
Easing the Transition from Visual to
Textual Programming

Håkon Gimnes Kaurel

Master of Science in Informatics

Supervisor: Hallvard Trætteberg, IDI

Department of Computer Science

Submission date: December 2016

Norwegian University of Science and Technology

Dedication

Throughout this project I have been faced with countless challenges, both technical and

non-technical. I owe a large debt of gratitude to the people who have helped me

overcome these challenges, and ideally I would name them all. Unfortunately this is not

feasible, and I will have to name but a few of those who have helped me along the way.

First and foremost I am very grateful for the support offered by my supervisor, Hallvard

Trætteberg. From the very beginning he has shown an exceptional interest in the project

and a willingness to help that by far exceeded my expectations. Every questions posed to

him has been responded to with a thorough and insightful response. Having him as a

partner in discussions about everything from major design decision to minor technical

intricacies has helped me overcome and even anticipate challenges, as well as developing

my skills within the field of software development.

The second person I would like to thank is my friend and co-counder of Kodeklubben

Trondheim, Lars Klingenberg. He has time and time again proved himself to be the the

man to go to when there is help required and work to be done. During this project he

helped me during the data collection process. I could not have asked for a better partner

in this, nor any other of the countless projects that we have worked together on.

I would also like to thank my close friend, Elias Inderhaug, for his support throughout

this last year. There are few people who have been more vital to keeping me motivated

and enthusiastic about my work than him. In addition, he has helped me proofread large

parts of this document, for which I am very grateful.

Last, but not least, I would like to thank my parents, Petter Kaurel and Berit Kaurel.

During this last year, and the ones preceding it, they have provided me with unwavering

support.

Abstract
In later years an effort to teach programming to children has been gaining traction. Pro-

gramming is seen as an important skill for the future, and many countries are seeking to

ensure that children are given the opportunity to learn programming at an early age. Vi-

sual programming languages are often used as a first introduction to programming, as they

have proven to be able of lowering the bar of entry to programming. However, experience

shows that moving from visual programming to textual programming is difficult. This the-

sis explores how this transition can be eased by creating a new programming environment

specifically tailored for this purpose. Through the project a prototype system has been

developed and evaluated. The system enables the user to write two-dimensional games

in a domain specific language, and choosing between a visual and a textual syntax. The

prototype seeks to isolate the transition from visual to textual programming, by ensuring

that it can be made without worrying about semantic differences. The results indicate that

this is a viable approach to solving the problem, however, further research is required.

i

Sammendrag
I senere år har det å lære bort programmering til barn vokst frem til å bli et viktig tema.

Programmering blir regnet som en viktig ferdighet i fremtiden, og mange land ønsker å

sørge for at barn blir gitt muligheten til å lære programmering i ung alder. Visuelle pro-

grammeringsspråk er ofte brukt som en første introduksjon til programmering, ettersom

de har vist seg å gjøre det lettere å komme i gang for nybegynnere. Men erfaring viser

at det å gå fra visuelle til tekstlige programmeringsspråk er vanskelig. Denne oppgaven

utforsker hvordan denne overgangen kan gjøres enklere ved å lage et nytt utviklingsmiljø

som er skreddersydd for dette formålet. I løpet av prosjektet har en prototype blitt utviklet

og evaluert. Prototypen gjør det mulig å utvikle todimensjonale spill i et domenespesifikt

programmeringsspråk, og velge mellom å bruke en visuell og en tekstlig syntaks. Proto-

typen er forsøker å isolere overgangen fra visuell til tekstlig programmering for å sørge for

at den kan bli gjennomført uten at brukeren trenger å bry seg om semantiske forskjeller.

Resultatene indikerer at dette er en god måte å løse problemet på, men mer forskning må

til før noen definitive svar kan gis.

ii

Table of Contents

Abstract i

Sammendrag ii

Table of Contents iv

List of Figures v

Abbreviations vi

1 Introduction 1
1.1 Motivation . 1
1.2 Problem description . 2

1.2.1 Kodeklubben Experiences . 3
1.3 Objective and research questions . 4

2 Background 7
2.1 Programming Languages . 7

2.1.1 Syntax . 8
2.1.2 Semantics . 9

2.2 General Purpose and Domain Specific Languages 11
2.2.1 Textual and Visual Programming 12

2.3 Programming Languages for Children 13
2.3.1 Logo . 13
2.3.2 Greenfoot . 14
2.3.3 Combining Visual and Textual Programming 15
2.3.4 Generating Textual Code from Visual Code 15

2.4 Scratch . 16
2.4.1 Syntax . 17
2.4.2 Semantics . 18

2.5 Python . 19

iii

2.5.1 Syntax . 20
2.5.2 Semantics . 21

3 Methodology 23
3.1 Design science . 24

3.1.1 Data collection . 26
3.1.2 Data analysis . 28

4 Artifact Design 29
4.1 The Artifacts . 33

4.1.1 Klang . 33
4.1.2 The game development framework 39

4.2 Development process . 40

5 Artifact Evaluation 43
5.1 The Focus Group . 43

5.1.1 Participants . 44
5.1.2 Roles . 44
5.1.3 Recording the Focus Group . 45
5.1.4 Time and Place . 45
5.1.5 Focus Group Plan . 45

5.2 Analysis . 48
5.3 Results . 48

5.3.1 From Scratch to KlangVis . 49
5.3.2 From KlangVis to KlangText . 50
5.3.3 From KlangText to Python . 51

5.4 Discussion . 51
5.4.1 Research question 1 . 52
5.4.2 Research question 2 . 55

6 Conclusion and Future Work 57
6.1 Conclusion . 57
6.2 Future Work . 58

Bibliography 61

Appendix 63
6.2.1 Klang UML Diagrams . 63
6.2.2 Focus Group Questions . 67
6.2.3 Source Code . 69

iv

List of Figures

2.1 Iterating over a collection using a foreach loop in Java 9
2.2 Iterating over a collection using a foreach loop in C# 9
2.3 Iterating over a collection using a for loop 10
2.4 The Scratch IDE . 16
2.5 Two attempts at creating an if-statement in Scratch. The one on the right

remains disconnected due to incompatible blocks 17
2.6 An event handler that changes to the next backdrop when the space bar is

pressed . 18
2.7 Iterating over a collection using a foreach loop in Python 20

3.1 The two dimensions of design science according to (March and Smith,
1995). 24

3.2 The iterative process of design science 25

4.1 Two possible routes from visual DSLs to textual GPLs 30
4.2 The intended context for the Klang programming langauge. 31
4.3 Overview of the artifacts developed. 32
4.4 Variable scopes in Klang. Each actor has got a private variable scope, aside

from the scene actor, which is treated as the global scope. 34
4.5 An example Klang program shown using the visual notation 37
4.6 An example Klang program shown using the textual notation 38
4.7 The composition of a Klang program. 39

v

Abbreviations

DSL = Domain Specific Language

GPL = General Purpose Language

vi

Chapter 1
Introduction

1.1 Motivation

Information technology (IT) has transformed and will continue to transform many aspects

of modern society. Personal computers have become an integral part of the public, private

and professional lives of billions of people. We have become dependent on computers, not

only to acquire information, but also in how we perform our jobs, how we manage our pri-

vate and global economy, and even to the point of how we communicate with other people.

So essential are computers in today’s society that the ability to use computers has become

a requisite to become a part of society. Look at British sociologist Thomas Humphrey

Marhshall’s definition, and one quickly realizes why information technology (IT) has as-

sumed a secure place in what is considered today’s civilized life. Marshall defines citi-

zenship as a status that is bestowed on those who are full members of a community. As

such, citizenship includes certain civil, political and social rights of membership, includ-

ing ”the right to share to the full in the social heritage and to live the life of a civilized

being according to the standards prevailing in the society” (Marshall, 1950).

The term ”digital citizenship” has thus been defined as the ability to participate in soci-

ety online (Mossberger et al., 2007). According to the EU Commission, 90% of European

jobs in careers such as engineering, accountancy, nursing, medicine, art, architecture, and

1

Chapter 1. Introduction

many more will require some level of digital skills. Every citizen needs to have at least ba-

sic digital skills in order to live, work, learn and participate in society (Commission, 2016).

Every major technological innovation brings with it a demand for new skills, which is why

Europe is faced with a paradox. Although millions of Europeans are currently without a

job, companies have a hard time finding skilled digital technology experts. As a result,

there could be up to 825,000 unfilled vacancies for ICT (Information and Communica-

tions technology) professionals by 2020 (Commission, 2016). Countries around the world

are facing the same challenges related to an increasingly digital society, and many are

working to make sure that digital skills find their place in their schools’ curriculum. A

digital skill is a broad term that covers just about any task that can be completed using a

computer, from browsing the web to creating your own software. Deciding which of these

skills are important in terms of participation in society is an important political issue in

many countries. Should children and students be taught simply how to use digital technol-

ogy, or should they understand how that technology works? Several countries around the

world have started integrating computer programming into their education at lower and

middle schools.

Computer programming is the activity of creating new software, and is closely related

to understanding how a computer works. In 2013 I co-founded an organization called

Kodeklubben Trondheim (The Codeclub Trondheim). Kodeklubben Trondheim provides

free programming courses as an after school activity. The organization’s vision is that

every Norwegian child should be given the opportunity to try programming, and be given

guidance when they struggle to master it.

1.2 Problem description

In response to the increasing demand for skilled software developers a plethora of new

tools for teaching programming to children has emerged. There are new game develop-

ment libraries, new programming languages, and new development environments being

created. The tools aim to lower the bar of entry to programming, making it more accessi-

ble to children.

Many of the new programming languages replace the textual notation of traditional

2

1.2 Problem description

programming languages with a visual one. These are referred to as visual programming

languages (VPL). VPLs have the advantage that they are able to eliminate many mistakes

that are commonly made by novice programmers.

However, visual programming languages are not nearly as frequently applied the soft-

ware industry in general. There are some inherent disadvantages and limitations associated

with visual notations as opposed to textual ones, which leads to the majority of software

development being done using textual languages. There is therefore little indication that

visual programming will become a large factor in professional software development any

time soon. In other words, children who master visual programming will need to make

a transition to textual programming at some point if they are ever to become professional

developers.

Through teaching programming to children I have experienced that many children

struggle to make the transition from visual to textual programming. Through this thesis I

try to explore how this transition can be eased.

1.2.1 Kodeklubben Experiences

Scratch is one of the most successful tools for getting children started with programming.

Scratch is a complete development environment created specifically for children. It con-

sists of three parts, a visual programming language, a game development framework, and

an integrated development environment (IDE).

Kodeklubben Trondheim has utilized Scratch as its entry level programming language

since the beginning. The Scratch courses have been rather successful and compared to

other courses, few of the participants drop out of the Scratch courses during a semester.

The participants of our Scratch courses are usually able to master the language to the

degree that they are able to solve simple tasks using the language. In summary, we are

quite pleased with our Scratch courses.

Python is a very popular textual programming language. It is a very flexible language

with a simple and concise syntax. In contrast to Scratch, Python is not specifically created

for educational purposes. It is a general purpose programming language that is used both

in academic circles and in the software industry.

3

Chapter 1. Introduction

Children who have completed the Scratch courses at Kodeklubben Trondheim have

been recommended to try our Python courses. Despite Python being a relatively simple

language, our Python courses have not been as successful as intended. The participants

struggle to understand the concepts of the language, as well as the textual syntax. This

affects the experience of programming, and a lot more participants drop out of the Python

courses during a semester than the Scratch courses.

