directional 

preprogramming and the experimental results suggested that dMIRO facilitates the duration 

and distance of both antergrade kinesin motor movements and retrograde dynein motor 

movement of mitochondria. In addition, loss of dMIRO function increased the duration of 

short stationary phases during net movements in either direction. Overexpression of dMIRO 
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also had negative effects on bidirectional transport similar to loss of function in dMIRO. In 

contrast to dmiro null mutants, overexpresssion of dMIRO led to increased reversal of 

movements from antergrade to retrograde or vice versa. The duration of short stationary phase 

was however unchanged. These findings suggest that the observed defects in mitochondrial 

transport in the overexpressing mutant are due to increased rate of direction reversals, which 

was not the case for dMIRO null mutants. Thus, overexpression of dMIRO may reflect a 

titration effect that recruits factors that overrides the directional preprogramming of 

mitochondria. These results are in contrast to findings in mammalian cells, where 

overexpression of MIRO results in increased mitochondrial movement, and may also reflect a 

difference between invertebrates and mammals [141].  

 

 
Figure 11: MIRO GTPases mediate mitochondrial transport in Metazoa. A) A model depicting Ca2+-
dependent mitochondrial transport in mammals. Upon increased intracellular calcium levels, Ca2+ ions 
binds to the MIRO EF-hand motifs, resulting in dissociation of Kinesin from the MIRO/GRIF complex 
which arrests mitochondrial movement [139]. B) In contrast to mammals, the dMIRO/MILTON/Kinesin 
complexes in invertebrates remain associated after Ca2+ binding. The binding of Ca2+ to dMIRO results in 
a shift of affinity for the Kinesin motor domains, from microtubules to the MIRO GTPase. This change in 
affinity leads to arrest of mitochondrial transport [140]. In both mammals and invertebrates, MIRO 
functions as a calcium sensor during mitochondrial transport. The figure is modified from Reis and 
colleagues [5].  
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A recent study show that Mitofusin2 (Mfn2) interacts with the hMIRO/GRIF1 complex to 

mediate axional transport. The Mitofusins are dynamin family GTPases that are involved in 

mitochondrial fusion. A dominant negative inherited point mutation in Mfn2 is known to be 

the cause of axonal Charcot-Marie-Tooth disease (CMT2A). Experiments show that Mfn2 in 

addition to playing a role in mitochondrial fusion, also is involved in mediating mitochondrial 

transport. Immunoprecipitation studies showed that Mfn2 binds to both hMIRO and 

OIP106/GRIF1, but not Kinesin. Importantly, loss of function in Mfn2 and CMT2A 

mutations in Mfn2 led to alterations in mitochondrial movement patterns. Both Mfn2-/- and 

CMT2A mutations resulted in slower mitochondrial movement and increased the duration of 

short stationary phases. These results suggests that Mfn2 together with hMIRO and 

OIP106/GRIF1 forms a complex that mediates mitochondrial transport through interaction 

with both kinesin and dynein motor proteins [142]. 

These findings clearly show that MIRO complexes facilitate bidirectional movement of 

mitochondria in both invertebrate and mammalian cells. However, little is known about how 

the direction is changed. Another unresolved question is whether, MIRO is in some way 

involved or regulated during this process or if it is the activity/availability of motor proteins 

that facilitates the directional change. Interestingly, a recent study reported findings of a novel 

hMIRO-interaction protein named HUMMR (Hypoxia Up-regulated Mitochondrial 

Movement Regulator), which is expressed in neurons and up-regulated during hypoxia. Loss 

of HUMMR function during hypoxia reduces the number of mitochondria in axons and 

reduces the number of mitochondria moving in the antergrade direction, whilst the number of 

mitochondria moving in the retrograde direction increases. Thus, HUMMR biases the net 

mitochondrial movement in an anterograde direction during hypoxia. HUMMR was also 

shown to recruit GRIF-1 to mitochondria, which may enhance kinesin motor recruitment, 

subsequently resulting in increased anterograde transport [143]. These results suggest that the 

MIRO/GRIF1 complex may be modulated by other factors to enhance or decrease both 

kinesin and dynein binding to change the direction of mitochondrial movement. 

 

Miro and mitochondrial morphology 
 

Mitochondria are highly plastic organelles that are able to change their morphology 

depending on intracellular conditions and needs. Mitochondria in many cell types fuse and 

divide by fission and fusion mechanisms in a highly controlled manner. The tightly regulated 
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balance between fission and fusion events does not only regulate size and number of 

mitochondria, but also their function and distribution. Mitochondria can form tubular 

networks through fusion to facilitate exchange of mitochondrial content; mitochondria divide 

through fission events to facilitate transport of mitochondria into small dendrites. Alterations 

in mitochondrial fission and fusion mechanics have impact on neuronal function, and defects 

in the mitochondrial fusion/fission machinery are often associated with several neurological 

diseases [Reviewed in 144, 145].  

 

Overexpression of WT-hMIRO1 but not WT-hMIRO2 in mammalian cell lines resulted in 

formation of long threadlike mitochondria which was not formed when DN-hMIRO1 or EF-

hand mutants were overexpressed. In contrast, cells overexpressing CA-hMIRO1+/-

,MIRO2+/+ displayed perinuclear aggregation of mitochondria. Furthermore DN-hMIRO1 

showed a higher degree of collapsed mitochondrial network compared to WT-hMIRO 

overexpressing cells. CA or DN mutations in the C-terminal G domain however, showed no 

effect on mitochondrial morphology. These findings suggested that hMIRO have a role in 

regulating mitochondrial morphology. The observed aggregation or formation of threadlike 

mitochondria may be a result of increased fusion and/or decrease of fission events. There may 

also be some functional difference between hMIRO1 and hMIRO2 since hMIRO2 does not 

induce the formation of threadlike mitochondria. Results also demonstrated that the 

nucleotide state of the N-terminal G domain and the functionality of the EF-hands of hMIRO 

affects mitochondrial morphology [2, 131]. 

Similar results were obtained in H9c2 cells; hMIRO overexpression lead to the formation of 

long threadlike mitochondria and aggregation, whereas overexpression of DN-hMIRO or 

silencing of hMIRO lead to fragmentation and aggregation. Therefore, there seems to be a 

link between the availability and nucleotide state of hMIRO and the length of mitochondria. 

Further investigation indicated that under resting levels of Ca2+, hMIRO promoted elongation 

of mitochondria by possibly suppressing Dynamin-related protein1 (Drp1)-mediated fission 

events and/or recruiting fusion mediating proteins. This elongation was dependent on the 

nucleotide state of the N-terminal G domain and not the EF-hands. In resting cortical neurons, 

overexpression of hMIRO1&2 resulted in elongated mitochondria in dendritic regions, 

whereas overexpression of hMIRO1&2 EF mutants further increased mitochondrial length in 

the same regions of the neuron. These finding suggests that dendritic Ca2+ levels has an 

inhibitory effect on hMIRO mediated mitochondrial fusion events. Repeated depolarization of 

neurons (transient increase of cytosolic Ca2+) in WT-hMIRO overexpressing neurons resulted 
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in shorter mitochondria; importantly, overexpression of hMIRO-EF hand mutants repressed 

this shortening of mitochondria. These findings demonstrate that hMIRO mediates Ca2+-

dependent fragmentation of dendritic mitochondria and that this process is dependent on 

functional EF-hands. Thus, hMIRO functions as a Ca2+ sensitive switch that mediates 

fragmentation of mitochondria under cellular conditions where Ca2+ levels are above the 

resting level [137].  

In Drosophila, loss of function and overexpression of dMIRO also affected mitochondrial 

length in motor axons. Both anterograde and retrograde moving mitochondria were 

significantly shorter in the dmiro null mutant. In contrast, overexpression of dMIRO on the 

other hand significantly increased the length of anterograde moving mitochondria, whereas 

retrograde moving mitochondria were not significantly longer. These findings are indicative 

of dMIRO facilitating fusion or suppressing fission events of antergrade moving mitochondria. 

This observation may be caused by “new” anterograde moving mitochondria that fuse with 

“old” mitochondria to possibly ensure mitochondrial health. The velocity and kinetics of 

normally sized and elongated mitochondria were similar, suggesting that dMIRO-regulated 

morphology is independent from dMIRO-mediated transport [141].  

In conclusion, it has become evident that MIRO GTPases also are modulators of 

mitochondrial morphology besides being instrumental facilitators of mitochondrial transport 

in mammals and invertebrates. Thus, it is correct to state that MIRO GTPases have evolved to 

be an essential component in mitochondrial function.  

However, little is known about which components of the fusion/fission machinery MIRO 

modulates to alter mitochondrial morphology and the nature of this modulation. Interestingly, 

it was recently discovered that MIRO and OIP106 interact with mitochondria localized 

PTEN-induced putative kinase 1 (PINK1) and that loss of function of this gene is associated 

with inheritable Parkinson disease. In Drosophila and mammalian cells, it has been shown 

that dPINK genetically interacts with known components of the mitochondrial fusion/fission 

machinery. Overexpression of dPINK leads to increased fission and silencing results in 

increased fusion of mitochondria [146]. Notably, overexpression of both MIRO and OIP106 

restores mitochondrial morphology after PINK1 silencing, making MIRO and OIP106 a 

potential drug target for Parkinson treatment [147]. 

Thus, it seems likely that MIRO GTPases in mammals and invertebrates interacts with several 

proteins/pathways to modulate mitochondrial morphology by mechanisms that have not yet 

been fully investigated. 
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Loss of function in Gem1p, a yeast MIRO ortholog resulted in distorted mitochondrial 

distribution and morphology. The normal tubular network of yeast mitochondria was lost and 

over half the cells contained larger globular mitochondria that were not collapsed tubular 

mitochondria. The remainder of the gem1p cells displayed either collapsed tubular networks 

or clusters of smaller mitochondria. In contrast to hMIRO, not only the N-terminal G domain 

and EF-hands but also the nucleotide state of the C-terminal G domain of Gem1p is functional. 

Interestingly, the number of mitochondrial fusion and fission events was unchanged in mutant 

strains lacking known fission/fusion genes in addition to loss of function in Gem1p. These 

results suggest that Gem1p regulate mitochondrial morphology via a novel pathway in yeast 

[148]. Mitochondria in yeast are transported and organized along the actin cytoskeleton. This 

suggests that Gem1p function most likely is different compared to mammalian cells. Further 

studies showed that Gem1p is important for proper mitochondrial inheritance. However, 

Gem1p seem to act independently from other known components that are important for 

mitochondrial inheritance in yeast [149]. To date, no Gem1p interacting partner has been 

discovered, and a mechanism by which Gem1p regulates mitochondrial morphology is yet to 

be described. 
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MIRO in plants 
 

Compared to metazoan MIRO GTPases, relatively little functional information is published 

on plant MIRO GTPase orthologs. Arabidopsis MIRO was initially reported by Fransson and 

colleagues in 2003 [2], but since then only three publications have described functional roles 

for MIRO in Arabidopsis. Jayasekaran and colleagues reported in 2006 [150] the finding of a 

novel calcium-binding GTPase (AtCBG) that in fact is a MIRO GTPase (AtMIRO2). 

AtCBG/AtMIRO2 expression was found to be up-regulated by salt and ABA stress and 

AtCBG/AtMIRO2 knockout mutants were reported to be sensitive towards both salt and ABA 

treatment. To date, there have not been any publications that have further explored a possible 

link between AtMIRO and ABA stress.  

Yamaoka and Leaver described the three Arabidopsis MIRO orthologs in 2008 [151] and 

showed that two of the genes, MIRO1 and MIRO2, are ubiquitously expressed in all tissues 

and stages. A third MIRO GTPase, MIRO3, showed negligible expression rates in comparison. 

Like their counterparts in other species, plant MIRO GTPases attach to the outer 

mitochondrial membrane through a C-terminal transmembrane domain. Further investigations 

by Yamaoka and Leaver showed that embryos homozygous for T-DNA insertion in the 

MIRO1 gene arrested during early stages of development. miro1 pollen also showed reduced 

germination rates and impaired pollen tube growth, which resulted in reduced male genetic 

transmission of the miro1 allele. In addition genetic transmission through the female gamete 

was slightly reduced. During sporophytic stages of the lifecycle, miro1 T-DNA mutants 

showed no apparent defects. T-DNA inserion in the MIRO2 gene showed no apparent 

phenotypes in neither sporophytic nor gametophytic stages of the life cycle, leading the 

authors to suggest that MIRO2 plays no major role in plant development. 

A closer look into the evolution of MIRO GTPases in embryophyta shows that in dicots, 

MIRO1 and MIRO2 paralogs cluster into two distinct subgroups which probably originated 

due to a gene or genome duplication after the diversification of monocots and eudicots (Paper 

II). 

Since MIRO2, the paralog to MIRO1 seems to be conserved in dicots, the possibility that 

there may be some form of functional redundancy between the two genes arises. 

Investigations of Arabidopsis plants that were heterozygous for a T-DNA insertion in the 

MIRO1 gene and homozygous for T-DNA insertions in the MIRO2 gene showed that an 

additional loss of function in MIRO2 enhanced miro1 phenotypes (Paper II). 
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The miro1+/-,miro2-/- double mutant showed increased segregation distortion compared to the 

sole miro1 mutant (16.8 % vs. 57.1 %). The miro1+/-,miro2-/- mutant also showed increased 

gametophytic defects with siliques containing a larger number of unfertilized ovules (34.5 % 

vs. 7.2 %) and less aborted embryos (3.4 % vs. 17.4 %). Reciprocal crosses showed that the 

co-transmission of the mutant alleles through the male gametophyte was nearly absent 

(0.12 %) and severely reduced through the female gametes (34.7 %). The absent male co-

transmission of both T-DNA insertions shows that the formation of homozygous miro1 

embryos does not occur in the double mutant and therefore explains the absence of aborted 

embryos in the double miro mutant. Further investigations showed that male gametes carrying 

both T-DNA insertions (miro1/miro2) displayed reduced pollen tube growth compared to 

miro1 mutant pollen and were most likely unable to fertilize ovules. The presence of 

unfertilized ovules is therefore most likely a result of impaired female gametogenesis caused 

by miro1/miro2 alleles. Indeed, a larger number of embryo sacs from the double miro mutant 

showed delayed or defects in polar nuclei fusion compared to miro1 mutation alone. 

Interestingly, defects in polar nuclei fusion have been associated with knock-out of 

mitochondria targeted proteins [152-155]. 

Taken together, the observations from the miro1/miro2 double mutant show that Arabidopsis 

MIRO1 and MIRO2 are unequally functionally redundant genes. The MIRO1 gene is most 

likely the “ancestral gene” and has retained most of the function, whereas the MIRO2 paralog 

originated from a gene or genome duplication and has retained a fraction of the ancestral 

function. Therefore the true effect of loss of function in MIRO2 is only visible in a miro1 

background (Paper II).        

 

Naturally, one would suspect that plant MIRO GTPases have similar functional roles in 

mitochondrial transport and morphology as their yeast and metazoan counterparts. Yamaoka 

and Leaver [151] investigated mitochondrial morphology in pollen and discovered that miro1 

pollen contained enlarged mitochondria with an abnormal intracellular distribution. 

In addition to having abnormal size, a large portion of these mitochondria showed a tubular 

morphology. These abnormally sized and shaped mitochondria were motile and dependent on 

the actin cytoskeleton, suggesting that plant MIRO does not affect actin-dependent 

mitochondrial transport. However, the overall streaming of mitochondria during pollen tube 

growth in miro1 was disrupted compared to wild type tubes. Based on these observations the 

authors hypothesized that MIRO is an important regulator of mitochondrial morphology and 

distribution [151]. In a recent publication, Yamaoka and colleagues show that the cause for 
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the lethality in homozygous miro1 embryos is due to abnormal distribution of mitochondria 

during embryonic cell division. The mitochondria in the developing embryos were also 

enlarged in size. These findings further strengthens the role of MIRO as a regulator of 

mitochondrial morphology and distribution [156]. Further studies should be undertaken to 

discover MIRO-interacting proteins to elucidate the mechanisms by which MIRO regulate 

mitochondrial distribution and morphology.  

 

In tobacco protoplasts it was observed that mitochondrial transport is dependent on 

myosin/actin interactions, whereas cortical positioning is based on both F-actin structures and 

microtubule structures [157]. A closer investigation of organelle movement in lily pollen 

tubes showed that the density of mitochondria increases towards the tip; the highest density of 

mitochondria is found in the sub-apical region, whereas relatively few mitochondria reside in 

the apex of the pollen tube. Mitochondria stream towards the apex along the cortical 

cytoplasm, move inward toward the core of the tube in the sub-apical region and return from 

the apex in a reverse fountain-like pattern. In pollen tubes treated with an actin 

depolymerizing drug (latrunculin B), mitochondrial enrichment in the sub-apical region was 

lost and mitochondria relocated into the apex, emphasizing the role of the actin cytoskeleton 

in mitochondrial transport in plants. Drug-mediated disruption of microtubules on the other 

hand, did not alter mitochondrial streaming [158].  

These observations indicate that microtubules may be dispensable with regard to 

mitochondrial movement during pollen tube growth. However, both actin and microtubule 

dependent motor proteins are present on pollen tube mitochondria, suggesting that 

microtubule/kinesin interactions have functional roles. In vitro motility assays of 

mitochondria isolated from tobacco pollen showed that movement was slow and continuous 

along microtubules, but fast and irregular along actin filaments. Motility assays using both 

actin and microtubules resulted in net lower velocities, suggesting that microtubule/kinesin 

interactions affects the overall velocity of mitochondria [159]. In slight contrast to these 

findings, a recent in vivo study of mitochondrial movement in P. wilsonii pollen tubes using 

actin or microtubule drugs showed that mitochondrial movement mainly is driven by 

myosin/actin interactions and actin filament dynamics (tread milling). In contrast, 

microtubules were shown to have a more indirect role in mitochondrial velocities, trajectory 

and positioning by functioning as a scaffold directing the arrangement of actin filaments [160]. 

These differences may as well reflect differences between angiosperm and gymnosperm 



 49

pollen. The role of microtubule motors and organelle transport in pollen is not clear and 

warrants further investigation [reviewed in 161].  

