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Abstract

Knowledge of the flow rates from individual wells in a subsea production system can
greatly improve decision-making processes. This thesis investigates flow estimation in
the subsea template Tilje in the BP-operated Skarv field, with automatic rate control in
mind. Two optimization-based estimation methods, one with static models and one
with dynamic models, are developed and compared against each other by means of
benchmark data from an OLGA model and historical field data from Tilje. Ideas from
recent developments in production optimization are applied in the derivation of the
production network models. This amounts to representing the flow network as individ-
ual network components with B-spline approximated models., leading to a transparent
model which allows for easier estimator tuning, easier constraint handling and faster
solution times.

The results presented in this thesis show that the method with static models is able
to predict flow rates with acceptable accuracy, has good robustness properties and fast
solution times, indicating that the method has potential for use in an automatic rate
control system. The method with dynamic models is less robust, more complex, and
does not seem to improve the flow rate estimates. However, it does include estimates of
mass and holdup and could potentially be useful if the method was improved. In addi-
tion to providing feedback for automatic rate control systems, the methods described
in this thesis could potentially be used as cornerstones in advanced decision support
tools, such as flow assurance systems and condition monitoring systems.
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Sammendrag

Kjennskap til individuelle brønnrater i et subsea produksjonssystem kan bedre beslut-
ningsprosessene relatert til drift av systemet. Denne masteroppgaven dreier seg om
rateestimering i subseasystemet Tilje i det BP-opererte Skarv-feltet, med fokus på au-
tomatisk regulering av brønnrater. To optimaliseringsbaserte metoder, en med statiske
modeller og en med dynamiske modeller, blir utviklet og sammenlignet ved hjelp av
referansedata fra OLGA og historiske feltdata fra Tilje. Metodene benytter seg av senere
tids ideer fra produksjonsoptimalisering. Produksjonsnettverket representeres ved in-
dividuelle nettverkskomponenter med B-spline-approksimerte modeller. Dette fører
til en transparent modell som gjør det lettere å tune estimatorene, lettere å håndtere
begrensninger i systemet, og raskere løsning av optimaliseringsproblemet.

Resultatene presentert i oppgaven viser at metoden med statiske modeller er i stand
til å estimere rater med tilfredsstillende nøyaktighet, har gode robusthetsegenskaper og
raske løsningstider. Dette indikerer at metoden har potensiale for å brukes i et system
for automatisk regulering av brønnrater. Metoden med dynamiske modeller er min-
dre robust, mer kompleks og synes ikke å forbedre rateestimatene betraktelig. Likevel
inkluderer den estimering av masse og holdup, og kan potensielt være av nytte hvis
metoden forbedres. I tillegg til å levere estimater til et automatisk ratereguleringssys-
tem, kan metodene beskrevet i oppgaven potensielt benyttes som hjørnesteiner i avanserte
beslutningsverktøy, som systemer for strømningssikring og tilstandsmonitorering.
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Chapter 1

Introduction

In the last few decades, we have seen a shift in the offshore petroleum industry, from
conventional platform operations to increasingly remote subsea production systems.
This has resulted in an increased demand for real-time monitoring and control (Bringedal
et al., 2010). In this thesis, we will look at using available real-time data to estimate flow
rates in a subsea production network, also known as virtual flow metering (VFM). This
introductory chapter will provide some background information and motivate the need
for flow estimation. Thereafter, the particular case discussed in this thesis, namely the
Skarv field, will be presented. Finally, we will go through the structure of the thesis and
present the general notation which will be used.

1.1 Background and motivation

This section covers some basic background information and motivates the need for
flow estimation. In addition, we will take a quick look at some of the solutions in use
today.

1.1.1 Operational decisions in petroleum production and the need
for flow monitoring

In short, oil and gas is produced by drilling wells into a petroleum reservoir, and con-
necting these wells to a gathering system/production network which brings the reser-
voir fluids (usually a composition of oil, gas and water) from the wells to a surface pro-
cessing plant. The flow is driven by the high pressure in the reservoir, sometimes aided
by the use of various artificial lift methods. The main purpose of the processing plant is
to separate oil, gas and water. After processing, the oil and gas is sold, and produced wa-
ter is purified before being e.g. discharged to sea. Some gas or water may be re-injected
to the reservoir to maintain pressure and aid production (Gunnerud, 2011).



2 Introduction

The task of operating a petroleum asset (i.e. a reservoir with wells and a production
system) is not trivial. As described in (Foss, 2012), there are several decisions to be made
on different time horizons, from long-term investment strategies to short-term control
decisions. These decisions can be categorized and organized in a multi-level control
hierarchy, where each level provides targets/set points to and receives feedback from
the level below (Fig. 1.1).

Figure 1.1: Multi-level control hierarchy (Foss, 2012).

In order to make good decisions, oil companies use an array of decision support
tools which, based on field data and various mathematical models, provide sugges-
tions for how to optimally operate the asset. An important part of this is the ability to
determine the individual flow rates from each well. With reference to Figure 1.1, such
information can support decision making on several time scales:

• Reservoir Management: Information about individual well rates can increase un-
derstanding about fluid flows in the reservoir and aid depletion planning (Heddle
et al., 2012). In addition, accurate well rate monitoring is important with respect
to e.g. production reporting and taxes/royalties, in particular for reservoirs span-
ning more than one license (Lerma et al., 2006).

• Production Optimization: Production optimization involves the determination
of the optimal contribution from each well to the total production (i.e. the well
allocation). The goal may be to maximize oil production, or to produce at a target
rate. Accurate well rate monitoring can increase the confidence and acceptance
of proposed suggestions from production optimization software.

• Control and Automation: If a well is rate controlled, some measure of the actual
well rate is necessary for feedback.

In addition, we need to ensure the flow rate does not violate operational limits at any
given location. Potential problems include flow-induced vibration and erosion of pipelines
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and other equipment. Knowledge of the flow rates in the production system is also an
important input to flow assurance systems (FAS) in the sense that the flow rates can
be used together with pressure and temperature measurements to predict (and thus
avoid) unwanted conditions in the network, e.g. hydrate formation and wax or asphal-
tene deposition. Thus, providing feedback for rate control, which is the goal suggested
by the title of this thesis, is just one of many potential benefits of having accurate well
rate monitoring.

1.1.2 Flow monitoring in petroleum production networks

Several approaches can be found for determining well flow rates. To leave this section
short, we will mention the most simple approach and go straight to the "state of the
art", without all the in-betweens.

The conventional way to determine well flow rates is to measure the flow directly or
indirectly over a period of time, on a weekly or monthly basis. This process is known as
single-rate well testing, and typically results in a set of measured average flow rates (oil,
gas, water), relative gas and water content (gas-oil ratio and water cut; these terms are
discussed in Chapter 3), and pressure/temperature conditions. Then, the production
of the well is assumed to not change significantly until the next well test. Consequently,
declining production rates, change in gas/water content or other issues (e.g. well insta-
bility) may not detected until the next well test (Goh et al., 2007).

Newer subsea developments (e.g. Skarv) are often equipped with multiphase flow
meters (MPFM), which have the ability to measure one or more of the individual flow
rates of oil, gas and water. In this case, a well test can be performed by routing the
well stream through the MPFM and recording the resulting measurements, assuming
the MPFM is properly calibrated. For fields without MPFMs (or with malfunction-
ing/poorly calibrated MPFMs), the well must be routed to a dedicated test separator
to determine the performance of the well. Well tests require planning and personnel,
and typically result in some lost production (depending on the type of test). As a result,
they are expensive to perform (Bieker et al., 2007). In addition, MPFMs are also very
expensive, both with respect to investment costs and maintenance (Melbø et al., 2003).

Subsea production systems may have long tiebacks1, which complicates well test-
ing. For example, single-well testing to a topside separator may be difficult due to slug-
ging or other issues. Although MPFMs solve this problem, they are expensive, error-
prone, and some fields simply do not have them (Bringedal et al., 2010). However, most
subsea production systems are well equipped with pressure and temperature measure-
ments, which are easily available through high-capacity data acquisition and storage
systems. This has enabled the industry to develop methods for using available sensor
information around each well (typically pressure and temperature transmitters) to esti-

1The tieback is the length of a common pipeline which connects a cluster of subsea wells to the pro-
cessing plant, e.g. a platform or FPSO vessel.
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mate well flow rates in real time. These methods typically rely on a mathematical model
of the well, which is updated/fitted to measured flow rates from available well tests.
Since these methods provide real-time or near-real-time flow estimates without relying
on a physical flow meter, they are aptly named virtual flow metering (VFM) methods.
As we will see in the next section, industry experience has shown that VFM implemen-
tations can increase the intervals between expensive well tests, and provide an accurate
alternative and/or backup to expensive and error-prone MPFMs.

1.1.3 Existing VFM solutions and industry experience

Although journal publications regarding VFM development are scarce (probably due to
industry-driven development and intellectual property rights), some general impres-
sions can be found in various conference papers. These papers are listed together with
a few examples of commercial and in-house VFM solutions in Table 1.1 below.

Vendor/operator Product name Reference

FMC Technologies FlowManager VFM (Holmås & Løvli, 2011)
ABB Well Monitoring System (Melbø et al., 2003)
SPT Group OLGA Online VFM -
Emerson Roxar FieldWatch VFM -
Baker Hughes Neuraflow VFM -
Belsim ValiUpstream -
BP ISIS Rate&Phase (Heddle et al., 2012)
Shell FieldWare PU (Goh et al., 2007)

Table 1.1: Examples of commercial and in-house Virtual Flow Metering systems.

All VFM systems discussed in these papers seem to rely on optimization and recon-
cilation methods (however, due to the relatively superficial literature on the subject, the
author cannot rule out that other approaches are in use). A modular approach is taken
where a library of model components (e.g. well, choke, venturi and pipeline models)
are used, together with mass, momentum and energy balance equations, to piece to-
gether a model of the production system in question. The resulting model is treated as a
black-box simulator where flow rates and other parameters like e.g. reservoir pressure
are inputs and resulting pressures in the production system (corresponding to avail-
able measurements) are outputs. Then, an optimization algorithm iteratively finds the
flow rates/parameters which correspond to a "best fit" with the measured pressures;
i.e. solves an optimization problem which will look something like

minimize
q,θ

n∑
i=1

wi
(
pi − p̃i

)2 , (1.1a)

subject to [p1, . . . , pn]> = f(q,θ, T̃), (1.1b)
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where f(·) is a black-box model of the production network, q,θ, T̃ are flow rates, param-
eters and measured temperatures (respectively), n is the number of pressure measure-
ments, {wi }n

i=1 are weights on each pressure error,
{

pi
}n

i=1 are model-predicted pres-
sures and

{
p̃i

}n
i=1 are measured pressures. Most VFM systems rely on static/steady-

state models, although there has been a few implementations with dynamic models,
e.g. FMC’s FlowManager Dynamic (Holmås & Løvli, 2011) and SPT Group’s OLGA On-
line VFM.

For densely instrumented systems, VFM systems may be able to calculate a large
number of unknowns, e.g. individual oil, gas and water rates in addition to several other
parameters. However, if a limited amount of measurements are available due to sparse
instrumentation or malfunctioning instruments, this will typically result in increased
uncertainty or estimation of fewer unknowns. This is elaborated on in (Melbø et al.,
2003), and we will also discuss it briefly at the end of Chapter 2.

Model maintenance

The model components mentioned above need to be maintained in order to continu-
ously provide accurate estimates. This is typically achieved by fitting, or calibrating, the
models to available well tests. Multi-rate tests2 are preferred, since this will result in a
model which is valid over a larger operational envelope (Heddle et al., 2012). To limit
the amount of needed maintenance, some VFM solutions allow in-house (customer-
maintained) models to be used for flow estimation, enabling easier integration with
already existing workflows. One example of this is FMC’s "common field model" ap-
proach, which is discussed in (Bakken et al., 2011). As mentioned in (Bringedal et al.,
2010), a major challenge in industrial VFM solutions is the cost of maintaining several
models in parallel.

Benefits

Aside from the obvious benefit of providing real-time monitoring of well rates, experi-
ence from the industry has shown that VFM methods have a number of additional ben-
efits (Heddle et al., 2012; Lerma et al., 2006; Hauge & Horn, 2005; Bakken et al., 2011):

• A significant reduction in the effort required to compute/report daily production.
• Increased interval between well tests - VFM system notifies operator when a new

well test is needed for model calibration.
• Early detection of gas coning and water breakthrough (i.e. sudden increases in

gas or water content).

2Multi-rate well tests are (as the name entails) well tests where several rates are tested in order to span
a larger operational envelope. Such tests take longer, and are thus more expensive, than single-rate tests
(Bieker et al., 2007).
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• Assurance that operation is within integrity limits, i.e. minimizing the risk of
damage or wear due to vibration or erosion.

• Consistency checking of pressure, temperature and any physical flow rate meter-
ing systems, which enables redundancy and detection of faulty equipment.

• More accurate well rate information enables more accurate history matching of
reservoir simulation models, which in turn leads to better reservoir depletion
planning.

• Valuable input to flow assurance systems, and can thus be used to predict and
avoid e.g. hydrate formation, wax and asphaltene deposition.

Based on the need and proved benefits of flow estimation, the motivational aspects of
this thesis should now be clear. We will now move on to describe the specific field under
investigation; namely, the Skarv field.

1.2 The Skarv field

This section will present the Skarv field, which is the specific case studied in this thesis.

1.2.1 General information

The Skarv field was discovered in 1998, and is located in license blocks 212, 159 and
262, on the Haltenbanken terrace in the Norwegian Sea, about 210 kilometres offshore
Sandnessjøen (see Figure 1.2). It is operated by BP Norge AS and partnered by Statoil
ASA, E.ON E&P Norge AS and PGNIG Norge AS. The wells are located at 350-450 m water
depth and the tieback distances range from 4 to 14 km. Production started on New
Year’s Eve 2012, and the field is expected to produce for 25 years (Larsen & Hocking,
2012; BP, 2014).

Figure 1.2: Location of the Skarv field (Ptil, 2009).
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Topology of subsea production network

Currently, the Skarv field is operating twelve production wells and four injection wells.
The wells are distributed over five subsea templates, and produced fluids are trans-
ported via pipelines and flexible risers to the Floating Production, Storage and Offload-
ing (FPSO) vessel "Skarv FPSO". Produced oil is offloaded via shuttle tanker, while pro-
duced gas is compressed and exported via pipelines. An overview over the system topol-
ogy is shown in Figure 1.3, and a well summary is given in Table 1.2.

Instrumentation

The Skarv field is a brand new development which enjoys dense instrumentation and
state-of-the-art data-to-desktop solutions. The wells and pipeline systems are equipped
with a large amount of pressure and temperature sensors, which transmit measure-
ments in near real time3 to a PI (historian)4 server. One MPFM and an associated rout-
ing system is fitted in each template, which enables the continuous monitoring of a
single well, or a group of wells (see Fig. 6.1 in Chapter 6).

Figure 1.3: The Skarv field subsea production system.

Template Production wells Injection wells Flowlines Tieback distance

Tilje 2 (oil) 2 (gas) Dual 5 km
Idun 2 (gas) 0 Single 14 km
Skarv A 4 (gas) 0 Dual 5 km
Skarv B/C 4 (oil) 2 (gas) Dual 4 km

Table 1.2: Well summary, Skarv field.

3While measurements are sent in real time to a SCADA system, data is sent in "bursts" to the PI server
every 30 seconds.

4PI is a much-used system for data storage and analysis, vendored by OSIsoft. For more information,
see http://www.osisoft.com.

http://www.osisoft.com
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Operational constraints

Gas producing wells are rate/velocity constrained to prevent erosion of the corrosion
protective layer in the pipelines. In addition, total gas production may be limited by
export demand. The most common constraints in oil wells are drawdown constraints,
meaning that the bottom hole pressure must be kept above a certain value. For Skarv,
this is to prevent the wells from drawing sand from the reservoir. In extreme cases, a too
low bottom hole pressure can cause formation damage due to high pressure gradients
in the near-well region of the reservoir. In addition, the choke valves have a limited rate
of change (one or two steps per half hour) - this is to prevent rapid changes in bottom
hole pressure which could also result in some sand production.

Well testing and MPFM calibration

The Skarv wells are tested at regular intervals (every 1-2 weeks) by routing the well
through the MPFM fitted on the subsea template. The tests are typically single-rate
tests with a duration of 4-24 hours. Average flow rates, pressures and temperatures are
recorded and used for updating well models. The MPFM is calibrated by isolating it
from the well streams; in this case the phase detector should fill up with gas, and the
MPFM should indicate 100 % gas fraction. If it does not, parameters are adjusted until
100 % is indicated. Occasionally, the MPFM should also be calibrated by routing both
wells through the MPFM to a test separator, where the rates of each phase are measured
and compared to the MPFM.

1.2.2 Important simplifications and assumptions

In this section, we will make a few assumptions to simplify the estimation problem and
limit the scope of the literature study. The assignment text calls for closer investigation
of one or two templates; we choose to take a closer look at Tilje. Although all the tem-
plates would be good candidates, we choose Tilje since (1) it produces a three-phase
mixture of oil, gas and water, which calls for the use of multiphase modelling, and (2)
under reasonable assumptions, the network topology is quite simple, which means we
can present most of the estimation results in a reasonable amount of space. Although
Tilje only has two wells, the template is equipped with two additional slots for future
wells. To accommodate for the possibility of future wells being drilled, it makes sense
to allow for an arbitrary number of wells in the model. This also enables us to apply our
results to other templates at Skarv or other fields.

The actual production templates at Skarv are relatively complex networks. In ad-
dition to the equipment required for bringing reservoir fluids to the surface, they are
equipped with a large number of pipes, valves and sensors to facilitate additional re-
quirements, such as safety/shutdown functions and methanol injection for preventing
hydrate formation. However, during normal production, this additional equipment is
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not in use; therefore we choose to ignore it. To prevent slugging in the flowline-riser
system, the Tilje wells always produce to a single pipeline. Therefore, we further sim-
plify the network and assume a single tieback pipeline, ending up with the simplified
model shown in Figure 1.4 below. This figure also shows the (relevant) available instru-
mentation used for estimation.

Figure 1.4: Simplified Tilje template with instrumentation.

We will also make the important assumption that reservoir pressure, GORs and wa-
ter cuts are fixed between well tests. This means we can focus on formulating the model
in terms of liquid rates.

Finally, we assume the wells are to be calibrated using single-rate tests. This is to
reflect the current operational situation at Skarv. Nevertheless, in Chapter 6 we will
discuss calibration in a more general setting, i.e. applicable to multi-rate tests.
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1.3 Overall goals and strategy

Based on the assignment text, two overall goals can be identified. The first is to selec-
t/develop appropriate steady-state and dynamic models for flow estimation. The sec-
ond is to implement static and dynamic estimation algorithms based on these models,
and compare their performance with the aid of OLGA and some test cases. As indicated
by the title of this thesis, our goal is to develop an estimator which produces good-
quality flow rate estimates which could potentially be used for rate feedback control.
Based on this, we can formulate a few requirements to be fulfilled by the estimation
algorithm:

• Obviously, it should provide sufficiently accurate flow rate estimates. Since the
flow rate controller has no choice but to treat the flow rate estimate as the truth,
any offset in the flow rate estimate will result in a corresponding offset in the con-
trolled rate.

• It should be robust, in the sense that it is not too sensitive to poor tuning choices,
noise and "difficult" operational conditions.

• Estimates should be calculated in a reasonable amount of time after new mea-
surements are available, i.e. well within the sampling time of the system. This
is because the calculation time contributes directly to the time delay/lag in the
feedback loop.

These are thus important criteria to be considered when comparing the two estimation
algorithms. Velocity is also mentioned briefly in the assignment text, which is due to
the fact that gas velocity and erosion is an operational concern at Skarv. Although we
will focus on rate estimation throughout the thesis, some remarks on velocity are made
in the discussion chapter.

As mentioned in the background section, it seems that most commercial VFM sys-
tems rely on coupling a black-box model/simulator with an optimization algorithm and
NLP solver to generate estimates. This method is inherently inefficient, since (1) sim-
ulators may take some time to calculate pressures for a given set of flow rates, since
the entire network model must converge for each evaluation, and (2) black-box sim-
ulators to not generally provide gradients, meaning gradients must be calculated by
e.g. finite differences, or a derivative-free optimization algorithm must be used. In
e.g. (Gunnerud & Foss, 2009) and (Sandnes, 2013), we see that solving the produc-
tion optimization problem can be made more efficient by exploiting the structure of
the problem and breaking down the simulator into a transparent model consisting of
smaller network components, i.e. wells and pipelines. These components all have their
own (smaller) model, which may be obtained by sampling the simulator for a sufficient
range of the input variables and approximating the resulting data sets using some ap-
proximation scheme. For instance, (Kosmidis et al., 2005; Gunnerud & Foss, 2009) use
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piecewise linear approximations, while (Sandnes, 2013) uses B-spline (piecewise poly-
nomial) approximations. The resulting approximated models are then connected with
mass balance equations to form one large optimization problem.

These methods transfer nicely to the flow estimation problem, since the result-
ing optimization problem is very similar if we ignore the routing decisions sometimes
present in production optimization. In fact, the only main differences are the objec-
tive function and the free variables; while the production optimization problem may
seek to maximize flow rates by adjusting e.g. choke pressure drops or lift gas, the flow
estimation problem seeks to minimize discrepancies between pressure estimates and
pressure measurements by adjusting the flow rates. The basic model constraints (i.e.
models and mass balance) are mostly the same.

This motivates the use of a similar approach for the flow estimation problem. Such
an approach also supports the inclusion of in-house models, which eliminates the need
for maintaining two separate models of the production system. Having worked with B-
splines in my project assignment last semester (Robertson, 2013), this seems a natural
choice for approximating BP’s in-house models of the equipment on the Tilje template.

1.4 Scope and interpretation of assignment text

In this section, we will go through the assignment text item by item and give a short
interpretation and a reference to where in the report the item is covered.

1. Literature review on state estimation methods and mathematical mod-
elling of oil production networks. This should include advantages of using
optimization based methods instead of the Kalman Filter.

This literature review assignment is covered in Chapters 2 (state estimation methods)
and 3 (mathematical modelling). The state estimation part focuses on Kalman filter-
ing and optimization-based estimation methods, and discusses some general concepts
needed to formulate the optimization problems in Chapters 4 and 5. We also look at
flow estimation (VFM) from a more practical viewpoint. The modelling part focuses
on rate/pressure relations in wells, choke valves and pipelines, which are the essential
building blocks of a VFM system.

2. Develop/select suitable steady-state and dynamic models for one or two
specific templates with wells. Fit the model to one template at the Skarv
field using available data and other information.

The Tilje template is selected for implementation of the flow estimation methods, due
to its relatively simple topology and the fact that it produces a three-phase mixture of
oil, gas and water. As mentioned in the background section, industry experience has
shown that a VFM implementation preferably should support the inclusion of customer
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maintained models. Motivated by the work of (Sandnes, 2013), and the desire to intro-
duce some novelty, the selected approach is to implement models of wells and pipelines
in the Skarv field which are maintained by BP, but use B-spline approximations to form
surrogate models as an alternative to the black-box approach which seems to be com-
mon in commercial VFM solutions. The static model is described in Chapter 4, and in
Chapter 5 the static model is extended to include dynamics. Since the models are to be
implemented as constraints in an optimization problem, these chapters are more "op-
timization problem formulation" chapters than modelling chapters per se. In Chapter 6
we fit the models to well test data using a fairly simple nonlinear least-sqares approach.

3. Implement a detailed model of the same system for comparison pur-
poses. OLGA or similar tool to be used.

The detailed model is implemented in OLGA using well and pipeline geometries from
Tilje, supplied by BP. A short description of the model is given in the beginning of Chap-
ter 8.

4. Define a set of typical operating scenarios; some with predominantly
stable operation and others with extensive variability.

Three operating scenarios are defined in Chapter 8; one well adjustment case with little
to moderate dynamics, one riser slugging case with little to severe dynamics, and one
case with field data, with little to moderate dynamics.

5. Develop, implement and test methods for optimization based estimation
(using simulation).

This assignment spans both the modelling, implementation and results chapters. While
the main part of this is the formulation of the optimization problems (Chapters 4 and
5), the actual implementation of the estimators is discussed briefly in Chapter 7, and
the estimators are tested in Chapter 8.

6. Compare the performance of steady-state versus dynamic models for
the operating scenarios defined in Item 4, and historical data from Skarv to
assess the performance of the estimators.

A performance comparison of the steady-state and dynamic estimator is given objec-
tively in the Chapter 8, while the discussion chapter (Chapter 9) will elaborate further
on both advantages and shortcomings of each method. Here, we will emphasize on
each method’s ability to fulfill requirements given at the start of Section 1.3 to discuss
whether the methods are feasible for use in a closed-loop rate control system.



Structure of the thesis 13

1.5 Structure of the thesis

To summarize the section above, we will describe the contents of each chapter in this
thesis. Chapter 1 is this introduction, which covers background information about flow
estimation and the Skarv field, motivation, overall goals and strategy. We then go on
with some theoretical chapters; Chapter 2 deals with state estimation, while Chapter 3
covers the theory on modelling petroleum production networks. Thereafter, the mod-
els and optimization problems used for estimation are formulated in Chapters 4 (static)
and 5 (dynamic). Model fitting/calibration is discussed in Chapter 6. In Chapter 7 we
provide a short chapter on how the optimization problems are included in flow estima-
tion algorithms, and briefly discuss the C++ implementation. In Chapter 8, the estima-
tors are put to the test on two simulation cases and one case with data from the Skarv
field. Finally, a discussion is given in Chapter 9 and a conclusion in Chapter 10.
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1.6 Notation

This section describes some common notation used throughout the thesis, summa-
rized in Table 1.3 (the most common quantities, symbols and units) and Table 1.4 (gen-
eral notation).

Quantity Symbol Unit

Volumetric flow rate q [Sm3/h]
Pressure p [bara]
Differential pressure ∆p [bar]
Temperature T [◦C]
Density ρ [kg/m3]
Density at standard conditions ρstd [kg/m3]
Viscosity µ [N/sm2]

Table 1.3: Common quantities, symbols and units.

Type Description

Scalars For scalars and scalar-valued functions, the usual italic font is used, e.g. n,
T for scalars and f (·) for a scalar-valued function.

Vectors Vectors are denoted with bold face lower-case letters, e.g. x. Vector-valued
functions follow the same notation, e.g. f(·).

Matrices Matrices are denoted with bold face upper-case letters, e.g. A. The transpose
of A is denoted A>, and the inverse of A is A−1. In denotes the n ×n identity
matrix. 0 and 1 are matrices filled with zeros and ones, respectively (the size
of these should be clear from context).

Sets Vector spaces are denoted with the so-called blackboard bold font, e.g. X.
Rn denotes the n-dimensional space of real numbers. Mn×m denotes the
space of n ×m matrices. Index sets are denoted with the calligraphic font,
e.g. W ,H .

Norms The weighted norm is used extensively, and for an n-vector x it is given as
‖x‖2

P = x>Px, where P is an n ×n weighting matrix.

Sequences {xk }T
k=1 denotes the sequence {x1,x2, . . . ,xT }.

Variable bounds Simple underline and overline notation is used to denote bounds on vari-
ables. For example, a pressure p may be bounded by a lower bound p and

an upper bound p.

B-spline approximations The Greek letter Φ is used to emphasize when a B-spline approximation is
used. For example, the B-spline approximation of the function fvlp(·) is de-
notedΦvlp(·).

Table 1.4: General notation.



Chapter 2

State estimation methods

The aim of this study is to estimate unknown flow rates when only pressure and tem-
perature measurements are available. In this sense, we are presented with a state esti-
mation problem. This chapter provides a literature review of selected state estimation
methods. In the introductory section, the state estimation problem is introduced in the
setting of a general discrete-time nonlinear system. In section 2.2, a description of the
Kalman filter (KF) will be given, including a couple of extensions to nonlinear systems,
namely the extended Kalman filter (EKF) and the unscented Kalman filter (UKF). Sec-
tions 2.3 and 2.4 will present two optimization-based methods; static weighted least-
squares (SWLS) and moving-horizon estimation (MHE), respectively. We then go on to
discuss benefits of optimization-based methods in light of the task at hand, before we
conclude the chapter with a more practical view on flow estimation in subsea produc-
tion networks. The main sources of information have been (Brown & Hwang, 2012) for
Kalman filtering, and (Rawlings & Mayne, 2013) for SWLS and MHE. Additional sources
will be cited when appropriate.

2.1 Introduction

In most real-world systems, including subsea production networks, the full set of states/-
variables cannot be measured directly. For instance, some variables may not be practi-
cally or economically feasible to measure due to their location in the system. Further-
more, the measurements which are available may be subject to unknown disturbances
or noise, which means that we must expect there to be some error between the mea-
sured and true values. For example, an instrument may be calibrated incorrectly or its
accuracy may deteriorate over time, or signal noise may occur due to e.g. electromag-
netic interference. The state estimation problem amounts to (1) finding estimates for
the unknown states, and (2) using information about measurement accuracy to esti-
mate the true value of the measured variables. A state estimator is thus an algorithm
designed to use available information, such as (potentially noisy) measurements of in-
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puts/outputs and a mathematical model of the system, to generate estimates of the
current internal state of the system. This is useful for two main reasons:

• Supervision: State estimators provide important information about unmeasured
states in the system. This may be valuable to operators and engineers, e.g. for
monitoring and/or decision support.

• Control: When estimates of unmeasured states are available, these estimates can
be used for feedback and/or feedforward control.

This concept is illustrated in the familiar Figure 2.1, which shows the architecture of a
state estimation based control system. Note that using the state estimate for control is
not necessarily something we need; some applications may use the estimator for mon-
itoring purposes only.

Figure 2.1: Control and supervision using state estimator.

Control engineering is all about designing the internal structures of the controller
and estimator, and a vast amount of different methods have been developed over the
years. As mentioned above, this chapter will focus on a few selected methods for state
estimation. This chapter will be presented in a discrete-time setting, since both the
Kalman filter and the moving-horizon estimator are usually treated in discrete time.
General discrete-time nonlinear systems are given by the following:

xk+1 = f(xk ,uk )+wk , (2.1a)

yk = h(xk )+vk , (2.1b)

Assuming a constant sampling time ∆t , the time index k is used to denote a discrete
point in time, i.e. xk = x(tk ). xk ∈ X ⊆ Rn is an n-vector of states, uk ∈ U ⊆ Rm is an
m-vector of known inputs, and yk ∈Y⊆Rq is a q-vector of measured outputs. X,U and
Y are constraint sets for the state, input and output vectors, respectively, which usually
contain bounds on each variable. Since our goal in this thesis is state estimation and
not control, both uk and yk will be treated as measurements, which serve as inputs to the
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state estimation algorithm. wk ∈Rn represents errors in the state equations and vk ∈Rq

represents errors in the output equations. These errors stem from noise, disturbances,
and discrepancies between the model and the actual system. The system dynamics are
described by the nonlinear function f : X×U → X. In (2.1a), xk+1 is given explicitly,
however f(·) may or may not be possible to write in closed form. If not, (2.1a) is given
implicitly, and must be replaced with 0 = f(xk ,xk+1,uk )+wk . The output vector is linked
to the states by the nonlinear output function h :X→Y. Sometimes the input vector uk

is included as an input to h(·), but this is omitted here due to the fact that the outputs
of the system in question are simply a subset of the states.

2.1.1 Classification of state estimation methods

State estimation methods can be classified according to their properties. In the litera-
ture, a common divide is between stochastic and deterministic state estimation. Stochas-
tic methods base their estimates on probability and statistics, and are sometimes called
maximum likelihood estimation methods. Deterministic methods calculate estimates
which somehow cause the observed measurements and deterministic model predic-
tions to converge. For the methods discussed here, Kalman filtering is regarded a stochas-
tic method, while SWLS and MHE are deterministic. However, it should be noted that
in some special cases the two approaches are simply different ways of obtaining the
same result. For instance, it is shown in (Rawlings & Mayne, 2013) that for linear sys-
tems, Kalman filtering is equivalent to solving a deterministic weighted least-squares
problem, provided the weights are selected appropriately. Estimation methods may
be further categorized by what assumptions are being made about the system (static/-
dynamic/linear/nonlinear/Gaussian noise etc.) and how much information is being
considered when computing estimates (full-information/reduced information).

2.1.2 Observability

Observability is a key term when talking about state estimation. In short, an internal
(unmeasured) system variable is said to be observable if it is mathematically possible to
determine its value from observations of inputs and outputs only. In other words, if a
variable is not observable, we cannot expect to be able to estimate its value. A system
is said to be observable if all its internal states are observable. A relaxed term related to
observability is detectability, which only requires unstable states to be observable. For
simplification, model and process errors are most often not considered when check-
ing for observability - it is an inherent property of the system equations. Determining
whether a system is observable or not is simple for linear systems such as

xk+1 = Axk +Buk , (2.2a)

yk = Cxk , (2.2b)
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where A, B and C are n ×n, n ×m and q ×n matrices, respectively. We simply check
the rank of the observability matrix O = [C,CA,CA2, . . . ,CAn−1]>; if it has full rank, the
system is observable (Chen, 1995). For nonlinear systems like (2.1), observability is less
trivial, but the topic has been quite thoroughly explored since the early 1970s (Hermann
& Krener, 1977). Rawlings & Mayne (2013) give rigorous definitions of both observabil-
ity and detectability for discrete-time nonlinear systems. Here, observability implies
that the output sequence must originate from a unique initial state. In other words,
if some disturbance sequence is given, and two different initial states may result in
the same output sequence, the system is not observable (which is basically the same
generic definition we gave at the start of this section). The relaxed detectability con-
dition requires two converging disturbance and output sequences to yield converging
state trajectories, and they show that this is satisfied for incrementally input/output-to-
state stable (i-IOSS) systems.