This transition from Scratch to Python will be used as the context throughout this

thesis, as it is a concrete instance of the transition from visual to textual programming.

1.3 Objective and research questions

The research objective for this project is to explore how a development environment where

visual programming is combined with textual programming should be designed in order

to ease the transition from one to the other.

Research questions

1. How can a textual and a visual programming language be combined to ease the

transition from visual to textual programming?

2. How can a development environment aid the transition from visual to textual pro-

gramming?

The first research question is used to explore possible approaches to integrate visual

and textual programming. There are many different approaches that could be taken. The

VPL could be used simply to generate textual code, or the other way around. Another

approach is to create a hybrid language that allows the users to freely combine visual

and textual notation. It is also possible to create separate languages and allow automatic

translation between the two.

The second research questions is used to explore additional tools that can be used to aid

the transition from visual to textual programming. There are several development environ-

ments aimed at teaching programming to children, and their design decisions are taken into

4

1.3 Objective and research questions

consideration. However, there are special considerations to be made when constructing an

environment suitable for the purposes of this thesis.

5

Chapter 1. Introduction

6

Chapter 2
Background

This thesis touches upon several important aspects of computer science. This chapter

presents previous work that is deemed as relevant to this project, and explains some of the

terminology used in the rest of this document.

2.1 Programming Languages

Language is the ability to acquire and use complex systems of communication. As opposed

to human communication, programming is a simple form of communication between a

computer and a programmer. Because the communication between the computer and a

programmer is more rudimentary than the complex human communication, programming

utilizes specialized languages called programming languages. Compared to natural lan-

guages programming languages are simple, strict, and unambiguous. Their only purpose

is to provide a means of issuing instructions to computers. However, not all programming

languages can be executed by computers directly. The subset of languages that can be

directly interpreted and executed by computers are referred to as machine languages or

machine code.

Machine languages are defined exclusively in terms of binary numbers. Machine lan-

guage instructions tend to share a similar and simple structure. There is a binary number,

called the opcode, that identifies the type of instruction, such as an addition or subtraction.

7

Chapter 2. Background

The opcode is proceeded by some additional binary numbers that are the parameters of the

instruction, such as which numbers to add and where to store the results. These languages

are generally optimized from the perspective of the computer, and not the programmer.

Computers can easily interpret and execute binary code, but writing binary code is for most

programmers unintuitive, tedious and error-prone. Programmers rarely create software by

writing machine code, instead they rely on languages that can be automatically translated

into machine code. These languages exist primarily to ease the human activity of writing

software. The expressive power of a language A that can be translated into a language B

cannot be greater than the expressive power of B. This means that programming languages

that are translated into machine code, cannot express anything that cannot be expressed in

machine code directly. Therefore, these languages do not provide any additional expres-

sive power. Many of them are less expressive, and a select few are equally expressive as

machine code. The majority of programming languages provide useful abstractions that

help humans express their instructions in a more precise and less error-prone way.

2.1.1 Syntax

Every language, whether it be a programming or a natural language, has a syntax. Syntax

defines the rules for what constitutes a legal sentence in a given language. Generally,

syntax consist of a set of words and rules for how the words can be combined. The sentence

”White wrights write withering words where wanderers wash worn winter wagons” is

syntactically correct English, despite being a completely nonsensical phrase. The words

are all valid English words, and they are combined in a way that does not violate English

grammar. The meaning of the sentence is of no concern to the syntax. The following quote

is not syntactically correct, ”(..) the dark side I sense in you.”. This is a quote from Yoda,

a character in the Star Wars universe. He is widely known for breaking the subject-verb-

object rule of the English language. The subject of this sentence is ”I”, the verb is ”sense”

and the object is ”the dark side”. As you can see, the order in which these words occur is

not subject-verb-object, but rather object-subject-verb. This phrase is therefore a breach of

English grammar, and not syntactically valid. In the context of programming languages,

a syntactically valid program is one that can be executed. The program does not have to

8

2.1 Programming Languages

do anything useful in order to be syntactically valid, it only needs to be interpretable as

a program. The syntax of a programming language can aid in making the language more

intuitive.

2.1.2 Semantics

The semantics of a language assigns meaning to the words and sentences of the language.

Semantics define what can be expressed in a language, while the syntax defines how it

can be expressed. It is the semantics of a programming language that decides what will

happen when a syntactically valid program executes. There are many semantic constructs

that are common to many programming languages, while their syntax may differ. The

foreach loop is an example of a language construct that is common to many programming

languages. The foreach loop lets the programmer specify a sequence of instructions that

is to be executed once for each element in a list.

for(Car someCar : listOfCars) {
// do someting to someCar

}

Figure 2.1: Iterating over a collection using a foreach loop in Java

foreach(Car someCar in listOfCars) {
// do something to someCar

}

Figure 2.2: Iterating over a collection using a foreach loop in C#

Figure 2.1 and Figure 2.2 show how a list of cars, called listOfCars, can be iterated

over using a foreach loop in Java and C#, respectively. The semantics of the foreach loop

is the same in both languages, there is only a slight syntactical difference between the two.

Each element in listOfCars will in turn be assigned to the variable called someCar and

then the body of the loop will be executed, i.e. the sequence of code between the curly

brackets.

The semantic concepts of programming languages are nothing more than convenient

9

Chapter 2. Background

abstractions, they provide useful solutions to common problems. Programming is not

unlike a lot of other activities, in that the same problems repeatedly surface. Iterating over

a collection of elements is an example of a problem that arises numerous times in most

programming projects. There are many different ways of solving this problem in most

languages, and using a foreach loop is just one example.

for(int i = 0; i < listOfCars.size(); i++) {
Car someCar = listofCars.get(i);
// do something to someCar

}

Figure 2.3: Iterating over a collection using a for loop

Figure 2.3 shows how the same problem can be solved using a for loop in stead of

a foreach loop. This solution is more verbose, and contains more details, hence, more

room for errors. Due to the frequency at which the problem occurs, both C# and Java have

decided to include the foreach loop. The foreach loop does not enable the programmer

to express anything new, it only allows the programmer to reuse an existing solution to a

common problem.
1

Static and Dynamic Typing

All data stored in a computer is in reality just sequences of binary values. The only differ-

ence between a single character of text and an integer stored in a computer is how the data

is treated. To make sure that programmers do not get their data mixed up programming

languages usually provide what is referred to as a type system. Type systems keep track

of what type of data any given sequence of binary values is.

There are different types of type systems and there is a fundamental distinction that

needs to be made. Type systems can be put into two categories, static type systems and

dynamic type systems. The difference between the two is that in a static type system the

type of a variable can be determined from the source code alone, in other words the type
1There are some slight semantic differences between Figure 2.1 and Figure 2.3 in regard to modification of

the list during execution of the loop. However, assuming the list listOfCars remains unchanged during execution
the two examples will have identical behavior.

10

2.2 General Purpose and Domain Specific Languages

of all variables are known in advance of execution. In a dynamic type system the types of

variables are determined at runtime, the same variable might even have different types at

two given moments during execution.

In general dynamic type systems are more flexible than static type systems. However,

greater flexibility also removes some of the guarantees that a static type system can pro-

vide. The decision of whether to use a static or dynamic type system is one that is very

fundamental in programming language design.

2.2 General Purpose and Domain Specific Languages

Languages can be divided into two categories, domain specific languages (DSL) and gen-

eral purpose languages (GPL). DSLs are designed for a specific domain to simplify the

process of describing things within that domain. GPLs are designed to be versatile enough

to be used in just about any context or domain. There are many examples of DSLs that are

widely used in the software industry, such as HTML, CSS, and regular expressions. These

languages are highly suited for their respective domains, however, they are generally not

suited for other domains.

General purpose languages such as Java or C, could be used to describe the same things

as you can in HTML, CSS or regular expressions. However, doing so would probably

lead to less intuitive and more verbose code. The concepts available in general purpose

languages are often quite abstract and general, which makes them applicable in many

domains. Programming with a GPL often includes defining the concrete concepts of the

problem domain in terms of the abstract concepts of the language. The concepts of a

DSL are more concrete and more specific, and the developer can spend less time defining

concepts and spend more time applying the concepts.

There are several reasons for developing and using domain specific languages. The

users of DSLs are not necessarily professional software developers. DSLs can be used

to enable domain experts to do basic programming within their domain. Due to the fact

that the concepts of the language match the ones of the problem domain, the development

process can be greatly simplified. Professional software developers usually use DSLs in

order to increase productivity and avoid ”reinventing the wheel”, that is, spending time

11

Chapter 2. Background

solving problems that have already been solved.

The major drawback of relying on DSLs is that the programmer needs to learn a new

language every time she starts working in a new domain. However, if the programmer is

going to be working within the same domain for a longer period of time, then a DSL can

improve productivity. This makes the decision of whether or not to use a DSL a trade off

between time spent learning the language, and the increased productivity once mastered.

Programming in general purpose languages often requires a lot of abstract thought,

which can be a challenging mental exercise, especially for children. Hence, creating ed-

ucational DSLs with concrete and recognizable concepts is a quite common approach to

teaching programming to children. However, abstract thought is something that is quite

inherent to the programming activity, and avoiding it all together close to impossible. Ed-

ucational DSLs often focus on a subset of common abstract language concepts, such as

loops, and try to create a concrete context around them.

2.2.1 Textual and Visual Programming

The majority of programming languages used in the software industry are languages with a

textual syntax. The syntax of these languages are defined in terms of sequences of charac-

ters, and programming becomes a matter of writing text. Visual programming languages

(VPL) replace the textual representations of textual languages with visual components.

Software developers using VPLs are not only writing text, or even writing text at all, but

also connecting and combining visual components. VPLs have the advantage that they can

create representations that are more intuitive than written words.

Visual programming has been around for several decades, yet VPLs only occupy a

small area of the programming landscape. There has been done much research into the

field of visual programming and some inherent challenges have been uncovered. Because

text is a very concise method of expressing meaning, creating visual representations that

are equally concise has proven to be a challenge. Therefore, many VPLs require a lot

more space on screen than their textual counterparts. This is an issue as it can make it

hard to get a proper overview of sufficiently large parts of the code being written. In

addition, programming often relies on quite abstract concepts. Creating intuitive visual

12

2.3 Programming Languages for Children

representations for these abstract concepts is often very hard. Experience shows that VPLs

are best suited as DSLs, in part due to the fact that the concepts of DSLs are generally

more concrete than those of GPLs, which simplifies the process of creating good visual

representations for them (Myers, 1986).

VPLs also have the advantage that they can make it harder for the developer to make

syntax errors, or even entirely impossible. This is an aspect of visual programming that has

made it a central part in modern educational programming languages. Syntax is a frequent

source of errors for most novice programmers, and being able to completely rule these

out can be very beneficial. This enables the novice programmer to focus on understand-

ing semantics and learning problem solving, rather than spending time on understanding

syntax.

2.3 Programming Languages for Children

Through the years many different programming languages have been developed to aid

in teaching programming to children. These include everything from DSLs with visual

syntax to GPLs with textual syntax.

2.3.1 Logo

Advocacy for computer programming as a worthwhile educational domain is nothing new.

During the 1980s there was a similar effort in many countries around the globe. Large

claims were made about the benefits of teaching computer programming to children, and

quite a few tools were developed to aid the process of teaching programming.