The observation that functional kinesin motor proteins are present on plant mitochondria 

clearly suggests some sort of link to microtubules. It remains to be investigated whether plant 

MIRO interacts with kinesin to form a protein complex similar to what is found in Drosophila 

and mammals. Clear orthologs to MILTON and GRIF-1/OIP106 proteins are not present in 

plants [151], suggesting that if an interaction with kinesin occurs, it is either direct or possibly 

through a novel plant protein.  

Finally, one cannot rule out the possibility that plant MIRO GTPases have evolved to 

facilitate other mitochondrial events/functions than transport. The disruption of mitochondrial 

morphology and streaming in miro1 pollen tubes suggest that MIRO is involved in both 

fusion/fission and transport. However, this disruption of movement may be an indirect result 

of an imbalance between fusion and fission events rather than disrupted transport mechanics. 

If plant MIRO is involved in regulation of fission/fusion events, the observed reduced 

movement of mitochondria in the miro1 mutant may be a result of the transport machinery 

being incapable of transporting enlarged mitochondria. Similar observations have been 

reported for mitochondria in lymphocytes during chemotaxis. Lymphocytes relocate 

mitochondria to the uropod (posterior of the cell) during migration. In cells where a profission 

protein (DRP1) was down-regulated or pro-fusion proteins (Opa1, MFN1) were up-regulated, 

mitochondria were unable to relocate in the uropod. These observations indicate that the 

redistribution of mitochondria is dependent on a balance between fusion and fission events 

and that a shift in the balance towards fusion and enlargement of mitochondria interferes with 

mitochondrial transport [162]. 

 

Mitochondrial fusion and fission in plants 
 

The chondriome (defined as all the mitochondria within a cell) in higher plants usually 

consists of numerous discrete organelles that continuously go through fusion and subsequent 

fission events. The mtDNA in plant mitochondria exists as a discontinuous whole, 

necessitating regular fusion and fission events to provide mtDNA, mtDNA encoded mRNA or 

proteins to mitochondria that are not able to do so by themselves. It is therefore hypothesized 

that the maintenance of a partial genome in individual mitochondria forces fusion to occur 

and by doing so, the chondriome health is maintained. Fusion of plant mitochondria has been 
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documented by several research groups, but the molecular mechanisms that underlie fusion 

events to date are largely unknown. In contrast, plant mitochondrial fission events are 

regulated by components that are conserved in eukaryotes, as well as novel plant components 

[reviewed in 163, 164]. 

The plant genes BIGYIN/FISSION1B and FISSION1A are orthologs to the human and yeast 

FISSION1 (FIS1) genes and are targeted to both mitochondria and peroxisomes. Mitochondria 

and peroxisomes in fis1A/B knockout plants show an increase in size and a reduction in 

numbers per cell [165-167]. FIS1 orthologs bind to the outer mitochondrial membrane and 

facilitates the recruitment of Dynamin related proteins (DRPs), another evolutionary 

conserved component of the fission machinery. DRPs belong to the dynamin family of 

GTPases, and presumably form oligomers that are recruited to the outer mitochondrial 

membrane by FIS1. Once associated with FIS1 and the OMM, DRPs fully oligomerize and 

form a necklace-like structure around the mitochondria, and subsequent GTPase activity most 

likely constricts the DRP structure and causes fission of the mitochondria [reviewed in 134]. 

The Arabidopsis DRP3 orthologs (DRP3A and DRP3B) are targeted to both mitochondria and 

peroxisomes. In drp3A and drp3B knockout mutants mitochondria are only slightly enlarged 

and fewer in number, whereas in the drp3A/drp3B double mutant the mitochondria are 

elongated and forms networks. Overexpression of either DRP3A or DRP3B in the double 

mutant restored the WT morphology, suggesting that DRP3A and DRP3B are genetically 

partially redundant in function [168]. 

Thus, it is not unlikely that the evolutionary conserved role for MIRO in eukaryotes is 

regulation of mitochondrial morphology (Figure 12) rather than transport, which may be a 

function/role that MIRO has acquired in metazoan lineages. This notion is supported by the 

fact that silencing, overexpression or mutations in MIRO GTPases result in altered 

mitochondrial morphology in all model organisms investigated to date [reviewed in130]. 

This is further supported by Saotome and colleagues [137] who demonstrated that MIRO 

functions as a calcium sensitive switch that regulates mitochondrial fusion and fission 

dynamics. This process seems to involve regulation of the fission mediating dynamin-related 

protein 1 in humans. 

In some contrast to these observations and speculations, it was recently demonstrated that 

disruption of a D. discoideum (slime mold) MIRO ortholog gemA, resulted in no alteration of 

mitochondrial morphology. It was also shown that gemA is not involved in mitochondrial 

transport, but that disruption gemA function resulted in considerable growth defects due to a 

cellular decrease of mitochondrial mass and ATP levels [169].  
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Figure 12: A hypothetical model for putative MIRO-mediated mitochondrial fission in plants. Possibly, 
changes in intracellular calcium levels or activation of MIRO G domains may facilitate interaction with 
fission promoting proteins like the conserved FISSION1 (FIS) protein. After MIRO associates with FIS in 
the mitochondrial outer membrane the fission of mitochondria in plants most likely follows a more 
conserved pathway. Drp oligomers are recruited to the MIRO/FIS complex and a Drp necklace-like 
structure forms around the mitochondria. Constriction of the mitochondrion by the Drp necklace results 
in subsequent fission. The figure is modified from MacAskill and Kittler [134].  
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Concluding remarks 
 

Since their discovery in the early/mid nineties, research has revealed that the Rho GTPases in 

plants are involved as key regulators in several aspects of plant cellular processes. Having 

originated from an ancestral Rac GTPase, the Rho of plants as well as their regulators and 

possibly effectors, have steadily evolved in the kingdom of plants. The ROP structure is based 

on a conserved Rho G domain architecture but also contain structural elements that are most 

likely specific and of functional importance for ROPs. The PRONE domain-containing 

ROPGEF family, are proteins that are only found in plants and may also have evolved other 

functional aspects that remains to be discovered. Crystal structures of various forms of ROP 

interacting with the PRONE domain have revealed a universal mechanism for GEF nucleotide 

exchange that is relevant for all small GTPases.  

The role of ROPs during polar growth (pollen) and diffuse growth (pavement cells) have been 

studied extensively in the last decade. Results from these studies show that ROPs, like their 

metazoan counterparts, are instrumental regulators of the cytoskeleton during these cellular 

events. Plant-specific ROP regulators and effectors have been discovered, whose function is 

not yet fully understood, and co-crystals of ROP in complex with these proteins would further 

enlighten our understanding of ROP-mediated signaling.  

Recent research on post-translational modification of ROPs shows that S-acetylation is 

important for ROP activity and localization to DRMs or lipid rafts in the PM. These findings 

have added a new dimension to “ROP science” and will certainly be the basis for important 

discoveries in the future. The prospect of ROPs being a part of and possibly being 

instrumental in forming lipid rafts from which signaling events are mediated, is rather 

interesting and would certainly not only be of interest to the plant molecular biologist. Recent 

research have also identified upstream RLKs that activate a ROP signaling cascade and 

hopefully in the near future, a ROP signaling pathway will be indentified with all the 

components from receptor to intracellular response. The field of “ROP-science” is not by far 

completed, and there are several unsolved topics within the field to keep scientists occupied 

for years to come. 

 

The MIRO GTPases are relatively speaking the “new kids on the block”, and since the initial 

characterization of human MIRO GTPases by Fransson and colleagues in 2003, “only” 19 

scientific articles on MIRO function in Arabidopsis, Drosophila, yeast, slime molds and 

humans have been published. However, regardless of the number, these publications firmly 
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place MIRO as a central actor in mitochondrial transport and morphology in eukaryotic 

organisms. Most of the studies have focused on MIRO function in neuronal cells, 

demonstrating the important role of MIRO in mitochondrial transport and morphology in 

these cell types. The discoveries that hMIRO interacts with proteins that in mutated forms are 

associated with neurological diseases, has broadened the basic knowledge of the cellular 

mechanisms behind these diseases.  

In plants, on the other hand, only three MIRO papers have been published to date. In contrast 

to research on hMIRO and dMIRO, no plant MIRO interacting proteins have yet been 

discovered. However, it is evident that plant MIRO in some way affects fusion and/or fission 

events of mitochondria in plant cells as well. One possibility is therefore that the evolutionary 

conserved role for MIRO is regulation of mitochondrial morphology. In metazoan lineages, 

transport may have been acquired as an additional function for MIRO, or it may have been 

lost or plays a minor role in plants as a result of predominant actin/myosin based organelle 

transport. To shed light on plant MIRO functions, future investigations should therefore focus 

on isolating potential MIRO interacting proteins. When considering possible MIRO 

interacting proteins, it is worth noting that for each GTPase family within the Ras superfamily 

there is a conserved set of G domain regulatory proteins. Both guanine nucleotide exchange 

factors (GEFs) and GTPase activating proteins (GAPs) are reported for all families except 

MIRO GTPases. In this respect it would not be surprising if GEF- and GAP-like regulatory 

protein also exist for MIRO GTPases. The prospect of putative MIRO regulatory proteins in 

eukaryotes is certainly interesting and should warrant further investigation. Similarly to the 

ROP PRONE domain, the putative MIRO GEF and GAP proteins may have evolved domains 

that share little or no homology with known Ras superfamily regulatory domains. This may be 

a part of the reason for not having discovered such regulatory proteins yet, if any exists. 

However, it should also be mentioned that some of the mammalian Rho GTPases, like the 

Rnd, RhoH and RhoBTB GTPases are not regulated by GAPs and GEFs. They are GTPase 

deficient and are most likely regulated at the transcriptional and proteasome level rather than 

by GTP/GDP cycling. Recent MIRO/Gem1p research however, shows that MIRO GTPases 

have not adopted a similar mode of regulation. Instead, both G domains seem capable of 

binding and hydrolyzing GTP, but similarly to other RAS G domain this intrinsic activity is 

slow [170]. Consequently, the possibility that MIRO regulatory proteins may have evolved 

should be investigated. Much is still to be discovered about the role of MIRO GTPases in 

eukaryotes, and future research will enhance our understanding of the mechanisms and 

importance of mitochondrial dynamics in cellular life.    
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Abstract

Arabidopsis thaliana RAC/ROP GTPases constitute a plant specific Rho GTPase family in the RAS superfamily, which has been
implicated in numerous pivotal signalling cascades in plants. Research has shown that plants in some cases have evolved different modes
of regulating Rho GTPase activity as compared to the equivalent systems in animals and yeast. In order to gain structural insight into
plant signaling at the molecular level, we have determined the first crystal structure of a RAC-like GTPase belonging to the RAS super-
family from the plant kingdom. The structure of AtRAC7/ROP9 bound to GDP was solved at a resolution of 1.78 Å. We have found
that the structure of plant Rho GTPases is based upon a conserved G-domain architecture, but structural differences were found con-
cerning the insert region and switch II region of the protein.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Small (20–40 kDa) monomer GTPases belonging to the
RAS superfamily of GTPases have evolved to regulate a
number of cellular processes. These proteins act as molec-
ular switches that activate numerous processes when bound
to a GTP nucleotide and become inactive when GTP is
hydrolyzed to GDP. RAS superfamily GTPases have sim-
ilar conformations in the two nucleotide states, but have
distinguishable changes in the switch I and switch II
regions. It is through these nucleotide induced changes that
specific interaction between effectors and regulators are
achieved. These GTPases are found in all eukaryote organ-
isms ranging from the most primitive protist to humans.
The RAS superfamily is divided into five main functional
families of GTPases, which are called Ras, Ran, Rab,

Arf/Sar and Rho. One factor that is common to all mem-
bers of the RAS superfamily is a structurally conserved
G domain that facilitates nucleotide binding and hydrolysis
through the interaction with GTPase regulatory proteins.
(Bourne et al., 1991; Sprang, 1997; Takai et al., 2001; Leipe
et al., 2002; Wennerberg et al., 2005).

Four of the main functional families in the RAS super-
family have been identified in Arabidopsis thaliana (Ran,
Rab, Arf/Sar and Rho), with a total of 93 genes encoding
monomer GTPases (Vernoud et al., 2003). However, the
Ras family is absent in plants, as well as Rho sub-family
members like RHO and CDC42 GTPases. This suggests
that plants have evolved unique ways of regulating certain
cellular processes compared to yeast and mammals (Winge
et al., 1997). The Rho family in Arabidopsis thaliana con-
sists of 11 RAC-like GTPases (AtRAC) and has an overall
homology with the RAC (Ras related C3 botulinum toxin
substrate) subfamily of yeast and animals. This plant spe-
cific Rho family has also been named Rho related proteins
from plants (ROP) (Zheng and Yang, 2000; Yang, 2002).
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The Arabidopsis thaliana Rho family can be further divided
into two main groups (I and II); group II (AtRAC7/ROP9,
AtRAC8/ROP10 and AtRAC10/ROP11) has only evolved
in vascular plants. Group II RAC/ROP GTPases differ
from group I RAC/ROP GTPases in that they contain
an additional exon at the 3 0 end of the gene. This has
resulted in a loss of a C-terminal prenylation motif, CaaL
(a: aliphatic amino acid), which is characteristic of group
I GTPases (Winge et al., 2000). However, group II GTP-
ases have retained a C-terminal cysteine-containing motif.
AtRAC7/ROP9 and homologues from dicots and mono-
cots constitute a distinct group with a monophyletic origin,
in which some members have evolved a new C-terminal
prenylation motif, CTAA. This could indicate post-transla-
tional modification of the protein with farnesyl (farnesyla-
tion) instead of geranylgeranylation, which is probably the
case for most of the group I AtRAC/ROP GTPases (Nam-
bara and McCourt, 1999; Lavy et al., 2002). This lipid
modification is important for membrane targeting of Rho
GTPases and for the interaction with RhoGDIs.

Functional studies have shown that plant RAC/ROP
GTPases coordinate numerous downstream processes in
plants such as hormone responses, cell growth and differen-
tiation, pathogen defence, stress responses (reviewed by Gu
et al. (2004) and Brembu et al. (2006)). Plant RAC/ROP
GTPases have possibly also evolved and adapted functions
that normally are served by Ras family proteins in animalia
(Winge et al., 2000). Intriguingly, this has probably
resulted in plants evolving novel mechanisms for regulating
RAC/ROP GTPases and transmitting signals via RAC/
ROP GTPases. To support this notion, a novel family of
guanine nucleotide exchange factors (GEFs) was discov-
ered in Arabidopsis thalina. GEFs facilitate the otherwise
slow dissociation of bound GDP that leads to the subse-
quent activation of GTPases by the binding of GTP. These
GTPase regulating proteins in plants have been named
RopGEFs and contain a novel plant specific nucleotide
exchange domain named plant specific ROP nucleotide
exchangers (PRONE) (Berken et al., 2005; Gu et al.,
2006). The intrinsic hydrolysis of GTP within the G-
domain of RAS superfamily is slow and is accelerated
through the interaction with GTPase activating proteins
(GAPs). The RhoGAP domain that facilitates accelerated
GTPase activity is found in proteins from many organisms
such as yeast, plants and mammals (Scheffzek et al., 1998).
In plants, however, we find a novel combination of the
GAP domain and a CDC42/RAC-interactive domain
(CRIB) that in combination seem to enhance GTPase
activity (Wu et al., 2000). Finally, guanine nucleotide disso-
ciation inhibitors (GDIs) form a group of regulatory pro-
teins that inactivate GDP bound Rho family GTPases by
sequestering them from the plasma membrane into the
cytosol and preventing activation by GEFs. In a recent
study, Arabidopsis thaliana RhoGDI1 has been shown to
spatially regulate the growth pattern in root hair cells, pos-
sibly through RAC/ROP mediated activation of a plant
NADPH oxidase (Carol et al., 2005). A novel family of

RAC/ROP downstream targets named ROP-interactive
CRIB motif-containing proteins (RICs) exists in plants.
These proteins function as RAC GTPase targets, which
control RAC dependent pathways in plants (Wu et al.,
2001). AtRAC11/ROP1 has been shown to affect tip
growth in pollen tubes by regulating/balancing actin
assembly and disassembly through downstream interaction
with RIC4 and RIC3, respectively (Gu et al., 2005).
AtRAC2/ROP7, an ancient member of RAC/ROP family
in plants, has been implicated as a possible regulator of sec-
ondary cell wall development of xylem vessels (Brembu
et al., 2005).

OsRAC1, an Oryza sativa (rice) orthologue of AtRAC7/
ROP9, has emerged as a key activator of downstream
defence processes upon elicitor mediated signalling. Inter-
estingly, a constitutively activated mutant of OsRAC1
shows increased resistance to rice bacterial blight disease,
due to an increased formation of reactive oxygen species
(ROS) and subsequent cell death (Kawasaki et al., 1999;
Ono et al., 2001). Nonetheless, no clear link between plant
defence and small GTPases, similar to what is found in
rice, has been reported in Arabidopsis thaliana.

Extensive structural studies have been performed on
human members of RAS superfamily GTPases, their regu-
lators and downstream effectors (reviewed by Vetter and
Wittinghofer (2001) and Dvorsky and Ahmadian (2004)).
No structural studies of the RAS superfamily of small
GTPases have been conducted in plants so far. Here, we
present the first structure of a small GTPase from plants.
The Arabidopsis thaliana RAC7/ROP9 is an unique plant
RAC/ROP GTPase that has evolved only in flowering
plants (Anthophyta), and are not found in conifers or
mosses. Homologues of AtRAC7/ROP9 can be found in
monocotyledonous and dicotyledonous plants. In this
study, we present the 1.78 Å crystal structure of
AtRAC7/ROP9 bound to GDP and explore its structure
in comparison to Rho GTPase crystal structures from
humans.

2. Results and discussion

2.1. The overall AtRAC7/ROP9-GDP structure

Comparison of the four molecules in the crystallo-
graphic asymmetric unit showed that when super posi-
tioned, two pairs of monomers, molecules A and D
(RMS deviation for Ca atoms of 0.29 Å) and molecules B
and C (RMS deviation of 0.37 Å), were structurally more
similar than the others. For other combinations, the
RMS deviation was in the range of 0.44–0.67 Å. As the full
extent of only molecule B is visible in electron density, the
subsequent analysis is based on this monomer. The four
molecules are organized into two dimers (Fig. 1), where
the two molecules in each dimer form interactions in the
insert region. The accessible surface area lost for one
monomer upon dimerization was calculated by AreaIMol
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(CCP4, 1994) to be around 650 Å2, which is only about 7%
of the total accessible surface area for one monomer. This
suggests that the dimer formation may be an artefact of
crystallization. Furthermore, gel filtration and attempts
of cross linking AtRAC7/ROP9 with EGS showed that
in solution AtRAC9/ROP9 is a monomer in solution
(Results not shown).