In this study, the question of observability boils down to whether or not we can use
the observed measurements of pressures and choke valve positions to determine the
flow rates. At least two fundamental requirements are clear; For one, the flow network
must have an adequate number of measurements. Furthermore, every set of measure-
ments must yield a unique set of flow rates. If this is not the case, we cannot be certain
of which of the possible solutions is the correct one.

2.2 Kalman filtering

The Kalman filter and its variations is a well established stochastic state estimation
method developed in the 1960s by Rudolph Kalman (Kalman, 1960). Its applications
range from navigation in the marine and aerospace industries to weather forecasting.
In the oil industry, variations of the Kalman filter are used (among other things) for his-
tory matching of reservoir models (Sui et al., 2011) and for state/parameter estimation
of oil and gas processing plants (Imsland et al., 2010). This section will give a short
description of three variations, namely the standard linear Kalman filter, the extended
Kalman filter and the unscented Kalman filter.

2.2.1 The Kalman filter (KF)

The original Kalman filter introduced in 1960 is well established to be the statistically
optimal state estimator, given the assumptions that

1. f(·) and h(·) in (2.1) are known linear functions,

2. wk and vk are assumed to be white sequences with zero mean and known covari-
ance structure1, and

1When the noise is assumed coloured, this is accounted for by filtering the noise through a linear filter.
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3. the state vector is unconstrained (X=Rn).

The system (2.1) thus becomes

xk+1 = Axk +Buk +wk , wk ∼N (0,Q) (2.3a)

yk = Cxk +vk , vk ∼N (0,R) (2.3b)

where A is an n ×n matrix, B is an n ×m matrix, and C is a q ×n matrix. Q > 0 is a
positive definite matrix describing the covariance of the process noise, while R > 0 sim-
ilarly describes the covariance of the measurement noise. N (m,P) denotes the normal
(Gaussian) distribution with mean m and covariance P. The Kalman filter models (2.3)
as a random process, meaning that the state vector xk is treated as a random variable. It
is optimal in the sense that it minimizes the expected mean-square estimation error of
the random variable xk , which for iteration k can be written as

ek (x̂k ) = E
[
(xk − x̂k )>(xk − x̂k )|y∗

k

]
, (2.4)

where E [·] denotes expectation, x̂k denotes the estimate of the true state xk , and y∗
k ={

yi
}k

i=0 indicates that this expectation is conditioned on the entire measurement stream.
Like the classical Luenberger observer2 from basic linear systems theory, the Kalman
filter is a predictor-corrector algorithm in the sense that it first predicts a so-called a
priori state estimate x̂−

k by using the state equation (2.3a), and corrects this estimate by
using new measurements yk (and uk ):

x̂k = x̂−
k +Kk

(
yk −Cx̂−

k

)
. (2.5)

The updated estimate x̂k is called the a posteriori estimate. The only difference between
the Luenberger observer and the Kalman filter is the choice of the weighting matrix
Kk

3: While the Luenberger observer uses a constant matrix which places the poles of
the error dynamics at desired positions, the Kalman filter updates the matrix on each
iteration to keep the estimate optimal with respect to minimizing (2.4). To do this, the
filter needs to keep track of the error covariance Pk , that is, the (conditioned) expected
value of the estimation error covariance:

Pk = E
[
(xk − x̂k )(xk − x̂k )>|y∗

k

]
. (2.6)

In addition to the covariance matrices Q and R, two parameters are required to start off
the Kalman filter: We must make an initial guess on the mean and covariance of the
state, which we denote x−

0 and P−
0 , respectively. Figure 2.2 shows one iteration loop of

the Kalman filter.

This can be accomplished by augmenting the model with additional states.
2see e.g. (Chen, 1995).
3For the Luenberger observer, the weighting matrix is usually referred to as the gain matrix, and de-

noted L. The matrix used in the Kalman filter is usually referred to as the Kalman gain matrix.



20 State estimation methods

Figure 2.2: Kalman filter loop (adopted from (Brown & Hwang, 2012)).

Here, the system matrices A,B,C are equipped with time indices, however, the sim-
ple linear Kalman filter assumes these to be constant matrices, i.e. Ak = A for all k and
likewise for Bk and Ck .

Another way to look at this, which appears to be preferred in the literature, is the
probabilistic view; minimizing (2.4) is equivalent to finding the state estimate which
is most likely to be true, given the observed measurements. In other words, we want
to maximize an approximated probability density function (PDF) of the state vector,
which for a normal distribution occurs at the mean4. In this sense, we can interpret
the state estimate as the solution obtained either by minimizing ek (x̂k ) from (2.4), or by
maximizing the PDF of xk , which we denote pxk (x̂k ):

x̂k = arg min
x̂k

ek (x̂k ) = arg max
x̂k

pxk (x̂k ) (2.7)

At each iteration, the Kalman filter keeps track of an approximated PDF of the state.
Since wk and vk are assumed to be normal, and all transformations are linear, the PDF
of the state will also be normal, and can be completely characterized by its mean and
covariance. Since we want to maximize a normal PDF, the estimate is simply taken as
the mean. Hence, Kalman filtering boils down to propagating the mean and covari-
ance of the state vector through the system equations in an optimal (minimum mean-
square error) way with respect to the observed measurements (Kandepu et al., 2008).
With respect to this probabilistic viewpoint, the a posteriori estimate x̂k in (2.5) is the
propagated mean, while Pk in (2.6) is the propagated covariance.

4The multivariate PDF of the normally distributed random variable x ∈ Rn with mean m and covari-
ance P is given as px(x̂) = 1

(2π)n/2
p

det(P)
exp

[− 1
2 (x̂−m)>P−1(x̂−m)

]
, which is easily maximized by taking

x̂ = m.



Kalman filtering 21

2.2.2 The extended Kalman filter (EKF)

Soon after the Kalman filter was introduced, extensions to handle nonlinear systems
were proposed by (Kopp & Orford, 1963) and (Cox, 1964). The extended Kalman filter
is a modified version of the Kalman filter which estimates the state of nonlinear sys-
tems. This is accomplished by linearizing the system at each time step and applying
the standard (linear) Kalman filter equations to generate the state estimate. With refer-
ence to (2.1) and Figure 2.2, the matrices Ak , Bk and Ck at each iteration are obtained
by linearizing f(·) and h(·) around the most recent estimate of x and the current input:

Ak := ∂f(x,u)

∂x

∣∣∣∣
(x̂k ,uk )

, Bk := ∂f(x,u)

∂u

∣∣∣∣
(x̂k ,uk )

, and Ck := ∂h(x,u)

∂x

∣∣∣∣
(x̂−k ,uk )

. (2.8)

We could also say the system is linearized along the estimated state trajectory. Note that
this requires C 1 smoothness of f(·) and h(·). The projection and update equations are
replaced by updates which use the nonlinear functions f(·) and h(·) in (2.1) directly;

x̂−
k+1 = f(x̂k ,uk ), (Project) (2.9)

x̂k = x̂−
k +Kk

(
yk −h(x̂−

k ,uk )
)

. (Update) (2.10)

The remaining equations are the same as for the standard Kalman filter, except that the
system matrices are calculated using (2.8). From (2.9) and (2.10), we see that the state
estimate (actually, the mean of the approximated state PDF) is propagated through the
nonlinear system equations. However, the covariance is propagated through the lin-
earized system matrices.

The EKF is established in the industry as perhaps the most widely used estimation
algorithm for nonlinear systems; probably due to its relative simplicity and demon-
strated efficiency in handling nonlinear systems (Haseltine & Rawlings, 2005). Despite
its widespread use, the EKF has received a fair amount of criticism over the years (es-
pecially from the MHE research community), due to its failure to converge when it is
not properly tuned and/or initialized, and inability to properly handle state constraints
(see e.g. (Haseltine & Rawlings, 2005) and/or (Robertson et al., 1996)).

2.2.3 The unscented Kalman filter (UKF)

The unscented Kalman filter was first presented in (Julier & Uhlmann, 1997) as an im-
proved estimator for nonlinear systems compared to the EKF. The UKF is based on the
fact that a normally distributed random variable will no longer be normally distributed
after being propagated through a nonlinear function. The authors argue that

Although the EKF (in its many forms) is a widely used filtering strategy, over
thirty years of experience with it has led to a general consensus within the
tracking and control community that it is difficult to implement, difficult to
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tune, and only reliable for systems which are almost linear on the time scale
of the update intervals.

In a sense, the UKF can be considered a derivative-free alternative to the EKF. While the
EKF uses the Jacobians of the system matrices (cf. Eqn. (2.8)), the UKF avoids this by
sampling the approximated state PDF at several points, which are denoted the sigma
points, and propagating each point individually through the nonlinear system equa-
tions. This way, the UKF is able to maintain a nonlinear approximation of the state
PDF, which in most cases is closer to reality than the normal distributions assumed by
the EKF (Brown & Hwang, 2012). The literature is full of EKF/UKF comparative stud-
ies, and the general consensus seems to be that the UKF and EKF perform similarly
for mildly nonlinear systems, but that the UKF outperforms the EKF when the system
dynamics are highly nonlinear.

2.3 Static weighted least-squares estimation

Static weighted least-squares estimation is an optimization-based deterministic ap-
proach to state estimation. Optimization-based state estimators choose estimates which
minimize deviations between predicted and observed measurements, i.e. solving a
model-constrained optimization problem. This is also known as data reconciliation
(Narasimhan & Jordache, 1999). This approach to state estimation has had great suc-
cess when applied to large-scale systems like chemical plants (Dempf & List, 1998) and
electrical power grids (Huang et al., 2012). It has also been used for flow estimation in
petroleum production networks (VFM), for instance in FMC Technologies’ FlowMan-
ager™(Holmås & Løvli, 2011). Consider the static, or steady-state, version of (2.1):

0 = f∞(x,u)+w (2.11a)

y = h(x)+v (2.11b)

The function f∞ :X×U→X represents the steady-state (long-term) response of the sys-
tem, i.e. as t →∞. Recall that w represents model errors, while v represents measure-
ment errors in the sense that it contains the difference between observed (y) and esti-
mated (h(x)) measurements. Traditionally, data reconcilation methods have assumed
that the process model is exact, i.e. w = 0. This may be the result of choice, or that the
model is a treated as a "black box", i.e. (2.11a) is not available to the solver used in the
optimization algorithm. The optimization problem is thus formulated in terms of min-
imizing v in a least-squares sense, subject to model equations and bounds. However,
as Maquin et al. (2000) point out, the assumption of a perfect process model is quite
naive, and it makes sense to factor in model uncertainties in the optimization problem.
Therefore, we seek to find the state estimate which minimizes both the model errors
and the measurement errors. This leads to the following nonlinear constrained least-
squares problem:
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Problem 2.1: Static Weighted Least-Squares (SWLS)

minimize
x,w,v

f (w,v) = ‖w‖2
Q−1 +‖v‖2

R−1

subject to 0 = f∞(x,u)+w

y = h(x)+v

x ∈X

Q−1 is a diagonal weighting matrix for the model errors, while R−1 is a diagonal
weighting matrix for the measurement errors. The elements of Q−1 and R−1 thus rep-
resent our relative confidence in the process model equations and the measurements,
respectively. Weighting in terms of inverted matrices is common, since errors are often
expressed in terms of error variance, i.e. a small error variance gives a large weight (cf.
the Kalman filter). The least-squares formulation with quadratic cost is popular, since
it is simple at the same time as large errors are penalized more than small ones. Since
Problem 2.1 is a nonlinear program, an NLP solver is required to find a solution, e.g.
a Sequential Quadratic Programming (SQP) or Interior Point (IP) method. The solver
used in this thesis, IPOPT (Wächter & Biegler, 2006), is an example of the latter. Note
that the nonlinear equality constraints make Problem (2.1) non-convex, which means
it may have an unknown number of suboptimal local minima. Given an optimal solu-
tion (x∗,w∗,v∗), the state estimate is taken as x∗, while the elements of y∗ = h(x∗)+v∗

are called the reconciled measurements.
Some SWLS formulations may include parameter estimation. However, in this the-

sis it is assumed that the relevant parameters do not change significantly over the time
frame between well tests, and they are therefore treated as constants. Parameters are
estimated in a separate calibration problem; see Chapter 6 about model calibration.

2.4 Moving-horizon estimation

While SWLS might yield fairly good state estimates, it does not consider the dynam-
ics of the system. Therefore, it cannot be expected to perform well during transient
behaviour. One way to include dynamics is to exchange the static model (2.11) with
the dynamic model (2.1), and solve an optimization problem which considers all the
available measurements. This is called the full-information problem. However, as time
goes by, the problem grows and quickly becomes computationally intractable. Moving-
Horizon Estimation (MHE) is a scheme which solves this problem by only considering
the N most recent measurements. MHE is considered "dual" to model predictive con-
trol (MPC), the same way the Kalman filter is considered dual to the linear quadratic
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regulator (LQR) (Rawlings & Mayne, 2013)5. The basic operation of MHE and its close
relation to MPC is shown in Table 2.1.

Step MHE MPC

1 Find an optimal state trajectory by
solving an optimization problem
constrained by the dynamic model
equations (2.1), and available past
measurements and inputs.

Find an optimal future input tra-
jectory by solving an optimization
problem constrained by the dynamic
model equations (2.1), and available
measurements.

2 Take the last state vector in the opti-
mal sequence as the state estimate.

Take the first input vector in the se-
quence as the plant input.

3 Wait for new measurements and shift
the time horizon one step forward.
Repeat from step 1.

Wait for new measurements and shift
the time horizon one step forward.
Repeat from step 1.

Table 2.1: Operation of MHE and MPC.

The optimization problem to be solved at time index T is the following:

Problem 2.2: Moving-Horizon Estimation

minimize
xT−N ,w,v

f (xT−N ,w,v) = ΓT−N (xT−N )+
T−1∑

k=T−N
Lw(wk )+

T∑
k=T−N

Lv(vk )

subject to xk+1 = f(xk ,uk )+wk , k = T −N , . . . ,T −1

yk = h(xk )+vk , k = T −N , . . . ,T

xk ∈X, k = T −N , . . . ,T

where w = [wT−N , . . . ,wT−1]> and v = [vT−N , . . . ,vT ]>. Note that we only optimize
the state vector at the start of the time horizon - xT−N - since the remaining state tra-
jectory is given by the state equations together with model error trajectory w and (mea-
sured) input sequence u = [uT−N , . . . ,uT−1]>. ΓT−N (·) is called the arrival cost, while
Lw(·),Lw(·) are the stage costs. Like Problem 2.1, Problem 2.2 must be solved using an
NLP solver.

The stage costs are typically selected as quadratic least-squares terms, i.e. Lw(wk ) =
‖wk‖2

Q−1 and Lv(vk ) = ‖vk‖2
R−1 , similar to the objective function in Problem 2.1. How-

ever, Rawlings & Mayne (2013) point out that the stage costs must reflect the distur-
bances affecting the system - systems subjected to slowly decaying disturbances may

5Rawlings & Mayne (2013) show that MHE can be formulated as "optimal control of estimation error".
Consequently, many of the techniques developed for MPC can be transferred to MHE.
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require "stronger" than quadratic stage costs in order for the sums in the objective func-
tion to converge. In any case, the stage costs should be positive definite.

The arrival cost is included to transfer the information from past measurements
before the estimation window into the objective function. This is comparable to the way
the Kalman filter stores information about previous estimates in the covariance matrix,
and is analogous to the terminal cost in MPC. Selecting an arrival cost which captures all
the past information in an optimal way with respect to the system constraints is difficult
for nonlinear systems, and quite a few results have been presented which describe how
this term affects estimator stability and robustness. Practical MHE methods need to
use some approximation of the arrival cost (Johansen, 2011). One way of doing this is
coupling the MHE with some variant of the Kalman filter and approximating the arrival
cost as

ΓT−N (xT−N ) = ‖xT−N − x̂T−N‖2
PT−N

, (2.14)

where x̂T−N and PT−N are the state estimate and covariance matrix maintained by e.g.
an EKF or UKF (Rao et al., 2001). Another, more ad hoc approach is to assume that
our previous estimate of xT−N is good enough; we simply use the first state estimate
from the previous time index, xT−N−1, and compute an a priori estimate x−

T−N using
the nonlinear system equations:

x−
T−N = f(xT−N−1,uT−N−1) (2.15)

Then, we can use this a priori estimate to approximate the arrival cost as

ΓT−N (xT−N ) =µ
∥∥xT−N −x−

T−N

∥∥2 , (2.16)

where µ is a scalar (Alessandri et al., 2008). We could also use a weighing matrix to give
each state its own weight. Such a term (2.16) is often called a regularization term, and
helps in ensuring estimator robustness and graceful performance degradation in the
absence of an exciting system input (Johansen, 2011). Taking ΓT−N (·) = 0 (zero prior
weighing) completely discards all previous information, and such a choice usually ren-
ders the MHE unable to estimate the state trajectory unless there is sufficient excitation
in the system.

Note that for T < N , Problem 2.2 is not well-defined, since the number of available
measurements is less than the size of estimation horizon. In this case, it is common
to just truncate the horizon and use the measurements which are available (which is
equivalent to solving the full-information problem). In this thesis, we will not dwell on
this. In stead, we assume that T ≥ N , i.e. that the estimation horizon is full.
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2.5 Advantages of optimization-based estimators

Like all other things, optimization-based estimation has its pros and cons. In this sec-
tion, we discuss a few of these in light of the task at hand. As mentioned above, the EKF
is established in the industry as perhaps the most widely used estimation algorithm for
nonlinear systems. This is also the case for industrial MPC applications which (as of
2004) use either a variant of the EKF or some ad hoc output correction term for state
estimation (Qin & Badgwell, 2003). However, a shift towards MHE has been predicted
(Moriari & Lee, 1999), and there exists current commercial MPC packages which em-
ploy MHE estimation techniques, e.g. Cybernetica’s CENIT (Cybernetica, 2014). Some
advantages of optimization-based estimators are:

Direct use of nonlinear equations: While the nonlinear variants of the Kalman filter
use some approximation of the nonlinear system (2.1), optimization-based estimators
use the nonlinear equations directly by imposing them as equality constraints. As we
will see in Chapter 3, physical relationships in petroleum production networks are gen-
erally modelled as implicit nonlinear functions, which fits nicely into an optimization-
based scheme with equality constraints.

Constraint handling: An optimization-based formulation enables us to impose ex-
plicit constraints on the state vector. This allows us to include information such as
nonnegative pressures and flow rates and other bounds, which the Kalman filter can-
not handle as elegantly6.

Increased estimation accuracy and robustness: The direct use of the nonlinear equa-
tions and effective constraint handling means that optimization-based estimators will
in most cases perform petter than the Kalman filter. In addition, comparative studies
show that MHE is less fragile than the Kalman filter with respect to poor tuning and
guesses of the initial state (Haseltine & Rawlings, 2005).

Increased computational abilities: While the Kalman filter is computationally effi-
cient in the sense that it computes estimates recursively, MHE requires the solution to
a difficult optimization problem. Thus, MHE has previously not been possible to imple-
ment online. However, with the advances in hardware and algorithms seen in the last
few decades, MHE has become feasible as an online replacement to the Kalman filter.

6Constraint handling in the Kalman filter has been investigated, and solutions include projecting an
unconstrained solution onto the state constraint surface (Simon & Chia, 2002) and ad hoc clipping strate-
gies, i.e. using truncated PDFs (Haseltine & Rawlings, 2005).
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2.6 A practical view on flow estimation

In the preceding sections, we have talked about state estimation in a rather generic set-
ting. In this section, we will look at the flow estimation problem from a more practical
viewpoint, i.e. we will discuss some basic concepts in virtual flow metering. As we will
see in the next chapter, typical models of petroleum production networks include lin-
ear mass balance equations and nonlinear equations relating flow rates and differential
pressures. An intuitive rule of thumb is that for each measured pressure drop with an
associated pressure drop-flow rate model, we can estimate the flow rate of one phase.
Thus, if we have more measurements, we can estimate more flow rates. By examining
the placement and number of measurements, we can systematically determine how
many flow rates we will be able to estimate (assuming that all the appropriate pressure
drop/rate equations are available). This is discussed in relation to chemical processing
plants in e.g. (Narasimhan & Jordache, 1999). Typically, we want to determine three
flow rates (oil, gas and water rates) for each well and pipeline in the production system.
Based on the number of available measurements, we may find ourselves in one of three
situations;

1. We do not have enough measurements (and associated equations) to determine
the desired number of flow rates. In this sense, we may say that some of the flow
rates are unobservable (cf. Section 2.1.2). In this case, we may increase the num-
ber of equations by making some additional assumptions, such as fixed gas-oil
ratios/water cuts.

2. We have exactly enough measurements to determine the desired number of flow
rates. While we may be pleased with this situation, a sensor failure will immedi-
ately send us back to the situation above.

3. We have more than enough measurements to determine the flow rate. In this
case, some of the measurements are redundant. While this would typically result
in an overdetermined system without an exact solution, this is not a big concern,
since we seek a best-fit solution rather than an exact one (Melbø et al., 2003).

These three situations are analogous to (respectively) underdetermined, consistent and
overdetermined systems of equations. While the question of existence and uniqueness
of solutions is not trivial for nonlinear systems like ours, the rule of thumb stated above
is in general a good indication.

The Tilje template shown in Figure 1.4 is well equipped with measurements. Assum-
ing they all work properly, we are clearly in Situation 3 above. For instance, we could
estimate the flow rates in the following way;

• Use the bottom hole pressure (or rather, the differential pressure between the
reservoir and the bottom hole) to estimate the oil rate in each well.
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• Use the differential pressure between the bottom hole and the wellhead to esti-
mate the gas rate in each well.

• Use the differential pressure over the wellhead choke to estimate the liquid rate
in each well, and take the water rate as the difference between the liquid rate and
the oil rate estimated above.

• Use mass balance equations to estimate the flow rates in the pipeline as sums of
the flow rates from each well.

Note that we have not used all the available pressure drops here, for instance we have
pressure drops in the pipeline and over the turret choke which also could be used to ob-
tain an overdetermined system. However, their inclusion is not necessary, and in this
sense they can be considered redundant. This is a fairly robust situation, for instance,
let us assume that all of the sensors in one well fail. We can still estimate two of the
flow rates from the well via the mass balance equations, since they can be taken as the
difference between the flow rates estimated by the pipeline and turret choke models
and the flow rates from the remaining wells. The last remaining rate can then be esti-
mated by e.g. assuming a fixed gas-oil ratio or water cut for the sensorless well. If we
assumed the gas-oil ratios and water cuts were fixed for all the wells, a minimal virtual
flow metering system would require only one or two sensors per well. Although this
is not an ideal situation, it is not far-fetched; subsea measurements have a tendency
to fail over time, and repairing them is time-consuming and very expensive. In fact,
the Skarv field is equipped with quite a few redundant sensors, i.e. two or more sen-
sors at the same location, in case a sensor should fail at some point. The point of this
discussion is merely to illustrate the flexibility and robustness of virtual flow metering
systems, which further motivates their use in subsea production systems.

Although Tilje is well equipped with measurements, we will still assume fixed gas-oil
ratios for the wells, since well tests have showed that these do not vary much between
well tests. This will result in a robust estimator which will still work even if quite a few
measurements should fail. We will not handle such a situation directly in this thesis,
but rather assume that the measurements are functioning correctly.



Chapter 3

Modelling of petroleum production
networks

Perhaps the most critical component of any model-based state estimation algorithm
is the mathematical model of the system. Mathematical modelling of petroleum pro-
duction networks requires knowledge of the physical relationships present in such net-
works. Thus, an important part of the literature study has been to gain some proficiency
in how different elements of the network are modelled, and how to piece these elements
together using mass conservation laws. This chapter will attempt to summarize a few
key concepts, without diving into too much detail. A valuable reference in this chapter
has been (Beggs, 2003). After a short introduction, some important aspects of multi-
phase flow are discussed. The following sections present methods for well modelling,
choke modelling and pipeline modelling, before the chapter is concluded with a short
section on mass balance equations.

3.1 Introduction

A traditional way of representing petroleum production networks is to use a graph rep-
resentation with vertices and interconnecting edges. This view is also found in previ-
ous work done within the IO center1, e.g (Sandnes, 2013), and an ongoing case study by
co-supervisor Bjarne Grimstad (Grimstad et al., 2014), also in cooperation with BP. In
such a representation, vertices are associated with pressures, while edges are associated
with flows and pressure drops, such as the ones found in pipelines and choke valves.
The source vertices represent points at which fluids flow into the network, e.g. produc-
tion wells. The sink vertices represent points at which fluids leave the network, which
could be a separator or export pipeline. The source and sink vertices usually provide
the model with some boundary conditions, such as fixed reservoir and separator pres-

1Center for Integrated Operations in the Petroleum Industry
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sures. Figure 4.1 shows the graph representation of the specific flow network studied
in this thesis. As previously mentioned, the Skarv field is well equipped with pressure
and temperature measurements. To fully utilize this available information, vertices are
placed at points in which measurements are available (cf. Fig. 1.4), namely the bottom
holes, wellheads, downstream the wellhead chokes, the manifold, upstream the turret
choke and the separator. This choice of vertex placement means the edges will rep-
resent the well tubings, wellhead chokes, manifold jumpers, pipeline (flowline + riser)
and the turret choke. For this reason, these are the components which will be focused
on in this chapter. First, however, it is necessary to introduce a few terms related to
multiphase flow which will be used in the remainder of the thesis.

3.2 Multiphase flow

The term multiphase flow refers to situations where two or more phases/components
flow together in a pipeline. The flow may be (assumed) homogenous, which means the
phases are perfectly mixed and flow with the same velocity, or separated, which means
the phases are treated separately and may have different velocities. In our case, we have
three phases, namely oil, gas and water. This is actually a simplification, since flows in
petroleum production pipelines usually contain a large number of components: All the
light, gaseous hydrocarbon components are treated as gas, while heavier components
are treated as condensate or oil. In addition to hydrocarbons and water, the flows may
contain sand, wax and other materials, but these are ignored in this thesis. Rigorous
modelling of multiphase flow systems is complicated. The main reason for this is that
the flow will behave quite differently for different pressure and temperature conditions.
The behaviour of the flow, or flow regime, depends largely on the amount of gas present
in a section of a pipeline compared to the amount of liquid, and the gas and liquid
velocities (see Figure 3.1).

(a) Horizontal pipelines (b) Vertical pipelines

Figure 3.1: Multiphase flow patterns in pipelines (Jahanshahi, 2013).
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3.2.1 Phase split and standard/in-situ conditions

In this thesis, the term phase split refers to the relative quantities of oil, gas and water
at a given point in the flow network. The properties of hydrocarbon fluids vary with
pressure and temperature. Consequently, the phase split in a pipeline also will vary with
pressure and temperature. For instance, when hydrocarbons initially flow into the well
tubing at high pressure and temperature, a substantial amount of gas may be dissolved
in the oil. However, when the pressure and temperature decreases as the flow ascends
through the network, some gas will bubble out of the oil, resulting in a larger relative
gas content. This phenomenon is known as flashing. The properties of water are less
dependent of pressure and temperature, so it is not uncommon to make the simplifying
assumption that the water content does not change. This is illustrated in Figure 3.2,
which shows (qualitatively) the phase splits for three points in the flow network with
different pressure/temperature conditions.

Figure 3.2: Effect of decreasing pressure and temperature on phase split in a pipeline.

As the flow nears the surface, more and more gas bubbles out of the oil, and the
phase split changes. When we quantify flow rates and fluid properties at a point in the
flow network, we may use in-situ2 or standard conditions. The in-situ conditions de-
scribe the actual conditions at the point we are investigating, while standard conditions
describe what the conditions would be if we took the same sample to the surface. In the
oil industry, it is common practice to express quantities of oil and gas throughout the
network using standard conditions, which is reasonable since this quantifies how much
oil and gas will flow into the processing plant on the surface. However, when modelling,
it may be necessary to know what the in-situ conditions are to calculate e.g. pressure
drops. In this thesis, the standard conditions are defined as 15◦C (or 288.15◦K) and one
atmosphere of pressure (1 bara or 100 kPa), which conforms to the standard issued by
the Society of Petroleum Engineers (SPE) in 1982 (SPE, 1982).

2In situ is a Latin phrase which translates to in position or in place.



32 Modelling of petroleum production networks

Gas-oil ratio and water cut

The gas-oil ratio (GOR) describes the volumetric ratio between gas flow and oil flow at
standard conditions. In this thesis, the GOR will be denoted rg o , and is given by

rg o = qg

qo
, [Sm3/Sm3] (3.1)

where qg is the gas volumetric flow and qo is the oil volumetric flow, both at stan-
dard conditions. In this thesis, we will use the unit [Sm3/Sm3] for the GOR3. The water
cut (WC) is defined as the ratio between the amount of produced water and the total
amount of produced liquid. The WC is thus a dimensionless number between 0 (no
water) and 1 (no oil)4. We denote the water cut as rwc , and it is given by

rwc =
qw

ql
= qw

qw +qo
, [-] (3.2)

where qw is the volumetic flow rate of water, ql is the volumetric flow rate of liquid, and
qo is the volumetric flow rate of oil. Although the GOR and WC for a given well vary over
time, they are usually assumed constant on a short-term horizon.

3.2.2 Fluid properties and PVT methods

For the hydrocarbon mixture present in the pipelines, fluid properties such as density,
viscosity and gas mass fraction are highly nonlinear functions of pressure and tem-
perature. Consequently, knowledge of how these properties behave is very important
when modelling multiphase flows. Thermodynamic simulation software such as PVT-
sim from Calsep5 are often used to generate property tables for a given reservoir fluid,
and this is also the case for the Skarv field. By using B-spline approximations, we can
approximate the tabular data from PVTsim as twice continuously differentiable piece-
wise polynomial functions, which is very convenient in an optimization framework
(Sandnes, 2013; Robertson, 2013). A couple of examples are shown in Figure 3.3. The
fluid properties used in this thesis are oil, gas and water densities, oil and water viscosi-
ties, and the gas mass fraction.

3Although this actually becomes a dimensionless number, this is not always the case. For instance,
the GOR is expressed in standard cubic feet of gas per oil barrel [scf/sbbl] in US field units.

4In the oil industry, it is common to express the water cut as a percentage, i.e. 100 · rwc .
5More information about PVTsim can be found on Calsep web pages (http://www.calsep.com/).

http://www.calsep.com/
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(a) Gas density, ρg
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(b) Oil density, ρo . The reduction in density with increased pressure is due to light hydrocarbon
components (gas) dissolving in the oil. The "kink" occurs when the oil is saturated with gas.

Figure 3.3: Examples of B-spline approximated fluid properties. The black grid shows
the tabular data obtained from the PVT table, while the surface plot shows the spline
approximation.
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Gas mass fraction

The gas mass fraction is useful, since it enables us to calculate in-situ individual mass
flow rates for each phase. The gas mass fraction αg is defined as the ratio between in-
situ gas mass flow and the total hydrocarbon mass flow:

αg =
w is

g

w is
g +w is

o
, [-] (3.3)

where w is
g , w is

o are the in situ mass flow rates of gas and oil, respectively. In this thesis,
the gas mass fraction is used along with the fluid densities when calculating the pres-
sure drop through a choke valve, as we will see in Section 3.4.

3.3 Well performance

3.3.1 Inflow from reservoir

The flow rates in the production network will ultimately depend on the amount of fluid
entering the network. Hence, a critical part of the model is the inflow performance,
which describes the flow from the reservoir into a well. This flow depends on a number
of factors, such as rock properties, fluid properties, flow regime, fluid saturations in the
rock, formation damage, gas and water content, et cetera (Beggs, 2003). In addition, the
well completion and any inflow control devices will clearly affect the flow. The driving
force for the flow is the drawdown, i.e. the differential pressure between the reservoir
and the bottom hole. Although reservoir pressure decreases gradually as the reservoir
is produced, it is reasonable to assume the pressure will remain constant on the short-
term horizon (Gunnerud & Foss, 2009). Therefore, it is common to treat the reservoir
pressure as a constant and express the inflow rate q as a function of the flowing bottom
hole pressure pbh f only, i.e.

q = fipr(pbh f ). (3.4)

Such a function fipr(·) is called an inflow performance relationship (IPR) . q may be an
oil, gas, water or liquid rate, depending on the IPR and how it is matched to field mea-
surements. Quite a number of different IPRs have been developed for different types

of wells, however, they are in general based on Darcy’s law q =−k A
µ

dp
dx . Darcy’s law de-

scribes the flow of a fluid through a porous medium (such as the rock in a petroleum
reservoir), and states that the volumetric flow rate q is proportional to the permeability6

k of the medium, the cross-sectional area A, and the spatial pressure gradient dp/dx,
and inversely proportional to the fluid viscosity µ.