Among the most historically important tools for teaching programming is the Logo

programming language. Logo is an educational programming language that was developed

as early as 1967. It is a multi-paradigm GPL with a textual syntax.

The creators of the Logo programming language also developed theories and guide-

lines for how programming should be taught to children. They boasted about the great

benefits to teaching programming to children, including positive effects way outside the

bounds of pure programming ability. Many of these claims have been shown to be ex-

13

Chapter 2. Background

aggerated, and their proposed approach to teaching programming to children is widely

questioned today (Pea, 1983). However, Logo is still held as an important educational

programming language.

Turtle Graphics

Despite being a general purpose language, Logo is often associated with what is called

turtle graphics. Turtle graphics is a relatively intuitive, yet an arguably cumbersome, way

of drawing graphics on a computer screen. The core of turtle graphics is the turtle, a simple

shape that is drawn on the screen. The programmer can instruct the turtle to move around,

drawing a line where ever it goes. Turtle graphics was included in the standard library

of the Logo language, and hence provided a default way of doing basic graphics in the

language. There was no need to install any third party tools or libraries in order to get

started writing software with graphics, as it was shipped with the language and provided a

simple and standardized way of doing it.

Turtle graphics has since been included in many other languages and is currently in-

cluded in the standard distribution of the Python programming language. It has therefore

also become a convenient way of doing simple and basic graphics programming in Python,

and has been a central part of teaching the Python programming language to children in

Norway.

2.3.2 Greenfoot

Greenfoot is a programming environment that seeks to teach object oriented programming.

The core of the approach taken by Greenfoot is to provide the users with a simple game

development framework that can be used to program the behavior of visual components

drawn on a canvas. This is an approach that is very similar to that of Scratch, as pro-

grams are written by defining the behavior of visual elements on the screen. The interface

provided by the framework also resembles that of turtle graphics.

As opposed to Scratch, Greenfoot lets the user choose between two different program-

ming languages for interacting with the framework. There are two options, either to write

programs using Java or a partially visual language called stride. Stride is a visual language,

14

2.3 Programming Languages for Children

however, it still relies on the user writing textual code as well. By doing so it is able to

provide the user with some helpful guidance, but it is not able to provide the same guaran-

tees that languages such as Scratch can provide. Stride can for instance not guarantee that

syntax errors will not occur.

2.3.3 Combining Visual and Textual Programming

There have been previous attempts at combining visual and textual programming. (Erwig

and Meyer, 1995) addresses the poor adoption of VPLs, despite years of research on the

subject. This research points to the advantages and drawbacks to VPLs and proposes a

hybrid visual programming language(HVPL) as a solution. An HVPL is a language that

combines visual notation with textual notation. In addition, they propose a framework for

HVPLs that can be used to integrate with conventional textual programming languages.

To utilize the strength of VPLs, the fact that they are best suited as DSLs, the framework

allows for specialized versions of the HVPL to be created.

2.3.4 Generating Textual Code from Visual Code

(Cheung et al., 2009) addresses many of the same issues as this project. The authors claim

that there is an unfilled gap when it comes to programming environments for children

and youth. They experienced that some students found VPLs such as Scratch to be too

simple and too limiting. However, the same students found textual programming to be too

hard. To solve this problem the authors present a text-enhanced graphical programming

environment. The programming environment provides the user with a VPL that can be

used to generate textual source code. There are many examples of tools that apply this

technique, as it allows children to see the textual equivalent of their visual code, and it is

also frequently used to enable visual programming in environments originally designed to

textual languages.

15

Chapter 2. Background

2.4 Scratch

Scratch is a very popular tool for teaching programming to children by enabling them to

create simple animations and games in 2D. It consists of three parts, a visual programming

language, a game development framework, and an integrated development environment

(IDE). The programming language is a DSL that precisely models the domain of the game

development framework.

Figure 2.4: The Scratch IDE

Figure 2.4 shows what the Scratch IDE looks like. The section marked with the number

1 is the stage, which is canvas on which the games played. Section 4 is the overview of

the sprites in the game, where sprites can be created or removed. Section 2 is the palette

of statements and expressions. Finally, section 3 is the code editor, where blocks from the

palette are assembled. The example code ensures that the sprite follows the mouse pointer.

The most fundamental concept in Scratch is that of the sprite. Creating programs in

Scratch usually starts by defining the sprites that you need. A sprite is a visual element on

the screen that can be moved around, rotated or otherwise transformed. Figure 2.4 shows

an example of a sprite, namely the cat which can be seen on the stage.

16

2.4 Scratch

The behavior of the sprite is defined by using the code editor on the right hand. To add

behavior to a sprite, you need to find find the desired code blocks in the palette and drag

them into the code editor where you assemble them. Figure 2.4 shows a simple program

where the cat will follow the mouse pointer as soon as the green flag on the stage is clicked.

This work flow of first defining visual elements and then defining their behavior is useful

as it makes programming less abstract, as all code is associated with a visible component.

2.4.1 Syntax

The Scratch programming language is a VPL. Programs are created by connecting blocks

representing statements and expressions. The shapes of the blocks indicate how they can

be combined with each other, blocks with rounded edges can only be inserted into slots

with rounded edges etc. The Scratch code editor enforces that blocks can only be combined

in ways that are syntactically valid. If you were to attempt to connect two incompatible

blocks, the editor would simply refuse to snap the two blocks together. This means that

creating syntactically invalid programs in Scratch is impossible, which is a great advantage

for users who are just beginning to learn how to write code.

Figure 2.5: Two attempts at creating an if-statement in Scratch. The one on the right remains
disconnected due to incompatible blocks

Figure 2.5 shows how the Scratch editor avoids syntax errors. The example on the left

shows a valid and fully connected code block in Scratch. On the right the green block is

disconnected from the rest, due to the fact that it has rounded edges, as opposed to the

diamond shaped slot. The code on the right is still syntactically valid. However, the green

block representing the addition of 10 and 20 will be ignored, and the if-statement will use

a default value for the empty slot.

17

Chapter 2. Background

2.4.2 Semantics

The semantics of the Scratch language are relatively unique. There are many of the con-

cepts of the language that look and feel familiar to most programmers, however, there are

some fundamental differences between Scratch and most other languages.

The Scratch programming language is an event-driven language. Event-driven pro-

gramming is a programming paradigm where the flow and execution of the program is

determined by events such as user input, sensor outputs, or incoming messages from other

processes. Event handlers are a core concept in event-driven programming. An event han-

dler is nothing more than a sequence of code that is to be executed every time a specific

event occurs.

Figure 2.6: An event handler that changes to the next backdrop when the space bar is pressed

Figure 2.6 shows an example of an event handler in Scratch. The orange block on

the top defines an event handler that will be executed each time the space bar is pressed.

Blocks attached to it define what happens when the event occurs, in this case the back-

ground image of the stage will be changed.

Each running event handler in Scratch acts as a separate thread of execution. The

actions performed by one event handler can seemingly happen at the same time as the

actions performed by another event handler. However, this is not the quite the case. There

will at most be one event handler running at any given moment, but they take turns doing

work. The execution of event handlers is therefore concurrent, but not parallel (Maloney

et al., 2010). This is equivalent to the situation you have when you are running multiple

programs on a computer with a single processor core. The computer is seemingly doing

multiple things at once, but in reality is only switching fast from one task to another.

There are many different issues that arise from concurrency in computer science, such

as race conditions and deadlocks. Scratch tries to handle a lot of the issues related to

18

2.5 Python

concurrency behind the scenes, rather than providing synchronization primitives for the

programmer to use. Usually when programming with concurrency in mind one has no

guarantees as to when a thread will be paused and another will be started. Scratch on

the other hand provides a very clean and simple set of rules for when a thread will yield

control to another. Threads in Scratch only ever yield control to another if it has run out

of work i.e. terminates, decides to sleep for a given amount of time (sleep is a statement

block in the language), or if it has completed an iteration of a loop. In addition, Scratch

uses a simple round robin scheme for scheduling the threads. This means that the runtime

will treat all the threads equally, and no thread will be given processing time twice before

another gets its turn (Maloney et al., 2010).

The simple and predictable scheduling and yielding of control has a lot of powerful

effects. Among them is the fact that every sequence of code blocks becomes an atomic

operation, unless it includes a loop or a sleep statement. This removes a lot of the concerns

related to race conditions. The round robin scheduling makes sure that all loops execute at

the same pace, which is an uncommon luxury.

Scratch uses what is known as an actor based runtime model. Each sprite on the screen

is also a logical component in the runtime called an actor. The actor has a set of event

handlers that can modify the state of the sprite. The state of a sprite is a combination

of its visual properties, such as size, rotation, position etc, and a set of private variables.

Sprites can not modify each others’ state directly, but can rely on message passing for

coordination. There is a special actor that is not linked to a regular sprite, but rather to the

background of the screen. This actor is referred to as the scene. The variables defined in

the scope of the scene are available to all other actors directly, i.e. they are in the global

scope.

2.5 Python

Python is a very popular textual programming language. It is a very flexible language

with a simple and concise syntax. In contrast to Scratch, Python is not specifically created

for educational purposes, nor is it a domain specific language. It is a general purpose

programming language that is used both in academic circles and in the software industry.

19

Chapter 2. Background

As most GPLs, Python is not tightly coupled to any single library or framework, but

rather supports working with a multitude of different frameworks and libraries. Python

even provides simple mechanisms for interfacing with libraries implemented in other lan-

guages. The same thing goes for the development environment in general, Python is not

bound to any one IDE.

2.5.1 Syntax

Python has a relatively minimalistic syntax compared to many other languages. It is in-

tended to first and foremost be a concise and easily readable language.

for someCar in listOfCars:
#do something to someCar

Figure 2.7: Iterating over a collection using a foreach loop in Python

Comparing Figure 2.7 to Figure 2.2 some major differences between the syntax of C#

and Python can be seen. From a purely syntactical perspective the primary difference is

that Python uses a lot less character to express the same logic. The parenthesis have simply

been removed, and the braces enclosing the body of the loop have been replaced with a

single colon, at least it seems that way at first glance. However, it is worth mentioning that

there is something going on here that is not immediately apparent.
2

Whitespace aware syntax

Python uses what is called whitespace aware syntax. This means that whitespace, that is

characters that are displayed as empty space, hold meaning to the syntax. Examples of

whitespace characters are new lines, tabulations, and spaces. In Python all of these hold

meaning to the syntax and are used to group statements into code blocks. Languages such

as Java and C# use the curly brackets to denote the beginning and end of code blocks.
2The observant reader might have noticed that the expression ”Car someCar in listOfCars” from Figure 2.2

has been replaced with simply ”someCar in listOfCars”. The word ”Car” has been removed from the expression.
This is partly due to a semantic difference between the two languages. Python is a dynamically typed language
that allows elements of different types to be placed in the same list, as opposed to C# which requires some
common type for the elements of the list.

20

2.5 Python

2.5.2 Semantics

The semantics of Python are in many ways more traditional than those of Scratch, however,

it sets itself apart from many other textual GPLs in many ways. Python is built around a

principle of everything being an object. This is combined with a very flexible dynamic

type system and built in types that work well with all objects.

As previously mentioned programming using a GPL often includes spending a lot of

time defining the concepts of the problem domain in terms of the concepts of the GPL.