The truncated AtRAC7/ROP9-GDP-Mg (amino acids
1–181) structure shows the basic RAS GTPase a/b fold
(Fig. 2) and consists of a hydrophobic core with a six-
stranded b-sheet (b1–b6), surrounded by four helices (a1–
a5). Crystal structures of human RHO, CDC42 and
RAC GTPases report two 310-helices (a2) in the loop
between b-strands 3 and 4 (the switch II region). The
AtRAC7/ROP9 crystal structure presented here shows no
helical structures in switch II. The Rho family is unique
in having an insertion between b-strand 5 and a-helix 4.
This insertion forms a helical structure, and is referred to
as the insert helix (ai). AtRAC7/ROP9 has a four amino
acid deletion in the insert region compared to members
of the human Rho family GTPases, but still retains a small
insert helix. Similar to all Rho GTPases, AtRAC7/ROP9
has a 310-helix (g1) at the beginning of the insert region.

During construction of the expression vector, an amino
acid substitution has occurred in position 3 in the primary
structure. Native alanine has been substituted with valine.
The position and nature of the substitution should not
affect the overall structure.

Human Rho family GTPases overlaid with AtRAC7/
ROP9 (Fig. 3) show a Ca RMS deviation of 0.87 Å com-

pared with HsRHOA-GDP (pdb: 1FTN, 150 common
atoms), 0.97 Å compared to HsCDC42-GDP (pdb:
1A4R, 151 common atoms) and 1.02 Å compared to

Fig. 1. The four AtRAC7/ROP9 molecules in the crystallographic
asymmetric unit organized into two dimers. GDP is shown in stick
representation and Mg is depicted as a green sphere. The figure was made
using GlaxoSmithKline Swiss-PdbViewer v3.7 (http://ca.expasy.org/
spdbv/), and visualized using the ray tracer program POV-Ray� version
3.6.1.icl8.win.32 (http://www.povray.org). (For interpretation of the
references in colour in this figure legend, the reader is referred to the
web version of this article.)

Fig. 2. The overall structure (ribbon representation) of AtRAC7/ROP9
(residues 1–181, molecule B) bound to GDP (stick representation) and Mg
(grey sphere). The a-helices are in red and b-strands are shown in yellow.
Secondary elements, are labelled as insert and switch (Sw) regions. ai
denotes the insert helix, with the 310 (g1) helix at the beginning of the insert
region also indicated. The figure was made using GlaxoSmithKline Swiss-
PdbViewer v3.7 (http://ca.expasy.org/spdbv/), and visualized using the
ray tracer program POV-Ray� version 3.6.1.icl8.win.32 (http://www.pov-
ray.org). (For interpretation of the references in colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 3. The superposition of Ca-atom tracing of AtRAC7/ROP9 is shown
in gray, HsCDC42 (pdb: 1A4R) in red, HsRHOA (pdb: 1FTN) in green
and HsRAC3 (pdb: 2C2H) in blue. Visible secondary elements have been
labeled, as well as insert and switch (Sw) regions. The figure was made
using GlaxoSmithKline Swiss-PdbViewer v3.7 (http://ca.expasy.org/
spdbv/), and visualized using the ray tracer program POV-Ray� version
3.6.1.icl8.win.32 (http://www.povray.org). (For interpretation of the
references in colour in this figure legend, the reader is referred to the
web version of this article.)
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HsRAC1-GMPPNP (pdb: 1MH1, 144 common atoms).
Structurally, the core of the GTPase a/b fold shows lower
RMS deviation value than more exposed parts of the struc-
ture. The highest RMS deviation between human Rho
GTPases and AtRAC7/ROP9 is observed in switch I/II
and in the insert region.

2.2. The nucleotide binding site

Guanine nucleotides are bound to GTPases through
highly conserved sequence motifs that are universal for
the RAS superfamily (Wennerberg et al., 2005). These
sequence motifs are termed G1–G5; the nucleotide binding
motifs are for the most part conserved between human and
plant Rho GTPases (Fig. 4). In AtRAC7/ROP9, the phos-
phate binding loop (G1) is represented with
13GDGAVGKT20, which is identical to human RAC and
CDC42. H-bonds between the G1 residues are identical
in AtRAC7/ROP9 and HsRAC2-GDI (pdb: 1DS6) with
a threonine (Thr20AtRAC7) side chain coordinating Mg2+.
The G2 region is located within the switch I region of GTP-
ases and is represented by another highly conserved threo-
nine (Thr38AtRAC7) residue that is involved in binding
Mg2+. The G3 sequence is recognized by a conserved
Dx2G sequence at the N-terminal of the switch II. The
sequence of G3 in AtRAC7/ROP9 (60DTAG63), HsRAC,
CDC42 and RHOA are identical. The G4 region in
AtRAC7/ROP9 is represented with 118TKLD121 and is
identical to human RAC homologues, where Asp121A-

tRAC7 contacts the N1 and N2 atoms of guanine. The G5
motif shows more variation within the Rho family, and
the G5 motif in AtRAC7/ROP9 (155ECSSK159) differs
from human Rho GTPase homologues (ECSAL in
HsRAC1-2 and CDC42). G5 binding of the guanine ring
is achieved through main chain interactions and may
explain the observed variation. The G5 region in plants
contains an invariant serine (Ser158AtRAC7) where the
hydroxyl of this serine side group forms an additional H-
bond to the guanine ring via a water molecule. In addition
to the above contacts, Asp125AtRAC7 from a neighbouring
monomer contacts the guanine N2 atom, which may be an
artefact of crystal packing. Mg2+ coordination within the
structure shows a classical Rho GTPase-GDP octahedral
conformation with three water molecules, with the hydro-
xyl group of Thr20 as the fourth water molecule in the
equatorial plane. The apical interactions are with Thr38
within switch I and the b-phosphate of the guanine
nucleotide.

2.3. Switch I

The switch I region is well defined in all four monomers.
The core primary structure of switch I in AtRAC7/ROP9
(35YIPTFDNF43) is highly conserved between plant Rho
GTPases and their human counterparts. This motif con-
tains the invariant threonine (Thr38AtRAC7) essential for
Mg2+ coordination. Residues within this sequence also

have the highest molecular contact frequencies with effec-
tors and regulators of human Rho GTPases (Dvorsky
and Ahmadian, 2004). The N-terminal flank of this
sequence in AtRAC GTPases contains possibly function-
ally significant substitutions. Residues 33TD34

AtRAC7 are con-
served in higher plants, whereas human Rho GTPases
show more variation. Despite this variation, an acidic
and/or polar residue seems to be found in the two residues,
and Glu31HsRAC2/HsCDC42 is also involved in molecular
interaction with various effectors and regulators (p67phox,
TIAM and PAK, ACK, respectively) (Dvorsky and Ahma-
dian, 2004). Human RHO GTPases have an aliphatic res-
idue in this position. Further towards the N-terminal of
switch I, AtRAC7/ROP9 has a surface exposed lysine
(Lys30) that is specific for group II AtRAC/ROPs,
whereas group I AtRAC/ROPs have a preserved threonine
(Thr30).

2.4. Switch II

The switch II region, which is comprised of residues
62–80 in AtRAC7/ROP9, is generally flexible in the four
molecules, and only in molecule B can the whole region
be modelled into electron density due to favourable inter-
molecular interactions. The structure shows no helical
conformation in the switch II region, a finding that has
also been reported for solution structures of HsCDC42-
GDP and HsCDC42-GMPPCP (Feltham et al., 1997).
A helical conformation has been reported in both the
crystal structure of HsRAC1-GMPPNP (Hirshberg
et al., 1997) and a recently deposited crystal structure of
HsRAC3-GDP (pdb#: 2C2H). These contradictory obser-
vations reflect the conformational differences between
solution and crystal states of the switch II region. How-
ever, solution studies of the backbone dynamics in
CDC42 indicate that the switch II region exists as a rela-
tively ordered structure that changes between two or
more structures on a millisecond timescale (Loh et al.,
1999).

AtRAC7/ROP9 and other plant RAC7/ROP9 homo-
logues have a conserved serine (SerS68AtRAC7) in switch
II, as compared to an aspartic acid (Asp65HsRAC1) found
in human Rho GTPases. This substitution might be disrup-
tive to the formation of a helical structure in this region, as
the side chain of Asp65HsRAC1 generates ion–pair interac-
tions with Arg68HsRAC1 and with Lys96HsRAC1 in the adja-
cent a3-helix (Fig. 5). Similar flexibility to what is observed
in AtRAC7/ROP9 is also observed in the corresponding
region in the crystal structure of H-RAS. In H-RAS, this
is due to substitutions in the a3-helix compared to human
Rho GTPases, where Lys96HsRAC1 and Glu100HsRAC1 are
responsible for interactions that are important for the con-
formation of the switch II region (Pai et al., 1990; Ihara
et al., 1998). The increased flexibility in the switch II region
of AtRAC7/ROP9 may facilitate novel interaction mecha-
nisms for regulating RAC7-like GTPases and signal trans-
mission in plants.
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2.5. Insert region

Rho family GTPases are unique in having an 11–13
amino acid insertion between b-sheet 5 and a-helix 4
(Asp125-Ile136AtRAC7), forming an aliphatic helical struc-
ture followed by a loop segment. This region is well defined
in the crystal structure, mainly due to hydrophobic packing
of the aliphatic part of the insert regions between the struc-
tures (A–B, C–D). Solution structures of HsCDC42, how-

ever, portray the region as a dynamic structure that is
independent of the bound nucleotide (Feltham et al.,
1997). The same structural independence of the insert
region from the nucleotide binding state is also observed
in the crystal structure of HsRHOA (Wei et al., 1997; Ihara
et al., 1998).

In plants, RAC-like GTPases have an insert region with
a two amino acid deletion, whereas AtRAC7/ROP9 and
homologues in the Brassicaceae family are unique in hav-

1β 1 2  3
-------- --------- -------   --------

OtRAC1  : --------MAIDH---MSVKCVVVGDGAVGKTSMLMCYATNTFPTDHMPTIFDNYSKNVTLQDGRTVSLGLWDTAGQDEYAAFR 
PpRAC2  : --------MS----TSRFIKCVTVGDGAVGKTCMLISYTSNTFPTDYVPTVFDNFSANVVV-DGNTVNLGLWDTAGQEDYNRLR 
OsRAC1  : --------MSSAAAATRFIKCVTVGDGAVGKTCMLICYTCNKFPTDYIPTVFDNFSANVSV-DGSVVNLGLWDTAGQEDYSRLR 
BnRAC7  : --------MS----ASKFIKCVTVGDGAVGKTCMLICYTSNKFPTDYIPTVFDNFSANVSV-DGQIVNLGLWDTAGQEDYSRLR 
AtRAC7  : --------MS----ASKFIKCVTVGDGAVGKTCMLICYTSNKFPTDYIPTVFDNFSANVAV-DGQIVNLGLWDTAGQEDYSRLR 
AtRAC8  : --------MAS--SASKFIKCVTVGDGAVGKTCMLICYTSNKFPTDYIPTVFDNFSVNVVV-EGITVNLGLWDTAGQEDYNRLR 
AtRAC10 : --------MAS--SASKFIKCVTVGDGAVGKTCMLICYTSNKFPTDYIPTVFDNFSANVVV-EGTTVNLGLWDTAGQEDYNRLR 
AtRAC2  : --------MS----TARFIKCVTVGDGAVGKTCMLISYTSNTFPTDYVPTVFDNFSANVVV-DGSTVNLGLWDTAGQEDYNRLR 
AtRAC9  : MSASMAATSTSSATATTFIKCVTVGDGAVGKTCLLISYTSNTFPTDYVPTVFDNFNANVLV-DGKTVNLGLWDTAGQEDYNRVR 
DdRACH  : --------M------VKDIKVMVVGDMSVGKTCLLISYTTNSFPGEYVPTVFDNYNANAIV-NNTPINLGLWDTAGSEEYNSFR 
HsCDC42 : ---------------MQTIKCVVVGDGAVGKTCLLISYTTNKFPSEYVPTVFDNYAVTVMI-GGEPYTLGLFDTAGQEDYDRLR 
HsRAC1  : ---------------MQAIKCVVVGDGAVGKTCLLISYTTNAFPGEYIPTVFDNYSANVMV-DGKPVNLGLWDTAGQEDYDRLR 
HsRHOA  : -------------MAAIRKKLVIVGDGACGKTCLLIVFSKDQFPEVYVPTVFENYVADIEV-DGKQVELALWDTAGQEDYDRLR 
DmRHOL  : -------MTANITKSPRPLKITIVGDGMVGKTCMLITYTRNEFPEEYIPTVFDNHACNIAV-DDRDYNLTLWDTAGQEDYERLR 
                                 -PLoop-           --SwitchI--                     -SwitchII- 
                                    G1                 G2                        -G3- 

4 3 5 1 i 4  
-------- ------------------ -------- ---- -----------

OtRAC1  : PLSYDAADAMLLAFSCDSRESYESVETKWVQELRAKSPGT-PIVLVCTKIDLRDSAK----------GVIGRVEGEALSERIKA 
PpRAC2  : PLSYRGADVFLLAFSLISKASYENISKKWIPELRHYAPSV-PIILVGTKLDLRDDKQFFADH--PGAAPITTSQGEELRKSIGA 
OsRAC1  : PLSYRGADVFILSFSLISRASYENVQKKWMPELRRFAPGV-PVVLVGTKLDLREDRAYLADH--PASSIITTEQGEELRKLIGA 
BnRAC7  : PLSYRGADIFVLAFSLISKASYENVLKKWMPELRRFAPNV-PIVFVGTKLDLRDDKGYLADH----TNVITSTQGEVLRKQIGA 
AtRAC7  : PLSYRGADIFVLAFSLISKASYENVLKKWMPELRRFAPNV-PIVLVGTKLDLRDDKGYLADH----TNVITSTQGEELRKQIGA 
AtRAC8  : PLSYRGADVFVLAFSLISRASYENVFKKWIPELQHFAPGV-PIVLVGTKMDLREDRHYLSDH--PGLSPVTTSQGEELRKHIGA 
AtRAC10 : PLSYRGADVFVLSFSLVSRASYENVFKKWIPELQHFAPGV-PLVLVGTKLDLREDKHYLADH--PGLSPVTTAQGEELRKLIGA 
AtRAC2  : PLSYRGADVFLLAFSLISKASYENIHKKWLPELKHYAPGI-PIVLVGTKLDLRDDKQFLKDH--PGAASITTAQGEELRKMIGA 
AtRAC9  : PLSYRGADVFILAFSLISRPSFENIAKKWVPELRHYAPTV-PIVLVGTKSDLRDNMQFPKNY--PGACTIFPEQGQELRKEIGA 
DdRACH  : PLSYPGTDVFIICFSLISQTSFENVIKKWHPEIIQNMEQVPPIILVGTKLDLRGKGKSEE-------KEVTPEMGEQMRAAIGA 
HsCDC42 : PLSYPQTDVFLVCFSVVSPSSFENVKEKWVPEITHHCPKT-PFLLVGTQIDLRDDPSTIEKLAKNKQKPITPETAEKLARDLKA 
HsRAC1  : PLSYPQTDVFLICFSLVSPASFENVRAKWYPEVRHHCPNT-PIILVGTKLDLRDDKDTIEKLKEKKLTPITYPQGLAMAKEIGA 
HsRHOA  : PLSYPDTDVILMCFSIDSPDSLENIPEKWTPEVKHFCPNV-PIILVGNKKDLRNDEHTRRELAKMKQEPVKPEEGRDMANRIGA 
DmRHOL  : PLSYPSTNCFLLCYSISSRTSFENVKSKWWPEIRHFSAHV-PVVLVGTKLDLRIPNSE---------KFVTTQEGKKMRKEIHA 
         ---------                                              Insert region  
                                                        -G4- 

6 5
------  ------------- 

OtRAC1  : TAYVECSALTQSGLQTVFDTVIDVRLRPELFAKKAQGG------------CCSIQ--------------------------189 
PpRAC2  : ASYIECSSKTQQNVKAVFDAAIKVVLQPPKQKK-----KKKKQKN------CVIL--------------------------196 
OsRAC1  : VAYIECSSKTQRNIKAVFDTAIKVVLQPPRHKDVTRKKLQSSSNRPVRRYFCGSA---CFA--------------------214 
BnRAC7  : AAYIECSSKTQQNVKGVFDTAIKVVLQPPRRKEVTGN-KKKHRRS-----GCSFASIVCGGCATA----------------209 
AtRAC7  : AAYIECSSKTQQNVKAVFDTAIKVVLQPPRRKEVPRRRKNHRRS------GCSIASIVCGGCTAA----------------209 
AtRAC8  : TYYIECSSKTQQNVKAVFDAAIKVVIKPAVKQKE--KKKKQKPRS-----GCLSNIL-CGKN-------------------208 
AtRAC10 : TYYIECSSKTQQNVKAVFDSAIKEVIKPLVKQKEKTKKKKKQKSNH----GCLSNVL-CGRIVTRH---------------215 
AtRAC2  : VRYLECSSKTQQNVKAVFDTAIRVALRPPKA-----KKKIKPLKTKRSRI-CFFL--------------------------201 
AtRAC9  : LAYIECSSKAQMNVKAVFDEAIKVVLHPPSKT----KKRKRKIGL------CHVL--------------------------209 
DdRACH  : YKYSECSALTQDGLTTVFEEAGRVVLFPPSKEELAKSKKDSKKGDKDSKD-CIIQ--------------------------200 
HsCDC42 : VKYVECSALTQRGLKNVFDEAILAALEPPET----------QPKRK-----CCIF--------------------------191 
HsRAC1  : VKYLECSALTQRGLKTVFDEAIRAVLCPPPV----------KKRKRK----CLLL--------------------------192 
HsRHOA  : FGYMECSAKTKDGVREVFEMATRAALQARRG----------KKKS-----GCLVL--------------------------193 
DmRHOL  : FNLVECSAKKKQNLQQVFEEAVRAVERKPKTTSKQS---------------CKIL--------------------------190 
                                                (PBR)                                      
             -G5-

