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Summary 
Temporal and spatial variation in the environment can influence the performance of 

individuals in wild ungulate populations. Of particular importance is an understanding 

of the mechanisms that shape variation in individual body mass, because several 

important life history traits are directly related to body mass. Body mass is one of the 

first traits that is influenced by environmental variation, and often the effect operates 

through variation in the components of the foraging niche of ungulates. In this thesis, I 

aim to demonstrate how measurements of environmental variation relate to variation in 

the foraging niche of ungulates. Furthermore, I aim to explore how variation in ungulate 

life history traits relates to these variables, and finally, how the management of 

ungulates could benefit from the incorporation of knowledge about the effects of 

environmental variation on population dynamics. I use weather observations, large-scale 

climate indices, and indices of environmental phenology based on satellite-derived 

vegetation indices (NDVI) to analyse the effect of environmental variation on plants and 

body mass in moose (Alces alces) and roe deer (Capreolus capreolus) populations.  

 The environmental variables that explained most of the variation in plant 

performance, measured as radial growth in common juniper (Juniper communis) also 

explained variation in ungulate body mass. These variables were related to conditions in 

spring and early summer. Plant growth was low in cold summers, and in spring where 

the green-up curve as measured by change in photosynthetic activity during spring was 

moderate. Such growing conditions are recognised to increase the quality of the plants 

as forage for ungulates. Consequently, moose body mass in autumn showed the 

opposite pattern than juniper to environmental conditions, indicating that quality of 

plants, rather than the quantity, is an important component in temperate ungulate 

foraging niche. Further, regional variation in moose body mass was associated with 

environmental variables related to forage quality. Roe deer body mass was associated 

with availability of forage during winter, and not with factors related to summer 

conditions. Factors related to forage quantity neither influenced temporal nor spatial 

variation in body mass in the two species.  

Accordingly, it appears that both weather observations and satellite-derived 

vegetation indices are able to effectively predict variation in plant performance related 
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to variation in foraging conditions for ungulates. The variation in forage quality in space 

and time created variation in body mass between populations and between cohorts 

within a population. Further, the variation in body mass between moose population, 

caused by variation in the foraging conditions, predicted how the populations 

differentially respond to the effects of environmental stochastisity. In populations with a 

high mean body mass, or a low density relative to plant biomass production, available 

resources buffered environmental stochastisity, and were less influenced by 

environmental variation than populations with relatively fewer resources available.  

If wildlife managers fail to incorporate the effects of environmental variation on 

population performance, e.g. on the recruitment rate, the population may show 

unexpected and large fluctuations in size. Therefore, managers should attempt to 

incorporate knowledge of recent environmental conditions on the population when 

setting harvesting quotas. In face of the large variation in environmental conditions 

experienced by the ungulate populations in Norway, and the fact that responses to 

environmental variation varies between populations, management should be regionally 

adapted, and aim to incorporate variation in vital rates caused by environmental 

conditions. This is likely to create more stable and predictable populations. 

In face of the predicted climate and landscape changes in Norwegian forests, 

environmental variables, e.g. from satellite-derived vegetation indices, have the 

potential to be a powerful tool for a sustainable management of ungulate populations. 

Consequently, such information should be incorporated into the management of 

ungulates in order to a) obtain a management of ungulate populations that is adapted to 

regional mechanisms of environmental variation, and b) acquire a management that is 

sustainable in face of future change in climate and landscape that may vary regionally. 

This calls for a regional differentiation in management strategies. 
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Introduction 
The foraging niche of temperate ungulates 
Herbivores as a functional group have been claimed to have access to unlimited 

resources of food (Hairston et al. 1960, Slobodkin et al. 1967). Although this may not 

be true world-wide, or for all seasons (Polis 1999, Danell & Bergström 2002, Bond 

2005), temperate and boreal regions certainly provide huge amounts of plant biomass 

during summer, and only a small proportion of this is utilised by herbivores (Slobodkin 

et al. 1967, Polis 1999, Danell & Bergström 2002). Much of the biomass produced in 

summer is available also during winter as twigs and stem. It has therefore been argued 

that herbivores are not limited by their food resources, but rather regulated by predators, 

pathogens or parasites (Slobodkin et al. 1967, Danell & Bergström 2002). However, 

individual species do not have the same broad diet niche as the functional group they 

belong to (Hofmann 1989), and the world may not be as green for a species as for a 

functional group. Still, species of large temperate herbivores (such as moose Alces alces 

and roe deer Capreolus capreolus) have broad diets, ranging from herbs, grass and other 

field-layer species, to twigs and shoots from trees and shrubs (Sæther & Andersen 1990, 

Andersen & Sæther 1996, Duncan et al. 1998, Shipley et al. 1998, Latham et al. 1999, 

Illius et al. 2002). The ability to utilise a variety of different plant species is necessary 

since the abundance of species may vary considerably both in time and space. The 

abundance of forage is thus closely related to the annual net primary production 

(ANPP), and determines the quantity of forage available (Polis 1999). However, access 

to forage may be limited even if food abundance is high, e.g. by snow cover during 

winter (Sæther & Andersen 1990, Andersen & Sæther 1996).  

The value of a plant item as a forage resource is determined by the nutrient 

content and the digestibility of the item (VanSoest 1994). The nutrient content is often 

measured as content of crude protein, or the proportion of important nutritional 

components like nitrogen (N), phosphorus (P) or calcium (Ca), often measured as the 

ratio between nitrogen and carbon (the N:C-ratio; VanSoest 1994). The digestibility is 

the actual ability to absorb the nutrients that are present from the plant items, and relates 

to among other things, the fibre content and the presence of chemical components 

(mainly plant defences) like tannins or phenols in the plant tissue (VanSoest 1994, 
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Danell & Bergström 2002). Both the nutrient content and digestibility vary considerably 

between plant species, and within species it varies between locations, seasons and years 

(Molvar et al. 1993, VanSoest 1994, Wilmshurst et al. 1995, Fryxell et al. 2005a). 