Python seeks to minimize this effort by encouraging extensive use of flexible built in types

as opposed to defining new types. It is often considered as idiomatic Python to use tuples

as opposed to defining a new class and instantiating it.

Python also discourages the use of traditional and verbose control structures. The for

loop is an example of a control structure that is very common, however, Python does not

provide a for loop. In stead it provides a foreach loop in combination with useful built in

generator functions, which can be used to produce the same effect. Figure 2.7 shows an

example of such a foreach loop, that simulates the behaviour of traditional for loops.

Python also has a dynamic type system which is an advantage in terms of keeping code

short and concise, as it does not require the programmer to define the type of a variable.

This is convenient in many situation, and is often held a great advantage of using the

language. However, there is a backside to this dynamic type system as well. Since types

are determined at runtime it opens up for a class of errors that do not exist in most statically

typed languages. Operators are often not applicable to all types of data, and applying an

operator to data that it is not defined for will cause an error. Avoiding these problems is

left to the programmer, which can be a source of many errors, especially for children.

21

Chapter 2. Background

22

Chapter 3
Methodology

This chapter describes the methodology applied in this project, and the reasoning behind

choosing it.

This thesis seeks to explore how the transition from visual to textual programming can

be eased, and seeks to find out how this can this can or should be done by combining

the two. This is a problem that can be addressed from many angles, such a pedagogical

science, psychology, or a technical perspective. Each of these perspectives can be assumed

to be of equal worth, but exploring them all in full is far beyond the scope of this project.

The natural approach for me, as a computer science student, was to explore the problem

from a technical point of view. By looking at the existing tools available for teaching

programming to children and examining their properties I could attempt to find the cause(s)

of the issues related to making the transition from visual to textual programming, and then

proceed to attempt to confirm that these were the actual source of the problems. The most

straight forward way of confirming my assumptions was to create a new set of tools that

would attempt to mitigate the issues by removing what was assumed to be their cause. The

new tools could then be tested and evaluated by their ability to solve the identified issues.

This aligns well with the tenets of the design science methodology, which seeks to

explore and solve problems by designing artifacts that attempt to solve them (March and

Smith, 1995). For this reason design science was chosen as the primary research method-

ology for this project.

23

Chapter 3. Methodology

3.1 Design science

Design science is a research methodology that is commonly used in information systems

(IS) research. Design science acknowledges the fact that technology is the result of intel-

ligent design, rather than a naturally occurring phenomenon. This distinction is important

as it can render the traditional research methods of natural science unfit for some design

research projects. Traditional natural science seeks to understand and explain how a phe-

nomenon works and to understand reality. However, when creating technology you usually

start off with a problem that needs to be solved, rather than a phenomenon that needs to

be explained. Design science acknowledges this distinction and provides some guidelines

for how research projects of this nature should be conducted.

(March and Smith, 1995) describes design science in terms of two orthogonal dimen-

sions, artifacts and design processes. The first dimension is concerned with what is actu-

ally designed through the research process. The products of design science research are

referred to as artifacts. There are four different types of artifacts that can be produced,

constructs, models, methods, and instantiations. These four constitute the first dimension

of design science. The other dimension is that of the design processes, that is, the steps

taken while doing the research. There are four design processes as well, build, evaluate,

theorize, and justify.

Build Evaluate Theorize Justify

Construct

Model

Method

Instantiation

Figure 3.1: The two dimensions of design science according to (March and Smith, 1995).

Figure 3.1 shows the two dimensions of design science. Constructs are formal defini-

24

3.1 Design science

tions of concepts within a given domain. Most areas of science got its own set of concepts

and expressions that are specific to the domain. In fact, these can be considered as domain

specific languages(DSL), and creating a new construct can be viewed simply as defining

and adding a new word to the DSL. Creating a new construct can enhance the language

used and help reason about a set of problems within the domain.

Models are sets of propositions or statements that express relationships between con-

structs. A model can be viewed as a description of how things are, they propose that

phenomena be understood in terms of certain concepts and the relationships among them.

Methods are sets of steps that can be taken to perform a task, such as an algorithm or

a guide as to how to approach a problem.

Finally we have instantiations, which can be considered as the realizations of con-

structs, models and methods. Instantiations can typically be fully implemented and work-

ing IT systems.

EvaluateBuild

TheorizeJustify

Figure 3.2: The iterative process of design science

The design processes, build, evaluate, theorize and justify are all important to the pro-

cess of generating useful knowledge throughout a design science project. Design science

is an iterative research methodology and all of the design processes mentioned are usually

repeated multiple times, as shown in Figure 3.2 throughout the course of a project.

The first step is that of building an actual artifact. Building an artifact is done by first

identifying a set of requirements for the artifact and then trying to create an artifact that

25

Chapter 3. Methodology

meets the given requirements. The initial requirements for an artifact can be derived exclu-

sively from data collected from other projects. However, during the proceeding iterations

of the cycle the requirements should be adapted to accommodate the knowledge gained

through the other design processes, evaluate, theorize, and justify.

Evaluation is the next step after building. As previously mentioned, artifacts are built

to solve problems. Evaluating an artifact usually involves putting the artifact in its in-

tended environment and collecting data regarding which degree it solves the problem it

was designed to solve.

After evaluation the researcher is left with data concerning how the artifact performed.

It is important to determine why and how the artifact worked or did not work within its

environment. This is what is referred to as the theorize step of design science. New

theories are created in an attempt to explain the data collected. The theories should explain

the characteristics of the artifact and its interaction with the environment that resulted in the

observed performance. Finally, justification of the developed theories must be provided.

Design science has several strengths and weaknesses. Among the pitfalls of design

science is ending up doing design as it is being done in the IT industry, rather than doing

actual research. It is important to focus on the generation of knowledge, rather than just

the creation of a functioning IT system. It is important that data collection and analysis is

used to explain the reasoning and arguments behind the findings throughout a project.

Design science is a suitable choice of method for answering the research questions for

this thesis, as answering them is hard to do without building and evaluating a prototype.

The first research question addresses how visual and textual programming can be com-

bined to ease the transition from visual to textual programming. Predicting the effects and

qualities of a proposed system is no simple task without a working prototype. Due to the

complexity of the problem it is hard to provide answers to this question without actually

implementing a possible solution and evaluating it.

3.1.1 Data collection

Data was collected for this project by means of a focus group. The focus group is a

qualitative data collection instrument that has been used in many different areas of research

26

3.1 Design science

throughout the years, especially marketing and human machine interaction. A focus group

is defined as a moderated discussion among 6-12 people who discuss a topic under the

direction of a moderator, whose role is to promote interaction and keep the discussion on

the topic of interest (Stewart and Shamdasani, 2014). The questions in a focus group are

open ended but at the same time carefully planned in advance.

During the initial planning of the project several other data collection instruments were

considered, including both qualitative and quantitative instruments. There were many as-

pects to take into consideration when deciding on how to collect data for this project. The

intended end users of the system are children and youths, and it was therefore natural to

use them as the source for data and feedback. Using children in research can introduce

additional challenges compared to using adults. Especially since the problem addressed in

this thesis is a relatively complex one, that can be viewed from many different angles and

that has many implications.

Another consideration is that the data collection instrument would have to be one that I

as a researcher would be able to implement properly, and make sure that the data collected

was of proper quality, rather than producing a lot of seemingly interesting data ridden with

flaws. Despite being quite familiar with the problem domain of teaching programming

to children, my formal background is strictly technical. Resisting the urge to go beyond

the extent of my abilities and delve too far into psychology and pedagogical science has

been a factor in deciding on which data collection instrument to use. With this in mind, it

was decided that the project would be evaluated using techniques from user driven design,

from which I had previous experience.

During an initial phase of the project it seemed appealing to evaluate the prototype

by letting the intended end users, children currently making the transition from visual to

textual programming, interact with the prototype directly. The prototype could then be

evaluated by the children’s ability to use the prototype to solve problems or simply gather

data about their impressions of using the system. However, it is important to ensure that

it is the core design decisions of the system, rather than the actual implementation that

are being evaluated. Direct access to the prototype sets very strict requirements to the

usability of the system, flaws such as bugs in the software might shift the children’s focus

27

Chapter 3. Methodology

away from the core design decisions and leave the collected data polluted with what is

essentially bug reports. For this reason giving children direct access to the prototype was

ruled out, and it was decided that they should rather be shown examples of the system in

use.

The developed prototype is a relatively complex system, due to the complexity of

the prototype it would be naive to assume that I would be able to consider every relevant

aspect of the system for evaluation. The data collection instrument chosen would therefore

have to be suited for new ideas and reflections to be brought up during the evaluation of the

prototype. In general, qualitative approaches are more suited for uncovering and exploring

new ideas (Sofaer, 1999). Therefore it was decided to choose a qualitative approach rather

than a quantitative one.

The focus group was chosen among the qualitative data collection instruments in an

attempt to ensure that the participants would be comfortable enough to express their opin-

ions and thoughts freely. Having a one on one interview with an adult can be intimidating

for children, which might in turn affect how they respond to questions. In order to avoid

this pitfall, the focus group was chosen as would allow the children to discuss the topics

in a group of their peers.

3.1.2 Data analysis

Data from focus groups can be analyzed using many different qualitative data analysis

techniques. For this thesis template analysis was chosen, as it provides a relatively struc-

tured and yet flexible way of analyzing the data. The first step in template analysis is to

create an initial template by exploring the focus group transcripts, academic literature, the

researcher’s own experiences, anecdotal and informal evidence, and other exploratory re-

search (King, 1998). Before conducting the data collection it was clear that there would

be some apparent patterns in the data that could be used as an initial template for data

analysis.

28

Chapter 4
Artifact Design

This project follows the guidelines of design science, and this document goes through the

steps of build, evaluate, theorize and justify. This chapter covers the first step of this pro-

cess, namely the building of the artifacts. The designed artifacts are presented along with

the reasoning behind their design, proceeded by a short description of the development

process.

The research objective of this project is to ease the transition from visual to textual

programming. Experience shows that this is a transition that many children struggle with

and find to be too challenging, and hence stop working on their programming abilities.

The learning curve is simply too steep for many children when trying to master textual

programming, even after mastering visual programming (Cheung et al., 2009). It is impor-

tant to note that this thesis does not attempt to find ways of getting children from visual to

textual programming faster, it is an attempt at finding out how more children can survive

the transition with their motivation intact.

The fundamental issue at hand is that the learning curve from visual to textual pro-

gramming is too steep. There is one or more issues related to making this transition that

causes this steep learning curve. During an early phase of this project a possible source of

many issues was identified, namely the fact that going from visual to textual programming

is often tightly coupled with another transition, the transition from using a DSL to using a

GPL.

29

Chapter 4. Artifact Design

The VPLs used to teach programming to children are almost exclusively DSLs, while

the textual languages that are being taught are GPLs. This is the case at Kodeklubben

Trondheim where the children are first taught Scratch, a visual DSL, and then proceed to

being taught Python, a textual GPL. The fundamental assumption posed by this thesis is

that this attempt at making two transitions at once is a central cause to why the learning

curve is too steep for many children. There are naturally some inherent challenges related

to mastering textual syntax, but these are not addressed in isolation by most children. For

this reason this project takes the approach of trying to mitigate the issues by creating an

environment that is able to isolate these two transitions from each other. Due to the in-

herent limitations of both DSLs and VPLs this project does not argue that either transition

should be ignored, but that they should be addressed one at a time.