ββα

β α β η α α

β α

Fig. 4. An alignment of selected AtRAC/ROP proteins with homologues from different species: At, Arabidopsis thaliana; Bn, Brassica napus; Dm,
Drosophila melanogaster; Dd, Dictyostelium discoideum (slime mold); Hs, Homo sapiens; Os, Oryza sativa (rice); Ot, Ostreococcus tauri (green algae); Pp,
Physcomitrella patens (moss). Residues highlighted in yellow interact with GDI, green residues with GAP and blue interact with both GDI and GAP.
Residues that are unique for plant RAC/ROPs are highlighted in red. A light sky blue background indicates group II or RAC7/ROP9 homologues specific
residues. A magenta background indicates possible sites for lipid modification. Secondary structure elements for AtRAC7/ROP9 are noted on the top and
bottom of the alignment. G domain sequence motifs are noted at the bottom of the alignment. (Accession numbers for the GTPases in the alignment can
be found in materials and methods.) (For interpretation of the references in colour in this figure legend, the reader is referred to the web version of this
article.)
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ing a four amino acid deletion compared to human coun-
terparts (Winge et al., 2000). The primary structure of
the insert region seems to be partially conserved in plants,
starting with a 310 helix that is observed in both plant and
human Rho family GTPases. The N-terminal part of the
insert, K/Rx1x2, forms a short 1 turn helix, where x1 and
x2 are Glu and Phe for group I plant RAC/ROPs. For
group II RAC/ROPs, x1 is more variable (G/H/R/S/A)
and x2 is preferably a Tyr (see Fig. 4). The following loop
region apparently has a plant specific, partially conserved
sequence motif, which is 131DHPG134

AtRAC2. Both groups I
and II RAC/ROP have a mostly complete DHPG
sequence, except for plant AtRAC9/ROP8 and AtRAC7/
ROP9 homologues. Overall, the insert region seems to be
more variable in plants than what is observed in human
Rho GTPases, thus indicating that this motif could be
under relaxed evolutionary selection. The precise function

of the insert region is still unclear in both plant and ani-
mals, and no proteins have been reported to interact with
the region so far. However, we cannot rule out the possibil-
ity that the variation observed in primary structure is nec-
essary for the differentiation between plant RAC/ROPs
and interacting partners, or that it has essential functions
during interactions with multi subunit protein complexes.
It has been suggested that the insert region of RAC GTP-
ases from human serves as a binding interface for down-
stream effectors, particularly those important for actin
regulation (Thapar et al., 2002). The insert region is con-
served in most Rho GTPases, suggesting a specific func-
tion, but there are exceptions such as Drosophila

melanogaster RHOL and Dictyostelium discoideum RACH,
which have deletions in the insert region. Additionally, all
nine RAC genes in the alveolate Paramecium tetraurelia

lack the insert region (http://paramecium.cgm.cnrs-gif.fr/,
Accession numbers can be found in Section 4).

3. Conclusion

Our comparative analysis of the AtRAC7/ROP9 struc-
ture shows that the AtRAC7/ROP9 structure is similar to
related human Rho family GTPases, and that for the most
part, amino acids participating in the interaction between
Rho GTPases and GAP, GDI and CRIB domains are con-
served between plant Rho GTPases and human counter-
parts (Fig. 4). However, the recent discovery of a novel
plant GEF domain shows that novel interaction mecha-
nisms most likely have evolved in higher plants.

The AtRAC7/ROP9 structure shows interesting struc-
tural differences in two regions of the G-domain. Firstly,
the ai helix in plants seems to be smaller than in human
counterparts. Since no function has yet been assigned to
the insert region in general, we chose not to speculate fur-
ther as to whether the observed differences are significant
or not. The switch II region in AtRAC7/ROP9 is, however,
unequivocally more flexible in AtRAC7/ROP9 than in
human counterparts. This flexibility is most likely due to
an invariant serine residue (Ser68AtRAC7) in plant RAC7/
ROP9 homologues that prevent the formation of a stable
secondary structure in switch II. The increased flexibility
of the switch II region may be important for function and
specificity in protein interactions and invite the speculation
that the AtRAC7/ROP9 may have evolved to facilitate a
necessary specific interaction in certain pathways, possibly
interacting with novel plant proteins. Further investigation
is required to elucidate these unresolved questions.

4. Materials and methods

4.1. Engineering of the recombinant expression vector

For the structure determination of Arabidopsis thaliana
RAC7/ROP9 (GeneBank Accession # At4g28950), a con-

Fig. 5. The switch II region of AtRAC7/ROP9 (molecule B) and
HsCDC42 (PDB: 1A4R) are shown, respectively. In addition to the
ribbon presentation of secondary structures within and adjacent to the
switch II region of each GTPase, side chains of key residues are also
shown. Hydrogen bonds are shown with green dotted lines. In molecule B
of AtRAC7/ROP9, the switch II region is partially stabilized by
interactions between the backbone of switch II and Arg105 in a3. In
HsCDC42 the Asp65 and Arg68 residues in switch II make stabilizing
interactions with Lys96 and Glu100 in the adjacent a3 helix, which may be
crucial for formation of a helical structure. The figure was made using
GlaxoSmithKline Swiss-PdbViewer v3.7 (http://ca.expasy.org/spdbv/),
and visualized using the ray tracer program POV-Ray� version
3.6.1.icl8.win.32 (http://www.povray.org). (For interpretation of the
references in colour in this figure legend, the reader is referred to the
web version of this article.)
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struct coding for residues 1–209 (wild-type) were amplified
using PCR, integrating an NdeI (3 0) and an EcoRI (5 0)
restriction site. The product was cloned into pET28a
(Novagen) Escherichia coli expression vector. A new stop
codon was introduced in the reverse primer to truncate
the expression product 28 amino acids upstream from the
native stop codon. The truncated region includes the poly
basic region (PBR) and the part of the protein undergoing
post-translational modifications. This flexible region was
removed to facilitate formation of crystals. The fusion pep-
tide with 6 times Histidine and a trombine protease cleav-
age site was positioned at the N-terminus of the
recombinant protein.

4.2. Expression and purification

An E. coli BL21 (DE3) codon+ strain (Stratagene) was
used as an expression host. An expression was done by
inoculating 1 l 2 · YT media containing 2% (v/v) Glucose,
50 lg ml�1 Kanamycin, 34 lg ml�1 Chloramphenicol with
2–4 ml of overnight culture. Cells were grown to an A600

of 0.8–1.0 at 37 �C and temperature was lowered to
28 �C. The cells were induced by adding isopropyl-b-1-
thio-galactopyranoside to a final concentration of
0.35 mM. Cells were harvested after 4 h by centrifugation
before storage at �80 �C. Cell pellets were resuspended in
lysis buffer (50 mM Tris–HCl pH 7.2; 250 mM NaCl;
5 mM MgCl2; 10 mM imidazole) and lysozyme was added
to a final concentration of 1 mg ml�1. After 30 min incuba-
tion on ice, Triton-X100 was added to the lysis solution to
a final concentration of 1% (v/v), and DNAse and RNAse
were added to reduce the viscosity of the sample. Finally,
b-mercaptoethanol to a final concentration of 20 mM was
added and the insoluble fraction was removed by centrifu-
gation (20 min at 20,000g).

Before performing affinity chromatography, the sample
was filtered through a 0.2 lm filter (Sarstedt). Immobilized
metal (Ni2+) affinity chromatography was conducted using
a 5 ml Ni sepharose column (GE Healthcare) equilibrated
with run buffer (50 mM Tris–HCl, pH 7.2; 250 mM NaCl;
5 mM MgCl2; 10 mM imidazole; 4 mM b-mercap-
toethanol). Lysate with recombinant protein was applied
to the column and bound protein was eluted using a step-
wise imidazole gradient to 500 mM imidazole. Recombi-
nant AtRAC7/ROP9 was eluted at approximately
300 mM imidazole. Fractions containing recombinant
AtRAC7/ROP9 was dialyzed against 2 l thrombine cleav-
age buffer (20 mM Tris–HCl, pH 7.5; 150 mM NaCl;
5 mM MgCl2; 2 mM CaCl2; 1 mM DTT) at 4 �C for 2 h.
Any precipitation was then removed before human throm-
bine (Novagen) was added to approximately 0.5–1 U mg�1

of recombinant protein. Enzymatic removal of the His6-tag
was done basically as described in Smith and Rittinger
(2002). After removal of the His6-tag the sample was dia-
lysed for 2 h against 2 l of cation exchange buffer (20 mM
MES, pH 6.3; 10 mM MgCl2; 2 mM DTT). The sample
was then loaded onto a column packed with 6 ml Resource

15S media (GE Healthcare). Recombinant AtRAC7/ROP9
was eluted in a linear NaCl gradient. For final purification
the protein was gel filtered through a Hi-prep 26–60 Seph-
acryl S200 (GE Healthcare) column. Fractions containing
recombinant AtRAC7/ROP9 were concentrated to
>10 mg ml�1 and stored at �20 �C. This approach yielded
ample amounts of pure recombinant AtRAC7/ROP9
bound to GDP.

The Hi-Prep 26–60 gel filtration column was calibrated
using a LMW Gel Filtration calibration kit (GE Health-
care) to ascertain the molecular conformation of
AtRAC7/ROP9 in solution.

4.3. EGS cross-linking

Buffer exchange from a Tris-based buffer to a HEPES-
based buffer was performed using a HiPrep 26/10 desalting
column (GE healthcare). AtRAC7/ROP9 was concen-
trated to approx 5 mg ml�1 and EGS cross linker (Pierce)
dissolved in DMSO was added to final concentrations of
0.25 mM, 0.5 mM and 1 mM. Solutions were then incu-
bated for 40 min at RT. Samples were run on SDS-PAGE
to visualise any possible dimerization of AtRAC7/ROP9 in
solution.

4.4. Crystallization

AtRAC7/ROP9 was crystallized using the hanging drop
vapour diffusion method. The best crystals were grown by
mixing 2 ll drops of an 11 mg ml�1 protein solution and a
solution containing 50 mM BisTris, pH 6.5; 10 mMMgCl2;
5 mM DTT; 200 mM KCl; 10% (w/v) polyethylene glycol
(PEG) 2000 and 10% (w/v) PEG 3350. The drops were
equilibrated at room temperature, with crystals generally
appearing within a month. These crystals were of sufficient
quality for data collection. 10% (v/v) glycerol added to the
reservoir solution sufficed as a cryo-protectant for flash-
cooling crystals in liquid nitrogen. A data set (see Table
1) was collected at the macromolecular crystallography
beamline BL14.1 at BESSY, with a final resolution of
1.78 Å.

4.5. Structure determination and refinement

The data were indexed, integrated and scaled using the
XDS program package (Kabsch, 1993), before they were
converted to structure factors using the CCP4 program
TRUNCATE (CCP4, 1994). The data collection statistics
are presented in Table 1. The crystals were monoclinic,
with unit cell parameters of a = 76.8 Å, b = 30.2 Å,
c = 139.4 Å and b = 100.1�. The lack of systematic
absences in the data set collected identified the space group
as P2. The solvent content was estimated to be around
37%, with a Matthews Coefficient of 1.9 Å3 kDa�1, assum-
ing four protein molecules per asymmetric unit. The crystal
structure of AtRAC7/ROP9 was determined by molecular
replacement methods using PHASER (Mccoy et al., 2005),
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using the crystal structure of human RAC1 (1MH1; Hirsh-
berg et al., 1997) as the search model. Automated model
building with ARP/wARP (Perrakis et al., 1999) including
all reflections to 1.78 Å built 649 out of a possible 736
amino acid residues into electron density, where 641 resi-
dues were correctly assigned to the sequence. After a man-
ual intervention using O (Jones et al., 1991), the model was
refined in REFMAC5 (Murshudov et al., 1999). Subse-
quent cycles of refinement interspersed with manual
rebuilding gave final Rwork and Rfree values of 18.7% and
22.7%, respectively, with acceptable protein geometry.
The final model of AtRAC7 consists of a total of 699
amino acid residues describing the four monomers in the
asymmetric unit comprising 178, 184, 159 and 178 residues
from monomers A to D, respectively. Each AtRAC7/
ROP9 monomer binds GDP; a magnesium ion and 296
additional water molecules have been modelled. The coor-
dinates have been deposited in the Protein Data Bank with
accession codes PDB 2j0v along with the structure factors.
For an overview of the refinement statistics, see Table 1.

4.6. Accession numbers

Fig. 4 (from top to bottom): CR954206.2; AAD26198;
BAA84492; CD827872; At4g28950; At3g48040;

At5g62880; At5g45970; At2g44690 AAG45133;
NP_008839; NP_426359; NP_001655; AAB05666.

Paramecium tetraurelia: CAI44493.1; CAI44536.1;
CAI44570.1; CAI39257.1; CAI39324.1; CAI39295.1;
CAI44517.1; CAI44551.1; CAI39268.1.
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Abstract  

 

MIRO GTPases have evolved to regulate mitochondrial trafficking and morphology 

in eukaryotic organisms. A previous study showed that T-DNA insertion in the 

Arabidopsis MIRO1 gene is lethal during embryogenesis and affects pollen tube 

growth and mitochondrial morphology in pollen, whereas T-DNA insertion in MIRO2 

does not affect plant development visibly. Phylogenetic analysis of MIRO from plants 

revealed that MIRO 1 and 2 orthologs in dicots cluster in two separate groups due to a 

duplication event, suggesting that functional redundancy may exists between the two 

MIRO genes. To investigate this possibility, we generated a miro1(+/-)/miro2-2(-/-) 

double mutant. Compared to the miro1(+/-) single mutant, the miro1(+/-)/miro2-2(-/-) 

mutant showed increased segregation distortion. Siliques from the miro1(+/-)/miro2-2(-

/-) mutant contained less aborted seeds, but more than 3 times the number of 

undeveloped ovules. In addition, reciprocal crosses showed that co-transmission 

through the male gametes was nearly absent, whereas co-transmission through the 

female gametes was severely reduced in the miro1(+/-)/miro2-2(-/-) mutant. Further 

investigations revealed that loss of MIRO2 (miro2(-/-)) function in the miro1(+/-) 

background enhanced pollen tube growth defects. In developing miro1(+/-)/miro2(-/-) 

mutant embryo sacs, fusion of polar nuclei was further delayed or impaired compared 

to the miro1 mutant. A defective polar nuclei fusion phenotype has previously not 

been reported for any miro mutants. Such defects have been associated with mutations 

in mitochondria-targeted genes. Our observations show that loss of function in 

MIRO2 in a miro1(+/-) background enhances the miro1(+/-) phenotype significantly, 

even though the miro2(-/-) mutant alone does not display any phenotypes. Based on 

these findings, we conclude that MIRO1 and MIRO2 are unequally redundant and that 

a proportion of the miro1(+/-)/miro2(-/-) plants haploid gametes displays the complete 

null phenotype of MIRO GTPase function at key developmental stages. 
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Introduction 

 

Mitochondria are main cellular source for energy in eukaryotic cells. Additionally, 

mitochondria are important for calcium homeostasis, oxidative stress processes and 

production of metabolic intermediates and programmed cell death (PCD). 

Mitochondria are highly dynamic organelles that are transported on microtubule/actin 

structures within the cell. Their dynamic behavior is also reflected in fusion and 

fission events that change the number and morphology of mitochondria. In plants, 

research has elucidated how mitochondria move along cytoskeletal tracks and how 

mitochondrial fission takes place in plant cell. Still, the molecular events behind 

mitochondrial fusion are largely unknown in plants [1,2,3]. Studies of mitochondrial 

dynamics in cultured tobacco cells showed that movement mainly is dependent on 

cytoplasmic actin strands, whereas immobilization is dependent on both actin and 

microtubules [4]. In contrast to plants, the movement of mitochondria in animal cells 

mainly occurs along microtubules and is facilitated by kinesins. In neurons, transport 

along axons is necessary for accumulation of mitochondria in regions with high 

energy demands. The main players involved in linking kinesin to mitochondria are the 

MIRO GTPases and Milton [5].  

Human MIRO GTPases were discovered through a genome search for RHO 

consensus domains by Fransson and colleagues [6], and were classified as 

mitochondrial RHO GTPases. They are atypical to conventional Rho GTPases in 

possessing two G-domains separated by two calcium binding EF-hand motifs. MIRO 

GTPases are exposed towards the cytosol, and are connected to the outer membrane 

of mitochondria through a C-terminal transmembrane domain [6,7]. The two GTPase 

domains of Miro lack the typical Rho-specific insert region and have an overall 

sequence divergence from other Rho GTPases. Thus, MIRO GTPases may be 

considered to constitute a new subfamily of the Ras superfamily of small GTPases 

[8]. Orthologs of MIRO GTPases have been discovered in yeast (Gem1p) and 

Drosophila (dMIRO). Common for these orthologs is their importance in 

mitochondrial trafficking and morphology [9,10]. In Drosophila, the adaptor protein 

Milton binds to MIRO and recruits kinesin heavy chain to form a microtubule 

transport complex in axons [11]. In humans, two Milton-related proteins (GRIF-1 and 

TRAK1/OIP106) have been shown to interact with hMIRO through the N-terminal 
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GTPase domain and mediate mitochondrial transport by modulating kinesin activity 

[12,13]. 

The Arabidopsis genome encodes three MIRO GTPases that are predicted to have the 

same domain organization as MIRO GTPases described in other species. Localization 

experiments showed that MIRO1 (At5g27540) and MIRO2 (At3g63150) localize to 

mitochondria through a C-terminal trans-membrane domain [14]. MIRO1 and MIRO2 

are ubiquitously expressed in all plant tissues, whereas MIRO3 (At3g05310) shows 

very low expression in comparison [14]. Further observations revealed that 

developing embryos homozygous for a T-DNA insertion in MIRO1 arrests during 

early stages of development [14]. A recent study shows that aberrant mitochondrial 

morphology and distribution in miro1(-/-) embryonic cells significantly contributes to 

the observed developmental arrest. Apical cells in arrested two-celled miro1(-/-)  

embryos contain significantly less mitochondria compared with wild type cells [15]. 

