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ABSTRACT 

The aim of this study was to investigate the effects of water temperature and salinity on 

lipid nutrition of farmed Atlantic salmon (Salmo salar L.) parr and smolt. Salmon parr were 

held at low water temperature (2˚C) for six months while being fed feeds that differed in oil 

source (i.e. marine fish oil or vegetable oil blend) and concentration (low, 21% and high, 

34%). The responses at low temperature were compared with those of fish held at 8˚C using 

full-factorial design.  

Feeding and growth were maintained at 2˚C, although at lower rates than at 8˚C. Growth 

and feed utilisation improved over time, suggestive for a long-term acclimation response in 

fish held at low temperature. Overall feed efficiency was better at the lower temperature. A 

gradual decrease in growth rate and feed utilisation was seen at the higher temperature as 

the fish grew larger.  

The fish compensated for reduced energy density by increasing feed intake. At the higher 

temperature, better growth was found for fish fed the low-fat feeds, and there was also a 

tendency for improved growth when vegetable oil was used. Thus, there were no signs that 

vegetable oils are inferior to marine fish oil in promoting growth of Atlantic salmon parr in 

fresh water.   

Fish fed high fat feed were fatter than fish fed low fat feed, suggestive of lipostatic 

regulation of feed intake. Fat and protein digestibility were high at both 2˚C and 8˚C, 

although both fat and protein digestibility were lower at 2˚C. At the lower temperature, 

increased dietary fat level increased the fat digestibility, and improved protein digestibility 

were seen when vegetable oil was included in the feed. Protein retention was higher at the 

higher temperature irrespective of feed treatment, indicating that proteins were both readily 

digested and converted into new tissues.  
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The effects of feed treatment on low temperature acclimation responses were assessed from 

deposition of dietary fatty acids in fish tissues and from n-3 and n-6 essential fatty acid 

(EFA) budgets. Fatty acid composition of polar (membrane) and non-polar (storage) lipids 

in muscle, viscera and carcass were markedly influenced by the dietary oil, and non-polar 

lipids were more influenced than polar lipids. The retention n-6 EFAs was lower than for n-

3 EFAs, and was independent of temperature. The retention of n-3 EFAs retention was 

higher at the 2˚C, especially amongst fish given the fish oil based diets. This may be a 

reflection of the importance of n-3 HUFAs during low temperature acclimation. However, 

the unsaturation (UFA:SFA ratio) of polar lipids was higher in fish fed the vegetable oils 

than for fish fed fish oil based feed. This may imply that vegetable oils produced fish that 

were better able to withstand exposure to low temperature, while having membrane lipids 

less susceptible to oxidative damage, due to the lower contents of n-3 HUFAs (mainly EPA 

and DHA).  

The six months feeding period in freshwater was followed by parr-smolt transformation, 

and a subsequent 42-days on-growing in seawater. Feed history during freshwater rearing 

influenced on-growth of smolts. A positive effect of using a vegetable oil was indicated, but 

this effect was only seen when there was a shift to a high-lipid fish oil based feed at the 

time of transfer to seawater.  

As such, it was evident that use of vegetable oils in freshwater feed did not interfere with 

low temperature acclimation or parr-smolt transformation of juvenile salmon, and 

subsequent on-growing in seawater was better when vegetable oil had been used in the 

feed. This indicates that fatty acid (lipid) requirement of Atlantic salmon are probably 

different in fresh water and seawater, and that these changes are linked to parr-smolt 

transformation. It could be speculated that that salinity may be more important than 

temperature as an environmental influence on the fatty acid requirements of Atlantic 

salmon.  
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SAMMENDRAG 

Målet med dette studiet har vært å undersøke vanntemperaturens og saltholdighetens 

innvirkning på lipidernæringen hos parr og smolt av oppdrettet atlantisk laks (Salmo salar

L.). Lakseparr ble holdt ved lav vanntemperatur (2ºC) i seks måneder mens de ble fôret 

med en av fire fôrtyper med ulike fettkilde (dvs. marin fiskeolje eller vegetabilsk olje) og 

ulik konsentrasjon (lav, 21% og høy, 34%). Responsene ved den lave temperaturen ble 

sammenlignet med responsene en fikk hos fisk holdt ved 8ºC i et full-faktorielt 

forsøksdesign.   

Fôrinntak og vekst ble opprettholdt ved 2ºC, men var lavere enn ved 8ºC. Over tid ble vekst 

og fôrutnyttelse forbedret, noe som indikerer en langtids akklimeringsrespons hos fisken 

ved den lave temperaturen. Totalt sett var utnyttelsen av fôret bedre ved den laveste 

temperaturen. En kunne observere en gradvis reduksjon i veksthastighet og fôrutnyttelse 

ved den høyeste temperaturen ettersom fisken ble større.  

Fisken kompenserte for lavere energitetthet i fôret ved å øke fôrinntaket. Ved den høyeste 

temperaturen var veksten bedre hos fisk fôret med lav-fett-fôrene. Det var også en tendens 

til forbedret tilvekst når vegetabilsk olje ble brukt. Det var ingen tegn til at vegetabilsk olje 

var dårligere enn marin fiskeolje til å fremme vekst hos lakseparr i ferskvann.  

Fisken som ble fôret med høy-fett-fôr ble fetere enn den som fikk lav-fett-fôr. Det indikerer 

lipostatisk regulering av fôrinntak. Fett- og proteinfordøyeligheten var høy både ved 2ºC og 

8ºC, selv om både fett- og proteinfordøyeligheten var lavest ved 2ºC. Ved den laveste 

temperaturen, ga økt fettinnhold en forbedret fettfordøyelighet, og bruk av vegetabilsk olje i 

fôret ga bedre proteinfordøyelighet. Proteinretensjonen var høyere ved den høyeste 

temperaturen uavhengig av fôrtype, noe som indikerer at proteinet ble både lett fordøyd og 

omdannet til nytt vev.  
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Effektene av fôrtype på akklimeringen til lav temperatur ble bestemt fra deponeringen av 

fettsyrer fra fôret i ulike vev og fra budsjetter for n-3 og n-6 essensielle fettsyrer (EFS). 

Fettsyresammensetningen i polare (membran) lipider og upolare (lagrings) lipider i muskel, 

innvoller og ’rest’ ble tydelig påvirket av oljene i fôret, og de upolare lipidene ble mer 

påvirket enn de polare lipidene. Retensjonen av n-6 EFS var lavere enn for n-3 EFS, og var 

uavhengig av temperatur. Retensjonen av n-3 EFS var høyere ved 2ºC, spesielt hos fisk 

som fikk et fiskeoljebasert fôr. Dette kan reflektere betydningen av n-3 HUFA fettsyrer i 

akklimeringen til lav temperatur. Imidlertid var de polare lipider hos fisk som ble gitt fôr 

med vegetabils olje, mer umettet (UFA:SFA forhold) enn hos fisk gitt fôr med marine 

fiskeoljer. Dette kan bety at vegetabilske oljer produserte fisk som var bedre i stand til å 

tåle eksponering til lav temperatur, samtidig som membranlipidene var mindre utsatt for 

oksidering som følge av et lavere innhold av n-3 HUFA fettsyrer (hovedsaklig EPA og 

DHA).  

Etter seks måneder i ferskvann ble fisken smoltifisert, etterfulgt av en 42-dagers periode i 

sjøvann. Fôrhistorie i ferskvannsfasen påvirket påvekst hos smolt. En positiv effekt av 

vegetabilsk olje ble funnet, men denne effekten ble bare funnet i grupper som hadde et 

skifte til et høy-fett-fiskeoljefôr ved overføring til sjøvann.  

Det var derfor tydelig at vegetabilsk olje ikke hadde negative konsekvenser for akklimering 

til lav temperatur eller for smoltifiseringen hos unglaks, og påfølgende tilvekst i sjøvann 

var bedre når vegetabilske oljer hadde blitt brukt. Dette indikerer at fettsyre (fett) behovet 

til atlantisk laks er forskjellig mellom ferskvann og sjøvann, og at forskjellene er knyttet til 

smoltifiseringen. Det kan derfor spekuleres i om saltholdigheten i miljøet er viktigere enn 

temperaturen i å bestemme fettsyrebehovet hos atlantisk laks. 
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1 INTRODUCTION 

A large number of fish and shellfish species are currently cultured worldwide. In Norway, 

farmed Atlantic salmon and rainbow trout (Oncorhynchus mykiss) represent large export 

industries, with approximately 465.000 tonnes of Atlantic salmon and 83.000 tonnes of 

rainbow trout being produced in 2002 (Fiskeridirektoratet 2003). The increased production 

of farmed fish over the last three decades has necessitated a parallel increase in fish feed 

production, and a concomitant search for protein and oil sources to keep abreast of the 

increase in farmed fish production. Finding suitable protein and oil sources for feed 

production is considered a major challenge for the fish farming industry (Higgs & Dong 

2000; Jobling et al. 2001; Opsahl-Ferstad et al. 2003).  

Wild Atlantic salmon occur between 40 and 70ºN in the region bounded by North America, 

Scandinavia and the other countries of the western Europe (MacCrimmon & Gots 1979; 

Klemetsen et al. 2003). The species experiences marked seasonal variations in 

environmental conditions and food availability. The winter is regarded as a critical period 

(Cunjak & Power 1987; Berg & Bremset 1998), characterised by food scarcity, low growth, 

and lipolytic activity, when fish mobilise fat reserves deposited during the summer. Atlantic 

salmon are diadromous; they spawn in fresh water, and after a period of varying length 

undergo parr-smolt transformation and migrate to offshore marine habitats (reviewed by 

Boeuf 1993; Clarke 2000). Changes in photoperiod probably play a major role in initiation, 

timing and synchronisation of the physiological, morphological and behavioural changes 

associated with the parr-smolt transformation, and alterations in lipid metabolism are 

regarded as an integral part of the process (Sargent et al. 2002). The accretion of body 

tissue (growth) of salmon is flexible. In addition to fish genotype and environment (light, 

temperature and salinity) it is also influenced by the amount and nutritional quality of the 

feed.  

One reason for the commercial success of Norwegian salmon farming relates to the thermal 

requirements of the species. Salmonids are cold-water tolerant with growth optima at 12-
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17ºC (Kestemont & Baras 2001). This enables farming of these species in coastal areas of 

temperate and polar regions where temperatures below 4ºC are regularly encountered 

during winter months. Temperature influences metabolic rate by its influence on molecular 

activation of the components of the metabolic chain. Feeding and growth increase with 

increasing temperature up to a certain point, and then fall as the upper thermal limits are 

approached (Brett 1979; Jobling 1994; Kestemont & Baras 2001).  

Commercial feeds for carnivorous fish traditionally contain large amounts of meals and oils 

produced from pelagic marine fish. Marine fish oils of commercial importance are obtained 

from ‘oily fish’, e.g. herring (Clupea harengus), pilchard (Sardinia ocellata), Atlantic 

menhaden (Brevoortia tyrannus) and anchovy (Engraulis encrasicolus). Polyunsaturated 

fatty acids (PUFAs) of the n-3 series are characteristic of marine fish oils and the major 

PUFAs are usually 20:5 (eicosapentaenoic acid; EPA) and 22:6 (docosahexaenoic acid; 

DHA)(Gunstone et al. 1994; Steffens 1997; Arts et al. 2001; Higgs & Dong 2000).  

Most pelagic fisheries are finite, are fully exploited and they may also show fluctuations 

over years. One example is the collapse of the anchoveta fisheries off the coast of South 

America that may occur at 7-12 year intervals during El Niño events. Supplies of fish oils 

for aquaculture production are expected to become limiting by year 2005 to 2010 (Bell & 

Sargent 2003). To increase sustainability of cultured fish products, protein and lipid sources 

of vegetable origin have attracted interest for commercial aquafeeds. In the case of dietary 

oils, soybean (Glycine max), palm (Elaeis sp.) and rapeseed/canola (Brassica sp.) oil are 

the most widely available (Higgs & Dong 2000; Sargent et al. 2002). Vegetable oils are 

generally dominated by one or a few C16 and C18 fatty acids, usually palmitic (C16:0), 

oleic (C18:1n-9), linoleic (C18:2n-6) and/or linolenic (C18:3n-3) acid, and they have 

insignificant contents of EPA and DHA (NRC 1993; Gunstone et al. 1994). The latter are 

often designated as HUFAs (highly unsaturated fatty acids). 
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There is little information about bioenergetics of salmonids held at temperatures below 4ºC, 

or about the importance of feed composition at such temperatures. There are, however, 

indications that quantitative and qualitative aspects of lipid nutrition may be of importance 

when rearing fish at low temperatures. Lipid metabolism increases during low temperature 

acclimation, and cell membrane fatty acid compositions change when ectotherms are 

exposed to low temperature (Hochachka & Somero 2002). Therefore, adequate dietary 

supplies of lipids and their fatty acids are potentially an important determinant of the ability 

of animals to adapt to environmental changes. Whether oils of vegetable origin would be 

able to support adaptation of Atlantic salmon to changes in temperature and salinity are 

largely unknown.  

This thesis describes studies on environmental influences on qualitative and quantitative 

aspects of lipid nutrition of farmed Atlantic salmon parr and smolt. In Paper I, the design 

and testing of a feed monitoring system is described. The feed monitoring system was used 

in studies of feed intake, growth and nutrient utilisation of salmon parr (Paper I & Paper 

II), and the deposition and retention efficiencies of n-3 and n-6 series fatty acids (Paper 

III) in relation to temperature and feed composition. In Paper IV, the interacting effects of 

temperature and feed composition on the deposition of fatty acids in polar and non-polar 

lipids of three tissue compartments are discussed. Paper V examines the effects of feed 

history during freshwater rearing on parr-smolt transformation, and on subsequent growth 

and seawater acclimation of Atlantic salmon smolts.  

2 AIMS AND QUESTIONS ADDRESSED 

The aims and main questions addressed were:  

1. To investigate the effects of temperature on feed intake, growth and nutrient utilisation 

of Atlantic salmon parr, and examine the importance of feed composition (fat content 

and oil source) at low temperatures:   

• How does temperature (2ºC and 8ºC) influence feed intake and growth of Atlantic  
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salmon parr, and does feed composition influence the responses? 

• How does low temperature influence nutrient utilisation?  

• Do dietary effects on feed intake, growth and nutrient utilisation differ with 

temperature? 

These issues are treated in Paper I and Paper II.

2. To investigate the effects of rearing temperature and feed composition (fat content and 

oil source) on fatty acid deposition and retention efficiencies of n-3 and n-6 essential 

fatty acids (EFAs) in Atlantic salmon parr: 

• Do retentions of n-3 and n-6 EFAs differ? 

• Is n-3 EFA retention efficiency increased at 2ºC compared to at 8ºC? 

• Is n-3 EFA retention higher when fish are given feed low in n-3 HUFAs, i.e. when 

inclusion of vegetable oils in feeds reduces n-3 HUFA concentration relative to 

when marine fish oils are used as lipid source? 

• How is deposition of fatty acids affected by temperature and feed treatment, and is 

the deposition of fatty acids in polar and non-polar lipids of muscle, viscera and 

‘carcass’ different at 2ºC and 8ºC?  

These issues are treated in Paper III and Paper IV.

3. To investigate the importance of lipid content and composition during freshwater 

rearing on parr-smolt transformation and subsequent on-growing in seawater:  

• Do dietary-induced effects on body composition during freshwater rearing affect 

parr-smolt transformation? 

• Do feed history during freshwater rearing, and feed composition during the seawater 

on-growing, influence the performance of smolts? 

These issues are treated in Paper V.
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3 METHODOLOGICAL CONSIDERATIONS

3.1 Environmental factors 

In the wild, fish are exposed to a complex array of interacting biotic and abiotic factors that 

are difficult to reproduce in the laboratory. Temperature may be classified as a lethal, 

controlling or directive factor for fish (Wootton 1998). In addition, living organisms 

possess endogenous rhythms many of which may be synchronised to the prevailing 

environment by zeitgebers (Bünning 1973). Light, or photoperiod, is one such important 

zeitgeber. In fish, the pineal gland is a ‘photoneuroendocrine transducer’ that converts 

information about light period (day-length) to nervous and endocrine signals (Falcón & 

Collin 1989). This synchronises physiological processes via the light-pituitary axis 

(Koumourdjian et al. 1976; Zachmann et al. 1992). Light and temperature cycles reinforce 

each other, although temperature is commonly regarded as being secondary to light in 

importance as a zeitgeber (Max & Menaker 1992; Liu et al. 1998). Few studies have 

investigated the interacting effects of light and temperature cycles. However, among 

temperature, photoperiod and salinity, temperature had the greatest influence on the growth 

of sockeye (Oncorhynchus nerka), coho (Oncorhynchus kisutch) and chinook 

(Oncorhynchus tschawytscha) salmon fry. For the coho salmon, effects of temperature and 

photoperiod were significant and there was also an interaction between the effects of 

temperature and photoperiod (Clarke et al. 1981). This indicates that the effect of 

temperature differs depending on the prevailing light regime.  

Measures were taken to account for the possibility of confounding effects of interacting 

photoperiodic and thermal cues. Light conditions (day-length) were gradually decreased 

from continuous light (LD24:0) to cycles of 12 hours light:12 hours dark (LD12:12) in the 

months prior to the experiments, and an accompanying decrease in water temperatures 

provided the fish with ‘winter’ stimuli. The ‘short day’ light regime (LD12:12) was 

maintained during the feeding trial. The short day light regime also enabled induction of 

parr-smolt transformation subsequent to the termination of the feeding trial. This enabled 

studies of the importance of feeding history on parr-smolt transformation and early on-
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growing in seawater to be undertaken. Parr-smolt transformation was induced by increasing 

the photoperiod (LD12:12→LD24:0) and water temperature from 2ºC to 8ºC. Thereafter 

the smolts were transferred directly into seawater at 33‰ salinity.  

One aspect of nutritional studies that has received little attention is the duration of the 

experiment (Shearer 2000a). The time (duration) aspect may be of particular importance in 

the present context, because adaptation to low temperature may take several weeks (Jobling 

1994), so a relatively long feeding period (six months) was used in an attempt to ensure 

thermal adaptation and adequate accumulation of body constituents, including lipids. This 

procedure enabled comparison of ‘size-matched’ fish (Rasmussen & Ostenfeld 2000) 

reared at the higher and lower temperature; by comparing fish grown to same size at two 

different temperatures (2 and 8ºC), any confounding effects of body mass on the 

investigated response parameters could be minimised.  

3.2 Feed intake measurement  

In order to gain information about feed consumption, a feed intake monitoring system was 

developed (Figure 1). The system is based on collection of uneaten pellets filtered from the 

tank outlet water (Helland et al. 1996). This system enabled assessments of feed intake to 

be made without disturbing the fish, and the assessment of feed intake enabled estimates of 

retention efficiencies of feed and specific nutrients (protein, energy and essential fatty acids 

(EFAs)) to be made on a tank basis.  

The efficiency of the system was tested prior to the feeding experiment to determine dry 

matter losses from each test feed. The tests revealed similar dry matter recoveries for all 

feeds (74-78%; calculation is given in Paper I), and these data were used as a correction 

factor when estimates of feed and nutrient intake were made. A detailed description of 

design, installation and testing of the system is given in Paper I.
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Figure 1. Schematic diagram of the feed intake monitoring system. General overview (left)  
and feed waste collector (right) (Figure 1 from Paper I).   

3.3 Test feeds 

The development of ‘optimal’ winter feeds for Atlantic salmon was not the aim of the 

work. As such, the work should be considered to encompass ‘nutritional challenge studies’, 

emphasising qualitative and quantitative aspects of lipid nutrition, rather than strict 

requirement studies. The feeds were produced with high-quality fish meal (Ultra Flash, 

Fiskernes Fiskeforbund A.M.B.A., Skagen, Denmark) and ground wheat as the major 

ingredients, and vitamin and mineral premixes (F. Hoffman-La Roche Ltd., Basel, 

Switzerland) were added according to the commercial standards of BioMar AS. Feed 

pellets (2.5 mm) were produced by extrusion technology and either marine fish oil or a 

vegetable oil blend was added at low or high levels. The feeds were designated LFFO, 

LFVO, HFFO and HFVO according to fat level (LF-low fat; HF-high fat) and oil source 

(FO-fish oil; VO-vegetable oil). The gross compositions of the test feeds are shown in 

Table 1. 
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3.3.1 Proximate feed composition  

The replacement of protein by fat, thereby altering dietary protein, gross energy and 

protein-to-energy ratio, is common practice in nutritional research (e.g. Lee & Putnam 

1973; Kaushik & Oliva-Teles 1985; Dias et al. 1998; Hillestad et al. 1998). Increased 

dietary fat content to achieve efficient high-energy diets has also been a common trend in 

commercial fish feeds (Sargent et al. 2002). 

Table 1. Analysed proximate composition and gross energy content of the test feeds  
 LFFO LFVO HFFO HFVO 
Proximate composition, g 100 g DM-1

Dry matter 94.5 94.1 96.4 96.3 
Crude protein 50.2 50.4 40.3 40.2 
Crude fat 20.7 21.4 33.5 33.9 
Ash 9.1 9.3 10.3 10.4 
Gross energy, MJ kg-1 22.5 22.5 24.8 24.5 

Codes are as follows; LF, low fat (21%); HF, high fat (34%); FO, marine fish oil (100% of added 
oil); and VO, vegetable oil (rapeseed:linseed oil at 7:3 by weight, 100% of added oil).   
Carbohydrate contents of the feeds were not determined.   

Table 2. Analysed amino acid composition of the test feeds  
LFFO LFVO HFFO HFVO 

Essential amino acids, g 100 g DM-1

Methionine 1.56 1.56 1.22 1.20 
Threonine 2.27 2.26 1.72 1.67 
Valine 2.92 2.87 2.28 2.29 
Isoleucine 2.40 2.50 1.99 1.91 
Leucine 4.00 4.00 3.10 3.10 
Phenylalanine 2.18 2.16 1.70 1.67 
Histidine 1.32 1.36 1.07 1.06 
Lysine 4.00 4.00 3.09 3.12 
Arginine 2.93 2.91 2.28 2.28 

Codes are as follows; LF, low fat (21%); HF, high fat (34%); FO, marine fish oil (100% of added 
oil); and VO, vegetable oil (rapeseed:linseed oil at 7:3 by weight, 100% of added oil). 
Tryptophan contents of the feeds were not determined.  

Carnivorous fish, such as salmonids, require 40-55% protein (NRC 1993), and the 

requirement is higher in small than in large fish (NRC 1993, Einen & Roem 1997; Wilson 

2002). The EAA contents are given in Table 2. As expected, the high fat feeds contained 

lower levels of EAAs. Thus, essential amino acids (EAAs) and protein of the high fat feeds 
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(Table 1) may have influenced growth depending on the availability of the EAAs and the 

obtained feed conversion ratios (FCRs, g feed eaten g gained-1).  

3.3.2 Dietary oil sources  

Two oil sources were used in the experimental feeds; sandeel (Ammodytes spp.) oil and a 

blend of rapeseed (Brassica sp.) and linseed (Linum sp.) oil (7:3 ratio on a weight basis). 

The vegetable oils were refined, i.e. neutralised, bleached and de-odorised. The rapeseed oil 

was double-low quality i.e. low contents of glucosinolates (<30µmol g-1) and erucic acid 

(C22:1n-9; <3% of total fatty acids). The fatty acid compositions of the test feeds are given 

in Table 3. 

Table 3. Feed oil sources in recipe and the relative fatty acid composition of test feeds  
 LFFO LFVO HFFO HFVO 
Feed oil composition, % of recipe     

Sandeel oil 14.0  27.0  
Rapeseed oil  10.4  20.0 
Linseed oil  3.9  7.0 

Fatty acid composition, %     
14:0 5.7 1.5 6.0 0.8 
16:0 13.4 7.0 13.6 5.7 
18:0 2.0 2.3 1.9 2.3 

Σ SAFA1 21.4 11.6 21.9 9.9 
16:1 5.1 1.2 5.4 0.7 
18:1n-9 8.2 38.4 7.3 43.3 
20:1  10.8 3.1 11.4 2.2 
22:1  15.9 3.8 17.1 2.0 

Σ MUFA2 43.1 49.3 44.3 50.6 
18:2n-6 3.1 15.1 2.4 16.8 
18:3n-3 2.0 15.7 1.6 18.3 
18:4 4.2 0.9 4.4 0.5 
20:4n-6 0.6 0.2 0.5 0.1 
20:5n-3 10.1 2.1 10.8 1.1 
22:6n-3 12.6 4.3 11.8 2.2 

Σ PUFA3 35.5 39.1 33.8 39.5 
n-3:n-6 ratio 6.7 1.4 8.2 1.3 

Codes are as follows; LF, low fat (21%); HF, high fat (34%); FO, marine fish oil (100% of added 
oil); and VO, vegetable oil (rapeseed:linseed oil at 7:3 by weight, 100% of added oil).  

1Saturated fatty acids, i.e. fatty acids without double bonds in the carbon chain, 2 monounsaturated 
fatty acids, i.e. fatty acids with a single double bond in the carbon chain, 3 polyunsaturated fatty 
acids, i.e. fatty acids with several double bonds in the carbon chain. 
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The main differences were in PUFA compositions (Table 3). Northern hemisphere fish oils 

are characterised by high contents of EPA and DHA, which are the main n-3 HUFAs (fatty 

acids with >4 double bonds in the carbon chain), and long-chain MUFAs, mainly C20:1 

and C22:1 isomers (Gunstone et al. 1994; Arts et al. 2001). Low-erucic rapeseed oil is 

particularly rich in C18:1n-9 and has also high relative contents of C18:2n-6 and less 

C18:3n-3, while linseed oil is characterised by a high concentration of the latter (NRC 

1993; Gunstone et al. 1994). The vegetable oil blend gave feeds with balanced contents of 

n-3 and n-6 fatty acids dominated by C18 PUFAs, and with high contents of C18 MUFAs 

(Table 3). The fish meal in the feeds provided sufficient n-3 HUFAs to meet the EFA 

requirements of Atlantic salmon parr as indicated by Ruyter et al. (1998). Juvenile salmon 

are exposed to a ‘freshwater food web’ in the wild and there are resemblances between the 

fatty acids in freshwater and terrestrial food webs (Hanson et al. 1985; Bell et al. 1994; 

Higgs et al. 1995; Goedkoop et al. 2000; Bendiksen et al. 2003; see Figure 2). 
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Figure 2. Changes in fat content of natural prey dominating stomach content of small 
salmon in the River Stjørdalselva (63˚25’N) collected during winter (A), and mean PUFA 
composition of natural prey and a marine fish oil based commercial feed (B) (from 
Bendiksen et al. 2003).  