Preferences for individual plant species or structures as forage among herbivore species 

is thus reflected by the digestibility and nutrient content of the plants (Skogland 1980, 

1984, White 1983, Allison 1985, Danell et al. 1985, Sæther & Andersen 1990, Bø & 

Hjeljord 1991, Fryxell 1991, Doucet & Fryxell 1993, McArthur et al. 1993, Owen-

Smith 1994, Wilmshurst et al. 1995, Duncan et al. 1998, Danell & Bergström 2002, 

Illius et al. 2002).  

Together, these three components, quantity, quality and accessibility, constitute 

the foraging niche (in the basic niche concept of Hutchinson 1957) of herbivores. 

Because these three factors may vary considerably both annually, seasonally, and 

between habitats, the realised foraging niche experienced by an individual or a 

population varies correspondingly. Although much of the variation in plant biomass and 

quality in a given area is explained by soil characteristics (Moen 1999, Polis 1999), a 

considerable proportion of the spatial variation, and the majority of temporal variation is 

attributed to climatic conditions, e.g. temperature, moisture and incoming solar radiation 

(Moen 1999, Polis 1999). These factors are thus able to create spatial and temporal 

variation in plants that influence one or several of the components of ungulates foraging 

niche (Skogland 1984, Jonasson et al. 1986, Sæther & Andersen 1990, Bø & Hjeljord 

1991, Albon & Langvatn 1992, Andersen & Sæther 1992, Sæther & Heim 1993, Owen-

Smith 1994, Sæther et al. 1996, Post & Stenseth 1999, Mysterud et al. 2001a, Pettorelli 

et al. 2001, Lenart et al. 2002, Olff et al. 2002). The foraging niche of ungulates is 

therefore a complex composition of three factors that may co-vary or vary 

independently in time and space (Parker 2003, Fryxell et al. 2005a).  

Several studies stress the importance of quality, rather than quantity or 

accessibility, for foraging behaviour and ecology in temperate and arctic herbivores, 

particularly during winter (White 1983, Sæther & Andersen 1990, Bø & Hjeljord 1991, 

Andersen & Sæther 1992, Duncan et al. 1998, Lenart et al. 2002). Of particular 

importance is the availability of a balanced ratio of nutrients in the diet (Fryxell & 

Lundberg 1997). The importance of forage quality is further emphasised by evidence 

that small increases in quality of forage can strongly influence animal performance, e.g. 
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body mass, through a multiplier effect (White 1983). However, it has proven hard to 

distinguish between the relative importance of the three components on individual or 

population performance of wild ungulates (Hanley 1997, Parker 2003). Often, climate 

indices or weather observations are used as general measures of environmental 

conditions, but linking climate to the individual components that influence foraging 

niche is not straightforward. Certainly, the need for data that describe the temporal and 

spatial variation in foraging conditions for ungulates is evident. Such data should have a 

high spatial and temporal resolution, cover several years, and have measures that are 

directly related to ungulate foraging ecology, i.e. the plants and their variation in 

abundance and quality.   

Previously, such data have been hard to acquire. However, lately, several 

sources of data that meet these requirements have become readily available through 

vegetation indices derived from satellite-images (Kerr & Ostrovsky 2003, Parker 2003, 

Pettorelli et al. 2005). One example is the GIMMS data set (Høgda et al. 2001, Tucker 

et al. 2001, Zhou et al. 2001). The high temporal resolution (15 days between each 

image) allows an estimation of several important variables related to plant phenology 

(Høgda et al. 2001, Pettorelli et al. 2005). Furthermore, with a spatial resolution of 8x8 

km2, available since 1982, and measurements that relate directly to plant performance 

through variation in photosynthetic activity (Reed et al. 1994, Pettorelli et al. 2005), the 

GIMMS data offers several new approaches to research on ecological mechanism 

related to ungulates (Pettorelli et al. 2005). The recent availability of this information 

allows the testing of specific hypothesis related to the effects of variation in foraging 

conditions on ungulates performance. But, in order to do so, one first needs a better 

understanding of how these variables relate to variation in the components of the 

foraging niche of ungulates.  

 

Foraging niche and body mass in ungulates 
Temperate ungulates often show large intra-specific variation in phenotypic traits, 

demography and population dynamics, both in time and space (Gaillard et al. 2000). 

One phenotypic trait of particular interest is body mass. In ungulates, body mass is one 

of the first traits to be influenced by environmental variation (Sæther 1997, Lindström 
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1999), and in turn has been repeatedly shown to influence several important life-history 

traits. For various temperate ungulate species a high body mass is related to high 

survival (Putman et al. 1996, Loison et al. 1999a, Garrott et al. 2003), high reproduction 

rates (Sand 1996, Solberg et al. 2002, Stewart et al. 2005), large litter size (Andersen et 

al. 2000), a longer reproductive period in females (Sæther & Haagenrud 1983, Albon et 

al. 1987, Langvatn et al. 1996, Sæther et al. 1996, Sand 1996), higher reproductive 

success in males (Clutton-Brock et al. 1982, Kruuk et al. 1999, Mysterud et al. 2004), 

and higher future reproductive success of offspring (Albon et al. 1987, Andersen & 

Linnell 1998, Beckerman et al. 2002, Garrott et al. 2003). Factors that influence body 

mass thus have influence on both individual and population performance.  

Recently, a more thorough understanding of how body mass influences 

population dynamics has been developed, both theoretically and empirically, using 

long-term time-series that include both individual measures of body condition and 

reproductive performance (Gaillard et al. 2003). One important factor emphasised by 

these studies is the lasting effects of cohort variation in body mass (Loison & Langvatn 

1998, Forchhammer et al. 2001, Gaillard et al. 2003, Solberg et al. 2004), which may 

even last for generations (Beckerman et al. 2003). Such cohort effects arise mainly 

through variation in environmental conditions at critical stages for growth and 

development (Beckerman et al. 2003). The life-long performance of this cohort thus 

depends of the environmental conditions at young ages (Beckerman et al. 2003).  