Mutation in MIRO1 also influence pollen germination as well as mitochondrial 

morphology and streaming during pollen tube growth, which in turn resulted in 

reduced male genetic transmission of the mutant allele [14]. In the same study two 

mutant lines with T-DNA insertions in the MIRO2 gene were studied. Homozygous 

miro2 mutant plants showed no apparent mutant phenotypes, suggesting that MIRO2 

plays no important role during plant development and that MIRO2 apparently is not 

functionally redundant to MIRO1.  

An Arabidopsis Calcium Binding GTPase (AtCBG) discovered in a screen for EF 

hands and GTPase domain reported by Jayasekaran and colleagues [16] is actually 

MIRO2. According to the study, MIRO2 shows calcium dependent GTPase activity 

and two MIRO2 T-DNA mutants investigated were reported to be sensitive to both 

NaCl and ABA stress.  

Here we show, by generating a miro1(+/-)/miro2-2(-/-) mutant plant, that MIRO2 is 

unequally redundant to MIRO1 during specific stages of gametophyte development 

and function. Unequal genetic redundancy is defined as a phenomenon where loss of 

function in one gene produces mutant phenotypes, whereas a mutant with loss of 

function in the paralogous gene does not display any phenotypes. Importantly, loss of 

function in both paralogous genes results in strong enhancement of the initial 

phenotype [reviewed in 17]. Our results show that crossing of miro1 and miro2 

produces mutant plants with enhanced miro1 mutant phenotypes and that a proportion 



 5

of the developing haploid male and female gametes display the full null phenotype of 

MIRO GTPase function. 
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Methods 

 

Gene expression and phylogenetic analysis 

For gene expression analysis, transcriptome data were obtained from the Arabidopsis 

eFP browser [18] and visualized using Microsoft Excel 2003.  

Plant MIRO protein sequences were downloaded from the NCBI database. Predicted 

protein sequences were imported into the ClustalX program [19] and a pairwise 

alignment was made using the Gonnet 250 score matrix. The resulting protein 

alignment was exported as a MSF file and imported into the GeneDoc program [20] 

for manual editing. The edited alignment was re-imported into ClustalX and a 

bootstrapped neighbor joining (NJ) tree was made running 1000 bootstrap trials. A 

rooted phylogenetic tree was constructed with the TreeView program [21], where the 

Physcomitrella patens PpMIRO2 was used as an outgroup. Accession numbers for the 

various Miro GTPases are listed in supplemental file S1.   

 

Plant growth conditions 

Seeds were surface-sterilized using vapor phase chlorine gas for 3-4 hours and plated 

onto half strength Murashige-Skoog medium, pH 5.8, 0.6% (w/v) agar. The growth 

media was supplemented with 25 �g/ml Kanamycin (miro2-2) and/or 10 �g/ml 

BASTA (miro1). Seeds were vernalized for 48 hours before germination at 22oC, 16-h 

light and 18oC, 8-h dark conditions. 7 DAG selection resistant seedlings were 

transferred to soil and grown under the same conditions as above.  

 

miro T-DNA mutants; identification and crosses 

The miro2-2 (SALK_157090) mutant was backcrossed into Col-WT background 

before it was crossed with the miro1 (emb2473) mutant; thus miro2-2 was 

backcrossed twice and miro1 once. Genomic DNA was isolated using SP Plant Mini 

Kit (Omega) and REDExtract-N-AMP Plant PCR Kit (Sigma) was used for the 

segregation analysis. 

The various mutant T-DNA insertions were verified using PCR with T-DNA specific 

primers and gene specific primers (Figure 1B and C); miro1: (WT) 5'-

CAGGAATCAACTACTGATGAGC3' and 5'-CCAGTTGCTTGTAGAAGTTGCA-

3', (T-DNA) 5'-CCAGTTGCTTGTAGAAGTTGCA-3' and 5'-

GCATCTGAATTTCATAACCAATC-3'; miro2-2:(WT) 5'-
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GTTAGTAGCAAAAGTCTGAACT-3' and 5'-GGGTTCTCTGCTGTACTCACGA-

3', (T-DNA) 5'-GTTAGTAGCAAAAGTCTGAACT-3' and 5'-

CGGAACCACCATCAAACAGGAT-3'. 

 

Phenotypical analysis 

Mature siliques from the same positions along the main inflorescence were measured 

for length and dissected to identify aborted ovules and embryo lethality. The 5 first 

siliques on the main inflorescence were avoided for this analysis. Pollen viability test 

using Alexander stain was performed as described in [22]. Mature pollen nuclei were 

stained using 1 �g/ml DAPI in extraction buffer (0.1% Nonidet P40, 10% DMSO, 50 

mM PIPES pH 6.9, 5 mM EGTA pH 7.5). Pollen germination assays were performed 

as described in [22] and germinated over night. Germinated pollen was stained over 

night at 37oC with 1 mg/ml X-Gluc solution containing 50 mM Na3PO4, 0.5 mM 

K3Fe(CN)6, 0.5 mM K4Fe(CN)6, 10 mM EDTA, 0.01% Triton X-100 and 10% (w/v) 

sucrose. For embryo sac analysis, siliques were cleared over night in Hoyer's solution. 

Images were acquired with a Nikon E800 microscope/Nikon DsRi1 camera using 

NisElements F software. Pollen tube lengths were measured using ImageJ [23] 

software. Images were processed using Adobe Photoshop Elements 4.0.  
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Results  

 

Evolution of MIRO GTPases within Embryophyta 

Database searches indicates that MIRO GTPases exist in Metazoa, Fungi, 

Rhodophyta, Stramenopiles, Alvoelata, Heterolobosea, Euglenozoa, Mycetozoa and 

Viridiplantae, whereas they are missing from the anaerobic Entamoebidae and 

Parabasalia that lack mitochondria all together, suggesting that MIRO GTPases are 

only found organisms that contain mitochondria. However, MIRO GTPases are not 

present in Haptophyceae that contain mitochondria, which indicate that MIRO 

GTPases are not required in some forms of eukaryotic life [24]. A phylogenetic 

analysis of MIRO proteins in Embryophyta was performed based on protein primary 

structure alignments, and the phylogentic relationship between 35 MIRO proteins was 

visualized as a phylogram rooted with a Physcomitrella patens MIRO ortholog as an 

outgroup (Figure 1). In Embryophyta, Miro GTPases are found in mosses, 

Coniferales, monocots and dicots. In dicots, the paralog MIRO genes (MIRO1 and 

MIRO2) cluster into two distinct MIRO subgroups (I & II) with bootstrap confidence 

levels above 99%.  

The origin of the MIRO paralogs in dicots is due to a gene/genome duplication event 

that occurred after the diversification of monocots and eudicots. Additionally, 

sometime during evolution of the Brassicaceae family an additional duplication event 

within MIRO subgroup I resulted in development of the MIRO3 paralogs that show a 

rapid divergent evolution compared to other subgroups.  

Since paralogous genes often have the same or similar function, it is likely that MIRO 

paralogs may display some degree of functional redundancy during plant 

development.  

Yamaoka and Leaver reports that the two paralogs MIRO1 and MIRO2 are expressed 

in all plant tissues investigated, implying functional roles during plant growth and all 

developmental stages. However, neither miro1 nor miro2 T-DNA mutants shows 

developmental defects during sporophytic growth [14]. 

To investigate quantitative expression differences between MIRO1 and MIRO2 during 

gametophyte development closer, we used the Arabidopsis eFP browser [18]. The in 

silico analysis revealed that both MIRO1 and MIRO2 are expressed in all tissues and 

stages (figure 2). Comparing these expression profiles with the miro1(+/-) phenotypes 

reported by Yamaoka and Leaver [14], it is striking that MIRO2 shows higher 
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expression at the globular stage and the following stages during embryo development 

compared to MIRO1. The miro1(-/-) embryos abort early during embryo development, 

between the zygote and the four-terminal-cell stage. However, data from the 

Arabidopsis eFP browser does not contain any expression data from these stages. 

Still, these findings indicate that MIRO2 may be functionally redundant to MIRO1 

during embryo development. Yamaoka and Leaver [14] also reports that miro1 pollen 

show reduced germination rate and pollen tube growth compared to wild type pollen. 

The expression data presented here shows that during pollen development and 

germination, MIRO2 has higher expression levels compared to MIRO1 and clearly 

suggests that MIRO2 could be functionally redundant to MIRO1.  

Interestingly, MIRO3 shows very high expression in both chalazal and peripheral 

endosperm during seed development (from pre-globular to heart stage) with up to 110 

and 80 fold higher expression levels compared to MIRO1 and MIRO2, respectively 

[Data from Arabidopsis Seed eFP browser, 25]. This expression pattern suggests that 

within Brassicaceae, MIRO3 orthologs may have evolved to function mainly in 

endosperm development. 

Considering the evolution of eudicot MIRO GTPases, the expression pattern 

divergence during gametophyte development and the absence of phenotype in the 

miro2 T-DNA mutants, we wanted to investigate if unequal genetic redundancy exits 

between the MIRO1 and MIRO2 paralogs in Arabidopsis. By generating miro1(+/-

)/miro2(-/-) plants it should be possible to discern if genetic redundancy between the 

MIRO1 and MIRO2 paralogs exists. Importantly, if genetic redundancy exists this 

should be manifested as novel or enhanced miro1(+/-) phenotypes.      

 

miro T-DNA mutants 

In order to study the functional relationship between MIRO GTPases in Arabidopsis, 

we obtained independent mutant lines from publicly available seed collections. 

miro1/emb2473 was obtained from the Seed Genes Project [26] and 

miro2/SALK_157090 was obtained from the SALK collection [27]. These two mutant 

lines are the same as those studied by Yamaoka and Leaver. Both lines are in the 

Columbia background (Col-0) and are henceforth designated as miro1 and miro2-2 

respectively [in accordance with 14]. The miro1 and miro2-2 mutants harbor T-DNA 

insertions in the beginning and the end of the 12th exon of MIRO1 and MIRO2, 

respectively (Figure 3A). To investigate whether genetic redundancy between the 
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MIRO1 and MIRO2 genes exits, we crossed the heterozygous miro1 mutant with 

miro2-2 in order to possibly obtain a miro1(+/-)/miro2-2(-/-) double mutant. 

Segregation analysis of self-pollinated miro1(+/-) plants showed that 57.1% (Table 1) 

of the progeny were viable on MS media supplemented with BASTA, which concurs 

with Yamaoka and Leavers observations [14]. For self-pollinated miro1(+/-)/miro2-2(+/-

) plants from the crossings we expected 37.5% (10:6) viable progeny on MS media 

supplemented with BASTA (miro1) and kanamycin (miro2-2). Since MIRO1 and 

MIRO2 are located on two separate chromosomes, one would expect that if the T-

DNA insertions in the MIRO2 locus do not contribute to gametophyte development 

and function, they will segregate independently from the miro1 allele. 

If so, expected segregation of miro1(+/-)/miro2-2(-/-) alleles from self-pollinated 

miro1(+/-)/miro2-2(+/-) plants would be 33.3% (2:1) within all progeny resistant to 

selection agents. Notably, no miro1(-/-)/miro2-2(-/-) progeny will be formed during self-

fertilization of miro1(+/-)/miro2-2(+/-) plants. However, segregation analysis (Table 1) 

showed that 29.9% of the progeny from self-pollinated miro1(+/-)/miro2-2(+/-) plants 

were resistant to both selection agents. This is significantly lower than the expected 

37.5% (P value = 0.0007) and suggested that additional loss of function in MIRO2 

has an additional effect on gametophyte development or function. To validate this 

finding further, we genotyped the progeny from the self-fertilized miro1(+/-)/miro2-2(+/-

) plants. PCR analysis (Supplemental file S2) of 80 individual plants grown on 

selective media showed that 17 plants (21.3%) were miro1(+/-)/miro2-2(-/-) mutants. 

This result deviates significantly from the 2:1 hypothesis (P value = 0.0218) and 

clearly indicates that the two alleles do not segregate independently.  

From self-pollinated miro1(+/-)/miro2-2(-/-) plants however, only 16.8% of the 

germinating progeny were resistant to both selection agents and viable on MS media. 

In comparison, 57.1% of the miro1(+/-) plants were resistant to BASTA. Taken 

together, the segregation analysis of the miro1 and miro2-2 alleles clearly indicates 

that a T-DNA insertion in the MIRO2 locus does not segregate independently of the 

miro1 locus, but rather that there is some level of functional redundancy between the 

MIRO1 and MIRO2 genes. 

    

The miro1/miro2-2 double mutant show increased gametophytic defects  

During sporophyte development, no visible phenotypes were observed in 

miro1/miro2-2 heterozygous plants or the miro1(+/-)/miro2-2(-/-) plants. A closer 
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investigation of siliques from the miro1(+/-)/miro2-2(-/-) plants showed that the siliques 

are significantly shorter compared to both wild type plants and the individual miro 

plants (Figure 4A). The length of siliques collected from the same positions of the 

main inflorescence of wild type and miro plants was measured and an unpaired 

Student's T-tests analysis was performed. T-tests showed significant differences (P < 

0.0001) in silique length between WT-Col (1.33 cm, SD = 0.056 cm, n = 10), miro1(+/-

)/miro2-2(-/-)
 (1.11 cm, SD = 0.04 cm, n = 10) and miro1 (1.22 cm, SD = 0.038 cm, n = 

10) (results shown are representative data from one of three separate experiments and 

each experiment showed significant differences in comparison of silique length). We 

believe that this phenotype is not of sporophytic origin but that it may be a result of a 

lower degree of fertilization in mutant plants.    

Yamaoka and Leaver reported 10% unfertilized ovules and 13% aborted seeds within 

miro1 siliques [14]. During our experiments we observed similar numbers, with 7.4% 

unfertilized ovules and 17.2% aborted seeds (n = 1318) in miro1 siliques (Table 2). In 

contrast, the miro1(+/-)/miro2-2(-/-) plants (Figure 4B) produced siliques with 34.5% 

unfertilized ovules and 3.4% aborted seeds (n = 1165) randomly dispersed inside the 

silique, which indicate that the miro1(+/-)/miro2-2(-/-) mutant plant has an increased 

impact on male and/or female gametogenesis and/or gamete function compared to 

miro1(+/-) mutant.  

Furthermore, miro1(+/-)/miro2-2(-/-) siliques contained less aborted seeds than miro1(+/-) 

siliques. The background of this phenotype was further studied by co-transmission 

efficiency (TE) analysis of the mutant alleles. Reciprocal crosses showed that co-

transmission (TE: selectionR/selectionS) of both miro alleles through the male gametes 

was 0.12% (n = 796); through the female gametes the co-transmission efficiency was 

34.7% (n = 625, % of total seedlings: 25.8%). These co-transmission efficiencies are 

significantly lower than what was reported for the transmission miro1 allele alone 

(12.8% and 75.2%, respectively) [14].  

The severe impact of miro2-2 allele on male genetic transmission in the miro1 

background means that formation of homozygous miro1 embryos rarely occurs in the 

miro1(+/-)/miro2-2(-/-) siliques, thereby explaining the reduction of aborted seeds in the 

miro1(+/-)/miro2-2(-/-) plants. This also implies that most of the observed unfertilized 

ovules may be a result of impaired female gametophyte development caused by 

maternally inherited miro1/miro2-2 alleles. However, the penetrance of the female 

gametophyte defect is not complete since 16.8% of the offspring carry both 
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miro1/miro2-2 alleles. Incomplete penetrance is not an uncommon phenomenon and 

has been reported for other mutants affected in female gametophyte development as 

well [28]. 

 

Loss of function in MIRO2 enhances pollen tube growth defects in the miro1(+/-) 

background 

The low co-transmission efficiency through the male gamete suggests aberrant pollen 

development, germination and/or tube growth. Previous studies showed that pollen 

from miro1(+/-) plants matured normally, but that both pollen germination and tube 

growth was impaired [14].In the miro1(+/-)/miro2-2(-/-) mutant, half of the developing 

male gametes carry the miro1 and miro2 T-DNA alleles, which could possibly lead to 

defects in pollen development. This notion is supported by the fact that MIRO2 shows 

higher expression levels compared to MIRO1 during male gametophyte development 

and tube growth.  

A pollen viability test using Alexander´s stain was performed and showed that all of 

the mature pollen from miro1(+/-)/miro2-2(-/-) mutants were viable (Figure 5A). Mutant 

pollen was morphologically undistinguishable from wild type pollen (Figure 5B). 

Nuclear staining with DAPI showed that the pollen developed normally and reached 

maturity with two sperm cell nuclei and a vegetative nucleus (Figure 5C). We 

therefore conclude that homozygous loss of MIRO2 function in miro1(+/-) background 

does not give an additional effect on pollen development and viability.  

The pCSA110 T-DNA insertion in miro1(+/-) mutants contains the GUS reporter gene 

regulated by the pollen-specific LAT52 promoter, making distinction between mutant 

and wild type pollen possible [29]. Pollen from miro1(+/-) and miro1(+/-)/miro2-2(-/-) 

mutant plants were collected and germinated on solid pollen media and stained with 

X-Gluc solution to assess if loss of MIRO2 function in the miro1(+/-) background 

affects pollen tube growth. GUS negative pollen from both miro1(+/-) and miro1(+/-

)/miro2-2(-/-) appeared to grow normally . As expected from previous results, GUS 

positive pollen in miro1(+/-) showed reduced germination and tube growth [14]. The 

miro1(+/-)/miro2-2(-/-) plants showed highly significant (P < 0.0001) additional 

impairment of pollen tube growth compared to the miro1(+/-) alone (Figure 6). GUS 

positive pollen tubes from miro1(+/-) grew to an average of 436.2 �m (SD = 136.0 �m, 

n = 133) whereas GUS positive pollen tubes from miro1(+/-)/miro2-2(-/-) plants grew to 

an average of 178.3 �m (SD = 84.8 �m, n = 209) after 17 hours of growth (results 
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shown are data from 4 separate experiments). All in all, these observations clearly 

indicate that loss of MIRO2 function in a miro1(+/-) background does not affect pollen 

development but has an additional strong negative effect on pollen tube growth.  