There is evidence to suggest that Atlantic salmon parr readily elongate and desaturate C18 

precursors of n-3 and n-6 series fatty acids to the biologically active forms of essential fatty 

acids (n-3 and n-6 HUFAs)(Sargent et al. 1995; 1999; 2002). Information about lipid 
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nutrition of wild juvenile Atlantic salmon during winter is sparse, but Bendiksen et al. 

(2003) found that prey of salmonids inhabiting a high-latitude river had a low content of the 

n-3 HUFA DHA (Figure 2). The minor contribution of DHA to the fatty acid content of the 

prey implies that the requirement of the salmon parr for this fatty acid is largely met by 

elongation and desaturation of C18/C20 n-3 precursors (Bendiksen et al. 2003). As such, 

salmon parr are expected to a have high tolerance for vegetable oils.  

3.4 Experimental design and statistical methods 

The statistical methods used in aquaculture studies have been the subject of recent scrutiny 

(e.g. Searchy-Bernal 1994; Smart et al. 1998; Shearer 2000a; Ruohonen et al. 2001; Ling & 

Cotter 2003). Analysis of variance (ANOVA) is the most common technique used to 

analyse experimental data in biology because it is readily adaptable to complex multifactor 

designs (Ling & Cotter 2003). A full-factorial 23 completely randomised factorial design 

with triplicate replications (fish tanks) for each treatment was adopted for analysis of data 

collected in experiments reported in the thesis. Data were mainly analysed using fixed 

factor models within the GLM procedure of SPSS for Windows (version 10.0). In such 

models independent variables are selected arbitrarily and systematically, thereby limiting 

generalizations to the treatment effects observed with the treatment conditions selected 

(Zolman 1993). A repeated measure ANOVA was used when series of individual 

observations were available, and in these cases replicate tank was hierarchically nested 

within dietary treatments (Ling & Cotter 2003). A sub-population of about 60 fish in each 

tank was tagged (FTF-69, Floy Tag and Manufacturing, Seattle, WA) to give information 

about growth of individuals.  

In factor experiments, both simple main effects and interactions between treatment factors 

are possible. Interaction effects were of interest as these could reveal whether the responses 

to feed treatment differed between temperatures. ANOVA tests were backed-up by 

(unplanned) post-hoc multi-comparisons using Tukey’s HSD test, or alternatively, an 
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equivalent non-parametric test. In addition, simple correlations (Pearson’s r) were used for 

assessing strength of associations between test variables.  

The National Animal Research Authority of Norway approved the experiments.  

4 RESULTS AND GENERAL DISCUSSION

4.1  Feeding and growth  

4.1.1 Thermal and dietary effects and their interactions 

Feeding and growth were maintained at 2ºC, but at lower rates than at 8ºC. The suppressive 

effect of low temperature was progressively reduced, suggestive of a long-term thermal 

acclimation response (Paper I & Paper II).  

Temperature influences rates of feeding and growth directly by affecting metabolic rate 

(Brett 1979; Elliott 1982; Jobling 1994). Brett (1979) suggested that growth at low 

temperatures is limited by the reduction in available energy caused by low feeding rates, 

while other studies have shown that the growth reduction may be caused by impaired 

protein digestion (Hardewig & van Dijk 2003) or by inhibition of protein synthesis (West 

& Driedzic 1999). Reduced rates of protein synthesis would lead to a decrease in energy 

demand and thus reduced appetite (West & Driedzic 1999).  

Feeding rates were markedly affected by a reduction in temperature from 8ºC to 2ºC 

(Paper I & Paper II), with feed intake (g fish-1) over the same two months period being 

about five times higher for fish held at 8ºC than at 2ºC. There was a two-fold increase in 

weight after six months of feeding at the lower temperature, while a five-fold weight 

increase was seen at the higher temperature. An additional four months of feeding was 

required for a doubling of weight of 19g salmon parr at 2ºC compared to at 8ºC (Figure 3; 

Paper I and Paper II).
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Figure 3. Growth of salmon parr held at 2˚C and 8˚C while being fed one of four feeds. 
Feed treatments are as follows; LFFO, low fat – fish oil (filled circle); LFVO, low fat –
vegetable oil (open circles); HFFO, high fat – fish oil (filled triangles); and HFVO, high fat 
– vegetable oil (open triangles). Data are presented as mean ± S.E. (n=3 per treatment). 
Different letters indicate significant differences between dietary treatments within sampling 
times. Lines and symbols may be hidden (Figure 1 from Paper II).  

Feeding and growth were maintained at low temperature, and the lower limit for feeding 

was below 2ºC (Paper I & Paper II). In line with this, feed intake and growth occur at low 

temperature in several salmonids both in the wild and in captivity (Brännäs & Wicklund 

1992; Fraser et al. 1993; Heggenes et al. 1993; Koskela et al. 1997a,b). For example, 

Koskela et al. (1997a,b) found that both Atlantic salmon and brown trout (Salmo trutta)

continued to feed at 2ºC, and the lower thermal limit for feed intake was estimated to be 

just above 0ºC (Koskela et al. 1997a).  

Although the suppressive effect of reduced temperature on feed intake and growth was 

pronounced, the differences in rates of feed intake and growth between fish at the higher 

and lower temperatures were not constant over time.  
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Figure 4. Temporal changes in growth (SGR, % day-1) and FCR (feed:gain) of salmon parr 
reared at 2˚C and 8˚C for six months while being fed four different feeds. Data are 
presented as tank mean ± S.D. (n=12 per treatment).  

A temporal increase in feed intake and growth was seen in fish held at the lower 

temperature (Figure 4; Paper I and Paper II). This is in accord with Koskela et al. (1997c) 

and Jobling et al. (1998) who found that rates of feed intake and growth tended to increase 

with time in Baltic salmon (Salmo salar L.) and brown trout held at constant low 

temperature under continuous light. For fish held at the lower temperature, feed conversion 

rate (FCR, feed:gain, calculation is given in Paper I) was better than in those at the higher 

temperature both when examined for size-matched groups of fish (Paper I) and for the 

whole six months growth period (Paper II). Specific growth rate (SGR, % day-1,

calculation is given in Paper II) and FCRs decreased over time at the higher temperature 

(Figure 4). Previous reports on the effect of temperature on feed utilisation are equivocal, 

but Alanärä (1992) reported a linear decrease in feed efficiency in rainbow trout as 

temperature increased. This agrees with the present results (Paper I and Paper II). Both 

rates of feed intake and growth are size-dependent, so it is possible that reduced growth rate 

and FCRs over time at the higher temperature (Figure 4) was largely the result of the fish 

becoming larger.   

A temporal increase in ‘temperature-corrected growth’ (TGC; calculation is given in Paper 

I) was seen at the lower temperature, while constant TGCs were found at the higher 
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temperature (Paper I). TGC is not constant over the entire temperature range at which 

growth is possible and growth predictions are problematic (Jobling 2003). Despite such 

problems, a stable difference in TGC between fish held at the two temperatures would be 

predicted, but this was not the case (see Figure 5A and 5B in Paper I). It is suggested that 

the temporal increase in TGC for fish held at the lower temperature reflected a long-term 

acclimation response (Paper I) and that the fish at the lower temperature were able to 

respond more effectively to low temperature as time progressed. 

Differences in performance were seen between dietary groups at the higher temperature, 

but not at the lower temperature. At the higher temperature the fish grew better when fed 

the low fat feeds, and there was also a tendency for improved growth when vegetable oils 

were used (Figure 3; Paper II). It is evident that the effect of low temperature masked any 

potential effects of feed treatment; diet-related growth differences observed at the higher 

temperature were diminished at the lower temperature. This constitutes a challenge when 

information about nutritional requirements for fish held at very low temperature is sought, 

as weight gain is a frequently used response parameter in such studies.  

The high fat feeds induced higher whole body fat contents than the low-fat feeds (Paper 

II), and according to the lipostatic theory (Kennedy 1953; see section 4.1.2) increased body 

fat would exert a negative feedback on the hypothalamic regions involved in appetite 

regulation, resulting in reduced feed intake. However, growth of fish is also dependent 

upon dietary protein and salmonids require 40-55% of dietary protein (NRC 1993; Wilson 

2002). Essential amino acid (EAA) contents of the test diets were high, due to the inclusion 

of high quality fish meal, although more EAAs were available in the low fat feeds (Table 

2).  

There is little evidence that protein requirements differ between fish held at different water 

temperatures (NRC 1993; Wilson 2002), although higher protein requirement at high 

temperatures has been reported for chinook salmon fingerlings (DeLong et al. 1958) and 
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striped bass (Morone saxatilis; Millikin 1982). No differences in protein requirement are 

reported for rainbow trout at temperatures ranging from 9 to 18ºC (NRC, 1993).  

4.1.2 Lipostatic regulation of feeding and growth 

Differences in feed energy density invoked compensation in feed intake to maintain energy 

and nutrient intake, indicating regulation of feed intake and growth (Figure 5 right panel; 

Paper I and Paper II). The increase in dietary fat from 21 to 34% increased the energy 

density from about 23 to 25 kJ g-1. Consumption of low-fat feeds was higher than that of 

high-fat feeds, and this was seen at both temperatures (Paper I and Paper II), and across 

oil sources (Paper II). These results are consistent with the idea that the fish compensate 

for differences in feed energy density to maintain energy and nutrient intake (e.g. Lee & 

Putnam 1973; Shearer et al. 1997; Yamamoto et al. 2000; Sæther & Jobling 2001).  
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Figure 5. Feed intake in mass (left) and energy (right) of salmon parr growing from c. 19g 
to c. 38g at 2ºC and 8ºC. Data for fish fed LFFO (open bars) and HFFO (shaded bars) feeds 
are presented. Data are given as mean ± S.E. (n=3 per treatment)(from Paper I).  

Current understanding of long-term energy homeostasis involves regulatory systems 

involving sensors, feedback loops, and compensatory mechanisms (Weigle 1994; Woods & 

Seeley 2000). Deviations of body energy in a positive or negative direction invoke 

hypophagic or hyperphagic responses to restore body energy reserves. Fat is the major form 

of stored chemical energy in living organisms, and body fat mass is involved in long-term 
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regulation of energy balance. A possible link between circulating factors and the regulation 

of appetite was suggested 50 years ago (lipostatic theory; Kennedy 1953), but it was not 

until 1994 that Zhang and co-workers identified a circulating feedback signal 

(leptin)(Zhang et al. 1994). Leptin, and other adiposity signals, provide an index of body 

fat, establishing a link between fat stores (adipose tissues) and the central hypothalamic 

regions involved in the regulation of feeding and energy expenditure (Weigle 1994; Woods 

& Seeley 2000). A ’leptin-like factor’ seems to be present in fish (Johnson et al. 2000) and 

is recently reported in Atlantic salmon (Vegusdal et al. 2003).  
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Table 2 in Paper II). All regressions are significant at the P<0.05 levels.   
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It is possible that the differences in feed intake between the salmon parr fed the low and 

high fat feeds were related to differences in body fat content (Figure 6; Paper I and Paper 

II), as the size of fat depots seems to be involved in feed intake regulation in salmonids 

(Jobling & Miglavs 1993; Metcalfe & Thorpe 1992). For example, the appetite of over-

wintering juvenile salmon increased when fat reserves fell, but declined once the reserves 

had been replenished (Metcalfe & Thorpe 1992). This may indicate that both size of fat 

stores and the rates of their depletion and replenishment are important factors in regulation 

of appetite in fish. At the higher temperature, the low fat feeds resulted in higher weight 

gain than the high fat feeds (Figure 3; Paper I and Paper II). Although weight differences 

that were introduced between dietary groups at 8ºC could explain some of the difference in 

feed intake, there were also differences in feed intake between fish fed low and high fat 

feeds at the lower temperature. Therefore, it is concluded that the reduction in feed intake 

for fish fed the high fat feed was not merely a size-effect, but was rather a consequence of 

regulatory mechanisms, possibly related to increased accumulation of body fat.  

4.1.3 Effects of dietary oil sources  

There were no indications that vegetable oils were inferior to marine fish oils in supporting 

growth of the salmon parr (Paper II). Feeds with vegetable oils had lower contents of the 

n-3 HUFAs EPA and DHA (Table 3). Dietary lipid may affect whole-animal physiology, 

and n-3 HUFAs, especially DHA, are considered important when fish adapt to low 

temperature (Hazel 1979; 1984). Cold tolerance of juvenile red drum (Sciaenops ocellatus), 

expressed as lower median lethal temperature, was affected both by the levels and kinds of 

dietary lipids. Fish fed diets rich in n-3 HUFA were able to survive temperatures 3.5 to 

4.5ºC lower than fish fed diets low in these fatty acids (Craig et al. 1995). Thus, it might be 

hypothesised that winter performance of fish could suffer when high levels of vegetable 

oils are included in feeds, due primarily to the low n-3 HUFA content.  

This assumption was not supported by our studies. The HUFA-depleted vegetable oil was 

not found to be inferior to marine fish oil as a lipid source even when high inclusions were 
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tested at low temperature for prolonged periods (Paper II). At the higher temperature there 

was a tendency for improved performance when vegetable oils were used (Paper II).  

Dosanjh et al. (1998) found no effect on growth of replacing 47% of fish oil with canola oil 

in feed for post-smolt Atlantic salmon. Bell et al. (2001) tested rapeseed oil inclusion at 0, 

10, 25, 50 and 100% of dietary oils in feeds for Atlantic salmon post-smolts. No differences 

in growth and feed conversion were found, although fish fed 100% rapeseed oil had the 

lowest final weights and SGRs, indicating an upper limit for the inclusion of rapeseed oil. 

The suitability of crude palm oil for Atlantic salmon post-smolts was tested in feeds with 0, 

25, 50 and 100% crude palm oil as total added oil and there was found no effects of diets on 

SGR or FCR (Bell et al. 2002). On the other hand, growth-promoting effects have been 

reported when n-3 and n-6 EFAs are provided as n-3 and n-6 HUFAs rather than as C18 n-

3 and n-6 fatty acids (Takeuchi & Watanabe 1979; Ruyter et al. 2000).  

There are few studies of long-term effects of vegetable oil at low temperatures (Paper II). 

Grisdale-Helland et al. (2002) investigated the influence of high contents of dietary 

soybean oil on post-smolt salmon reared at 5 and 12ºC. The fish grew well at both 

temperatures on high-energy, fish meal-based diets containing up to 100% supplementary 

soybean oil (Grisdale-Helland et al. 2002). Together, the results indicate a high tolerance 

for vegetable oils in juvenile Atlantic salmon, and low temperature does not seem to be a 

major impediment for extensive use of vegetable oils during freshwater growth (Paper II). 

4.2 Nutrient digestibility and retention efficiencies  

Protein and fat digestibilities were reduced at the lower temperature, but effects of feed 

treatment on fat and protein digestibilities were more pronounced at the low temperature: 

At the lower temperature, increased dietary fat level resulted in higher fat digestibility, and 

improved protein digestibility was seen when vegetable oil was included in the feed (Figure 

7; Paper II).
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Figure 7. Apparent digestibility coefficients for fat (left) and protein (right) of salmon parr held 
at 2 and 8 ºC while being fed one of four feeds. Feed codes are as follows; LF, low fat; HF, high 
fat; FO, fish oil; VO, vegetable oil. Data are presented as mean ±S.E. (n=3 per treatment). 
Different upper and lower case letter indicate significant differences between dietary treatments 
at 8 and 2ºC, respectively (Figure 2 from Paper II).  

Fat digestibility depends upon the degree of hydrogenation of the oil (e.g. Austreng et al. 

1979; Torstensen et al. 2000). Vegetable oil was not more digestible than the fish oil 

although contents of saturated fatty acids (SAFAs) were lower (Table 3),implying that 

feeds with about 22% SAFAs are readily digested and utilised by Atlantic salmon parr 

(Paper II). Rates of gastric evacuation in fish are slowed both by reductions in temperature 

(Fauconneau 1983; Jobling 1994), and by increased feed fat and energy content (Jobling 

1980; 1994), presumably giving more time for digestive lipases to act and increase fat 

digestion. Although there was a co-operative effect of low temperature and feed fat level on 

fat digestibility in salmon parr (Figure 7; Paper II), the overall finding of increased 

nutrient digestibility at higher temperature is in general accord with previous reports from 

salmonid species (Watanabe et al. 1996a,b; Azevedo et al. 1998; Olsen & Ringø 1998). 

Protein retention efficiency (PRE: [g protein increase g protein ingested-1] × 100) was 

better at the higher temperature. In line with the results of the digestibility trial, protein 

retention efficiency was generally high, but was significantly higher at 8ºC than at 2ºC (see 

Table 2 and Table 3 in Paper II). This indicates that the feed proteins were both readily 

digested and deposited as fish tissue (Paper II). Protein retention efficiencies may have 
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been slightly overestimated due to the indirect method used to assess fish proteins, but 

contents of carbohydrates are very low in fish (0.1-0.5% of body wet weight, Jonsson & 

Jonsson 1997). Even with some error in estimation, the differences recorded between 

dietary groups and temperatures would still be valid.    

The difference in protein retention efficiency between fish held at different temperatures 

reflected increased digestibility at the higher temperature, suggestive of a close relationship 

between these two parameters. Azevedo et al. (1998) reported a significant effect of 

temperature on protein digestibility in rainbow trout, but no differences in protein retention 

efficiencies were found between temperatures. Their experiment was conducted within the 

thermal range 6-15ºC under a constant 12 h light: 12 h dark regime (Azevedo et al. 1998).   

High feed fat content improved protein retention, indicating ‘protein sparing’ as previously 

seen in other studies (Shearer 2000b). However, one consequence of adding fat to a diet 

may be that additional fat is deposited in the fish (Shearer 2000b); ‘protein sparing’ was 

accompanied by an increase in body fat content (Paper II). At the higher temperature, 

vegetable oils gave a ‘protein sparing’ effect that was accompanied by a tendency for 

improved SGR and FCR pointing to a general positive effect of using vegetable oils. As 

such, vegetable oils seemed to be promising candidates to provide a protein sparing without 

giving excessive fat accumulation.  

In contrast to PRE, there was a tendency for higher energy retention (ERE: [kJ gain kJ 

ingested-1] × 100) in fish held at the lower temperature, and energy retention was also 

significantly higher for fish fed the high fat feeds. The results may indicate an effect of 

temperature on energy partitioning, with a larger proportion of the dietary energy being 

directed towards fat storage at the lower temperature, and increased protein deposition at 

the higher temperature.  
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4.3 n-3 and n-6 EFA retentions 

Retention of n-3 EFAs was higher than n-6 EFAs, and low temperature induced higher n-3 

EFA retention (Paper III). Fish, in common with other vertebrates, cannot synthesise 

polyunsaturated fatty acids of the n-6 and n-3 series de novo. This is due to their deficiency 

of ∆12 and ∆15 desaturases, which insert double bonds at the n-6 and n-3 positions in the 

fatty acid carbon chain. Consequently, n-3 and n-6 fatty acids are considered essential fatty 

acids (EFAs), and adequate amounts must be delivered in the food for normal growth and 

development. Both C18 and C20/C22 members of the n-3 and n-6 fatty acid series have the 

potential to meet EFA requirements of salmonids (Sargent et al. 1995; 1999; 2002). 

C20/C22 EFAs dominated in the fish oil based feeds, while EFAs of vegetable oil based 

feeds comprised mainly C18 fatty acids (Table 3). 

Retentions of both n-3 and n-6 EFAs were high (Paper III), indicating that EFAs of both 

series were protected against excessive metabolic degradation, a suggestion in keeping with 

previous reports on the selectivity of mitochondrial and peroxisomal oxidation of fatty 

acids in fish (Henderson & Sargent 1985; Kiessling & Kiessling 1993). In addition, 

selective mechanisms that favour PUFA digestion, absorption and deposition appear to 

exist in fish (Olsen & Ringø 1998; Johnsen et al. 2000). For example, PUFAs are more 

efficiently absorbed from the digesta than monounsaturated and saturated fatty acids by 

turbot (Scophthalmus maximus)(Koven et al. 1994), and n-3 HUFAs were efficiently 

absorbed by Atlantic salmon post-smolts (Johnsen et al. 2000). 

The consistently higher retention efficiencies of n-3 EFAs compared to n-6 EFAs may be a 

reflection of a higher requirement for n-3 EFAs than for n-6 EFAs, with a larger proportion 

of n-6 fatty acids being metabolised. The n-3 EFA requirement is well defined in a variety 

of salmonid species, while the requirement for n-6 EFAs is less certain (Sargent et al. 

2002). Increased requirements for arachidonic acid (AA, 20:4n-6) are probably related 

mainly to periods of environmental stress (Sargent et al. 2002; Bell & Sargent 2003). 

Temperature influenced n-3 EFA retention, with higher retention being found at 2ºC. The 
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retention of n-6 EFAs was unaffected by temperature, but increased dietary fat level gave 

higher n-6 EFA retention. This may indicate that deposition of n-6 fatty acids is increased 

when they are freely available from the diet (Paper III).  

At the lower temperature, n-3 EFA retention was higher in fish fed diets with a high n-3 

HUFA content, i.e. the fish oil diets. Such high retention may reflect an adaptation to low 

temperature (Paper III). Lipid structures of a given membrane impact properties that may 

be responsible for a variety of cell functions including enzyme regulation (Williams 1998). 

Ectotherms deposit long-chain PUFAs in membrane lipids during cold acclimation and the 

importance of DHA fatty acid in such processes is often highlighted (e.g. Hazel & Williams 

1990; Fodor et al. 1995; Logue et al. 2000). Thus, efficient retention of n-3 HUFAs due to 

selective absorption and reduced oxidative degradation may be mechanisms that operate to 

ensure maintenance of membrane function in cold environments. Whether this indicates a 

higher n-3 HUFA requirement in Atlantic salmon in a cold environment remains to be 

elucidated. Links between dietary fat composition and thermal biology are indicated both 

for ectotherms (Craig et al. 1995; Simandle et al. 2001) and endotherms (Florant et al. 

1993).  

4.4    Fatty acid deposition in polar and non-polar lipids 

Fatty acid compositions of polar (membrane) and non-polar (storage) lipids in fish tissues 

were influenced by dietary fatty acids, and exposure to low temperature gave lipids with 

greater unsaturation (UFA:SFA ratio). From this it is evident that dietary lipids and 

temperature interacted to influence tissue fatty acid composition (Paper IV).

Fatty acids of polar (phospholipids, PLs) and non-polar (neutral lipids, NLs) lipids were 

determined in three body compartments (muscle, viscera and ‘carcass’) of fish given the 

four test feeds (Table 2 and Table 3). Comparisons of tissue fatty acid composition were 

made when the fish had doubled weight from 19g to 38g i.e. after two and 6 months of 

feeding at 8ºC and 2ºC, respectively. Fatty acid compositions of both the polar and the non-
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polar lipids were strongly influenced by dietary fatty acids (Paper IV), as seen previously 

(e.g. Thomassen & Røsjø 1989; Green & Selivonchick 1990; Polvi & Ackman 1992; Arzel 

et al. 1994; Guillou et al. 1995; Higgs & Dong 2000). High concentrations of n-3 HUFAs 

were found in PLs from fish given fish oil, while PLs from the fish fed vegetable oil had 

higher concentrations of MUFAs. PLs were less influenced by dietary fatty acids than NLs, 

indicating a greater regulation of the fatty acid composition of membrane lipids (PLs) than 

of storage lipids (NLs). This is not unexpected, since fatty acids found at the sn-3 position 

in NL storage TAGs are incorporated directly from the dietary fatty acids (Arts et al. 2001). 

In contrast, a limited number of fatty acids tend to dominate in the PLs, with either a 

SAFA, such as C16:0, or a MUFA, e.g. C18:1n-9, being found in the sn-1 position of the 

glycerol backbone, and a MUFA or a polyene, such as EPA and DHA, being found in 

position sn-2 (Henderson & Tocher 1987; Arts et al. 2001; Higgs & Dong 2000; Sargent et 

al. 2002).  

Temperature had a greater influence on the fatty acid composition of PLs than of NLs 

(Paper IV). At the lower temperature the differential deposition of fatty acids in PLs 

resulted in a reduction in unsaturated to saturated fatty acids ratio (UFA:SFA ratio), 

implying that compensatory mechanisms were operating. This is interpreted as a thermal 

acclimation response that would contribute to the maintenance of membrane fluidity at 

reduced temperature (Paper IV). Reduced temperature invokes compensatory changes in 

membrane phospholipids, a phenomenon denoted ‘homeoviscous adaptation’. This was 

first described in bacteria (Sinensky, 1974), and later in other ectotherms including fish 

(Hazel 1979; 1984).  

These changes relate to three components; acyl chain composition, fatty acid distribution 

within the phospholipids, and relative PL composition (Hazel 1984; Hochachka & Somero, 

2002). Changes in acyl chain composition are usually associated with a relative reduction in 

proportions of saturated fatty acids (SAFA) and a corresponding increase in unsaturated 

fatty acids (UFA)(e.g Hazel 1984; Tiku et al. 1996; Logue et al. 2000; Truman et al. 2000; 
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Farkas et al. 2001; Hsieh et al. 2003). These changes result in greater unsaturation of the 

phospholipids i.e. the UFA:SAFA ratio is increased. Several of these studies highlight the 

importance of n-3 HUFAs for maintenance of membrane fluidity on exposure to low 

ambient temperature (e.g. Hazel &Williams 1990; Fodor et al. 1995; Logue et al. 2000).  

In contrast to higher UFA:SAFA ratio, indicating greater unsaturation, the UIs (i.e. the 

number of unsaturated double bonds per 100 fatty acids molecules) of the salmon parr 

phospholipids seemed to be independent of temperature. The numerical value of the UI is 

strongly influenced by n-3 HUFAs, mainly EPA and DHA, so the finding of UIs being 

independent of temperature was unexpected given the putative role of n-3 HUFAs in cold 

acclimation. The finding also seems paradoxical given the higher n-3 EFA retentions in the 

salmon held at the lower temperature (Paper III). Taken together, the results indicate that 

the UFA:SAFA ratio and UIs provide different sorts of information regarding membrane 

properties (Paper IV).  

There are several studies in which minor changes in EPA and DHA of polar lipids have 

been found during low temperature acclimation (Ingemansson et al. 1993; Labbe et al. 

1995; Cordier et al. 2002; Grisdale-Helland et al. 2002). For example, the change in fatty 

acid composition of rainbow trout muscle lipids seemed to be greater between 19ºC and 

12ºC than between 12ºC and 5ºC (Ingemansson et al. 1993). It could be speculated that 

selective n-3 HUFA incorporation is more important during acclimation to lower 

temperature within the moderate to high range, than at low ambient temperature (Paper 

IV). In keeping with this suggestion, Skuladottir et al. (1990) found that temperature had 

only minor effects on fatty acid compositions of muscle, heart and liver PLs of Atlantic 

salmon exposed to two low temperatures (-1.4 vs. 6.5ºC).  