DSL GPL

Visual

Textual

(a) Route taken by many children today.

DSL GPL

Visual

Textual

(b) Route proposed by this thesis.

Figure 4.1: Two possible routes from visual DSLs to textual GPLs

Figure 4.1a shows the double transition that is attempted by many children, and Fig-

ure 4.1b shows the separation proposed by this thesis. The children should be able to move

from using a visual DSL to using a textual DSL. After mastering a textual DSL they should

move on to using a textual GPL.

The first research question is related to how visual and textual programming can be

combined in order to ease the transition from visual to textual programming. The approach

taken in this thesis is to create a new DSL, an instantiation, that has both a visual and a

textual syntax, a programming language that can be edited either in a visual editor or a

traditional textual editor. This does not only isolate the transition from visual to textual

30

programming from the transition from DSL to GPL, but takes it one step further. This way

the users can write software in two languages that semantically identical, it is not just that

the visual and the textual languages are both DSLs, they are completely identical aside

from the syntax. It eliminates the need to learn any new programming concepts when

moving from one to the other, other than those related to syntax. For convenience the

new programming language has been given a name, Klang, which will be used throughout

the rest of this document. The two notations have been given their own names as well,

the visual notation is referred to as KlangVis, while the textual notation is referred to as

KlangText.

It is important to note that the artifacts are intended as an intermediate between the

existing VPLs used for teaching programming to children, such as Scratch, and textual

programming languages used in the software industry, such as Java or Python. The system

is not intended as one that is suited as children’s first introduction to programming, nor

one that they should stick with for a long time. It is simply an additional stepping stone

used to ease a specific part of the learning process. This means that the system is built

on the assumption that its users have got previous experience using VPLs such as Scratch,

and that they are moving towards mastering a textual GPL such as Python.

Scratch Python

(a) Direct transition from Scratch to Python.

Scratch KlangVis KlangText Python

(b) Transition from Scratch to Python with Klang as an intermediate language.

Figure 4.2: The intended context for the Klang programming langauge.

Figure 4.2a shows the path taken by children at Kodeklubben Trondheim today, a direct

transition from Scratch to Python. Figure 4.2b shows how KlangVis and KlangText are

31

Chapter 4. Artifact Design

intended to fit into the existing path. This thesis seeks to explore the general problem of

moving from visual to textual programming, however, Scratch and Python have been used

as concrete examples of such languages.

As can be seen from Figure 4.2 the introduction of Klang adds additional steps to

the process. Each of these steps are taken into consideration in the design and will be

examined in later chapters. The fundamental idea is that it should be easier for children

to move from Scratch to KlangVis, then from KlangVis to KlangText, and finally from

KlangText to Python, rather than going the direct route from Scratch to Python. This

means that each of these steps should be a lot simpler than going the direct route, if not,

the system is nothing but an inconvenience.

The second research question addresses how a development environment can support

the transition from visual to textual programming. The approach taken by this thesis is to

create a game development framework that tightly integrates with the Klang language, and

that can utilize existing tooling for the drawing of visuals. This approach draws inspiration

from other projects, such as Logo, Scratch, and Greenfoot, which all provide a default

way of doing computer graphics. The Klang language and the development framework

are tightly coupled in order to take advantage of the possibilities that come with creating

a DSL rather than a GPL. The development framework seeks to provide similar features

to those found in Scratch and provide some additional features in order to create an extra

incentive to using the prototype system. Given the integration between the framework

and the Klang language, the prototype can be considered as a DSL for creating visual

two-dimensional games.

KlangVis KlangText Game Development Framework

Klang Runtime

Figure 4.3: Overview of the artifacts developed.

32

4.1 The Artifacts

Figure 4.3 shows the artifacts that make up the prototype system. The Klang program-

ming language is linked to the game development framework, and provides two notations,

KlangVis and KlangText. The following sections will describe each of these artifacts and

the reasoning behind their design.

4.1 The Artifacts

The artifacts are all relatively tightly coupled. This has the consequence that the design

of one artifact has an impact on the design of the other two. The artifacts all contribute

towards the same goal, and need to work properly together. However, each of them need

to work properly in isolation as well.

Transitions shown in Figure 4.2b have been used as guidelines for the design of the

artifacts. The design of KlangVis takes into consideration both the transition from Scratch

to KlangVis and the transition from KlangVis to KlangText, and the equivalent is the case

for KlangText and its surrounding transitions.

4.1.1 Klang

The Klang programming language, like any other language, is defined in terms of syntax

and semantics. The semantics of the language define what can be expressed in the lan-

guage, while the syntax defines how it can be expressed. The most fundamental decisions

when creating a programming language is often that of the semantics. As previously men-

tioned, is important that the design of the language is suited for all of the transitions from

Figure 4.2b. It is important that the semantics of Klang cater to the right transitions. The

transition from KlangText to languages such as Python, is a transition from a DSL to a

GPL, and will involve major semantic differences either way. KlangVis and KlangText

share the same semantics, therefore this transition is of little interest when defining the

semantics of the language. However, it is important that the experience of moving from

languages such as Scratch to KlangVis is relatively painless, both in terms of mastering

syntax and semantics.

For these reasons the semantics of the Klang are relatively similar to Scratch. In addi-

33

Chapter 4. Artifact Design

tion, by borrowing concepts from Scratch the project is hopefully able to build further on

the success of Scratch, rather than ending up reinventing the wheel. The language borrows

concepts such as an actor based runtime model, and implements the same concurrency

mechanisms. Programs are defined in terms of interacting actors that respond to occurring

events and communicate with each other through message passing.

As in Scratch, the actors are all coupled with visual components that are defined by

the game development framework. There are two different types of actor, a special actor

referred to as the scene, and any number of sprite actors. The sprite actors are visual

components that can be moved around on a canvas, while the scene is the canvas itself.

Each actor is only able to modify its own state, such as moving around on the canvas or

changing color etc.

Scene actor

Sprite actor 1 Sprite actor 2

Figure 4.4: Variable scopes in Klang. Each actor has got a private variable scope, aside from the
scene actor, which is treated as the global scope.

In addition to being able to modify the state of its visual representation, each actor can

define a set of variables. The variables are private to each actor, aside from the variables

of the scene actor that are placed in the global scope. Figure 4.4 shows an abstract repre-

sentation of a program with two sprite actors, where the edges represent access to another

sprite’s variable scope.

The statements and expressions available in the language are mostly ones that are

common to just about any imperative programming language. The language provides

mechanisms such as if statements, loops, basic arithmetic operators etc. These are all

34

4.1 The Artifacts

concepts that are found in most popular programming languages, and are nothing unique

to this language. Klang does however provide some simplified versions of different loops,

such as a forever loop, which is a loop that executes its body repeatedly until the program

is stopped.

The actor based runtime model is thoroughly event driven, meaning that any sequence

of instructions executed is a response to some event. There are many different types of

events, such as the game starting, a sprite being clicked on, or a key being pressed. Code

sequences executed in response to events are usually referred to as event handlers. The ex-

ecution of event handlers in Klang is performed in a similar manner as they are in Scratch.

In many programming environments event handlers need to be short lived as they are exe-

cuted one at a time by the same thread of execution, and creating a long lived event handler

would block the execution of other handlers.

However, Klang solves this issue by borrowing the concurrency model of Scratch.

Scratch executes event handlers concurrently and provide synchronization mechanisms

behind the scenes. Event handlers are executed concurrently, but not in parallel, meaning

that there will only ever be one event handler running at a time, but their execution will be

interleaved. The system uses non-preemptive scheduling, meaning that the event handlers

are never forced to pause, but decide for themselves when they are to yield control to

another. The only way to create a long lived event handler in Scratch is to use loops to

repeat some task over and over, and the loops implemented in Scratch will yield control

to another handler after completing an iteration (Maloney et al., 2010). This has the great

benefit of enabling the user to use infinite loops to perform long running tasks, without

having to think about either synchronization or blocking the execution of the program. By

borrowing this concurrency model Klang is able to provide the same level of convenience.

A fundamental strength that languages such as Scratch has is that they make it impos-

sible to create syntactically invalid programs, and there is no way of generating runtime er-

rors. As opposed to Scratch, which is an exclusively visual language, Klang is both visual

and textual. Therefore there is no way of guaranteeing that syntax errors will not occur,

however, it has been designed to avoid any kind of runtime errors. In order to achieve this

guarantee when it comes to runtime errors Klang is a statically typed language. This way,

35

Chapter 4. Artifact Design

errors such as applying an operator to data that it is not defined for will be caught in the

code editor, rather than during execution. There are three data types available, boolean

values, double precision floating point numbers, and strings. The language also provides

thorough static analysis which allows for any possible source of errors to be caught ahead

of execution.

Further details about the Klang language can be found in the appendix in the form of

UML Diagrams.

KlangVis - visual syntax

The core of this project is related to the transition from KlangVis to KlangText, and espe-

cially the syntactical perspective of this transition. This project tries to ease exactly this

transition, from visual notation to textual notation. However, as previously mentioned the

transition from Scratch to KlangVis is also an important one in this regard. The visual syn-

tax should feel familiar to the user when they first start using it, but there should also be

some consistency between the visual and textual syntax in order to smooth the transition

from one to the other.

KlangVis is built on top the visual editor presented in (Hungnes, 2016), and only mod-

ifies its defaults slightly. This existing editor defines the visual syntax of KlangVis. It

allows for some customization out of the box which has been used to create a syntax

which is relatively similar to that of both Scratch and KlangText.

Figure 4.5 shows an example Klang program using the KlangVis notation. The exam-

ple program shown here defines behaviour for a sprite actor called Ball. Ball has got a

single event handler, that is set to be triggered when a GameStartEvent occurs. The event

handler contains a forever loop that repeats a call to a function named print, which takes a

string parameter. The string parameter is the concatenation of two smaller strings ”Hello”

and ”, world!”. In other words, this program will continuously print the string ”Hello,

world!” to the console.

The guiding principle behind the design of the visual syntax has been to make it impos-

sible for syntax errors to occur. There is no way of assembling blocks that are incompatible

with each other, such as creating a block that tries to subtract two boolean values. The vi-

36

4.1 The Artifacts

Figure 4.5: An example Klang program shown using the visual notation

sual editor relies heavily on static analysis to avoid any syntax errors, and will in stead of

providing error messages simply refuse to connect incompatible blocks.

The visual syntax is designed to be relatively consistent with the textual syntax. Blocks

that are assembled horizontally are mostly equivalent to textual code written on a single

line, and blocks assembled vertically are equivalent to several lines of code. There are

however a few exceptions here, due to some limitations in the visual editor that KlangVis

is built on.

Despite some rudimentary customization of the editor, the visual syntax still relies

heavily on the defaults of the original editor. There is definitely room for improvement in

the visual syntax in terms of color coding, and the layout and sizing of blocks. This will

be elaborated further on in later chapters.

KlangText - textual syntax

Just as the design of KlangVis, the design of KlangText takes multiple considerations into

account. It is important that making the transition to KlangText from KlangVis should be

as simple as possible. The textual syntax is designed in a way that borrows principles from

high level textual languages such as Python. It is intended to be as simple and concise as

possible, utilizing few keywords and few special characters.