Environmental conditions that affect forage conditions (i.e. the quantity, quality 

and accessibility of plants) therefore have important effects on traits that shape 

population dynamics, through their effect on body mass. If one can recognise the 

environmental factors that, by creating variation in the foraging niche, shape body mass 

variation, it should be possible to get a better understanding on how variation in the 

foraging niche space influences important life history traits. Being able to locate a 

population in the foraging niche makes it possible to further explore the consequences 

this has for variation in phenotypes. In particular, one can expect variation in 

vulnerability to environmental stochasticity to differ between populations that are 

located differently in the foraging niche. If one can predict the response to 

environmental conditions, it should be possible to adjust the harvest management 
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according both to the regional phenotypic traits, and according to environmental 

conditions, so as to counter the predicted changes in population performance.  

 

Management of Scandinavian wild ungulates 
Ungulates are intensively managed in Scandinavia (Cederlund et al. 1998, Lavsund et 

al. 2003). Wildlife managers face several challenges when they set quotas to achieve the 

desired population sizes. Dense population can cause substantial damage to agricultural 

crops and forests in early stages (Sæther et al. 1992, Latham et al. 1999, Ward et al. 

2004). Furthermore, with high ungulate density, the frequency of traffic collisions 

increases (Seiler 2005), with high associated socio-economic costs (Sæther et al. 1992, 

Seiler 2005). On the other side, there are many benefits of ungulates including 

economic income for landowners by selling hunting permits, recreational opportunities, 

and their potential as food resources. Modern management aims to balance these 

considerations.  

In Scandinavia, the management of ungulates is mainly done by setting 

harvesting quotas based on the previous year's harvest or abundance indices based on 

observation made during the harvest (Cederlund et al. 1998, Solberg et al. 1999, 

Lavsund et al. 2003). The goal the last decades has been to increase the production, 

primarily through selective harvest by biasing quotas to calves and adult males, 

retaining the reproductive part of the population, and consequently increasing the 

population's potential growth rates (Cederlund et al. 1998, Lavsund et al. 2003). 

However, this has resulted in skewed age- and sex-structures in many of the populations 

(Langvatn & Loison 1999, Solberg et al. 2002, 2005), introducing several unwanted 

side effects related to the skewed sex- and age structures (Mysterud et al. 2002, Solberg 

et al. 2002, 2005). Despite the attempts of managers who aim for stability, populations 

have been shown to fluctuate between years. This can partially be due to the fact that 

environmental conditions that can influence the performance of a population are seldom 

accounted for in the management system. This has the potential to increase the 

fluctuation in population size (Haydon & Fryxell 2004). The time-lag in management 

response to changes can further increase the magnitude of these fluctuations. Therefore, 

knowledge of how the environment influences the performance of herbivore 
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populations, both directly through survival and recruitment, or indirectly through body 

mass variation creating cohort effects, should make it possible to adjust management to 

be more adapted to environmental variation operating on a local or regional scale.   

 

Aims for the thesis 
In this thesis, I aim to search for mechanisms that relate environmental conditions to 

spatial and temporal variation in vegetation and the performance of wild ungulate 

populations. Furthermore, I aim to explore if and how the managers of ungulate 

populations is able to incorporate environmental variation when setting harvesting 

quotas.  

More specifically, the following questions are addressed: 

1. How do different indices of environmental conditions relate to plant 

performance (paper I)? Plant performance, e.g. measured as radial growth in perennial 

woody plants, is influenced by variation in the environment (Linderholm et al. 2003). 

This can create variation in growth rate between different locations (Linderholm et al. 

2003). Furthermore, temporal variation in the environment can generate fluctuations in 

the plants' suitability as forage for herbivores. The environmental variation can be 

measured from several sources, e.g. weather observations, large-scale climate-indices, 

and indices of environmental phenology from remotely sensed images. In order to 

understand how these variables can influence ungulate populations, we first need 

knowledge about how variation in plant performance relate to these environmental 

variables.  

2. How does the spatial variation in phenotypes among ungulate populations 

relate to environmental conditions associated with their foraging niche (paper II and 

paper III)? Through the effect on forage plants, variation in the environment can 

influence ungulate phenotypes, particularly body growth and body mass (Sæther 1997). 

This can create differences in body mass between populations.  

Body mass often shows latitudinal gradients, and several hypotheses exist to 

explain this pattern. The most important are: A) Winter severity increases with latitude, 

and this selects for larger body size, either due to a better heat conservation in large 

individuals (Bergmann's rule, e.g. Ashton et al. 2000) or due to the ability to tolerate 
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long periods of food shortage during winter (Boyce 1979, Lindstedt & Boyce 1985). B) 

Population densities influence body mass through intraspecific competition for forage 

(Stewart et al. 2005). Latitudinal gradients in population densities could then shape 

gradients in body mass. C) Forage quality increases with latitude (Bliss 1962, Klein 

1970), and even small changes in forage quality can have large impact on body growth 

and development through the multiplier effect (White 1983).  

Ungulates often show some degree of sexual size dimorphism (Loison et al. 

1999b, Pérez-Barbería et al. 2002). This can be due to faster growth and/or a longer 

growth period for one sex over the other, most commonly the male in ungulates (Loison 

et al. 1999b). Variation in factors related to body growth is thus expected to influence 

the degree of sexual size-dimorphism. This includes variation in foraging conditions, 

population densities, and variation in reproductive effort in males and females between 

populations.  

3. How does the temporal variation in body mass in ungulates relate to 

environmental conditions associated with their foraging niche (paper IV and paper V)? 

Temporal variation in body mass is expected to be related to temporal variation in 

foraging conditions, e.g. through variation in quantity or quality of the forage (Sæther et 

al. 1996, Sæther 1997). However, body mass may also be influenced by population 

density through intraspecific competition for food (Solberg et al. 2004, Stewart et al. 