In general, the UFA:SFAs were higher in fish fed feeds containing vegetable oils, perhaps 

indicating greater membrane fluidity in these fish. By contrast, PLs of fish fed on fish oil 
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had higher concentrations of n-3 HUFAs, which may have made them more prone to 

peroxidative damage (Paper IV).

4.5       Dietary effects on seawater acclimation and growth 

The importance of the dietary fat content (LF vs. HF) and fatty acid profile (FO vs. VO) for 

seawater acclimation and growth were tested in Atlantic salmon parr that had been held at 

2ºC in fresh water. The parr-smolt transformation was induced by light and temperature 

manipulation. Eight different feed combinations during freshwater and seawater rearing 

were obtained by providing the fish with four feeds during freshwater rearing and either 

LFFO or HFFO feed from seawater entry onwards (i.e. LFFO→LFFO; LFFO→HFFO; 

LFVO→LFFO; LFVO→HFFO; HFFO→LFFO; HFFO→HFFO; HFVO→LFFO and 

HFVO→HFFO).

Freshwater feed did not affect parr-smolt transformation, but feed history had an effect on 

early on-growing of smolts in seawater: Improved seawater growth was found for fish fed 

the LFVO (i.e. low fat – vegetable oil) feed during freshwater rearing. Parr- smolt 

transformation has previously been reported to be relatively unaffected by dietary 

manipulations during the freshwater period (e.g. Higgs et al. 1992; Helland & Grisdale-

Helland et al. 1998; Nordgarden et al. 2002).  

Changes in lipid metabolism may be an integral part of the parr-smolt transformation, and 

dietary fatty acids may be of importance for seawater acclimation in Atlantic salmon (Bell 

et al. 1997). Thus, it is argued that adjusting the dietary fatty acid profile to a ‘terrestrial-

like food web’ type by adding vegetable oil to the feed would benefit the fish (Bell et al. 

1994; Ghioni et al. 1997; Sargent et al. 1999; Sargent et al. 2002). Despite the pronounced 

differences in body composition that arose from the feed treatments provided during 

freshwater rearing (see Table 4 and Table 5 in Paper V), all groups of fish accomplished 

parr-smolt transformation as adjudged by assessments of gill Na+K+-ATPase, muscle water 

and plasma chloride following a seawater challenge test (see Figure 1 in Paper V).  
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Fatty acids may be of importance for seawater acclimation in Atlantic salmon and a direct 

influence on osmoregulation in hypersaline environments has been indicated (Bell et al. 

1997). Eicosanoids are hormone-like compounds produced from C20 fatty acids, mainly 

EPA and AA. They are known to be involved in regulation of water and ion fluxes in gills 

and kidney (Mustafa & Srivastava 1989), and eicosanoid synthesis may be altered by 

dietary manipulation (Bell et al. 1997; Tocher et al. 2000). The conversion of C18 

precursors to AA is antagonised by EPA and its eicosanoid derivatives (Bell et al. 1989). 

This interaction may be crucial since AA requirements are associated with stressful periods 

(Bell & Sargent 2003) and the requirement could be expected to increase during seawater 

acclimation. The increase in fatty acid elongation and desaturation activity during parr-

smolt transformation increases the production of C20 and C22 HUFAs from C18 

precursors (Bell et al. 1997; Tocher et al. 2000), but the increase is significantly reduced 

upon feeding oils rich in n-3 HUFAs (Bell et al. 1997; Tocher et al. 2001).  

In our study, there was no clear evidence that the growth promoting effect of feeding 

vegetable oil in fresh water was the result of osmoregulatory improvements. No differences 

in gill Na+,K+-ATPase activity, muscle water and plasma chloride were found between feed 

treatment groups following 24 h seawater tests conducted during the smolt induction period 

(see Figure 1 in Paper V), or at the end of the 42 days seawater period.  

Growth was low during the first period in seawater, but smolts previously fed the LFVO 

feed (i.e. low fat – vegetable oil) during freshwater rearing gained weight during the total 

42 days seawater period. This indicated a positive effect of adding vegetable oils to the parr 

feed (Figure 8; Paper V), in line with previous suggestions (e.g. Bell et al. 1994; 1997). 

Improved growth of smolts may be related to energy metabolism. Rapeseed oil is abundant 

in oleic acid, which is a good substrate for ß oxidation (e.g. Henderson & Tocher 1987; 

Kiessling & Kiessling 1993). The fat stores of the fish fed feeds with vegetable oil may  
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Figure 8. Box-plots (n=50-60 in each plot) showing growth rates in seawater of fish 
fed four different feeds during rearing in fresh water (LFFO, LFVO, HFFO and 
HFVO), and subjected to new feeds at seawater entry (L=LFFO, H=HFFO). The 
box contains 50% of the data (90% of data when whiskers are included), while 
circles indicate extreme values. The horizontal line within each box indicates the 
median. An asterisk (*) indicates significant differences between L and H 
treatments, whereas different lower case letters indicate significant differences 
between freshwater feed groups within L or H treatments (data from Paper V).  

have furnished these fish with readily available energy substrate during the early period in 

seawater when the fish were feeding poorly. Significantly better growth in smolts was, 

however, only seen in the group in which a shift in both lipid source and feed fat content 

had been applied (Figure 8; Paper V). This indicates the importance, not only of freshwater 

feed, but also of composition of the feed provided during the seawater period. The finding 
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may reflect a higher energy requirement in seawater due to higher maintenance costs in the 

marine environment (Boeuf & Payan 2001). It is also possible that this effect reflects 

differences in n-3 HUFA requirement in freshwater-adapted salmon and salmon smolts, and 

that the smolt benefit from increased supply of n-3 HUFAs upon seawater transfer. In 

natural ecosystems, water salinity seems to be an important determinant for EPA and DHA 

deposition in animals, with higher contents of n-3 HUFAs being found in marine animals 

than in those from freshwater environments (Steffens 1997; Art et al. 2001; Makhutova et 

al. 2003). Lipid composition of food to a high degree determines food web interactions, 

individual and population growth (Brett & Müller-Navarra 1997). The nutritional 

regulation of desaturase genes has recently been indicated (Seiliez et al. 2002), and this 

may have consequences for EFA requirements and how dietary oils in feeds for farmed fish 

are designed, as indicated in the present study (Paper V). As such, the results may indicate 

that both dietary fat content and fatty acid composition may be of importance for early 

seawater on-growth of salmon, pointing to a positive effect of using vegetable oil during 

freshwater periods. Whether the recorded effect of the HFFO feed was the result of 

increased supply of n-3 HUFAs or dietary energy, or a combination of both factors, could, 

however, not be determined (Paper V), and requires further investigation.  

4.6     CONCLUSIONS

Based on the aims and questions addressed the following main conclusions can be drawn: 

Aim 1:  Atlantic salmon (Salmo salar L.) parr maintain feeding and growth at 2ºC, 

but at lower rates than at 8ºC. There seems to be a link between the body fat and the control 

of appetite, with reduced appetite and growth being related to an increase in body fat. 

Acclimation to low temperature seems to occur relatively slowly, but exposure to low 

temperature does not seem to induce poorer feed utilisation. Both proteins and fats are less 

readily digested when ambient temperatures are low. Protein seems to be less efficiently 

utilised at low temperature, but low temperature induced higher energy retention efficiency. 

The inclusion of vegetable oils in the feed induces better protein digestion and utilisation, 
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and this effect is more pronounced at low temperature. An increase in dietary fat level 

improve fat digestibility when the ambient temperature is low. 

Aim 2:  The fish retain n-3 and n-6 EFAs efficiently, but retention is higher for n-3 

EFAs than for n-6 EFAs. The n-3 EFA retention seems to increase at low temperature, 

while n-6 EFA retention is unaffected by temperature. Retention of n-3 HUFAs, mainly 

EPA and DHA is high, which may indicate that selective mechanisms favour n-3 HUFAs at 

reduced ambient temperature. Deposition of fatty acids in muscle, viscera and ‘carcass’ 

were markedly influenced by dietary treatment, but non-polar (storage) lipids were more 

influenced by the diet than the polar lipids. This indicates stronger regulation of the 

composition polar lipids. Vegetable oils induce higher unsaturation (UFA:SFA ratio) of 

polar lipids than fish oils. This may imply that vegetable oils produce fish that are better 

able to withstand exposure to low temperature, while having membrane lipids less 

susceptible to oxidative damage, due to the lower contents of n-3 HUFAs.  

Aim 3:  Parr-smolt transformation in Atlantic salmon is resistant to manipulation of 

dietary lipid composition. Seawater acclimation and on-growing of smolts are improved 

when the fish are fed a diet containing vegetable oil during freshwater rearing, but an 

increase in dietary n-3 HUFA and/or energy content upon seawater entry seems to benefit 

seawater growth. This may indicate that changes in lipid metabolism are an integral part of 

parr-smolt transformation, and that changes in water salinity are an important determinant 

for lipid requirements in Atlantic salmon.  

In summary, vegetable oils can replace marine fish oils entirely in fish meal based feeds for 

juvenile Atlantic salmon during the freshwater rearing phase without detrimental effects on 

fish performance, parr-smolt transformation and subsequent on-growing in seawater. This 

indicates a high tolerance for vegetable oil in juvenile Atlantic salmon even when they are 

held for prolonged periods at low temperature. Based on the data presented in this thesis, it 

appears that changes in water salinity or ontogenetic life-history stage is important in 
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determining dietary lipid requirements in Atlantic salmon, and is of more importance than 

changes in water temperature.  

5 LITERATURE 

Alanärä, A., 1992. Demand feeding as a self-regulating feeding system for rainbow trout  
(Oncorhynchus mykiss) in net-pens. Aquaculture 108, 347-356. 

Arts, M.T., Ackman, R.G., Holub, B.J., 2001. 'Essential fatty acids' in aquatic ecosystems:  
A crucial link between diet and human health and evolution. Can. J. Fish. Aquat. Sci. 58, 122-
137. 

Arzel, J., Cardinal, M., Cornet, J., Metailler, R., Guillaume, J.C., 1994. Effect of dietary  
lipid on growth performance and body composition of brown trout (Salmo trutta) reared in 
seawater. Aquaculture 123, 361-375.  

Austreng, E., Skrede, A., Eldegard, Å., 1979. Effect of dietary fat source on the digestibility  
of fat and fatty acids in rainbow trout and mink. Acta Agric. Scan. 29, 119-126. 

Azevedo, P.A., Cho, C.Y., Leeson, S., Bureau, D.P., 1998. Effects of feeding level and  
water temperature on growth, nutrient and energy utilization and waste outputs of 
rainbow trout (Oncorhynchus mykiss). Aquat. Living Resour. 11, 227-238. 

Bell, J.G., Ghioni, C., Sargent, J.R., 1994. Fatty acid compositions of 10 freshwater  
invertebrates which are natural food organisms of Atlantic salmon parr (Salmo salar): A 
comparison with commercial diets. Aquaculture 128, 301-313.  

Bell, J.G., Henderson, R.J., Tocher, D.R., McGhee, F., Dick, J.R., Porter, A., Smullen,  
R.P., Sargent, J.R., 2002. Substituting fish oil with crude palm oil in the diet of Atlantic salmon 
(Salmo salar) affects muscle fatty acid composition and hepatic fatty acid metabolism. J. Nutr. 
132, 222-230. 

Bell, J.G., McEvoy, J., Tocher, D.R., McGhee, F., Campbell, P., Sargent, J.R., 2001.  
Replacement of fish oil with rapeseed oil in diets of Atlantic salmon (Salmo salar) affects tissue 
lipid composition and hepatocyte fatty acid metabolism. J. Nutr. 131, 1535-1543. 

Bell, J.G., Sargent, J.R., 2003. Arachidonic acid in aquaculture feeds: Current status and  
future opportunities. Aquaculture 218, 491-499.  

Bell, J.G., Tocher, D.R., Farndale, B.M., Cox, D.I., McKinney, R.W., Sargent, J.R., 1997.  
The effect of dietary lipid on polyunsaturated fatty acid metabolism in Atlantic salmon (Salmo 
salar) undergoing parr-smolt transformation. Lipids 32, 515-525. 

Bell, J.G., Youngson, A., Mitchell, A.I., Cowey, C.B., 1989. The effects of enhanched  
intake of linoleic acid on the fatty acid composition of tissue polar lipids of post-smolt Atlantic 
salmon (Salmo salar). Lipids 24, 240-242. 

URN:NBN:no-6435



38

Bendiksen, E.Å., Bergan, M., Nystad, B., Berg, O.K., Arnekleiv, J.V., 2003. Natural winter  
prey and commercial feeds for juvenile Atlantic salmon differ in fatty acid composition. EAS 
Special Publication no. 33, p. 123-124.  

Berg, O.K., Bremset, G., 1998. Seasonal changes in the body composition of young  
riverine Atlantic salmon and brown trout. J Fish Biol. 52, 1272-1288. 

Boeuf, G., 1993. Salmonid smolting: A pre-adaptation to oceanic environment. In: Rankin,  
J.C., Jensen, F.B. (Eds.), Fish Ecophysiology. Chapman and Hall, London, pp. 105-133. 

Boeuf, G., Payan, P., 2001. How should salinity influence fish growth? Comp. Biochem.  
Physiol. 130C, 411-423. 

Brännäs, E., Wicklund, B.-S., 1992. Low temperature growth potential of Arctic charr and rainbow 
trout. Nord. J. Freshwater Res. 67, 77-81.  

Brett, J.R., 1979. Environmental factors and growth. In: Hoar, W.S., Randall, D.J., Brett,  
J.R. (Eds.) Fish Physiology, Volume XIII. Bioenergetics and Growth. Academic Press, New 
York, pp. 599-675. 

Bünning, E., 1973. The Physiological Clock. Springer-Verlag, New York. 258 pp. 

Clarke, W.C., 2000. Smolting. In: Stickney, R.R. (Ed.), Encyclopedia of Aquaculture. John  
Wiley & Sons, New York, pp. 879-884.  

Clarke, W.C., Shelbourne, J.E., Brett, J.R., 1981. Effect of artificial photoperiod cycles,  
temperature, and salinity on growth and smolting in underyearling coho (Oncorhynchus kisutch), 
Chinook (O. tshawytscha) and sockeye (O. nerka) salmon. Aquaculture 22, 105-116.  

Cordiner, M., Brichon, G., Weber, J.-M., Zwingelstein, G., 2002. Changes in the fatty acid  
composition of phospholipids in tissues of farmed sea bass (Dicentrarcus labrax) during an 
annual cycle. Role of environmental temperature and salinity. Comp. Biochem. Physiol. 133B, 
281-288. 

Craig, S.R., Neill, W.H., Gatlin, D.M. III., 1995. Effects of dietary lipid and  
environmental salinity on growth, body composition, and cold tolerance of juvenile red drum 
(Sciaenops ocellatus). Fish Physiol. Biochem. 14, 49–61. 

Cunjak, R.A., Power, G., 1987. Winter habitat utilization by stream resident brook trout (S.  
fontinalis) and brown trout (S. trutta). Can. J. Fish. Aquat. Sci. 43, 1970-1981. 

DeLong, D.C., Halver, J.E., Mertz, E.T., 1958. Nutrition of salmonid fishes. VI. Protein  
requirements of chinook salmon at two water temperatures. J. Nutr. 65, 589-599. 

Dias, J., Alvarez, M.J., Diez, A., Arzel, J., Corraze, G., Bautista, J.M., Kaushik, S.J., 1998.  
Regulation of hepatic lipogenesis by dietary protein/energy ratio in juvenile European seabass 
(Dicentrarcus labrax). Aquaculture 161, 169-186. 

URN:NBN:no-6435



39

Dosanjh, B.S., Higgs, D.A., McKenzie, D.J., Randall, D.J., Eales, J.G., Roeshandeli, N.,  
1998. Influence of dietary blends of menhaden oil and canola oil on growth, muscle lipid 
composition, and thyroidal status of Atlantic salmon (Salmo salar) in sea water. Fish Physiol. 
Biochem. 19, 123-134.  

Einen, O., Roem, A.J., 1997. Dietary protein/energy ratios for Atlantic salmon in relation  
to fish size: Growth, feed utilization and slaughter quality. Aquacult. Nutr. 3, 115-126. 

Elliott, J.M., 1982. The effects of temperature and ration size on the growth and energetics  
of the salmonids in captivity. Comp. Biochem. Physiol. 73B, 81-91. 

Falcón, J., Collin, J.-P., 1989. Photoreceptors in the pineal gland. Functional aspects.  
Experientia (Basel) 45, 909-913. 

Farkas, T., Fodor, E., Kitajka, K., Halver, J.E., 2001. Response of fish membranes to  
environmental temperature. Aquacult. Res. 32, 645-655. 

Fauconneau, B., Choubert, G., Blanc, D., Breque, J., Luquet, P., 1983. Influence of  
environmental temperature on flow rate of food stuffs through the gastrointestinal tract of rainbow 
trout. Aquaculture 34, 27-39. 

Fiskeridirektoratet, 2003. Statistikk oppdrett 2002. Fiskeridirektoratet, Bergen, Norway, 30  
pp.   

Florant, G.L., Hester, L., Ameenuddin, S., Rintoul, D.A., 1993. The effect of a low  
essential fatty acid diet on hibernation in marmots. Am. J. Physiol. 264, R747-R753. 

Fodor, E., Jones, R.H., Buda, C., Kitajka, K., Dey, I. , Farkas, T., 1995. Molecular  
architecture and biophysical properties of phospholipids during thermal adaptation in fish: An 
experimental and model study. Lipids 30, 1119-1126. 

Fraser, N.H.C., Metcalfe, N.B., Thorpe, J.E., 1993. Temperature-dependent switch between  
diurnal and nocturnal foraging in salmon. Proc. R. Soc. London, Ser B 252, 135-139. 

Ghioni, C., Bell, J.G., Sargent, J.R., 1996. Polyunsaturated fatty acids in neutral lipids and 
phospholipids of some freshwater insects. Comp. Biochem. Physiol. 114B, 161-170. 

Goedkoop, W., Sonesten, L., Ahlgren, G., Boberg, M., 2000. Fatty acids in profundal  
benthic invertebrates and their major food resources in Lake Erken, Sweden: Seasonal variation 
and throphic indications. Can. J. Fish. Aquat. Sci. 57, 2267-2279. 

Greene, D.H.S. & Selivonchick, D.P., 1990. Effects of dietary vegetable, animal and  
marine lipids on muscle lipid and hematology of rainbow trout (Oncorhynchus mykiss)
Aquaculture 89, 165-182. 

URN:NBN:no-6435



40

Grisdale-Helland, B., Ruyter, B., Rosenlund, G., Obach, A., Helland, S.J., Sandberg, M.G.,  
Standal, H., Røsjø, C., 2002. Influence of high contents of dietary soybean oil on growth, feed 
utilization, tissue fatty acid composition, heart histology and standard oxygen consumption of 
Atlantic salmon (Salmo salar) raised at two temperatures. Aquaculture 207, 311-329. 

Guillou, A., Soucy, P., Khahil, M., Adambounou, L., 1995. Effects of dietary vegetable and  
marine lipid on growth, muscle fatty acid composition and organoleptic quality of flesh of brook 
trout (Salvelinus fontinalis). Aquaculture 136, 351-362. 

Gunstone, F.D., Harwood, J.L., Padley, F.B., 1994. The Lipid Handbook (second edition),  
Chapman & Hall, London, England. 1273 pp. 

Hanson, B.J., Cummins, K.W., Cargill, A.S., Lowry, R.R., 1985. Lipid content, fatty acid  
composition and the effect of diet on fats of aquatic insects. Comp. Biochem. Physiol. 80B, 257-
276.  

Hardewig, I., van Dijk, P.L.M., 2003. Is digestive capacity limiting growth at low  
temperatures in roach? J. Fish Biol. 62, 358-374.  

Hazel, J.R., 1979. The influence of thermal acclimation on membrane lipid composition of  
rainbow trout liver. Am. J. Physiol. 236, R91-R101. 

Hazel, J.R., 1984. Effects of temperature on the structure and metabolism of cell  
membranes in fish. Am. J. Physiol. 246, R460-R470. 

Hazel, J.R., Williams, E.E., 1990. The role of alterations in membrane lipid composition in  
enabling physiological adaptation of organisms to their physical environment. Prog. Lip. Res. 29, 
167-227.  

Heggenes, J., Krog, O.M.W., Lindås, O.R., Dokk, J.G., Bremnes, T., 1993. Homeostatic  
behavioural responses in a changing environment: Brown trout (Salmo trutta) become nocturnal 
during winter. J. Animal Ecol. 62, 295-308.  

Helland, S.J., Grisdale-Helland, B., 1998. The influence of replacing fish meal in the diet  
with fish oil on growth, feed utilization, and body composition of Atlantic salmon (Salmo salar)
during the smoltification period. Aquaculture 162, 1-10.  

Helland, S.J., Grisdale-Helland, B., Nerland, S., 1996. A simple method for the  
measurement of daily feed intake of groups of fish in tanks. Aquaculture 139, 157-163. 

Henderson, R.J., Sargent, J.R., 1985. Chain length specificities of mitochondrial and  
peroxisomal β-oxidation of fatty acids in livers of rainbow trout. Comp. Biochem. Physiol. 82B, 
79–85. 

Henderson, R.J., Tocher, D.R., 1987. The lipid composition and biochemistry of  
freshwater fish. Prog. Lip. Res. 26, 281-347. 

URN:NBN:no-6435



41

Higgs, D.A., Dong, F.M., 2000. Lipids and fatty acids. In: Stickney, R.R. (Ed.)  
Encyclopedia of Aquaculture. John Wiley and Sons, New York, USA, pp. 476–496. 

Higgs, D.A., Dosanjh, B.S., Plotnikoff, J.R., Markert, D., Lawseth, J.R., McBride, J.R.,  
Buckley, J.T., 1992. Influence of dietary protein to lipid ratio and lipid composition on the 
performance and marine survival of hatchery reared Chinook salmon (Oncorhynchus 
tshawytscha). Bull. Aquacul. Assoc. Canada 92, 46-48.  

Higgs, D.A., MacDonald, J.S., Levings, C.D., Dosanjh, B.S., 1995. Nutrition and feeding  
habits in relation to life history stage. In: Groot, C., Margolis, L., Clarke, W.C. (Eds.), 
Physiological Ecology of Pacific Salmon. UBC Press, Vancouver, Canada, pp. 161-315. 

Hillestad, M., Johnsen, F., Austreng, E., Åsgård, T., 1998. Long-term effects of dietary fat  
level and feeding rate on growth, feed utilization and carcass quality of Atlantic salmon. 
Aquacult. Nutr. 4, 89-97. 

Hochachka, P.W., Somero, G.N., 2002. Biochemical Adaptation. Oxford University  
Press, Oxford, England. 466 pp.  

Hsieh, S.L., Chen, Y.N., Kuo, C.M., 2003. Physiological responses, desaturase  
activity, and fatty acid composition in milkfish (Chanos chanos) under cold acclimation. 
Aquaculture 220, 903-918.  

Ingemansson, T., Olsson, N.U., Kaufmann, P., 1993. Lipid composition of light and dark  
muscle of rainbow trout (Oncorhynchus mykiss) after thermal acclimation: A multivariate 
approach. Aquaculture 113, 153-165.  

Jobling, M., 1980. Gastric evacuation in plaice, Pleuronectes Platessa L.: Effects of dietary  
energy level and food consumption. J. Fish Biol. 19, 187-196. 

Jobling, M., 1994. Fish Bioenergetics. Chapman & Hall, London, England. 309 pp. 

Jobling, M., 2003. The thermal growth coefficient (TGC) model of fish growth: A  
cautionary note. Aquac. Res. 34, 581-584. 

Jobling, M., Gomes, E., Dias, J., 2001. Feed types, manufacture and ingredients. In: Houlihan, D., 
Boujard, T., Jobling, M. (Eds.) Food Intake in Fish. Blackwell Science, Oxford, England, pp. 25-
48. 

Jobling, M., Koskela, J., Pirhonen, J., 1998. Feeding time, feed intake and growth of Baltic  
salmon, Salmo salar, and brown trout, Salmo trutta, reared in monoculture and duoculture at 
constant low temperature. Aquaculture 163, 73-84. 

Jobling, M., Miglavs, I. 1993. The size of lipid depots – a factor contributing to the control  
of food intake in Arctic charr, Salvelinus alpinus? J. Fish Biol. 43, 487-489. 

URN:NBN:no-6435



42

Johnsen, R.I., Grahl-Nielsen, O., Roem, A., 2000. Relative absoprtion of fatty acids by  
Atlantic salmon from different diets, as evaulated by multivariate statistics. Aquacult. Nutr. 6, 
255-261.  

Johnson, R.M., Johnson, T.M., Londraville, R.L., 2000. Evidence for leptin expression in  
fishes. J. Exp. Biology 286, 718-724. 

Jonsson, N., Jonsson, B., 1997. Energy allocation in polymorphic brown trout. Func. Ecol.  
11, 310-317. 

Kaushik, S.J., Oliva-Teles, A., 1985. Effect of digestible energy on nitrogen and energy  
balance in rainbow trout. Aquaculture 50, 89-101. 

Kennedy, G.C., 1953. The role of depot fat in hypothalamic control of food intake in the  
rat. Proc. R. Soc. London, Ser B 140, 578-592. 

Kestemont, P., Baras, E., 2001. Environmental factors and feed intake: Mechanisms and  
interactions. In: Houlihan, D., Boujard, T., Jobling, M. (Eds.) Food Intake in Fish. Blackwell 
Science, Oxford, England, pp. 131-156. 

Kiessling, K.-H., Kiessling, A., 1993. Selective utilization of fatty acids in rainbow trout  
(Oncorhynchus mykiss Walbaum) red muscle mitochondria. Can. J. Zool. 71, 248-251.  

Klemetsen, A., Amundsen, P.-A., Dempson, J.B., Jonsson, B., Jonsson, N., O’Connell,  
M.F., Mortensen, E., 2003. Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and 
Arctic charr Salvelinus alpinus (L.): A review of aspects of their life histories. Ecol. Freshwater 
Fish 12, 1-59. 

Koskela, J., Pirhonen, J., Jobling, M., 1997a. Growth and feeding responses of a hatchery  
population of brown trout (Salmo trutta L.) at low temperatures. Ecol. Freshwater Fish 6, 116-
121. 

Koskela, J., Pirhonen, J., Jobling, M., 1997b. Effect of low temperature on feed intake,  
growth rate and body composition of juvenile Baltic salmon. Aquacult. Int. 5, 479-488. 