 

miro1(+/-)/miro2-2(-/-) mutants are affected in embryo sac development 

Since co-transmission of both miro mutant alleles through the male gametophyte is 

nearly absent, the observed undeveloped ovules must be due to a combined effect of 

the miro1/miro2-2 alleles during female gametophyte development. To investigate 

closer at what stage the undeveloped ovules are affected, both miro1(+/-)/miro2-2(-/-) 

and miro1(+/-) flowers were emasculated, and the siliques were cleared and observed 

with DIC-microscopy after 48 hours. In ovules from the miro1(+/-) plant, 19.0% (n = 

327) of the embryo sacs displayed two slightly larger nuclei localized adjacent to each 

other in addition to both egg cell nuclei and synergid cell nuclei. This phenotype was 

interpreted as a defect or delay during fusion of the polar nuclei (karyogamy) (Figure 

7B). In the miro1(+/-)/miro2-2(-/-) mutant we observed that 43.1% (n = 418) of the 

ovules displayed embryo sacs with defects in fusion of polar nuclei. The remainder of 

the ovules from miro1(+/-) and miro1(+/-)/miro2-2(-/-) mutants and all ovules from WT 

plants (n = 228), had an embryo sac with a normal cellular constitution (one enlarged 

central cell nucleus, one egg cell nucleus and synergid cell nuclei) (Figure 7A). This 

defect or delay in fusion of polar nuclei indicates that both MIRO1 and MIRO2 play a 

role during karyogamy. Karyogamy occurs three times during the lifecycle of 

angiosperms: once during embryo sac development when the two polar nuclei fuse to 

form the central cell nucleus and twice during fertilization, where the two sperm cell 

nuclei fuse with the egg cell and central cell nuclei [28]. 

Crosses of miro1(+/-)/miro2-2(-/-) mutant (female) with wild type pollen showed a co-

transmission efficiency of 34.7%, approximately twice of what is observed with self-

fertilized mutant plants. This result strongly indicates that pollen carrying wild type 

MIRO1 and MIRO2 are able to fertilize and thereby "salvage" some mutant ovules 

during fertilization. In this case, where male co-transmission is close to zero, it is 

therefore reasonable to assume that some of the structures that are observed as 

undeveloped ovules in miro1(+/-)/miro2-2(-/-) siliques are fertilized ovules that are 

arrested during or shortly after fertilization. In self-fertilized miro1(+/-)/miro2-2(-/-) 

plants, ovules are mainly fertilized by MIRO1/miro2-2 pollen. Homozygous miro1 

embryos rarely forms and the defects in fertilization/early embryo development may 
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be an additional effect of the paternally inherited miro2-2 allele. This is also in line 

with the increase in aborted embryos in miro1(+/-)/miro2-2(-/-) mutant siliques (3.4% 

versus 0.8% in Col-wild type).  
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Discussion  

 

Our results show that MIRO1 and MIRO2 are unequally redundant in function and 

that both genes affect pollen tube growth, fusion of polar nuclei during embryo sac 

development and possibly also nuclei fusion during fertilization. A total loss of 

MIRO2 function in heterozygous miro1(+/-) background results in enhanced miro1 

phenotypes. Even though MIRO2 initially appeared to be dispensable in gametophyte 

function, ovule development and embryo development compared to MIRO1, it has 

retained a significant functional role. In an evolutionary context, this fact may be the 

reason for maintaining a genomic copy of MIRO2, which is manifested as unequal 

genetic redundancy.  

Unequal genetic redundancy is in part attributed to differences in expression patterns 

and/or expression levels between paralogous genes [17,30]. In the case of MIRO1 and 

MIRO2, expression levels are both overlapping and quantitatively different in key 

developmental stages where phenotypes are present in both miro1(+/-) and miro1(+/-

)/miro2-2(-/-)  plants (Figure 2).  

Contradictory to the observed lack of phenotype in miro2(-/-) plants, MIRO2 shows 

higher expression compared to MIRO1 in male gametophytic tissues and several of 

the embryonic stages (Figure 2). One would expect that loss of function in MIRO2 

alone would result in deleterious phenotypes at these developmental stages.    

The fact that MIRO1 and MIRO2 shows quantitative divergence in expression is 

indicative of the following fates of the paralogous genes after the duplication; A) 

neofunctionalization, where the duplicated genes gain a novel function, or B) 

subfunctionalization, where the function is sub-divided between the two paralogs. 

Notably, in the latter scenario, both of the paralogous genes represent the total 

function of the two genes [30,31]. After duplication, both the regulatory and coding 

sequences of the paralogous genes may acquire mutations or be subjected to 

epigenetic effects that affect both the functions and expression patterns of the genes. 

In support of this assumption, statistical analysis of the expression pattern of 280 

phylogenetically identified paralogous pairs in Arabidopsis revealed that 85% of the 

pairs showed differential expression levels depending on the organ investigated. 

These findings suggest that mutations in cis-acting elements in the promoter regions 

of the gene pairs contribute to the observed expression pattern shifts. Therefore it is 
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believed that regulatory subfunctionalization and/or neofunctionalization will in part 

be responsible for the maintenance of the paralogous pair over time [30]. 

The expression pattern shifts between MIRO1 and MIRO2 (Figure 2) supports a 

hypothesis where a genomic copy of MIRO2 is retained since it may have undergone 

regulatory subfunctionalization and/or neofunctionalization after duplication.  

However, one can not rule out the possibility that MIRO2 also have accumulated 

mutations in coding regions, resulting in functional subfunctionalization and/or 

neofunctionalization. Thus, MIRO2 may not have the same level of protein activity as 

MIRO1, which could explain why miro2(-/-) plants do not display any phenotype. In a 

miro1(+/-)/miro2-2(-/-) setting, however, the cumulative protein activity of the gene pair 

is below a certain threshold that results in enhanced miro1 phenotypes [17].  

Finally, it should be noted that plants grown under optimal condition in the laboratory 

does not reflect the various environmental conditions that the plants have been 

subjected to throughout its evolutionary history. Under certain natural conditions 

these expression shifts may provide a fitness advantage and therefore result in 

maintenance of the paralogous pair [32]. This may also be the case for Arabidopsis 

MIRO2 since it has been implicated in ABA and salt stress [16], which could indicate 

that MIRO2 have other functional roles compared to MIRO1 during certain 

environmental conditions. If this is the case, it could explain the difference in the 

phenotypes between miro1(+/-) and miro2(-/-) plants during regular growth.            

 

The miro1/miro2-2 alleles showed very low co-transmission through the male 

gametes, suggesting aberrant pollen development and/or function. However, our 

microscopic studies show that there is no additive or new aberrant effect of loss of 

function of MIRO2 in the miro1(+/-) background, suggesting that loss of function in 

MIRO1 and MIRO2 does not affect pollen development. This observation is 

intriguing when taking into consideration that MIRO1 affects mitochondrial 

morphology in pollen, possibly leading to changes in the intracellular distribution of 

mitochondria [14]. Furthermore, the fact that metabolic rates in developing pollen are 

higher compared to sporophyte tissue [33] should warrant the necessity for proper 

intracellular distribution and morphology of mitochondria during pollen development. 

Alternatively, male gametophyte development may not be affected due to initial 

transcription of wild type MIRO1 in the diploid parental microsporocytes, resulting in 

sufficient amounts functional protein to rescue developing mutant male gametes in 
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miro1(+/-)/miro2-2(-/-) plants. Such a hypothesis has been put forth by Berg and 

colleagues [34], in connection with loss of function in aminoacyl-tRNA synthetases 

predicted to function in mitochondria. As a consequence, mitochondria with wild type 

MIRO1 are inherited in the daughter cells during meiotic division and therefore 

proper mitochondrial distribution is sustained during development. However, an 

additional loss of MIRO2 function in a miro1(+/-) background enhanced pollen tube 

growth defects compared to single miro1(+/-) mutants. All GUS positive pollen tubes 

from the miro1(+/-)/miro2-2(-/-) plants had significantly reduced tube growth compared 

to GUS positive miro1(-) pollen tubes (Figure 6). Our hypothesis is that these miro1(-

)/miro2-2(-) male gametophytes are not capable of fertilizing ovules due to impaired 

tube growth, which is confirmed by the reciprocal crosses where co-transmission 

through the male gametes was nearly absent.  

 

Our data indicate that loss of function in both MIRO1 and MIRO2 affects female 

gametophyte development during fusion of the polar nuclei. Notably, this phenotype 

has not been reported earlier for loss of function in plant MIRO GTPases. A fraction 

of the mutant ovules mature normally, become fertilized and produce viable offspring.  

Similar to developing pollen, this observation may in part be explained by inheritance 

of wild type mitochondria with functional MIRO1 from the diploid megasporocyte. 

Furthermore, the surrounding sporophytic cells could provide sufficient amounts of 

metabolites to salvage the developing gametophytes. Nonetheless, our results show 

that both MIRO1 and MIRO2 affect mitochondrial function during female 

gametophyte development, and could also play a role in fertilization and early embryo 

development. Several knock-out studies of genes that encode mitochondria-targeted 

proteins show defects in gametogenesis. A particularly interesting mutant embryo sac 

phenotype observed in some of these mutants is the defect in fusion of polar nuclei 

(karyogamy) [35,36,37,38], which we also observe in the miro1(+/-)/miro2-2(-/-) mutant. 

In a recent publication by Kägi and colleagues [39] it was demonstrated that a 

deleterious point mutation in mitochondria localized cysteinyl-tRNA synthetase 

(SYCO) and an ATP/ADP translocator AAC2 results in defects of polar nuclei fusion. 

Central cell mitochondria in syco and aac2 plants lack cristae, indicating that SYCO 

and AAC2 is important for the structural integrity of the central cell mitochondria 

[39]. These results confirm that polar nuclei fusion in the central cell is a 

mitochondria dependant process. Investigations further showed that, the antipodal 



 18

cells of the developing syco and aac2 female gametophytes do not undergo PCD, 

suggesting that antipodal cell PCD is regulated by the adjacent central cell [39]. Our 

results are therefore in line with these findings where polar nuclei fusion is affected as 

a consequence of defects in mitochondrial function. The presence of EF-hands in the 

MIRO GTPases suggests a role for calcium ions in regulation of MIRO activity. 

Interestingly, during a large scale screen of mutants with impaired female 

gametophyte development, calmodulin binding proteins and Ca2+-binding proteins 

were reported and linked to defects in fusion of polar nuclei [40].   

 

Research on MIRO orthologs in other model organisms (Drosophila, mammalian and 

human cell lines) have shown that MIRO GTPases facilitates mitochondrial 

movement and distribution along microtubuli in a Ca2+-dependent manner [reviewed 

in 41,42]. It is therefore not unlikely that plant MIRO GTPases perform a similar role, 

despite the fact that mitochondria in plants mainly move along actin filaments. The 

observation that mitochondrial streaming in growing pollen tubes is disrupted in 

miro1(+/-) mutants [14] supports this hypothesis. However, mitochondria in both 

miro1(+/-) pollen and embryos are enlarged, possibly due to increased fusion or the 

absence of fission events [14,15]. It is therefore tempting to speculate that the 

observed defects in mitochondrial streaming may be a secondary effect due to 

inability of the transport machinery to shuttle enlarged mitochondria along actin 

strands. Furthermore, this suggests that plant MIRO GTPases play a significant role in 

mitochondrial fusion/fission events rather than movement. Saotome and colleagues 

showed that overexpression of human MIRO promoted the formation of elongated 

mitochondria seemingly by suppression of Dynamin-related protein1 (Drp1) mediated 

fission of mitochondria [43]. The Arabidopsis orthologs of human Drp1; DRP3A and 

DRP3B, have also been shown to regulate mitochondrial fission in a functionally 

redundant manner [44] and therefore a similar link between plant MIRO GTPases and 

plant DRPs may exists as well. Future investigations should therefore focus on 

identifying plant MIRO-interacting proteins to elucidate how MIRO GTPases regulate 

mitochondrial morphology and possibly mitochondrial movement in plants. 

The fact that MIRO1 and MIRO2 are unequally redundant should be taken into 

consideration in future functional investigations. This especially applies to studying 

gamete development and function since the miro1/miro2-2 haploid gametes display 

the full null phenotype of MIRO GTPase function.  
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Figure 1 - Phylogenetic tree of MIRO GTPases in Embryophyta 

Phylogenetic tree based on protein sequence alignment of MIRO GTPases from 

plants. The tree is rooted with a Physcomitrella patens MIRO ortholog as an 

outgroup. Numbers indicate bootstrap values. Dashed line boxes enclose the two 

MIRO ortholog subgroups in dicots. Abbreviations: At- Arabidopsis thaliana, Al- 

Arabidopsis lyrata, Bd- Brachypodium distachyon, Br- Brassica rapa, Cm- Cucumis 

melo, Cp- Carica papaya, Fv- Fragaria vesca, Gm- Glycine max, Os- Oryza sativa 

(Japonica), Pp- Physcomitrella patens, Ps- Picea sitchensis, Pt- Populus trichocarpa, 

Rc- Ricinus communis, Sl- Solanum lycopersicum, St- Solanum tuberosum, Ta- 

Triticum aestivum, Vv- Vitis vinifera, Zm- Zea mays  
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Figure 2 - Gene expression of Arabidopsis MIRO1 and MIRO2 in different plant 

tissues 

Note the difference in expression levels between MIRO1 and MIRO2 during pollen 

development, especially in mature pollen and during pollen germination. During 

embryo development there are also both overlapping and quantitative differences in 

between MIRO1 and MIRO2 gene expression. Data used were retrieved from the 

Arabidopsis eFP browser [18]. Values are means, +SD. 
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Figure 3 - Characterization of MIRO T-DNA mutants 

(A) A schematic overview of the MIRO1 and MIRO2 gene structures and the position 

and orientation of the T-DNA insertion sites within the genes. Closed gray boxes 

indicate exons. (B) Genotyping of MIRO T-DNA mutants.  

1: miro1(+/-) , 2: miro2-2(-/-), 3: miro1(+/-)/miro2-2(-/-), 4: miro1(+/-)/miro2-2(-/-).  

Top panel: Verification of T-DNA insertions using gene and T-DNA specific primers 

Bottom panel: Verification of WT allele. Underline: allele investigated  

(C) Genotyping primer control using Col-WT gDNA. Top panel: 1: MIRO1 WT allele 

primers, 2: miro1 T-DNA primers, 3: MIRO2 WT allele primers, 4: miro2-2 T-DNA 

primers. Bottom panel: 18s ribosomal RNA PCR control 

 1: miro1(+/-), 2: miro2-2(-/-), 3: miro1(+/-)/miro2-2(-/-), 4:Col
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Figure 4 - Silique size and embryo development in miro mutants 

A: Siliques from wild type and miro mutant plants grown simultaneously and under 

equal conditions. Siliques are from the same positions along the main inflorescence. 

Scale bar: 0.5 cm 

B: Open miro1(+/-)/miro2-2(-/-) siliques contain a larger number of undeveloped ovules 

and fewer terminated embryos compared to the miro1(+/-) siliques. Asterisks indicate 

terminated embryos and arrowheads indicate undeveloped ovules. 

Picture 3 and 6 from the top are higher magnification of the siliques from miro1(+/-) 

and miro1(+/-)/miro2-2(-/-),respectively.   
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Figure 5 - Pollen viability and development 

A: Viability test using Alexander's stain. For Col-WT and miro1, anthers were fixed 

and stained. B: DIC images. Note that the miro1 mutant is in the quartet background 

(quartet1(-/-): At5g55590), which is outcrossed in the miro1/miro2-2 pollen. C: DAPI 

staining (same as B) shows that mature miro1/miro2-2 pollen are correctly 

differentiated with two brightly stained sperm nuclei and one diffusely stained 

vegetative nucleus. Scale bar: 50 �m 
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Figure 6 - Additional loss of function in MIRO2 enhances pollen tube growth defects 

in the miro1 background 

Pollen germinated on solid medium for 17 hours and stained with X-Gluc. Scale bar: 

100 �m 
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Figure 7 - miro1/miro2-2 female gametophytes are affected during fusion of polar 

nuclei  

Phenotypes of miro1(+/-)/miro2-2(-/-) female gametophytes 48 hours after emasculation. 

A: Normal mature embryo sac. B: The polar nuclei have failed to fuse. C: Higher 

magnification of B (PN; Polar nuclei, EC; Egg cell, SYN; Synergid). Contrast of 

nuclei (except in C) has been artificially enhanced. Scale bar: 50 �m except in C: 10 

�m 
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Table 2: Silique analysis of miro mutants. 

 Wild 

Type  

Miro2-2(-/-) miro1(+/-) miro1(+/-)/ 

miro2-2(-/-) 

Total # of embryos 642 1135 1318 1165 

Unfertilized ovules 

(n) 

1.7% 
(11) 

1.4%  
(16) 

7.4%  
(98)  

34.5 %  
(402) 

Embryo lethal (n) 0.8% 
(5) 

0.5%  
(6) 

17.2% 
(226) 

3.4 %  
(40) 

Total lethality 2.5 % 1.9 % 24.6 % 37.9 % 

Seed set/silique (n) 57  
(11) 

53  
(21) 

43.2  
(23) 

36.1  
(20) 

 

 

 

 

 

 

 

 
 



Supplemental data 1: Accession numbers 
Genes Accession numbers Organism
AtMIRO3 AT3G05310 Arabidopsis thaliana 

AlMIRO3 ADBK01000443.1, lyrata 

ARALYscaffold_3_Cont443

Arabidopsis lyrata subsp 

BrMIRO3 AC189329.1, pekinensis 

genomic clone 

Brassica rapa subsp 

AtMIRO1 AT5G27540 Arabidopsis thaliana 

BrMIRO1 AC189657.1, pekinensis clone 

KBrS016J18

Brassica rapa subsp 

CpMIRO1 ABIM01011531.1, chromosome 

LG6 contig_11546 

Carica papaya 

PtMIRO1a XP_002319545.1 Populus trichocarpa 

PtMIRO1b XP_002328439.1  Populus trichocarpa 

RcMIRO1 XM_002512327.1 and 

AASG02000413.1

Ricinus communis 

CmMIRO1  ABR67417.1 Cucumis melo 

GmMIRO1 AK286579 Glycine max. 

FvMIRO1 From EST contig. Fragaria vesca 

VvMIRO1 XP_002284757.1 Vitis vinifera 

StMIRO1 From various EST from 

Solanum lycopersicum and 

Solanum tuberosum 

Solanum lycopersicum and

Solanum tuberosum. 