6Permeability is a measure of how easily fluids can flow through the porous rock. Its unit of measure
is the Darcy (D), which is roughly equivalent to 10−12 m2.
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For single-phase wells, the IPR is usually assumed linear, and can be described by
a single productivity index (PI)7. In such a case, the inflow is simply assumed propor-
tional to the drawdown, and the IPR becomes fipr(pbh f ) = PI · (pr −pbh f ), where PI is
the (constant) productivity index. However, for multiphase inflow, the IPR is generally
assumed nonlinear, and the productivity index is not constant. This is due to flashing
of gas as the pressure decreases toward the well, i.e. the relative gas content increases
as the fluids near the well. An example of an IPR curve is shown in Figure 3.4(a). A
well-known IPR for multiphase wells is Vogel’s IPR (Vogel, 1968), which is given by

q

qmax
= 1−0.2

pbh f

pr
−0.8

(
pbh f

pr

)2

, (3.5)

where qmax is the maximum (theoretical) flow rate, i.e. the flow rate that would result
from a flowing bottom hole pressure of zero. Another example of an IPR is the purely
empirical Fetkovich method (sometimes referred to as the C &n method or backpres-
sure equation8):

q =C

[(
pr )2 −

(
pbh f

)2
]n

, (3.6)

where the constants C and n are determined from (at least two, but preferably more)
flow tests. Vogel’s and Fetkovich’s methods are only two examples of many IPR models
developed over the years. In addition, several modifications and combinations of IPRs
have been derived to account for e.g. undersaturated reservoirs, skin factor9, horizontal
wells, special reservoir conditions, etc. Commercial simulation packages such as OLGA
provide the user with a choice of which IPR is to be used for simulation, moreover some
allow the user to create a custom (tabular) IPR. Both the simple PI, Vogel and Fetkovich
methods (and the many other methods not mentioned here) must be matched to cur-
rent reservoir conditions to be able to predict flow rates well.

3.3.2 Vertical Lift Performance

The Vertical Lift Performance (VLP) curve describes the flow through the well tubing,
i.e. from the bottom hole to the wellhead on the sea bed (or topside). The VLP curve
represents pressure drop due to gravity (loss of potential energy) and drag/friction for a
given flow rate, and should take into account factors like well geometry, water cut, GOR
and fluid properties. This gives rise to a complicated expression, especially for multi-
phase flow. Different flow velocities result in different flow patterns/regimes, making
it difficult to predict the behaviour of the flow. Much effort has been made in devel-
oping correlations for predicting multiphase pressure gradients in producing wells and

7The productivity index is a term used to describe slope of the IPR.
8The backpressure equation has traditionally been used for gas wells, but Fetkovich showed by using

well tests that the method also applies to oil wells (Beggs, 2003).
9The skin factor is a measure of well damage.
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pipelines. This is discussed further in Section 3.5 about pipeline pressure drop. A VLP
curve may include a number of variables, depending on its use. However, when plotting
a VLP curve, the GOR, water cut and temperature are typically assumed fixed, which re-
sults in a flow rate/wellhead pressure versus bottom hole pressure relation, i.e.

pbh f = fvlp(pwh , q), (3.7)

or pbh f = fvlp(q) if we also fix the wellhead pressure pwh . Three VLP curves are shown
in Figure 3.4(a). Here, the GOR, water cut, temperature and wellhead pressure are fixed,
and each VLP represents a different wellhead pressure.

3.3.3 The Well Performance Curve (IPR/VLP intersection)

The Well Performance Curve (WPC) summarizes the information contained in the IPR
and VLP curves. For a given wellhead pressure, we can plot the IPR together with the
VLP curve, since they both map a flow rate to a bottom hole pressure. At some flow
rate these curves will intersect, which gives a relation between the flow rate and the
(given) wellhead pressure. By doing this for every wellhead pressure, we obtain the
WPC. This is shown graphically in Figure 3.4, which shows the IPR/VLP intersection for
three wellhead pressures (Fig. 3.4(a)) and the resulting WPC (Fig. 3.4(b)).

(a) IPR/VLP intersection (b) WPC

Figure 3.4: The IPR/VLP intersection and Well Performance Curve.

Using the IPR and VLP curves to model the well would require the two equations
(3.4) and (3.7). Note that the VLP curve is ambiguous with respect to flow rate; as seen
in Figure 3.4(a), it may have two solutions for a single bottom hole pressure. This is
caused by the initial drop as the flow rate starts to increase, which is due to gas bubbles
lifting the fluid and decreasing the pressure drop. Eventually, friction takes hold and the
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pressure drop increases10. This illustrates the usefulness of the WPC; we can replace
(3.4) and (3.7) with a single (usually well-behaved) equation

pwh = fwpc(q). (3.8)

3.4 Choke valves

The wellhead choke valves are used to control the flow from each well, by varying the
flow restriction. In addition to the choke valves on each wellhead, one choke valve
is fitted at the top of each riser in the turret, upstream the separator. Many flow me-
tering systems are based on the principle of restricted flow, i.e. determining the flow
rate based on an accurate relationship between flow rate and the pressure drop over a
known restriction. The wellhead and turret choke valves represent the main restriction
of flow in the production system, when one makes the reasonable assumption that any
on/off shut-in/emergency valves are fully open. An accurate model of the choke valves
can thus be used to estimate flow rates. Multiphase choke models are usually based on
either the valve equation, Bernoulli’s principle or a control volume approach. In this
section, we will look at an example of the former, namely the multiplier model. A good
reference for this section has been (Schüller et al., 2003), which includes a brief intro-
duction to models for two-phase pressure drop through choke valves. For the inter-
ested reader, this paper also describes the more advanced control volume-based Hydro
model, which is the model used in the OLGA simulations of Chapter 8.

Figure 3.5: Simplified choke model.

3.4.1 Multiplier models

A traditional way to model choke valves with single-phase (turbulent) flow is to use the
valve equation, i.e. let the volumetric flow q be a function of the discharge coefficient

10The two solutions are referred to as the low-temperature and high-temperature solutions, since the
low flow rate is usually accompanied by a low temperature and vice versa.
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Cd , the orifice area A, the fluid density ρ and the differential pressure over the choke
∆p (Egeland & Gravdahl, 2002):

q =Cd A

√
2

ρ
∆p. (3.9)

The discharge coefficient is used to account for unrecoverable energy loss through the
choke, which is difficult to determine exactly. In addition, the orifice area A is usually
somewhat larger than the actual area of the flow (the smallest flow area is known as the
vena contracta, see Fig. 3.5). The actual flow area depends on both flow regime and the
choke position u. Some models include both choke position and unrecoverable energy
loss in a single flow coefficient Cv , which is usually a function of the choke position, i.e.

q =Cv

√
∆p

ρ
, where Cv = fCv (u), (3.10)

assuming Cv is given in appropriate units11. By installing the choke valve in a test
bench, the flow coefficient can be determined for a set of choke positions by varying
the upstream pressure and recording a set of resulting pressure conditions and flow
rates. This results in a u →Cv curve unique to each valve. Usually, this test is done with
water, which means there will inevitably be some error in the model when hydrocar-
bons flow through the valve. The main differences between the actual flows present in
the production system and the single-phase laboratory tests, are phenomena related to
flashing of light hydrocarbon components (gas) and the different upstream flow pat-
terns which occur in multiphase flow. A simple way to include the effect of multiphase
flow is to introduce a multiphase multiplier Ψl o , and replacing the density with a rela-
tive density ρr el to further correct the error, i.e.

q =ΨloCv

√
∆p

ρr el
, or ∆p =Ψ2

loρr el

(
q

Cv

)2

, (3.11)

where ρr el = ρm/ρstd
w ; ρm is the density of the hydrocarbon mixture and ρstd

w is the den-
sity of water at flow test (standard) conditions. The multiphase multiplier represents
the ratio between the actual (multiphase) pressure drop and the single-phase pressure
drop for similar mass flow rates. A fundamental assumption in multiplier models is
incompressible flow, i.e. the fluid density is assumed constant throughout the choke
valve. This is because the multipliers are calculated from upstream conditions only.
Another important assumption is the the flow conditions are subcritical, which means
that all velocities inside the choke are subsonic. Additional assumptions depend on the

11The unit for Cv is per definition [USGPM/psi], i.e. US gallons per minute for a pressure drop of 1 psi.
(Schüller et al., 2003), which means appropriate unit conversion factors must be used before using the
Cv curve in an equation with SI units.
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choice of multiplier. For instance, the homogenous equilibrium model (HEM) assumes
homogenous flow, i.e. the multiphase mixture is treated as a single fluid and all the
phases are assumed to have the same velocity (Mayinger & Kiederle, 1993). The HEM
multiplier is given by

Ψ2
lo = 1+αg

(
ρl

ρg
−1

)
, (3.12)

where αg is the gas mass fraction, ρl is the liquid density and ρg is the gas density. The
liquid density can be calculated from the oil and water densities using a flowing volume
fraction, assuming there is no slippage between the oil and water phases (Beggs, 2003):

ρl =
q is

o

q is
o +q is

w
ρo +

q is
w

q is
o +q is

w
ρw , (3.13)

where ρo is the oil density, ρw is the water density, and q is
o , q is

w are the in-situ volumet-
ric flow rates of oil and water, respectively. More advanced multipliers may account for
separated flow. In these models each phase is treated separately with only frictional in-
teraction between the phases. One example is Morris’ multiplier, which is the multiplier
used in this thesis;

Ψ2
lo =

[
αg

ρl

ρg
+k(1−αg )

][
αg +

(1−αg )

k
+

(
1+ (k −1)2√

ρl /ρg

)]
, (3.14)

where k is the Chisholm slip12 correlation; k =
√
αg

ρl
ρg

+ (1−αg ). The choke valves used

in the Skarv production system have indeed been tested before installation, using a
water test facility, meaning that fCv (u) is available. In addition, fluid properties are
easily available through evaluation of the spline-approximated PVT tables. This makes
a multiplier model a natural choice for implementation.

3.5 Pipeline pressure drop

Like the well VLP curve, pipeline flow models become complicated when multiphase
flow is to be considered. However, their overall structures are fairly simple. The pres-
sure loss ∆p in a pipeline is the sum of three terms; the hydrostatic pressure loss due
to elevation change, the frictional pressure loss due to drag/friction, and the acceler-
ational pressure loss which is related to the kinetic energy change of the fluids in the
pipeline (Çengel & Cimbala, 2010):

∆p = ∆phs︸ ︷︷ ︸
Hydrostatic

+ ∆pfr︸︷︷︸
Friction

+ ∆pacc︸ ︷︷ ︸
Acceleration

. (3.15)

12Slip is a term which refers to the relative velocity between the phases.
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Since fluid properties are constantly changing along the pipeline due to changing pres-
sure and temperature, the three terms are expressed as gradients, i.e. differential pres-
sure drops for infinitesimal pipe segments with length dL. In practice, a spatial dis-
cretization is performed by dividing the pipeline (or well) into finite segments.

Hydrostatic pressure gradient: The hydrostatic pressure gradient is given by

dphs

dL
=−ρm g sinθ, (3.16)

where ρm is the multiphase fluid density, g is the acceleration of gravity, and θ is the
inclination of the pipe segment. Although this equation is familiar, it is far from triv-
ial to find a density which represents the multiphase mixture present in the pipeline.
According to (Beggs, 2003), a common way to calculate this density is to use the liquid
holdup Hl to take a weighted sum of the liquid (ρl ) and gas (ρg ) densities:

ρm = ρl Hl +ρg (1−Hl ). (3.17)

The liquid holdup is defined as the volume fraction occupied by liquid, i.e. Hl =Vl /Vp ,
where Vl is the liquid volume and Vp is the total volume of the pipe or pipe segment
under consideration. Hl is thus a number between zero (single-phase gas flow) and
one (no gas at all). (1− Hl ) = Hg is the volume fraction occupied by gas, and this is
usually called the gas holdup or void fraction.

Frictional pressure gradient: The frictional pressure gradient is generally given by

dpfr

dL
= λmρm v2

m

2g D
, (3.18)

where λm is some friction factor, ρm is some density, vm is some velocity, g is the accel-
eration of gravity, and D is the segment diameter. The excessive use of the word "some"
is here due to the fact that it is difficult to decide which friction factor, density and ve-
locity to use when dealing with multiphase flow. When the flow regime is dominated
by gas, it may be most appropriate to base (3.18) on gas properties, however, if the flow
regime is dominated by liquid (e.g. bubble flow, cf. Fig. 3.1), (3.18) should be based on
liquid properties.

Accelerational pressure gradient: The accelerational pressure gradient is given by

dpacc

dL
= ρm vm

D

dvm

dL
, (3.19)

where dvm/dL is the velocity gradient along the pipeline. In other words, a rapid change
in velocity will generate an accelerational pressure loss, which is due to the kinetic en-
ergy change of the fluids. Although small, this term will be nonzero for any pipeline with
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compressible flow and/or changing cross-sectional area (Demneh & Mesbah, 2008).
Again, finding an appropriate velocity and density is difficult for multiphase flow. Due
to its small contribution, the acceleration term is often ignored.

The main difference between different multiphase pressure drop models is how the
multiphase parameters in (3.16), (3.18) and (3.19) are decided. This amounts to select-
ing some method to find the fluid properties (e.g. black-oil or PVT table evaluation),
and somehow calculating an appropriate liquid holdup and multiphase friction factor.
This is usually done by some correlation, or a (semi-)mechanistic model. A few ex-
amples of multiphase flow correlations/models are given in Table 3.1 (many more are
available).

Method Applies to Type

Duns & Ros (1963) Vertical wells Empirical correlation
Beggs & Brill (1973) Wells and pipelines Empirical correlation
OLGAS (Bendiksen et al., 1991) Wells and pipelines Mechanistic model
GRE (proprietary BP model) Wells and pipelines Mechanistic model

Table 3.1: A few correlations/models for multiphase pipeline flow.

When fitting these models to observed data, the hydrostatic and friction terms are
calibrated separately. To illustrate how one such method may work, we will take a closer
look at the model used in this thesis, namely the Beggs and Brill method.

3.5.1 The Beggs and Brill method

The Beggs and Brill method (Beggs & Brill, 1973) is perhaps one of the most well-known
correlations for multiphase flow. It has also been used within the IO center, in the reser-
voir optimization framework RESOPT13. The method is based on measurements taken
from a test rig with air and water. To calculate the pressure drop in a pipe segment, a
Newton-iterative approach is used. First, an initial guess is made for the pressure drop,
which is used to calculate an average pressure in the segment. Then, fluid properties are
calculated for the average pressure using e.g. PVT tables or some other compositional
model. This is used to calculate velocities and a set of correlation parameters, which
together with the segment inclination decide the flow regime and liquid holdup. Based
on this, a multiphase density is calculated which is used together with a set of correla-
tion functions to determine hydrostatic and frictional pressure gradients. Then, based
on the segment length, the total pressure drop is calculated (including an acceleration
correction term). If the calculated pressure drop is close enough to the initial estimate,

13See IO center web page, http://www.iocenter.no/presentation/resopt.

http://www.iocenter.no/presentation/resopt
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the method returns the calculated pressure drop. If not, the process is repeated with
the calculated pressure drop as a new initial guess. Further details are not given here;
refer to the cited paper or (Beggs, 2003, pp. 194-196) for a concrete example. Since the
pressure drops are calculated segment-wise, the calculation must be started at one end
of the pipeline. The pressure drop is accumulated along the way to obtain upstream
pressures for the next segment to be calculated. Another thing to note is that the corre-
lation is given for US field units, meaning that appropriate conversions but be used for
other unit systems.

3.6 Mass balance equations

The production system is finally pieced together using mass balance equations (con-
servation of mass). This is perhaps the simplest part of the modelling process; in the
graph representation framework we simply require the total incoming mass flow rate to
a vertex to be equal to the total mass flow leaving the vertex (Fig. 3.6).

Figure 3.6: Mass balance in a graph represenation.

For a vertex with n inflows and m outflows, this can be expressed as

n∑
i=1

w in
i =

m∑
i=1

w out
i . (3.20)

We can also state this equation in terms of standard volumetric flow rates, since these
can be converted to mass flow rates by multiplying with the density at standard condi-
tions. (3.20) is usually applied separately to each phase.



Chapter 4

The static flow estimation problem

In this chapter, we formulate a weighted least-squares optimization problem for esti-
mating flow rates in the template shown in Figure 1.4. A steady-state, or static, model
for the network is presented and included as constraints in the optimization problem.
The introductory section will give a quick overview of the model structure and indexing
scheme. Then, we will present an overview over the variables involved in the optimiza-
tion problem, before we go on to the modelling part. First, we explain how we extract
BP’s steady-state models from their modelling tool GAP and approximate them using
B-splines. Then, the model itself is presented in the form of constraints in the opti-
mization problem. Finally, we discuss the objective function, variable bounds and the
selection of a good starting point for the solver, and we give a summary of the complete
optimization problem.

4.1 Introduction

Following a traditional approach, the flow network shown in Figure 1.4 is represented
by a graph consisting of vertices and edges, as shown in Figure 4.1.

Figure 4.1: Flow network model with indexing.
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The vertices represent pressure nodes in the network, and are equipped with pres-
sure and temperature variables. The edges represent wells, choke valves and pipelines,
and are thus equipped with some model which describes the pressure loss across the
edge.

4.1.1 Indexing

Two sets of indices are defined; one for the vertices and one for the edges. Each vertex
and each edge is identified by a unique number. The indexing starts at zero, mostly
because this indexing is compatible with the C++ implementation. Defining nw as the
number of wells, the first nw vertices represent the bottom holes of the wells. The fol-
lowing nw vertices represent the wellheads, and the next nw represent the positions
downstream the wellhead chokes. The last three vertices represent the manifold, riser
top/outlet and finally the separator. Each edge is indexed with the index of the vertex it
is leaving. Overviews of the vertex and edge numbering for the template in Fig. 4.1 and
for a two-well template (columns labelled 2W) are given in Tables 4.1 and 4.2. These
tables should be used together with Figure 4.1 as a reference if the indexing becomes
confusing later in the chapter. For convenience, an index set for the wells is defined as
W = {i }nw−1

i=0 .

Vertex index 2W Description

0 0 Bottom hole, well 0
1 1 Bottom hole, well 1
...

...
...

nw 2 Wellhead, well 0
nw +1 3 Wellhead, well 1

...
...

...
2nw 4 Downstr. choke, well 0

2nw +1 5 Downstr. choke, well 1
...

...
...

3nw 6 Manifold
3nw +1 7 Upstr. turret choke
3nw +2 8 Separator

Table 4.1: Vertex indexing.

Edge index 2W Description

0 0 Well tubing, well 0
1 1 Well tubing, well 1
...

...
...

nw 2 Wellhead choke, well 0
nw +1 3 Wellhead choke, well 1

...
...

...
2nw 4 Manifold jumper, well 0

2nw +1 5 Manifold jumper, well 1
...

...
...

3w 6 Pipeline (flowline + riser)
3nw +1 7 Turret choke

Table 4.2: Edge indexing.

4.2 Variable overview

This section provides an overview of the variable vector used in the static flow estima-
tion problem. Each vertex in the flow network has three associated variables; the rec-
onciled (estimated) pressure, the measured pressure and the measured temperature.
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Each edge has four associated variables, namely the oil, gas, water and liquid flow rates.
The choke valves each have three associated variables; the choke position, the flow co-
efficient and the average temperature in the choke. In addition, separate variables are
defined for model errors, pressure errors and objective function value. Thus, the vari-
able vector x is given as

x =
[

q>,p>,r p
g o ,r p

wc , p̃>, T̃>, ũ>w>,v>,C>
v ,T

>
chk, J

]>
. (4.1)

These variables are explained in Table 4.3 below, which also shows the number of vari-
ables in each subvector and the units used. As indicated by the four blocks in the table,
the variable vector can be divided into four categories; estimates, measurements, error
variables and auxiliary variables.

Symbol Definition Description Variables Unit

q [q>
o ,q>

g ,q>
w ,q>

l ]> Flow rate estimates (see below) - [Sm3/h]

qo [q0
o , q1

o , . . . , q3nw+1
o ]> Oil rate estimates 3nw +2 [Sm3/h]

qg [q0
g , q1

g , . . . , q3nw+1
g ]> Gas rate estimates 3nw +2 [Sm3/h]

qw [q0
w , q1

w , . . . , q3nw+1
w ]> Water rate estimates 3nw +2 [Sm3/h]

ql [q0
l , q1

l , . . . , q3nw+1
l ]> Liquid rate estimates 3nw +2 [Sm3/h]

p [p0, p1, . . . , p3nw+2]> Reconciled pressures 3nw +3 [bara]
r p

g o - Pipeline GOR 1 [Sm3/Sm3]
r p

wc - Pipeline water cut 1 [-]

p̃ [p̃0, p̃1, . . . , p̃3nw+2]> Pressure measurements 3nw +3 [bara]
T̃ [T̃ 0, T̃ 1, . . . , T̃ 3nw+2]> Temperature measurements 3nw +3 [◦C]
ũ [ũ0, . . . , ũnw−1, ũt ]>: Choke positions nw +1 [-]

w [w>
ipr,w>

wpc,w>
chk, wvlp, w t

chk]> Model errors (see below) - [bar]

w>
ipr [w0

ipr, w1
ipr, . . . , wnw−1

ipr ]> IPR model errors nw [bar]

w>
wpc [w0

wpc, w1
wpc, . . . , wnw−1

wpc ]> WPC model errors nw [bar]

w>
chk [w0

chk, w1
chk, . . . , wnw−1

chk ]> Wellhead choke model errors nw [bar]
wvlp - Pipeline VLP model error 1 [bar]
w t

chk - Turret choke model error 1 [bar]
v [v0, v1, . . . , v3nw+2]> Pressure measurement errors 3nw +3 [bar]
v i p i − p̃ i Press. meas. error for vertex i - [bar]

Cv [C 0
v , . . . ,C nw−1

v ,C t
v ]>: Choke flow coefficients nw +1 [USGPM/psi]

Tchk [T
0
chk, . . . ,T

nw−1
chk ,T

t
chk]> Average temperature in chokes nw +1 [◦C]

J - Objective function value 1 [bar2]

Table 4.3: Variable overview, static flow estimation problem.

The general notation is as follows: Superscripts denote the location in the network,
while subscripts denote phase (for flow rate variables) or model (for error variables). A
few examples; p0 is the pressure in vertex 0 (i.e. the bottom hole of well 0), q0

o is the
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flow rate of oil through edge 0 (well tubing of well 0), and w 0
ipr is the IPR model error for

edge 0. We will use a tilde to denote a measurement, i.e. p̃0 is the measured pressure
in vertex 0. For the choke variables, the superscript denotes well number, i.e. C 0

v is the
flow coefficient for the wellhead choke on well 0. For the turret choke, a t-superscript
is used, i.e. C t

v is the flow coefficient for the turret choke. Defining nx as the number
of variables, this gives a total of nx = 30nw +27 variables, or 87 variables for a two-well
template. Note that the size of the variable vector scales linearly with the number of
wells in the model. We also define the number of measurements ny as the size of a
vector containing all the measurements, i.e. [p̃>, T̃>, ũ>]>, which gives ny = 7nw + 7.
Having defined the variables and model structure, we will now go on to the modelling
part, starting with GAP models and B-spline approximations.

4.3 GAP models and B-spline approximations

As mentioned above, each edge in the flow network is equipped with some model which
describes the pressure loss across the edge. BP’s model of the Skarv field in GAP con-
tains such pressure loss models for wells and pipelines, which we wish to include in our
optimization problem. In this section, we will summarize the process of extracting the
relevant models from GAP and representing them as B-spline functions which can be
included in the optimization problem.

Figure 4.2: BP’s GAP model of the Skarv subsea production system.
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4.3.1 GAP and PROSPER

GAP stands for General Allocation Package, and is a steady-state multiphase simula-
tion and optimization tool for petroleum production networks. GAP links to PROSPER,
which is a well modelling tool (i.e. well models in GAP are actually PROSPER models).
Both GAP and PROSPER are vendored by Petroleum Experts1. In GAP, the production
network is modelled by adding and connecting elements like wells, pipelines, valves
etc. in a graphical user interface, and associating each element with a model. In Fig-
ure 4.2, we show BP’s model of the Skarv production network as it appears in GAP. The
models used in this thesis are taken from the Tilje template, which is indicated in the
figure.

4.3.2 GAP models

The Tilje models taken from GAP are the well models (IPRs and WPCs), and the pipeline
VLP. Choke models are not included in BP’s GAP model; the choke valves are repre-
sented by a fixed pressure drop. Therefore, we have a separate choke model (see Sec-
tion 4.5.3). The IPRs in GAP are, as discussed in Chapter 3, nonlinear relations between
bottom hole pressures and liquid flow rates, and represent the pressure drop from the
reservoir to the bottom hole. The WPCs relate wellhead pressure to liquid flow rate,
and represent the pressure drop from the reservoir to the wellhead. The pipeline VLP
represents the pressure drop in the pipeline, and is represented by a black-box func-
tion which calculates the downstream pressure for a given liquid flow rate, upstream
pressure, upstream temperature, GOR and water cut. In our case, this black-box func-
tion is the Beggs and Brill correlation, but GAP allows the user to select from a list of 22
different correlations2.

These three models are summarized in Table 4.4, where we list the model repre-
sentations described above in our own nomenclature from Table 4.3. Here, we treat{

f i
ipr(·)

}
i∈W

,
{

f i
wpc(·)

}
i∈W

and fvlp(·) as black-box functions which can be evaluated, but

whos internal structure is not known.

Model Representation Number of models

IPR q i
l = f i

ipr(p i ), ∀ i ∈W nw

WPC q i
l = f i

wpc(pnw+i ), ∀ i ∈W nw

Pipeline VLP p3nw+1 = fvlp(q3nw
l , p3nw , T̃ 3nw ,r p

g o ,r p
wc ) 1

Table 4.4: GAP models.

1see http://www.petex.com/products for more information about GAP, PROSPER and other software
from Petroleum Experts.

2BP do not actually use the Beggs and Brill correlation for Skarv, but in the interest of transparency, we
choose to use a well-known and "open-domain" method here.

http://www.petex.com/products
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4.3.3 B-spline approximations

The question now is: How can we include the models in Table 4.4 in our optimiza-
tion problem? One possible way might be to couple our solver with GAP in such a
way that the solver can query GAP for function evaluations. However, this is not effi-
cient, because (1) model evaluation would be (relatively) slow, and (2) GAP does not
provide gradients, which means the solver would have to approximate gradients by
e.g. finite differencing (resulting in multiple evaluations for each internal iteration).
Promising results have been achieved with approximation schemes, i.e. sampling the
models in Table 4.4 in a grid and feeding the resulting data sets to some approxima-
tion or interpolation scheme with e.g. piecewise linear functions (Kosmidis et al., 2005;
Gunnerud & Foss, 2009) or B-spline (piecewise polynomial) functions (Sandnes, 2013).
Here, we choose the latter approach, based on the promising results of (Sandnes, 2013)
and (Grimstad & Sandnes, 2014), and previous experience with B-splines (Robertson,
2013). We will not go into the details of function approximation with B-splines here,
but a short introduction is given in Appendix A.

In short, B-splines are piecewise polynomial functions which, due to their flexibility,
are able to approximate any function (linear or nonlinear) quite accurately. In addition,
they can be made twice continuously differentiable (C 2), meaning we can evaluate Ja-
cobians and Hessians directly and perform sensitivity analyses on each model. The
accuracy of the approximation depends on how much detail is captured through sam-
pling of the function. To obtain good approximations of the functions in Table 4.4, we
inspect the functions in the relevant ranges of the input variables to determine how the
functions should be sampled to capture a sufficient amount of detail. Then, we sam-
ple the functions and pass the resulting tables of samples to a B-spline approximation
scheme which returns the B-spline representation of the function. This results in the
B-spline functions shown in Table 4.5 below.

Function to be approximated Resulting B-spline approximation

p i = f i
ipr

−1
(q i

l )+∆p i , ∀ i ∈W p i =Φi
ipr(q i

l ), ∀ i ∈W

pnw+i = f i
wpc

−1
(q i

l )+∆pnw+i , ∀ i ∈W pnw+i =Φi
wpc(q i

l ), ∀ i ∈W

p3nw+1 = fvlp(q3nw
l , p3nw , T̃ 3nw ,r p

g o ,r p
wc ) p3nw+1 =Φvlp(q3nw

l , p3nw , T̃ 3nw ,r p
g o ,r p

wc )

Table 4.5: B-spline approximated GAP models.

Two things are to be noted for the IPRs and WPCs. Firstly, we have switched the
input and output variables, resulting an approximation of the inverse IPRs and WPCs
(i.e. pressure as a function of rate). This is because we prefer all edge models to be
evaluated as pressures (see Section 4.5.2). Secondly, we have included the offsets ∆p i

and ∆pnw+i before creating the approximations. These are calibration constants which
we will discuss in Chapter 6.
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4.4 Mass balance constraints

We will now proceed with defining all the constraints which are to be included in our
optimization problem. The mass balance constraints account for mass flows in and out
of each node, and use the GORs and water cuts to determine the phase split. The mass
balance constraints are so-called hard constraints, i.e. they have to be satisfied exactly.

4.4.1 Vertex in/outflow constraints

The vertex in/outflow constraints require the sum of inflows into a vertex to equal the
sum of outflows, as explained in Chapter 3. Each phase is treated individually, i.e. there
are separate mass balance constraints for oil, gas, water and liquid. To write these con-
straints more efficiently, we use an incidence matrix M. Such a matrix is often used to
describe how the vertices in a flow network (or in general, graph) are connected (Cor-
men et al., 2001). The elements of M are defined as follows:

M = {
mi j

}
i j , mi j =


−1, if edge j is an outgoing edge from vertex i

1, if edge j is an incoming edge to vertex i
0, otherwise

, (4.2)

The rows of M represent vertices, while the columns represent edges. For the flow net-
work shown in Figure 4.1, M becomes the 3nw +4×3nw +3 matrix shown below:

M =



0 0 0

−Inw 0 0
...

0 0 0
0 0 0

Inw −Inw 0
...

0 0 0
0 0 0

0 Inw −Inw

...
0 0 0

0 . . . 0 0 . . . 0 1 . . . 1 −1 0 0
0 0 0 0 0 0 1 −1 0
0 . . . 0 0 . . . 0 0 . . . 0 0 1 −1
0 0 0 0 0 0 0 0 1



, (4.3)

where Inw is an nw ×nw identity matrix. Further, we define an internal incidence ma-
trix Mint, which is simply the incidence matrix with the source vertices (wells) and sink
vertex (separator) removed. This corresponds to removing nw rows from the top of M
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and one row from the bottom:

Mint =



0 0 0

Inw −Inw 0
...

0 0 0
0 0 0

0 Inw −Inw

...
0 0 0

0 . . . 0 0 . . . 0 1 . . . 1 −1 0 0
0 0 0 0 0 0 1 −1 0
0 . . . 0 0 . . . 0 0 . . . 0 0 1 −1


(4.4)

Now we can efficiently write the mass balance constraints as

Mintqo = 0, (4.5)

Mintqg = 0, (4.6)

Mintqw = 0, (4.7)

Mintql = 0, (4.8)

where qo ,qg ,qw and ql are vectors consisting of the oil, gas, water and liquid rates (re-
spectively) in each edge, as described in Section 4.2.

4.4.2 GOR, water cut and liquid rate constraints

The individual GORs for each well are used to link the oil and gas rates from that well,
i.e.

q i
g = r i

g o q i
o , ∀ i ∈W (4.9)

Similarly, the individual water cuts for each well are used to link the oil and water rates:

q i
w = r i

wc

1− r i
wc

q i
o , ∀ i ∈W (4.10)

Note that r i
g o and r i

wc are treated as constant well parameters. The liquid rates are ob-
tained by simply adding the oil rates and water rates:

q i
l = q i

o +q i
w , ∀ i ∈W (4.11)

Due to the mass balance constraints (4.5) through (4.8), the correct GORs, water cuts
and liquid rates will propagate though the edges in each well. However, when the well
streams mix in the manifold, we must calculate a new GOR and water cut for the com-
mon pipeline. These are needed to calculate the pressure drop in the common pipeline.
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Since the individual flows of each phase are calculated through the mass balance con-
straints, we can use these flows to calculate the pipeline GOR r p

g o through the constraint

q3nw
g = q3nw

o r p
g o , (4.12)

and the pipeline water cut r p
wc as

q3nw
w = q3nw

l r p
wc . (4.13)

Recall that the index 3nw denotes the edge leaving the manifold vertex. Note that (4.12)
and (4.13) are expressed as bilinear rather than fractional/rational constraints; if we
had written r p

g o = q3nw
g /q3nw

o , the GOR would not be well-defined for q3nw
o = 0.

4.5 Momentum balance constraints

The momentum balance constraints relate the pressures throughout the flow network
to each other.

4.5.1 Decreasing pressure constraints

First of all, we assume a positive flow through the network, i.e. hydrocarbons flow from
the wells, into the production network and out at the top (separator). This means, with
reference to Figure 4.1, that the pressures will decrease from left to right in the flow
network. For example, the wellhead pressure for a well will be less than the bottom
hole pressure, i.e.

pnw+i ≤ p i , or equivalently, −p i +pnw+i ≤ 0, ∀ i ∈W .

Again, we make use of the incidence matrix (4.3) to express these constraints efficiently
as

M>p ≤ 0, (4.14)

where p = [p0, p1, . . . , p3nw+2] is a vector consisting of all the vertex pressures.

4.5.2 Well performance

IPR constraints

The IPR curves are used to relate the bottom hole pressures to the liquid rates in each
well. Recall from Section 4.3.2 that the IPR from GAP is given as q i

l = fipr(p i ). However,
we want to penalize the amount of model error in the objective function, and to achieve
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better scaling between the terms, it is more convenient to express all the model errors
as pressures. Therefore, the IPR constraints are given as

w i
ipr = p i −Φi

ipr(q i
l ), ∀ i ∈W , (4.15)

where w i
ipr is the model error for IPR i , p i is the bottom hole pressure for well i , and q i

l

is the liquid rate from well i . Φi
ipr(·) is the B-spline approximation of the IPR in BP’s GAP

model, cf. Section 4.3.