Koskela, J., Pirhonen, J., Jobling, M., 1997c. Variations in feed intake and growth of Baltic  
salmon and brown trout exposed to continuous light at constant low temperature. J. Fish. Biology 
50, 837-845. 

Koumourdjian, M.P., Fenwick, J.C., Saunders, R.L., 1976. Evidence for the role of growth  
hormone as a part of the ‘light-pituitary’ axis’ in growth and smoltification of Atlantic salmon 
(Salmo salar). Can J. Zool. 54, 544-551. 

Koven, W.M., Henderson, R.J., Sargent, J.R., 1994. Lipid digestion in turbot  
(Scophthalmus maximus). I: Lipid class and fatty acid composition of digesta from different 
segments of the digestive tract. Fish. Physiol. Biochem. 13, 69-79.  

URN:NBN:no-6435



43

Lee, D.J., Putman, G.B., 1973. The response of rainbow trout to varying protein/energy  
ratios in a test diet. J. Nutr. 103, 34-39.  

Ling, N., Cotter, D., 2003. Statistical power in comparative aquaculture studies.  
Aquaculture 224, 159-168. 

Liu, Y., Merrow, M., Loros, J.L., Dunlap, J.C., 1998. How temperature changes reset a  
circadian oscillator. Science 281, 825-829. 

Logue, J.A., DeVries, A.L., Fodor, E., Cossins, A.R., 2000. Lipid compositional  
correlates of temperature-adaptive interspecific differences in membrane physical structure. J. 
Exp. Biol. 203, 2105-2115. 

MacCrimmon, H.R., Gots, B.L., 1979. World distribution of Atlantic salmon, Salmo salar.
J. Fish. Res. Board Can. 36, 422-457. 

Makutova, O.N., Kalachova, G.S., Gladyshev, M.I., 2003. A comparison of the fatty acid  
composition of Gammarus lacustris and its food sources from a freshwater reservoir, Bugach, and 
the saline Lake Shira in Siberia, Russia. Aquatic Ecology 37, 159-167.  

Max, M., Menaker, M., 1992. Regulation of melatonin production by light, darkness, and  
temperature in the trout pineal. J. Comp. Physiol. 170A, 479-489. 

Metcalfe, N.B., Thorpe, J.E., 1992. Anorexia and defended energy levels in over-wintering  
juvenile salmon. J. Animal Ecology 61, 175-181. 

Millikin, M.R., 1982. Effects of dietary protein concentration on growth, feed efficiency,  
and body composition of age-0 striped bass. Trans. Am. Fish. Soc. 111, 373-378. 

Mustafa, T., Srivastava, K.C., 1989. Prostaglandines (eicosanoids) and their role in  
ectothermic organisms. Adv. Comp. Env. Physiol. 5, 157-207. 

National Research Council (NRC), 1993. Nutrient Requirements of Fish. National  
Academy Press, Washington, USA. 114 pp.  

Nordgarden, U., Hemre, G.-I., Hansen, T., 2002. Growth and body composition of Atlantic  
salmon (Salmo salar L.) parr and smolt fed diets varying in protein and lipid contents. 
Aquaculture 207, 65-78. 

Olsen, R.E., Ringø, E., 1998. The influence of temperature on the apparent nutrient and  
fatty acid digestibility of Arctic charr, Salvelinus alpinus L. Aquacult. Res. 29, 695-701. 

Opsahl-Ferstad, H.-G., Rudi, H., Ruyter, B., Refstie, S., 2003. Biotechnological approaches to 
modify rapeseed oil composition for applications in aquaculture. Plant Science 165, 349-357. 

Polvi, S.M., Ackman, R.G., 1992. Atlantic salmon (Salmo salar) muscle lipids and their  
response to alternative dietary fatty acid sources. J. Agric. Food Chem. 40, 1001-1007. 

URN:NBN:no-6435



44

Rasmussen, R.S., Ostenfeld, T.H., 2000. Effect of growth rate on quality traits and feed  
utilisation of rainbow trout (Oncorhynchus myksiss) and brook trout (Salvelinus fontinalis). 
Aquaculture 184, 327-337. 

Regost, C., Arzel, J., Cardinal, M., Laroche, M., Kaushik, S.J., 2001. Fat deposition and  
flesh quality in seawater reared, triploid brown trout (Salmo trutta) as affected by dietary fat 
levels and starvation. Aquaculture 193, 325-345. 

Ruohonen, K., Kettunen, J., King, J., 2001. Experimental design in feeding experiments. In:  
Houlihan, D., Boujard, T., Jobling, M. (Eds.) Food Intake in Fish. Blackwell Science, Oxford, 
England, pp. 88-107. 

Ruyter, B., 1998. Fatty acid metabolism in Atlantic salmon. A focus on essential fatty  
acids. Doctorial thesis at University of Oslo, Norway. 154 pp. 

Ruyter, B., Røsjø, C., Einen, O., Thomassen, M.S., 2000. Essential fatty acids in  
Atlantic salmon: Effects of increasing dietary doses of n-6 and n-3 fatty acids on growth, survival 
and fatty acid composition of liver, blood and carcass. Aquacult. Nutr. 6, 119-127. 

Sargent, J., Bell, G., McEvoy, L., Tocher, D., Estevez, A., 1999. Recent developments in  
the essential fatty acid nutrition of fish. Aquaculture 177, 191-199. 

Sargent, J.R., Bell, J.G., Bell, M.V., Henderson, R.J., Tocher, D.R., 1995. Requirement  
criteria for essential fatty acids. J. Appl. Ichthyol. 11, 183-198. 

Sargent, J.R., Tocher, D.R., Bell, J.G. 2002. In: Halver, J.E., Hardy, R.W., Fish  
Nutrition (Third edition). Academic Press, San Diego, USA, pp. 181-257. 

Searchy-Bernal, R., 1994. Statistical power and aquaculture research. Aquaculture 127,  
371-388. 

Seiliez, I., Panserat, S., Corraze, G., Kaushik, S., Bergot, P., 2002. Cloning and nutritional  
regulation of a partial ∆6-desaturase-like in gilthead sea beam (Sparus aurata). Abstract book 10th

International Symposium on Nutrition & Feeding in Fish, Rhodes, Greece, p.67. 

Shearer, K.D., 2000a. Experimental design, statistical analysis and modeling of dietary  
requirement studies for fish: A critical review. Aquacult. Nutr. 6, 91-102.  

Shearer, K.D., 2000b. The effect of diet composition and feeding regime on the proximate  
composition of farmed fish. In: Kestin, S.C., Warriss, P.D. (Eds.) Farmed Fish Quality, (Cap. 4). 
Fishing News Books, Blackwell Science, Oxford, England, p. 31- 41. 

Shearer, K.D., Silverstein, J.T., Dickhoff, W.W., 1997. Control of growth and adiposity of juvenile 
chinook salmon (Oncorhynchus tshawytscha). Aquaculture 157, 311-323.  

Sidell, B.D., Crockett, E.L., Driedzic, W.R., 1995. Antarctic fish tissues preferentially  
catabolize monoenoic fatty acids. J. Exp. Biology 271, 73-81. 

URN:NBN:no-6435



45

Simandle, E.T., Espinoza, R.E., Nussear, K.E., Tracy, C.R., 2001. Lizards, lipids, and  
dietary links to animal function. Physiol. Biochem. Zool. 74, 625-640. 

Sinensky, M., 1974. Homeoviscous adaptation – a homeostatic process that regulates the  
viscosity of membrane lipids in Escherichia coli. Proc. Natl. Acad. Sci. USA 71, 522-525. 

Skuladottir, G.V., Schiöth, H.B., Gudmundsdottir, E., Richards, B., Gardarsson, F.,  
Jonsson, L., 1990. Fatty acid composition of muscle, heart and liver lipids in Atlantic salmon, 
Salmo salar, at extremely low environmental temperature. Aquaculture 84, 71-80. 

Smart, T.S., Riley, J., Edwards, P., 1998. Statistical aspects of aquaculture research:  
Sample sizes for pond experiments. Aquac. Res. 29, 373-379. 

Steffens, W., 1997. Effects of variation in essential fatty acids in fish feeds on nutritive  
value of freshwater fish for humans. Aquaculture 151, 97-119. 

Sæther, B.-S, Jobling, M., 2001. Fat content in turbot feed: Influence on feed intake,  
growth and body composition. Aquac. Res. 32, 451-458. 

Takeuchi, T., Watanabe, T., 1979. Effects of excess amounts of essential fatty acids on  
growth of rainbow trout. Bull. Jap. Soc. Scient. Fish. 45, 1745-1752. 

Thomassen, M.S., Røsjø, C., 1989. Different fats in feed for salmon: Influence on sensory  
parameters, growth rate and fatty acids in muscle and heart. Aquaculture 79, 129-135. 

Tiku, P.E., Gracey, A.Y., Macartney, A.I., Beynon, R.J., Cossins, A.R., 1996. Cold- 
induced expression of ∆9-desaturase in carp by transcriptional and posttranslational mechanisms. 
Science 271, 815-818. 

Tocher, D.R., Bell, J.R., Dick, J.R., Henderson, R.J., McGhee, F., Michell, D., Morris,  
P.C., 2000. Polyunsaturated fatty acid metabolism in Atlantic salmon (Salmo salar) undergoing 
parr-smolt transformation and the effects of dietary linseed and rapeseed oils. Fish Physiol. 
Biochem. 23, 59-73. 

Tocher, D.R., Bell, J.G., MacGlaughlin, P., McGhee, F., Dick, J.R., 2001. Hepatocyte fatty  
acid desaturation and polyunsaturated fatty acid composition of the liver in salmonids: Effects of 
dietary vegetable oil. Comp. Biochem. Physiol. 130B, 257-270. 

Torstensen, B.E., Lie, Ø., Frøyland, L., 2000. Lipid metabolism and tissue composition in  
Atlantic salmon (Salmo salar L.) – effects of capelin oil, palm oil, and oleic acid-enriched 
sunflower oil as dietary lipid sources. Lipids 35, 653-664.  

Trueman, R.J., Tiku, P.E., Caddick, M.X., Cossins, A.R., 2000. Thermal thresholds  
of lipid restructuring and ∆9-desaturase expression in the liver of carp (Cyprinus carpio L.). J. 
Exp. Biol. 203, 641-650.  

Vegusdal, A., Sundvold, H., Gjøen, T., Ruyter, B., 2003. An in vitro method for studying  
the proliferation and differentiation of Atlantic salmon preadipocytes. Lipids 38, 289-296. 

URN:NBN:no-6435



46

Watanabe, T., Takeuchi, T., Satoh, S., Kiron, V., 1996a. Digestible energy: methodological  
influences and the mode of calculation. Fisheries Sci. 62, 288-292. 

Watanabe, T., Takeuchi, T., Satoh, S., Kiron, V., 1996b. Digestible crude protein contents  
of various feedstuffs determined with four freshwater fish species. Fisheries Sci. 62, 278-282. 

Weigle, D.S., 1994. Appetite and the regulation of body composition. FASEB J. 8, 302- 
310. 

West, J.L., Driedzic, W.R., 1999. Mitochondrial protein synthesis in rainbow trout  
(Oncorhynchus mykiss) heart is enhanced in sexually mature males but impaired by low 
temperature. J. Exp. Biol. 202, 2359-2369. 

Williams, E.E., 1998. Membrane lipids: What membrane physical properties conserved  
during physiochemically-induced membrane restructuring? Amer. Zool. 38, 280-290.  

Wilson, R.P., 2002. Amino acids and protein. In: Halver, J.E., Hardy, R.W. (Eds.), Fish  
Nutrition (Third edition). Academic Press, San Diego, USA, pp. 143-179.  

Woods, S.C., Seeley, R.J., 2000. Adiposity signals and the control of energy homeostasis.  
Nutrition 16, 894-902. 

Wootton, R.J., 1998. Ecology of Teleost Fishes (Second edition). Kluwer Academic  
Publishers Fish and Fisheries Series 24, Dordrecht, The Netherlands. 386 pp.  

Yamamoto, T., Shima, T., Unuma, T., Shiraishi, M., Akiyama, T., Tabata, M., 2000.  
Voluntary intake of diets with varying digestible energy contents and energy sources, by juvenile 
rainbow trout Oncorhynchus mykiss, using self-feeders. Fish. Sci. 66, 528-534. 

Zachmann, A., Ali, M.A., Falcón, J., 1992. Melatonin and its effects in fishes: An  
overview. In: Ali, M.A. (Ed.) Rhythms in Fishes. NATO-ASI series A vol. 236, Plenum Press, 
New York, USA, pp. 149-165.  

Zhang, J., Proenca, R., Maffei, M., Barone, M., Leopold, L., Friedman, J., 1994. Positional  
cloning of the mouse obese gene and its human homolog. Nature 372, 425-432. 

Zolman, J.F., 1993. Analysis of variance (ANOVA). In: Zolman, J.F. (Ed.) Biostatistics.  
Experimental design and statistical interference (Cap. 6), Oxford University Press, Oxford, p. 
101-130. 

URN:NBN:no-6435



Paper I

URN:NBN:no-6435



URN:NBN:no-6435



 
 
Bendiksen, E. Å, Jobling, M. & Arnesen, A. M., 2002. Feed intake of Atlantic salmon parr 
Salmo salar L. in relation to temperature and feed composition. Aquaculture Research 33: 
525-532. 
 
Paper not included due to copyright restrictions.  
 
 



Paper II

URN:NBN:no-6435



URN:NBN:no-6435



Digestibility, growth and nutrient utilisation of

Atlantic salmon parr (Salmo salar L.) in relation

to temperature, feed fat content and oil source
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Abstract

An experiment was conducted to investigate the effects of temperature, feed fat content and

dietary oil source on growth and nutrient utilisation of Atlantic salmon parr (f 19 g). The fish were

reared in freshwater at 2 or 8 jC for 6 months at light/dark cycles of 12 h:12 h. Each of four feeds

was provided to triplicate groups of fish at each temperature. The feeds were formulated with marine

fish oil or a blend of rapeseed and linseed oil at low or high inclusion levels to give feeds with 340 g

kg� 1 fat and 400 g kg� 1 protein or 210 g kg� 1 fat and 500 g kg� 1 protein. Fish weights doubled

over the 6 months at the lower temperature, whereas a fivefold increase was seen over the same

period at the higher temperature. At the lower temperature, growth was similar for fish in all four

dietary groups (SGR; 0.40F 0.01% day� 1), whereas significantly better growth was found for fish

fed the low fat feeds at the higher temperature (SGR; 0.99F 0.01% vs. 0.93F 0.01% day� 1). Feed

efficiencies were higher for fish at the lower temperature. Apparent fat and protein digestibilities

were high at both temperatures, but fat digestibility was significantly lower at the lower temperature

(ADCfat; 96.3F 0.5% vs. 98.2F 0.4%). Fat digestibility was higher for the high fat feeds, but

significant differences between the groups were found only at the lower temperature. Protein

digestibility was also lower at the lower temperature (ADCprotein; 90.8F 0.4% vs. 91.2F 0.4%), and

was significantly improved when vegetable oils were used in the feed. Protein retention efficiency

(PRE: [g protein gain g protein ingested� 1]� 100) was significantly higher at 8 jC than at 2 jC
(PRE; 52F 1 vs. 49F 2), and high feed fat content improved protein retention. Energy retention
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(ERE: [kJ gain kJ ingested� 1]� 100) tended to be higher for fish at the lower temperature (ERE;

55F 2 vs. 50F 1). Energy retention was also significantly higher for fish fed the high fat feeds.

There was no evidence that vegetable oils were inferior to marine fish oils at either temperature, and

at low temperature vegetable oil enhanced protein digestibility.

D 2003 Elsevier Science B.V. All rights reserved.

Keywords: Low temperature; Salmonids; Digestibility; Nutrient retention; Vegetable oil; Winter performance

1. Introduction

Salmonid species of interest for commercial culture are coldwater stenotherms. They

have growth optima at 12–17 jC (Brett, 1971; Elliott, 1976; Farmer et al., 1983; Koskela

et al., 1997a; Kestemont and Baras, 2001), and maintain feeding and growth at temper-

atures approaching 0 jC (Brännäs and Wicklund, 1992; Fraser et al., 1993; Heggenes et

al., 1993; Koskela et al., 1997b). Although salmonid farming is mostly conducted at high

latitudes, where light and temperature change markedly throughout the year, information

about nutrition–environment interactions is scarce. There are some indications that lipid

oxidation capacity is enhanced during cold acclimatization in rainbow trout (Cordiner and

Egginton, 1997; Thibault et al., 1997), and increased feed fat may give a protein-sparing

effect (Lee and Putman, 1973; Medland and Beamish, 1985; Cho and Kaushik, 1990;

Einen and Roem, 1997; Hillestad et al., 1998). Several authors have examined how fats of

marine and terrestrial origin influence the performance of salmonids (e.g. Hardy et al.,

1987; Skonberg et al., 1993; Torstensen et al., 2000; Bell et al., 2001; Grisdale-Helland et

al., 2002; Jobling et al., 2002), but most studies have been carried out at moderate-to-high

water temperatures. Cell membrane fatty acid compositions change when ectotherms are

exposed to low temperature (Hazel, 1984; Wallaert and Babin, 1994; Fodor et al., 1995;

Farkas et al., 2001). As such, winter performance might be affected when high levels of

vegetable oils are included in feeds for salmonids that are farmed at high latitudes, due

primarily to the low n� 3 highly unsaturated fatty acid (HUFA) concentrations in these

oils. Consequently, both qualitative and quantitative aspects of lipid nutrition may be of

importance when rearing of Atlantic salmon under winter conditions.

The influence of feed fat content and fatty acid composition on growth of Atlantic

salmon parr was examined in a feeding trial that incorporated investigations of feed

intake, nutrient digestibility and nutrient partitioning in fish held at 2 and 8 jC. A full-

factorial design was used to investigate whether the responses to feed treatments differed

between temperatures.

2. Materials and methods

Four dry extruded feeds (2.5 mm diameter) were produced at BioMar Technology Center,

Brande, Denmark. Sand eel (Ammodytes spp.) oil or a blend of rapeseed (Brassica sp.) oil

and linseed (Linum sp.) oil (ratio 7:3 by weight) were used as fat sources. The vegetable oils

were neutralised, bleached and de-odorised oils. Fish meal and wheat were the other main
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feed ingredients, and an inert marker (Y2O3, 0.01%) was added to all feeds for nutrient

digestibility assessment (Table 1). The feeds were designated LFFO, LFVO, HFFO and

HFVO according to fat level (LF—low fat; HF—high fat) and oil source (FO—fish oil;

VO—vegetable oil). The feeds were bagged in 25-kg bags and stored in the dark at � 22 jC.
Feed dry matter contents were determined by drying at 105 jC for 24 h, crude protein

contents were estimated by Kjeldahl analyses (nitrogen� 6.25, Kjeltec Autoanalyser,

Tecator, Sweden), crude fat was estimated on acid hydrolysed samples (3 M HCl) using

the Soxhlet method with petroleum ether extraction, and ash was determined by

combustion at 550 jC for 16 h. Feed energy content was determined by bomb calorimetry

(Parr adiabatic bomb calorimeter). Lipids were also extracted using chloroform/methanol/

water (Bligh and Dyer, 1959) and methyl esters were prepared according to the method

described by Metcalfe et al. (1966). Methyl esters, extracted in isooctane, were separated

by gas chromatography using a Perkin Elmer Auto System XL gas chromatograph

equipped with a split/splitless injector fitted to a fused silica capillary column (CP Wax

52CB, Chrompak, 25 m� 0.25 mm i.d.) and a flame-ionisation detector. Helium was used

as the mobile phase. Temperature was increased at 30 jC/min from 90 to 150 jC, and
thereafter at 3 jC/min to 225 jC; the total running time was 35 min. Injector and detector

temperatures were set at 250 and 280 jC, respectively. The fatty acids were identified

Table 1

Feed ingredients and analysed compositions of test feeds

LFFO LFVO HFFO HFVO

Ingredients, g kg� 1

Fish meala 638 638 486 486

Wheat 190 190 178 178

Sandeel oil 140 270

Rapeseed oilb 104 200

Linseed oilb 36 70

Monosodium phosphate 10 10 25 25

Vitamin and mineral premixes 12 12 12 12

Fat absorberc 10 10 30 30

Yttrium oxide 0.1 0.1 0.1 0.1

Analysed composition

Dry matter (%) 94.5 94.1 96.4 96.3

Crude protein (N� 6.25)(%) 50.2 50.4 40.3 40.2

Crude fat (%) 20.7 21.4 33.5 33.9

Ash (%) 9.1 9.3 10.3 10.4

Residue (%) 14.5 13 12.3 11.7

S Saturated fatty acids, g kg� 1 37.7 21.4 67.0 29.8

S Monoenic fatty acids, g kg� 1 75.8 90.7 135.3 153.2

S PUFAs, g kg� 1 62.5 71.9 103.4 119.6

Gross energy, MJ kg� 1 22.5 22.5 24.8 24.5

Calculated P/E ratio 22.3 22.4 16.3 16.4

Feed codes are as follows: LF, low fat; HF, high fat; FO, fish oil; VO, vegetable oil.
a Ultra Flash fish meal purchased from Fiskernes Fiskeindustri A.M.B.A., Denmark.
b The vegetable oils were purchased from Superfos Agro, Denmark.
c Diatomaceous earth purchased from Damolin, Denmark.
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using Turbochrom software by reference to fatty acid ester standards (68D, Nu-Chek-

Prep., Minnesota, USA). Sums of fatty acid esters in crude fat were determined by adding

a C17:0 standard to the crude fat, followed by extraction and analysis of methyl esters.

Concentrations of fatty acids in feeds were estimated by combining information about the

proportion of fatty acids in extracted fat (85–91%), with that of corresponding fat contents

(Table 1).

The 6-month feeding trial was conducted at the Aquaculture Research Station, Kårvika,

Tromsø, Norway (70jN), from November 1999 to May 2000. Atlantic salmon (Salmo

salar L.) alevins of the AquaGen strain (Aqua Gen, Kyrksæterøra, Norway) were first fed

in mid-February 1999 under continuous light and at a water temperature of f 12 jC, and
from mid-March until August water temperature was ambient. During August–October,

the photoperiod and water temperature were gradually reduced to simulate the onset of

winter, and in the second week of October the photoperiod was set to 12 h light:12 h dark

(‘lights-on’ between 0900 and 2100 h without twilight). On 23 and 24 September, about

1500 fish were tagged (FTF-69, Floy Tag and Manufacturing, Seattle, WA), and in mid-

October 160 fish, i.e. 100 untagged fish and 60 tagged fish, were stocked into each of 24

tanks (225 l) supplied with freshwater. Flow rates were 8–10 l min� 1 and current speeds

were 8–10 cm s� 1 in all tanks. Fish were then held for 4 weeks, during which time water

temperature fell to 4–5 jC. The fish were fed a commercial dry pellet feed (Ecostart 2

mm, BioMar AS; declared composition: protein 49%, fat 23%, gross energy 23 kJ g� 1)

prior to the experiment.

On November 10 and 11, the fish were anaesthetised in aerated benzocaine solution

( p-aminobenzoic acid ethyl ester, 50 mg l� 1) and weighed individually to the nearest

0.5 g. Groups of 150 fish (19.3 g (F 4.3 g); overall meanF S.D.) were established to

give stocking densities of 11–12 kg m� 3. Water temperature was adjusted to 8 jC in

half of the tanks and to 2 jC in the remaining 12 tanks. Stable temperatures were

maintained throughout the study by mixing the stock supply with heated or chilled

water. Dissolved oxygen (11.9F 1.5 mg l� 1; overall meanF S.D.) was measured

regularly in outlet water from each tank, and never fell below 8.4 mg l� 1.

Provision of the test feeds commenced 1 day after initial weighing, and each feed was

given to triplicate groups of fish at each temperature for 6 months (176 days) as described

by Bendiksen et al. (2002). Uneaten feed was collected in a feed waste collector and feed

intake was estimated on dry matter basis (Bendiksen et al., 2002). Fish were deprived of

feed for 48 h prior to weight and length measurement after approximately 2 months (62

days) and 4 months (114 days). Fish in tanks within the same temperature treatment were

weighed on the same day, and all tanks on two subsequent days. During weighing, 20 fish

from each tank (30 fish from the initial population) were killed with a sharp blow to the

head and sampled for body composition analysis. Samples of three body compartments

(muscle, viscera and carcass) from 10 untagged fish were taken, while 10 tagged fish were

frozen for additional analyses and back-up. Each fish was dissected, the viscera removed,

and any feed remains removed from the gut. The muscle sample was obtained as de-

skinned fillets, and the carcass sample comprised the remaining head, skin, fins and bones,

and included the kidney. Each body compartment was weighed, and a pooled sample of

each compartment was then prepared from the fish in each tank. Condition factor

[K = (WL�3)� 100] and visceral-somatic index (VSI=[visceral mass W� 1]� 100) were
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calculated, where W is the body mass in grams and L is fork length in cm, respectively.

The tissue samples were minced, transferred to brown glass vials and flushed with nitrogen

to limit oxidation, and the samples were then kept frozen at � 22 jC until analysed for

proximate composition.

At the sampling undertaken after 6 months, faecal samples were collected by stripping

(Austreng, 1978), and the faecal material was frozen at � 22 jC. After an additional week

of feeding, the collection of faeces was repeated. Faeces sampled from fish in the same

tank were pooled to yield sufficient material for chemical analysis. One faeces sample

from the LFFO fish held at the higher temperature was lost during storage, giving only two

replicates for this treatment.

At the time of analysis, the tissue homogenates were placed in a refrigerator overnight,

reground in a half-thawed condition, and analysed for proximate composition as described

by Johansen et al. (2001). Samples (5–10 g) were transferred to pre-weighed aluminium

boats and dried at 105 jC for 24 h. Fat was extracted in petroleum ether (40–60 jC, 90
min) using a Behrotest TRS 200 (Behr Labor-technik, Düsseldorf, Germany) fitted with

sintered glass extraction thimbles (pores: 40–100 Am). Ash content was determined by

combustion (500 jC, 12 h), and protein was estimated by difference. Data for the masses

and proximate composition of each compartment were combined to obtain estimates of

whole body proximate composition (Jørgensen et al., 1997). Estimates of body energy

content were obtained using caloric values of 39.5 and 23.6 kJ g� 1 for fat and protein,

respectively (Blaxter, 1989).