37

Chapter 4. Artifact Design

KlangText is a whitespace aware language, meaning that it puts syntactic value into

whitespace characters, that is, characters that are displayed simply as empty space in most

editors. Examples of whitespace characters are the newline character, tabulation, and sin-

gle spaces. Many traditional programming language simply ignore whitespace characters,

which gives the programmer some additional freedom in terms of formatting their code

using empty space. However, giving the users freedom to format code however they like is

not always a good idea. Experience shows that many children do not care to properly for-

mat their code unless forced to do so, and therefore write mangled and hard to read code.

KlangText forces the user to write relatively structured code, and can at the same time

enforce formatting rules that make it easier to see the resemblance between KlangText and

KlangVis.

As previously mentioned, KlangText draws inspiration from other languages, and espe-

cially Python. Python seeks to be an easily readable language, and often favours keywords

over punctuation. This is also the case for KlangText. Among other things, it provides

boolean operators such as ”and” and ”or”, as opposed to ”&&” and ”||”. This way it seeks

to become more easily readable and less obscure.

Figure 4.6: An example Klang program shown using the textual notation

Figure 4.6 shows the same program as Figure 4.5 using the textual notation as opposed

to the visual one. The semantics are therefore naturally completely identical. The first

line of the code defines a sprite actor called Ball, that has an event handler that is set

to be triggered when the game starts. The event handler executes a forever loop that

repeatedly concatenates the strings ”Hello” and ”, world!” and passes the resulting string

to the function called print.

38

4.1 The Artifacts

4.1.2 The game development framework

The game development framework is tightly integrated with the Klang programming lan-

gauge. It defines what which actions the actors can perform, such as moving around,

rotating etc.

The game development framework is built on top of a existing UI framework, called

JavaFX and an existing physics engine called JBox2d. The framework wraps around these

to existing libraries and exposes functionality that is similar to that exposed by the Scratch

framework. However, since it is built on top of a proper physics engine, it is also capable

of doing more advanced simulations out of the box.

Program definition

Physics and graphics definition (FXML)Behaviour definition (klang)

Figure 4.7: The composition of a Klang program.

The work flow of using prototype is aimed to be similar to that of Scratch. In Scratch

actors are created simply as visual sprites on the screen, and then their behavior is defined

by writing code. The prototype takes the same approach by first letting the user define

the visual and physical properties of an actor, and the define its behavior in the Klang

language. The prototype lets the user use FXML for defining the actors of the program.

FXML is a language designed for creating UI for Java applications, however, this project

extends FXML by also letting you define the physical properties of each visual element.

Programs written using the prototype are therefore divided among two files, the FXML file

and the Klang file, as shown in Figure 4.7. FXML is an existing technology, and there is

existing tooling in place for generating FXML, such that you do not have to write FXML

by hand.

This approach draws inspiration from other projects, such as Scratch, Logo, Green-

foot etc, which all provide a simple and out of the box way of doing computer graphics.

In addition to computer graphics, this framework also provides a default mechanism for

physics simulation, which hopefully provides an additional incentive for using the system.

39

Chapter 4. Artifact Design

4.2 Development process

The prototype presented in the previous section is a relatively complex piece of software

and its implementation relies on many interconnecting parts. The development of such

a system with several tightly coupled components is prone to mistakes, such as design

decisions that seem optimal when looking at one part of the system, but fall short when

the other parts are taken into consideration. It is therefore important to ensure that not

too much time is spent looking at a single isolated component of the system, at least not

without properly planning its implementation in advance.

Planning the implementation of a system in advance is often quite challenging, and

unforeseen problems have a tendency to appear during implementation. This is especially

true in situations where the developer is relatively unfamiliar with either the technology

stack used or the type of system to be created, which has been the case for me during this

project.

During this project these issues have been mitigated by combining thorough planning

up front with an active policy of switching between working on each part of the sys-

tem. The initial planning set out to uncover which features needed to be supported by the

system, that is, which language constructs were needed, and the outline of the features

provided by the development framework. It was decided early on that the system should

be capable of doing many of the same things that Scratch does, in order to build further on

the foundation laid down by Scratch.

However, Scratch is a vast system and implementing all of its functionality is far be-

yond the scope of this project. Therefore a selection has been made from the functionality

available in Scratch. This was a two-step process, first a selection of Scratch programming

exercises was chosen, proceeded by a process of deriving functional requirements based

on what was needed to solve the exercises.

The selection of programming exercises contained tasks that were all relatively dif-

ferent and that had been used for a long time in the Kodeklubben Trondheim Scratch

courses. Kodeklubben Trondheim is a part of a national initiative in Norway, that is sim-

ply called Kodeklubben. The programming exercises chosen were not exclusively used in

Trondheim, but had also been used around the country. Despite the fact that I am quite

40

4.2 Development process

experienced when it comes to teaching programming to children using Scratch, there was

a need for a second opinion when making the selection of exercises. It was important that

they were representative of the most important features of Scratch. Therefore an expert

on the matter and creator of many of the exercises used by Kodeklubben was contacted.

Using his input I was able to make a selection of four exercises that were deemed varied

enough to give an insight into the core functionality of Scratch.

The selected exercises were then analysed and the features needed to solve them were

noted and written down as the initial functional requirements for the prototype. The re-

quirements were then given a priority and categorized. The requirements that were given

the highest priority were those concerned with responding to different types of events, and

basic movement, such as translation and rotation.

41

Chapter 4. Artifact Design

42

Chapter 5
Artifact Evaluation

This chapter presents the details of evaluation the artifacts built during this project, includ-

ing the planning and execution of a focus group session, a presentation of the results, as

well as a discussion of their implications.

5.1 The Focus Group

Before initiating a data collection process it is important to have a clear understanding of

what one seeks to uncover. There are several pitfalls that are common to data collection

in design science, one of which is to gather data primarily about the prototype implemen-

tation and fail to shed light on the research questions. For this reason this project has had

a clear focus on trying to gather data that is relevant to the research questions, such as the

impact of each of the core design decisions. Aspects such as the effects and implications

of having a single programming language with two notations would have to be explored.

However, this thesis presents what is a single iteration of the design science cycle. This

iteration should, in addition to providing preliminary answers to the research questions,

provide useful data that can be used to prepare for future iterations. This includes imple-

mentation specifics details that can be used to improve the prototype.

43

Chapter 5. Artifact Evaluation

5.1.1 Participants

The decision of choosing participants for a focus group is one of great importance and has

a major impact on which data you receive and how that data should be treated. There were

two primary options considered for this project, using domain experts, and using intended

end users of the system. It was decided to use intended end users for this project.

The participants of the focus group were chosen based on their previous program-

ming experience. It was important to ensure that the participants were in fact the intended

users of the system, children making the transition from visual to textual programming.

The children chosen were all participants of a Java programming course at Kodeklubben

Trondheim. The Java course is the most advanced course that Kodeklubben Trondheim

provides, meaning that its participants were likely to have both previous experience us-

ing Scratch, Python and Java, which meant that they would probably have insight into the

problem addressed by this thesis. It should also be mentioned that the participants had

previous experience using FXML, on which the game development framework is built.

In advance of the focus group session the parents of the children were contacted by

email and asked for permission to use them in the research. None of the children were

denied participation, however, some did not respond. The children that I had not gotten

permission to use were naturally excluded from the focus group session.

5.1.2 Roles

Using a focus group requires that someone leads and moderates the discussion. It was

natural for me to claim this responsibility for myself, as I had the most insight into problem

addressed by this thesis and which aspects that I wanted to gain further insight into.

It was decided not to do any form of recording during the session, and rely solely on

taking notes. If I were to attempt to both moderate the discussion and rely exclusively on

my own notes, a lot of useful data would probably be lost before making it into the notes.

For this reason one of my co-founders of Kodeklubben Trondheim was recruited for the

purpose of taking additional notes. He was chosen as he had insight the problem addressed

by this thesis, and would be able to differentiate between useful and less useful data.

44

5.1 The Focus Group

5.1.3 Recording the Focus Group

Video or audio recording the event was considered, but was discarded as an option due to

the fact that it might create a more tense environment and lead to children not wanting to

attend, or not feeling comfortable enough to speak freely. Therefore it was decided to rely

on taking notes. The notes that were taken during the focus group would include direct

quotes of what was said by the participants, but also observations of their emotions, such

as level of enthusiasm etc.

5.1.4 Time and Place

The focus group participants all attended the same programming course at Kodeklubben

Trondheim. It was therefore both convenient and beneficial to the research to perform the

focus group session during a regular course night. This way the children would hopefully

feel more comfortable and familiar than they would have at some other location, and they

did not need to change their schedules in any way.

In order to ensure that the children got a chance to know me and my assistant in ad-

vance of the focus group session it was also decided that we would step in as teachers for

the Java course this night. This way we would be able to interact with the children and

hopefully ensure that they would be comfortable speaking freely during the focus group

session. This was an important aspect as the session was used to evaluate the artifacts, and

for the data to be useful the participants would have to be comfortable enough to give both

positive and negative feedback, and bring up new ideas.

5.1.5 Focus Group Plan

The general outline of the plan for the focus group session was as follows:

1. Warm-up questions

2. Discussion of the transition from visual to textual programming

3. Discussion of using a programming language with two notations as a solution to the

problem

45

Chapter 5. Artifact Evaluation

4. Interactive demonstration of the prototype

5. Discussion of the prototype

There were two levels of questions prepared, initial open ended questions and sets of

optional and more specific follow up questions that would be used in situations where

the discussions needed some extra help to get started. The questions can be found in the

appendix.

Warm-up Questions

Despite being able to interact with the participants in advance of the focus group session,

it was assumed that a couple of warm-up questions would be beneficial. Initiating the

session would have to include rearranging the seating and would create a clear break from

the regular events of the programming course. Ensuring that any tension built up during

this process would be alleviated before moving onto the important questions was a priority.

For this reason a couple of warm-up questions were prepared. These were mostly

simply yes-no questions, and served only to reaffirm some basic assumptions, lighten the

mood, and make sure that everyone got used to speaking up in the group.

Discussing the Transition

This project addresses a problem that is of relatively complex nature, and it would be

reasonable to assume that the participants could have fundamentally different views on the

subject than my own. Therefore a set of questions were prepared that sought to explore the

participants experiences of moving from visual to textual programming. These included

questions that sought to explore whether or not they actually found the transition to be

troublesome, and their reasons for thinking that it was or was not so.

Discussing the Approach

The artifacts developed throughout this project represents a specific approach to solving

the problem at hand. Evaluating this approach in general was important to provide useful

answers to the research questions.

46

5.1 The Focus Group

For this reason a set of questions were prepared that explored the participants thoughts

about the approach that this project has taken. The questions mostly revolved around their

thought around having a programming language with one visual and one textual syntax.

These questions were to be posed without informing the participants of the fact that this

was an approach that I had taken, in an attempt at not guiding them into being overly

positive. In advance of these questions the children were given an explanation of the

difference between syntax and semantics, and shown examples of how the same semantic

construct could be present in different languages with different syntax.

Demonstration

Naturally, the data collection process for this project would have to narrow in on the devel-

oped artifacts. It was decided that the participants would be given an interactive demon-

stration of the prototype system. Therefore a set of programming exercises were prepared

that would be solved in collaboration between myself and the participants. The prepared

exercises were such that the participants should be able to apply the same type of reason-

ing as in Scratch when solving them. I would take care of the direct interaction with the

system, and write the code that they suggested.

The demonstration would serve two purposes, giving the children insight into the pro-

totype, which would lay the groundwork for further discussion, but also seeing how capa-

ble they were of using the system to solve tasks, to which degree they were able to apply

their experience from Scratch to solve tasks etc.