2005), and by winter conditions influencing loss of body tissue (Reimers 1984, 

Cederlund et al. 1991).  

4. Do population characteristics that are related to the realised foraging niche, 

influence the susceptibility to environmental stochastisity (paper IV)? Variation in the 

niche-localisation among populations may be visualised through individual performance 

(Holt & Gomulkiewicz 1997), e.g. in phenotype traits like body mass. Vulnerability to 

environmental stochastisity may be related to the niche localisation in two respects. A) 

Individuals that have a niche localisation close to the optimum (e.g. have a higher body 

mass) are less vulnerable than small individuals since they have a buffer of resources 

available to meet poor environmental conditions. B) Individuals that have a niche 

localisation close to the optimum are able to benefit more from favourable conditions 

than individuals located far from the optimum, and should therefore respond more 

rapidly to environmental variation. These effects can also be visualised through other 

 11 
  
  



 

buffers of resources, e.g. through available forage resources measured as population 

density in relation to available plant biomass.  

5. To what degree are managers able to incorporate the effect of environmental 

conditions on population dynamics in their management of populations (paper V)? 

Often, quotas are based on counts or indices from previous years, or counts during 

spring prior to the hunt in autumn (Cederlund et al. 1998, Solberg et al. 1999, Lavsund 

et al. 2003). However, vital rates may vary considerably between years, often as a 

consequence of environmental variation (Skogland 1984, Grøtan et al. 2005). This can 

create variation in population size that not are detectable from indices of population size 

from previous year, or counts prior to the breeding period. If managers are not able to 

take into account the effect of environmental variation on population dynamics when 

they set the hunting quotas, population may have unexpected and large fluctuations 

(Haydon & Fryxell 2004, Fryxell et al. 2005b).   

 

Methods 
Study species 
In order to answer the questions raised in this thesis, I have focused my analysis on four 

species, two wild and one domesticated ungulates, and one plant. 

The moose is the largest ungulate in the Scandinavian forests, with a live adult 

weight of above 500 kg in males, females being approximately 25 % lighter (Solberg & 

Sæther 1994, Andersen & Sæther 1996). Moose forage on grasses, herbs, heather and 

some browsing of deciduous trees like several Salix spp., rowan (Sorbus aucuparia), 

aspen (Populus tremula) and birch (Betula pubescens) during summer (Bø & Hjeljord 

1991, Andersen & Sæther 1996), while during winter when snow cover limits the access 

to plants at the ground layer, the diet switches to browsing of twigs and shoots, 

preferably deciduous species (Sæther & Andersen 1990, Andersen & Sæther 1996). The 

rut occurs mainly during late September, early October, but adult females that are not 

fertilised at the first attempt may have a second ovulation during November (Andersen 

& Sæther 1996). Calves (one - three, two are most common in multiparous females, 

Andersen & Sæther 1996) are born at the end of May - start of June (Sæther et al. 1996), 

and females first ovulate in their second or third autumn, depending on body mass 
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(Sæther & Haagenrud 1985, Sæther & Heim 1993, Andersen & Sæther 1996, Sand 

1996).  

The roe deer is the smallest ungulate in Scandinavia, with adult animals of both 

sexes reaching a live body mass of 30 kg with very limited sexual size dimorphism 

(Andersen et al. 1998). Their diet consist mainly of herbs during summer (Cederlund & 

Nyström 1981, Duncan et al. 1998, Latham et al. 1999), while during winter, they 

switch to more browsing when snow cover limits the access to ground species 

(Cederlund & Nyström 1981, Holand et al. 1998). Their rut lasts from late July to mid 

August, and females ovulate only once during this period (Hoffmann et al. 1978), with 

implantation of the blastocysts delayed by 5 months (Sempéré et al. 1998). One to three 

fawns are born during May - June (Andersen & Linnell 1997), where litter size is higher 

for multiparious and heavy females (Andersen et al. 2000).  

In Norway, we can separate between wild reindeer (most reindeer populations in 

southern Norway) and semi-domesticated reindeer (all of northern Norway and some 

populations in southern Norway; Fauchald et al. 2004), both belonging to the species 

Rangifer tarandus. In this thesis, we only use data from semi-domesticated reindeer 

populations, and refer to semi-domesticated reindeer only by reindeer henceforth. The 

reindeer herds are driven between seasonal ranges, following natural migration routes 

mostly between coastal areas with access to herbs and graminoids in summer and more 

continental areas with high lichen cover during winter (Fauchald et al. 2004). In 

autumn, prior to the movement to the winter ranges, a proportion of each age- and sex-

class is slaughtered. The live body mass in autumn for reindeer calves is approximately 

40 kilograms, but can vary considerably between herds and years, e.g. due to the plant 

quality on the summer and winter ranges (Fauchald et al. 2004).  

Both moose and roe deer are harvested by human hunters throughout Norway. 

Hunting occurs during autumn (August - December for roe deer, September - 

October/November for moose), with a break in the moose hunt during the peak of the 

rut. Harvesting regimes are intended to promote high recruitment rates, and quotas are 

set for a relatively high harvest of calves and males, and low harvest of reproductive 

females. Hunting can generate a selection for groups of animals killed, e.g. size-specific 

harvest mortality (Skogland 1988). However, since both moose and roe deer seldom 
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operates in flocks during the hunting season, hunters' selection for size is not likely to 

occur in these species.  

Juniper (Juniperus communis) is a diocious plant that has shrub-like morphs in 

arctic and alpine environments (Høeg 1996). The distribution in Norway covers most of 

the vegetation regions, from coastal heather to alpine tundra. Radial growth per year is 

clearly visible as annual rings, and the growth varies considerably between locations 

and years due to variation in the environments.   