For nutrient digestibility analyses, the faeces and feed samples were freeze-dried at

� 40 jC for 48 h (Heto freezedryer CD13) and then finely ground in a porcelain

mortar. Fat determination was performed using supercritical fluid extraction (LECO FA-

100, LECO, St. Joseph, MI). Protein (Protein = nitrogen� 6.25) was calculated from

nitrogen determined using a nitrogen analyser (LECO FP 2000, LECO, Henderson,

NV). Yttrium was quantified using inductively coupled plasma mass spectrometry (ICP

MS) as described by Refstie et al. (1997) and the yttrium oxide concentration was sub-

sequently calculated.

Specific growth rates (SGR, % body weight day� 1) were calculated as [(lnW1� lnW0)/

(T� t)]� 100, where W0 and W1 are weights in grams at the start and at the end of the

growth period, respectively, and T� t is the time in days between weighing (Jobling, 1994).

Feed efficiency ratio (FER, gain feed� 1) was calculated according to the formula: [(g

final biomass + g dead fish)� g initial biomass]� cumulative feed intake� 1, where

cumulative feed intake was determined in grams on a dry matter basis.

Protein retention efficiency (PRE, g protein gain g protein ingested� 1) was calculated

as: PRE (%) = 100� [(P1W1�P0W0)(PF� cumulative feed intake)� 1], where P0 and P1

are the initial and final protein concentrations of the fish, W0 and W1 are the initial and the

final fish weights in grams, PF is the protein concentration of the feed on a dry matter

basis, and cumulative feed intake was determined in grams on a dry matter basis.

Energy retention efficiency (ERE, kJ gain kJ ingested� 1) was calculated as: ERE

(%) = 100� [(GE1W1�GE0W0)(GEF� cumulative feed intake)� 1], where GE0 and GE1

are the initial and final gross energy concentrations of the fish,W0 andW1 are the initial and

the final fish weights in grams, GEF is the gross energy of the feed on a dry matter basis, and

cumulative feed intake was determined in grams on a dry matter basis.
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Apparent digestibility coefficients (ADCs) for fat and protein were calculated from

the measurements of the nutrient-to-indicator ratios in the feeds and faeces: ADC

(%) = 100� 100� [(marker in feed (%)/marker in faeces (%))� (nutrient in faeces (%)/

nutrient in feed (%))].

Data are presented as the treatment meansF S.E. The data were analysed by the

General Linear Model (GLM) procedure in the SPSS for Windows (Version 10.0)

statistical package, using tank as the experimental unit in the tests. Initially, the data were

analysed by a three-factor ANOVA model with temperature, feed fat content and feed oil

source as the three fixed factors investigated, and mean fish weight for each tank included

as co-variate. Subsequently, a two-factor ANOVA model within temperature treatment,

with feed fat content and oil source as the fixed factors, was investigated. The results of the

ANOVAs are presented as the proportion of total variance explained by each of the factors

and their interactions, calculated as the marginal contribution of the mean square of the

parameter (Type I Sum of Square) as a proportion of the corrected total sum of squares. In

addition, weight gain and digestibility data were examined with one-way ANOVA

followed by Tukey’s HSD multiple range test to rank the four feed treatments within

each temperature. Levene’s test was used to test whether error variances of dependent

variables were equal across groups. Data presented as percentages were arcsine-trans-

formed (Zar, 1984) prior to the statistical tests. In addition, individual weights obtained

from tagged fish in each tank followed throughout the experiment (n = 32–42) were

examined using a repeated measure ANOVA model with diet as treatment factor and tank

replicate nested within diet at each temperature. Fish that had failed to grow were removed

from the data set prior to growth analysis of individual fish. In all tests, statistical

significance was set at P= 0.05.

3. Results

Water temperature remained at target (8.0F 0.2 and 2.0F 0.2 jC, respectively (overall

meanF S.D.)) throughout the experiment, and six fish died over the 6-month study. The

feeds were well accepted by the fish at both temperatures. Feed intake at 2 jC was

approximately 20% of that at 8 jC (Table 2), and while fish weights doubled at the lower

temperature they increased fivefold at 8 jC (Fig. 1). Water temperature influenced feed

intake (P < 0.001), and at 8 jC feed intake was significantly higher for the fish fed the low

fat feeds than for those fed the high fat feeds (Tables 2 and 3; P < 0.001).

Accordingly, final weights and SGRs were significantly influenced by temperature

(P < 0.001) and feed fat content (P < 0.01), and a significant interaction effect was found

between temperature and fat content (Table 3; P < 0.01). At the higher temperature, the fish

fed the low fat feeds were heavier than those fed the high fat feeds after 2, 4 and 6 months,

and by the end of the experiment the mean weight differences between groups fed low fat

and high fat feeds were 14.3 g (98.6F 1.7 vs. 112.9F 2.3 g; tank meanF S.E.) (Fig. 1;

Table 2). The corresponding specific growth rates (SGR) obtained over the total period for

the low- and high-fat feeds were 0.99F 0.01 and 0.93F 0.01% day� 1 (tank meanF S.E.)

(Table 2). The feeds containing vegetable oil seemed to give higher final weights than the

feeds containing fish oil (Fig. 1; Table 2), but this trend was not statistically significant. In
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accord with this, the repeated measures ANOVA test of individual weights revealed a

highly significant effect of feed fat content on weight (P < 0.001), but failed to reveal any

significant effect of feed oil source. Similar final weights (range of tank mean; 37.9–38.9 g)

were achieved by fish in all groups at the lower temperature (SGR; 0.40F 0.01% day� 1;

Fig. 1. Growth of salmon parr held at 2 and 8 jC while being fed one of four feeds (see Table 1 for feed

composition). Feed codes are as follows; LF, low fat (circles); HF, high fat (triangles); FO, fish oil (filled); VO,

vegetable oil (open). Data are presented as meanF S.E. (n= 3 per treatment). Different letters indicate significant

differences between dietary treatments within sampling times.

Table 3

ANOVA table showing the effect of temperature, feed fat content and feed oil source, and the interaction effect

between the main treatment factors on feed intake, growth and feed utilisation

Feed intake,

g DM fish� 1

Weight

gain, g

SGR,

% day� 1

ADCfat,

%

ADCprotein,

%

FER,

gain feed� 1

PRE,

G g� 1

ERE,

kJ kJ� 1

Weighta ns 0.06* 0.22** ns 0.22***

Main effects

Temperature (T) 0.98*** 0.97*** 0.98*** 0.51*** 0.06* 0.23** 0.04* ns

Fat content (F) 0.01*** 0.01*** < 0.01** 0.23** 0.05* 0.12* 0.59*** 0.53***

Oil source (O) ns ns ns ns 0.56*** ns ns ns

Interaction effects

T� F < 0.01** 0.01*** < 0.01** 0.04** ns ns 0.04* ns

T�O <0.01* ns ns 0.04* 0.09** 0.15** 0.14** 0.06*

F�O ns ns ns 0.03* 0.04* ns ns ns

T� F�O ns ns ns ns ns ns ns ns

The proportion of total variance explained by each of the significant factors and their interaction is given, and was

calculated as the marginal contribution of the mean square of the parameter (Type I Sum of Square) as a proportion

of the corrected total of squares. Digestibility data were arcsine transformed prior to analysis. Significance levels

are indicated as follows; ns, nonsignificant effect (P>0.05); *P< 0.05; **P< 0.01; ***P < 0.001.
a Final weight (tank mean) was included as a co-variate in the three-factor ANOVAwhen the total variation of

the dependent variable related significantly to weight (this is indicated by asterisks in the first row).
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tank meanF S.E.), and there were no significant effects of either feed fat content or feed oil

source on growth at this temperature (Fig. 1; Table 2).

Both fat and protein digestibilities were high (ADCfat; f 94–99%, ADCprotein; f 89–

93%), and fat digestibility was significantly (P < 0.001) lower at the lower temperature

(ADCfat; 96.3F 0.5% vs. 98.2F 0.4%; tank meanF S.E.) (Fig. 2; Tables 2 and 3). Fat

digestibility was higher for high fat feeds (Table 2; P < 0.01), with the most significant

differences being found at the lower temperature. Protein digestibility was significantly

(P < 0.05) enhanced at the higher temperature (ADCprotein; 91.2F 0.2% vs. 90.8F 0.4%;

tank meanF S.E.), and was also influenced by feed fat content (P < 0.05) and feed oil

Fig. 2. Apparent digestibility coefficients for fat (A) and protein (B) of salmon parr held at 8 jC (shaded columns)

and 2 jC (open columns) while being fed one of four feeds (see Table 1 for feed composition). Feed codes are as

follows; LF, low fat; HF, high fat; FO, fish oil; VO, vegetable oil. Data are presented as meanF S.E. (n= 3 per

treatment). Different upper and lower case letters indicate significant differences between dietary treatments at 8

and 2 jC, respectively.

E.Å. Bendiksen et al. / Aquaculture 224 (2003) 283–299 291

URN:NBN:no-6435



T
ab
le

4

B
o
d
y
co
m
p
o
si
ti
o
n
(%

w
et

w
ei
g
h
t)
,
co
n
d
it
io
n
fa
ct
o
r
(K
-f
ac
to
r)
an
d
v
is
ce
ra
l-
so
m
at
ic

in
d
ex

(V
S
I)
o
f
A
tl
an
ti
c
sa
lm

o
n
p
ar
r
fe
d
fo
u
r
d
ie
ts
at

tw
o
te
m
p
er
at
u
re
s
fo
r
6
m
o
n
th
s

T
em

p
er
at
u
re
—
8
jC

T
em

p
er
at
u
re
—
2
jC

F
ee
d
sa

A
N
O
V
A

F
ee
d
sa

A
N
O
V
A

In
it
ia
l

L
F
F
O

L
F
V
O

H
F
F
O

H
F
V
O

F
at

O
il

F
�
O

L
F
F
O

L
F
V
O

H
F
F
O

H
F
V
O

F
at

O
il

F
�
O

D
ry

m
at
te
r,
%

2
9
.4

2
9
.6

2
9
.3

3
2
.9

3
2
.5

0
.9
1
*
*
*

n
s

n
s

2
9
.5

2
8
.5

3
0
.4

3
0
.8

0
.7
1
*
*
*

n
s

n
s

P
ro
te
in
,
%

1
7
.8

1
8
.2

1
7
.8

1
6
.7

1
7
.4

0
.7
0
*
*
*

n
s

0
.1
7
*
*

1
6
.8

1
6
.7

1
6
.5

1
6
.3

0
.3
6
*

n
s

n
s

F
at
,
%

9
.5

9
.1

9
.1

1
4
.1

1
3
.0

0
.9
2
*
*
*

n
s

n
s

1
0
.4

9
.9

1
2
.0

1
2
.6

0
.8
7
*
*
*

n
s

n
s

A
sh
,
%

2
.1

2
.3

2
.2

2
.1

2
.2

n
s

n
s

n
s

2
.0

2
.0

2
.0

1
.9

n
s

n
s

n
s

K
-f
ac
to
r,
g
cm

3
1
.1
2

1
.1
2

1
.1
3

1
.1
6

1
.1
7

0
.7
7
*
*
*

n
s

n
s

1
.2
1

1
.2
1

1
.2
4

1
.2
5

0
.6
2
*
*

n
s

n
s

V
S
I,
%

8
.8

6
.3

6
.5

8
.3

8
.6

0
.7
4
*
*
*

n
s

n
s

9
.3

9
.6

11
.1

1
1
.1

0
.7
0
*
*

n
s

n
s

R
es
u
lt
s
fr
o
m

tw
o
-f
ac
to
r
an
al
y
si
s
o
f
v
ar
ia
n
ce

(A
N
O
V
A
)
ru
n
w
it
h
in

ea
ch

te
m
p
er
at
u
re

tr
ea
tm

en
t,
an
d
w
it
h
fe
ed

fa
t
co
n
te
n
t
(F
)
an
d
o
il
so
u
rc
e
(O

)
as

fi
x
ed

fa
ct
o
rs
ar
e
sh
o
w
n
.

T
h
e
p
ro
p
o
rt
io
n
o
f
to
ta
l
v
ar
ia
n
ce

ex
p
la
in
ed

b
y
ea
ch

o
f
th
e
si
g
n
if
ic
an
t
fa
ct
o
rs

an
d
th
ei
r
in
te
ra
ct
io
n
is
g
iv
en
,
an
d
w
as

ca
lc
u
la
te
d
as

th
e
m
ar
g
in
al

co
n
tr
ib
u
ti
o
n
o
f
th
e
m
ea
n

sq
u
ar
e
o
f
th
e
p
ar
am

et
er

(T
y
p
e
I
S
u
m

o
f
S
q
u
ar
e)

as
a
p
ro
p
o
rt
io
n
o
f
th
e
co
rr
ec
te
d
to
ta
l
o
f
sq
u
ar
es
.
S
ig
n
if
ic
an
ce

le
v
el
s
ar
e
in
d
ic
at
ed

as
fo
ll
o
w
s;
n
s,
n
o
n
si
g
n
if
ic
an
t
ef
fe
ct

(P
>
0
.0
5
);
*
P
<
0
.0
5
;
*
*
P
<
0
.0
1
;
*
*
*
P
<
0
.0
0
1
.
D
at
a
ar
e
p
re
se
n
te
d
as

m
ea
n
s
(n
=
3
p
er

tr
ea
tm

en
t)
.

a
F
ee
d
co
d
es

as
fo
ll
o
w
s:
L
F
,
lo
w

fa
t
(2
1
%
);
H
F
,
h
ig
h
fa
t
(3
4
%
);
F
O
,
1
0
0
%

fi
sh

o
il
;
V
O
,
1
0
0
%

v
eg
et
ab
le

o
il
.
S
ee

T
ab
le

1
fo
r
fe
ed

co
m
p
o
si
ti
o
n
.

E.Å. Bendiksen et al. / Aquaculture 224 (2003) 283–299292

URN:NBN:no-6435



source (Tables 2 and 3; P < 0.001). The interaction effects (Table 3) relate to protein

digestibility being higher when vegetable oils were used in formulating the feeds (Table 2),

and this effect was more pronounced at the lower temperature (Fig. 2). Fat digestibility

was significantly influenced by feed fat content at the lower temperature (P < 0.001),

while feed oil source had a significant effect on protein digestibility (P < 0.001) at this

temperature (Table 2).

Initial and final proximate body compositions of fish exposed to the different temper-

ature and feed treatments are shown in Table 4. Body protein content was significantly

influenced by the weight of the fish (Tables 4 and 5; P < 0.001). At the end of the

experiment, the fish fed the high fat feeds had higher body fat concentrations than did

those fed the low fat feeds (P < 0.001), and there were several interaction effects (Tables 4

and 5). Protein concentrations were significantly influenced by temperature (P < 0.01) and

feed fat content (Tables 4 and 5; P < 0.01). Protein concentrations were higher in fish

raised at the higher temperature, and at 8 jC fish on the low fat feeds tended to have higher

concentrations of body protein (Table 4). Ash concentrations were not affected by feed

type (Table 4), although an effect of fish weight was found (Table 5; P < 0.001). Both K

and VSI were significantly influenced by fish weight (P < 0.001) and by feed fat content

(Tables 4 and 5; P < 0.001). K and VSI tended to be higher in the fish given the high fat

feeds, and were also higher at 2 jC than at 8 jC (Table 4).

Feed efficiency ratio (FER) was higher in fish reared at 2 jC than in those held at 8 jC
(1.46F 0.03 vs. 1.34F 0.03; tank meanF S.E.) (Table 2), and FER was also influenced

by feed fat content and by temperature and feed oil interactions (Tables 2 and 3). Protein

retention efficiency (PRE) was significantly (P < 0.05) higher for fish reared at 8 jC than

for those held at 2 jC (PRE: 52F 1 vs. 49F 2; tank meanF S.E.) (Table 2). In addition, a

Table 5

ANOVA table showing the effect of temperature, feed fat content and feed oil source (three-factor analysis), and

the interaction effect between the main treatment factors on proximate body composition

Dry matter,

%

Protein,

%

Fat,

%

Ash,

%

K-factor,

g cm� 3

VSI,

%

Weighta 0.11*** 0.57*** 0.01* 0.53*** 0.77*** 0.68***

Main effects

Temperature (T) 0.43*** 0.07** 0.47*** ns ns 0.03*

Fat content (F) 0.31*** 0.12** 0.36*** ns 0.15*** 0.17***

Oil source (O) ns ns ns ns ns ns

Interaction effects

T� F 0.04* ns 0.08*** ns 0.02* 0.03*

T�O ns ns 0.02** ns ns ns

F�O ns ns ns ns ns ns

T� F�O ns 0.06* 0.02** ns ns ns

The proportion of total variance explained by each of the significant factors and their interaction is given, and was

calculated as the marginal contribution of the mean square of the parameter (Type I Sum of Square) as a

proportion of the corrected total of squares. Data on proximate body composition and VSI were arcsine

transformed prior to analysis. Significance levels are indicated as follows; ns, nonsignificant effect (P>0.05);

*P < 0.05; **P< 0.01; ***P < 0.001.
a Final weight (tank mean) was included as a co-variate in the three-factor ANOVAwhen the total variation of

the dependent variable related significantly to weight (this is indicated by asterisks in the first row).
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higher feed fat content improved PRE significantly (P < 0.001; Tables 2 and 3), and both

temperature and feed fat content and temperature and feed oil source interacted to

influence PRE (Table 3). Although not significant, energy retention efficiency (ERE)

tended to be higher for the fish reared at the lower temperature (ERE: 55F 2 vs. 50F 1;

tank meanF S.E.) (Table 2). ERE was significantly higher for fish fed the high fat feeds

(Tables 2 and 3; P < 0.001), and there was a significant interaction between temperature

and feed oil source that influenced ERE (Table 3).

4. Discussion

In ectotherms, low temperature restricts the amount of energy available for anabolic

processes by reducing rates of energy intake (Elliott, 1982; Jobling, 1994). Salmonids have

evolved within seasonally varying environments, and seasonal cycles in feed intake, growth

and energy partitioning may confound the study of temperature effects per se. In the present

study, the fish were subjected to decreases in photoperiod and water temperature over the

months prior to the start of the experiment to simulate the onset of winter at high latitude. It

was hoped that this pre-treatment would allow realistic assessments to be made of the

production potential of salmon exposed to low water temperature during winter months.

Feed intake at 2 jC was approximately 20% of that at 8 jC, and growth was much

slower at the lower temperature (Table 2; Fig. 1). Consequently, a 4 months longer feeding

period was required at 2 jC for fish weights to double from f 20 to f 40 g. In addition

to illustrating the rate-limiting effect of lowered temperature on feed intake and growth,

the results show that the juvenile Atlantic salmon were able to feed and grow at

temperatures close to zero. Our results are in line with previous findings that several

salmonid species are capable of maintaining feeding and growth at low temperatures

(Brännäs and Wicklund, 1992; Heggenes et al., 1993; Fraser et al., 1993; Koskela et al.,

1997a,b; Jobling et al., 1998).

The Atlantic salmon parr had higher FERs at 2 jC than at the higher temperature (Table

2). This differs from findings in several previous investigations on salmonids (Alanärä,

1994; Azevedo et al., 1998; Larsson and Berglund, 1998), but Alanärä (1992) reported a

linear decrease in feed efficiency in rainbow trout as temperature increased. Production

periods with poor feed utilisation at low temperature during winter have been reported

(e.g. Costello et al., 1996; Mørkøre and Rørvik, 2001) but this may be indicative of sub-

optimal feeding routines rather than reflecting the effects of water temperature per se. In

the present study, the fish were fed excess rations provided continuously throughout the

12-h light period. Whether a continuous feeding regime rather than providing feed in a few

large meals is favourable in order to optimise feed utilisation during low temperature

periods is uncertain. In accord with improved growth rates at the higher temperature feeds

with vegetable oils seemed to improve the FERs at this temperature, while no such effect

of oil source was found at the lower temperature.

Growth and efficient feed utilisation (Fig. 1; Table 2) were achieved at both temper-

atures as a result of high nutrient digestibilities across rearing temperatures and dietary

treatments (Fig. 2). Both PRE and ERE were high under all treatment conditions (Table 2),

and such high efficiencies could only have been achieved on feeds that had nutrients that
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were readily available to the fish. There is some controversy regarding the effects of

temperature on nutrient digestibility in salmonids, although most studies have been carried

out on rainbow trout. In the rainbow trout, higher protein and energy digestibility has been

reported at 15 jC than at 6 jC (Azevedo et al., 1998). Other data also indicate that

exposure to reduced temperature may lead to reduced nutrient digestibility in rainbow trout

(Watanabe et al., 1996a,b) and Arctic charr (Olsen and Ringø, 1998). However, Cho and

Kaushik (1990) and Médale et al. (1991) found no effect of temperature on protein, fat or

energy digestibility in the rainbow trout. Data from the present study are in accord with the

former results, in that protein and fat digestibilities were significantly reduced at the lower

rearing temperature irrespective of feed treatment. Reduced activity of digestive enzymes

at low temperature would be expected, but a temperature-induced expression of trypsin

isozymes has been reported in Atlantic salmon (Torrissen and Shearer, 1992; Rungruang-

sak-Torrissen et al., 1998). This may reduce the potential negative impact of low

temperature on protein digestion.

Austreng et al. (1979) found that fat digestibility did not differ significantly in rainbow

trout reared at 3 and 11 jC, but digestibility was influenced by the degree of hydro-

genation of the feed fatty acids. Saturated fatty acids have higher melting points than

unsaturated fatty acids of the same chain-length and are less easily digested and absorbed

by coldwater fish (Austreng et al., 1979; Cho and Kaushik, 1990; Olsen and Ringø, 1998;

Torstensen et al., 2000). In the present study, oil source influenced fat digestibility only at

the higher temperature and the fat digestibility was improved for fish fed marine oil based

diets. No such effect was found at the lower temperature. However, a higher fat

digestibility was found when dietary fat levels were increased at the lower temperature.

This could be related to a co-operative effect of dietary fat and temperature on gastric

evacuation, which is slowed both with increased dietary fat and decreasing temperature. A

slowing of gastric emptying may provide more time for lipase enzymes to catalyse

hydrolysis of fats, leading to improved digestion and absorption.

Increased feed fat resulted in reduced weight gain at the higher temperature, whereas

no such effect was seen at the lower temperature (Fig. 1; Table 2). The protein

requirement for fish is probably not influenced by water temperature (NRC, 1993;

Wilson, 2002), but lipid h-oxidation capacity may be enhanced during cold acclima-

tization (Cordiner and Egginton, 1997; Thibault et al., 1997). The protein-to-energy

ratios of the high fat feeds used in the present trial were low compared to those in

commercial feeds for pre-smolt salmon (Table 1), and it is possible that this contributed

to the poorer growth of the fish at the higher temperature. Fish fed the high fat feeds

accumulated more body fat than those fed the low fat feeds (Table 4). This may have

had a suppressive effect on appetite thereby reducing the amounts of nutrients available

for growth (cf. Silverstein et al., 1997; Regost et al., 2001; Jobling et al., 2002;

Johansen et al., 2002). According to the lipostatic theory of energy regulation, signals

that relate to the size of the body fat stores impose a negative feedback on feed intake

(Kennedy, 1953; Jobling and Johansen, 1999; Woods and Seeley, 2000), and this may

have consequences for growth (Jobling et al., 2002). At the lower temperature, no

significant differences in growth were observed between fish given the high fat and low

fat feeds, but the trends in weight gain between fish fed low- and high-fat feeds were

similar to those seen at 8 jC (Table 2). The differences in body fat concentrations
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between fish fed the low- and high-fat feeds were also much less pronounced at the

lower temperature.

The VSIs of the fish fed the high fat feeds were higher than in those given the low fat

feeds (Table 4). This may be a reflection of an increased deposition of visceral fat among

the fish given the high fat feeds, as body fat concentrations were also higher in these fish

(Table 4). Similar findings have been recorded in several other studies carried out on

salmonids (e.g. Hillestad et al., 1998; Jobling et al., 1998, 2002). On the other hand, the

VSIs of the fish held at 2 jC were higher than those of the fish reared at 8 jC, even
though the salmon exposed to the higher temperature had higher body fat concentrations

(Table 4). It is possible that these differences were the result of differences in final body

size between the fish exposed to the two thermal regimes (2 jC, ca. 40 g; 8 jC, ca. 100 g).

In Atlantic salmon, fat deposition tends to increase with increasing fish size (Wathne,

1995; Jobling and Johansen, 2003), and there may also be ontogenetic changes that lead

to the gastrointestinal tract representing a lower proportion of the body mass as fish

increase in size.

A consistent pattern of improved protein retention was observed when the fish were

provided with the high fat feeds. This effect was seen at both temperatures and with both

oil sources (Tables 2 and 3). These data are suggestive of a protein-sparing effect, in line

with the results of several previous studies on the influence of feed fat concentrations on

nutrient partitioning in fish (Lee and Putman, 1973; Medland and Beamish, 1985; Cho

and Kaushik, 1990; Einen and Roem, 1997; Hillestad et al., 1998). Nevertheless, even

though protein catabolism appears to have been reduced, the feeding of the high fat feeds

resulted in some reduction in weight gain (Fig. 1; Table 2), and was accompanied by

increased body fat deposition (Table 4). In accord with the effects on protein

digestibility, feeds with vegetable oils seemed to give a greater protein sparing effect

and improved feed efficiency than formulations with fish oil at the higher temperature,

while the opposite trend was seen at the lower temperature (Table 2). The possibility of

temperature-dependent effects of dietary oil on protein utilisation deserves further

investigation.

In summary, the Atlantic salmon parr were able to maintain growth at 2 jC, even
though a rate-controlling effect of low temperature on ingestion and growth was observed.