AtMIRO2 At3g63150 Arabidopsis thaliana 

BrMIRO2 AC189426.1, pekinensis clone 

KBrB065N19

Brassica rapa subsp 

CpMIRO2 ABIM01012020.1 Carica papaya 

RcMIRO2 XP_002520752.1 Ricinus communis 

PtMIRO2 XP_002306771.1 Populus trichocarpa 

FvMIRO2 EST (DY670610) and EST-

contig.

Fragaria vesca 

GmMIRO2  ACUP01002127.1, chromosome 

3 GLYMAchr_03_Cont2127 

Glycine max



SlMIRO2 BABP01012491.1, DNA, contig: 

SlSBM_S02784_01

Solanum lycopersicum

VvMIRO2 XP_002275434.1 Vitis vinifera 

OsMIRO1a NP_001051665.1

Os03g0810600

Oryza sativa (japonica cultivar-group) 

OsMIRO1b AACV01002660.1, chromosome 

1. Edited, pseudo or seq. errors 

Oryza sativa (japonica cultivar-group) 

TaMIRO1 AK332629.1 Triticum aestivum 

BdMIRO1a ADDN01000017.1, strain Bd21 

chromosome 1 

Brachypodium distachyon

BdMIRO1b ADDN01000858.1, strain Bd21 

chromosome 3 

Brachypodium distachyon 

ZmMIRO1  ACG44216.1 Zea mays 

ZmMIRO2  BT018890 Zea mays. 

PsMIRO1 From several ESTs from Picea 

sitchensis 

Picea sitchensis 

PpMIRO1 XP_001779282.1 Physcomitrella patens subsp. patens 

PpMIRO2 XP_001778992.1 Physcomitrella patens subsp. patens 

PpMIRO3 XP_001775852.1 Physcomitrella patens subsp. patens 

PpMIRO4 XP_001767645.1 Physcomitrella patens subsp. patens 
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Doctoral theses in Biology 
Norwegian University of Science and Technology 

Department of Biology 
 
 Year Name Degree Title 
  1974 Tor-Henning Iversen Dr. philos 

Botany 
The roles of statholiths, auxin transport, and auxin 
metabolism in root gravitropism 

  1978 Tore Slagsvold Dr. philos 
Zoology 

Breeding events of birds in relation to spring temperature 
and environmental phenology 

  1978 Egil Sakshaug Dr.philos 
Botany 

"The influence of environmental factors on the chemical 
composition of cultivated and natural populations of 
marine phytoplankton" 

  1980 Arnfinn Langeland Dr. philos 
Zoology 

Interaction between fish and zooplankton populations 
and their effects on the material utilization in a 
freshwater lake 

  1980 Helge Reinertsen Dr. philos 
Botany 

The effect of lake fertilization on the dynamics and 
stability of a limnetic ecosystem with special reference to 
the phytoplankton 

  1982 Gunn Mari Olsen Dr. scient 
Botany 

Gravitropism in roots of Pisum sativum and Arabidopsis 
thaliana 

  1982 Dag Dolmen Dr. philos 
Zoology 

Life aspects of two sympartic species of newts (Triturus, 
Amphibia) in Norway, with special emphasis on their 
ecological niche segregation 

  1984 Eivin Røskaft Dr. philos 
Zoology 

Sociobiological studies of the rook Corvus frugilegus 

  1984 Anne Margrethe 
Cameron 

Dr. scient 
Botany 

Effects of alcohol inhalation on levels of circulating 
testosterone, follicle stimulating hormone and luteinzing 
hormone in male mature rats 

  1984 Asbjørn Magne Nilsen Dr. scient 
Botany 

Alveolar macrophages from expectorates – Biological 
monitoring of workers exosed to occupational air 
pollution. An evaluation of the AM-test 

  1985 Jarle Mork Dr. philos 
Zoology 

Biochemical genetic studies in fish 

  1985 John Solem Dr. philos 
Zoology 

Taxonomy, distribution and ecology of caddisflies 
(Trichoptera) in the Dovrefjell mountains 

  1985 Randi E. Reinertsen Dr. philos 
Zoology 

Energy strategies in the cold: Metabolic and 
thermoregulatory adaptations in small northern birds 

  1986 Bernt-Erik Sæther Dr. philos 
Zoology 

Ecological and evolutionary basis for variation in 
reproductive traits of some vertebrates: A comparative 
approach 

  1986 Torleif Holthe Dr. philos 
Zoology 

Evolution, systematics, nomenclature, and zoogeography 
in the polychaete orders Oweniimorpha and 
Terebellomorpha, with special reference to the Arctic 
and Scandinavian fauna 

  1987 Helene Lampe Dr. scient 
Zoology 

The function of bird song in mate attraction and 
territorial defence, and the importance of song 
repertoires 

  1987 Olav Hogstad Dr. philos 
Zoology 

Winter survival strategies of the Willow tit Parus 
montanus 

  1987 Jarle Inge Holten Dr. philos 
Botany 

Autecological investigations along a coust-inland 
transect at Nord-Møre, Central Norway 



  1987 Rita Kumar Dr. scient 
Botany 

Somaclonal variation in plants regenerated from cell 
cultures of Nicotiana sanderae and Chrysanthemum 
morifolium 

  1987 Bjørn Åge Tømmerås Dr. scient. 
Zoolog 

Olfaction in bark beetle communities: Interspecific 
interactions in regulation of colonization density, 
predator - prey relationship and host attraction 

  1988 Hans Christian 
Pedersen 

Dr. philos 
Zoology 

Reproductive behaviour in willow ptarmigan with 
special emphasis on territoriality and parental care 

  1988 Tor G. Heggberget Dr. philos 
Zoology 

Reproduction in Atlantic Salmon (Salmo salar): Aspects 
of spawning, incubation, early life history and population 
structure 

  1988 Marianne V. Nielsen Dr. scient 
Zoology 

The effects of selected environmental factors on carbon 
allocation/growth of larval and juvenile mussels (Mytilus 
edulis) 

  1988 Ole Kristian Berg Dr. scient 
Zoology 

The formation of landlocked Atlantic salmon (Salmo 
salar L.) 

  1989 John W. Jensen Dr. philos 
Zoology 

Crustacean plankton and fish during the first decade of 
the manmade Nesjø reservoir, with special emphasis on 
the effects of gill nets and salmonid growth 

  1989 Helga J. Vivås Dr. scient 
Zoology 

Theoretical models of activity pattern and optimal 
foraging: Predictions for the Moose Alces alces 

  1989 Reidar Andersen Dr. scient 
Zoology 

Interactions between a generalist herbivore, the moose 
Alces alces, and its winter food resources: a study of 
behavioural variation 

  1989 Kurt Ingar Draget Dr. scient 
Botany 

Alginate gel media for plant tissue culture 
 

  1990 Bengt Finstad Dr. scient 
Zoology 

Osmotic and ionic regulation in Atlantic salmon, 
rainbow trout and Arctic charr: Effect of temperature, 
salinity and season 

  1990 Hege Johannesen Dr. scient 
Zoology 

Respiration and temperature regulation in birds with 
special emphasis on the oxygen extraction by the lung 

  1990 Åse Krøkje Dr. scient 
Botany 

The mutagenic load from air pollution at two work-
places with PAH-exposure measured with Ames 
Salmonella/microsome test 

  1990 Arne Johan Jensen Dr. philos 
Zoology 

Effects of water temperature on early life history, 
juvenile growth and prespawning migrations of Atlantic 
salmion (Salmo salar) and brown trout (Salmo trutta): A 
summary of studies in Norwegian streams 

  1990 Tor Jørgen Almaas Dr. scient 
Zoology 

Pheromone reception in moths: Response characteristics 
of olfactory receptor neurons to intra- and interspecific 
chemical cues 

  1990 Magne Husby Dr. scient 
Zoology 

Breeding strategies in birds: Experiments with the 
Magpie Pica pica 

  1991 Tor Kvam Dr. scient 
Zoology 

Population biology of the European lynx (Lynx lynx) in 
Norway 

  1991 Jan Henning L'Abêe 
Lund 

Dr. philos 
Zoology 

Reproductive biology in freshwater fish, brown trout 
Salmo trutta and roach Rutilus rutilus in particular 

  1991 Asbjørn Moen Dr. philos 
Botany 

The plant cover of the boreal uplands of Central Norway. 
I. Vegetation ecology of Sølendet nature reserve; 
haymaking fens and birch woodlands 

  1991 Else Marie Løbersli Dr. scient 
Botany 

Soil acidification and metal uptake in plants 

  1991 Trond Nordtug Dr. scient 
Zoology 

Reflctometric studies of photomechanical adaptation in 
superposition eyes of arthropods 



  1991 Thyra Solem Dr. scient 
Botany 

Age, origin and development of blanket mires in Central 
Norway 

  1991 Odd Terje Sandlund Dr. philos 
Zoology 

The dynamics of habitat use in the salmonid genera 
Coregonus and Salvelinus: Ontogenic niche shifts and 
polymorphism 

  1991 Nina Jonsson Dr. philos Aspects of migration and spawning in salmonids 
  1991 Atle Bones Dr. scient 

Botany 
Compartmentation and molecular properties of 
thioglucoside glucohydrolase (myrosinase) 

  1992 Torgrim Breiehagen Dr. scient 
Zoology 

Mating behaviour and evolutionary aspects of the 
breeding system of two bird species: the Temminck's 
stint and the Pied flycatcher 

  1992 Anne Kjersti Bakken Dr. scient 
Botany 

The influence of photoperiod on nitrate assimilation and 
nitrogen status in timothy (Phleum pratense L.) 

  1992 
 
Tycho Anker-Nilssen Dr. scient 

Zoology 
Food supply as a determinant of reproduction and 
population development in Norwegian Puffins 
Fratercula arctica 

  1992 Bjørn Munro Jenssen Dr. philos 
Zoology 

Thermoregulation in aquatic birds in air and water: With 
special emphasis on the effects of crude oil, chemically 
treated oil and cleaning on the thermal balance of ducks 

  1992 Arne Vollan Aarset Dr. philos 
Zoology 

The ecophysiology of under-ice fauna: Osmotic 
regulation, low temperature tolerance and metabolism in 
polar crustaceans. 

  1993 Geir Slupphaug Dr. scient 
Botany 

Regulation and expression of uracil-DNA glycosylase 
and O6-methylguanine-DNA methyltransferase in 
mammalian cells 

  1993 Tor Fredrik Næsje Dr. scient 
Zoology 

Habitat shifts in coregonids. 

  1993 Yngvar Asbjørn Olsen Dr. scient 
Zoology 

Cortisol dynamics in Atlantic salmon, Salmo salar L.: 
Basal and stressor-induced variations in plasma levels 
ans some secondary effects. 

  1993 Bård Pedersen Dr. scient 
Botany 

Theoretical studies of life history evolution in modular 
and clonal organisms 

  1993 Ole Petter Thangstad Dr. scient 
Botany 

Molecular studies of myrosinase in Brassicaceae 

  1993 Thrine L. M. 
Heggberget 

Dr. scient 
Zoology 

Reproductive strategy and feeding ecology of the 
Eurasian otter Lutra lutra. 

  1993 Kjetil Bevanger Dr. scient. 
Zoology 

Avian interactions with utility structures, a biological 
approach. 

  1993 Kåre Haugan Dr. scient 
Bothany 

Mutations in the replication control gene trfA of the 
broad host-range plasmid RK2 

  1994 Peder Fiske Dr. scient. 
Zoology 

Sexual selection in the lekking great snipe (Gallinago 
media): Male mating success and female behaviour at the 
lek 

  1994 Kjell Inge Reitan Dr. scient 
Botany 

Nutritional effects of algae in first-feeding of marine fish 
larvae 

  1994 Nils Røv Dr. scient 
Zoology 

Breeding distribution, population status and regulation of 
breeding numbers in the northeast-Atlantic Great 
Cormorant Phalacrocorax carbo carbo 

  1994 Annette-Susanne 
Hoepfner 

Dr. scient 
Botany 

Tissue culture techniques in propagation and breeding of 
Red Raspberry (Rubus idaeus L.) 

  1994 Inga Elise Bruteig Dr. scient 
Bothany 

Distribution, ecology and biomonitoring studies of 
epiphytic lichens on conifers 

  1994 Geir Johnsen Dr. scient 
Botany 

Light harvesting and utilization in marine phytoplankton: 
Species-specific and photoadaptive responses 



  1994 Morten Bakken Dr. scient 
Zoology 
 

Infanticidal behaviour and reproductive performance in 
relation to competition capacity among farmed silver fox 
vixens, Vulpes vulpes 

  1994 Arne Moksnes Dr. philos 
Zoology 

Host adaptations towards brood parasitism by the 
Cockoo 

  1994 Solveig Bakken Dr. scient 
Bothany 

Growth and nitrogen status in the moss Dicranum majus 
Sm. as influenced by nitrogen supply 

  1994 Torbjørn Forseth Dr. scient 
Zoology 

Bioenergetics in ecological and life history studies of 
fishes. 

  1995 Olav Vadstein Dr. philos 
Botany 

The role of heterotrophic planktonic bacteria in the 
cycling of phosphorus in lakes: Phosphorus requirement, 
competitive ability and food web interactions 

  1995 Hanne Christensen Dr. scient 
Zoology 

Determinants of Otter Lutra lutra distribution in 
Norway: Effects of harvest, polychlorinated biphenyls 
(PCBs), human population density and competition with 
mink Mustela vision 

  1995 Svein Håkon Lorentsen Dr. scient 
Zoology 

Reproductive effort in the Antarctic Petrel Thalassoica 
antarctica; the effect of parental body size and condition

  1995 Chris Jørgen Jensen Dr. scient 
Zoology 

The surface electromyographic (EMG) amplitude as an 
estimate of upper trapezius muscle activity 

  1995 Martha Kold Bakkevig Dr. scient 
Zoology 

The impact of clothing textiles and construction in a 
clothing system on thermoregulatory responses, sweat 
accumulation and heat transport 

  1995 Vidar Moen Dr. scient 
Zoology 

Distribution patterns and adaptations to light in newly 
introduced populations of Mysis relicta and constraints 
on Cladoceran and Char populations 

  1995 Hans Haavardsholm 
Blom 

Dr. philos 
Bothany 

A revision of the Schistidium apocarpum complex in 
Norway and Sweden 

  1996 Jorun Skjærmo Dr. scient 
Botany 

Microbial ecology of early stages of cultivated marine 
fish; inpact fish-bacterial interactions on growth and 
survival of larvae 

  1996 Ola Ugedal Dr. scient 
Zoology 

Radiocesium turnover in freshwater fishes 

  1996 Ingibjørg Einarsdottir Dr. scient 
Zoology 

Production of Atlantic salmon (Salmo salar) and Arctic 
charr (Salvelinus alpinus): A study of some 
physiological and immunological responses to rearing 
routines 

  1996 Christina M. S. Pereira Dr. scient 
Zoology 

Glucose metabolism in salmonids: Dietary effects and 
hormonal regulation 

  1996 Jan Fredrik Børseth Dr. scient 
Zoology 

The sodium energy gradients in muscle cells of Mytilus 
edulis and the effects of organic xenobiotics 

  1996 Gunnar Henriksen Dr. scient 
Zoology 

Status of Grey seal Halichoerus grypus and Harbour seal 
Phoca vitulina in the Barents sea region 

  1997 Gunvor Øie Dr. scient 
Bothany 

Eevalution of rotifer Brachionus plicatilis quality in 
early first feeding of turbot Scophtalmus maximus L. 
larvae 

  1997 Håkon Holien Dr. scient 
Botany 

Studies of lichens in spurce forest of Central Norway. 
Diversity, old growth species and the relationship to site 
and stand parameters 

  1997 Ole Reitan  Dr. scient. 
Zoology 

Responses of birds to habitat disturbance due to 
damming 

  1997 Jon Arne Grøttum  Dr. scient. 
Zoology 

Physiological effects of reduced water quality on fish in 
aquaculture 



  1997 Per Gustav Thingstad  Dr. scient. 
Zoology 

Birds as indicators for studying natural and human-
induced variations in the environment, with special 
emphasis on the suitability of the Pied Flycatcher 

  1997 Torgeir Nygård  Dr. scient 
Zoology 

Temporal and spatial trends of pollutants in birds in 
Norway: Birds of prey and Willow Grouse used as 
Biomonitors 

  1997 Signe Nybø  Dr. scient. 
Zoology 

Impacts of long-range transported air pollution on birds 
with particular reference to the dipper Cinclus cinclus in 
southern Norway 

  1997 Atle Wibe  Dr. scient. 
Zoology 

Identification of conifer volatiles detected by receptor 
neurons in the pine weevil (Hylobius abietis), analysed 
by gas chromatography linked to electrophysiology and 
to mass spectrometry 

  1997 Rolv Lundheim  Dr. scient 
Zoology 

Adaptive and incidental biological ice nucleators    

  1997 Arild Magne Landa Dr. scient 
Zoology 

Wolverines in Scandinavia: ecology, sheep depredation 
and conservation 

  1997 Kåre Magne Nielsen Dr. scient 
Botany 

An evolution of possible horizontal gene transfer from 
plants to sail bacteria by studies of natural transformation 
in Acinetobacter calcoacetius 

  1997 Jarle Tufto  Dr. scient 
Zoology 

Gene flow and genetic drift in geographically structured 
populations: Ecological, population genetic, and 
statistical models 

  1997 Trygve Hesthagen  Dr. philos 
Zoology 

Population responces of Arctic charr (Salvelinus alpinus 
(L.)) and brown trout (Salmo trutta L.) to acidification in 
Norwegian inland waters 

  1997 Trygve Sigholt  Dr. philos 
Zoology 

Control of  Parr-smolt transformation and seawater 
tolerance in farmed Atlantic Salmon (Salmo salar) 
Effects of photoperiod, temperature, gradual seawater 
acclimation, NaCl and betaine in the diet 

  1997 Jan Østnes  Dr. scient 
Zoology 

Cold sensation in adult and neonate birds 

  1998 Seethaledsumy 
Visvalingam 

Dr. scient 
Botany 

Influence of environmental factors on myrosinases and 
myrosinase-binding proteins 

  1998 Thor Harald Ringsby Dr. scient 
Zoology 

Variation in space and time: The biology of a House 
sparrow metapopulation 

  1998 Erling Johan Solberg Dr. scient. 
Zoology 

Variation in population dynamics and life history in a 
Norwegian moose (Alces alces) population: 
consequences of harvesting in a variable environment 

  1998 Sigurd Mjøen Saastad Dr. scient 
Botany 

Species delimitation and phylogenetic relationships 
between the Sphagnum recurvum complex (Bryophyta): 
genetic variation and phenotypic plasticity 

  1998 Bjarte Mortensen Dr. scient 
Botany 

Metabolism of volatile organic chemicals (VOCs) in a 
head liver S9 vial  equilibration system in vitro 

  1998 Gunnar Austrheim Dr. scient 
Botany 

Plant biodiversity and land use in subalpine grasslands. – 
A conservtaion biological approach 

  1998 Bente Gunnveig Berg Dr. scient 
Zoology 

Encoding of pheromone information in two related moth 
species 

  1999 Kristian Overskaug Dr. scient 
Zoology 

Behavioural and morphological characteristics in 
Northern Tawny Owls Strix aluco: An intra- and 
interspecific comparative approach 

  1999 Hans Kristen Stenøien Dr. scient 
Bothany 

Genetic studies of evolutionary processes in various 
populations of nonvascular plants (mosses, liverworts 
and hornworts) 



  1999 Trond Arnesen Dr. scient 
Botany 

Vegetation dynamics following trampling and burning in 
the outlying haylands at Sølendet, Central Norway 

  1999 Ingvar Stenberg Dr. scient 
Zoology 

Habitat selection, reproduction and survival in the 
White-backed Woodpecker Dendrocopos leucotos 

  1999 Stein Olle Johansen Dr. scient 
Botany 

A study of driftwood dispersal to the Nordic Seas by 
dendrochronology and wood anatomical analysis 

  1999 Trina Falck Galloway Dr. scient 
Zoology 

Muscle development and growth in early life stages of 
the Atlantic cod (Gadus morhua L.) and Halibut 
(Hippoglossus hippoglossus L.) 