 

Study area 
The study area in papers II, III and IV (Fig. 1) includes moose populations covering 

the range of moose distribution in Norway (Lavsund et al. 2003). The areas are all 

dominated by forest. The northern areas are mainly in the northern boreal zone (Moen 

1999), dominated by birch (Betula pubescens) and Scots pine (Pinus sylvestris). Further 

south, Norway spruce (Picea abies) dominates and the vegetation zones change to 

southern boreal, and at the southernmost area, nemoral zone with some broad-leaf tree-

species (Moen 1999). Commercial forestry is intensive throughout the whole area. All 

areas are hilly, with the northernmost areas having the highest elevation ranges. 

Agricultural areas mainly occur in the bottom of the valleys, and in the central and 

southernmost areas (Moen 1999), but make up only a small proportion of the land area. 

In the coastal areas, winters are generally warmer and have more precipitation than the 

inland areas which have a continental climate, influencing whether precipitation comes 

as snow or rain during winter. However, the coastal areas in the north still have most of 

the precipitation during winter as snow.   

Finnmark county, from where data used in paper I (Fig. 1) was collected, 

constitutes the northernmost part of the mainland of Norway. The tree-limit here is at 

400 - 500 metres above sea level, with a clear coast-inland gradient in the tree-limit 

exists, with tree-limit being closer to sea-level for the coastal areas (Moen 1999). The 

topography is hilly at the coastal areas, while the inland is dominated by the large flat 

Finnmarksvidda plateau. Only a small proportion of the county is used for agricultural 

purposes.  
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The island from where the data analysed in paper V are collected (Fig. 1) is 

located in the southern boreal zone (Moen 1999). The island is dominated by a mixture 

of agriculture areas and mixed forest. The climate is coastal, thus snow-depths are rather 

low during winter.  

 

Data collection 
Population data 

Individual data on harvested moose were gathered for the period 1982 - 2002, 

yielding population specific information on body mass, age, and sex (Solberg et al. 

1997). Body mass was measured as carcass mass, which is the mass of the individual 

minus head, skin, metapodials, bleedable blood and viscera, and constitutes on average 

50 % of total body mass (Wallin et al. 1996). Age was determined based on tooth 

replacement in the lower jawbone for calves and yearlings, and by counting the number 

of layers in the secondary dentine of the incisor for 2.5 years old and older individuals 

(Haagenrud 1978, Hamlin et al. 2000). The moose harvest is organised through hunting 

districts within municipalities, and for analysis one municipality (average size is 875 

km2) is considered to be one population. The populations cover the range of moose 

distribution in Norway, from the southern populations inhabiting the boreo-nemoral 

vegetation zone, to arctic populations in the northern boreal zone (Fig. 1). As indices of 

population density, the number of moose killed during the harvest in relation to above-

ground primary production (from the phenology indices, see below), was used.  

Since 1984, individual data on roe deer killed during the annual harvest has been 

collected from the island of Ytterøya (28 km2) in Trondheim fjord (Fig. 1). These data 

included carcass mass (measured as for moose), age, and sex. Age was determined by 

tooth replacement pattern in the lower jawbone in fawns and yearlings (Aitken 1975), 

and from tooth wear patterns based in adults.  

The reindeer data is collected through the Ecosystem Finnmark project 

(Fauchald et al. 2004), where the body mass of slaughtered calves is monitored for each 

reindeer husbandry annually. In addition, juniper twigs were sampled in 2003 on an area 

covering the summer ranges of the reindeer herds (Fig. 1). These twigs allowed for 

measuring the annual radial growth of juniper for each location.  
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Figure 1. Norway with the populations of moose, roe deer and reindeer, and locations of juniper
samples used in this thesis.  
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Climatic data 

For each population (roe deer and moose), climatic data from the closest weather station 

were collected. For some populations, the distance to closest weather station was rather 

long (more than 100 km), and I always chose a station within the same climatic zone 

(e.g. coastal, continental) as the study population. The climatic data included monthly 

measures of precipitation, temperature and snow cover. The North Atlantic Oscillation 

(NAO) is a climate phenomenon influencing temperatures and precipitation in the 

North-Atlantic (Hurrell 1995), and has been widely used in ecological research (Hurrell 

et al. 2003, Mysterud et al. 2003a). It is expressed by an index based on the difference 

of normalised sea level pressures between Lisbon, Portugal, and Stykkisholmur, 

Iceland, from 1864 through 2004 for the winter period (December - March). A high 

positive NAO index is generally associated with relatively warm winters with much 

precipitation in the northern Atlantic coastal Europe, whereas low values of the index 

tend to result in cold winters with low levels of precipitation (Hurrell 1995). The Arctic 

Oscillation is closely related to the NAO (Thompson & Wallace 1998), but predicts 

weather events better at higher latitudes (Thompson & Wallace 1998). The NAO- and 

AO indices for the study period were retrieved from the web sites 

http://www.cgd.ucar.edu/cas/jhurrell/indices.html (last read 1. June 2005) and 

http://horizon.atmos.colostate.edu/ao/ (last read 14. November 2005), respectively.  

 

Satellite-derived indices on plant phenology 

The Global Inventory Monitoring and Modelling System (GIMMS) Normalised 

Difference Vegetation Index (NDVI) dataset is based on satellite images from the 

Advanced Very High Resolution Radiometer (AVHRR) sensor onboard the afternoon-

viewing NOAA-satellite series (Tucker et al. 2001). The GIMMS-data exist in several 

spatial resolutions, however, for these analyses, the resolution was approximately 8 x 8 

km2.  In order to minimise distortions due to atmospheric conditions (e.g. clouds, haze), 

15-days maximum composites were used, together with a median kernel filter, to 

describe the annual NDVI-curves. NDVI is a vegetation index used as a surrogate for 

photosynthetic capacity, and measured as (Myneni et al. 1995):  

NDVI = (NIR - RED)/(NIR + RED),  
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Where NIR and RED are the near-infrared and red, respectively, band from the satellite 

images. The annual curve in the Northern Hemisphere will typically have a very low 

value during winter, increase rapidly during spring to a high value in early summer, and 

decrease during autumn (Tucker et al. 1986). The shape of the curve will vary 

regionally, particularly along a latitudinal gradient (Tucker et al. 1986), like in our study 

area (Fig. 2b). From the annual phenology curve, eight variables known to be related to 

plant phenology (Reed et al. 1994, Pettorelli et al. 2005) were calculated (Fig. 2a). 