Feed utilisation and nutrient retention efficiencies (FER, PRE and ERE) were high at both

temperatures and with all feed treatments, indicating that the feeds were highly digestible

and their nutrients were readily available to the fish. Both protein and fat digestibility were

slightly lower at 2 jC than at 8 jC after 6 months of feeding. There was no evidence that

the vegetable oils were inferior to the fish oil as a source of fat and energy, and the use of

vegetable oil as the fat source even seemed to result in a slight enhancement of protein

digestibility, especially at the lower temperature.
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2

Abstract 26

Retentions of n-3 and n-6 essential fatty acids (EFAs) were assessed in Atlantic salmon 27

(Salmo salar L.) parr held at 8ºC and 2ºC until they increased in weight from ca. 19 g to 28

38 g. Feeds contained sandeel oil or a rapeseed:linseed oil blend at 21 and 34% dietary 29

fat. EFA retention efficiencies [(g EFA gained g EFA ingested-1) × 100] were estimated 30

from feed intake and change in biomass for each tank of fish, and fatty acid composition 31

of feeds and the fish. The n-3 EFA retentions were higher (overall mean 71%) across 32

feed treatments and temperatures than the n-6 EFA retentions (overall mean 63%). 33

Retentions of the n-3 fatty acids were higher in the fish given the feeds with the lower 34

fat content (77% vs. 65%), implying improved retention with reduced n-3 EFA 35

availability. n-3 EFA retention tended to be higher at 2ºC than at 8ºC, although this was 36

not consistent across feeds. At low temperature there was very high retention of the n-3 37

EFAs in feeds containing sandeel oil (80%). Such high retention may represent an 38

adaptation response to low temperature. Lower n-6 EFA retentions imply that more n-6 39

fatty acids were metabolized than n-3 EFAs. Feed oil influenced retention of the n-6 40

fatty acids, retention being lower for the salmon parr given the feeds containing sandeel 41

oil (56% vs. 71%). This could indicate a higher tissue deposition of n-6 fatty acids when 42

they are freely available via the diet.  43

44

45

Abbreviations: AA, arachidonic acid (C20:4 n-6); DHA, docosahexaenoic acid (C22:6 46

n-3); EFA, essential fatty acid; EPA, eicosapentaenoic acid (C20:5 n-3); HUFA, highly-47

unsaturated fatty acid (≥4 double bonds); MUFA, monounsaturated fatty acid; PL, 48

phospholipid; SFA, saturated fatty acid; TAG, triacylglycerol.  49
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Introduction 50

Fish have a dietary requirement for n-3 and n-6 PUFAs, so these are termed essential 51

fatty acids (EFAs). The C18, C20 and C22 n-3 and n-6 fatty acids all have the potential 52

to meet EFA requirements, but the ability to convert the C18 n-3 and n-6 fatty acids to 53

the biologically active forms (EPA, 20:5 n-3; DHA, 22:6 n-3; AA, 20:4 n-6; and 22:5 n-54

6) varies widely among species and life stages (reviewed by Henderson and Tocher 55

1987; Sargent et al. 1989, 2002; Henderson 1996; Higgs and Dong 2000). For 56

salmonids in fresh water 18:3 n-3 seems able to fulfil the requirement for dietary n-3 57

EFAs (Higgs and Dong 2000; Ruyter et al. 2000).  58

There are links between dietary fat composition and whole-animal physiology 59

(Sargent et al. 1989, 2002; Craig et al. 1995; Higgs and Dong 2000; Simandle et al. 60

2001; Hochachka and Somero 2002), but the possible links between thermal 61

environment and the EFA requirements of fish have been little studied. The body 62

temperatures of fish are usually within 1ºC of that of the surrounding water (Hochachka 63

and Somero 2002) and compensatory mechanisms exist to keep cell membranes in a 64

fluid state irrespective of prevailing temperature (i.e. homeoviscous adaptation). Several 65

complementary mechanisms are known (Hazel and Williams 1990; Hazel 1995; Farkas 66

et al. 2001; Hochachka and Somero 2002), and the role of the highly-unsaturated fatty 67

acids (HUFAs), and in particular DHA, is often highlighted (Hazel and Williams 1990; 68

Fodor et al. 1995; Logue et al. 2000).   69

Salmonids are coldwater stenotherms, and the positive relationship between 70

concentrations of EPA and DHA in Atlantic salmon, Salmo salar L., lipids and latitude 71

(Olsen and Skjervold 1991, 1995; Pickova et al. 1998) may be a reflection of thermal 72

adaptation mechanisms. Given the putative role of n-3 HUFAs in low-temperature 73
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adaptation it might be expected that Atlantic salmon given feeds containing low 74

concentrations of n-3 EFAs would exhibit high retention efficiencies for these fatty 75

acids at low temperature. This hypothesis was tested in an experiment in which feeds 76

containing either low or high concentrations of n-3 HUFAs were fed to Atlantic salmon 77

parr held at two temperatures (8ºC and 2ºC). 78

79

Material and methods80

Four extruded feeds (2.5 mm) were produced at Biomar TechCenter, Brande, Denmark. 81

The ingredients and proximate compositions of the feeds are shown in Table 1. The 82

feeds contained 340 g kg-1 fat and 400 g kg-1 protein or 210 g kg-1 fat and 500 g kg-1
83

protein, and were designated LFFO, LFVO, HFFO and HFVO according to fat level 84

(LF - low fat; HF - high fat) and oil source (FO - fish oil; VO - vegetable oil). The oil 85

sources were sandeel, Ammodytes spp., oil or a blend of rapeseed, Brassica sp., oil and 86

linseed, Linum sp., oil (ratio 7:3 by weight). This gave differences in concentrations and 87

contents of n-3 and n-6 fatty acids in the feeds (Tables 1 & 2), but all feeds fulfilled the 88

minimum known requirement of juvenile Atlantic salmon for EFAs (Ruyter et al. 2000).  89

The feeding experiment, conducted at Tromsø Aquaculture Research Station, 90

Kårvika, northern Norway, was started in November 1999 using Atlantic salmon, Salmo 91

salar, parr of the AquaGen strain (Aqua Gen AS, Kyrksæterøra, Norway). Alevins that 92

had been held at ambient temperature under continuous light until August were 93

subjected to a gradual reduction in day-length (LD24:0→LD12:12) and water 94

temperature until mid-September when the photoperiod was fixed at LD12:12. Prior to 95

the start of the experiment in November the water temperature gradually fell to 4-5ºC.    96
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On November 10 and 11, the fish were anaesthetized in aerated benzocaine 97

solution (p-aminobenzoic acid ethyl ester, 50 mg l-1) and weighed. A sample of 30 fish 98

was taken for body composition analysis. Groups of 150 fish (initial weight 19.3±4.3 g; 99

mean±SD) were established in each of 24 fiberglass tanks (260 l) giving densities of 100

11.6±0.1 kg m-3 (mean±SE). Water temperature was set at 2°C in 12 tanks, and at 8°C101

in the remaining 12 tanks. Water flows (8-10 l min-1) and current speeds (8-10 cm s-1)102

were similar for all tanks. Water temperature was monitored daily (8.0±0.3ºC and 103

2.0±0.3ºC; mean±SD) and was maintained by mixing the stock supply with heated or 104

chilled water. Oxygen concentrations were measured twice a week, and never fell below 105

8.4 mg l-1 during the six months study period.  106

Feeding with the test feeds was established the day after initial weighing, 107

according to the protocols described by Bendiksen et al. (2002). The four feeds were 108

provided to triplicate groups of fish at both temperatures until live weight had doubled. 109

This took approximately two and six months at 8ºC and 2ºC, respectively. On 110

termination, 20 fish were collected from each tank and killed with a sharp blow to the 111

head. The fish were dissected and feed remains removed from the intestine. Tissue 112

homogenates were prepared from de-skinned muscle, the viscera and ‘carcass’ (head, 113

skin, fins and bones including heart and kidney). Samples were pooled by tank, 114

transferred to brown glass vials, flushed with nitrogen and stored at -22ºC until 115

analyzed.   116

Lipids were extracted from 20 g half-thawed samples of muscle and carcass 117

homogenates, and from 3-5 g samples of viscera, using methanol:chloroform:water as 118

described by Bligh and Dyer (1959). The chloroform:water phase was retained and 119

solvents evaporated under a nitrogen atmosphere at 30ºC. Total lipids were determined 120
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gravimetrically (precision; ±0.001 g). Polar and non-polar lipids were separated using 121

pre-packed solid phase silica columns (Sep-PakTM, Water Associates, Milford, MA, 122

USA) according to the method described by Hamilton and Comai (1988), and lipid 123

extracts were stored under a nitrogen atmosphere prior to preparation for fatty acid 124

analysis. All chemicals used were HPLC grade solvents from Merck, Darmstadt, 125

Germany.   126

Methyl esters were prepared by alkali transesterification with 0.5 M NaOH in 127

methanol (100ºC, 15 min), followed by methylation of free fatty acids in 12 % boron-128

trifluoride-methanol (Metcalfe et al. 1966). Methyl esters, extracted in isooctane, were 129

separated by gas chromatography using a Perkin Elmer Auto System XL gas 130

chromatograph equipped with a split/splitless injector fitted to a fused silica capillary 131

column (CP Wax 52CB, Chrompak, 25 m × 0.25 mm i.d.) and a flame-ionisation 132

detector. Helium was used as the mobile phase. Temperature was increased at 30ºC per 133

min from 90ºC to 150ºC, and thereafter at 3ºC per min to 225ºC; the total running time 134

was 35 min. Operating temperatures for the injector and the detector were to 250ºC and 135

280ºC, respectively. The fatty acids were identified automatically using Turbochrom 136

software.  137

Identification of fatty acids of the n-3 (18:3 n-3, 18:4 n-3, 20:4 n-3, 20:5 n-3 and 138

22:6 n-3) and n-6 (18:2 n-6, 18:3 n-3, 20:3 n-6, 20:4 n-6 and 22:5 n-6) series was 139

conducted by reference to fatty acid ester standards (68D, Nu-Chek-Prep. Inc., 140

Minnesota, USA). The amounts of n-3 and n-6 fatty acids present in the tissues were 141

estimated by combining information about the proportions of fatty acids in the extracted 142

lipids with that of the fat contents of the corresponding tissue. In making the 143

calculations it was assumed that fatty acids make up 75 and 95% of the mass of polar 144
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and non-polar lipids, respectively (Arts et al. 2001). Concentrations of fatty acids in 145

feeds (Tables 1 & 2) were estimated by combining information about the proportion of 146

fatty acids in extracted fat (85-91%), with that of corresponding fat contents. The 147

consumption of n-3 and n-6 fatty acids during the course of the growth period was 148

estimated by combining the feed composition data with information about the amounts 149

of feed ingested by each tank of fish (Bendiksen et al. 2002).   150

EFA retention efficiencies for the n-3 and n-6 series fatty acids [(g gained g 151

ingested-1) × 100] were estimated on a tank basis from data relating to feed intake, 152

changes in biomass and changes in whole body contents of n-3 and n-6 fatty acids:  153

EFA retention efficiency = 100 × (final mass of EFA in fish – initial mass of EFA in 154

fish) (mass EFA ingested)-1.155

Tank means were used as the observational units in the statistical tests. The data 156

were subjected to a three-factor ANOVA model using the GLM module of the SPSS for 157

Windows Version 10.0 statistical package. Temperature, feed fat content and oil source 158

were used as the fixed factors. The results of the ANOVA are presented as the 159

proportion of total variance explained by each of the factors and their interactions. Data 160

expressed as proportions or percentages were arcsine-transformed (Zar 1996) prior to 161

the statistical tests. Levene’s test was used to check for homogeneity of variance across 162

groups within each temperature. Planned pair-wise comparisons between temperatures 163

within each feed treatment were conducted using the Mann-Whitney U test. In all 164

statistical tests the significance level was set to P<0.05.  165

166

167

168
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Results  169

The data presented in Table 3 show that retention efficiencies of the n-3 fatty acids were 170

high across temperatures and feed treatments. The retention efficiency of the n-3 fatty 171

acids was significantly influenced by feed fat content (P<0.001), but not by oil source, 172

although there were interaction effects between temperature and oil source (P<0.001), 173

feed fat content and oil source (P<0.01), and all three main factors (P<0.001)(Table 4). 174

The ANOVA analysis revealed no significant effect of temperature, but the statistical 175

power of the test was low (test power; 0.20). The retention efficiencies for n-3 fatty 176

acids were higher in the fish given the feeds with the lower (21%) feed fat concentration 177

(Table 3). At the lower temperature (2oC) retention of the n-3 fatty acids was 178

particularly high for the fish fed the feeds that contained sandeel oil (Table 3).  The 179

retention of n-3 fatty acids was significantly higher (P<0.05) than retention of n-6 fatty 180

acids (Table 5; overall means 71% vs. 63%). Retention of n-6 fatty acids was 181

significantly influenced by oil source (P<0.001), with retention efficiencies being 182

highest for the fish given the feeds containing vegetable oils (Table 3). There were also 183

significant interactions between feed fat content and oil source (P<0.05), and 184

interactions between all three main factors influenced the retention of the n-6 EFAs 185

(Table 4). 186

Pair-wise comparisons of retention efficiencies between temperatures, but within 187

feed treatments, revealed significantly higher retention efficiencies of the n-3 fatty acids 188

at the lower temperature for three of the four feeds (Table 5). In the LFVO treatment 189

higher n-3 EFA retention was found at the higher temperature. With the exception of the 190

HFVO treatment, pair-wise comparisons of n-6 EFA retention efficiencies within feed 191

treatments revealed no differences between the salmon parr held at the two 192
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temperatures. In the fish given the HFVO feed, retention of n-6 fatty acids was higher at 193

the lower of the two temperatures (Table 5).  194

195

Discussion 196

The results of the present study show that the n-3 and n-6 series fatty acids (n-3 and n-6 197

EFAs) were efficiently retained within the body of the salmon parr at both temperatures 198

and across all feed treatments (Table 3). Retention efficiencies in excess of 50% must 199

be considered high given the role that fatty acids play in fuelling oxidative metabolism 200

in fish tissues. However, monoenes (MUFAs) seem to be the preferred fatty acid 201

substrates for catabolism, and saturated fatty acids (SFAs) are also preferred over 202

polyenes. Of the MUFAs, 18:1 and 16:1 appear to be those most readily catabolised via 203

the β oxidation pathway, and 16:0 seems to be most preferred amongst the SFAs 204

(Henderson and Sargent 1985; Kiessling and Kiessling 1993; Siddell et al. 1995; 205

Egginton 1996; Henderson 1996).  206

Efficient retention of n-3 fatty acids should not be unexpected given the 207

important structural role of the n-3 HUFAs in cell membrane lipids. The n-3 HUFAs, 208

primarily DHA and EPA, are preferentially incorporated at the sn-2 position of the 209

glycerol backbone in phosphatidylcholines and phosphatidylethanolamines, the two 210

major membrane phospholipids (PLs) (Henderson and Tocher 1987; Sargent et al. 1989, 211

2002; Arts et al. 2001). However, the structural PLs usually make up a small proportion 212

of the total lipids in fish tissues, with the neutral, storage lipids, such as triacylglycerols 213

(TAGs), tending to dominate (reviewed by Henderson and Tocher 1987; Sargent et al. 214

1989, 2002; Higgs and Dong 2000; Jobling 2001). The Atlantic salmon parr used in the 215

present study had 9-14% total body lipids (Bendiksen et al. 2003), and deposited 2-3 g 216
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lipid during the period in which they doubled in body weight. As such, quite large 217

quantities of n-3 fatty acids were incorporated into the neutral lipids, and following 218

deposition must have been preferentially conserved, rather than being metabolised. 219

Although 18:3 n-3 and EPA may be catabolised via β oxidation, they are not preferred 220

substrates, and DHA appears to be very resistant to catabolic degradation via β221

oxidation (Henderson and Sargent 1985; Henderson 1996; Sargent et al. 2002). 222

Consequently, n-3 fatty acids might accumulate in the neutral lipids over time. 223

Preferential retention of n-3 fatty acids in the neutral lipids could represent a 224

physiological buffering mechanism, enabling n-3 EFAs to be mobilized to meet 225

essential functions under conditions of food limitation. 226

Although the n-3 fatty acids were retained efficiently by the salmon parr given 227

all four feed types, feed fat content had a significant effect on retention efficiency 228

(Table 4). A slightly higher retention of n-3 fatty acids by the fish fed the low-fat (21%) 229

feeds (Table 3) was not unexpected given the reduced concentrations of n-3 EFAs in 230

these feeds (Table 1). The feeds contained different amounts of n-3 fatty acids (Table 231

1), but another major difference was in the chain lengths and degree of unsaturation of 232

the n-3 EFAs present (Table 2). The feeds containing sandeel oil, had most of the n-3 233

fatty acids present as HUFAs, whereas the dominant n-3 fatty acid in the vegetable oil 234

feeds was 18:3 n-3, from linseed oil (Table 2). The n-3 HUFAs, such as DHA and EPA, 235

can be incorporated directly into PLs, whereas 18:3 n-3 must undergo chain elongation 236

and desaturation to form either EPA or DHA (Sargent et al. 1989, 2002; Henderson 237

1996; Higgs and Dong 2000; Arts et al. 2001). Despite these differences, oil source was 238

not found to have a significant effect on the efficiency with which the n-3 fatty acids 239

were retained by the salmon parr.  240
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There was a general tendency for retention of the n-3 EFAs to be higher in the 241

fish held at the lower temperature, this being observed for the groups of salmon parr 242

given three of the four feeds (Table 5). The increased retention of n-3 fatty acids at low 243

temperature may be a reflection of a thermal acclimation response. When fish are 244

exposed to low temperatures a usual biochemical response is an increase in the 245

unsaturation of the fatty acids incorporated into both the cell membrane lipids and the 246

storage TAGs (Cossins and Lee 1985; Hazel and Williams 1990; Fodor et al. 1995; 247

Logue et al. 2000; Hsieh et al. 2003). There is consistently a reduction in the proportion 248

of SFAs and a corresponding increase in unsaturated fatty acids, but the SFAs may be 249

replaced by either MUFAs or polyenes (Cossins and Lee 1985; Hazel and Williams 250

1990; Fodor et al. 1995; Hsieh et al. 2003). In line with this, exposure of fish to low 251

temperature leads to changes in the enzyme systems of lipid biosynthesis. For example, 252

a common observation is the depression of production of SFAs relative to unsaturated 253

fatty acids (Hazel and Williams 1990). In addition to depressing rates of production of 254

SFAs exposure to low temperature may also lead to adjustments in the capacity for the 255

synthesis of unsaturated fatty acids. This may arise from an induction and up-regulation 256

of desaturase and elongase enzymes. These enzymes are required for the synthesis of 257

MUFAs from SFAs, and for the conversion of C18 precursor n-3 and n-6 fatty acids to 258

HUFAs (Henderson and Tocher 1987; Sargent et al. 1989; Hazel and Williams 1990; 259

Tiku et al. 1996; Trueman et al. 2000; Hsieh et al. 2003). Frequently the change in lipid 260

unsaturation that occurs during acclimation to low temperature results, at least in part, 261

from increased incorporation of n-3 HUFAs, particularly DHA, into both the polar and 262

non-polar lipids (Cossins and Lee 1985; Malak et al. 1989; Ingemansson et al. 1993; 263

Wallaert and Babin 1993, 1994; Fodor et al. 1995; Fracalossi and Lovell 1995). 264
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The retention efficiencies for the n-6 EFAs were lower than those of the n-3 265

fatty acids (Table 3), and were little influenced by either temperature or the fat 266

concentrations in the feeds. Retention of the n-6 fatty acids was, however, higher 267

amongst the fish given the feeds containing vegetable oils than in those provided with 268

the feeds that contained sandeel oil (Table 3). Thus, retention appeared to be directly 269

related to the quantities of n-6 EFAs present in the feeds, since both of the feeds 270

formulated with vegetable oils contained more n-6 EFAs than did the feeds formulated 271

with sandeel oil (Tables 1 & 2). This implies that catabolic degradation of n-6 EFAs 272

was relatively less when they were supplied in larger amounts via the vegetable oils. 273

This might be a reflection of the low preference for polyenes as substrates for β274

oxidation (Egginton 1996; Henderson 1996). 275

Nevertheless, the lower retention of n-6 fatty acids in comparison with n-3 EFAs 276

may be indicative of higher rates of oxidation of the n-6 fatty acids relative to n-3 fatty 277

acids. In keeping with this suggestion, there are very low rates of oxidation of DHA in 278

fish tissues, whereas 18:2n-6 is oxidized more readily (Henderson and Sargent 1985; 279

Kiessling and Kiessling 1993; Henderson 1996). In addition, lipids that contain HUFAs 280

are generally considered to be more easily digested and absorbed than those containing 281

less-saturated fatty acids (Henderson and Tocher 1987; Sargent et al. 1989; Higgs and 282

Dong 2000; Johnsen et al. 2000). As such, it is possible that the lower retention 283

efficiency of the n-6 EFAs could also have resulted from reduced digestion and 284

absorption in comparison with n-3 EFAs. However, Bendiksen et al. (2003) did not find 285

any oil-related differences in absorption efficiencies of the total lipids present in the 286

same feeds as used in the present study. 287
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Amongst the EFAs the n-3 fatty acids tend to predominate in fish tissues, with 288

DHA and EPA being far more prevalent in cell membrane lipids than the n-6 HUFA 289

AA. The n-3 HUFAs are present in phosphatidylcholines and 290

phosphatidylethanolamines, the two major membrane PLs, whereas AA is located 291

almost exclusively in the sn-2 position of the glycerol backbone of the phosphoinositols 292

(Sargent et al. 1989, 2002; Bell and Sargent 2003). Phosphoinositols generally make up 293

only a small proportion of the cell membrane lipids, but they have important roles in 294

cellular signal transduction. In addition to being a component of the phosphoinositols 295

AA is a primary precursor for the synthesis of eicosanoids, which are known to have a 296

range of regulatory functions in fish tissues (Sargent et al. 2002; Bell and Sargent 297

2003). Despite the important physiological role of AA in the regulation of cellular 298

physiology and metabolism, the incorporation of AA into phosphoinositols would be 299

insufficient to explain the relatively high retention efficiencies of n-6 fatty acids. 300

However, n-6 fatty acids, such as 18:2 n-6, can also be sequestered from the diet and 301

incorporated into the storage lipids, such as TAGs (Sargent et al. 1989; Higgs and Dong 302

2000; Jobling 2001). Once incorporated into the storage lipids n-6 fatty acids may be 303

conserved, due to the apparent preference for MUFAs as β oxidation substrates in 304

tissues of Atlantic salmon (Egginton 1996). 305

In summary, the results indicated that both temperature and feed composition 306

influence the deposition and retention of n-3 and n-6 EFAs by Atlantic salmon parr. A 307

large proportion of the n-3 EFAs was retained in the body of the fish irrespective of 308

temperature and feed type, whereas incorporation of n-6 fatty acids was lower. High 309

retention of n-3 fatty acids at low temperature is interpreted as a thermal acclimation 310
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response, and the lower retention of n-6 fatty acids is taken to imply greater catabolic 311

degradation of the n-6 EFAs than the n-3 EFAs. 312
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Effects of dietary fatty acid profile and fat content

on smolting and seawater performance

in Atlantic salmon (Salmo salar L.)
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bBioMar AS, Kjøpmannsgata 50, Trondheim N-7484, Norway
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Abstract

An experiment was conducted to study the effects of dietary fat level and fatty acid composition on

seawater acclimation and growth in Atlantic salmon. Marine fish oil or a blend of rapeseed and linseed

oils were added to extruded pellets to produce four feeds differing in fat content (LF: 21% and HF:

34%) and fatty acid composition. The feeds were designated LFFO, LFVO, HFFO and HFVO

according to fat level (LF—low fat; HF—high fat) and oil source (FO—fish oil; VO—vegetable oil).

Each feed was fed to salmon parr (f19 g) held at 2 jC on a 12L:12D regime for 6 months. Parr–smolt

transformation was then induced by increasing the photoperiod from 12L:12D to 24L:0D, and water

temperature to 8 jC. Fish fed the four feeds grew at similar rates both during the parr stage (SGR;

0.40F0.01) and during the smoltification period (SGR; 0.64F0.01). Fish fed the high-fat feeds had a

higher percentage body fat than fish fed low-fat feeds, and fatty acid profiles resembled those of the

feed. Parr–smolt transformation was accomplished within 3 weeks after change in photoperiod in all

groups, as assessed by gill Na+,K+-ATPase activity, muscle water and plasma chloride following 24-h

seawater tests. During the 42-days seawater period the fish were fed either LFFO or HFFO feed.

Groups of 50–60 fish were subjected to one of eight feed treatments: no dietary shift, shift in feed oil

type, shift in feed fat (energy) content or shift both in feed oil type and feed fat content at the time of

seawater transfer. Fish in all groups lost weight during the first 3 weeks in seawater, but fish fed the

LFVO feed (i.e. low-fat vegetable oil) during freshwater rearing gained weight during the total 6-week

seawater period. Significantly better growth and a significantly higher proportion of fish with positive

growth rates than in other treatments was, however, only seen in the group in which a shift in both lipid

source (from VO to FO) and feed fat content (from LF to HF) had been applied. Whether this was an

effect of increased supply of n�3 HUFAs or dietary energy, or a combination of both factors, is not
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clear. There were no significant differences in plasma chloride or plasma osmolality between groups

during seawater residence or in gill Na+,K+-ATPase activity at the end of the seawater period.

D 2003 Elsevier Science B.V. All rights reserved.

Keywords: Salmonids; Smolt; Dietary oils; Growth; Seawater acclimation

1. Introduction

As a part of their life history, anadromous salmonids undergo a parr–smolt trans-

formation (or smoltification) which primes them for entry into seawater. Parr–smolt

transformation involves changes in physiology, morphology and behaviour (reviewed by

McCormick and Saunders, 1987; Hoar, 1988; Boeuf, 1993; Clarke, 2000), and alterations

in lipid metabolism are regarded as an integral part of the process (Sheridan, 1989; Bell et

al., 1997; Tocher et al., 2000). Relatively little attention has been paid to qualitative and

quantitative aspects of lipid nutrition in relation to parr–smolt transformation, even though

farmed salmonids may differ from their wild counterparts in both fat content and fatty acid

composition (Plotnikoff et al., 1984; Ackman and Takeuchi, 1986; Bergström, 1989). Wild

salmon smolts are generally smaller and leaner than their farmed counterparts, and may

contain much higher proportions of arachidonic acid (AA, 20:4n�6) in their total lipids

(Ackman and Takeuchi, 1986; Bergström, 1989).

AA is a precursor for eicosanoids that are involved in regulation of ion and water fluxes

in the gills and kidney (Mustafa and Srivastava, 1989). AA can be produced from C18

n�6 fatty acid precursors, and the enzymatic bioconversion of C18 precursors is increased

as a pre-adaptation to seawater entry. The enzymatic bioconversion of C18 precursors to

AA is antagonised by n�3 fatty acids, such as eicosapentaenoic acid (EPA, 20:5n�3) and

its eicosanoid derivatives (Bell et al., 1989). Thus, complex interactions exist between

fatty acids and the metabolic pathways that determine eicosanoid biosynthesis in

regulatory tissues (Bell et al., 1997; Sargent et al., 1999; Tocher et al., 2000).

Vegetable oils have fatty acid profiles that more closely resemble those of the natural prey

of freshwater fish than do marine fish oils. Thus, it has been proposed that it may be

beneficial to use vegetable oils in feeds formulated for salmon parr held in fresh water (Bell

et al., 1994, 1997). On the other hand, n�3 highly unsaturated fatty acids (n�3 HUFAs) are

more commonly encountered by wild salmon in the marine environment (Higgs et al., 1995;

Sargent et al., 2002). The effects of providing a dietary shift in fatty acid composition

between the freshwater and seawater rearing phases of Atlantic salmon do not seem to have

been investigated in detail. The purpose of the present study was to investigate how shifts in

dietary fatty acids and fat contents affect the performance of Atlantic salmon smolts.