Discussing the Prototype

The demonstration would be followed up with a discussion of the prototype. This way

flaws in the implementation could be uncovered, and additional light could be shed on

the core design decisions. The questions sought to explore to which degree the system

felt familiar and intuitive to them, and whether or not they were able to see resemblance

between Klang and other languages. The final questions were concerned with room for

improvement within the prototype, both in terms of the language and the programming

environment in general.

47

Chapter 5. Artifact Evaluation

5.2 Analysis

Template analysis was used as the primary technique for data analysis for this project. The

data collected through the focus group was in the form of a collection of notes containing

concrete quotes from the participants, paraphrases and general observations. The goal of

the analysis was to uncover general trends in the data, such as which design decisions

the participants were approving or disapproving of, to which degree they were able to

understand the different aspects of the system etc.

The first phase of template analysis is to create a template of categories that the data

is inserted into. The template created for this project was based on the set of transitions

shown in Figure 4.2. These transitions from Scratch and all the way to Python are the

underlying essence of this project, and they all need to be taken into consideration. It was

therefore natural to group the data in this way, and then proceed to analyze the data in each

category. However, the categories were not considered as a partitioning, and the same data

points could be put into more than one category.

1. Scratch to KlangVis

2. KlangVis to KlangText

3. KlangText to Python

Proceeding the categorization each category was examined in isolation and the data

was interpreted in the context of the core design decisions of the artifacts. The data as-

signed to each category was first skimmed through in order to get an initial impression of

the data in each category, before moving on to more thorough analysis.

By skimming the data a couple of patterns emerged, these were patterns were used to

do some rudimentary color coding of the data. This color coding was used as an indication

as to which aspects were most important in the context of each category.

5.3 Results

This section will present the results found by analyzing the data. The results are presented

in the context of the transitions shown in Figure 4.2.

48

5.3 Results

5.3.1 From Scratch to KlangVis

The transition from Scratch to KlangVis is intended as the first step in the process from

visual to textual programming. This transition is key to whether or not the users would be

interested in even using the system. The data shows a couple of clear patterns.

The first of these patterns is that the participants find Scratch to be somehow childish

and not to be considered as proper programming. They also refer to programming in

Scratch as ”just assembling things” rather than actually creating something. They express

a desire for more features to be available in languages such as Scratch, and find the idea

of being able to do physics simulations very appealing. A simple demonstration of the

physics capabilities of the Klang language was literally met with applause.

However, the participants found that Scratch was an easy language to learn. It did

take some getting used to, but that was expected as it for most of them was their first

programming language. They were unable to come up with anything in particular that

they remembered as hard to learn in Scratch. They found both the syntax and semantics

of the language to be relatively simple to grasp. They were also very aware of the fact that

Scratch did not produce any error messages, and ”just worked”. Error messages in Python

and Java were considered as hard to read and a source of much frustration.

The participants were easily able able to see the resemblance between the semantics

of Klang and Scratch. The actor based runtime model seemed familiar to them and they

recognized the concepts that were common to the two languages, such as sprites, event

handlers, and loops. However, there was some criticism of the syntax of the visual no-

tation, KlangVis. Despite being able to understand the code by looking at it thoroughly,

they found that it was not properly organized. They requested changes such as a more

understandable pattern in how the blocks were connected as they could not detect a proper

pattern in how it was done. In addition, improvements of the visual representations of the

blocks were requested, such as clearer edges around the blocks, and larger text labels on

each block.

The participants were concerned with the UI of the visual editors of both Scratch and

KlangVis. Both languages provide a palette of blocks that can be dragged into the code

editor. They found that having to look for blocks in a palette was too cumbersome and

49

Chapter 5. Artifact Evaluation

wanted to be able to search for the blocks they wanted. Scratch divides the blocks into

categories in the palette, while KlangVis has only got a single flat list in the palette. The

absence of categorization was pointed out as a major flaw in its design, as too much time

had to be spent looking for the right block in the palette. It should be mentioned that the

editor that KlangVis is built upon supports this kind of categorization, and that implement-

ing such a feature in future versions of KlangVis should be trivial.

5.3.2 From KlangVis to KlangText

This transition is at the core of this thesis. This is were the actual transition from visual to

textual programming takes place.

The participants did all express that the transition from visual to textual programming

was a difficult one. They struggled with things such as remembering the exact syntax

of different statements and expressions, and found that it was often the case that they

remembered how a particular concept worked, but not how to write it.

The data shows that the children did not find the semantics of the Klang language to be

particularly hard, and they were able to see the resemblance to Scratch. The observations

made during the demonstration show that the children are able to apply the same reasoning

was they would in Scratch to Klang when solving problems. Understanding the difference

between syntax and semantics did not strike them as difficult, and understanding that a

language could have two different notations was an easy concept to grasp.

Different ways of using a system such as Klang was also present in the data. The

children discussed how they could use the palette from the visual language to find concepts

that they did not remember how to write, and use it to generate the textual code that they

wanted. There is a general optimism expressed towards a system with a visual and a

textual notation present in the data, and the participants found that it would be a useful

tool for mastering visual syntax. However, there was also an expressed desire for this kind

of translation mechanism between existing languages, such as Scratch and Python. The

participants pictured being able to generate Python code from Scratch blocks etc.

There was also expressed opinions that the syntax of KlangText was simple to read

and understand. The children were unified in the opinion that the syntax of Python was

50

5.4 Discussion

easier to get used to than that of Java. In general they wanted as few special characters as

possible in the language, such as curly brackets etc.

5.3.3 From KlangText to Python

The transition from KlangText to existing textual languages such as Python is the final

step of the process shown in figure 4.2b. It is a transition that is intended to occur after

the actual transition from visual to textual programming, however, it holds importance as

Klang is designed to be a stepping stone for other languages.

The data shows that the participants found that it was hard to learn new concepts in

textual GPLs. It was not necessarily the semantics of the new constructs that were hard

to understand, but rather remembering how they were written. The participants showed a

desire for the generation of code to existing languages such as Python or Java. Particularly

there is an expressed opinion that these languages are hard to get used to, and learning

both new syntax and new concepts is hard.

Participants also found that it was harder to get used to the syntax of Java than Python.

They found the syntax og KlangText, which is inspired by Python, to be quite simple and

easy to read. They saw the commonalities between KlangText and Python and saw the

system as a useful stepping stone.

5.4 Discussion

The answers provided by this thesis should be considered as preliminary, however, treated

as such they are seemingly trustworthy. This project has completed what can be considered

a single iteration of the design science cycle. There is a need for more iterations to be

completed before any definitive answers can be provided.

The greatest limitation of the data is that it has not been collected on the basis of the

users interacting with the prototype directly, but rather by having it demonstrated. There

is a major difference between using a system and having it demonstrated. Despite the fact

that the focus group participants did provide reasoning and participated in solving simple

programming tasks using the system, they were guided while doing so. There is reason to

51

Chapter 5. Artifact Evaluation

believe that giving end users access to the prototype and letting them use it solve problems

on their own would uncover flaws in its design, or shed light on new parts of the problem

domain.

The data collected and answers provided are therefore to be considered as preliminary,

rather than definitive and should be treated as such. However, given its status as pre-

liminary the data is trustworthy. There are several pitfalls associated with collecting data

through the use of focus groups, especially when using children as the participants. One of

the major pitfalls is to fail to create an environment where the participants feel free to ex-

press their opinions, where the participants end up either providing too shallow answers or

answers that they assume would please the researcher. Before conducting data collection

for this project a lot of effort was put into creating an environment where the participants

would feel comfortable and able to express themselves. This effort was seemingly success-

ful, and resulted in a lively discussion that included both positive and negative feedback.

The participants did not fear giving negative feedback, which can clearly be seen from

looking at the data concerning the visual syntax of KlangVis.

However, another possible pitfall of interview techniques, such as the focus group,

is the elite bias. Elite bias is a term that describes the situation where the data has not

collected on the basis of a representative selection of interview subjects, but rather favours

an elite group, such as an above average well-informed group of people. The elite bias

can lead to data that fails to capture the broader picture (Myers and Newman, 2007). The

participants used in the data collection for this project were all participants who attended

the Kodeklubben Trondheim Java course, which is our most advanced course. There is

reason to believe that these children belong to an elite group of young programmers, and

that the data fails to capture the needs of less skilled children.

5.4.1 Research question 1

The first research question posed by this thesis was ”How can a textual and a visual pro-

gramming language be combined to ease the transition from visual to textual program-

ming?”.

The general approach taken by this project was to create two programming languages

52

5.4 Discussion

with common semantics, one visual and one textual, that enabled simple and direct trans-

lation between the two. The intent was to create an environment where visual and textual

programming could be used interchangeably, and that could isolate the syntactical transi-

tion from a semantic transition. The language was built on the assumption that making the

transition from visual to textual programming was made even more difficult as it was often

coupled with a transition from DSL to GPL.

The results clearly indicate that this approach can be a viable solution to this problem.

The core concept of having two notations for the same underlying language appeared to

be easy for the children to grasp and the work flow of using the system was immediately

understood. The children were able to picture useful ways of utilizing the system to ease

the transition, by addressing what they found to be the core of the issue, which simply was

to remember the textual notation for each language construct. The children pictured using

the visual syntax as a fallback mechanism in cases where they did not remember a specific

part of the textual notation.

The results also confirm that the transition from visual to textual programming is a

challenging one, and that these are related to both syntax and semantics. The participants

expressed that learning textual syntax was challenging, and even more so when combined

with learning new semantic concepts. However, recognizing common semantic constructs

between languages was deemed to be less of a challenge. This confirms my assumption

that the transition from visual to textual programming should be kept separate from the

transition from using a DSL to using a GPL.

The data also sheds some light on how a system such as this one should be designed.

Klang heavily borrows semantics from the Scratch programming language, the reason for

which is two-fold, minimizing the effort needed to move from Scratch to KlangVis, and

making sure that the semantics of Klang are generally easy to grasp. The results show that

in this respect the prototype was successful. The children easily recognized the concepts

from Scratch in Klang, and were able to apply the same type of logic and reasoning that

they had gotten used to in Scratch. Defining behaviour for visually represented actors was

familiar ground, and hence easy to grasp.

There were issues related to the design of Klang as well, however, not related to se-

53

Chapter 5. Artifact Evaluation

mantics. The design of the visual notation, KlangVis, was highly criticized. The children

found the visual representations to be too similar to each other, their colors to be seemingly

random, and the border around each one to be too diffuse. In addition, they struggled to

see a clear pattern in how blocks were organized, some were connected horizontally, some

vertically. These two aspects combined resulted in a visual syntax where blocks blended

into each other, and the meaning of sequences of code became unclear.

The data also confirms that errors produced in programming languages is a large source

of issues for children. Reading and interpreting error messages is hard, the complete lack

of error messages in Scratch was something that the participants missed when using textual

languages. Klang is not able avoid all errors, due to the fact that it is in part a textual

language, which makes avoiding syntax errors close to impossible. However, avoiding

runtime errors appears to be a good choice for programming languages aimed towards

children.

The textual syntax received almost exclusively positive feedback. There was an ex-

pressed desire for a textual syntax that used as few special characters as possible, which

was a guiding principle when developing KlangText. The children expressed that the syn-

tax of Python was easier to master than that of Java, and that drawing inspiration from

Python as opposed to Java was a good decision for this type of system. However, it should

be mentioned that the children also expressed that they found the syntax of Java to be more

structured and reliable over time.