Onset of spring (OS) is measured as the week number in spring when NDVI-values 

reach levels corresponding to leaf burst on birch. Onset of autumn (OA) is the week 

number in autumn when NDVI-values drop below the corresponding value. Length of 

growing season (LGS) is then the number of weeks between OS and OA. Peak time 

(PT) is the week number in summer when NDVI-value reaches its highest level, while 

Peak value (PV) is the NDVI-value at this time. Length of spring (LOS) is number of 

weeks between OS and PT. Derived spring NDVI (DSN) is measured as the NDVI-

value at OS, minus the NDVI-value at the previous 15-day composite image, and 

integrated NDVI (IN) is the area below the curve from OS to OA.  

 

 
Figure 2. a) A schematic illustration of the phenological indices derived from the annual NDVI-curve. b) 
The annual phenology curve from the northernmost (solid line) and southernmost (dashed line) moose 
populations (Fig. 1). Abbreviations: OS = onset of spring, OA = onset of autumn, PT = peak time, LS = 
length of spring, LGS = length of growing season, DSN = derived spring NDVI, IN = integrated NDVI, 
PV = peak value.  

 

The phenology indices can relate to several variables important for the value of 

plants as forage for herbivores (Reed et al. 1994, Veroustraete et al. 1996, Boelman et 
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al. 2003, Dong et al. 2003, Wang et al. 2004a, b). Most important is probably 1) onset 

of spring determines how early herbivores can start feeding on high-quality forage after 

the winter, 2) onset of autumn indicate when high-quality forage is no longer available, 

and 3) length of growing season indicates for how long a period high-quality forage is 

available. Moreover, 4) peak time indicates when photosynthetic activity reach its 

highest level, and plant quality (particularly N:C-ratio) is known to decrease after this, 

5) the peak value indicates how much foliage is available at the maximum, while 6) the 

length of spring indicates for how a long period high-quality forage is available, where a 

long spring provides high-quality forage for a longer period than a short spring. Finally, 

7) derived spring NDVI reflects the rate of greenness development during spring, while 

8) integrated NDVI is considered as a measure of foliage biomass production during the 

growing season.  

 

Statistical procedures 
For all comparisons between the environmental conditions, including the climatic 

variables, the satellite derived phenology indices, and body mass, we used linear 

models, accounting for age and sex where relevant. Although such relationships have 

shown non-linear relationships in some studies (Mysterud et al. 2001b), we did not 

consider our sample size (counted as number of populations or number of years for a 

population) to be of sufficient size to account for non-linearity. In addition, visual 

inspection of our data plots did not indicate any obvious non-linear patterns.  

As the data regarding moose and roe deer were obtain from hunter harvest, there 

was considerable variation in the kill date. The body mass of cervids may vary 

considerably through length of an autumn hunting season, e.g. calves and yearlings 

grow heavier, while adult males often lose body mass during the rut (Miquelle 1990, 

Solberg et al. 2004). This variation may affect the estimation of mean annual body 

mass, and to account for this, carcass weights were adjusted by regional estimates of 

change in body mass during hunting season for each age and sex-class (paper II, III 

and V). Body mass measures for populations were averaged for each age- and sex-

class, for each year. Furthermore, for the analyses concerning geographical gradients in 

body mass (paper II), the means of all annual values for each population were used. In 
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paper III, the adjusted carcass mass were used to fit sex-specific growth curves for 

each population to estimate adult body size, the decay rate, and the time of active body 

growth.  

With known age of the harvested individuals, one can reconstruct the minimum 

number of individuals alive in a specific year, if the data have been collected long 

enough to allow several cohorts to pass completely through the population, assuming 

that the hunting effort and age-specific hunting vulnerability are relatively stable from 

year to year (Fryxell et al. 1988, 1991, Solberg et al. 1999, 2004). As the age of the roe 

deer killed during hunt at Ytterøya was known for a sufficient number of years, the 

population was reconstructed and its density, growth-rate and adult sex ratio calculated 

annually based on the reconstruction.  

To remove any influence of location-specific macroclimate and temporal 

autocorrelation in the time series of paper I and IV, first-order differentials were 

extracted from standardised growth for each juniper location, and body mass from 

reindeer and moose populations (Chatfield 1989).  

 

Results and discussion 
Question 1 
How do different indices of environmental conditions relate to plant performance?  

The radial growth of juniper was positively related to i) summers that were 

warm and with little precipitation, ii) spring with a steep plant development progression, 

and iii) low snow-depths in April. Thus, several of the indices of environmental 

conditions were able to explain the variation in plant performance. This included both 

weather observations and indices derived from satellite images. Plant growth seems to 

depend on the length of periods with high temperatures (Chapin et al. 1995, Arft et al. 

1999, Linderholm et al. 2003). During years with warm and sunny spring and summers, 

plants have more resources available for growth, whereas access to water not seems 

limiting for plant growth at this latitude, a common observation in coastal temperate 

regions (Linderholm et al. 2003). The higher growth in warm summers is likely to 

decrease the proportion of nutrients in the tissues, and make the plants less suitable as 

forage (Deinum 1984, Bø & Hjeljord 1991, Chapin et al. 1995, Lenart et al. 2002). 
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Juniper is not selected as forage by Scandinavian ungulates (Andersen & Sæther 1996, 

Duncan et al. 1998, Skogland 1994, Gebert & Verheuden-Tixier 2001), and variation in 

growth is thus likely to not be influenced by variation in ungulate density. Since several 

studies indicate that plants at least within a functional group and within vegetation 

zones respond in a similar manner to variation in the environment (Kellomäki & 

Kolström 1994, Chapin et al. 1995, Arft et al. 1999, Post & Stenseth 1999, Lenart et al. 