2. Materials and methods

Four dry extruded pellet feeds were produced at the BioMar Technology Center,

Brande, Denmark. Sand eel (Ammodytes spp.) oil or a blend of rapeseed (Brassica sp.) oil
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and linseed (Linum sp.) oil (ratio 7:3 by weight) were used as fat sources, and fish meal

and wheat were the other main feed ingredients (Table 1). The feeds comprised 340 g kg�1

fat and 400 g kg�1 protein or 210 g kg�1 fat and 500 g kg�1 protein; they were designated

LFFO, LFVO, HFFO and HFVO according to fat level (LF—low fat; HF—high fat) and

oil source (FO—fish oil; VO—vegetable oil). Feeds containing vegetable oils had high

concentrations of oleic (18:1n�9), linoleic (18:2n�6) and linolenic (18:3n�3) acids and

lower concentrations of EPA and DHA (docosahexaenoic acid, 22:6n�3) compared to

feeds containing fish oil. Due to differences in the oil contents, the dietary level of fatty

acids differed between the low-fat and high-fat feeds formulated with the same oil source,

as indicated in Table 2.

Feed dry matter contents were determined by drying at 105 jC for 24 h. Crude protein

contents were estimated by Kjeldahl analyses (N�6.25, Kjeltec Autoanalyser, Tecator,

Sweden), crude fat was estimated on acid hydrolysed samples (3 M HCl) using the Soxhlet

method with petroleum ether extraction, and ash was determined by combustion at 550 jC
for 16 h. Feed energy contents were determined by bomb calorimetry (Parr adiabatic bomb

calorimeter).

Lipids were also extracted using chloroform:methanol:water (Bligh and Dyer, 1959).

Methyl esters were prepared by alkali transesterification with 0.5 M NaOH in methanol

(100 jC, 15 min), followed by methylation of free fatty acids in 12 % boron–trifluoride–

methanol (Metcalfe et al., 1966). Methyl esters, extracted in isooctane, were separated by

gas chromatography using a Perkin Elmer Auto System XL gas chromatograph equipped

with a split/splitless injector fitted to a fused silica capillary column (CP Wax 52CB,

Table 1

Ingredient and analysed composition of the test feeds

LFFO LFVO HFFO HFVO

Ingredients, percent of recipe

Fish meala 63.8 63.8 48.6 48.6

Wheat 19.0 19.0 17.8 17.8

Sand eel oil 14.0 27.0

Rapeseed oilb 10.4 20.0

Linseed oilb 3.6 7.0

Monosodium phosphate 1.0 1.0 2.5 2.5

Premixes 1.2 1.2 1.2 1.2

Fat absorberc 1.0 1.0 3.0 3.0

Analysed composition, percent DM

Dry matter 94.5 94.1 96.4 96.3

Crude protein 50.2 50.4 40.3 40.2

Crude fat 20.7 21.4 33.5 33.9

Ash 9.1 9.3 10.3 10.4

Residue 14.5 13.0 12.3 11.7

Gross energy, MJ kg�1 22.5 22.5 24.8 24.5

Calculated P/E ratio 22.3 22.4 16.3 16.4

Codes are as follows: HF, high fat; LF, low fat; FO, fish oil; and VO, vegetable oil.
a Ultra Flash fish meal purchased from Fiskernes Fiskeindustri A.M.B.A., Denmark.
b The vegetable oils were neutralised, bleached and deodorised oils purchased from Superfos Agro, Denmark.
c Diatomaceous earth purchased from Damolin AS, Denmark.
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Chrompak, 25 m�0.25 mm i.d.) and a flame-ionisation detector. Helium was used as the

mobile phase. Temperature was increased at 30jC min�1 from 90 to 150jC, and thereafter
at 3jC min�1 to 225jC; the total running time was 35 min. Operating temperatures for the

injector and the detector were set at 250 and 280 jC, respectively. The fatty acids were

identified automatically using Turbochrom software by reference to fatty acid ester

standards (68D, Nu-Chek-Prep., Minnesota, USA). Sums of fatty acid esters in crude

fat were determined by adding C17:0 internal standard to the crude fat followed by

extraction of methyl esters in petroleum ether. Concentrations of fatty acids in feeds (Table

2) were estimated by combining information about the proportion of fatty acids in

extracted fat (85–91%) with that of corresponding fat contents (Table 1).

The experiment was carried out with 1+ Atlantic salmon (Salmo salar L.) smolts of the

AquaGen strain (AquaGen AS, Kyrksæterøra, Norway). Fish with an initial weight 19.1 g

(F4.3 g; overall meanFS.D.) were reared in fresh water (2 jC; 12L:12D photoperiod) for

6 months (October 1999–May 2000) as described by Bendiksen et al. (2002). During this

time there were triplicate circular fibreglass tanks (260 l), each stocked with 150 fish, for

each feed treatment. The water flows (8–10 l min�1) and current speeds (8–10 cm s�1)

were maintained the same in all tanks. On 10 May 2000, fish with external signs of sexual

maturation were discarded, and 60–70 fish from each tank were then individually tagged

using a colour code to indicate feeding history (FTF-69, Floy Tag and Manufacturing,

Seattle, USA). On 29 May 2000 (about 8 months after introduction of 12L:12D) the fish

were exposed to continuous light (24L:0D), and water temperature was increased to 8 jC.
No further changes in photoperiod and water temperature were made thereafter. The

square-wave photoperiod regime used here has been shown to induce parr–smolt trans-

formation (e.g. Duston and Saunders, 1992; Sigholt et al., 1995; Handeland and

Stefansson, 2001; Nordgarden et al., 2002). Smolt status was assessed by monitoring

Table 2

Relative content (%) of fatty acid classes and selected fatty acids of total fat in the test feeds. Estimates of

corresponding concentrations (g kg�1) are given in italics within parentheses. Feed codes are given in Table 1

Fatty acids LFFO LFVO HFFO HFVO

14:0 5.7 (10.1) 1.5 (2.8) 6.0 (18.5) 0.8 (2.5)

16:0 13.4 (23.5) 7.0 (12.9) 13.6 (41.6) 5.7 (17.3)

18:0 2.0 (3.4) 2.3 (4.3) 1.9 (5.7) 2.3 (7.0)

ASAFAs 21.4 (37.7) 11.6 (21.4) 21.9 (67.0) 9.9 (29.8)

16:1 5.1 (8.9) 1.2 (2.3) 5.4 (16.5) 0.7 (2.2)

18:1n�9 8.2 (14.4) 38.4 (70.7) 7.3 (22.3) 43.3 (130.9)

20:1 10.8 (18.9) 3.1 (5.7) 11.4 (34.9) 2.2 (6.8)

22:1 15.9 (28.0) 3.8 (7.0) 17.1 (52.1) 2.0 (6.0)

AMUFAs 43.1 (75.8) 49.3 (90.7) 44.3 (135.3) 50.6 (153.2)

18:2n�6 3.1 (5.5) 15.1 (27.8) 2.4 (7.3) 16.8 (50.7)

18:3n�3 2.0 (3.6) 15.7 (28.9) 1.6 (5.0) 18.3 (55.5)

18:4 4.2 (7.4) 0.9 (1.7) 4.4 (13.5) 0.5 (1.4)

20:4n�6 0.6 (1.0) 0.2 (0.3) 0.5 (1.7) 0.1 (0.2)

20:5n�3 10.1 (17.7) 2.1 (3.9) 10.8 (32.9) 1.1 (3.4)

22:6n�3 12.6 (22.1) 4.3 (7.9) 11.8 (36.0) 2.2 (6.6)

APUFAs 35.5 (62.5) 39.1 (71.9) 33.8 (103.4) 39.5 (119.6)

n�3/n�6 ratio 6.7 1.4 8.2 1.3

E.Å. Bendiksen et al. / Aquaculture 225 (2003) 149–163152

URN:NBN:no-6435



fish survival and plasma chloride concentrations in seawater challenge tests (Blackburn

and Clarke, 1987; Clarke, 2000). Seawater challenge tests were conducted by transferring

12 fish, taken at random from each feed group, directly from fresh water to circular tanks

(260 l) supplied with running seawater (6–8 l min�1, 32.7–33.1xsalinity, 8 jC). After
24 h, mortality was recorded, and blood was sampled from the fish for plasma chloride and

osmolality analysis. Fish were weighed, samples of gill tissue were taken for analysis of

Na+,K+-ATPase activity, and muscle samples were taken for determination of water

content. On 20 June 2000, the results of the seawater challenge test indicated that the

fish had plasma chloride values characteristic for smolts. Additional samples were also

taken on 24 June, 1 day prior to the transfer of the fish to seawater. One fish died during

the freshwater period.

On 25 June the fish were transferred to eight circular tanks (260 l) supplied with

running seawater (32.7–33.1x salinity, 8 jC). There were 50–60 fish per tank, derived

from two different feed treatment groups. These fish were fed either LFFO (four tanks) or

HFFO (four tanks) giving replicated groups for all eight combinations of freshwater and

seawater feeds, as indicated in Table 3. Consequently, groups of 50–60 fish were

subjected to one of eight feed treatments: no dietary shift, shift in feed oil type, shift in

feed fat (energy) content or shift both in feed oil type and feed fat at the time of seawater

transfer (Table 3).

Feed was supplied between 1000 and 2100 each day by means of automatic disc

feeders. The feed requirement was calculated from expected specific growth rates

(Austreng et al., 1987) assuming a conversion ratio of 1:1, and to ensure excess feeding

the supply exceeded the estimated requirement by 20%.

Fish weights were monitored 3, 21 and 42 days after transfer to seawater, and samples

were taken for analysis of plasma chloride and osmolality, and gill Na+,K+-ATPase activity

(Day 42 only). Fish (n=12 per treatment) taken for sampling of blood and gill tissue were

the first to be netted from each tank. These fish were killed by anaesthesia (benzocaine, p-

aminobenzoic acid ethyl ester, 300 mg l�1), weight measured, and blood was collected

from the caudal vessels within 90 s using a syringe-vacuum tube system (Venoject tubes

with Li-heparin added, Terumo, Leuven, Belgium). Blood samples were stored on ice for

Table 3

Experimental set-up indicating feed treatment during rearing in fresh water (FW—four feeds) and during the

subsequent period of seawater (SW—two feeds) rearing. The change of feed type between freshwater and

seawater rearing is indicated. Feed codes are given in Table 1

Treatment Type of change (FW !SW)

FW SW Feed fat content Feed oil source

LFFO LFFO No change

LFVO LFFO VO!FO

HFFO LFFO HF!LF

HFVO LFFO HF!LF VO!FO

LFFO HFFO LF!HF

LFVO HFFO LF!HF VO!FO

HFFO HFFO No change

HFVO HFFO VO!FO
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max 15 min, centrifuged (2780 rpm, 8 min), and plasma was removed and stored at �80

jC until analysed for chloride (Corning 925, Ciba Corning Diagnostics, Essex, England)

and osmolality (Fiske One-Ten Osmometer, Fiske Associates, Massachusetts, USA).

Samples for analysis of gill Na+,K+-ATPase activity were taken immediately after blood

sampling. Tissue, sampled from the second gill arch on the left side of each fish, was

immediately placed into plastic tubes with ice-cold isotonic SEI-solution (0.3 M sucrose,

0.02 M Na2EDTA, and 0.1 M imidazole), held on ice for max 10 min, and then stored at

�80 jC until analysis. Gill Na+-K+-ATPase activity was determined according to the

procedure of McCormick (1993), and expressed as Amol ADP mg protein�1 h�1. Muscle

tissue (2–3 g) was taken from the region between the dorsal fin and the lateral line,

weighed to the nearest 0.01 g, and stored at �80 jC until being analysed for water content

(determined as loss of weight after 24 h drying at 105 jC). All sampled fish were dissected

to check for maturity status. Samples of whole fish were stored prior to proximate body

composition analysis, carried out as described by Johansen et al. (2001). Fatty acids were

analysed following the same procedure as described for analysis of feed samples (see

above). Following the destructive sampling, the weights (nearest 0.1 g) of all remaining

fish in each tank were measured following anaesthesia (benzocaine, 65 mg l�1). There

were two mortalities during the seawater period.

Specific growth rates (SGR, % body weight day�1) were calculated as [(lnWT�lnWt)/

(T�t)]�100, where Wt and WT are weights in g at times t (start of growth period) and T

(end of growth period) and T�t is the time in days between weighing (Jobling, 1994).

The data relating to plasma osmolality and chloride concentration, muscle water and

gill Na+,K+-ATPase activity were normally distributed (Lilliefors test) and values are given

as arithmetic means (Fstandard error of the mean, replicates pooled). Plasma chloride,

muscle water and gill Na+,K+-ATPase activity data for the period prior to transfer to

seawater were examined using a two-way ANOVA with feed and time as fixed factors.

Subsequently, the Tukey’s HSD multiple range test was used to locate significant feed

effects, and one-way ANOVAs (Bonferroni adjusted probability levels) were used to

examine for temporal effects within feed treatments. Body composition data were

expressed as percentages and were arcsine-transformed before carrying out the statistical

tests. The strength of association between fatty acid composition of feed and fish was

tested by Pearson’s correlation test. Data from the seawater phase (plasma osmolality,

plasma chloride, gill Na+,K+-ATPase activity and muscle water) were initially examined

using a three-way ANOVAwith freshwater feed, seawater feed, time and their interactions

as factors, and body weight as a covariate. When appropriate, effects were investigated

further using one- or two-way ANOVAs with tank replicates nested under feed treatment,

and body weight used as a covariate. Tukey’s HSD multiple range tests were used for

pairwise comparisons to identify where significant differences occurred. Data on fish

weights were initially analysed using a two-way repeated measures ANOVA, with

freshwater and seawater feeds as factors. Data on specific growth rate in seawater were

not normally distributed. Values are presented as medians, and Kruskal–Wallis ANOVA

and Mann–Whitney U-tests with Bonferroni adjusted P-values (post hoc multiple pairwise

comparisons) were used for statistical testing. A Pearson Chi-square test was used to test

for differences in the proportions of fish with positive growth in relation to total fish

number per feed treatment during the seawater period. The data were analysed by the
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General Linear Model (GLM) procedure in the SPSS for Windows (Version 10.0)

statistical package. In all tests, a probability level of <0.05 was considered significant.

3. Results

The fish grew at similar rates in fresh water both during the parr stage (SGR;

0.40F0.01; tank meanFS.E.), and following the increase in temperature (2 jC!8 jC)
and photoperiod (12L:12D!24L:0D) used to induce parr–smolt transformation (SGR;

0.64F0.01; tank meanFS.E.). The fish weighed 51.5 g (F8.1 g; overall meanFS.D.) at

seawater transfer, and there were no significant differences in weights between the dietary

groups.

Fig. 1. Plasma chloride concentration (top panel), muscle water percent (middle panel) and gill Na+,K+-ATPase

(Amol ADP mg protein�1 h�1) (bottom panel) of fish subjected to 24-h seawater challenge tests 3 weeks (black

columns) and 5 days (grey columns) before seawater transfer. Data are given as meansFS.E. (n=12). Different

letters indicate significant differences between feed treatments, and an asterisk (*) significant differences between

the test occasions.
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Table 4

Proximate body composition (% wet weight) of Atlantic salmon sampled one day before (Start) and 42 days after

seawater transfer. The feed codes are given in Table 1, and the experimental set-up is shown in Table 3. The data

are means and standard errors (S.E.) for analyses made on samples of fish from three (start) or two (Day 42)

replicate tanks

FW feed LFFO LFVO HFFO HFVO

Mean S.E. Mean S.E. Mean S.E. Mean S.E.

Start

Fat 10.5b (0.4) 11.0b (0.2) 13.7a (0.2) 13.8a (0.4)

Water 69.9a (0.4) 69.5a (0.2) 67.1b (0.1) 67.5b (0.3)

Protein 17.6b (0.1) 17.5ab (0.1) 17.2a (0.1) 16.7c (0.1)

Ash 1.9 (0.0) 2.0 (0.0) 2.0 (0.1) 1.9 (0.1)

Day 42

LFFO

Fat 8.7+b (0.2) 8.4+*b (0.1) 11.8+a (0.0) 12.0a (0.4)

Water 72.4+ (0.1) 72.6+* (0.2) 69.7+ (0.1) 69.9a (0.4)

Protein 16.8+ (0.2) 16.9 (0.3) 16.4+ (0.1) 16.1+ (0.0)

Ash 2.1+ (0.0) 2.2+ (0.0) 2.1 (0.0) 2.1 (0.0)

HFFO

Fat 9.0b (0.2) 10.3b (0.0) 12.0+a (0.5) 12.6a (0.2)

Water 72.2+a (0.4) 70.8+ab (0.2) 69.6+b (0.6) 69.0+b (0.1)

Protein 16.7+ (0.3) 16.8+ (0.2) 16.3+ (0.0) 16.3+ (0.0)

Ash 2.1 (0.1) 2.1+ (0.0) 2.1 (0.0) 2.1 (0.0)

Superscripts indicate significant differences between the groups; different lower case letters indicate significant

freshwater feed effects within sampling times and seawater feeds; + indicates significant differences between

sampling times for given treatments; * indicates significant differences between seawater feeds compared within

freshwater feed treatments.

Table 5

Relative content (%) of fatty acid classes and selected fatty acids of total fat in whole fish sampled one day before

seawater transfer. Feed codes are given in Table 1

Fatty acids LFFO LFVO HFFO HFVO

14:0 4.3 2.2 4.7 1.4

16:0 15.5 11.6 14.7 8.8

18:0 2.9 3.3 2.3 2.6

ASAFAs 22.8 17.2 21.9 13.1

16:1 5.4 2.7 6.1 1.7

18:1n�9 18.6 36.5 14.3 40.4

20:1 8.6 4.4 10.4 3.4

22:1 8.1 1.3 10.1 2.2

AMUFAs 43.3 47.5 43.4 50.3

18:2n�6 4.2 10.9 3.2 13.5

18:3n�3 1.9 7.8 1.4 10.1

18:4 2.6 1.9 3.1 2.5

20:4n�6 0.4 0.2 0.4 0.2

20:5n�3 5.6 2.3 7.0 1.8

22:6n�3 15.5 8.8 15.5 5.8

APUFAs 33.9 35.2 34.7 36.6

n�3/n�6 ratio 6.0 2.0 7.9 1.6
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At the time of the increase in temperature and photoperiod, mean plasma chloride

concentrations were within the range of 152–158 mM following the seawater challenge

test, and 16 days later mean plasma chloride concentrations were 136–143 mM. On the

latter date, plasma chloride concentrations were higher in the LFFO group (ANOVA,

P<0.05) than in fish on the high-fat feed treatments (Fig. 1, top panel), and muscle water

content was significantly lower in the HFVO fed fish than in those from other treatments

(Fig. 1, middle panel). Gill Na+,K+-ATPase activity was lowest (ANOVA, P<0.05) in fish

fed the HFVO feed at the first sampling after exposure of the fish to long-day conditions

(Fig. 1, bottom panel). Enzyme activity increased significantly (ANOVA, P<0.05) in all

groups prior to seawater transfer (Fig. 1, bottom panel).

Fish fed the high-fat feeds had significantly higher proportions of body fat (ANOVA,

P<0.001) than those fed low-fat feeds (Table 4). Percentage fat was inversely related to

whole body water percentage. Protein was within the range of 16.7–17.6%, and was lower

in fish fed the HFVO feed than in fish on the other feed treatments. The fatty acid profiles

of the fish (Table 5) were highly correlated with those of the feeds (Table 2, r=0.95–0.97;

Fig. 2. Box-plots (n=50–60 in each plot) showing growth rates in seawater of fish fed four different feeds during

rearing in fresh water (LFFO, LFVO, HFFO and HFVO), and subjected to new feeds at seawater entry (L=LFFO,

H=HFFO). The box contains 50% of the data (90% of data when whiskers are included), while extreme values are

indicated by circles. The horizontal line within each box indicates the median. An asterisk (*) indicates significant

differences between L and H treatments, whereas different lower case letters indicate significant differences

between freshwater feed groups within L or H treatments.
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P<0.01). There were higher proportions of oleic, linoleic and linolenic acids in the fish fed

vegetable oils whereas fish fed the fish oil-based feeds had higher proportions of EPA and

DHA, and long-chain monoenoic fatty acids (Table 5).

Growth was poor during the first period in seawater (Day 3–21) irrespective of

treatment, and there was weight loss during this period (Fig. 2). A subjective visual

assessment based on treatment means seemed to indicate a larger proportion of fish with

positive growth rates in fish previously fed the LFVO feed, but this effect was not

significant (Table 6). Growth improved for all groups during the second period (Day 21–

42), and the highest growth rate was seen in fish fed the LFVO feed in fresh water and the

HFFO feed in seawater (Fig. 2). The growth rates of these fish were significantly higher

than the growth rates of the fish fed the LFFO feed in seawater. The repeated measures

ANOVA test of individual weights confirmed that the highest weights were achieved by

the fish that experienced a shift in both lipid source and feed fat concentration (ANOVA,

P<0.001). During the second period in seawater (Day 21–42) there were larger

proportions of fish with positive growth rates amongst fish fed the LFVO feed in fresh

water (Table 6). This was noted as a trend in the fish fed LFFO feed (v2, P=0.066; test
power; 0.60), while a significant effect was seen for fish fed the HFFO feed (v2,
P<0.005)(Table 6).

At the end of the trial, relative contents of fat and protein were reduced compared to the

pre-transfer freshwater condition (Table 4). This was seen in fish exposed to all feed

treatments. Nevertheless, the relative differences in whole body composition established

during the freshwater phase of rearing were still discernible at the end of the seawater

period.

There were significant differences in plasma osmolality (ANOVA, P<0.001) and

plasma chloride concentrations (ANOVA, P<0.001) between samples taken at different

times during the seawater period. However, the feed treatments applied during freshwater

and seawater rearing did not affect either plasma chloride (Day 3; mean range; 145–150

mM; Day 21; mean range; 154–156 mM; Day 42; mean range; 150–154 mM) or plasma

osmolality (Day 3: mean range, 374–389 mOsm; Day 21: mean range, 371–380 mosM

kg�1; Day 42: mean range, 348–354 mOsm) during the seawater phase. Gill Na+,K+-

ATPase activity at the termination of the experiment (Day 42; mean range; 9–14 Amol

Table 6

Percentages of smolts with positive specific growth rates (+) and zero or negative growth (�) in seawater in

relation to the feed treatments given during the freshwater and seawater rearing phases (n=50–60). Feed codes are

given in Table 1

LFFO LFVO HFFO HFVO Sign. differences

+ � + � + � + � (Chi-square)

Low-fat feed

Day 3–21 38 62 33 67 29 71 21 79 P=0.266

Day 21–42 54 46 68 32* 48 52 42 58 *P=0.066

High-fat feed

Day 3–21 28 72 38 62 34 66 27 73 P=0.599

Day 21–42 49 51 81 19* 52 48 59 41 *P=0.005
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ADP mg protein�1 h�1) did not differ between fish subjected to the different feed

treatments.

4. Discussion

Even though they differed in body composition the fish from all four freshwater feed

treatment groups underwent parr–smolt transformation. Three weeks after exposing the

fish to 24L:0D, plasma chloride was below 150 mM following the 24-h seawater

challenge. This is a level regarded as normal for salmon smolt (e.g. Sigholt et al., 1995;

Clarke et al., 1996). Gill Na+,K+-ATPase activity increased after long-day provision and

reached a level considered characteristic for salmon smolt prior to seawater transfer

(McCormick et al., 1995; Handeland and Stefansson, 2001).

The growth rates of the fish were low throughout the 42-day seawater period, and many

fish lost weight during the first 3 weeks of seawater rearing. This is in accordance with

several previous reports (Jørgensen and Jobling, 1994; Stead et al., 1996; Arnesen et al.,

1998; Handeland et al., 2000). Seawater growth may also have been influenced by the

temperature and light regime applied prior to seawater transfer (Sigholt et al., 1998),

although the indices used to assess smolt status were within normal ranges (Fig. 1). The

growth of the fish seemed to be affected by previous feeding history, although no growth

differences had been observed when the fish were held in fresh water. Fish that had been

fed the LFVO feed in fresh water grew best, when both feed oil source and fat content

were changed (i.e. from LFVO to HFFO) on transfer to seawater. Thus, inclusion of

vegetable oils in the feed given to the salmon parr combined with an increased supply of

n�3 HUFAs and/or energy in the feed provided to the fish in seawater gave a positive

growth effect.

The observed growth differences in seawater may be related to changes in lipid

metabolism, which is regarded as being an integral part of parr–smolt transformation

(Sheridan et al., 1983, 1985; Ackman and Takeuchi, 1986; Sheridan, 1989; Bell et al.,

1997; Tocher et al., 2000). Freshwater fish appear to have the ability to elongate and

desaturate C18 fatty acids to longer-chain HUFAs (Henderson and Tocher, 1987). Salmon

parr also seem to have this capability, and Atlantic salmon fed vegetable oils have a greater

capacity for enzymatic conversion of C18 (n�3) and (n�6) fatty acids during parr–smolt

transformation than do conspecifics given feeds containing marine fish oils (Bell et al.,

1997). Consequently, it has been suggested that the differences in fatty acid compositions

between vegetable oils and marine fish oils may influence parr–smolt transformation of

farmed salmon (Bell et al., 1994, 1997; Tocher et al., 2000). Post-smolts have a reduced

D5-desaturase enzyme activity compared to parr (Bell et al., 1997), which may imply that

more n�3 HUFAs must be supplied in the feed during seawater rearing. It is possible that

the growth differences that we observed in the fish following transfer to seawater relate to

changes in their fatty acid requirements: the observation of best growth in the fish fed

LFVO in fresh water and HFFO in seawater lends support to this. This may suggest that a

high dietary level of n�3 HUFAs is required after seawater transfer, to provide the fish

with the fatty acids typical for the marine environment (Higgs et al., 1995; Sargent et al.,

2002).
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It has been reported that fish fed a feed containing vegetable oil had lower plasma

chloride concentrations following a seawater challenge than did those fed fish oils (Bell et

al., 1997; Tocher et al., 2000). In the present study there were no differences in plasma

chloride, plasma osmolality and gill Na+,K+-ATPase activity across feed treatments.

Therefore, the observed growth differences did not seem to relate directly to differences

in osmoregulatory capacity between fish on the different feed treatments.