WPC constraints

The WPC constraints give a relation between the wellhead pressures and the liquid rates
in each well. Like the case was for the IPR curve, we would like to express the model
error as a pressure. Therefore, the WPC constraints are given as

w i
wpc = pnw+i −Φwpc(q i

l ), ∀ i ∈W , (4.16)

where w i
wpc is the model error for WPC i , pnw+i is the wellhead pressure for well i , and

q i
l is the liquid rate from well i . Φwpc(·) is a B-spline approximation of the WPC in BP’s

GAP model, cf. Section 4.3.

4.5.3 Choke valves

As mentioned in Chapter 3, the choke valves used in the Skarv field have been tested
in a water test facility, meaning that the relation between the choke opening ũ and the
flow coefficient Cv is available.

Cv = fCv (ũ) (4.17)

A multiplier model is chosen because of its relative simplicity, and the fact that it facili-
tates the use of the flow coefficient characteristic and fluid property tables. However, it
does not account for compressible flow, due to the fact that fluid properties are deter-
mined from upstream conditions only. Therefore, in an attempt to consider compress-
ible flow, we use a Newton-iterative approach much like the one used for pipelines in
(Beggs & Brill, 1973) to allow the fluid properties to be evaluated at the average pres-
sure and temperature in the choke. This results in a model which can be evaluated, but
not written in closed form. The model calculates a downstream pressure pd s , based on
the liquid flow rate ql , the upstream pressure pus , an average temperature T , the flow
coefficient Cv , the GOR rg o , the water cut rwc , and a calibration factor c, i.e.

pd s = fchk(ql , pus ,T ,Cv ,rg o ,rwc ,c), (4.18)

where T = 1
2 T us + 1

2 T d s is the average of the upstream and downstream temperatures.
The evaluation of fchk(·) involves guessing a pressure drop, evaluating the choke model
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(3.11) for the resulting average pressure and taking the calculated pressure drop as a
new guess. This is repeated until the guessed and calculated pressure drops coincide.
This is described in detail in Algorithm C.1.

We now use the B-spline to approximate (4.18). For the wellhead chokes, the GOR,
water cut and calibration factor are assumed fixed, which means we need to sample
a grid of liquid rates, flow coefficients, upstream pressures and average temperatures.
This results in a B-spline Φchk(ql , pus ,T ,Cv ). We also use the B-spline to approximate
fCv (ũ) as ΦCv (ũ). As with the well models, we formulate the model constraint in terms
of model errors, so for the wellhead chokes the necessary constraints are

C i
v =Φi

Cv
(ũi ), ∀ i ∈W , (4.19)

T
i
chk =

1

2

(
T̃ nw+i + T̃ 2nw+i

)
∀ i ∈W , (4.20)

w i
chk = p2nw+i −Φi

chk(qnw+i
l , pnw+i ,T

i
chk,C i

v ), ∀ i ∈W . (4.21)

Note that index nw + i denotes the wellhead while 2nw + i denotes downstream the
choke. The turret choke is modelled similarly; except we cannot fix the GOR and water
cut since these will vary according to the mixing of the well streams. Therefore, the
choke model is sampled in two extra dimensions (GOR and water cut). Again, we use
another B-spline to approximate the flow coefficient characteristic. This results in the
following constraints for the turret choke:

C t
v =Φt

Cv
(ũt ), (4.22)

T
t
chk =

1

2

(
T̃ 3nw+1 + T̃ 3nw+2) , (4.23)

w t
chk = p3nw+2 −Φt

chk(q3nw+1
l , p3nw+1,T

t
chk,r p

g o ,r p
wcC t

v ). (4.24)

Here, the index 3nw+1 denotes upstream the turret choke, while 3nw+2 denotes down-
stream. To give the reader an impression of how the flow coefficient and choke model
may look, Figure 4.3 shows the flow coefficient characteristic for one of the Tilje well-
head chokes, and Figure 4.4 shows (for the same choke) the B-spline approximated
pressure drop model for different flow coefficients, fixed at a representative temper-
ature and upstream pressure, i.e. showing the pressure drop as a function of liquid flow
rate.
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Figure 4.3: Choke flow coefficient (Cv ) characteristic.
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Figure 4.4: Choke model, shown as ql →∆p plots for fixed Cv ’s (in [USGPM/psi]). Sam-
pling points are indicated with circles. Note how increased flow rates become less sig-
nificant for the pressure drop as Cv increases; for Cv = 100, i.e. ũ ≈ 50 %, the pressure
drop curve is almost flat.
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4.5.4 Pipeline

The pipeline (flowline-riser) model is taken as a spline-approximated VLP table gen-
erated in GAP. This table is created in GAP by using the Beggs and Brill multiphase
flow correlation to calculate downstream pressures for a grid of upstream pressures,
upstream temperatures, GORs and water cuts. In this sense, the pipeline model may be
seen as a Beggs and Brill correlation. The model is given as

wvlp = p3nw+1 −Φvlp(q3nw
l , p3nw , T̃ 3nw ,r p

g o ,r p
wc ), (4.25)

where wvlp is the model error, p3nw+1 is the pressure at the top of the riser (upstream the

turret choke), q3nw
l is the liquid flow through the pipeline p3nw is the manifold pressure,

T̃ 3nw is the manifold temperature r p
g o is the pipeline GOR and r p

wc is the pipeline water
cut.

4.5.5 Measurements

An additional constraint is added to include measurements of pressures, temperatures
and choke positions. Letting yT be the measurement vector at time index T , we add the
following constraint:

0 = yT − [p̃>, T̃>, ũ>]>. (4.26)

Obviously, the measurements in yT must be arranged accordingly.

4.6 Model sensitivity

An important part of modelling is to determine the model sensitivity, which boils down
to measuring the magnitude of the partial derivatives with respect to each variable. This
is useful for determining which variables to pay special attention when modelling, and
could also be used to provide better scaling between the terms in the objective func-
tion (although we have not attempted to do so here). In our case, we are particularly
interested in investigating the model sensitivity with respect to pressure, since most of
the other variables are explicitly given through parameters or other constraints. For in-
stance, GORs and water cuts are given either directly (for wells) or through mass balance
constraints (pipeline and turret choke), and the choke positions are given by measure-
ments which are assumed accurate. As mentioned in Section 4.3, the B-spline approx-
imations of each model are C 2, which enables sensitivity analysis. We will not discuss
this at length, but in summary, the IPRs and WPCs have nice sensitivity properties, the
choke valves have good sensitivity properties in the relevant ranges for the flow coeffi-
cient, and the pipeline VLP has bad sensitivity properties. We will devote a section to
the latter in the results chapter (Section 8.6).
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4.7 Formulation of the static flow estimation NLP

4.7.1 Objective function

The objective is the standard least-squares quadratic function:

f (ql ,w,v) =
∥∥q−

l −ql
∥∥2

Pq
+‖w‖2

Q−1 +‖v‖2
R−1 , (4.27)

where Pq ∈ M3nw+2×3nw+2, Q−1 ∈ M3nw+2×3nw+2, and R−1 ∈ M3nw+3×3nw+3 are weight-
ing matrices, and q−

l is the estimated flow rate from the previous time index. The first
term in (4.27) is known as a regularization term, whose purpose is to include a priori
information in the objective. Due to the non-convex nature of the pressure momen-
tum constraints, we are running a risk of formulating an optimization problem with an
unknown number of local solutions (possibly far apart). Including this first term is an
attempt to encourage the NLP solver to choose solutions close to the solution from the
previous iteration by penalizing deviations from the previously estimated liquid flow
rates. The weights in Pq are selected relatively small; we do not want this term to affect
the flow estimates, but merely discourage the solver from taking large leaps from one
local optimum to another. The second term penalizes model errors. By driving this term
towards zero, the reconciled pressures will agree more with the edge models. The third
term penalizes pressure measurement errors. A small value for this term implies that
the reconciled pressures agree with the pressure measurements. w and v are vectors
of model errors and pressure measurement errors, respectively. These are described in
Section 4.2. The weighting matrices Pq, Q−1 and R−1 decide the relative penalty placed
on the flow regularization term, model error term and pressure measurement term, re-
spectively. Q−1 and R−1 thus represent our relative confidence in the system model and
the available pressure measurements. The structure of Q−1 is as follows:

Q−1 = blkdiag
(
Q−1

ipr,Q−1
wpc,Q−1

chk,Q−1
vlp,

(
Q t

chk

)−1
)

(4.28)

where Qipr = diag(Q0
ipr, . . . ,Qnw−1

ipr ), Qwpc = diag(Q0
wpc, . . . ,Qnw−1

wpc ) and Qchk = diag(Q0
chk,

. . . ,Qnw−1
chk ) are nw ×nw diagonal matrices of weights representing the penalty on each

model error. The weights in R = diag(R0, . . . ,R3nw+3) represent each pressure error.
Keep in mind that for the elements of these matrices, superscripts are indices, not ex-
ponents. Some strategies for selecting weights based on calibration data are presented
in Chapter 6.

4.7.2 Variable bounds

The default bounds on each variable is 0 ≤ x ≤∞, where x is some variable. However,
there are a few exceptions:
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• Variables involved in B-spline constraints are bounded according to the domain
of the B-spline function. For instance, let Φ(·) be a B-spline function sampled
from x1 to x1 in the first variable, x2 to x2 in the second variable and so forth.
ThenΦ(·) is a function

Φ(·) : [x1, x1]× [x2, x2]×·· ·× [xn , xn] →R. (4.29)

The B-spline function and its derivatives can only be evaluated inside its domain.
Hence, we must bound the variables involved so they stay inside the domain.

• Some variables must be allowed to attain negative values. This applies to pres-
sure measurement errors, model errors and temperature measurements (some
negative temperatures were observed in the OLGA simulations in Chapter 8).

4.7.3 Starting point

To obtain a good starting point xinit for the NLP solver, we use the solution x∗
T−1 from

the previous iteration together with the latest measurements yT . The reasoning behind
this is the following:

1. The system dynamics are relatively slow compared to the estimation loop fre-
quency, therefore we would not expect the system to evolve much from one it-
eration to the next. This means the solutions of Problem 4.1 for two subsequent
iterations are expected to be close.

2. Variables associated with measurements (pressure measurements p̃, temperature
measurements T̃ and choke positions ũ) are subject to the equality constraint
(4.26), which means we can remove some infeasibility in the starting point by
updating them with the latest measurements.

To obtain a compact expression for xinit, we introduce selection matrices Sx (nx ×nx)
and Sy (nx ×ny) defined as

Sx =
{

sx,i i
}

i i , sx,i i =
{

0, if variable i in x is a measurement variable,
1, otherwise.

(4.30)

Sy =
{

sy,i j
}

i j , sy,i j =
{

1, if measurement j in yT corresponds to index i in x,
0, otherwise.

(4.31)

We want the starting point for the measurement variables to be updated with the lat-
est measurements, while the starting point for remaining variables should come from
the solution from the previous iteration. This leads to the following expression for the
starting point:

xinit|T = Sxx∗
T−1 +SyyT , (4.32)

where xinit|T is the starting point for the problem to be solved at time index T .
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4.7.4 Summary - the static flow estimation NLP

Problem 4.1: Static flow estimation NLP

minimize
x

J

subject to

objective constraint: J ≥
∥∥q−

l −ql
∥∥2

Pq
+‖w‖2

Q−1 +‖v‖2
R−1

Mass balance constraints:

mass balance oil: 0 = Mintqo

mass balance gas: 0 = Mintqg

mass balance water: 0 = Mintqw

mass balance liquid: 0 = Mintql

well GORs: 0 = r i
g o q i

o −q i
g , ∀ i ∈W

well water cuts: 0 = r i
wc

1− r i
wc

q i
o −q i

w , ∀ i ∈W

well liquid rates: 0 = q i
l −q i

o −q i
w , ∀ i ∈W

pipeline GOR: 0 = q3nw
g −q3nw

o r p
g o

pipeline water cut: 0 = q3nw
w −q3nw

l r p
wc

Momentum balance constraints:

decreasing pressure: 0 ≥ M>p

IPRs: w i
ipr = q i

l −Φi
ipr(p i ), ∀ i ∈W

rate WPCs: w i
wpcq = q i

l −Φi
wpcq (pnw+i ), ∀ i ∈W

wellhead chk.: w i
chk = p2nw+i −Φi

chk(q i
l , pnw+i ,T

i
chk,C i

v ), ∀ i ∈W

pipeline: wvlp = p3nw+1 −Φvlp(q3nw
l , p3nw , T̃ 3nw ,r p

g o ,r p
wc )

turret chk.: w t
chk = p3nw+2 −Φt

chk(q3nw+1
l , p3nw+1,T

t
chk,r p

g o ,r p
wcC t

v )

Auxiliary constraints:

WHC flow coeff.: 0 =C i
v −Φi

Cv
(ui ), ∀i ∈W

WHC flow coeff.: 0 =C t
v −Φt

Cv
(ut )

WHC avg. temp.: 0 = T
i
chk −

1

2
T̃ nw+i − 1

2
T̃ 2nw+i , ∀ i ∈W

turret chk. avg. temp.: 0 = T
t
chk −

1

2
T̃ 3nw+1 − 1

2
T̃ 3nw+2

pressure errors: v = p− p̃

measurements: 0 = yT − [p̃>, T̃>,u>]>

Variable bounds:

x ≤ x ≤ x



Chapter 5

The dynamic flow estimation problem

The second part of the modelling scope of this thesis is to derive an appropriate dy-
namic model for the flow network. In this chapter, the static flow network model is
extended to include dynamics. In the assignment text, it is stated that one of the opera-
tional goals of the Skarv field is to push against constraints on flow rates and velocities.
While the static estimator is well suited for estimating flow rates, it does not estimate
the velocities. Multiphase velocities are complicated, because they depend on not only
the mass flow rates of each phase and the pipe diameter, but also the liquid holdup
and density profiles along the wells and pipelines. We will not include velocity in this
model, but we will make a first step towards estimating velocity by including the liquid
holdup. Ideally, we would estimate a holdup profile along each well and pipeline, be-
cause we then would be able to estimate the velocity profile. However, this would result
in a rather complicated model, so we limit ourselves to estimating the total holdup, i.e.
the ratio between the volume occupied by liquid and the total volume in each well and
the pipeline.

The modelling in the chapter results in a Moving-Horizon Estimation (MHE) formu-
lation. By allowing the wellbore volumes and the flowline volume to accumulate mass,
we can introduce additional variables like masses of each individual phase and liquid
holdup. This is accomplished by allowing the flowrates into and out of these volumes
to be different, and introducing differential mass balance constraints. By doing this,
we are assuming that the well (IPR/WPC) and choke models are capable of estimating
instantaneous flow rates into and out of of the well, respectively. Also, we assume that
the instantaneous inflow to the pipeline is the sum of the well outflows, and that the
outflow is given by the turret choke model. This assumption is made based on results
from the static estimator, and will be discussed further in Chapter 9.

Mass accumulation in the template tubing (manifold jumpers and the manifold it-
self) is ignored due to the relatively small volume of the pipe segments in this area.
Hence, the algebraic mass balance constraints from the static model are kept for the
manifold. The general idea is illustrated in Figure 5.1, where the well tubings and pipeline
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from Figure 1.4 have been replaced by "tanks" which accumulate mass.

Figure 5.1: Structure of dynamic model.

5.1 Variable overview

The horizon length (the number of measurements to be considered in the problem) is
denoted N . At time index T , we need to consider all the measurements from time index
T −N +1 up to T . For notational convenience, we define the index set H as the entire
estimation horizon, i.e. H = {k}T

k=T−N+1. In addition, we define H − = {k}T−1
k=T−N+1

as the estimation horizon excluding the last time index, and H + = {k}T
k=T−N+2 as the

estimation horizon excluding the first time index. Each time index in the horizon has
an associated state variable, which means the complete state vector xT is given as

xT = [x>
T−N+1|T ,x>

T−N+2|T , . . . ,x>
T |T ]>, (5.1)

where xk|T is the state vector corresponding to time index k in the estimation problem
to be solved at time index T . xk|T is given as (the T is omitted to save some space)

xk =
[

q>
k ,p>

k ,r p
g o,k ,r p

wc,k , p̃>
k , T̃>

k , ũ>
k w>

k ,v>k ,C>
v,k ,T

>
chk,k ,T

>
V ,k ,ρ>

k ,V>
l ,k ,H>

l ,k ,m>
k ,m>

l ,k , Jk

]>
.

(5.2)
Here, the variables qk through Tchk,k and Jk are the same as the variables in the static
estimation problem (except we now have N of them). Therefore, we refer to Table 4.3 for
an explanation of the nomenclature here. The newly introduced variables TV ,k through
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ml ,k are explained in Table 5.1 below. The k-subscript is omitted in the table to pre-
vent clutter. The superscript for these new variables denotes the volume; a number i
denotes well tubing volume i , while a p denotes the pipeline volume.

Symbol Definition Description Variables Unit

TV [T
0

,T
1

, . . . ,T
nw−1

,T
p

]> Avg. temp. in well and pipeline vol-
umes

N · (nw +1) [◦C]

ρ [ρ>
o ,ρ>

g ,ρ>
w ,ρ>

l ,ρ>
t p ]> Densities (see below) - [kg/m3]

ρo [ρ0
o ,ρ1

o , . . . ,ρnw−1
o ,ρp

o ]>: Average oil densities in well and
pipeline volumes

N · (nw +1) [kg/m3]

ρg [ρ0
g ,ρ1

g , . . . ,ρnw−1
g ,ρp

g ]> Average gas densities in well and
pipeline volumes

N · (nw +1) [kg/m3]

ρw [ρ0
w ,ρ1

w , . . . ,ρnw−1
w ,ρp

w ]> Average water densities in well and
pipeline volumes

N · (nw +1) [kg/m3]

ρl [ρ0
l ,ρ1

l , . . . ,ρnw−1
l ,ρp

l ]> Average liquid densities in well and
pipeline volumes

N · (nw +1) [kg/m3]

ρt p [ρ0
t p ,ρ1

t p , . . . ,ρnw−1
t p ,ρp

t p ]> Average two-phase densities in well
and pipeline volumes

N · (nw +1) [kg/m3]

Vl [V 0
l ,V 1

l , . . . ,V nw−1
l ,V p

l ]> Volume occupied by liquid in well and
pipeline volumes

N · (nw +1) [m3]

Hl [H 0
l , H 1

l , . . . , H nw−1
l , H p

l ] Liquid holdup in well and pipeline
volumes

N · (nw +1) [-]

m [m>
o ,m>

g ,m>
w ]> Oil, gas and water mass variables - [kg]

mo [m0
o ,m1

o , . . . ,mnw−1
o ,mp

o ]> Oil masses in well and pipeline vol-
umes

N · (nw +1) [kg]

mg [m0
g ,m1

g , . . . ,mnw−1
g ,mp

g ]> Gas masses in well and pipeline vol-
umes

N · (nw +1) [kg]

mw [m0
w ,m1

w , . . . ,mnw−1
w ,mp

w ]> Water masses in well and pipeline vol-
umes

N · (nw +1) [kg]

ml [m0
l ,m1

l , . . . ,mnw−1
l ,mp

l ]> Liquid masses in well and pipeline
volumes

N · (nw +1) [kg]

Table 5.1: Variable overview, dynamic flow estimation problem (remaining variables are
explained in Table 4.3).

The exclusion of ml from m is intentional; as we will see in the next section, the oil,
gas and water masses in m are differential variables, while the liquid masses in ml are
algebraic.

The total number of variables in Table 5.1 is 12N · (nw +1). In addition, the number
of variables in Table 4.3 amount to N · (30nw + 27) when we consider the estimation
horizon. This gives a total of nx = N · (42nw +39) variables. This means the number of
variables scales linearly with both the number of wells nw and the estimation horizon
N .
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5.2 Differential constraints

5.2.1 Mass accumulation in well tubing and pipeline

The differential equations for mass accumulation follow from the conservation of mass,
where the control volume is defined as the entire well tubing volume. The time deriva-
tive of the accumulated mass inside the tubing equals the difference between the mass
inflow and the mass outflow. To convert standard condition volume flow (Sm3/h) to

mass flow (kg/s), the densities at standard conditions are used to obtain wo = ρstd
o

3600 qo ,

wg = ρstd
g

3600 qg and ww = ρstd
w

3600 qw . Note that in this section, the w ’s denote mass flow rates
and not model errors. Then, the differential equations become

ṁi
o = w i

o −w i+nw
o , ∀ i ∈W [kg/s] (5.3)

ṁi
g = w i

g −w i+nw
g , ∀ i ∈W [kg/s] (5.4)

ṁi
w = w i

w −w i+nw
w , ∀ i ∈W [kg/s] (5.5)

for the wells, and

ṁp
o = w 3nw

o −w 3nw+1
o , [kg/s] (5.6)

ṁp
g = w 3nw

g −w 3nw+1
g , [kg/s] (5.7)

ṁp
w = w 3nw

w −w 3nw+1
w , [kg/s] (5.8)

for the pipeline. The dot notation denotes the time derivative, i.e. ṁ = dm/dt . To ease
implementation, a simple Euler discretization is performed to obtain a set of discrete-
time algebraic constraints. For each time index k, there are nw +1 masses of each phase
to keep track of (nw well tubing volumes and one pipeline volume), so we recall the
vectors

mo,k =


m0

o,k
...

mnw−1
o,k

mp
o,k

 , mg ,k =


m0

g ,k
...

mnw−1
g ,k

mp
g ,k

 , and mw,k =


m0

w,k
...

mnw−1
w,k

mp
w,k

 , (5.9)

where mi
o,k is the mass of oil in well tubing i at time index k, mp

o,k is the mass of oil in
the pipeline at time index k, and similarly for the gas and water phases. These three
vectors are collected in a single mass vector mk = [m>

o,k ,m>
g ,k ,m>

w,k ]>. We also define
the vectors

∆qo,k =


q0

o,k −qnw
o,k

...
qnw−1

o,k −q2nw−1
o,k

q3nw
o,k −q3nw+1

o,k

 , ∆qg ,k =


q0

g ,k −qnw
g ,k

...
qnw−1

g ,k −q2nw−1
g ,k

q3nw
g ,k −q3nw+1

g ,k

 , and∆qw,k =


q0

w,k −qnw
w,k

...
qnw−1

w,k −q2nw−1
w,k

q3nw
w,k −q3nw+1

w,k

 ,

(5.10)
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where ∆qo,k is a vector of net oil (standard) volume inflows to the well and pipeline
volumes (and similarly for gas and water). These are also collected in the vector ∆qk =
[∆q>

o,k ,∆q>
g ,k ,∆q>

w,k ]>. Then, we can write the discretized mass accumulation constraints
compactly as

mk+1 = mk +∆t ·D∆qk , ∀ k ∈H −, (5.11)

where

D = 1

3600

ρstd
o Inw+1 0 0

0 ρstd
g Inw+1 0

0 0 ρstd
w Inw+1

 (5.12)

is the matrix needed to convert standard volume flow rates (Sm3/h) to mass flow rates
(kg/s). The liquid masses are taken as the sum of the oil and water masses;

ml ,k = mo,k +mw,k , ∀ k ∈H , (5.13)

where ml ,k = [m0
l ,k , . . . ,mnw−1

l ,k ,mp
l ,k ]> is a vector of all the liquid masses in the well vol-

umes and the pipeline volume. Note that the liquid masses are not differential vari-
ables.

5.3 Algebraic constraints

This section describes the algebraic constraints in the dynamic formulation. Some of
the algebraic constraints are inherited from the static model, so for these the nomen-
clature will not be explained extensively (refer to Chapter 4).

5.3.1 Mass balance constraints

Wells

For all edges associated to one well, the GOR and water cut should be the same, and the
liquid rate should be the sum of the oil and water rates. This is imposed by the following
constraints:

q i+ j
g ,k = r i

g o q i+ j
o,k , ∀ i ∈W , j ∈ {0,nw ,2nw } ,k ∈H , (5.14)

q i+ j
w,k = r i

wc q i+ j
l ,k , ∀ i ∈W , j ∈ {0,nw ,2nw } ,k ∈H , (5.15)

q i
l ,k = q i

o,k +q i
w,k , ∀ i ∈ {i }2nw−1

i=0 ,k ∈H . (5.16)

Manifold

Ordinary mass balance constraints are used to calculate the flow rates from the wells
and into the manifold. This means we have to set the flow rates through the manifold
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jumpers equal to the flow rates through the choke valve:

q i+nw
o,k −q i+2nw

o,k = 0, ∀ i ∈W ,k ∈H (5.17)

q i+nw
g ,k −q i+2nw

g ,k = 0, ∀ i ∈W ,k ∈H (5.18)

q i+nw
w,k −q i+2nw

w,k = 0, ∀ i ∈W ,k ∈H . (5.19)

Then we let the pipeline inflow be equal to the sum of the flow rates in the manifold
jumpers:

q3nw
o,k =

∑
i∈W

q2nw+i
o,k , ∀ k ∈H , (5.20)

q3nw
g ,k =

∑
i∈W

q2nw+i
g ,k , ∀ k ∈H , (5.21)

q3nw
w,k =

∑
i∈W

q2nw+i
w,k ∀ k ∈H . (5.22)

Pipeline phase split

Having calculated the oil, gas and water rates for pipeline inflow through (5.20)-(5.22),
we can calculate the pipeline GOR, water cut and liquid rate:

q3nw
g ,k = r p

g o,k q3nw
o,k , ∀ k ∈H , (5.23)

q3nw
w,k = r p

wc,k q3nw
l ,k , ∀ k ∈H , (5.24)

q3nw
l ,k = q3nw

o,k +q3nw
w,k ∀k ∈H . (5.25)

The pipeline outflow is calculated in terms of liquid rate only, so to obtain a correct
phase split through the turret choke, we must also include GOR, water cut and liquid
rate constraints for the turret choke edge:

q3nw+1
g ,k = r p

g o,k q3nw+1
o,k , ∀ k ∈H , (5.26)

q3nw+1
w,k = r p

wc,k q3nw+1
l ,k , ∀ k ∈H , (5.27)

q3nw+1
l ,k = q3nw

o,k +q3nw+1
w,k , ∀ k ∈H . (5.28)

5.3.2 Well inflow and outflow

As seen in Figure 8.3, The IPR and WPC curves appear to give good predictions of well
inflow, while the choke models seem to give good predictions of outflow. Therefore,
these are used to calculate the liquid flow rate into and out of the well tubing. As with
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the static model, we express the constraints in terms of model error:

w i
ipr,k = p i

k −Φi
ipr(q i

l ,k ), ∀ i ∈W ,k ∈H , (5.29)

w i
wpc,k = pnw+i

k −Φwpc(q i
l ,k ), ∀ i ∈W ,k ∈H , (5.30)

w i
chk,k = p2nw+i

k −Φi
chk(qnw+i

l ,k , pnw+i
k ,T

i
chk,k ,C i

v,k ), ∀ i ∈W ,k ∈H . (5.31)

The choke model includes auxiliary constraints for the flow coefficient Cv,k and the
average temperature T chk,k :

C i
v,k =Φi

Cv
(ũi

k ), ∀ k ∈H , (5.32)

T
i
chk,k = 1

2

(
T̃ nw+i

k + T̃ 2nw+i
k

)
, ∀ k ∈H . (5.33)

These constraints are all inherited from the static model, so the nomenclature will not
be explained here (refer to Sections 4.5.2 and 4.5.3).

5.3.3 Well tubing and pipeline pressure drop

For the well tubing and pipeline pressure drops, frictional and accelerational effects are
assumed negligable. This assumption is founded on obervations during OLGA simu-
lations of the Tilje template, where the hydrostatic contribution has consistently been
dominant (> 95 % of the total pressure drop). Although this is not unreasonable for
Tilje, we may not be so fortunate for other templates/fields. Therefore, an extended
model which includes friction is presented in Appendix B. The well tubing hydrostatic
pressure drop constraints are given by

w i
∆p,k = (p i

k −p i+nw
k )−ρi

t p,k g hi ·10−5, ∀ i ∈W ,k ∈H , (5.34)

where w i
∆p,k is the model error, (p i

k − p i+nw
k ) is the actual (reconciled) pressure drop,

and ρi
t p,k g hi is the hydrostatic pressure drop predicted by the model in Pascals. The

10−5 multiplier is necessary to convert the pressure drop from Pascals to bar. ρi
t p,k is

the two-phase density, which describes the average density of the fluid mixture in the
well tubing. g = 9.81 m/s2 is the acceleration of gravity, and hi is the total elevation
change from the bottom hole to the wellhead. hi can be calculated from the contents
of the well geometry file from OLGA (see Appendix C.1). For the pipeline, the constraint
becomes

w p
∆p,k = (p3nw

k −p3nw+1
k )−ρp

t p,k g hp ·10−5, ∀ k ∈H , (5.35)

i.e. the bottom hole and wellhead pressures have been replaced by the manifold pres-
sure and the pressure at the top of the riser. w p

∆p,k is the model error for the pipeline

pressure drop model, ρp
t p,k is the two-phase density of the fluids in the pipeline, and hp

is the total elevation change of the pipeline. To calculate the two-phase densities, some
additional constraints are necessary. These are described in the sections below.
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Fluid properties

The pressure model uses fluid densities to determine the hydrostatic pressure drop.
To simplify the model, average densities are used, which are obtained by evaluating
the PVT tables at the average pressure and temperature in the well. The well average
pressure is defined as

p i
k =

k i
p

2

(
p i

k +p i+nw
k

)
, ∀ i ∈W ,k ∈H , (5.36)

where p i
k is the bottom hole pressure and p i+nw

k is the wellhead pressure. k i
p

is a con-

stant determined by the well geometry, whose calculation is shown in Appendix C.1.
The pipeline average pressure is taken as

pp
k =

kp
p

2

(
p3nw

k +p3nw+1
k

)
, ∀ k ∈H . (5.37)

Further, the well average temperature is taken as

T
i
k = 1

2

(
T̃ i

k + T̃ i+nw
k

)
, ∀ i ∈W ,k ∈H . (5.38)

where T̃ i
k is the measured bottom hole temperature and T̃ i+nw

k is the measured well-
head temperature, and the pipeline average temperature is taken as

T
p
k = 1

2

(
T̃ 3nw

k + T̃ 3nw+1
k

)
, ∀ k ∈H . (5.39)

Using the average pressures and temperatures, the spline approximated PVT tables are
evaluated to obtain the required fluid properties:

Average oil densities: ρi
o,k =Φρo (p i

k ,T
i
k ) ∀ i ∈W ,k ∈H , (5.40)

ρ
p
o,k =Φρo (pp

k ,T
p
k ) ∀ i ∈W ,k ∈H . (5.41)

Average gas densities: ρi
g ,k =Φρg (p i

k ,T
i
k ) ∀ i ∈W ,k ∈H , (5.42)

ρ
p
g ,k =Φρg (pp

k ,T
p
k ) ∀ k ∈H , (5.43)

Average water densities: ρi
w,k =Φρw (p i

k ,T
i
k ) ∀ k ∈H . (5.44)

ρ
p
w,k =Φρw (pp

k ,T
p
k ) ∀ k ∈H . (5.45)

The average liquid densities are taken as weighted sums of the oil and water densities,
using the water cuts:

ρi
l ,k = rwcρ

i
w,k + (1− rwc )ρi

o,k ∀ i ∈W ,k ∈H , (5.46)

ρ
p
l ,k = r p

wc,kρ
p
w,k + (1− r p

wc,k )ρp
o,k ∀ k ∈H . (5.47)
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Using the water cut for weighting is not entirely accurate, since the in-situ water cut
may be different than rwc which is defined at standard conditions. However, since the
Tilje wells produce a relatively small amount of water, one would expect that the intro-
duced error will be small.

Liquid holdups

The liquid holdup (liquid volume fraction) Hl is determined by first calculating the liq-
uid volume present in the volume, Vl , using the accumulated liquid mass and the aver-
age liquid density:

Wells: ρi
l ,kV i

l ,k = mi
l ,k , ∀ i ∈W ,k ∈H , (5.48)

Pipeline: ρ
p
l ,kV p

l ,k = mp
l ,k . ∀ k ∈H . (5.49)

Then, the well liquid holdup is calculated using (5.48) together with the total volume of
the well tubing V i

p :

H i
l ,kV i

p =V i
l ,k , ∀ i ∈W ,k ∈H , (5.50)

and the pipeline holdup is calculated using (5.49) with the total volume of the pipeline
V p

p :

H p
l ,kV p

p =V p
l ,k , ∀ k ∈H . (5.51)

The volumes of the well tubings and pipeline are calculated from information about
section lengths and diameters in the geometry files from OLGA.

Two-phase densities

The two-phase densities are calculated by using the liquid holdup to calculate a weighted
sum of the average liquid and gas densities. Thus, it represents the average density of
the mixture in the volume:

Wells: ρi
t p,k = H i

l ,kρ
i
l ,k + (1−H i

l ,k )ρi
g ,k . ∀ i ∈W ,k ∈H , (5.52)

Pipeline: ρ
p
t p,k = H p

l ,kρ
p
l ,k + (1−H p

l ,k )ρp
g ,k . ∀ k ∈H . (5.53)

The two-phase densities are used in (5.34) and (5.35), respectively, to complete the pres-
sure drop model.