2002),  juniper growth may be a good indicator of variation in environmental conditions 

that affect ungulates.  

The importance of plant growth rate on the quality of the plants was reflected by 

the negative correlation between juniper growth and autumn body mass of reindeer 

calves that grazed in the study area during summer. Accordingly, the sources of 

environmental conditions, and in particular those that relate to spring and early summer, 

are able to predict variation in the components of the foraging niche of ungulates. Thus, 

environmental variables originating both from weather observations and from satellite-

derived vegetation indices, reflects foraging conditions for ungulates. These 

measurements provide a tool for investigating the effect of temporal and spatial 

variation in forage conditions on ungulate populations. 

 

Question 2 
How does the spatial variation in phenotypes between ungulate populations relate to 

environmental conditions associated with their foraging niche?  

Mean body mass varied considerably among Norwegian moose populations, and 

showed a very clear latitudinal trend with higher body mass in the north. No single 

environmental variable gave a better fit of the body mass variation between populations 

than latitude, but a variable describing the shape of the environmental phenology curve 

came closest. According to this variable, higher body mass was found in areas that had a 

late onset of spring, a short and intense summer, a relatively early onset of autumn, and 

accordingly a long winter. This supports two hypotheses regarding the latitudinal 

gradient in body mass.  

Firstly, forage quality of plants in general increases with latitude as a result of 

the plants adaptation to the short summers with long days (Bliss 1962, Klein 1970). 
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These growing conditions force the plants to allocate resources to growth and 

reproduction, rather than anti-herbivore mechanisms, e.g. chemical components (Bliss 

1962). This will then benefit the herbivores, and can explain the latitudinal gradient in 

body size reported for several species (red deer Cervus elaphus; Langvatn & Albon 

1986, roe deer; Andersen et al. 1998, moose; Sand et al. 1995). Accordingly, moose at 

higher latitudes benefit from higher quality of forage during summer, and possibly also 

during winter. This can generate large effects on body mass through the multiplier effect 

(White 1983).  

Secondly, in harsh environments, mortality during winter can be size-dependent, 

i.e. mortality increases with decreasing body mass (Lindstedt & Boyce 1985). This 

selects for faster growth, since individuals that grow fast during summer and autumn 

have higher survival during winter. However, as non-human related moose mortality in 

general is low during winter in Norway (Sæther et al. 1996, Stubsjøen et al. 2000) and 

seems unaffected by latitude (Sæther et al. 1996, Stubsjøen et al. 2000), this selection 

seems to be of minor importance in our study populations at present. However, the 

selection pressure for large sizes may have been higher in northern Norway than in 

southern Norway in the past, creating the gradients in body mass that we observe today. 

Accordingly, the present latitudinal gradients in body mass can relate to their ability to 

tolerate long periods of fasting. As both the forage quality and the fasting tolerance 

hypotheses seems likely, and are not mutually exclusive, we suggest both to be likely in 

shaping the latitudinal gradient in moose body mass in Norway.  

A multiple model with several of the environmental variables included achieved 

a better fit than latitude alone. The effect of environmental phenology on body mass 

variation was also strong in this model, even when accounting for latitude, suggesting 

that this variable follows other gradients than the latitudinal gradient alone. 

Accordingly, several climate gradients may generate body mass differences. This 

includes coast-inland gradients, altitude-gradients or gradients in population densities. 

Thus, the results are in accordance with several studies on body mass variation in 

moose: it increases with latitude, and decreases with increasing population density, 

altitude and decreasing winter severity (e.g. Sand et al. 1995, Sæther et al. 1996, 

Hjeljord & Histøl 1999, Ericsson et al. 2002, Solberg et al. 2004). This suggests that 

variation in body mass between Norwegian moose populations are shaped firstly on a 
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latitudinal gradient in environmental phenology influencing plant quality and selection 

for fasting tolerance, and secondly along other ecological gradients including coast-

inland, altitude or population density.  

There were considerable difference in the growth patterns of males and female 

moose. Males grow faster and for a longer time than females, and this difference 

between the sexes varied between populations. Most apparent was the effect of the 

length of the growing season of plants, i.e. the period between onset of spring and onset 

of autumn. Populations that experienced short growing seasons had higher sexual size-

dimorphism than populations that experienced long growing seasons. This was probably 

a result of the higher forage quality of plants that have limited time for development 

through the summer. Accordingly, the quality of forage influences how fast the moose 

grow, and as females start reproduction at an earlier stage than males, the males benefit 

from forage quality in terms of body mass for a longer period, increasing the sexual size 

dimorphism.  

In addition, populations with a highly female-biased sex-ratio had a low sexual 

size-dimorphism. This most likely relates to at what age the males enter the 

reproductive stage. Since reproductive success is related to both age and size in male 

moose (Andersen & Sæther 1996), the best strategy when competing for females is to 

grow large before starting the reproduction (Andersson 1994). This may not be the 

situation if there is less competition for females due to a female-biased sex-ratio 

(Mysterud et al. 2003b, Mysterud et al. 2004). Accordingly, the males allocate energy to 

rutting and reproduction activity at an earlier stage in highly female-biased populations 

(Mysterud et al. 2003b, Mysterud 2004), and sexual size-dimorphism decreases.  

 

Question 3 

How does the temporal variation in body mass in ungulates relate to environmental 

conditions associated with their foraging niche? 

Like the variation in body mass between moose populations, annual variation in 

body mass within populations was also high. The body mass in autumn was positively 

related to plant growing season that started early, had a slow plant development in 

spring, lasted long, and to cold summers. These factors are related to high quality of 
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plants as forage, but negatively to the biomass as measured as net primary production 

(Deinum 1984, Bø & Hjeljord 1991, Lenart et al. 2002). Thus, the annual variation in 

moose body mass is most likely shaped by variation in forage quality, rather than 

quantity, during summer. This confirms earlier results regarding the importance of 

forage quality in the diet of moose both during summer (Bø & Hjeljord 1991, Sæther & 

Heim 1993, Sæther et al. 1996) and winter (Sæther & Andersen 1990, Shipley et al. 