In summary, the results confirm that the approach of creating a language with both a

visual and textual syntax is a good approach to easing the transition from visual to textual

programming. Isolating the transition from visual to textual programming from the transi-

tion from a DSL to GPL also seems beneficial. Borrowing semantics from languages such

as Scratch also appears to be a good choice, as it makes it easier to transition to using the

system. Errors should be avoided to the extent possible, and creating a visual notation that

makes it impossible to create syntax errors is important. The visual notation should be

thoroughly organized, using techniques such as color coding and categorization for code

blocks.

54

5.4 Discussion

5.4.2 Research question 2

The second research question for this project was ”How can a development environment

aid the transition from visual to textual programming?”. This relates to how the program-

ming environment can assist the transition from visual to textual programming, in a way

that is not directly related to the programming language design.

The approach taken by this project was to create a game development framework that

was tightly integrated with the language, and enabled the use of existing tooling for draw-

ing graphics, as well as providing basic physics simulation capabilities. The intention was

to provide a simple, yet powerful way of doing both graphics and physics.

The results clearly show that the focus group participants were enthusiastic about the

possibility of being able to do basic physics simulations. Being able to physics simulations

was expressed as something that they had previously wanted to do, however, they had

not been able to. These capabilities clearly provide an additional incentive for using the

system.

In addition to providing additional features to the system, the framework ensures a

similar work flow in Klang as that of Scratch. Actors are first defined in terms of the

visual and physical properties, then behavior is specified in the Klang language. This

appears to be an intuitive way of programming for many children, possibly due to the fact

that it makes programing less abstract. The code that is written is specifically linked to a

visible entity that can be seen on the screen.

55

Chapter 5. Artifact Evaluation

56

Chapter 6
Conclusion and Future Work

This chapter summarizes and reflects on the work done during this project, and presents

the future work to be done.

6.1 Conclusion

Through this thesis I have explored the problem of children making the transition from

visual to textual programming, and sought to find ways of easing this transition. The

project has looked into other attempts at solving the same problem, and proposed a new

solution. The solution has been implemented in the form of a working prototype. The

prototype is a new programming language that is a DSL with two syntaxes, one visual and

one textual. The programming language is tightly integrated with a game development

framework that enables the users to write simple two-dimensional games. The prototype

has been evaluated by arranging a focus group session where the intended end users have

discussed the problem and my approach to solving it.

The main finding of this project is that the issues related to making the transition from

visual to textual programming is that it is not only related to syntax, but also semantics.

The visual programming languages used to teach programming to children are mostly

DSLs, while the textual languages that they proceed to learning are often GPLs. This

means that there are big semantic differences that the children need to get accustomed to

57

Chapter 6. Conclusion and Future Work

while at the same time trying to master textual syntax. The results indicate that this double

transition is indeed an issue for young programmers.

The developed prototype tries to mitigate these issues by enabling the users to choose

freely between visual and textual notation, without worrying about semantic differences.

The results indicate that this is a viable solution to the problem. However, the answers

provided by this thesis are to be treated as preliminary, and further research is needed in

order to provide any definitive answers.

The main pitfall that this project fell into was that of not putting enough weight on the

principle of ”just enough prototyping”. This means that one should not put more effort

into a prototype than what is required to provide the answers that one seeks. During this

project too much time has been spent developing parts of the prototype system that were

never a central part of the artifact evaluation. The project would have benefited from a

narrower scope on the prototype, which would have freed up time that could have been

used to ensure better quality of the prototype and the data collection process.

6.2 Future Work

The answers provided in this thesis provide initial insight into the transition from visual to

textual programming. However, the work presented by this thesis can only be considered

as a single iteration of the design science cycle of build, evaluate, theorize, and justify.

The work done lays a solid foundation for future research, and proceeding iterations.

The build phase of the next iteration should take into consideration the knowledge

gained this far. The main drawback of the work done in this iteration is that the intended

end users were never allowed to interact with the prototype directly. This was due to the

prototype having usability issues that would have made direct interaction frustrating for

the users, and would skew the results. These issues should be solved, and quality and

robustness of the prototype should be ensured. This way the prototype can be evaluated in

a more proper context and more definitive results can be provided.

There should also be steps taken to ensure that the chance of these types of issues

surfacing again is minimized. There will be future changes to the design of the prototype,

and its implementation should be able to withstand changes without introducing too many

58

6.2 Future Work

new and undiscovered bugs. The current implementation is modular and easily adaptable

to change, however, it has poor test coverage. In order to make sure that bugs introduced

by new changes are captured early on, there should developed a thorough test suite that

covers the core aspects of the language.

The data collected in this thesis is also a possible victim of the elite bias Myers and

Newman (2007). Future iterations should take care to avoid this pitfall, and try to reaffirm

that the results presented here can be reproduced. The prototype should be tested by

children belonging to a broader group than the participants of the Kodeklubben Trondheim

Java course.

The next iteration should also explore in deeper detail how a visual syntax should be

designed. The results show that there is a lot of room for improvement in the visual syntax

of KlangVis, the design decisions of other visual notations should be studied in greater

detail and used to create a new and improved prototype.

59

Chapter 6. Conclusion and Future Work

60

Bibliography

Cheung, J. C., Ngai, G., Chan, S. C., Lau, W. W., 2009. Filling the gap in programming in-

struction: a text-enhanced graphical programming environment for junior high students.

In: ACM SIGCSE Bulletin. Vol. 41. ACM, pp. 276–280.

Commission, E., 2016. Grand coalition for digital jobs.

URL https://ec.europa.eu/digital-single-market/en/

grand-coalition-digital-jobs

Erwig, M., Meyer, B., 1995. Heterogeneous visual languages-integrating visual and textual

programming. In: Visual Languages, Proceedings., 11th IEEE International Symposium

on. IEEE, pp. 318–325.

Hungnes, O., 2016. Jigsaw emf editor. Master’s thesis, Norwegian University of Science

and Technology.

King, N., 1998. Template analysis.

Maloney, J., Resnick, M., Rusk, N., Silverman, B., Eastmond, E., 2010. The scratch

programming language and environment. ACM Transactions on Computing Education

(TOCE) 10 (4), 16.

March, S. T., Smith, G. F., 1995. Design and natural science research on information

technology. Decision support systems 15 (4), 251–266.

61

https://ec.europa.eu/digital-single-market/en/grand-coalition-digital-jobs
https://ec.europa.eu/digital-single-market/en/grand-coalition-digital-jobs

Marshall, T. H., 1950. Citizenship and social class. Vol. 11. Cambridge.

Mossberger, K., Tolbert, C. J., McNeal, R. S., 10 2007. Digital Citizenship: The Internet,

Society, and Participation (MIT Press). The MIT Press.

URL http://amazon.com/o/ASIN/B001949SXG/

Myers, B. A., 1986. Visual programming, programming by example, and program visual-

ization: a taxonomy. In: ACM SIGCHI Bulletin. Vol. 17. ACM, pp. 59–66.

Myers, M. D., Newman, M., 2007. The qualitative interview in is research: Examining the

craft. Information and organization 17 (1), 2–26.

Pea, R. D., 1983. Logo programming and problem solving.[technical report no. 12.].

Sofaer, S., 1999. Qualitative methods: what are they and why use them? Health services

research 34 (5 Pt 2), 1101.

Stewart, D. W., Shamdasani, P. N., 2014. Focus groups: Theory and practice. Vol. 20. Sage

publications.

62

http://amazon.com/o/ASIN/B001949SXG/

Appendix

6.2.1 Klang UML Diagrams

Language Core

63

Statements

64

Expressions

65

Events

66

6.2.2 Focus Group Questions

1. How many of you have tried programming in Scratch?

2. How many of you have tried programming in Python?

3. How many of you have tried programming in Java?

4. How would you describe programming in Scratch?

(a) How was it getting started using Scratch?

(b) What did you find challenging in Scratch?

(c) Is there anything you feel is missing from Scratch?

5. What was it like going from using Scratch to using text based languages such as

Python or Java?

(a) What were the greatest challenges when you were trying to get accustomed to

Python or Java?

(b) Is there anything from Scratch that you miss when you’re using Python or

Java?

(c) Did you recognize concepts from Scratch in Python or Java, such as if-statements?

(d) What was the greatest challenge when going from visual to textual program-

ming?

6. How do you feel about Python’s syntax versus Java’s syntax?

7. Imagine being able to write textual code in Scratch. That is, you could decide

whether or not to use visual blocks and textual code. What do you think that would

be like?

(a) Do you think it would make it easier to get used to writing textual code?

8. I’ve created a new programming language that is both visual and textual. That is,

the same source file can be opened either as a text file, or it can be opened in a visual

editor with blocks etc. How do you feel this kind of system could impact going from

visual to textual programming?

67

9. What are your initial thoughts on this system (prototype)?

10. Is it easy to understand that the two languages are actually one and the same?

11. Do you have any suggestions as to how the visual language might be improved?

12. Do you have any suggestions as to how the textual language might be improved?

(a) The syntax of the textual language resembles that of Python more than that of

Java. What do you think about this decision?

13. Both languages resemble Scratch in one way. All the code that you write is linked to

one specific visual sprite on the screen and is written in terms of ”when this happens,

do this”. What are your thoughts on this way of writing programs?

14. What are your thoughts on being able to do simple physics simulations straight out

of the box, such as this?

(a) Is this something that you have wanted to add to your previous projects?

(b) Do you think this could make programming more rewarding or exciting?

15. Any final thoughts?

68

6.2.3 Source Code

The source code can be found at https://github.com/kwrl/masteroppgave.

The majority of the code found here has been produced by me, however, there are some

exceptions. The game development framework, jbox2ddemo, has largely been devel-

oped by my supervisor, and can also be found at https://github.com/hallvard/

javafx. The reason why the development framework is included in my own repository

directly is that I have made changes to the source code that should not be merged back

into the original repository. The visual editor used by Klang can be found at https:

//github.com/hallvard/emfblocks.

69

https://github.com/kwrl/masteroppgave
https://github.com/hallvard/javafx
https://github.com/hallvard/javafx
https://github.com/hallvard/emfblocks
https://github.com/hallvard/emfblocks

	Abstract
	Sammendrag
	Table of Contents
	List of Figures
	Abbreviations
	Introduction
	Motivation
	Problem description
	Kodeklubben Experiences

	Objective and research questions

	Background
	Programming Languages
	Syntax
	Semantics

	General Purpose and Domain Specific Languages
	Textual and Visual Programming

	Programming Languages for Children
	Logo
	Greenfoot
	Combining Visual and Textual Programming
	Generating Textual Code from Visual Code

	Scratch
	Syntax
	Semantics

	Python
	Syntax
	Semantics

	Methodology
	Design science
	Data collection
	Data analysis

	Artifact Design
	The Artifacts
	Klang
	The game development framework

	Development process

	Artifact Evaluation
	The Focus Group
	Participants
	Roles
	Recording the Focus Group
	Time and Place
	Focus Group Plan

	Analysis
	Results
	From Scratch to KlangVis
	From KlangVis to KlangText
	From KlangText to Python

	Discussion
	Research question 1
	Research question 2

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Appendix
	Klang UML Diagrams
	Focus Group Questions
	Source Code