5.3.4 Pipeline inflow/outflow

The pipeline inflow is given by the mass balance constraints, i.e. the sum of the well
flow rates. The pipeline outflow is estimated by the turret choke model. Although the
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pipeline VLP could potentially be used to calculate pipeline in- or outflow, we will see
in Chapter 8 that it is not capable of predicting flow rates well for the operational con-
ditions at Skarv. Therefore, we choose to leave it out of the dynamic model. The turret
choke model is given by

w t
chk,k = p3nw+2

k −Φt
chk(q3nw

l ,k , p3nw+1
k ,T

t
chk,k ,r p

g o,k ,r p
wc,k ,C t

v,k ), ∀ k ∈H , (5.54)

and the auxiliary constraints

C t
v,k =Φt

Cv
(ũt

k ), ∀ k ∈H , (5.55)

T
t
chk,k = 1

2

(
T̃ 3nw+1

k + T̃ 3nw+2
k

)
, ∀ k ∈H . (5.56)

Refer to Section 4.5.3 for an explanation of nomenclature.

5.4 Formulation of the dynamic flow estimation NLP

5.4.1 Objective function

The objective function for the dynamic NLP to be solved at time index T is given by

J (x) =
∥∥m−

T−N+1 −mT−N+1
∥∥2

Pm(0)
+

∥∥ql ,T−N −ql ,T−N+1
∥∥2

Pq(0)

+
∑

k∈H +

∥∥ql ,k −ql ,k−1
∥∥2

Pq
+

∑
k∈H

{
‖wk‖2

Q−1 +‖vk‖2
R−1

} (5.57)

We will explain this term by term.

• The first term in (5.57) is the prior weighing term, which is there to include in-
formation gathered in previous iterations, i.e. an approximated arrival cost (cf.
Section 2.4). m−

T−N+1 is an a priori estimate for the masses at the start of the es-
timation horizon, which is calculated based on the solution of the preceding es-
timation problem (the one solved at time index T −1). We use (2.15) to calculate
m−

T−N+1 as

m−
T−N+1 = mT−N +∆tD∆qT−N , (5.58)

where mT−N is the estimated mass at time index T − N , and ql ,T−N are the es-
timated liquid flow rates at time index T − N (both from of the solution of the
estimation problem solved at time index T −1). The first term in (5.57) will thus
penalize deviations from this a priori estimate. The weights in Pm(0) decides how
much deviation will be allowed; larger weights will allow less deviation from the
a priori estimate.
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• The second term in (5.57) is a flow regularization term similar to the first term in
the static estimator objective function (4.27). ql ,T−N is taken as the liquid rate at
the start of the trajectory from the solution of the estimation problem solved at
time index T −1.

• The third term is also a flow regularization term, i.e. a continuation of the second
term throughout the liquid rate trajectory. Penalizing the difference between "ad-
jacent" liquid rates in the trajectory is (as discussed in Section 4.7.1) an attempt
to discourage the solver to jump from one local optimum to another. In addition,
the term can be used for smoothing the liquid rate trajectory if the weights in Pq

are selected sufficiently large.

• The fourth and final term in (5.57) is equivalent to the second and third terms
in the static estimator objective function; it penalizes model errors and pressure
measurement errors. However, this objective function has one term for each time
index in the estimation horizon (as opposed to the static estimator which only
needs one). We will not go into detail here, as we have discussed these terms and
the weighting matrices Q−1 and R−1 in Section 4.7.1.

5.4.2 Measurements

Like the case was for the static estimator, we include measurements by using a set of
linear equality constraints:

0 = yk − [p̃>
k , T̃>

k , ũ>
k ]>, ∀k ∈H . (5.59)

5.4.3 Starting point

The starting point xinit is taken similarly to the static estimator, except xinit is now a state
trajectory as opposed to a single state vector. That is, the starting point for the problem
to be solved at time index T is

xinit|T = [x>
init,T−N+1,x>

init,T−N+2, . . . ,x>
init,T ]>. (5.60)

A good starting point for the state vector at time index k, i.e. xinit,k , would be the cor-
responding state estimate from the previous time index, which we denote x∗

k|T−1. As
with the static estimator, we also update the starting point with the latest estimates and
measurements through the selection matrices Sx and Sy. This results in the following
expression for xinit,k :

xinit,k = Sxx∗
k|T−1 +Syyk , ∀ k ∈H −. (5.61)

Note that Sx is now based on the new state vector x defined in (5.2). We have only
provided starting points up to time index T − 1 here, since the last state vector in the
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trajectory was not estimated in the previous time index. Therefore we reuse xT−1|T−1 as
a starting point for xinit,T ;

xinit,T = Sxx∗
T−1|T−1 +SyyT . (5.62)

5.4.4 Estimating the initial holdup and masses

Since the optimization problem now includes mass and holdup variables, we need to
provide some initial values for these. This is accomplished by solving the static opti-
mization problem (Problem 4.1) to obtain a set of flow rate estimates, and then solving
the pressure model for masses and holdup based on these flow rates. This procedure
is described in Appendix C.2.1. The obtained information is passed to the optimiza-
tion problem through the starting point: Let xS be the solution of Problem 4.1, and let
mS ,HS

l be the calculated masses and holdups. Then, we choose the following starting
point for the very first problem to be solved;

xinit,k = SyyT0 +SS
x xS +Sm

[
mS

HS
l

]
, ∀ k ∈H , (5.63)

where SS
x and Sm are selection matrices much like Sx and Sy; Sm maps the masses and

holdups to the correct variables in xinit,k , while SS
x maps the available variables from xS

to xinit,k . T0 is the very first time index, i.e. yT0 is the first available measurement.
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5.4.5 Summary - the dynamic flow estimation NLP

Problem 5.1: Dynamic flow estimation NLP

minimize
x

J

subject to

objective constraint: J ≥
∥∥m−

T−N+1 −mT−N+1
∥∥2

Pm(0)
+

∥∥ql ,T−N −ql ,T−N+1
∥∥2

Pq(0)

+
∑

k∈H +

∥∥ql ,k −ql ,k−1
∥∥2

Pq
+

∑
k∈H

{
‖wk‖2

Q−1 +‖vk‖2
R−1

}
Differential mass balance constraints:

mass accumulation: mk+1 = mk +∆t ·D∆qk , ∀ k ∈H −

ml ,k = mo,k +mw,k , ∀ k ∈H

Algebraic mass balance constraints:

well GORs: 0 = q i+ j
g ,k − r i

g o q i+ j
o,k ,∀ i ∈W , j ∈ {0,nw ,2nw } ,k ∈H

well water cuts: 0 = q i+ j
w,k − r i

wc q i+ j
l ,k ,∀ i ∈W , j ∈ {0,nw ,2nw } ,k ∈H

well liq. rates: 0 = q i
l ,k −q i

o,k +q i
w,k ,∀ i ∈ {i }2nw−1

i=0 ,k ∈H

manifold jumpers: 0 = q i+nw
o,k −q i+2nw

o,k ,∀ i ∈W ,k ∈H

0 = q i+nw
g ,k −q i+2nw

g ,k ,∀ i ∈W ,k ∈H

0 = q i+nw
w,k −q i+2nw

w,k ,∀ i ∈W ,k ∈H

manifold mass balance: 0 = q3nw
o,k −

∑
i∈W

q2nw+i
o,k ,∀k ∈H

0 = q3nw
g ,k −

∑
i∈W

q2nw+i
g ,k ,∀k ∈H

0 = q3nw
w,k −

∑
i∈W

q2nw+i
w,k ,∀k ∈H

pipeline phase split: 0 = q3nw+i
g ,k − r p

g o,k q3nw+i
o,k ,∀i ∈ {0,1} ,k ∈H

0 = q3nw+i
w,k − r p

wc,k q3nw+i
l ,k ,∀i ∈ {0,1} ,k ∈H

0 = q3nw+i
l ,k −q3nw+i

o,k +q3nw+i
w,k ,∀i ∈ {0,1} ,k ∈H

Well in/outflow:

IPRs: w i
ipr,k = p i

k −Φi
ipr(q i

l ,k ),∀ i ∈W ,k ∈H

WPCs: w i
wpc,k = pnw+i

k −Φwpc(q i
l ,k ),∀ i ∈W ,k ∈H

wellhead chokes: w i
chk,k = p2nw+i

k −Φi
chk(qnw+i

l ,k , pnw+i
k ,T

i
chk,k ,C i

v,k ),∀ i ∈W ,k ∈H

C i
v,k =Φi

Cv
(ũi

k ),∀ i ∈W ,k ∈H

T
i
chk,k = 1

2
T̃ nw+i

k + 1

2
T̃ 2nw+i

k ,∀ i ∈W ,k ∈H



72 The dynamic flow estimation problem

Dynamic flow estimation NLP (cont.)

Pipeline outflow:

turret choke: w t
chk,k = p3nw+2

k −Φt
chk(q3nw

l ,k , p3nw+1
k ,T

t
chk,k ,r p

g o,k ,r p
wc,k ,C t

v,k ),∀k ∈H

C t
v,k =Φt

Cv
(ũt

k ),∀ k ∈H

T
t
chk,k = 1

2
T̃ 3nw+1

k + 1

2
T̃ 3nw+2

k ,∀ k ∈H

Well and pipeline pressure drop models:

hydrostatic pressure drop: w i
∆p,k = (p i

k −p i+nw
k )−ρi

t p,k g hi ·10−5,∀ i ∈W ,k ∈H

w p
∆p,k = (p3nw

k −p3nw+1
k )−ρp

t p,k g hp ·10−5,∀ k ∈H

well avg. pressures: p i
k = k i

p

(
1

2
p i

k +
1

2
p i+nw

k

)
,∀ i ∈W ,k ∈H

pipeline avg. pressure: pp
k = kp

p

(
1

2
p3nw

k + 1

2
p3nw+1

k

)
,∀ k ∈H

well avg. temperatures: T
i
k = 1

2
T̃ i

k +
1

2
T̃ i+nw

k ,∀ i ∈W ,k ∈H

pipeline avg. temperature: T
p
k = 1

2
T̃ 3nw

k + 1

2
T̃ 3nw+1

k ,∀ k ∈H

average oil densities: ρi
o,k =Φρo (p i

k ,T
i
k ),∀ i ∈W ,k ∈H

ρ
p
o,k =Φρo (pp

k ,T
p
k ),∀ k ∈H

average gas densities: ρi
g ,k =Φρg (p i

k ,T
i
k ),∀ i ∈W ,k ∈H

ρ
p
g ,k =Φρg (pp

k ,T
p
k ),∀ k ∈H

average water densities: ρi
w,k =Φρw (p i

k ,T
i
k ),∀ i ∈W ,k ∈H

ρ
p
w,k =Φρw (pp

k ,T
p
k ),∀ k ∈H

average liquid densities: ρi
l ,k = rwcρ

i
w,k + (1− rwc )ρi

o,k ,∀ i ∈W ,k ∈H

ρ
p
l ,k = r p

wc,kρ
p
w,k + (1− r p

wc,k )ρp
o,k ,∀ k ∈H

liquid volumes: 0 = mi
l ,k −ρi

l ,kV i
l ,k ,∀ i ∈W ,k ∈H

0 = mp
l ,k −ρ

p
l ,kV p

l ,k ,∀ k ∈H

liquid holdups: 0 =V i
l ,k −V i

p H i
l ,k ,∀ i ∈W ,k ∈H

0 =V p
l ,k −V p

p H p
l ,k ,∀ k ∈H

two-phase densities: ρi
t p,k = H i

l ,kρ
i
l ,k + (1−H i

l ,k ),∀ i ∈W ,k ∈H

ρ
p
t p,k = H p

l ,kρ
p
l ,k + (1−H p

l ,k ),∀ k ∈H

Measurements:

0 = yk − [p̃>
k , T̃>

k , ũ>
k ]>, ∀k ∈H

Variable bounds:

x ≤ x ≤ x



Chapter 6

Model calibration

Both in the static and dynamic formulations, there will inevitably be some mismatch
between reality and the model used for estimation, leading to an estimation error. Cal-
ibration is the process of identifying and correcting for these errors. The calibration
process may also give some useful information about how much error there is in each
model, which can be used for weighting "good" models more in the NLP objective func-
tion. The calibration methods described in this chapter are crude, but sufficient for
their purpose. After an introductory section, we will discuss the MPFM and routing
network, i.e. how the template must be routed to calibrate each well and the common
pipeline/turret choke. Then, the next few sections will discuss the calibration of each
model (IPR, WPC, choke, pipeline and turret choke). Finally, some ideas are presented
for further taking advantage of calibration data in the optimization problem, by trans-
ferring some measure of model uncertainty to the model error weights.

6.1 Introduction

Terms like model fitting, model tuning, parameter estimation, etc., may all be viewed as
some sort of calibration process - we seek to find/adjust a set of parameters to obtain
a "best fit", e.g. in a least-squares sense, between the model and observed measure-
ments. For mechanistic/first-principles models, these parameters will typically repre-
sent physical quantities such as densities, friction factors, heat loss coefficients and the
like. Thus, when calibrating such models we can include a priori information about the
parameters. For instance, if we are to calibrate a density parameter we may restrict our
search to positive densities, possibly within some tolerance of our previous estimate.
In contrast, parameters for empirical/data-driven models (e.g. the Fetkovich/C &n IPR,
see Section 3.3.1) will typically not have any physical meaning - they are simply chosen
to make the model match observed measurements.

The models we need to calibrate here are the B-spline approximated models used
in Chapters 4 and 5. These B-spline models could in a sense be considered semi-
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mechanistic, since the B-splines were created by sampling and approximating semi-
mechanistic models1. On the other hand, B-spline functions are represented by a set
of coefficients (cf. Appendix A) which have no physical meaning, so it would prob-
ably be more correct to call them data-driven models. In any case, we must make a
choice - should we calibrate the semi-mechanistic models before creating the B-spline
approximations, or should we modify the B-spline coefficients directly? In this chap-
ter, we choose the former approach; partly because it is more intuitive, but also be-
cause it is not trivial to work directly with B-spline coefficients, particularly for higher-
dimensional B-splines like the ones representing the pipeline VLP and choke models.
IPRs and WPCs are calibrated by adding a fixed pressure offset, while choke models are
calibrated by a calibration factor included in the model. The pipeline VLP is calibrated
with a model fitting tool in GAP before sampling. After calibration, new B-spline ap-
proximations are created based on the calculated parameters.

In this subsequent sections, we assume we have been provided with a set of m mea-
sured liquid rates, pressures, temperatures and choke positions at relevant points in the
production system. Here, m denotes the number of tested rates. For calibration against
a single-rate well test, we could set m = 1. We could also include old test data by setting
m > 1, however, we may want to give old data less consideration than new data, so we
introduce a set of weights {wk }m−1

k=0 to allow for this. For a multi-rate test with n tested
rates, we could set m = n (or m > n if we also want to consider old data).

For the wells, we assume we have measured the individual phase flow rates in stan-
dard conditions, pressures in the bottom hole, wellhead and downstream the turret
choke, the wellhead temperature and the wellhead choke position:

Well calibration sets:
{

q̃ i
o,k , q̃ i

g ,k , q̃ i
w,k , p̃ i

k , p̃nw+i
k , p̃2nw+i

k , T̃ nw+i
k , ũi

}m−1

k=0
, ∀ i ∈W . (6.1)

For the pipeline and turret choke, we have measured the pipeline individual phase flow
rates in standard conditions and the pressures and temperatures in the manifold, up-
stream and downstream the turret choke, and the turret choke position:

VLP/turret chk. calib. set:
{

q̃3nw
l ,k , q̃3nw

g ,k , q̃3nw
w,k , p̃3nw

k , p̃3nw+1
k , p̃3nw+2

k , T̃ 3nw
k , T̃ 3nw+1

k , T̃ 3nw+2
k , ũt

}m−1

k=0
.

(6.2)

1When we say semi-mechanistic, we mean that the models are based on physical principles, but still
contain an empirical aspect in the sense that correlations are used to account for multiphase flow.
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6.2 Template configuration

The Skarv wells are tested by routing the well stream through a multiphase flow meter
(MPFM) fitted on the subsea template. This section briefly describes the routing system
and how the template must be configured to obtain the data sets above. The data set for
a well (6.1) is obtained by routing the well through the MPFM as shown in Figures 6.1(a)
(for the first well) and 6.1(b) (for the second well). For the pipline and turret choke,
i.e. data set (6.2), both wells are routed through the MPFM; this way the total flow rate
through the pipeline and turret choke is measured. This is shown in Figure 6.1(c).

(a) Left well routed through MPFM - measure-
ments used for IPR/WPC and wellhead choke cal-
ibration

(b) Right well routed through MPFM - measure-
ments used for IPR/WPC and wellhead choke cal-
ibration

(c) Both wells routed through MPFM - measure-
ments used for pipeline and turret choke calibra-
tion

(d) Both wells routed directly to production man-
ifold - no calibration

Figure 6.1: Different template configurations for multiphase metering.
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6.3 Well Calibration

With well calibration, we mean calibrating all parameters and models associated with a
well, namely the GOR, water cut, IPR and WPC.

6.3.1 GOR and water cut adjustment

The GOR and water cut are calibrated using a simple weighted average of the measure-
ments:

r i
g o =

∑m−1
k=0 wk r i

g o,k∑m−1
k=1 wk

, where r i
g o,k =

q̃ i
g ,k

q̃ i
o,k + q̃ i

g ,k

, (6.3)

r i
wc =

∑m−1
k=0 wk r i

wc,k∑m−1
k=1 wk

, where r i
wc,k =

q̃ i
w,k

q̃ i
o,k + q̃ i

w,k

. (6.4)

Once calibrated, the GOR and water cut are assumed constant until the next well test.
Consequently, any changes in the actual GOR and water cut will lead to errors in the
estimated flow rates of each phase. Some reservoir conditions may lead to flow-rate
dependent GOR and water cut (e.g. gas and/or water coning), therefore, a simple max-
imum difference check is performed to verify that the GOR and water cut are indepen-
dent of flow rate;∣∣∣∣ max

k=0,...,m−1
r i

g o,k − min
k=0,...,m−1

r i
g o,k

∣∣∣∣≤ εrg o and

∣∣∣∣ max
k=0,...,m−1

r i
wc,k − min

k=0,...,m−1
r i

wc,k

∣∣∣∣≤ εrwc ,

(6.5)
where εrg o and εrwc are some tolerances. If these conditions are not satisfied for some
i , this might indicate that the associated well has rate dependent GOR or water cut.
Although this would lead to estimation errors for the estimators formulated in Chapters
4 and 5, it could be accounted by introducing GOR and water cut variables for each well
and adding constraints describing the flow rate dependency, or removing the GOR and
water cut constraints and calculating each flow rate independently, cf. Section 2.6.

6.3.2 IPR offset adjustment

The IPRs are calibrated by adding an offset to each curve and thereby lifting or lowering
the entire curve to match observed data. The IPRs are calibrated to liquid rates, so the
measurements used from (6.1) are the oil and water rates, and the bottom hole pres-
sures. We seek to find the offset ∆p i which minimizes the least-squares error between
the measured bottom hole pressures p̃ i

k and the bottom hole pressures predicted by

the (offset) B-spline approximated IPR from GAP, p i
k =Φipr(q̃ i

l ,k )+∆p i , evaluated at the

measured liquid rates q̃ i
l ,k = q̃ i

o,k + q̃ i
w,k . This results in the following nonlinear least-

squares problem:
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Problem 6.1: IPR offset calibration

minimize
∆p i

m−1∑
k=0

wk

(
p̃ i

k −p i
k

)2

subject to p i
k =Φipr(q̃l ,k )+∆p i , k = 0, . . . ,m −1.

When an optimal offset ∆p i ,∗ has been found, a new B-spline approximation of the
IPR curve is made, where the offset is added to the IPR curve from GAP, i.e. we make a
B-spline approximation of f i

ipr
−1

(ql )+∆p i ,∗.

6.3.3 WPC offset adjustment

The WPC curves are calibrated in the same way the IPRs were, by adding an offset. This
time, the offset is added to the wellhead pressure. The measurements used from (6.1)
are the oil and water rates and the wellhead pressures. Similarly to the IPR, we now
seek to find the offset ∆pnw+i which minimizes the least-squares error between the
measured wellhead pressures p̃nw+i and the wellhead pressures predicted by the (off-
set) B-spline approximated WPC from GAP, pnw+i

k =Φwpc(q̃l ,k )+∆pnw+i . The nonlinear
least-squares problem thus becomes

Problem 6.2: WPC offset calibration

minimize
∆pnw+i

m−1∑
k=0

wk

(
p̃nw+i

k −pnw+i
k

)2

subject to pnw+i
k =Φwpc(q̃ i

l ,k )+∆pnw+i , k = 0, . . . ,m −1.

Again, we use the optimal offset ∆pnw+i ,∗ to create a new B-spline approximation

of an offset WPC from GAP f i
wpc

−1
(ql )+∆pnw+i ,∗.

One remark is necessary here; this calibration strategy does not reflect the structure
of the WPC. The WPC can be considered a "composite" IPR/VLP; therefore it would
make more sense to calibrate the IPR and VLP separately, and then creating a WPC
based on these. The well VLP would typically be calibrated with separate hydrostatic
and friction terms, which may be necessary when frictional pressure losses cannot be
neglected. However, we have assumed that frictional pressure losses are not significant,
which means the calibration method outlined above is sufficient for its purpose.
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6.4 Choke Calibration

Recall the choke pressure drop function (4.18); pd s = fchk(ql , pus ,T ,Cv ,rg o ,rwc ,c). We
seek to find a calibration factor c which matches this function to observed data. To
accomplish this, we sample the function in a grid of calibration factors, liquid rates,
upstream pressures and flow coefficients, and create a B-spline approximation which
now becomes 4-dimensional. To reduce the number of variables in the B-spline, the
average temperature, GOR and water cut are assumed fixed, and calculated from avail-
able data. For the wellhead chokes, we use the GOR calculated in (6.3) and the water
cut calculated in (6.4). The average temperature is calculated as

T
i =

∑m−1
k=0 wk T

i
k∑m−1

i=0 wk
, (6.8)

where T
i
k = 1

2 T̃ nw+i
k + 1

2 T̃ 2nw+i
k is the average of the upstream and downstream temper-

ature in sample k. For the turret choke, we need to calculate an average pipeline GOR
and water cut based on the measured flow rates in the pipeline, i.e.

r p
g o =

∑m−1
k=0 wk r p

g o,k∑m−1
k=1 wk

, where r p
g o,k =

q̃3nw
g ,k

q̃3nw
o,k + q̃3nw

g ,k

, (6.9)

r p
wc =

∑m−1
k=0 wk r p

wc,k∑m−1
k=1 wk

, where r p
wc,k =

q̃3nw
w,k

q̃3nw
o,k + q̃3nw

w,k

. (6.10)

Similarly to the wellhead chokes, the average temperature in the turret choke is calcu-
lated as

T
t =

∑m−1
k=0 wk T

t
k∑m−1

i=0 wk
, (6.11)

where T
i
k = 1

2 T̃ 3nw+1
k + 1

2 T̃ 3nw+2
k is the average of the upstream and downstream tem-

perature in sample k. The resulting B-splines obtained by sampling the choke pres-
sure drop function for the fixed GOR, water cut and temperature as descibed above, are
denoted Φi

cc (·) for wellhead choke i and Φt
cc (·) for the turret choke. The cc-subscript

denotes choke calibration. This results in the following functions used for calibration:

p2nw+i =Φi
cc (q̃ i

l , p̃nw+i ,C i
v ,c i ), (6.12)

and

p3nw+2 =Φt
cc (q̃3nw

l , p̃3nw+1,C t
v ,c t ). (6.13)
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Now, we find an optimal calibration factor c by solving a nonlinear least-squares prob-
lem similar to the ones for the IPRs and WPCs. We also make use of the B-spline approx-
imated choke coefficient characteristic ΦCv (·) for translating choke positions to flow
coefficients. For the wellhead chokes, the problem becomes the following:

Problem 6.3: Wellhead choke calibration

minimize
c i

m−1∑
k=0

wk

(
p̃2nw+i

k −p2nw+i
k

)2

subject to p2nw+i
k =Φi

cc (q̃ i
l ,k , p̃nw+i

k ,C i
v,k ,c i ), k = 0, . . . ,m −1

C i
v,k =Φi

Cv
(ũi

k ), k = 0, . . . ,m −1

For the turret choke, the problem is basically the same, except for the variables in
the problem;

Problem 6.4: Turret choke calibration

minimize
c t

m−1∑
k=0

wk

(
p̃3nw+2

k −p3nw+2
k

)2

subject to p3nw+2
k =Φt

cc (q̃3nw
l ,k , p̃3nw+1

k ,C t
v,k ,c t ), k = 0, . . . ,m −1

C t
v,k =Φt

Cv
(ũt

k ), k = 0, . . . ,m −1

The optimal calibration factors c0, . . . ,cnw−1,c t are then used when sampling (4.18)
to create the choke models.

6.5 Pipeline Calibration

Seeing as how the pipeline VLP is sampled upfront from GAP, it is difficult to derive a
simple calibration strategy which makes much sense. Clearly, the simple approach used
for the IPR and WPC is an alternative, but such a strategy does not reflect the structure
of the pipeline model; ideally, the hydrostatic and friction terms should be calibrated
separately. Since GAP allows the user to enter measurement data for model fitting, we
choose to calibrate the pipeline VLP before sampling.
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6.6 Model uncertainty and weighting

Obviously, calibration is essential to obtain accurate flow estimates. However, since
we have allowed for weighting model errors in the flow estimation problem, we would
clearly benefit from finding some measure of model uncertainty. For single-rate well
tests (m = 1), this is difficult, since we can only measure the model error at the test
point itself. On the other hand, if multi-rate tests are available, we can compare the
calibrated model to our set of test points and calculate some form of model uncertainty.
This section presents some ideas about how we can measure model uncertainty and
incorporate this knowledge into the optimization problem.

6.6.1 Time-invariant weighting based on error variance

One idea is to measure the model uncertainty in terms of error variance. Assuming we
have calibrated the models as described in the sections above, we can evaluate model
errors at each test point, and calculate statistics like mean error and error variance.
Take for instance the IPR. The model error at test point k is the difference between the
measured bottom hole pressure p̃ i

k , and the bottom hole pressure predicted by the IPR,

i.e. p i
k =Φi

ipr(q̃ i
l ,k ). Note that Φipr(·) is now calibrated, i.e. the offset found in Problem

6.1 has been included before the B-spline was created. We denote the model error for
IPR i at test point k as e i

ipr,k , which becomes

e i
ipr,k = p̃ i

k −Φi
ipr(q̃ i

l ,k ), k = 0, . . . ,m −1. (6.16)

Repeating this for all k, we can calculate a mean error e i
ipr as

e i
ipr =

1

m

m−1∑
k=0

e i
ipr,k , (6.17)

and an error variance
(
σi

ipr

)2
as

(
σi

ipr

)2
= 1

m

m−1∑
k=0

(
e i

ipr,k −e i
ipr

)2
. (6.18)

A large error variance will now indicate that the model uncertainty is large; note that
a perfect model would give e i

ipr,k = 0 for all k, and consequently an error variance of
zero. If we follow this procedure for every model (WPCs, chokes, pipeline and turret
choke), we can view the error variances as relative measures of model accuracy. For the
remaining models, the procedure will be similar, except for the calculation of the model
errors for test point k, i.e. (6.16), which will be different for each model. For clarity, this
is demonstrated for each model in Table 6.1 below.
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Model Error at test point k Note

IPR, well i e i
ipr,k = p̃ i

k −Φi
ipr(q̃ i

l ,k ) -

WPC, well i e i
wpc,k = p̃nw+i

k −Φi
wpc(q̃ i

l ,k ) -

Wellhead choke i e i
chk,k = p̃2nw+i

k −Φi
chk(q̃ i

l ,k , p̃nw+i
k ,T

i
,C i

v,k ) C i
v,k =Φi

Cv
(ui

k )

Pipeline VLP evlp,k = p̃3nw+1
k −Φvlp(q̃3nw

l ,k , p̃3nw

k , T̃ 3nw ,r p
g o ,r p

wc ) -

Turret choke e t
chk,k = p̃3nw+2

k −Φt
chk(q̃3nw

l ,k , p̃3nw+1
k ,T

t
,r p

g o ,r p
wc ,C t

v,k ) C t
v,k =Φt

Cv
(ut

k )

Table 6.1: Definition of model errors.

Following the same approach as in (6.17) and (6.18), we can calculate mean errors
and error variances for each model. Keeping in mind that we have calibrated the mod-
els by minimizing a least-squares error term which, aside from the constant 1/m is ba-
sically the same as (6.17), we would expect the mean errors to be close to zero. If it is
not, this might indicate that something went wrong during the calibration, for instance,
the solver may have converged to a suboptimal local minimum. This is not likely for the
simple offset calibration of the IPR and WPC, but when experimenting with the choke
calibration (Problems 6.3 and 6.4), it turned out the problems had several suboptimal
local minima, and it was necessary to find a reasonable starting point for the calibration
factor c in order to converge to the correct (global) minimum.

When we are done with calculating error variances for each model, we can include
this information in the optimization problem through the weights in Q−1, by setting
(with reference to Section 4.7.1)

Qipr = diag

((
σ0

ipr

)2
, . . . ,

(
σ

nw−1
ipr

)2
)

, (6.19)

Qwpc = diag

((
σ0

wpc

)2
, . . . ,

(
σ

nw−1
wpc

)2
)

, (6.20)

Qchk = diag

((
σ0

chk

)2
, . . . ,

(
σ

nw−1
chk

)2
)

, (6.21)

Qvlp = (
σvlp

)2 , (6.22)

Q t
chk =

(
σt

chk

)2
(6.23)

Note that the actual weights are inverses of the above, i.e. a large error variance leads to
a small weight. Thus, a model with a large error variance (large model uncertainty) will
be given less consideration in the optimization problem. Since the model error weights
now are in terms of pressure error variances, the natural choice for the weights in R may
be the measurement error variance for each pressure transmitter, which will typically
be printed on the data sheet and/or calibration certificate of each transmitter.
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6.6.2 Time-variant weighting

A slightly more ambitious idea is to assume that in some areas, a model will be good,
while it will be bad in other areas. When the estimator is running, we will have a pretty
good idea of the current operational conditions by looking at the estimate from the
previous time index. Then, we may want to give the most weight to models which we
know are good for the given conditions. We will not go into details here (the idea has not
been implemented in this thesis), but simply illustrate with an example. Say we have
performed a multi-rate well test on well 0, with m = 10, and calibrated the IPR curve by
solving Problem 6.1. This may result in the calibrated IPR curve shown together with
the 10 flow tests in Figure 6.2(a). In this case, we have relatively large errors for low and
high flow rates, while the error is small in the middle region. If we define a squared error
for test point k as

ε0
ipr,k =

(
e0

ipr,k −e0
ipr

)2
, (6.24)

this will indicate the model quality at the liquid flow rate at test point k. In Figure 6.2(b),
we have plotted ε0

ipr,k for the test rates in Fig. 6.2(a) (indicated with red circles). Since
the points may be scattered, we may want to use e.g. a smoothing spline to get a more
well-behaved relation between liquid flow rate and the squared error; in Fig. 6.2(b) we
have shown such a spline in black and called itΦ0

Qipr
(q0

l ).
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Figure 6.2: Time-variant weighting strategy.

The idea is now to choose the weight for the IPR model error based on the estimated
liquid flow rate from the previous time index. For instance, assume that the optimal
solution of Problem 2.1 at time index T suggested a liquid flow rate from well 0 q0,∗

l ,T .
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Then, the IPR model error weight Q0
ipr for the problem to be solved at time index T +1

is selected as
Q0

ipr,T+1 =Φ0
Qipr

(q0,∗
l ,T ). (6.25)

Note that this results in time-variant weighting, i.e. the weights in Problem 2.1 vary
over time. This does not lead to any additional constraints - the weights are calculated
before the estimation problem is solved. For comparison, we have also shown the time-
invariant Q0

ipr that would result from the suggested method in Section 6.6.1, i.e. the

error variance (σ0
ipr)2.
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Chapter 7

Implementation

In this chapter, we will outline how the flow estimation problems defined in Chapters
4 and 5 are used in a real-time flow estimation loop, and give some brief comments
regarding the C++ code implementation.

7.1 Static flow estimation algorithm

Since the solution of Problem 4.1 provides flow rate estimates at a single time index
only, we place the problem inside a loop which solves the problem each time a new set
of measurements is available, i.e. every ∆t seconds. This enables real-time estimation,
provided the problem can be solved in less than ∆t seconds. A coarse, but illustrative
outline of the implemented static flow estimator is given as Algorithm 7.1 below.

Algorithm 7.1: Static flow estimation algorithm.
Data: Measurement stream y0,y1, . . .
Result: Estimate stream x∗

0 ,x∗
1 , . . .

Build optimization problem 4.1;
T ← 0;
while true do

yT ← Read measurements at time tT ;
if T > 0 then

xinit,T ← SyT + (I−S)x∗
T−1;

else
xinit,T ← SyT ;

end
x∗

T ← Solve Problem 4.1 with starting point xinit,T ;
wait until t = tT +∆t
T ← T +1, tT ← t ;

end
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Note that this algorithm resembles the moving-horizon estimator described in Sec-
tion 2.4. The only difference is that the internal model is static as opposed to dynamic,
which also means the estimation horizon N is 1. With respect to model calibration, this
is done before we start the algorithm. In our case, we have calibrated the internal mod-
els by solving Problems 6.1 through 6.4. The obtained information is taken into account
in the line "Build optimization problem 4.1", where the models (in the form of tabular
data) from GAP are read and B-spline approximations are created based on the model
tables and the calibration factors.

7.2 Dynamic flow estimation algorithm

Similarly to the static estimation algorithm above, we place Problem 5.1 inside a loop
to provide real-time estimates. The resulting algorithm is a moving-horizon estimator,
and is given as Algorithm 7.2 below.