  1999 Marianne Giæver Dr. scient 
Zoology 

Population genetic studies in three gadoid species: blue 
whiting (Micromisistius poutassou), haddock 
(Melanogrammus aeglefinus) and cod (Gradus morhua) 
in the North-East Atlantic 

  1999 Hans Martin Hanslin Dr. scient 
Botany 

The impact of environmental conditions of density 
dependent performance in the boreal forest bryophytes 
Dicranum majus, Hylocomium splendens, Plagiochila 
asplenigides, Ptilium crista-castrensis and 
Rhytidiadelphus lokeus 

  1999 Ingrid Bysveen 
Mjølnerød 

Dr. scient 
Zoology 

Aspects of population genetics, behaviour and 
performance of wild and farmed Atlantic salmon (Salmo 
salar) revealed by molecular genetic techniques 

  1999 Else Berit Skagen Dr. scient 
Botany 

The early regeneration process in protoplasts from 
Brassica napus hypocotyls cultivated under various g-
forces 

  1999 Stein-Are Sæther Dr. philos 
Zoology 

Mate choice, competition for mates, and conflicts of 
interest in the Lekking Great Snipe 

  1999 Katrine Wangen Rustad Dr. scient 
Zoology 

Modulation of glutamatergic neurotransmission related 
to cognitive dysfunctions and Alzheimer’s disease 

  1999 Per Terje Smiseth Dr. scient 
Zoology 

Social evolution in monogamous families: 
mate choice and conflicts over parental care in the 
Bluethroat (Luscinia s. svecica) 

  1999 Gunnbjørn Bremset Dr. scient 
Zoology 

Young Atlantic salmon (Salmo salar L.) and Brown trout 
(Salmo trutta L.) inhabiting the deep pool habitat, with 
special reference to their habitat use, habitat preferences 
and competitive interactions 

  1999 Frode Ødegaard Dr. scient 
Zoology 

Host spesificity as parameter in estimates of arhrophod 
species richness 

  1999 Sonja Andersen Dr. scient 
Bothany 

Expressional and functional analyses of human, 
secretory phospholipase A2 

  2000 Ingrid Salvesen, I Dr. scient 
Botany 

Microbial ecology in early stages of marine fish: 
Development and evaluation of methods for microbial 
management in intensive larviculture 

  2000 Ingar Jostein Øien Dr. scient 
Zoology 

The Cuckoo (Cuculus canorus) and its host: adaptions 
and counteradaptions in a coevolutionary arms race 

  2000 Pavlos Makridis Dr. scient 
Botany 

Methods for the microbial econtrol of live food used for 
the rearing of marine fish larvae 

  2000 Sigbjørn Stokke Dr. scient 
Zoology 

Sexual segregation in the African elephant (Loxodonta 
africana) 

  2000 Odd A. Gulseth Dr. philos 
Zoology 

Seawater tolerance, migratory behaviour and growth of 
Charr, (Salvelinus alpinus), with emphasis on the high 
Arctic Dieset charr on Spitsbergen, Svalbard 

  2000 Pål A. Olsvik Dr. scient 
Zoology 

Biochemical impacts of Cd, Cu and Zn on brown trout 
(Salmo trutta) in two mining-contaminated rivers in 
Central Norway 



  2000 Sigurd Einum Dr. scient 
Zoology 

Maternal effects in fish: Implications for the evolution of 
breeding time and egg size 

  2001 Jan Ove Evjemo Dr. scient 
Zoology 

Production and nutritional adaptation of the brine shrimp 
Artemia sp. as live food organism for larvae of marine 
cold water fish species 

  2001 Olga Hilmo Dr. scient 
Botany 

Lichen response to environmental changes in the 
managed boreal forset systems 

  2001 Ingebrigt Uglem Dr. scient 
Zoology 

Male dimorphism and reproductive biology in corkwing 
wrasse (Symphodus melops L.) 

  2001 Bård Gunnar Stokke Dr. scient 
Zoology 

Coevolutionary adaptations in avian brood parasites and 
their hosts 

  2002 Ronny Aanes Dr. scient Spatio-temporal dynamics in Svalbard reindeer (Rangifer 
tarandus platyrhynchus) 

  2002 Mariann Sandsund Dr. scient 
Zoology 

Exercise- and cold-induced asthma. Respiratory and 
thermoregulatory responses 

  2002 Dag-Inge Øien Dr. scient 
Botany 

Dynamics of plant communities and populations in 
boreal vegetation influenced by scything at Sølendet, 
Central Norway 

  2002 Frank Rosell Dr. scient 
Zoology 

The function of scent marking in beaver (Castor fiber) 

  2002 Janne Østvang Dr. scient 
Botany 

The Role and Regulation of Phospholipase A2 in 
Monocytes During Atherosclerosis Development 

  2002 Terje Thun Dr.philos 
Biology 

Dendrochronological constructions of Norwegian conifer 
chronologies providing dating of historical material 

  2002 Birgit Hafjeld Borgen Dr. scient 
Biology 

Functional analysis of plant idioblasts (Myrosin cells) 
and their role in defense, development and growth 

  2002 Bård Øyvind Solberg Dr. scient 
Biology 

Effects of climatic change on the growth of dominating 
tree species along major environmental gradients 

  2002 Per Winge Dr. scient 
Biology 

The evolution of small GTP binding proteins in cellular 
organisms. Studies of RAC GTPases in Arabidopsis 
thaliana and the Ral GTPase from Drosophila 
melanogaster 

  2002 Henrik Jensen Dr. scient 
Biology 

Causes and consequenses of individual variation in 
fitness-related traits in house sparrows 

  2003 Jens Rohloff Dr. philos 
Biology 

Cultivation of herbs and medicinal plants in Norway – 
Essential oil production and quality control 

  2003 Åsa Maria O. Espmark 
Wibe 

Dr. scient 
Biology 

Behavioural effects of environmental pollution in 
threespine stickleback Gasterosteus aculeatur L. 

  2003 Dagmar Hagen Dr. scient 
Biology 

Assisted recovery of disturbed arctic and alpine 
vegetation – an integrated approach 

  2003 Bjørn Dahle Dr. scient 
Biology 

Reproductive strategies in Scandinavian brown bears 

  2003 Cyril Lebogang Taolo Dr. scient 
Biology 

Population ecology, seasonal movement and habitat use 
of the African buffalo (Syncerus caffer) in Chobe 
National Park, Botswana 

  2003 Marit Stranden Dr.scient 
Biology 

Olfactory receptor neurones specified for the same 
odorants in three related Heliothine species (Helicoverpa 
armigera, Helicoverpa assulta and Heliothis virescens) 

  2003 Kristian Hassel Dr.scient 
Biology 

Life history characteristics and genetic variation in an 
expanding species, Pogonatum dentatum 

  2003 David Alexander Rae Dr.scient 
Biology 

Plant- and invertebrate-community responses to species 
interaction and microclimatic gradients in alpine and 
Artic environments 

  2003 Åsa A Borg Dr.scient 
Biology 

Sex roles and reproductive behaviour in gobies and 
guppies: a female perspective 



  2003 Eldar Åsgard Bendiksen Dr.scient 
Biology 

Environmental effects on lipid nutrition of farmed 
Atlantic salmon (Salmo Salar L.) parr and smolt 

  2004 Torkild Bakken Dr.scient 
Biology 

A revision of Nereidinae (Polychaeta, Nereididae) 

  2004 Ingar Pareliussen Dr.scient 
Biology 

Natural and Experimental Tree Establishment in a 
Fragmented Forest, Ambohitantely Forest Reserve, 
Madagascar 

  2004 Tore Brembu Dr.scient 
Biology 

Genetic, molecular and functional studies of RAC 
GTPases and the WAVE-like regulatory protein complex 
in Arabidopsis thaliana 

  2004 Liv S. Nilsen Dr.scient 
Biology 

Coastal heath vegetation on central Norway; recent past, 
present state and future possibilities 

  2004 Hanne T. Skiri Dr.scient 
Biology 

Olfactory coding and olfactory learning of plant odours 
in heliothine moths. An anatomical, physiological and 
behavioural study of three related species (Heliothis 
virescens, Helicoverpa armigera and Helicoverpa 
assulta) 

  2004 Lene Østby Dr.scient 
Biology 

Cytochrome P4501A (CYP1A) induction and DNA 
adducts as biomarkers for organic pollution in the natural 
environment 

  2004 Emmanuel J. Gerreta Dr. philos 
Biology 

The Importance of Water Quality and Quantity in the 
Tropical Ecosystems, Tanzania 

  2004 Linda Dalen Dr.scient 
Biology 

Dynamics of Mountain Birch Treelines in the Scandes 
Mountain Chain, and Effects of Climate Warming 

  2004 Lisbeth Mehli Dr.scient 
Biology 

Polygalacturonase-inhibiting protein (PGIP) in cultivated 
strawberry (Fragaria x ananassa): characterisation and 
induction of the gene following fruit infection by 
Botrytis cinerea 

  2004 Børge Moe Dr.scient 
Biology 

Energy-Allocation in Avian Nestlings Facing Short-
Term Food Shortage 

  2005 Matilde Skogen 
Chauton 

Dr.scient 
Biology 

Metabolic profiling and species discrimination from 
High-Resolution Magic Angle Spinning NMR analysis 
of whole-cell samples 

  2005 Sten Karlsson Dr.scient 
Biology 

Dynamics of Genetic Polymorphisms 

  2005 Terje Bongard Dr.scient 
Biology 

Life History strategies, mate choice, and parental 
investment among Norwegians over a 300-year period 

  2005 Tonette Røstelien ph.d 
Biology 

Functional characterisation of olfactory receptor neurone 
types in heliothine moths 

  2005 Erlend Kristiansen Dr.scient 
Biology 

Studies on antifreeze proteins 

  2005 Eugen G. Sørmo Dr.scient 
Biology 

Organochlorine pollutants in grey seal (Halichoerus 
grypus) pups and their impact on plasma thyrid hormone 
and vitamin A concentrations 

  2005 Christian Westad Dr.scient 
Biology 

Motor control of the upper trapezius 

  2005 Lasse Mork Olsen ph.d 
Biology 

Interactions between marine osmo- and phagotrophs in 
different physicochemical environments 

  2005 Åslaug Viken ph.d 
Biology 

Implications of mate choice for the management of small 
populations 

  2005 Ariaya Hymete Sahle 
Dingle 

ph.d 
Biology 

Investigation of the biological activities and chemical 
constituents of selected Echinops spp. growing in 
Ethiopia 

  2005 Anders Gravbrøt 
Finstad 

ph.d 
Biology 

Salmonid fishes in a changing climate: The winter 
challenge 



  2005 Shimane Washington 
Makabu 

ph.d 
Biology 

Interactions between woody plants, elephants and other 
browsers in the Chobe Riverfront, Botswana 

  2005 Kjartan Østbye Dr.scient 
Biology 

The European whitefish Coregonus lavaretus (L.) 
species complex: historical contingency and adaptive 
radiation 

  2006 Kari Mette Murvoll ph.d 
Biology 

Levels and effects of persistent organic pollutans (POPs) 
in seabirds 
Retinoids and �-tocopherol –  potential biomakers of 
POPs in birds?  

  2006 Ivar Herfindal Dr.scient 
Biology 

Life history consequences of environmental variation 
along ecological gradients in northern ungulates 

  2006 Nils Egil Tokle ph.d 
Biology 

Are the ubiquitous marine copepods limited by food or 
predation? Experimental and field-based studies with 
main focus on Calanus finmarchicus 

  2006 Jan Ove Gjershaug Dr.philos 
Biology 

Taxonomy and conservation status of some booted 
eagles in south-east Asia 

  2006 Jon Kristian Skei Dr.scient 
Biology 

Conservation biology and acidification problems in the 
breeding habitat of amphibians in Norway 

  2006 Johanna Järnegren ph.d 
Biology 

Acesta Oophaga and Acesta Excavata – a study of 
hidden biodiversity 

  2006 Bjørn Henrik Hansen ph.d 
Biology 

Metal-mediated oxidative stress responses in brown trout 
(Salmo trutta) from mining contaminated rivers in 
Central Norway 

  2006 Vidar Grøtan ph.d 
Biology 

Temporal and spatial effects of climate fluctuations on 
population dynamics of vertebrates 

  2006 Jafari R Kideghesho ph.d 
Biology 

Wildlife conservation and local land use conflicts in 
western Serengeti, Corridor Tanzania 

  2006 Anna Maria Billing ph.d 
Biology 

Reproductive decisions in the sex role reversed pipefish 
Syngnathus typhle: when and how to invest in 
reproduction 

  2006 Henrik Pärn ph.d 
Biology 

Female ornaments and reproductive biology in the 
bluethroat 

  2006 Anders J. Fjellheim ph.d 
Biology 

Selection and administration of probiotic bacteria to 
marine fish larvae 

  2006 P. Andreas Svensson ph.d 
Biology 

Female coloration, egg carotenoids and reproductive 
success: gobies as a model system 

  2007 Sindre A. Pedersen ph.d 
Biology 

Metal binding proteins and antifreeze proteins in the 
beetle Tenebrio molitor 
- a study on possible competition for the semi-essential 
amino acid cysteine 

  2007 Kasper Hancke ph.d 
Biology 

Photosynthetic responses as a function of light and 
temperature: Field and laboratory studies on marine 
microalgae 

  2007 Tomas Holmern ph.d 
Biology 

Bushmeat hunting in the western Serengeti: Implications 
for community-based conservation 

  2007 Kari Jørgensen ph.d 
Biology 

Functional tracing of gustatory receptor neurons in the 
CNS and chemosensory learning in the moth Heliothis 
virescens 

  2007 Stig Ulland ph.d 
Biology 

Functional Characterisation of Olfactory Receptor 
Neurons in the Cabbage Moth, (Mamestra brassicae L.) 
(Lepidoptera, Noctuidae). Gas Chromatography Linked 
to Single Cell Recordings and Mass Spectrometry 

  2007 Snorre Henriksen ph.d 
Biology 

Spatial and temporal variation in herbivore resources at 
northern latitudes 



  2007 Roelof Frans May ph.d 
Biology 

Spatial Ecology of Wolverines in Scandinavia  
 

  2007 Vedasto Gabriel 
Ndibalema 

ph.d 
Biology 

Demographic variation, distribution and habitat use 
between wildebeest sub-populations in the Serengeti 
National Park, Tanzania 

  2007 Julius William 
Nyahongo 

ph.d 
Biology 

Depredation of Livestock by wild Carnivores and Illegal 
Utilization of Natural Resources by Humans in the 
Western Serengeti, Tanzania 

  2007 Shombe Ntaraluka 
Hassan 

ph.d 
Biology 

Effects of fire on large herbivores and their forage 
resources in Serengeti, Tanzania 

  2007 Per-Arvid Wold ph.d 
Biology 

Functional development and response to dietary 
treatment in larval Atlantic cod (Gadus morhua L.) 
Focus on formulated diets and early weaning 

  2007 Anne Skjetne 
Mortensen 

ph.d 
Biology 

Toxicogenomics of Aryl Hydrocarbon- and Estrogen 
Receptor Interactions in Fish: Mechanisms and Profiling 
of Gene Expression Patterns in Chemical Mixture 
Exposure Scenarios 

  2008 Brage Bremset Hansen ph.d 
Biology 

The Svalbard reindeer (Rangifer tarandus 
platyrhynchus) and its food base: plant-herbivore 
interactions in a high-arctic ecosystem 

  2008 Jiska van Dijk ph.d 
Biology 

Wolverine foraging strategies in a multiple-use 
landscape 

  2008 Flora John Magige ph.d 
Biology 

The ecology and behaviour of the Masai Ostrich 
(Struthio camelus massaicus) in the Serengeti 
Ecosystem, Tanzania 

  2008 Bernt Rønning ph.d 
Biology 

Sources of inter- and intra-individual variation 
in basal metabolic rate in the zebra finch, 
(Taeniopygia guttata) 

  2008 Sølvi Wehn ph.d  
Biology 

Biodiversity dynamics in semi-natural mountain 
landscapes.  
- A study of consequences of changed 
agricultural practices in Eastern Jotunheimen 

  2008 Trond Moxness Kortner ph.d 
Biology 

"The Role of Androgens on previtellogenic 
oocyte growth in Atlantic cod (Gadus morhua): 
Identification and patterns of differentially 
expressed genes in relation to Stereological 
Evaluations" 
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