1998).  

In the roe deer population, however, the body mass in autumn was not associated 

with summer conditions. Rather, high body mass was related to low snow-depth the 

previous winter. In addition, harsh winter conditions seemed to negatively influence 

recruitment rates. As a very selective feeder (Latham et al. 1999), the roe deer may have 

the ability to acquire sufficient amount of high-quality forage during summer despite 

varying summer conditions. This may particularly be true in the heterogeneous 

landscape on Ytterøya, with large areas of mixed agricultural and forested areas. 

However, being less adapted to tolerate Scandinavian winters than the moose (Holand et 

al. 1998), snow cover during winter may to a higher degree limit the accessibility to 

forage, and increase the energetic expenditure related to movement (Holand et al. 1998). 

This also influenced recruitment rates, possibly through increased rates of implantation 

failure (Hewison & Gaillard 2001) or stillbirths (Andersen & Linnell 1998). 

Accordingly, roe deer populations at the latitudinal limits of their distribution may be 

most vulnerable to winter conditions (Grøtan et al. 2005).  

 

Question 4 
How do population characteristics that are related to the realised foraging niche, 

influence how susceptible the population is to environmental stochastisity? 

Moose populations with high mean body mass showed a lower response to 

environmental variability compared to populations of small-sized individuals. The same 

pattern existed between low- and high-density populations, where populations with high 

density relative to the available plant biomass were more susceptible to environmental 

variation. Not only did the effect of several environmental variables increase with 

decreasing mean population body mass and increasing population density, the 
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percentage of variation in body mass explained by environmental variables was higher 

for populations with small individuals or high density, compared to populations with 

larger-sized individuals or with low density. Although several mechanisms may account 

for this, the results suggest that individuals that have access to a buffer of resources are 

less vulnerable to severe climatic events (Skogland 1983, Hallett et al. 2004). This 

buffer of resources may be stored as either body tissue (fat deposits) or be available as 

forage (low population density and intraspecific competition). The climatic events 

causing temporal body mass variation can be related to both winter conditions 

influencing the utilisation of important body tissue, and forage quality in summer 

important for restoration of body mass, growth, and development. A lack of a buffer of 

resources thus creates patterns in vulnerability to environmental stochasticity that follow 

gradients in the distance between the realised and optimum foraging niche, and 

gradients in population densities relative to the available plant biomass.  

 

Question 5 
To what degree are managers able to incorporate the effect of environmental conditions 

on population dynamics in their management of populations?  

Both body mass and recruitment rates in the roe deer population at Ytterøya 

were influenced by winter conditions. The variation in recruitment rates influenced the 

growth rate of the population. However, the harvest of fawns was set to be 50% of the 

total harvesting quotas, even if the proportion of fawns in the population varied 

considerably between years. Accordingly, the take-off of fawns was too high in years 

with low recruitment, i.e. if winter conditions were harsh. Thus, the harvest had a strong 

effect on the population dynamics, indicated by the lack of density effect on growth 

rate, the lack of response in population size to growth rate, and that population size was 

highly correlated with harvest the previous year. This suggests that the harvesting 

regime currently used at Ytterøya does not seem to adaptively account for variation in 

the vital rates, in particularly the recruitment rates, that occur as a consequence of 

variation in the environment. A more precise prediction of recruitment, or a monitoring 

of juvenile population size prior to hunt, and adjusting the take-off of fawns according 
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to the recruitment, is expected to reduce population fluctuations (Haydon & Fryxell 

2004).  

 

Future prospects  
This thesis shows that environmental variables can be a good tool for predicting 

variation in traits among and within ungulate populations, and that variation in these 

traits can have consequences for the population dynamics, and thereby also for a 

sustainable management of the species. The future management should attempt not only 

to maximise production, but also to obtain populations that have age- and sex-structures 

that allows mechanisms of sexual selection, to occur. This can be important for the 

viability of the populations (Viken 2005). Finally, it is important to minimise the 

negative effects of ungulate populations, e.g. damage to forest plantation and traffic 

accidents.  

Satellite-derived vegetation indices, together with weather observations, is today 

perhaps the most appropriate measures for environmental variation in Norwegian forest 

ecosystems. These ecosystems will inevitability experience change in the future. This is 

both due to predicted global climate change (McCarthy et al. 2001, Saxe et al. 2001), 

but also through a change in succession stages of the standing forest. Forestry is 

possibly the factor that influences forage availability for ungulates most in Norwegian 

forests. 

Both these sources of change are detectable with readily accessible data. More 

important will be to predict how the Norwegian forests appear in the future. Climate 

change can change the species composition (Sætersdal et al. 1998), as well as the value 

of species as forage for herbivores (Lenart et al. 2002). Similarly, succession of forest 

stands leads to changes both in quantity and quality of forage (Sæther et al. 1992), 

causing a change in the carrying capacity of an area. Since the magnitude and impact of 

changes from both climate and landscape is likely to vary regionally (Høgda et al. 2001, 

McCarthy et al. 2001), and since populations of ungulates do not necessarily respond to 

variation in the environment in the same manner, the management of ungulates should 

be spatially differentiated both according to the present landscape, expected future 

changes, and to population characteristics.  
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New programmes of satellite imagery provides data of higher quality, making it 

possible to obtain even more information about the quality of the landscape, e.g. 

through the MODIS-programme (Hansen et al. 2002, Myneni et al. 2002). A goal for 

the future must be to incorporate such information into management of ungulates, 

together with better knowledge about the relationships between the environment and 

variation in population dynamics, in order to obtain sustainable management of healthy 

ungulate populations.  
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