Algorithm 7.2: Dynamic flow estimation algorithm (MHE).
Data: Measurement stream y0,y1, . . .
Result: Estimate stream x∗

N |N ,x∗
N+1|N+1, . . .

Build optimization problem 4.1;
T ← N ;
yT ← Read measurements at time tT ;
xS ← Solve Problem 4.1 with starting point xinit = SyyT ;
(mS ,HS

l ) ← Calculate masses and holdups using procedure in Appendix C.2.1;

Build optimization problem 5.1;
while true do

[y>
T−N+1, . . . ,y>

T ]> ← Read N preceding measurements at time tT ;
if T > N then

xinit|T ← as per (5.60)-(5.62);
else

xinit|T ← as per (5.60) and (5.63);
end
x∗

T ← Solve Problem 5.1 with starting point xinit|T ;
Output last estimate in trajectory (x∗

T |T ) to estimate stream;

wait until t = tT +∆t
T ← T +1, tT ← t ;

end

There are two factors which make Algorithm 7.2 slightly more involved than Algo-
rithm 7.1. The first is the fact that we have included mass and holdup variables, which
require some intialization. Here, we solve the static estimation problem (4.1) and use
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the resulting flow rate estimates together with spline-approximated fluid property ta-
bles to provide the initial estimates. The second complicating factor is the dynamic
model and estimation horizon N , which first and foremost makes the optimization
problem larger, but also leads to a more involved calculation of a good starting point.
Like the case was for Algorithm 7.1, we assume the internal models have been calibrated
beforehand.

7.3 C++ code implementation

Algorithms 7.1 and 7.2 are implemented in C++, in the code framework CENSO (Con-
vex ENvelopes for Spline Optimization) , which is a framework for global optimization
of MINLP (Mixed-Integer Nonlinear Programming) problems with B-spline constraints
(Grimstad & Sandnes, 2014). The choice of using CENSO is not based on its global
optimization capabilities, nor its ability to handle integer variables; Problems 4.1 and
5.1 are NLPs which are to be solved locally. However, CENSO has a streamlined cod-
ing interface to the powerful interior-point solver IPOPT, and in addition it has all the
required B-spline functionality needed for this thesis. Moreover, if we decided to ex-
tend the model in a way which called for integer or binary variables (e.g. well shut-in
modelling), this would be straightforward in CENSO.

The most code-intensive parts of the implementation are not the flow estimation
loops outlined in Algorithms 7.1 and 7.2, but rather the actual formulation of the op-
timization problems, calibration routines and file import routines. Some functionality
with respect to reading GAP files was already implemented in relation to the case study
by (Grimstad et al., 2014), however, new functionality for reading OLGA geometry files
(.geo), PVTsim PVT tables (.tab) and OLGA/historian measurement data (.csv) has been
added. In addition, the choke model described in Section 4.5.3 was implemented from
scratch. Figure 7.1 shows the overall structure and information flow in the finished code
project. The code project has been submitted to my co-supervisor Bjarne Grimstad,
and is thus available for inspection or further work.

7.3.1 NLP solver

The (local) NLP solver used to solve Problems 4.1 and 5.1 is the open source interior-
point solver IPOPT (Wächter & Biegler, 2006). IPOPT is a part of the COIN-OR project1,
and is a much used solver for large-scale nonlinear programming. In this thesis, it is set
up with default settings for the most part, except for the parameter bound_relax_factor,
which is set small (10−4). This is to prevent the solver from venturing outside the bounds
of the variables involved in B-spline constraints (The B-splines cannot be evaluated
outside their bounds).

1See http://www.coin-or.org.

http://www.coin-or.org
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Figure 7.1: Estimation system structure and information flow.



Chapter 8

Simulation results

In this chapter, the estimators presented in Chapters 4 and 5 are tested on a set of typical
(and not so typical) operating scenarios. To assess the performance of the estimators, a
relatively detailed model of a two-well production network was implemented in OLGA,
an industry standard multiphase flow simulator. The first section gives a short sum-
mary of the OLGA model, which is followed by a description of the measures to be used
for evaluating the performance of the estimators. Then, two simulation cases are pre-
sented where the measurements from OLGA are compared with estimates generated
by the static and dynamic estimators. The first case emulates a simple well adjustment,
and the second is a riser slugging case. After the simulation section, a field data case
is presented, where estimates are generated from field measurements supplied by BP.
A section on solution times presents the CPU time used to generate the estimates, be-
fore we conclude the chapter by taking a closer look at the sensitivity properties of the
pipeline VLP, which is seen to cause some problems in the first test case. In this chapter,
static estimation refers to Algorithm 7.1, while dynamic estimation refers to Algorithm
7.2.

8.1 OLGA production network model

A two-well model was created in OLGA to run benchmark simulations. OLGA is a multi-
phase flow simulator which is used extensively in the oil industry. Typical uses include
what-if analyses and simulations used for flow assurance. The model uses detailed well
and pipeline geometries which correspond to the Tilje production template. In addi-
tion, the choke valves are equipped with the actual flow coefficient characteristics of
the Tilje choke valves, which were obtained in a water test facility before the chokes
were fitted. Figure 8.1 shows the network model graphically as it appears in OLGA. The
PVT table used for compositional calculations was also supplied by BP, and represents
the Tilje wells.
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Figure 8.1: OLGA production network model.

Table D.1 in Appendix D.1 shows the most imporant settings used in the OLGA sim-
ulations. Refer to the OLGA user manual (SPT Group, 2013) for detailed descriptions.

8.2 Performance measures

To assess the performance of the different methods objectively, a set of performance
measures are needed. The performance measures defined below are designed to judge
the performance in terms of both the maximum estimation error and the total estima-
tion error throughout the simulation. Since the system model is mainly formulated in
terms of pressure-liquid rate relations, the performance measures are based on liquid
rate estimation errors. Errors are evaluated at six locations; the in/outflow of both wells
(4) and the in/outflow of the flowline (2). Table 8.1 defines the instantaneous error mea-
sures at time index T :



Performance measures 91

Symbol Description Definition

e0
T Well 0 inflow estimation error e0

T = q0
l ,T − q̃0

l ,T
e1

T Well 1 inflow estimation error e1
T = q1

l ,T − q̃1
l ,T

e2
T Well 0 outflow estimation error e2

T = q2
l ,T − q̃2

l ,T
e3

T Well 1 outflow estimation error e2
T = q3

l ,T − q̃3
l ,T

e6
T Pipeline inflow estimation error e6

T = q6
l ,T − q̃6

l ,T
e7

T Pipeline outflow estimation error e7
T = q7

l ,T − q̃7
l ,T

Table 8.1: Instantaneous error measures.

Errors are not evaluated for edges 4 and 5, since these flow rates will be roughly
equal to the flow rates in edges 2 and 3. The notation in Table 8.1 follows the thesis
standard notation: q i

l ,T is the estimated liquid flow rate through edge i in the flow net-

work at time index T , and q̃ i
l ,T is the corresponding liquid flow rate measurement (from

OLGA). Since we are minimizing a least-squares objective, a natural error measure is the
integrated squared estimation error (ISE) of each error, i.e.

∫ Tsim
0 |(e i (t ))2| dt , where Tsim

is the total simulation time. Since the measurements and estimates are discrete, the ISE
is approximated by E i

ise, which is defined as

E i
ise =∆t

nT −1∑
T=0

(e i
T )2, ∀ i ∈ E (8.1)

where∆t is the sampling time in seconds, nT is the number of samples and E = {0,1,2,
3,6,7} is an index set for all the edges considered in the error evaluation. Another rele-
vant measure is the maximum deviation between the estimated rates and the measured
rates for the entire simulation. This is most conveniently expressed as a percentage, so
we define the maximum relative estimation errors as

E i
max = 100 · max

T=0,...,nT −1

|e i
T |

q̃max
, ∀ i ∈ E (8.2)

where q̃max is the largest measured flow rate during the simulation. Finally, a measure
to summarize the ISEs is their sum, which we denote Etot (total ISE):

Etot =
∑
i∈E

E i
ise. (8.3)

For the field data case, the full set of performance measures described above cannot be
calculated, since the true flow rate is not available for all the edges. However, by using
the available measurements from the MPFM, errors can still be calculated for edges 2
and 6.
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8.3 Simulation cases

Two simulation cases are presented in this section to assess the performance of the state
estimators presented in Chapters 4 and 5. Before the cases are simulated, the model is
calibrated through a simulated single-rate well test. In the first case, a well adjustment
is performed, and in the second case the turret choke is gradually opened to provoke
riser slugging behaviour. Thus, the first case includes both stable operation (before and
after the adjustment) and some dynamic/transient behaviour, while the second case
displays severe dynamic behaviour. In all cases, the simulation is started at steady-
state. To save space, only selected plots (choke positions, liquid rates and holdups)
of the simulation results are shown in this section. Additional plots are included in
Appendix D, which include oil, gas and water rates, pressures and mass estimates.

8.3.1 Model calibration

A "pre-case" was run with no dynamics at all, with the aim of calibrating the model
for the subsequent simulation cases. Both wells were set to produce at constant rates,
and the choke valve positions were fixed throughout the simulation. Such a case may
be typical when one or both wells are routed through the multiphase flow meter to
determine the well flow rate for the current pressure and temperature conditions. The
choke valves were positioned as shown in Table 8.2.

Choke Position

Well 0 30 %
Well 1 20 %
Turret 30 %

Table 8.2: Choke settings for calibration run.

Twenty evenly spaced samples were extracted from the measurement time series
and used for calibration, which amounts to solving Problems 6.1 (IPR), 6.2 (WPC) and
6.3 (choke) once for each well, and 6.3 for the turret choke, with m = 20. The calibration
run resulted in IPR offsets of ∆p0 = 6.99 bar and ∆p1 = 3.19 bar, WPC offsets of ∆p2 =
0.44 bar and ∆p3 = 6.46 bar, and choke calibration factors of c0 = 1.55, c1 = 1.21 and
c t = 1.60. The GORs was found to be r 0

g o = 322.2 Sm3/Sm3 and r 1
g o = 222.1 Sm3/Sm3,

while the water cuts were found to be r 0
wc = 0.007 and r 1

wc = 0.0262. No plots were
generated from the calibration run, as all the variables are stationary.

8.3.2 Case 1: Well adjustment

Case 1 is designed to simulate a well adjustment. Wells are regularly adjusted to keep
production optimal, so such a case may be relevant when a new set of optimal settings
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have been determined through production optimization. Here, the two wells are as-
sumed to be producing at steady-state, where the wellhead chokes are set at 30 % and
20 %, respectively. Then, well adjustments are made such that choke 0 is ramped dowm
from 30 % to 20 % and choke 1 is ramped up from 20 % to 30 %. The turret choke is set
at 30 % throughout the case (see Fig. 8.2). These choke settings lead to an initial drop
in total production as choke 0 is ramped down, followed by an increase as choke 1 is
ramped up. The total length of the simulation is eight hours.
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Figure 8.2: Choke positions, well adjustment case.

Static estimation - Naive model evaluation: As an introduction, and to get an initial
feel about the quality of each individual model, it is useful to see how the liquid rates
are estimated when a single model is used for estimation. This is comparable to esti-
mating rates "manually", i.e. by simply taking the observed pressure and temperature
conditions and evaluating each model to obtain the liquid rate estimate. This is ac-
complished by running several simulations in which the pressure measurement errors
are weighted heavily and only one of the model errors is weighted. For example, to see
the estimates generated by the WPC curves, the WPC curve model errors are weighted
heavily while the rest of the model errors are not weighted at all. For the flowline VLP
and turret choke models, the WPCs are weighted to obtain a reasonable estimate for
pipeline GOR and water cut, but the mass balance constraints are relaxed to give each
respective model complete control over the estimated rates. The resulting estimates are
shown in Figure 8.3. Although the results are to be discussed in Chapter 9, some initial
observations are made: We see that the choke models give reasonable estimates of ou-
flow (not surprisingly, since the chokes are placed at outlets), and the IPR/well perfor-
mance curves give reasonable estimates of inflow. However, the pipeline VLP estimate
is poor, which is due to high model sensitivity. This is discussed further in Section 8.6;
for now, it suffices to say that the pipeline VLP is used with caution hereafter.
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Figure 8.3: Well adjustment case, static estimation with naive model evaulation - Mea-
sured and estimated liquid flow rates.
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Static estimation: Two estimation runs were performed on the well adjustment case
using the static estimator. Both runs were configured with large weights on the pressure
measurement errors in an attempt to force the reconciled pressures close to the mea-
sured pressures1. The estimated model error variances from the calibration run were
used for the model error weights2, however, the pipeline VLP weight was divided by 10
due to the poor estimate seen in the previous test run. The only difference between
the two runs was the configured weight on the wellhead choke models; the second run
places extra weight on these. The point of running the case twice was merely to il-
lustrate how the estimates are influenced by different weighting. The sampling time
was ∆t = 10 s, i.e. Problem 4.1 was solved every 10 seconds. For the first run, Figure
8.4 shows the measured and estimated liquid flow rates. Additional plots are shown in
Figures D.1 (flow rates) and D.2 (pressures). For the second run, Figure 8.5 shows the
measured and estimated liquid flow rates. Additional plots are shown in Figures D.3
(flow rates) and D.4 (pressures).

The first run (Fig. 8.4) gave good estimates of well inflow (E 0
max = 0.62 % and E 1

max =
0.12 %) compared to well outflow (E 2

max = 3.93 and E 3
max = 1.79 %). The flowline esti-

mates have quite large errors compared to the well inflow estimates (E 6
max = 3.31 % and

E 7
max = 2.67 %. However, as seen in Fig. 8.4, the steady-state estimates are reasonably

close to the OLGA measurements. The second run (Fig. 8.5) gave good estimates of
well outflow (E 2

max = 1.12 % and E 3
max = 0.51 %) compared to well inflow (E 0

max = 3.69 %
and E 1

max = 1.43 %). The flowline inflow estimate is good compared to the previous case
(E 6

max = 0.98 %), however, the pipeline outflow estimate is slightly worse (E 7
max = 3.78

%).

Dynamic estimation: A third run was made for the well adjustment case, this time
with the dynamic estimator. The weighting was similar to the second static estimation
run described in the previous section, i.e. with extra weight on the choke models. The
well and pipeline pressure drop models were also assigned relatively large weights. The
pipeline VLP was not weighted at all, since it is not part of the dynamic model. The time
horizon was set to N = 5, which corresponds to a window of six minutes with the sam-
pling time ∆t = 30 s. In other words, Problem 5.1 was solved every 30 seconds, where
6 minutes of preceding measurements were taken into consideration. The estimated
liquid rates and holdups are shown in Figures 8.6 and 8.7, respectively. Additional plots
are shown in Figures D.5 (flow rates), D.6 (pressures) and D.7 (masses).

The maximum estimation errors were in general smaller than in the static estima-
tion case (E 0

max = 0.74 %, E 1
max = 0.17 %, E 2

max = 1.50 %, E 3
max = 0.62 %, E 6

max = 1.11 %
and E 7

max = 3.56 %). As seen in Fig. 8.6, the outflow estimates for the wells and flowline
have more steady-state offset at the new operating point (> 6 h) than in the static case.

1This is sensible since we know that the measured pressures from OLGA are correct and noise-free.
2These error variances may be misleading, since we have only tested one flow rate. However, the

weights seem to work well nonetheless, so we choose to keep them.
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Consequently, the ISEs are relatively large (E 2
ise = 2609, E 3

ise = 996 and E 7
ise = 10997). The

liquid holdups (Fig. 8.7) are offset from the values from OLGA, however, the qualitative
dynamic behaviour is captured nicely.
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Figure 8.4: Well adjustment case, static estimation - Measured and estimated liquid flow
rates.
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Figure 8.5: Well adjustment case, static estimation with extra weight on choke models -
Measured and estimated liquid flow rates.
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Figure 8.6: Well adjustment case, dynamic estimation - Measured and estimated liquid
flow rates.
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Figure 8.7: Well adjustment case, dynamic estimation - Measured and estimated liquid
holdups.
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8.3.3 Case 2: Riser slugging

The second case is a riser slugging case. The term riser slugging refers to an irregular
flow condition in the flowline/riser in which liquid blocks the entire cross-section of
the riser low point. This blockage is known as a slug, and when it forms, gas pressure
builds up behind it. When the pressure is great enough, the slug is blown out of the
riser. Then, the process repeats itself as a new slug forms, leading to oscillating flow
dynamics. Riser slugging, or severe slugging, is a serious challenge for flow assurance
engineers as the liquid blowout can cause damage to downstream equipment. Hence,
measures must be taken to prevent it, e.g. by feedback control (see e.g (Siahaan et al.,
2005; Jahanshahi, 2013)). Although this is not a typical operating scenario, it would be
interesting to see how the estimators perform when subjected to such a case. To induce
slugging, the wellhead choke valves are left at the positions they were at the end of Case
1, and the turret choke is ramped up until slugging occurs. The choke positions are
shown in Figure 8.8.
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Figure 8.8: Choke positions, riser slugging case.
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Static estimation: The static estimator was run with the same parameters as in the
first static estimation run in Case 1, with one exception: The pipeline VLP was not
weighted at all, as this seemed to deteriorate the estimates quite significantly. The sam-
pling time was 10 seconds. Figure 8.9 shows the measured and estimated liquid flow
rates. Additional plots are shown in Figures D.8 (flow rates) and D.9 (pressures).

For the wells, the rate estimates tend to follow the inflow measurements from OLGA
(E 0

max = 0.29 % and E 1
max = 0.14 %) rather than the outflow measurements (E 2

max = 1.89 %
and E 3

max = 1.17 %). The flowline rate estimate gives a fairly good prediction of the OLGA
inflow until the onset of slugging at about 7 hours. Then, the estimated flowrate resem-
bles a highly dampened version of the OLGA measurements. This results in relatively
large estimation errors, especially for flowline outflow (E 6

max = 3.06 % and E 7
max = 69.2

%). We also note that even though the estimated flow rates do not keep up with the
oscillations, they tend to follow the small drop in the "mean" flow rate seen as slugging
starts to occur.

Dynamic estimation: The dynamic estimator was run with manually tuned parame-
ters (see Table D.3), a sampling time of 30 seconds and a time horizon of 5. Measured
and estimated liquid rates are shown in Figure 8.10, while measured and estimated liq-
uid holdups are shown in Figure 8.11. Additional plots are shown in Figures D.10 (flow
rates), D.11 (pressures) and D.12 (masses).

For the wells, the flow rate estimates are in general better than in the static case
(E 0

max = 0.28 %, E 1
max = 0.14 %, E 2

max = 1.54 % and E 3
max = 0.88 %), and we see that the

estimated outflow rate oscillates along with the measured OLGA rate as slugging occurs,
albeit slightly dampened. For the flowline, the inflow estimate is comparable to the
estimate from the static case, with similar behaviour and a slightly smaller maximum
estimation error (E 6

max = 2.42 %). The outflow estimate overpredicts the flow rate as the
turret choke starts opening. Just before six hours have elapsed, the in/outflow estimates
collapse, which happens when the flowline is emptied of gas (see Fig. D.12). When
slugging occurs the outflow estimate oscillates along with the OLGA outflow rate, but
reaches its upper bound of 100 Sm3/h. Since the dynamic estimator is able to predict
this oscillating flow, the maximum estimation error is smaller than in the static case
(E 7

max = 47.7 %). However, the aforementioned overshoot gives a larger ISE than in the
static case (E 7

ise = 18.7 ·106 for the static case and E 7
ise = 37.7 ·106 for the dynamic case).

The liquid holdup estimates for the wells behave similarly to the well adjustment
case, i.e. some offset but reasonable dynamic behaviour. The estimated flowline holdup
in generally quite a bit larger than the measured holdup from OLGA, and also decreases
much more than the measured holdup until the flowline is emptied of gas; then it re-
mains stationary until slugging occurs. Some oscillation can be seen after 8 hours,
which corresponds to the oscillations seen in the measured holdup.
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Figure 8.9: Riser slugging case, static estimation - Measured and estimated liquid flow
rates.
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Figure 8.10: Riser slugging case, dynamic estimation - Measured and estimated liquid
flow rates.
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Figure 8.11: Riser slugging case, dynamic estimation - Measured and estimated liquid
holdups.
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8.4 Field data case

As mentioned in the introduction, the Skarv field is equipped with multiphase flow me-
tering systems (MPFM) on each template, which enables measurement of a single flow
rate in the template (either a single well flow rate or the flow rate from both wells, as
described in Section 6.2). BP have generously granted access to their database of his-
torical measurements from the Skarv field, which allows us to test the performance of
the estimators on a real-world case. A time series of 30 hours was found which includes
positioning of all three chokes (see Fig. 8.12). About 20 hours into the time series, the
routing into the MPFM is changed, meaning that two flow rates (well 0 and pipeline)
can be compared to the estimates.
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Figure 8.12: Choke positions, field data case.

Calibration was performed by using data from single-rate well tests (also supplied
by BP), i.e. solving Problems 6.1 (IPR), 6.2 (WPC) and 6.3 (choke) once for each well,
and 6.3 for the turret choke, with m = 1. In this case, well 0 was tested one day before
the time series starts, Well 1 and Well 1/Well 0 (pipeline) were tested about a week and
a half before the time series starts. The calibration resulted in the following parameters;
∆p0 = −5,19 bar, ∆p1 = −1.52 bar, ∆p2 = −2.71 bar, ∆p3 = −9.24 bar, c0 = 0.44, c1 =
0.23, c t = 2.11, r 0

g o = 293.4 Sm3/Sm3, r 1
g o = 193.5 Sm3/Sm3, r 0

wc = 0.015, and r 1
wc =

0.049.
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Static estimation: The static estimator was run with manual tuning, no weight on the
pipeline VLP, and a sampling time of 30 seconds. Figure 8.13 shows the measured and
estimated liquid flow rates. Additional plots are shown in Figures D.13 (flow rates) and
D.14 (pressures).

At a glance, the flow rates correspond well with the available measurements from
the MPFM. Both the estimates and measurements look noisy, but this is due to small
pressure oscillations and a slightly deceptive time scale. In hindsight, it may have been
a good idea to apply smoothing to the pressure measurements before feeding them to
the estimation algorithm. The maximum estimation errors are E 2

max = 5.60 % (well 0)
and E 6

max = 8.54 % (flowline). However, we see that by smoothing the data and looking
at mean errors, these numbers would be smaller.

Dynamic estimation: The dynamic estimator was run with manual tuning, a sam-
pling time of 90 seconds and an estimation horizon of 20. Before starting the esti-
mation, p̃6 (manifold pressure measurement) and p̃7 (upstream turret choke pressure
measurement) were preconditioned with a moving average filter with a window length
of 25. This was necessary due to large pressure fluctuations (the effect of the filter can
be seen by comparing Figs. D.14 and D.16). Measured and estimated liquid rates are
shown in Figure 8.14, while estimated liquid holdups are shown in Figure 8.15. Addi-
tional plots are shown in Figures D.15 (flow rates), D.16 (pressures) and D.17 (masses).

In this case, the maximum estimation error for well 0 is marginally larger than in the
static case (E 2

max = 5.99), and slightly smaller for the flowline (E 6
max = 7.18 %. Measure-

ments are not available for the remaining rates, but from a strictly qualitative stand-
point, they seem quite reasonable.

No holdup measurements are available for comparison.
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Figure 8.13: Field data case, static estimation - Measured and estimated liquid flow
rates.



Field data case 109

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

28

30

32

34

Time [h]

Li
q

u
id

ra
te

[S
m

3
/h

] q̃2
l (MPFM)

q0
l (Estimated inflow rate)

q2
l (Estimated outflow rate)

(a) Well 0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

12

14

16

18

Time [h]

Li
q

u
id

ra
te

[S
m

3
/h

] q1
l (Estimated inflow rate)

q3
l (Estimated outflow rate)

(b) Well 1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

20

40

60

Time [h]

Li
q

u
id

ra
te

[S
m

3
/h

]

q̃6
l (MPFM)

q6
l (Estimated inflow rate)

q7
l (Estimated outflow rate)

(c) Pipeline

Figure 8.14: Field data case, dynamic estimation - Measured and estimated liquid flow
rates.
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Figure 8.15: Field data case, dynamic estimation - Measured and estimated liquid
holdups.
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8.5 Solution times

In this section, we present the times required to solve the flow estimation optimization
problems (Problem 4.1 or 5.1) in Figure 8.16. Some important statistics are provided
in each caption, namely t0 (the solution time for the first iteration), tavg (the average
solution time), and tmax (the maximum solution time). The problems were solved on
a Dell laptop with a 64-bit Ubuntu 13.10 operating system, a 2.7 GHz Intel Core i7-
3740QM CPU (only one core was used) and 8 GB of RAM.
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Figure 8.16: Solution times for flow estimation optimization problems.
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8.6 Pipeline VLP sensitivity

We saw in Figure 8.3 that each individual model was able to provide acceptable flow
rate estimates, with one notable exception, namely the pipeline VLP. This is interesting,
and we will explore this further in this section. To get a handle on what is going on, we
look at a snapshot from the well adjustment case. Specifically, we look at the run with
relaxed mass balance constraints and weighting on the pipeline VLP only, i.e. the flow
rate in the pipeline is determined from the VLP. The objective function is in this case

J (wvlp,v) =
∣∣wvlp

∣∣2 +‖v‖2
R−1 , (8.4)

subject to the pipeline VLP model (4.25). R−1 is selected with large weights such that
the reconciled pressures follow the measurements closely (making ‖v‖2

R−1 ≈ 0). Some
additional constraints are in place to calculate the pipeline GOR and water cut using
the WPCs, but the mass balance constraints are relaxed such that the flow rate in the
pipeline is determined from (4.25) only. The snapshot is taken at 1 hour and 22 minutes,
where the conditions are as shown in Table 8.3 below:

Symbol Description Value

q6
l Estimated liquid flow rate 46.0 Sm3/h

p6 Reconciled manifold pressure 114.20 bara
p̃6 Measured manifold pressure 114.20 bara
p7 Reconciled outlet pressure 93.46 bara
p̃7 Measured outlet pressure 93.46 bara
r p

g o Pipeline GOR 284.5 Sm3/Sm3

r p
wc Pipeline water cut 0.089

T̃ 6 Manifold temperature 31.4 ◦C

Table 8.3: Snapshot of pipeline VLP run.

We now fix the manifold pressure, manifold temperature, GOR and water cut, and
plot the pipeline pressure drop as a function of liquid flow rate. This is done by evalu-
ating Φvlp(·) at increasing flow rates to obtain the downstream pressure, and taking the
pressure drop as ∆p = p6 −Φvlp(q6

l , p6) (p6 and the remaining variables in Φvlp(·) are
fixed). This is shown in Figure 8.17(a).
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Figure 8.17: Pipeline VLP sensitivity.

The resulting plot is not immediately intuitive - in a typical q −∆p plot we would
expect the pressure drop to increase with increasing flow, due to friction. However, as
mentioned in Chapter 3, due to the relatively large GOR, the liquid is lifted by gas bub-
bles, which causes an initial drop as the flow increases. Eventually, at around 40 Sm3/h,
the pressure drop starts to increase again due to friction. In the relevant flow rate
range, the frictional term does not become particularly significant; by inspection in
GAP, it turns out that friction does not take proper hold until the rate reaches around
150 Sm3/h. There are two potential problems here.

Firstly, the pressure drop curve is almost flat at our operating point. This means that
a small error in differential pressure will result in an large error in flow rate. According to
the VLP, we could increase the flow rate by approximately 30 Sm3/h simply by increasing
the pressure drop by 1 bar. In other words, the estimated flow rate will be very sensitive
to pressure. This sensitivity (∂q/∂∆p) is shown graphically in Figure 8.6, and we see
that it behaves well until the flat portion of the pressure drop curve, and then becomes
very large. In this sense, we could say that the flow rate is "almost unobservable" at
the operating point, since a large range of flow rates will "almost" satisfy the VLP model
constraint.

Secondly, the measured pressure drop intersects the pressure drop curve at two dif-
ferent flow rates, which means the objective function of the estimation problem will
have two global minima with respect to the VLP. This is illustrated in Figure 8.18, which
shows (a) a closer look at the pressure drop curve and (b) the objective function value
as a function of flow rate.
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Figure 8.18: Local optima for pipeline VLP. Flow rates which correspond to local minima
of the objective are inidicated with red vertical lines.

This is a concrete example of non-convexity in the estimation problem which shows
that an optimal solution of the estimation problem does not necessarily imply that a
good flow rate estimate has been found. We also note that the objective function has
a third local minimum, which is due to the small oscillations caused by the B-spline
approximation of the VLP from GAP. Since the estimation problem is solved by a local
NLP solver, there are thus three flow rate estimates which could potentially be solutions
to the estimation problem. In this case, we would not benefit much from using a global
solver either, since two of the solutions are in fact global minima.

The bottom line here is that the pipeline VLP is not particularly suitable to use as
a constraint function in our estimation problem when the friction term is insignificant.
This makes intuitive sense; the friction term is strongly linked to the flow rate, while the
hydrostatic term is not (except for low flow rates when increased gas flow reduces the
average density of the multiphase mixture). We would, however, expect the pipeline
VLP to be useful in cases with more friction.



Chapter 9

Discussion

In this discussion chapter, we attempt to convey some of the experiences gained in
the modelling and simulation parts of the thesis. The main goals in this study were to
(1) find suitable models to include in a flow estimation problem, and (2) compare the
performance of static and dynamic flow rate estimators with automatic rate control in
mind. Based on the assignment text and literature study, the estimation methods of
choice were a static weighted least-squares method for the static estimation problem,
and moving-horizon estimation for the dynamic estimation problem. The first part of
this discussion chapter will be about the choice of models, where we will discuss the
choice of using B-splines as a model replacement and write up some general impres-
sions about the practical considerations associated with them. Then, we will proceed
to the main part of the discussion, where we discuss the static and dynamic estimators,
both in terms of the simulation results from Chapter 8 and in terms of model com-
plexity and robustness. After this, we discuss model calibration briefly. Finally, we give
some additional remarks on various topics, before a short section at the end gives some
concluding remarks.

An important practical consideration in this thesis has been that the models used
for estimation should fit nicely into already existing workflows for e.g. production fore-
casting and optimization. Large organizations like BP employ teams of experts in every
aspect of oil production, and it makes sense to incorporate their knowledge when deriv-
ing and maintaining models. In our case, a lot of this knowledge is summarized as well
performance and VLP curves in the GAP model used for production optimization, and
fluid property tables used by flow assurance and reservoir engineers. It seems only nat-
ural to include as much of this information as possible into the flow estimator. Having
worked with B-splines before (Robertson, 2013), and considering the excellent results
of (Sandnes, 2013; Grimstad & Sandnes, 2014; Grimstad et al., 2014), the choice of using
B-splines to approximate the GAP models was clear.

As the GAP model included the necessary models for wells and pipelines only, we
needed to find a suitable choke model. The multiplier model was selected for two main
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reasons. For one, it was simple and easy to understand. Secondly, it allowed us to in-
clude more information from in-house BP models by means of flow coefficient char-
acteristics and fluid property tables. In an attempt to account for compressible flow,
we used the Newton-iterative approach applied to pipelines in (Beggs & Brill, 1973) to
evaluate the fluid property tables at the average pressure in the choke as opposed to
the upstream pressure. This resulted in a model which could not be written in closed
form. However, we could still sample pressure drops, much like we could with the GAP
models. Therefore, we used the B-spline once more; by sampling and approximating
the choke model, we were able to implement the model with ease, and test the effect of
different multiphase multipliers without modifying too much of the code.

9.1 Using the B-spline as an approximation tool

Translating the models into usable B-spline approximations required some work. The
B-spline implementation in CENSO requires the user to sample the function to be ap-
proximated in a grid structure. It then computes the B-spline approximation by solv-
ing a linear system of equations, where the number of unknowns is equal to the total
number of sampled points. Ideally, we would sample the functions tightly to capture
as much detail as possible. For one-dimensional functions (IPRs and WPCs) and two-
dimensional functions (fluid properties) the total number of samples will be relatively
small, and the resulting linear system is easy to solve. However, for higher-dimensional
models such as pipeline VLPs (five-dimensional) and choke models (four-dimensional
for the wellhead chokes and six-dimensional for the turret choke), the linear system
quickly grows in size and becomes time-consuming to solve. Time is not really an is-
sue, since the B-spline computation is only performed once (before the actual estima-
tion starts). Once the B-spline has been created, evaluating its value for a given input
is very fast. On the other hand, a very large number of samples may be problematic.
This is easily illustrated by an example; say we wanted to sample the pipeline VLP in a
grid of 20 flow rates, 10 upstream pressures, 10 upstream temperatures, 10 GORs and
10 water cuts (which is the maximum allowed in GAP). This would result in a total of
20 ·104 = 200000 samples, and a linear system with just as many unknowns. However,
the laptop computer used in this thesis began struggling with memory capacity when
the number of samples exceeded about 100000, thus limiting the number of sampling
points.

To obtain a good B-spline approximation of a function, sufficiently tight sampling
is necessary in areas with "sharp corners", i.e. areas where the Hessian of the function
has large elements, or else the B-spline will display oscillating behaviour. This issue is
discussed in some detail in both (Sandnes, 2013) and (Robertson, 2013), and a prime
example is shown in Figure 4.4. To make the most of the limited amount of sampling
points, two steps were taken. First, the output from the OLGA simulations/historical
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data were inspected to determine which variable ranges would have to be covered by
the B-spline. Then, the functions were inspected in the relevant ranges to determine
areas in which dense sampling was required, and where we could get away with sparse
sampling. The end result of this process was good in the sense that the resulting B-
spline functions represented the nonlinear models well, however, obtaining these B-
splines required some insight into both the models themselves and the behaviour of
B-splines. Moreover, the approximated models were valid in a limited domain. Conse-
quently, such a process is difficult to automate for the general case; however we must
still emphasize that the B-spline is an excellent tool for representing models given by
tabular data.

Despite the issues mentioned above, the B-spline has proved itself as a remarkably
powerful approximation tool. Rather than listing all the advantages of using the B-
spline, we may ask; what possible alternatives do we have? One alternative is to go back
to the black-box simulator. However, this approach does not exploit the structure of the
model, model evaluation takes longer since the entire network model must converge,
and gradients are not (in general) available1. A second alternative is to use some other
approximation to replace the simulator, for instance the piecewise linear approxima-
tion used in (Kosmidis et al., 2005; Gunnerud & Foss, 2009). However, the latter paper
reported a large increase in solution time and number of variables when refining the
approximation, since the piecewise linearization is handled by introducing binary vari-
ables for each sample point, resulting in a large mixed-integer linear program (MILP).
Moreover, piecewise linear functions have discontinuous gradients which can cause
unpredictable steps in the solver. The (cubic) B-spline eliminates both these problems;
it provides both first and second derivatives, and refining it does not increase the num-
ber of variables2. A third alternative is to directly implement analytic functions as con-
straints. It goes without saying that using complicated multiphase models directly in an
optimization problem (and associated calibration problems) is slightly tedious. Never-
theless, this approach can be found in e.g. (Binder, 2012) for production optimization.

9.2 Comparison of static and dynamic estimators

In this section, we will compare the static and dynamic estimators to each other. We will
start with discussing flow rate estimation, as this was the main goal. Later on, we will
discuss other important matters, such as robustness and model complexity/solution
times. As we mentioned in the introduction, these properties are important if we are to
use the flow rate estimates for feedback in an automatic rate control system.

1Note that some simulator frameworks do provide gradients i.e. JModelica (Nalum, 2013)
2When CENSO is set to solve the optimization problem globally, B-spline refinement increases the

number of auxiliary variables in the relaxed lower bound problems, see (Grimstad & Sandnes, 2014).
However, this does not apply for us as we only seek a local solution.
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9.2.1 On flow rate estimation

We saw in the Chapter 8 that the static and dynamic estimators performed comparably
with respect to estimating flow rates. Estimation errors were about the same for both
estimators in most cases, and it was also clear from the simulation plots in Chapter 8
and Appendix D that both estimators provided reasonable estimates. The riser slug-
ging case was an exception, which illustrated that the dynamic estimator may perform
slightly better when there is severe dynamic behaviour in the production network, but
that this increased performance comes at the cost of some erratic estimates; in our case,
the pipeline outflow estimate was quite bad. This is related to robustness, and we will
discuss it further in the next section.

Before implementing and testing the estimators, one might expect that an estimator
based on static models would perform well during stable operation and poorly during
transients, i.e. when the system is moving from one operating point to another. An
estimator equipped with a dynamic model would perhaps be expected to improve the
transient behaviour, but we would most likely have to pay the price of a more compli-
cated model. After putting the estimators to the test, some of these expectations have
been fulfilled, while others have not. First of all, the static estimator does not neces-
sarily do a bad job of estimating flow transients. This was seen in the very first test
case (Fig. 8.3), where each model was assigned to estimate flow rates individually. For
the wells, we saw that the IPR and WPC give good predictions of well inflow, while the
choke models gave good predictions of outflow. For the pipeline, we saw that the turret
choke model gave reasonable outflow estimates, while the pipeline VLP failed to pro-
duce good estimates. However, as we saw in Section 8.6, the latter was mostly due to an
unlucky operating point for the VLP.

Figure 9.1: Time scales of dynamics in subsea production system.

From this, we can conclude that the steady-state well and choke models are fully
capable of estimating transient flow locally, at least for the conditions encountered in
the OLGA simulations. Although the production system has relatively slow transient
behaviour with settling times ranging from a few minutes to one hour, these transients
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are mostly associated with transport delays and mass accumulation in the wells and
pipeline. The instantaneous flow rate at a given point in the network was seen to de-
pend mostly on the surrounding pressures. This indicated that the time constant of a
local pressure-flow rate system was within, or at least not much larger than the sam-
pling time of the system, and we could make the simplifying assumption that the local
pressure-rate dynamics could be ignored (see Fig. 9.1).

This assumption directly influenced the approach taken for dynamic modelling; we
assumed that the instantaneous flow rates into and out of the wells were given by the
well models (IPR/WPC) and choke model, respectively. Similarly, we assumed that the
pipeline inflow was given by the total outflow of the wells, while the outflow was deter-
mined by the turret choke model. As the same pressure/flow models were used for both
the static and dynamic estimators, estimation accuracy was seen to depend mostly on
each estimator’s robustness properties with respect to calibrated ranges and poor tun-
ing choices, as we will discuss in the next section.

9.2.2 Robustness properties

Although (nominal) estimation accuracy is obviously important, we must also consider
other factors. As mentioned above, we need the estimator to be robust in the sense that
it the estimation accuracy is not too fragile with respect to e.g. calibration ranges and
poor tuning choices. This is particularly important if the estimator is to be used in a
feedback loop for automatic rate control, which we have defined as our ultimate goal.

The riser slugging case (Fig. 8.10) gave a good indication of the robustness prop-
erties of the estimators. Although the dynamic estimator performed better in terms of
predicting oscillating flow rates towards the end of the simulation, the flowline outflow
estimate was way off for large parts of the simulation. The most likely cause for this is
the turret choke model. The model was calibrated to a single-rate flow test where the
turret choke was 30 % open. In the riser slugging case, the turret choke was ramped up
to 70 %, which means it was quite far from its calibrated operating point. For the static
estimator this had limited consequences, due to the rigid mass balance constraints.
The mass balance constraints ensure that the pipeline outflow is calculated as a com-
promise between all the models. However, the dynamic estimator depends on the tur-
ret choke model and pipeline pressure drop model only to provide good estimates of
pipeline outflow. In the riser slugging case, the system moved to an operating point in
which the turret choke model was poor, which caused poor outflow estimates. Even-
tually, the large net outflow emptied the pipeline of gas, which forced the outflow to
equal the inflow. Although this can be seen as a kind of "safety net", it is hardly redeem-
ing. Still, it should be noted that the slugging case is very difficult since it requires the
models to be valid over a large operational envelope, which is practically impossible to
obtain through single-rate testing.

The lesson learned here is that robustness is increased by allowing the flow rates
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to be calculated as compromises between several models. In this sense, the static esti-
mator can be seen as the "ultimate" configuration; in a sense, all the models are used
to calculate all the rates, as models are rigidly connected by means of mass balance
constraints. An important remark here is that all the models are formulated in terms
of liquid rates, which means the estimator is robust with respect to calculating liquid
rates. The quality of the oil, gas and water rate estimates depends on whether or our
assumption of fixed GORs and water cuts is reasonable or not. This was not mentioned
at all in Chapter 8, but as seen in the figures in Appendix D, the oil, gas and water rate
estimates are in general very good, indicating that our assumption holds. We could, of
course, estimate oil, gas and water rates separately due to the dense instrumentation
of the Skarv field. This would enable us to estimate the GORs and water cuts and thus
provide a means to detect gas and water breakthrough. However, a consequence of
this would be that fewer models would be used to predict each flow rate, and we would
expect the resulting estimates to deteriorate more as the system moves away from its
calibrated operating point.

On the whole, the static estimator is clearly more robust than the dynamic estima-
tor. Although not clear from the simulations in Chapter 8, the static estimator was easier
to tune, and less fragile to poor tuning, in addition to being more accurate away from
the calibration point. In contrast, the dynamic estimator was difficult to tune; for both
simulation cases and the field data case, quite a few attempts were made before the
performance was acceptable.

9.2.3 Model complexity and solution times

Aside from estimation accuracy and robustness, model complexity is also an impor-
tant issue. A less complex model is easier to understand, easier to maintain, and less
computationally demanding to solve. Obviously, the static estimator is the clear winner
here. This is reflected in the solution times presented in Section 8.5, where we saw that
the static flow estimation problem was typically solved in less than one second, while
the dynamic estimation problem was typically solved in about ten seconds, depend-
ing on the estimation horizon. The longer solution time is hardly surprising when we
look at Problem 2.2 (dynamic) compared to Problem 2.1 (static), but it is still very good
if we keep in mind that we are solving a dynamic flow estimation case with advanced
multiphase models.

In terms of closed-loop control, we need to ensure that the estimates are provided in
a reasonable amount of time, since the solution time directly contributes to the time de-
lay in the feedback loop. This time delay is (from the feedback controller point of view)
no different than dead-time in the system, and imposes strict limitations on the achiev-
able feedback performance (Skogestad & Postlethwaite, 2005). The solution times for
the estimators in this thesis were in general more than fast enough, although the dy-
namic estimator in particular struggled from time to time. On the whole, both methods
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are feasible for real-time closed-loop control in terms of solution times.

Based on the sections above, we can conclude that the static estimator has in gen-
eral performed better than the dynamic estimator. While the two estimators were com-
parable in terms of estimation accuracy in most cases, the static estimator performed
better when we moved away from the calibration point, in addition to being simpler
and providing estimates faster.

9.3 The importance of model calibration

It is clear that the estimates will be poor unless the system model is calibrated. In this
thesis, we have not investigated in depth how poor calibration will affect the estimates,
but rather made an effort to ensure that models are calibrated to the relevant opera-
tional conditions. We did, however, see in the very first test case (Fig. 8.3) that esti-
mation accuracy for each individual model was degraded when we moved from one
operating condition to another. While the models were able to accurately estimate the
flow at the start of the time series (i.e. the calibration point), the estimates were slightly
offset after the choke valves were repositioned and the flow rates changed. However,
when all the models were used together in the static estimator (Fig. 8.4), this effect was
largely suppressed. This can be explained by the fact that some models overestimate
the flow rate, while others may underestimate it. Thus, the "composite" flow rate es-
timated by all the models at once is closer to the measured value. When the dynamic
estimator was applied to the same case (Fig. 8.6), fewer models were used to estimate
each flow rate, and some of the offset returned.

An extreme case was seen in the riser slugging case where the turret choke was repo-
sitioned from 30 % open to 70 % open. When we applied the dynamic estimator to this
case (Fig. 8.10), this caused the turret choke model to significantly overestimate the
flow rate as the system moved far away from the calibration point. Although this was
not a realistic case (in practice, slugging is not provoked on purpose), it did illustrate
what happens when we move far away from the operating point at which a model is
calibrated, and as we already have discussed, it also illustrates how the static estimator
is more robust with respect to operational changes.

Judging from both intuition and industry experience (e.g. (Heddle et al., 2012; Goh
et al., 2007)), we would probably see better results if we had calibrated the models us-
ing multi-rate well tests, using e.g. the methods described in Chapter 6. Another idea
may be to consider the B-spline as an interpolation method for data-driven calibration
methods. With its flexibility and customizability with respect to interpolation and/or
smoothing, its seems a natural choice for connecting more or less trusted measurement
data from well tests.
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9.4 Additional remarks

In this section, we will gather some additional remarks which are not directly related to
flow estimation, but important nonetheless.

9.4.1 On transparent modelling

Both the static and dynamic estimators differ from "standard" data reconciliation tech-
niques in the sense that both model errors and measurement errors are included in the
objective function. This is possible since the model has been decomposed into sim-
ple network components as opposed to using a black-box model. The advantages of
this formulation is that we can transfer our confidence in each individual model to the
weights, or even better, measure the quality of each model through some form of cali-
bration and use the results to give "good" models more weight than "bad" models. In
addition, if we know the qualitative behaviour of each model, we can use the weights
to customize the behaviour of the estimator. For example, in the well adjustment case,
we saw that we could obtain good inflow estimates by giving the IPR and WPC models
large weights, while large weights on choke models gave good outflow estimates. Like
the black-box approach, this formulation also allows a lot of flexibility with respect to
our trust in the pressure measurements. If we are confident the pressure measurements
are correct, we can configure R−1 with large weights compared to Q−1, which will result
in a solution with relatively large model errors (w). By inspecting these model errors,
we can identify models which "disagree" with the other models, which might indicate
e.g. poor calibration or the need for recalibration (i.e. a new well test). On the other
hand, if we suspect one or more pressure measurements are drifting or noisy, we can
account for this by reducing the appropriate weights.

Another advantage of the transparent modelling approach is the easy access to the
variables - this enables us to easily add constraints in the optimization problem without
affecting the solution times significantly (unless the constraint is particularly compli-
cated).

9.4.2 On mass and holdup estimation

The dynamic model and associated MHE formulation was described in Chapter 5. It
was largely based on the static model; dynamics were introduced by relaxing certain
mass balance constraints to allow the well and pipeline volumes to accumulate mass.
This approach is both simple and intuitive, and we saw that it was able to provide rea-
sonable predictions of holdup (Fig. 8.7) and liquid mass dynamics (Fig. D.7), albeit with
some offset.

However, the dynamic model was seen to have some flaws. We saw both in the well
adjustment case and the riser slugging case that the holdup estimates had some offset
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compared to the measurements from OLGA. Since the PVT calculations of the estima-
tor are the roughly same as the ones in OLGA (due to the B-spline approximations), it
is reasonable to assume that most of the error is due to the simplification made with
regard to average pressure and temperature. While the relevant densities needed for
the holdup calculation is based on an approximated average pressure in the estima-
tor, OLGA uses a spatial discretization and keeps track of individual holdups in a large
number of pipe segments. Recall the hydrostatic pressure drop in a well or pipeline was
given as ∆phs = ρt p g h. The only unknown here is the two-phase density ρt p , since the
gravitational acceleration g and elevation change h are known constants. An expres-
sion for the actual two-phase density would involve an integral along the entire pipe
length (of length L), i.e.

ρt p =
∫ L

0
Hlρl + (1−Hl )ρg dx, (9.1)

where the holdup Hl = Hl (x), the liquid density ρl = ρl (p(x),T (x)) and the gas density
ρg = ρg (p(x),T (x)) are all functions of the spatial variable x. By replacing the rough ap-
proximations (5.52) and (5.53) with a better approximation of (9.1), we would probably
obtain a better holdup estimate. However, this would require a spatial discretization
which would increase the number of variables in the optimization problem and make
it more difficult and time-consuming to solve. In addition, we would need sufficiently
accurate pressure and temperature profiles along the pipeline.

Another problem with the dynamic formulation was seen clearly in the riser slug-
ging case. From Figure D.12 we see that the gas mass in the pipeline is depleted as the
outflow is much higher than the inflow. At the same time, the pipeline GOR remains
at about 280, which clearly does not make physical sense (zero gas should give a GOR
of zero). Tuning the pressure drop model weights proved to be difficult; insufficient
weighting resulted in accumulation/depletion of mass (as seen in the aforementioned
example), while too much weighting gave oscillating behaviour.

The model formulation does not ensure that the inflow of a well or pipeline equals
the outflow at steady-state. In other words, the pressure drop models must be weighted
sufficiently to prevent them from accumulating/emptying large amounts of mass.

9.4.3 The estimation horizon

In the dynamic estimator, the estimation horizon N determines how far the estimator
is able to see into the past. For the algebraic constraints (IPR, WPC, choke etc.) this is
not significant, since the estimated flow rate at time index k depends only on the pres-
sures and temperatures at time index k. However, the pressure drop models require a
sufficiently large estimation horizon to function properly. This is clear from intuition;
in order to increase or decrease the hydrostatic pressure drop, the net inflow to the well
or pipeline must be nonzero over time. Hence, we must allow the pressure drop model
to detect that it has control over the pressure drop by means of controlling the net in-
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flow. For the well adjustment case and the riser slugging case, we had the turret choke
model to assist the pressure drop model in predicting flowline outflow. In these cases
the estimation horizon was set to N = 5, and the pressure drop model was primarily
used for mass and holdup estimation. However, in the field data case, the turret choke
model was not good enough to be used, and the outflow was estimated by using the
pressure model only. In this case, we needed a longer estimation horizon (N = 20) to
obtain a reasonable result.

9.4.4 On velocity estimation and control

We have not considered velocity estimation in this thesis. However, velocity estimation
would definitely be useful for fields like Skarv, where erosion caused by high gas ve-
locity is an operational concern. To determine the gas velocity at a given point in the
flow network, we would require (1) the in-situ volumetric flow rate of gas, and (2) the
cross-sectional area occupied by gas at the given location, which depends on the liquid
holdup. In other words, we would require in-depth knowledge of the in-situ conditions
at the point in which we wanted to calculate the velocity. Usually, the most interesting
point is the point with the largest gas velocity, which is typically the exit point (separa-
tor) of the network, where the pressure is low and a lot of gas is present. Since we are
equipped with both pressure and temperature measurements, and fluid properties in
the form of B-spline approximated PVT tables, we may be able to calculate reasonable
velocity estimates, which in turn could be used for simple velocity control, e.g. using a
PID controller. Note that advanced controllers like MPC would be more difficult, since
this would require us to predict pressures and temperatures in the network, which the
models described in this thesis are not designed to do. In any case, velocity estimation
would be a natural and useful extension to the flow estimators developed in this thesis.

9.5 Concluding remarks

To conclude this discussion, we sum up a few key points. For an automatic rate control
application, the static estimator described in Chapter 4 has been seen to be a feasible
choice for flow estimation. The dynamic estimator from Chapter 5 has some challenges,
but could potentially be useful if these challenges were addressed. In any case, good
well testing and calibration routines are crucial for estimation accuracy.

Finally, we remind the reader of the potential benefits of flow estimation methods
such as the ones described in this thesis. In addition to providing a means to supervise
and control flow rates, a decent flow estimation method could be the cornerstone of
several useful tools, such as (but not limited to) flow assurance systems, systems for au-
tomatic reporting of production rates, and systems for automatic updating of reservoir
models. Flow estimation is thus a key part of the Integrated Operations/Field of the Fu-
ture mindset which is becoming more and more dominant in the petroleum industry.
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Conclusion

In this thesis, we have compared two optimization-based flow estimation methods for
subsea production systems; one with static models, and one with dynamic models. The
derived models were based on the Tilje two-well template in the BP-operated Skarv
field, however they were generalized to represent any cluster of oil wells tied back through
a single pipeline. We used OLGA and field data from Tilje to compare the performance
of the two methods with automatic rate control in mind.

Based on the results in Chapter 8 and the discussion in Chapter 9, the main con-
clusion of this thesis is that the estimator with static models is best suited for automatic
rate control. While both methods were able to provide good flow rate estimates in most
cases, the static estimator was superior with respect to steady-state accuracy, robust-
ness and solution times, which are all important factors for any estimator to be used for
feedback control. In addition, the static estimator was seen to perform surprisingly well
with respect to estimating flow rate transients, as the flow rate dynamics were captured
in the available pressure measurements. Although not investigated in depth, it has also
been clear that none of the methods will work well unless the models are properly cal-
ibrated against well test data. The relatively simple nonlinear least-squares method
used to calibrate the models in this thesis was sufficient in most cases, however, since
the models were calibrated to a single-rate test, model accuracy deteriorated somewhat
as the operational conditions changed.

The extra effort put into the dynamic model did not pay off in terms of improving
flow rate estimates. However, it did provide estimates of important variables like liquid
holdup, which could be useful for e.g. predicting slug flow. When applied to a slugging
case, it did not perform particularly well in terms of estimating flow rates, but it did
clearly indicate slug flow, even though the system was operating far from the point at
which the model was calibrated. Rather than writing the method off completely, the au-
thor believes that some clever modifications could potentially make the dynamic model
suitable for virtual flow metering applications.

To the author’s knowledge, the methods applied in this thesis differ from traditional
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virtual flow metering systems in two respects. Firstly, the optimization problems were
formulated with transparent models rather than black-box models, which enabled eas-
ier implementation of model constraints, more intuitive tuning and easier incorpora-
tion of information about model uncertainty. Secondly, to achieve the aforementioned,
the black-box models were approximated by B-spline functions. Consequently, the
solver could work directly with well, choke and pipeline models which all provided gra-
dients, leading to fast solution times, i.e. less than one second for the static estimator
and ten seconds for the dynamic estimator, which is clearly within the limits required
for real-time feedback control for the system in question. The use of B-splines was
motivated by promising results in production optimization (Sandnes, 2013; Grimstad
et al., 2014), and they were seen to work equally well for the flow estimation problem.
The usefulness of the B-spline was further illustrated by approximation of PVT tables,
which eliminated the need for equation-intensive compositional models in the opti-
mization problem.

10.1 Summary

In this short summary, we will list the (in the author’s opinion) most important contri-
butions of this thesis.

• We have compared two optimization-based flow estimation methods, and shown
that the method with static models is best suited for automatic rate control.

• We have shown that the methods used in this thesis (particularly the static esti-
mator) are relatively simple and robust ways of estimating flow rates in subsea
production systems, in the sense that a simple yet functional prototype was suc-
cessfully developed and tested on field data in less than six months.

• We have extended the use of B-splines from the production optimization problem
to the flow estimation problem, and seen that this leads to fast solution times and
easy integration of PVT tables.

• We have seen that breaking up the black-box model and introducing model error
variables allows for easier tuning and incorporation of model uncertainty.

A conference paper based on this work is currently underway, and is intended for pre-
sentation at the 2nd IFAC Workshop on Automatic Control in Offshore Oil and Gas Pro-
duction on May 27-29, 2015 in Florianópolis, Brazil.
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10.2 Further work

To conclude, we present some ideas on how the estimators presented in this thesis
could be improved. Although the list is rather long, it could probably be longer; the
items below can be viewed as necessary steps to be taken before our methods could be
considered fully fledged virtual flow metering systems.

• Although we have presented some ideas on how multi-rate tests could be used
to quantify model uncertainty and incorporate this in the flow estimation prob-
lem, we have not tested them in practice. It would be interesting to both see the
ideas implemented in practice, and to see a more rigorous treatment of model
uncertainty and weighting strategies.

• As mentioned in the discussion, the dynamic model has some flaws which should
be addressed to improve robustness and performance.

• The models derived in this thesis are restricted to a rather specific network struc-
ture. In order to apply the method to other types of flow networks, the meth-
ods should be further generalized. Important considerations here would be how
the methods scale with different network structures and how this affects solution
times.

• We have restricted our investigation to oil wells; consequently, single-phase gas
wells cannot be handled without some additional measures. Thus, one idea for
further work may be to modify or extend the models to support this possibility.

• We have assumed fixed GORs and water cuts, and thus estimated oil, gas and
water rates based on liquid rate estimates. It would be interesting to see how an
approach which estimates oil, gas and water rates separately (and thus let the
GORs and waters cuts be free variables in the optimization problem) compares to
the estimators in this thesis.

• Investigate the B-spline more closely. Preprocess data to ascertain where tight
sampling is needed (in an automatic way based on Hessians). Look more closely
into model sensitivity to see which variables can be dropped in order to reduce
the dimension.

• For fields like Skarv where MPFMs are installed, we could potentially include
some of the flow rates in the objective function (i.e. a flow error term). If our
formulation included several templates tied back to a common separator system
with fiscal metering for each phase, we could also reconcile the total flow rate
from all the templates against the fiscal measurements.

• Other improvements may include e.g. improved choke modelling, velocity esti-
mation strategies, well shut-in modelling, inclusion of injection wells, etc.



128 Conclusion



References

Alessandri, A., Baglietto, M., & Battistelli, G. (2008). Moving-horizon state estimation for
nonlinear discrete-time systems: New stability results and approximation schemes.
Automatica, 44(7), 1753–1765.

Bakken, A., Grimstad, B., & Larsen, M. (2011). Life of field tool for optimal subsea design,
condition monitoring, virtual metering, and flow assurance advice using a common
field model. In Proceedings of Subsea Controls DownUnder conference, held in Perth,
Australia, 17.-19. October 2011.

Beggs, D. & Brill, J. (1973). A study of two-phase flow in inclined pipes. Journal of
Petroleum Technology, 25(5), 607–617.

Beggs, H. D. (2003). Production Optimization using NODAL analysis. OGCI and Pet-
roskills Publications, second edition.

Bendiksen, K. H., Maines, D., Moe, R., & Nuland, S. (1991). The dynamic two-fluid
model OLGA. Theory and application. Society of Petroleum Engineers, 6(2), 171–180.

Bieker, H. P., Slupphaug, O., & Johansen, T. A. (2007). Real-time production optimization
of oil and gas production systems: A technology survey. SPE Production & Operations,
22(4), 382–391.

Binder, B. J. T. (2012). Production optimization in a cluster of gas-lift wells. Master’s
thesis, Norwegian University of Science and Technology.

BP (2014). The Skarv field. Web: http://www.bp.com/no_no/norge/om-bp-norge/hva-
vi-gjoer/bp-opererte-felt/skarv.html. Accessed 07.06.2014.

Bringedal, B., Storkaas, E., Dalsmo, M., Aarset, M., & With, H. M. (2010). Recent devel-
opments in control and monitoring of remote subsea fields. In SPE Intelligent Energy
Conference and Exhibition held in Utrecht, The Netherlands, 23–25 March 2010.

Brown, R. G. & Hwang, P. Y. C. (2012). Introduction to Random Signals and Applied
Kalman Filtering. John Wiley & Sons, Inc., 4 edition.



130 References

Çengel, Y. A. & Cimbala, J. M. (2010). Fluid Mechanics Fundamentals and Applications.
McGraw Hill Education.

Chen, C.-T. (1995). Linear System Theory and Design. Oxford University Press.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Introduction to Algo-
rithms. MIT Press.

Cox, H. (1964). On the estimation of state variables and parameters for noisy dynamic
systems. IEEE Transactions on Automatic Control, 9(1), 5–12.

Cybernetica (2014). Cybernetica CENIT booklet. Web:
http://www.cybernetica.no/v3/products/CENIT/CENIT.pdf Accessed 03.03.2014.

Demneh, F. A. & Mesbah, A. (2008). The effect of kinetic energy change on flow in gas
pipelines. Hydrocarbon processing.

Dempf, D. & List, T. (1998). On-line data reconcilation in chemical plants. Computers &
Chemical Engineering, 22(1), 1023–1025.

Duns, H. & Ros, N. (1963). Vertical flow of gas and liquid mixtures in wells. In Proceed-
ings of 6th World Petroleum Congress, 19-26 June, Frankfurt am Main, Germany.

Egeland, O. & Gravdahl, J. T. (2002). Modeling and Simulation for Automatic Control.
Marine Cybernetics AS.

Foss, B. (2012). Process control in conventional oil and gas field - challenges and op-
portunities. Control Engineering Practice, 20(10), 1058–1064.

Goh, K.-C., Moncura, C. E., Overschee, P. V., & Briers, J. (2007). Production Surveil-
lance and Optimization with Data Driven Models. In Proceedings of the International
Petroleum Technology Conference, 4-6 December 2007, Dubai, U.A.E.

Grimstad, B., Foss, B., Heddle, R., & Woodman, M. (2014). A framework for global pro-
duction optimization of multiphase networks - theory and application on a real sub-
sea field case. Manuscript draft.

Grimstad, B. & Sandnes, A. (2014). Global optimization with spline constraints. Sub-
mitted paper.

Guennebaud, G., Jacob, B., et al. (2010). Eigen v3. http://eigen.tuxfamily.org.

Gunnerud, V. (2011). On decomposition and piecewise linearization in petroleum pro-
duction optimization. PhD thesis, Norwegian University of Science and Technology.

http://www.cybernetica.no/v3/products/CENIT/CENIT.pdf


References 131

Gunnerud, V. & Foss, B. (2009). Oil production optimization - a piecewise linear
model, solved with two decomposition strategies. Computers & Chemical Engineer-
ing, 34(11), 1803 – 1812.

Haseltine, E. L. & Rawlings, J. B. (2005). Critical evaluation of Extended Kalman Filtering
and Moving-Horizon Estimation. Industrial & Engineering Chemistry Research, 44(8),
2451–2460.

Hauge, J. & Horn, T. (2005). The Challenge of Operating and Maintaining 115 Subsea
Wells on the Troll Field. In Proceedings of The Offshore Technology Conference held in
Houston, TX, USA, 2-5 May 2005.

Heddle, R., Foot, J., & Rees, H. (2012). ISIS Rate&Phase - Delivering Virtual Flow Meter-
ing for 300 Wells in 20 Fields. In Proceedings of he SPE Intelligent Energy International
held in Utrecht, The Netherlands, 27–29 March 2012.

Hermann, R. & Krener, A. J. (1977). Nonlinear controllability and observability. IEE
Transactions on Automatic Control, 22(5), 728–740.

Holmås, K. & Løvli, A. (2011). FlowManagerTM Dynamic: A multiphase flow simulator
for online surveillance, optimization and prediction of subsea oil and gas production.
BHR Group.

Huang, Y.-F., Werner, S., Huang, J., Kashyap, N., & Gupta, V. (2012). State estimation in
electric power grids: Meeting new challenges presented by the requirements of the
future grid. Signal Processing Magazine, IEEE, 29(5), 33–43.

Imsland, L., Kittilsen, P., & Schei, T. S. (2010). Model-based optimizing control and
estimation using Modelica models. Modeling, Identification and Control, 31(3), 107–
121.

Jahanshahi, E. (2013). Control Solutions for multiphase flow. PhD thesis, Norwegian
University of Science and Technology.

Johansen, T. A. (2011). Selected Topics on Constrained and Nonlinear Control, chapter
Introduction to Nonlinear Model Predictive Control and Moving Horizon Estimation,
(pp. 1–53). STU/NTNU.

Julier, S. J. & Uhlmann, J. K. (1997). A new extension of the Kalman filter to nonlinear
systems. In Int. symp. aerospace/defense sensing, simul. and controls, volume 3 (pp.
3–2).

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Jour-
nal of basic Engineering, 82(1), 35–45.



132 References

Kandepu, R., Foss, B., & Imsland, L. (2008). Applying the unscented Kalman filter for
nonlinear state estimation. Journal of Process Control, 18(7-8), 753–768.

Kopp, R. E. & Orford, R. J. (1963). Linear regression applied to system identification for
adaptive control systems. Aiaa Journal, 1(10), 2300–2306.

Kosmidis, V. D., Perkins, J. D., & Pistikopoulos, E. N. (2005). A mixed integer optimiza-
tion formulation for the well scheduling problem on petroleum fields. Computers &
Chemical Engineering, 29(7), 1523–1541.

Larsen, E. & Hocking, P. (2012). Skarv and Valhall Re-development - A Journey to the
Second Generation of Digital Oilfields. In Proceedings of the SPE Intelligent Energy
International, held in Utrecht, the Netherlands, 27-29 March 2012.

Lerma, P. G., Simonton, C., & Wadle, T. (2006). Allocation Process Modeling for Deep
Water Production. In Proceedings of the Abu Dhabi International Petroleum Exhibi-
tion and Conference, held in Abu Dhabi, U.A.E., 5-8 November 2006.

Maquin, D., Adrot, O., & Ragot, J. (2000). Data reconcilation with uncertain models. ISA
Transactions, 39(1), 35–45.

Mayinger, F. & Kiederle, G. (1993). Pressure loss in valves during horizontal two-phase
flow. In Proceedings of the National Heat Transfer Conference, Atlanta (pp. 101–107).

Melbø, H., Morud, S. A., Bringedal, B., van der Geest, R., & Stenersen, K. (2003). Software
that enables flow metering of well rates with long tiebacks and with limited or inac-
curate instrumentation. In Proceedings of the Offshore Technology Conference held in
Houston, TX, USA, 5-8 May, 2003.

Moriari, M. & Lee, J. H. (1999). Model predictive control: Past, present and future. Com-
puters & Chemical Engineering, 23(4-5), 667–682.

Nalum, K. (2013). Modeling and dynamic optimization in oil production. Master’s the-
sis, Norwegian University of Science and Technology.

Narasimhan, S. & Jordache, C. (1999). Data Reconciliation & Gross Error Detection - An
intelligent use of process data. Gulf Proffesional Publishing.

Ptil (2009). Audit of fabrication of flexible risers for the Skarv field. Web:
http://www.ptil.no/news/audit-of-fabrication-of-flexible-risers-for-the-skarv-
field-article5773-878.html. Accessed 18.02.2014.

Qin, S. J. & Badgwell, T. A. (2003). A survey of industrial model predictive control tech-
nology. Control Engineering Practice, 11(7), 733–764.



References 133

Rao, C. V., Rawlings, J. B., & Lee, J. H. (2001). Constrained linear state estimation - a
moving horizon approach. Automatica, 37(10), 1619–1628.

Rawlings, J. B. & Mayne, D. Q. (2013). Model Predictive Control: Theory and
Design. Nob Hill Publishing. Electronic book available for download from
http://jbrwww.che.wisc.edu/. Accessed 26.02.2014.

Robertson, D. G., Lee, J. H., & Rawlings, J. B. (1996). A moving horizon-based approach
for least-squares estimation. AIChE Journal, 42(8), 2209–2224.

Robertson, P. (2013). B-spline approximations in an optimization framework. Project
assignment, Norwegian University of Science and Technology.

Sandnes, A. (2013). Solving a network flow decision problem with sampled nonlineari-
ties. Master’s thesis, Norwegian University of Science and Technology.

Schüller, R., Solbakken, T., & Selmer-Olsen, S. (2003). Evaluation of Multiphase Flow
Rate Models for Chokes Under Subcritical Oil/Gas/Water Flow Conditions. SPE Pro-
duction & Facilities, 18(3), 170–181.

Siahaan, H. B., Aamo, O. M., & Foss, B. A. (2005). Suppressing riser-based slugging in
multiphase flow by state feedback. In Proceedings of 44th IEEE Conference on decision
and control, held in Seville, Spain, December 12.-15. 2005., volume 44 (pp. 452).

Simon, D. & Chia, T. L. (2002). Kalman filtering with state equality constraints. IEEE
Transactions on Aerospace and Electronic Systems, 38(1), 128–136.

Skogestad, S. & Postlethwaite, I. (2005). Multivariable Feedback Control: Analysis and
Design. Wiley, 2nd edition.

SPE (1982). The SI Metric System of Units and SPE Metric Standard.

SPT Group (2013). OLGA 7 User Manual.

Sui, D., Nybø, R., Gola, G., Roverso, D., & Hoffmann, M. (2011). Ensemble methods for
process monitoring in oil and gas industry operations. Journal of Natural Gas Science
and Engineering, 3(6), 748 – 753. Artificial Intelligence and Data Mining.

Vogel, J. V. (1968). Inflow performance relationships for solution-gas drive wells. Journal
of Petroleum Technology, 20(01), 83–92.

Wächter, A. & Biegler, L. T. (2006). On the implenentation of an interior-point filter line-
seach algorithm for large-scale nonlinear programming. Mathematical Program-
ming, 106(1), 25–57.

http://jbrwww.che.wisc.edu/


134 References



Appendix A

Function approximation with B-splines

This appendix is a highly truncated introduction to B-splines, based on material from
my project assignment last semester (Robertson, 2013). We will limit this discussion
to univariate functions, but the methods described here generalize to any dimension.
B-spline functions are representations of piecewise polynomials. A univariate B-spline
function b of degree p is given as a linear combination of n B-spline basis functions:

b : D →R, x 7→
n∑

i=1
ci Bi ,p (x). (A.1)

Here, D ⊂ R is the function domain, which is assumed to be a closed interval defined
by upper and lower bounds on x, i.e. D = [x, x] where x is the lower bound on x and
x is the upper bound on x.

{
Bi ,p

}n
i=1 are piecewise polynomial B-spline basis functions

of degree p, and {ci }n
i=1 is a set of real-valued coefficients. For a given degree, the B-

spline basis functions are determined entirely from a nondecreasing sequence of real
numbers known as the knot sequence. To generate n basis functions, a knot sequence
of length n +p +1 is needed, so we define the knot sequence as

T = {
t j

}n+p+1
j=1 (A.2)

Given a polynomial degree p and a knot sequence T , the resulting basis functions can
be shown to be linearly independent, and they span a linear space consisting of piece-
wise polynomial functions defined on D . A basis function of degree p is defined by p+2
adjacent knots, and can be written out as an explicit function of these knots (and x):

Bi ,p (x) = f (x, ti , ti+1, . . . , ti+p+1). (A.3)

(A.3) is given by the Cox-de Boor recursion:

Bi ,p (x) = x − ti

ti+p − ti
Bi ,p−1(x)+ ti+p+1 −x

ti+p+1 − ti+1
Bi+1,p−1(x) (A.4a)

Bi ,0(x) =
{

1, x ∈ [ti , ti+1),
0, otherwise.

(A.4b)
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As seen from (A.4), a B-spline of degree p is constructed from two overlapping B-splines
of degree p − 1. Its shape depends on the distribution of the knots, but in general its
shape resembles a bell. Outside the interval x ∈ [ti , ti+p+1], Bi ,p (x) is identically zero.

To approximate a function y = f (x) represented by a set of m data points
{

xi , yi
}m

i=1,

we first define that our approximation f̂ of f should be a B-spline function, i.e.

f̂ (x) =
n∑

i=1
ci Bi (x). (A.5)

Function approximation with B-splines amounts to selecting the ci ’s which satisfy a
given set of conditions. This could be e.g. interpolating all the points in the data set, or
other variants which may include smoothing of data or other properties. The simplest
case is interpolation, so we will give a short introduction here; to interpolate all the data
points, we require the following:

yi = f̂ (xi ) =
n∑

j=1
c j B j (xi ), ∀ i ∈ {1, . . . ,m} . (A.6)

This is a set of linear equations, which can be written as
y1

y2
...

ym


︸ ︷︷ ︸

y

=


B1(x1) B2(x1) . . . Bn(x1)
B1(x2) B2(x2) . . . Bn(x2)

...
...

. . .
...

B1(xm) B2(xm) . . . Bn(xm)


︸ ︷︷ ︸

B


c1

c2
...

cn


︸ ︷︷ ︸

c

, (A.7)

or y = Bc where y ∈ Rm , c ∈ Rn and B ∈M m×n . For given choices of the knot sequence,
e.g. the free knot sequence

TF = { x1, . . . , x1︸ ︷︷ ︸
p+1 repetitions

, x3, . . . , xm−2, xm , . . . , xm︸ ︷︷ ︸
p+1 repetitions

} (A.8)

we have m = n and we can calculate the coefficients as c = B−1y. The resulting B-spline
function will now interpolate all the data points. As mentioned above, other methods
for calculating the coefficients exist, which may include smoothing, constraints on the
properties of the resulting B-spline function and/or its derivatives, etc. (see (Robertson,
2013)). In this thesis, we have used both interpolating B-splines (well models, pipeline
VLP and choke models) and a variant of smoothing B-splines known as the P-spline
(PVT tables). The calculation of the coefficients is done within the CENSO framework
using the sparse LU linear system solver from the EIGEN library (Guennebaud et al.,
2010).
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Extended pressure model

In this appendix, we will present an extension to the dynamic model presented in Chap-
ter 5, which accounts for frictional pressure losses in the well and pipeline volumes.
This model was in fact implemented, but the additional variables and constraints slowed
down solution times without improving estimates. This was due to that the calculated
frictional pressure losses were very small, which was consistent with the OLGA simula-
tions of the Tilje template. First, we present the additional variables necessary for the
model extension:

Symbol Definition Description Variables Unit

µo [µ0
o ,µ1

o , . . . ,µnw−1
o ,µp

o ]> Average oil viscosities N · (nw +1) [N/sm2]
µw [µ0

w ,µ1
w , . . . ,µnw−1

w ,µp
w ]> Average water viscosities N · (nw +1) [N/sm2]

µl [µ0
l ,µ1

l , . . . ,µnw−1
l ,µp

l ]> Average liquid viscosities N · (nw +1) [N/sm2]

wl [w0
l , w1

l , . . . , wnw−1
l , w p

l ]> Average liquid mass flow rates N · (nw +1) [kg/s]

ql [q0
l , q1

l , . . . , qnw−1
l , q p

l ]> Average in-situ liquid volumet-
ric flow rates

N · (nw +1) [m3/s]

vsl [v0
sl , v1

sl , . . . , vnw−1
sl , v p

sl ]> Average in-situ liquid superfi-
cial velocities

N · (nw +1) [m/s]

NRe [N 0
Re, N 1

Re, . . . , N nw−1
Re , N p

Re]> Reynolds numbers N · (nw +1) [-]
λ f [λ0

f ,λ1
f , . . . ,λnw−1

f ,λp
f ]> Darcy friction factors N · (nw +1) [-]

∆p f [∆p0
f ,∆p1

f , . . . ,∆pnw−1
f ,∆pp

f ]> Frictional pressure losses N · (nw +1) [bar]

Table B.1: Variable overview, extended pressure model w/friction (remaining variables
are explained in Tables 4.3 and 5.1).

This gives 9N (nw +1) additional variables, so the total number of variables is now
nx = 9N (nw +1)+N (42nw +39) = N (51nw +48).

Recall from Section 3.5 that the frictional pressure gradient in a pipeline is given as
dpfr/dL = λmρm v2

m/2g D . To keep the model simple, we will base the friction factor
λm , the density ρm and the velocity vm on liquid properties. This assumes that the
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flow regime is dominated by liquid. Moreover, we use averaged values, i.e. based on
the fluid properties evaluated at average pressures and temperatures in each volume,
much like the hydrostatic pressure model in Section 5.3.3. First, we evaluate the PVT
table to obtain the average viscosities of oil and water:

Wells: µi
o,k =Φµo (p i

k ,T
i
k ), ∀ i ∈W ,k ∈H , (B.1)

µi
w,k =Φµw (p i

k ,T
i
k ), ∀ i ∈W ,k ∈H , (B.2)

Pipeline: µ
p
o,k =Φµo (pp

k ,T
p
k ), ∀ k ∈H , (B.3)

µ
p
w,k =Φµw (pp

k ,T
p
k ), ∀ k ∈H . (B.4)

The average liquid viscosities are obtained by using the water cuts in a similar way to
the average densities defined in (5.46):

µi
l ,k = r i

wcµ
i
w,k + (1− r i

wc )µi
o,k , ∀ i ∈W ,k ∈H , (B.5)

µ
p
l ,k = r p

wc,kµ
p
w,k + (1− r p

wc,k )µp
o,k , ∀ k ∈H . (B.6)

We now calculate the average liquid mass flow rates using a simple average of inflow
and outflow. Standard densities are used to convert from standard volumetric flow to
mass flow, like we did in the differential mass balance constraints (Section 5.2.1);

w i
l ,k = 1

2
·
ρstd

l

3600
(q i

l ,k +qnw+i
l ,k ), ∀ i ∈W ,k ∈H , (B.7)

w p
l ,k = 1

2
·
ρstd

l

3600
(q3nw

l ,k +q3nw+1
l ,k ), ∀ k ∈H . (B.8)

The average in-situ liquid volumetric flow rates are calculated from the mass flow rates
and the (in-situ) liquid densities:

ρi
l ,k q i

l ,k = w i
l ,k , ∀ i ∈W ,k ∈H , (B.9)

ρ
p
l ,k q p

l ,k = w p
l ,k , ∀ k ∈H . (B.10)

The average liquid superficial velocity is the velocity which would result from the liquid
occupying the entire cross-sectional area of the pipe. This differs from the "normal"
velocity, since the actual cross-sectional area of the pipe occupied by liquid is smaller
due to the presence of gas. The average liquid superficial velocities are calculated as

v i
sl ,k =

q i
l ,k

Ai
p

= 4

π(D i
p )2

q i
l ,k , ∀ i ∈W ,k ∈H , (B.11)

v p
sl ,k =

q p
l ,k

Ap
p

= 4

π(Dp
p )2

q p
l ,k , ∀ k ∈H , (B.12)
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where the Ap ’s and Dp ’s are the pipe cross-sectional areas and diameters, respectively.
We now go on to calculate the friction factors. The first thing we must to is to calculate
the Reynolds numbers. The Reynolds number is a dimensionless number which is a
measure of the ratio between interial and viscous forces acting on the fluid (Çengel &
Cimbala, 2010). It is perhaps the most used quantity for determining the flow regime
for single-phase flow (laminar/transitional/turbulent). We will calculate our Reynolds
numbers as

µi
l ,k N i

Re,k = D i
pρ

i
l ,k v i

sl ,k , ∀ i ∈W ,k ∈H , (B.13)

µ
p
l ,k N p

Re,k = Dp
pρ

p
l ,k v p

sl ,k , ∀ k ∈H . (B.14)

The Darcy friction factor λ f depends on the Reynolds number NRe of the flow and the
pipe relative roughness, εp /Dp . For low Reynolds numbers (NRe < 2300), the flow is
considered laminar, and the friction factor is given by λ f = 64/NRe. For large Reynolds
numbers (NRe > 4000), the flow is considered turbulent and the friction factor is gov-
erned by the implicit Colebrook equation:

1√
λ f

=−2.0 log10

εp /Dp

3.7
+ 2.51

NRe

√
λ f

 . (B.15)

Clearly, this is not easy to incorporate as constraints in an optimization problem. When
plotting the friction factor as defined above in a log-log plot, we obtain the Moody chart
shown in Figure B.1.

103 104 105 106 107 108
10−2

10−1

Darcy friction factor
B-splineinterpolation

Figure B.1: The Moody chart showing the Darcy friction factor as a function of the
Reynolds number, and its B-spline approximation (

εp

Dp
= 3.29 ·10−3).
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Again, we make use of B-splines and approximate the Moody chart by sampling it
for a set of Reynolds numbers and creating an interpolating B-spline Φλ f (shown in
dashed black in Fig B.1). The relative roughnesses for the wells and the pipeline are
obtained from OLGA geometry files. Then, we can add the following constraints to cal-
culate the friction factors:

λi
f ,k =Φλ f (N i

Re,k ), ∀ i ∈W ,k ∈H , (B.16)

λ
p
f ,k =Φλ f (N p

Re,k ), ∀ k ∈H . (B.17)

We now have all the variables required to calculate the frictional pressure drop. We keep
it simple and multiply the pressure gradient by the entire pipe length Lp to obtain the
total frictional pressure drop. As recommended in (Beggs, 2003), the liquid holdup Hl

is included as a multiplier to incorporate knowledge about the actual amount of liquid
present in the well or pipe. We also include a 10−5 multiplier which is necessary for
converting from SI units (Pascals) to our unit of choice (bar).

∆p i
f ,k =

10−5Li
p

2D i
p

H i
l ,kλ

i
f ,kρ

i
l ,k

(
v i

sl ,k

)2
, ∀ i ∈W ,k ∈H , (B.18)

∆pp
f ,k =

10−5Lp
p

2Dp
p

H p
l ,kλ

p
f ,kρ

p
l ,k

(
v p

sl ,k

)2
, ∀ k ∈H . (B.19)

Now that we have calculated the frictional pressure drop, we can replace (5.34) and
(5.35) with new constraints accounting for friction;

w i
∆p,k = (p i

k −p i+nw
k )−ρi

t p,k g hi ·10−5 −∆p i
f ,k , ∀ i ∈W ,k ∈H , (B.20)

w p
∆p,k = (p3nw

k −p3nw+1
k )−ρp

t p,k g hp ·10−5 −∆pp
f ,k , ∀ k ∈H , (B.21)

which completes the friction model. On a side note: The observant reader may have
noted that some of the constraints above are not simple linear/bilinear constraints,
which are the relevant constraint types supported in CENSO. To implement these con-
straints, a set of auxiliary variables are defined, and the constraints are constructed by
means of a series of linear and bilinear constraints.



Appendix C

Calculations

C.1 Average pressure

This appendix section describes an ad hoc method for calculating a multiplier kp in-
tended to obtain a better approximation of the average pressure p in a pipeline than the
"standard" p = 1

2 (pus +pd s), where pus is the upstream pressure and pd s is the down-
stream pressure. We rather calculate the average pressure as

p ′ =
kp

2
(pus +pd s), (C.1)

where kp is intended to factor in the pipeline geometry. In this thesis, the average
pressure in a well or pipeline is calculated by using information from the flow path
(well/pipeline) geometry files (.geo) from OLGA. Each flow path is divided into a num-
ber of segments, which we will denote n. The geometry files contain information about

the lengths
{

Li
seg

}
i∈S

, the elevation changes
{
∆hi

seg

}
i∈S

, the diameters
{

D i
seg

}
i∈S

and

the roughnesses
{
εi

seg

}
i∈S

of each segment. Here, we have defined the index set S =
{1, . . . ,n} as all the segments. We calculate a pressure profile along the pipeline under
the assumption that the pressure profile is decided by hydrostatic pressure loss, i.e. the

elevation profile. First, we calculate the elevation profile
{
hi

}n+1
i=1 as

h1 = 0, hi+1 = hi +∆hi
seg, ∀ i ∈S (C.2)

where hi is the elevation at the boundary between segment i and segment i −1, with
respect to the reference 0 set at the inlet of the first segment. The total elevation change

for the pipe is then hn+1. We now calculate a pressure profile
{

p i
seg

}n+1

i=1
as

p1
seg = pus , p i

seg = pus − (pus −pd s)
hi

hn+1
, ∀ i ∈ {1, . . . ,n +1} . (C.3)
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Now p i
seg is the pressure at the inlet of segment i (and pn+1 = pd s is the pressure at the

outlet of the last segment). We are now able to calculate the average pressure in each
segment p i

seg as

p i
seg =

1

2
(p i

seg +p i+1
seg ), ∀ i ∈S . (C.4)

The modified average pressure in the pipeline p ′ is now taken as a weighted average of
all the segment average pressures, using the segment lengths as weights;

p ′ =
∑

i∈S Li
segp i

seg∑
i∈S Li

seg

. (C.5)

Then, the multiplier kp is taken as the ratio between the modified average pressure p ′

and the "standard" average pressure p:

kp = p ′

p
= p ′

1
2 (pus +pd s)

. (C.6)

The idea is that now we can calculate the modified average pressure p ′ by means of
the simple calculation (C.1), which can easily be included in our optimization problem
without performing a spatial discretization which would lead to a large number of ad-
ditional variables. The values of kp for the wells and pipelines in Tilje all turned out to
be roughly 1.1.

C.2 Initial mass and holdup estimates for dynamic flow
estimator

Before the (dynamic) estimation algorithm is started, it must be provided with an initial
estimate of the liquid holdup in each volume, and the masses of each phase. This is
done by first solving the static estimation problem to find estimated flow rates through
each volume, and subsequently solving the pressure drop model for liquid holdup and
mass.

C.2.1 Standard pressure model

The following procedure is used for calculating mass and holdup estimates for the pres-
sure model used in Problem 5.1:

1. Given a measurement vector y, solve Problem 4.1 to obtain the solution x∗.

2. The following values from x∗ are used (∗-superscripts omitted); volumetric flow
rate of each phase qo , qg , qw , pressure measurements p̃, temperature measure-
ments T̃ and pipeline water cut r p

wc .
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3. Calculate average pressures in well and pipeline volumes:

Wells: p i =
k i

p

2

(
p i +p i+nw

)
, ∀ i ∈W [bara] (C.7)

Pipeline: pp =
kpp

2

(
p3nw +p3nw+1) . [bara] (C.8)

k i
p

and kp
p

are constants related to well/pipeline geometry (their calculation is

shown in Appendix C.1).

4. Calculate average temperatures in well and pipeline volumes:

Wells: T
i = 1

2

(
T̃ i + T̃ i+nw

)
, ∀ i ∈W [◦C] (C.9)

Pipeline: T
p = 1

2

(
T̃ 3nw + T̃ 3nw+1) . [◦C] (C.10)

5. Evaluate the spline-approximated PVT tables at the average pressure and temper-
ature to obtain the average oil, gas and water densities;

Wells: ρi
o =Φρo (p i ,T

i
), ∀ i ∈W [kg/m3] (C.11)

ρi
g =Φρg (p i ,T

i
), ∀ i ∈W [kg/m3] (C.12)

ρi
w =Φρw (p i ,T

i
), ∀ i ∈W [kg/m3] (C.13)

Pipeline: ρ
p
o =Φρo (pp ,T

p
), [kg/m3] (C.14)

ρ
p
g =Φρg (pp ,T

p
), [kg/m3] (C.15)

ρ
p
w =Φρw (pp ,T

p
). [kg/m3] (C.16)

6. Calculate average liquid densities based on water cuts (the well water cuts r i
wc are

constants while the pipeline water cut r p
wc is taken from x∗);

Wells: ρi
l = r i

wcρ
i
w + (1− r i

wc )ρi
o , ∀ i ∈W , [kg/m3] (C.17)

Pipeline: ρ
p
l = r p

wcρ
p
w + (1− r p

wc )ρp
o . [kg/m3] (C.18)

7. Calculate the hydrostatic pressure drops based on differential pressure (assuming
zero frictional pressure loss);

Wells: ∆p i
hs = p i −p i+nw , ∀ i ∈W , [bar] (C.19)

Pipeline: ∆pp
hs = p3nw −p3nw+1. [bar] (C.20)
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8. Solve pressure drop model (see Eqn. (5.34)) for two-phase densities;

Wells: ρi
t p =

∆p i
hs

g hi
·105, ∀ i ∈W [kg/m3] (C.21)

Pipeline: ρ
p
t p =

∆pp
hs

g hp
·105. [kg/m3] (C.22)

9. Solve (5.52)/(5.53) for liquid holdup;

Wells: H i
l =

ρi
t p −ρi

g

ρi
l −ρi

g

, ∀ i ∈W , [-] (C.23)

Pipeline: H p
l =

ρ
p
t p −ρp

g

ρ
p
l −ρp

g

. [-] (C.24)

10. Calculate masses using the liquid holdup and densities. Here, Vo ,Vg ,Vw are vol-
umes occupied by oil, gas and water, respectively, and Vp is the total volume of
the well/pipeline:

Wells: mi
o = ρi

oV i
o = ρi

o H i
l (1− r i

wc )V i
p , ∀ i ∈W , [kg] (C.25)

mi
g = ρi

g V i
g = ρi

g (1−H i
l )V i

p , ∀ i ∈W , [kg] (C.26)

mi
w = ρi

wV i
w = ρi

w H i
l r i

wcV i
p , ∀ i ∈W , [kg] (C.27)

mi
l = mi

o +mi
w , ∀ i ∈W , [kg] (C.28)

Pipeline: mp
o = ρp

o V p
o = ρp

o H p
l (1− r p

wc )V p
p , [kg] (C.29)

mp
g = ρp

g V p
g = ρp

g (1−H p
l )V p

p , [kg] (C.30)

mp
w = ρp

wV p
w = ρp

w H p
l r i

wcV p
p , [kg] (C.31)

mp
l = mp

o +mp
w , . [kg] (C.32)

C.2.2 Extended pressure model with friction

When the friction model is included, we solve the pressure drop model for liquid holdup
using a Newton-iterative approach. To avoid confusion, we do this for well i only, how-
ever, the procedure is valid for the pipeline volume as well (the only difference is the
pressures and temperatures used in the calculations):

1. Complete Steps 1-6 in the procedure above (Section C.2.1).

2. Evaluate the spline-approximated PVT tables at the average pressure and temper-
ature to obtain the average oil and water viscosities (µo and µw ):

µi
o =Φµo (p i ,T

i
) [N/sm2] (C.33)

µi
w =Φµw (p i ,T

i
) [N/sm2] (C.34)
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3. Use the obtained values to calculate the average liquid viscosities:

µi
l = r i

wcµ
i
w + (1− r i

wc )µi
o , ∀ i ∈W , [N/sm2] (C.35)

4. Calculate the liquid mass flow rate w i
l using (B.7), the liquid superficial velocity

v i
sl using (B.5), the Reynolds number N i

Re using (B.13), and the Darcy friction fac-
tor λi

f using (B.16). These values are precalculated since they do not change from
one Newton iteration to the next.

5. Assume a frictional (and accelerational) pressure loss of zero. Then, (3.15) re-
duces to ∆p i = ∆p i

hs , where ∆p i = p̃ i − p̃nw+i is given by the pressure measure-

ments. This can be used to calculate an initial guess ∆p̂ i
hs,0 of the hydrostatic

pressure loss:

∆p̂ i
hs,0 = p̃ i − p̃nw+i . [bar] (C.36)

6. Solve (5.34) for two-phase density using the estimate for hydrostatic pressure loss
(assuming w i

∆p = 0 in (5.34)):

ρi
t p =

∆p̂ i
hs,k

g hi
·105. [kg/m3] (C.37)

7. Solve (5.52) for liquid holdup. Note that this is also an initial guess, since the
"true" hydrostatic pressure loss is slightly smaller than our guess due to friction.

Ĥ i
l ,k =

ρi
t p −ρi

g

ρi
l −ρi

g

. [-] (C.38)

8. Use this liquid holdup to calculate the frictional pressure loss using (B.18):

∆p i
f = 10−5

Ĥ i
l ,kλ

i
f ρ

i
l

(
v i

sl

)2

2D i
p

Li
p . [bar] (C.39)

9. Use the calculated frictional pressure loss to generate a new estimate for the hy-
drostatic pressure drop:

∆p̂ i
hs,k+1 = p̃ i − p̃nw+i −∆p i

f [bar] (C.40)

10. If |∆p̂ i
hs,k+1−∆p̂ i

hs,k | > ε, where ε is some tolerance, increment k and repeat steps
6 through 9.

11. Take Ĥ i
l ,k , H i

l as the estimated liquid holdup. Calculate the mass of each phase
using step 10 in the procedure for the static model (Section C.2.1).
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C.3 Choke valve pressure drop

Algorithm C.1 below shows the evaluation of the function (4.18) in Section 4.5.3.

Algorithm C.1: Calculation of choke pressure drop using a multiplier model and
PVT splines.

Data: ql , pus ,T ,Cv ,rg o ,rwc ,c
Result: pd s

Guess an initial pressure drop of zero: pd s = pus

repeat
Set downstream pressure estimate: p̂d s = pd s

Calculate average pressure: p = 1
2 pus + 1

2 p̂d s

Calculate volumetric flow rates at standard conditions:
qw = rwc ql (water)
qo = ql −qw (oil)
qg = rg o qo (gas)
Calculate mass flow rates at standard conditions:

wo = ρstd
o qo (oil)

wg = ρstd
g qg (gas)

whc = wo +wg (hydrocarbons)
Get fluid properties from spline evaluation:

αg =Φαg (p,T ) (gas mass fraction)

ρg =Φρg (p,T ) (gas density)

ρo =Φρo (p,T ) (oil density)

ρw =Φρw (p,T ) (water density)

αg =Φαg (p,T ) (gas mass fraction)

Calculate in-situ mass and volumetric flows:

w is
g =αg whc (in-situ gas mass flow)

w is
o = whc −wg (in-situ oil mass flow)

q is
o = wo/ρo (in-situ oil volumetric flow)

q is
l = q is

o +qw (in-situ liquid volumetric flow)

Calculate liquid density:
ρl = (1− rwc )ρo + rwcρw

Calculate multiphase multiplier (Morris with Chisholm slip correlation):

k =
√
αg

ρl
ρg

+ (1−αg )

Ψ2
lo =

[
αg

ρl
ρg

+k(1−αg )
][
αg + (1−αg )

k +
(
1+ (k−1)2p

ρl /ρg

)]
Calculate pressure drop:

∆p = c ·Ψ2
lo

ρl

ρstd
w

(
q is

l
Cv

)2

·
Calculate new estimate for downstream pressure:

pd s = pus −∆p

until |pd s − p̂d s | ≤ εp

return pd s
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C.4 Extrapolating the WPC zero-crossing point

As the wellhead pressure increases, the liquid rate from the well will eventually reach
zero. When sampling WPC curves in GAP with a fixed interval between the wellhead
pressures, this zero-crossing point may occur in between samples. The location of the
zero-crossing point is important, since it determines the wellhead pressure at which a
well will no longer produce. One alternative to obtain a more accurate zero-crossing
point is to inspect the WPC and sample more tightly as the liquid rate approaches
zero. However, this requires some know-how and is difficult to automate, especially
if the sampled WPC is to be calibrated at a later stage. Therefore, the last three samples
are used to extrapolate the zero-crossing point using a second-order Taylor expansion
based on approximated derivatives. This approximation will not be particularly accu-
rate in terms of predicting the correct zero-crossing point, but it will make sure the
zero-rate is included in the feasible set of the NLP, and it will prevent oscillations in the
B-spline approximation of the WPC. Moreover, it may be performed after an offset cal-
ibration, so the zero rate is defined even when the WPC has been lifted. For the rate
WPC, let

{
(pwh

k , ql ,k )
}3

k=1
be the last three WPC samples obtained from GAP (or some

other software), and let (pwh
4 ,0) be the desired zero-crossing point. Further, we use fi-

nite differences to define the following approximated first derivatives at pwh = pwh
2 and

pwh = pwh
3 :

dql

dpwh

∣∣∣∣
pwh

2

≈ ∂2 =
ql ,2 −ql ,1

pwh
2 −pwh

1

and
dql

dpwh

∣∣∣∣
pwh

3

≈ ∂3 =
ql ,3 −ql ,2

pwh
3 −pwh

2

(C.41)

Then, we approximate the second derivative at pwh = pwh
3 using the approximated first

derivatives from (C.41):

d2ql

(dpwh)2

∣∣∣∣
pwh

3

≈ ∂2
3 =

∂3 −∂2

pwh
3 −pwh

1

. (C.42)

A second-order Taylor expansion of the WPC curve around pwh = pwh
3 is given as

f̃wpc(pwh) = f̃wpc(pwh
3 )+ dql

dpwh

∣∣∣∣
pwh

3

(pwh −pwh
3 )+ 1

2

d2ql

(dpwh)2

∣∣∣∣
pwh

3

(pwh −pwh
3 )2 (C.43)

≈ ql ,3 +∂3(pwh −pwh
3 )+ ∂2

3

2
(pwh −pwh

3 )2. (C.44)

Inserting the zero-crossing point as f̃wpc(pwh
4 ) = 0, we obtain the following quadratic

equation, which can be solved for pwh
4 using the quadratic formula:

0 = ql ,3 +∂3ql ,3(pwh
4 −pwh

3 )+ ∂2
3

2
(pwh

4 −pwh
3 )2 (C.45)

= 1

2
∂2

3(pwh
4 )2 + (∂3 −∂2

3pwh
3 )pwh

4 +ql ,3 +
1

2
∂2

3(pwh
3 )2. (C.46)
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Appendix D

Simulation settings and results

D.1 Key settings for OLGA model

Keyword Setting Description

C
as

e
le

ve
l

MINDT 10−9 sec Minimum time step during simulation
MAXDT 10 sec Maximum time step during simulation
TEMPERATURE WALL Enables the flow path walls to transfer and store

heat.
COMPOSITIONAL OFF Uses the PVT tables for fluid property calcula-

tions.
FLASHMODEL WATER Enables mass transfer between gas/oil and

gas/water.
NOSLIP OFF Enables slip between phases, i.e. phases are al-

lowed to travel at different velocities along the
flow paths.

HYDSLUG ON Enables hydrodynamic flow regimes (hydrody-
namic slug flow and dispersed bubble flow).

W
el

ls PRODOPTION VOGELS Vogel’s IPR curve from (Vogel, 1968) is used for
inflow calculation.

ISOTHERMAL YES Assumes isothermal inflow.

V
al

ve
s

MODEL HYDROVALVE The Hydro valve model (described in (Schüller
et al., 2003)) is used for flow calculation.

EQUILIBRIUMMODEL FROZEN Assumes no mass transfer (flashing) inside the
choke.

THERMALPHASEEQ NO Gas is expanded isentropically through the
valve, while the liquid is isothermal.

Cv model - Taken from tables obtained in water test facility
(PHASE = LIQUID).

Table D.1: Key settings for OLGA model.
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D.2 Estimation errors and solve times

i W
el

l a
dj

. (
s)

W
el

l a
dj

. (
s)

∗
W

el
l a

dj
. (

d)

Sl
ug

gi
ng

(s
)

Sl
ug

gi
ng

(d
)

Fi
el

d
da

ta
(s

)

Fi
el

d
da

ta
(d

)

E
i m

ax
[%

] 0 0.62 3.69 0.74 0.29 0.28 - -
1 0.12 1.43 0.17 0.10 0.14 - -
2 3.93 1.12 1.50 1.89 1.54 5.60 5.99
3 1.79 0.51 0.62 1.17 0.88 - -
6 3.31 0.98 1.11 3.06 2.42 8.54 7.18
7 2.67 3.78 3.56 69.2 47.7 - -

E
i is

e

0 347 6609 284 1072 2251 - -
1 55 806 74 178 507 - -
2 7212 866 2609 21490 48723 84024 164908
3 1137 322 996 10906 15322 - -
6 5271 628 861 60870 117829 73358 60810
7 5125 8836 10997 18662352 37695379 - -

Etot 19147 18066 15822 18756869 37880011 157382 225719

t solve [ms] 559 629 5739 483 9068 267 3636

Table D.2: Errors and solve times for simulation cases. (s) - static estimation, (d) - dy-
namic estimation, * - extra weight on choke models.
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D.3 Parameters for simulation cases

Pa
ra

m
et

er

In
de

x

W
el

l a
dj

. (
s)

W
el

l a
dj

. (
s)

∗
W

el
l a

dj
. (

d)
Sl

ug
gi

ng
(s

)
Sl

ug
gi

ng
(d

)
Fi

el
d

da
ta

(s
)

Fi
el

d
da

ta
(d

)

Pm0(i , i ) 0-9 - - 100 - 100 - 100

Pq0(i , i )

0 - - 1 - 1 - 1
1 - - 1 - 10 - 102

2 - - 1 - 1 - 1
3 - - 1 - 10 - 102

4 - - 1 - 1 - 1
5 - - 1 - 1 - 1
6 - - 1 - 1 - 1
7 - - 1 - 102 - 103

Pq(i , i )

0 1 1 1 1 1 1 1
1 1 1 1 1 10 1 104

2 1 1 1 1 1 1 1
3 1 1 1 1 10 1 104

4 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1
7 1 1 1 1 102 1 104

Q−1(i , i )

0 (IPR A) 0.567 0.567 0.567 0.567 102 103 10
1 (IPR B) 1.031 1.031 1.031 1.031 102 102 10

2 (WPC A) 1.119 1.119 1.119 1.119 102 103 10
3 (WPC B) 3.115 3.115 3.115 3.115 102 102 10
4 (Chk. A) 27.78 2778 2778 27.78 103 2 ·104 102

5 (Chk. B) 103 105 105 103 103 104 102

6 (VLP) 0.093 0.093 0 0 0 0 0
7 (T. chk.) 9.8 9.8 9.8 9.8 102 102 0

8 (Well A ∆p) - - 105 - 104 - 105

9 (Well B ∆p) - - 105 - 104 - 104

10 (Pipeline ∆p) - - 105 - 104 - 107

R−1(i , i ) 0-8 106 106 106 106 105 106 105

N - - 5 - 5 - 20
∆t 10 s 10 s 30 s 10 s 30 s 30 s 90 s

Table D.3: Parameters for simulation cases. (s) - static estimation, (d) - dynamic esti-
mation, * - extra weight on choke models.

D.4 Additional figures
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