Aerobic metabolism in fish is, in part, fuelled by fatty acid oxidation, and monoenoic

fatty acids are the preferred substrate (Henderson and Sargent, 1985; Kiessling and

Kiessling, 1993; Henderson, 1996; McKenzie, 2001). In the present study, oleic acid

represented a higher proportion of the fatty acids in the feeds containing vegetable oils

than those formulated with fish oil, while the fish oil-based feeds contained higher

proportions of long-chain monoenoic fatty acids. Consequently, more monoenoic fatty

acids accumulated in the fish fed the LFVO and HFVO feeds in fresh water than in fish fed

the fish oil-based diets. Thus, the fat stores of the fish fed the vegetable oils may have

contained a surplus of preferred energy substrate compared to fish fed feeds with marine

fish oil. It is possible that these fat stores could have been readily mobilised for catabolism

in the critical period following transfer of the fish to seawater, at a time when the appetite

of the fish may be suppressed (Usher et al., 1991; Jørgensen and Jobling, 1994; Arnesen et

al., 1998). The growth of the smolt fed the LFVO feed during freshwater residence was

also better than that of the smolt previously fed the HFVO feed. This may be related to the

higher fat accumulation in fish fed the high-fat feeds in the fresh water because increased

body fat may have a negative impact on appetite (Jobling and Johansen, 1999). Due to the

pooling of groups with different feed history at seawater transfer in the present trial, feed

intake could not be measured during seawater rearing. However, data from the pre-smolt

stage revealed a negative correlation between feed energy content and cumulative feed

intake of the fish (Bendiksen et al., 2002), and this trend may have been sustained

throughout seawater rearing.

Parr–smolt transformation is an energy demanding process, and there may also be

increased maintenance costs in seawater (Boeuf and Payan, 2001). Smolts transferred to

seawater have been reported to have a reduced lipid content compared to fish retained in

fresh water (Woo et al., 1978; Sheridan et al., 1983; Usher et al., 1991). In addition, the

transfer of smolt to seawater is often followed by a period with reduced feed intake and

growth (Usher et al., 1991; Jørgensen and Jobling, 1994; Arnesen et al., 1998), leading to

some depletion of fat stores (Jobling et al., 2002). The fish originating from the LFVO

freshwater group grew better when given HFFO, rather than LFFO, feed in seawater: this

could be related to the energy density differences between these two feeds. The higher

energy density HFFO feed may have more readily fulfilled the energy needs of the fish

during a period when they were feeding poorly.

In summary, the results show that feeding history may be important for the growth of

Atlantic salmon in the period immediately following the transfer of smolt from fresh water

to seawater. Best growth was seen when fish fed a low-fat vegetable oil-based feed in fresh

water were provided with a high-fat (energy) feed containing marine fish oil following

transfer to seawater. Whether this was an effect of increased supply of certain fatty acids

from marine fish oil, increased feed energy supply per se, or a combination of both,

remains to be elucidated.
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E.Å. Bendiksen et al. / Aquaculture 225 (2003) 149–163 163

URN:NBN:no-6435



URN:NBN:no-6435



Doctoral theses in Biology 

Norwegian University of Science and Technology 

Year Name Degree Title
1974 Tor-Henning Iversen Dr. philos 

Botany 
The roles of statholiths, auxin transport, and auxin 
metabolism in root gravitropism 

1978 Tore Slagsvold Dr. philos. 
Zoology 

Breeding events of birds in relation to spring 
temperature and environmental phenology. 

1980 Arnfinn Langeland Dr. philos. 
Zoology 

Interaction between fish and zooplankton 
populations and their effects on the material 
utilization in a freshwater lake. 

1980 Helge Reinertsen Dr. philos 
Botany 

The effect of lake fertilization on the dynamics and 
stability of a limnetic ecosystem with special 
reference to the phytoplankton 

1982 Gunn Mari Olsen Dr. scient 
Botany 

Gravitropism in roots of Pisum sativum and 
Arabidopsis thaliana

1982 Dag Dolmen Dr. philos. 
Zoology 

Life aspects of two sympartic species of newts 
(Triturus, Amphibia) in Norway, with special 
emphasis on their ecological niche segregation. 

1984 Eivin Røskaft Dr. philos. 
Zoology 

Sociobiological studies of the rook Corvus 
frugilegus.

1984 Anne Margrethe 
Cameron 

Dr. scient 
Botany 

Effects of alcohol inhalation on levels of 
circulating testosterone, follicle stimulating 
hormone and luteinzing hormone in male mature 
rats 

1984  Dr. scient 
Botany 

Alveolar macrophages from expectorates – 
Biological monitoring of workers exosed to 
occupational air pollution. An evaluation of the 
AM-test 

1985 Jarle Mork Dr. philos. 
Zoology 

Biochemical genetic studies in fish. 

1985 John Solem Dr. philos. 
Zoology 

Taxonomy, distribution and ecology of caddisflies 
(Trichoptera) in the Dovrefjell mountains. 

1985 Randi E. Reinertsen Dr. philos. 
Zoology 

Energy strategies in the cold: Metabolic and 
thermoregulatory adaptations in small northern 
birds. 

1986 Bernt-Erik Sæther Dr. philos. 
Zoology 

Ecological and evolutionary basis for variation in 
reproductive traits of some vertebrates: A 
comparative approach. 

1986 Torleif Holthe Dr. philos. 
Zoology 

Evolution, systematics, nomenclature, and 
zoogeography in the polychaete orders 
Oweniimorpha and Terebellomorpha, with special 
reference to the Arctic and Scandinavian fauna. 

1987 Helene Lampe Dr. scient. 
Zoology 

The function of bird song in mate attraction and 
territorial defence, and the importance of song 
repertoires. 

1987 Olav Hogstad Dr. philos. 
Zoology 

Winter survival strategies of the Willow tit Parus 
montanus.

1987 Jarle Inge Holten Dr. philos 
Bothany 

Autecological investigations along a coust-inland 
transect at Nord-Møre, Central Norway 
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1987 Rita Kumar Dr. scient 
Botany 

Somaclonal variation in plants regenerated from 
cell cultures of Nicotiana sanderae and 
Chrysanthemum morifolium

1987 Bjørn Åge Tømmerås Dr. scient. 
Zoology 

Olfaction in bark beetle communities: Interspecific 
interactions in regulation of colonization density, 
predator - prey relationship and host attraction. 

1988 Hans Christian Pedersen Dr. philos. 
Zoology 

Reproductive behaviour in willow ptarmigan with 
special emphasis on territoriality and parental care.

1988 Tor G. Heggberget Dr. philos. 
Zoology 

Reproduction in Atlantic Salmon (Salmo salar): 
Aspects of spawning, incubation, early life history 
and population structure. 

1988 Marianne V. Nielsen Dr. scient. 
Zoology 

The effects of selected environmental factors on 
carbon allocation/growth of larval and juvenile 
mussels (Mytilus edulis). 

1988 Ole Kristian Berg Dr. scient. 
Zoology 

The formation of landlocked Atlantic salmon 
(Salmo salar L.). 

1989 John W. Jensen Dr. philos. 
Zoology 

Crustacean plankton and fish during the first 
decade of the manmade Nesjø reservoir, with 
special emphasis on the effects of gill nets and 
salmonid growth. 

1989 Helga J. Vivås Dr. scient. 
Zoology 

Theoretical models of activity pattern and optimal 
foraging: Predictions for the Moose Alces alces.

1989 Reidar Andersen Dr. scient. 
Zoology 

Interactions between a generalist herbivore, the 
moose Alces alces, and its winter food resources: a 
study of behavioural variation. 

1989 Kurt Ingar Draget Dr. scient 
Botany 

Alginate gel media for plant tissue culture, 

1990 Bengt Finstad Dr. scient. 
Zoology 

Osmotic and ionic regulation in Atlantic salmon, 
rainbow trout and Arctic charr: Effect of 
temperature, salinity and season. 

1990 Hege Johannesen Dr. scient. 
Zoology 

Respiration and temperature regulation in birds 
with special emphasis on the oxygen extraction by 
the lung. 

1990 Åse Krøkje Dr. scient 
Botany 

The mutagenic load from air pollution at two 
work-places with PAH-exposure measured with 
Ames Salmonella/microsome test 

1990 Arne Johan Jensen Dr. philos. 
Zoology 

Effects of water temperature on early life history, 
juvenile growth and prespawning migrations of 
Atlantic salmion (Salmo salar) and brown trout 
(Salmo trutta): A summary of studies in Norwegian
streams. 

1990 Tor Jørgen Almaas Dr. scient. 
Zoology 

Pheromone reception in moths: Response 
characteristics of olfactory receptor neurons to 
intra- and interspecific chemical cues. 

1990 Magne Husby Dr. scient. 
Zoology 

Breeding strategies in birds: Experiments with the 
Magpie Pica pica.

1991 Tor Kvam Dr. scient. 
Zoology 

Population biology of the European lynx (Lynx 
lynx) in Norway. 

1991 Jan Henning L'Abêe 
Lund 

Dr. philos. 
Zoology 

Reproductive biology in freshwater fish, brown 
trout Salmo trutta and roach Rutilus rutilus in 
particular. 

1991 Asbjørn Moen Dr. philos 
Botany 

The plant cover of the boreal uplands of Central 
Norway. I. Vegetation ecology of Sølendet nature 
reserve; haymaking fens and birch woodlands 
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1991 Else Marie Løbersli Dr. scient 
Botany 

Soil acidification and metal uptake in plants 

1991 Trond Nordtug Dr. scient. 
Zoology 

Reflctometric studies of photomechanical 
adaptation in superposition eyes of arthropods. 

1991 Thyra Solem Dr. scient 
Botany 

Age, origin and development of blanket mires in 
Central Norway 

1991 Odd Terje Sandlund Dr. philos. 
Zoology 

The dynamics of habitat use in the salmonid 
genera Coregonus and Salvelinus: Ontogenic niche 
shifts and polymorphism. 

1991 Nina Jonsson Dr. philos. Aspects of migration and spawning in salmonids. 
1991 Atle Bones Dr. scient 

Botany 
Compartmentation and molecular properties of 
thioglucoside glucohydrolase (myrosinase) 

1992 Torgrim Breiehagen Dr. scient. 
Zoology 

Mating behaviour and evolutionary aspects of the 
breeding system of two bird species: the 
Temminck's stint and the Pied flycatcher. 

1992 Anne Kjersti Bakken Dr. scient 
Botany 

The influence of photoperiod on nitrate 
assimilation and nitrogen status in timothy 
(Phleum pratense L.) 

1992 Tycho Anker-Nilssen Dr. scient. 
Zoology 

Food supply as a determinant of reproduction and 
population development in Norwegian Puffins 
Fratercula arctica

1992 Bjørn Munro Jenssen Dr. philos. 
Zoology 

Thermoregulation in aquatic birds in air and water: 
With special emphasis on the effects of crude oil, 
chemically treated oil and cleaning on the thermal 
balance of ducks. 

1992 Arne Vollan Aarset Dr. philos. 
Zoology 

The ecophysiology of under-ice fauna: Osmotic 
regulation, low temperature tolerance and 
metabolism in polar crustaceans. 

1993 Geir Slupphaug Dr. scient 
Botany 

Regulation and expression of uracil-DNA 
glycosylase and O6-methylguanine-DNA 
methyltransferase in mammalian cells 

1993 Tor Fredrik Næsje Dr. scient. 
Zoology 

Habitat shifts in coregonids. 

1993 Yngvar Asbjørn Olsen Dr. scient. 
Zoology 

Cortisol dynamics in Atlantic salmon, Salmo salar
L.: Basal and stressor-induced variations in plasma 
levels ans some secondary effects. 

1993 Bård Pedersen Dr. scient 
Botany 

Theoretical studies of life history evolution in 
modular and clonal organisms 

1993 Ole Petter Thangstad Dr. scient 
Botany 

Molecular studies of myrosinase in Brassicaceae 

1993 Thrine L. M. Heggberget Dr. scient. 
Zoology 

Reproductive strategy and feeding ecology of the 
Eurasian otter Lutra lutra.

1993 Kjetil Bevanger Dr. scient. 
Zoology 

Avian interactions with utility structures, a 
biological approach. 

1993 Kåre Haugan Dr. scient 
Bothany 

Mutations in the replication control gene trfA of 
the broad host-range plasmid RK2 

1994 Peder Fiske Dr. scient. 
Zoology 

Sexual selection in the lekking great snipe 
(Gallinago media): Male mating success and 
female behaviour at the lek. 

1994 Kjell Inge Reitan Dr. scient 
Botany 

Nutritional effects of algae in first-feeding of 
marine fish larvae 
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1994 Nils Røv Dr. scient. 
Zoology 

Breeding distribution, population status and 
regulation of breeding numbers in the northeast-
Atlantic Great Cormorant Phalacrocorax carbo 
carbo.

1994 Annette-Susanne 
Hoepfner 

Dr. scient 
Botany 

Tissue culture techniques in propagation and 
breeding of Red Raspberry (Rubus idaeus L.) 

1994 Inga Elise Bruteig Dr. scient 
Bothany 

Distribution, ecology and biomonitoring studies of 
epiphytic lichens on conifers 

1994 Geir Johnsen Dr. scient 
Botany 

Light harvesting and utilization in marine 
phytoplankton: Species-specific and photoadaptive 
responses 

1994 Morten Bakken Dr. scient. 
Zoology 

Infanticidal behaviour and reproductive 
performance in relation to competition capacity 
among farmed silver fox vixens, Vulpes vulpes.

1994 Arne Moksnes Dr. philos. 
Zoology 

Host adaptations towards brood parasitism by the 
Cockoo. 

1994 Solveig Bakken Dr. scient 
Bothany 

Growth and nitrogen status in the moss Dicranum 
majus Sm. as influenced by nitrogen supply 

1995 Olav Vadstein Dr. philos 
Botany 

The role of heterotrophic planktonic bacteria in the 
cycling of phosphorus in lakes: Phosphorus 
requirement, competitive ability and food web 
interactions. 

1995 Hanne Christensen Dr. scient. 
Zoology 

Determinants of Otter Lutra lutra distribution in 
Norway: Effects of harvest, polychlorinated 
biphenyls (PCBs), human population density and 
competition with mink Mustela vision.

1995 Svein Håkon Lorentsen Dr. scient. 
Zoology 

Reproductive effort in the Antarctic Petrel 
Thalassoica antarctica; the effect of parental body 
size and condition. 

1995 Chris Jørgen Jensen Dr. scient. 
Zoology 

The surface electromyographic (EMG) amplitude 
as an estimate of upper trapezius muscle activity 

1995 Martha Kold Bakkevig Dr. scient. 
Zoology 

The impact of clothing textiles and construction in 
a clothing system on thermoregulatory responses, 
sweat accumulation and heat transport. 

1995 Vidar Moen Dr. scient. 
Zoology 

Distribution patterns and adaptations to light in 
newly introduced populations of Mysis relicta and 
constraints on Cladoceran and Char populations. 

1995 Hans Haavardsholm 
Blom 

Dr. philos 
Bothany 

A revision of the Schistidium apocarpum complex 
in Norway and Sweden. 

1996 Jorun Skjærmo Dr. scient 
Botany 

Microbial ecology of early stages of cultivated 
marine fish; inpact fish-bacterial interactions on 
growth and survival of larvae. 

1996 Ola Ugedal Dr. scient. 
Zoology 

Radiocesium turnover in freshwater fishes 

1996 Ingibjørg Einarsdottir Dr. scient. 
Zoology 

Production of Atlantic salmon (Salmo salar) and 
Arctic charr (Salvelinus alpinus): A study of some 
physiological and immunological responses to 
rearing routines. 

1996 Christina M. S. Pereira Dr. scient. 
Zoology 

Glucose metabolism in salmonids: Dietary effects 
and hormonal regulation. 

1996 Jan Fredrik Børseth Dr. scient. 
Zoology 

The sodium energy gradients in muscle cells of 
Mytilus edulis and the effects of organic 
xenobiotics. 
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1996 Gunnar Henriksen Dr. scient. 
Zoology 

Status of Grey seal Halichoerus grypus and 
Harbour seal Phoca vitulina in the Barents sea 
region. 

1997 Gunvor Øie Dr. scient 
Bothany 

Eevalution of rotifer Brachionus plicatilis quality 
in early first feeding of turbot Scophtalmus 
maximus L. larvae. 

1997 Håkon Holien Dr. scient 
Botany 

Studies of lichens in spurce forest of Central 
Norway. Diversity, old growth species and the 
relationship to site and stand parameters. 

1997 Ole Reitan  Dr. scient. 
Zoology 

Responses of birds to habitat disturbance due to 
damming. 

1997 Jon Arne Grøttum  Dr. scient. 
Zoology 

Physiological effects of reduced water quality on 
fish in aquaculture. 

1997 Per Gustav Thingstad  Dr. scient. 
Zoology 

Birds as indicators for studying natural and 
human-induced variations in the environment, 
with special emphasis on the suitability of the Pied 
Flycatcher. 

1997 Torgeir Nygård  Dr. scient. 
Zoology 

Temporal and spatial trends of pollutants in birds 
in Norway: Birds of prey and Willow Grouse used 
as 
Biomonitors. 

1997 Signe Nybø  Dr. scient. 
Zoology 

Impacts of long-range transported air pollution on 
birds with particular reference to the dipper 
Cinclus cinclus in southern Norway. 

1997 Atle Wibe  Dr. scient. 
Zoology 

Identification of conifer volatiles detected by 
receptor neurons in the pine weevil (Hylobius 
abietis), analysed by gas chromatography linked to 
electrophysiology and to mass spectrometry. 

1997 Rolv Lundheim  Dr. scient. 
Zoology 

Adaptive and incidental biological ice nucleators. 

1997 Arild Magne Landa Dr. scient. 
Zoology 

Wolverines in Scandinavia: ecology, sheep 
depredation and conservation. 

1997 Kåre Magne Nielsen Dr. scient 
Botany 

An evolution of possible horizontal gene transfer 
from plants to sail bacteria by studies of natural 
transformation in Acinetobacter calcoacetius.

1997 Jarle Tufto  Dr. scient. 
Zoology 

Gene flow and genetic drift in geographically 
structured populations: Ecological, population 
genetic, and statistical models 

1997 Trygve Hesthagen  Dr. philos. 
Zoology 

Population responces of Arctic charr (Salvelinus 
alpinus (L.)) and brown trout (Salmo trutta L.) to 
acidification in Norwegian inland waters 

1997 Trygve Sigholt  Dr. philos. 
Zoology 

Control of  Parr-smolt transformation and seawater 
tolerance in farmed Atlantic Salmon (Salmo salar)
Effects of photoperiod, temperature, gradual 
seawater acclimation, NaCl and betaine in the diet 

1997 Jan Østnes  Dr. scient. 
Zoology 

Cold sensation in adult and neonate birds 

1998 Seethaledsumy 
Visvalingam 

Dr. scient 
Botany 

Influence of environmental factors on myrosinases 
and myrosinase-binding proteins. 

1998 Thor Harald Ringsby Dr. scient. 
Zoology 

Variation in space and time: The biology of a 
House sparrow metapopulation 
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1998 Erling Johan Solberg Dr. scient. 
Zoology 

Variation in population dynamics and life history 
in a Norwegian moose (Alces alces) population: 
consequences of harvesting in a variable 
environment 

1998 Sigurd Mjøen Saastad Dr. scient 
Botany 

Species delimitation and phylogenetic relationships
between the Sphagnum recurvum complex 
(Bryophyta): genetic variation and phenotypic 
plasticity. 

1998 Bjarte Mortensen Dr. scient 
Botany 

Metabolism of volatile organic chemicals (VOCs) 
in a head liver S9 vial  equilibration system in 
vitro. 

1998 Gunnar Austrheim Dr. scient 
Botany 

Plant biodiversity and land use in subalpine 
grasslands. – A conservtaion biological approach. 

1998 Bente Gunnveig Berg Dr. scient. 
Zoology 

Encoding of pheromone information in two related 
moth species 

 1999 Kristian Overskaug Dr. scient. 
Zoology 

Behavioural and morphological characteristics in 
Northern Tawny Owls Strix aluco: An intra- and 
interspecific comparative approach 

1999 Hans Kristen Stenøien Dr. scient 
Bothany 

Genetic studies of evolutionary processes in various
populations of nonvascular plants (mosses, 
liverworts and hornworts) 

1999 Trond Arnesen Dr. scient 
Botany 

Vegetation dynamics following trampling and 
burning in the outlying haylands at Sølendet, 
Central Norway. 

1999 Ingvar Stenberg Dr. scient. 
Zoology 

Habitat selection, reproduction and survival in the 
White-backed Woodpecker Dendrocopos leucotos

1999 Stein Olle Johansen Dr. scient 
Botany 

A study of driftwood dispersal to the Nordic Seas 
by dendrochronology and wood anatomical 
analysis. 

1999 Trina Falck Galloway Dr. scient. 
Zoology 

Muscle development and growth in early life stages
of the Atlantic cod (Gadus morhua L.) and Halibut 
(Hippoglossus hippoglossus L.) 

1999 Torbjørn Forseth Dr. scient. 
Zoology 

Bioenergetics in ecological and life history studies 
of fishes. 

1999 Marianne Giæver Dr. scient. 
Zoology 

Population genetic studies in three gadoid species: 
blue whiting (Micromisistius poutassou), haddock 
(Melanogrammus aeglefinus) and cod (Gradus 
morhua) in the North-East Atlantic 

1999 Hans Martin Hanslin Dr. scient 
Botany 

The impact of environmental conditions of density 
dependent performance in the boreal forest 
bryophytes Dicranum majus, Hylocomium
splendens, Plagiochila asplenigides, Ptilium 
crista-castrensis and Rhytidiadelphus lokeus.

1999 Ingrid Bysveen 
Mjølnerød 

Dr. scient. 
Zoology 

Aspects of population genetics, behaviour and 
performance of wild and farmed Atlantic salmon 
(Salmo salar) revealed by molecular genetic 
techniques 

1999 Else Berit Skagen Dr. scient 
Botany 

The early regeneration process in protoplasts from 
Brassica napus hypocotyls cultivated under various 
g-forces 

1999 Stein-Are Sæther Dr. philos. 
Zoology 

Mate choice, competition for mates, and conflicts 
of interest in the Lekking Great Snipe 
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1999 Katrine Wangen Rustad Dr. scient. 
Zoology 

Modulation of glutamatergic neurotransmission 
related to cognitive dysfunctions and Alzheimer’s 
disease 

1999 Per Terje Smiseth Dr. scient. 
Zoology 

Social evolution in monogamous families: 
mate choice and conflicts over parental care in the 
Bluethroat (Luscinia s. svecica)

1999 Gunnbjørn Bremset Dr. scient. 
Zoology 

Young Atlantic salmon (Salmo salar L.) and 
Brown trout (Salmo trutta L.) inhabiting the deep 
pool habitat, with special reference to their habitat 
use, habitat preferences and competitive 
interactions 

 1999 Frode Ødegaard Dr. scient. 
Zoology 

Host spesificity as parameter in estimates of 
arhrophod species richness 

1999 Sonja Andersen Dr. scient 
Bothany 

Expressional and functional analyses of human, 
secretory phospholipase A2 

2000 Salvesen, Ingrid Dr. scient 
Botany 

Microbial ecology in early stages of marine fish: 
Development and evaluation of methods for 
microbial management in intensive larviculture 

2000 Ingar Jostein Øien Dr. scient. 
Zoology 

The Cuckoo (Cuculus canorus) and its host: 
adaptions and counteradaptions in a coevolutionary
arms race 

2000 Pavlos Makridis Dr. scient 
Botany

Methods for the microbial econtrol of live food 
used for the rearing of marine fish larvae 

2000 Sigbjørn Stokke Dr. scient. 
Zoology 

Sexual segregation in the African elephant 
(Loxodonta africana)

2000 Odd A. Gulseth Dr. philos. 
Zoology 

Seawater tolerance, migratory behaviour and 
growth of Charr, (Salvelinus alpinus), with 
emphasis on the high Arctic Dieset charr on 
Spitsbergen, Svalbard 

2000 Pål A. Olsvik Dr. scient. 
Zoology 

Biochemical impacts of Cd, Cu and Zn on brown 
trout (Salmo trutta) in two mining-contaminated 
rivers in Central Norway 

2000 Sigurd Einum Dr. scient. 
Zoology 

Maternal effects in fish: Implications for the 
evolution of breeding time and egg size 

2001 Jan Ove Evjemo Dr. scient. 
Zoology 

Production and nutritional adaptation of the brine 
shrimp Artemia sp. as live food organism for larvae
of marine cold water fish species 

2001 Hilmo, Olga Dr. scient 
Botany 

Lichen response to environmental changes in the 
managed boreal forset systems 

2001 Ingebrigt Uglem Dr. scient. 
Zoology 

Male dimorphism and reproductive biology in 
corkwing wrasse (Symphodus melops L.) 

2001 Bård Gunnar Stokke Dr. scient. 
Zoology 

Coevolutionary adaptations in avian brood 
parasites and their hosts 

2002 Ronny Aanes Dr. scient Spatio-temporal dynamics in Svalbard reindeer 
(Rangifer tarandus platyrhynchus)

2002 Mariann Sandsund Dr. scient. 
Zoology 

Exercise- and cold-induced asthma. Respiratory 
and thermoregulatory responses 

2002 Dag-Inge Øien Dr. scient 
Botany 

Dynamics of plant communities and populations in 
boreal vegetation influenced by scything at 
Sølendet, Central Norway 

2002 Frank Rosell Dr. scient. 
Zoology 

The function of scent marking in beaver (Castor 
fiber)

2002 Janne Østvang Dr. scient 
Botany 

The Role and Regulation of Phospholipase A2 in
Monocytes During Atherosclerosis Development 
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2002 Terje Thun Dr. philos 
Biology 

Dendrochronical constructions of Norwegian 
conifer chronologies providing dating of historical 
material 

2002 Birgit Hafjeld Borgen Dr. scient 
Biology 

Functional analysis of plant idioblasts (Myrosin 
cells) and their role in defense, development and 
growth 

2002 Bård Øyvind Solberg Dr. scient 
Biology 

Effects of climatic change on the growth of 
dominating tree species along major environmental 
gradients 

2002 Per Winge Dr. scient 
Biology 

The evolution of small GTP binding proteins in 
cellular organisms.  Studies of RAC GTPases in 
Arabidopsis thaliana and 

2002 Henrik Jensen Dr. scient 
Biology 

Causes and consequenses of individual variation in 
fitness-related traits in house sparrows 

2003 Jens Rohloff Dr. philos 
Biology 

Cultivation of herbs and medicinal plants in 
Norway – Essential oil production and quality 
control 

2003 Åsa Maria O. Espmark 
Wibe 

Dr. scient 
Biology 

Behavioural effects of environmental pollution in 
threespine stickleback Gasterosteus aculeatur L. 

2003 Dagmar Hagen Dr. scient 
Biology 

Assisted recovery of disturbed arctic and alpine 
vegetation – an integrated approach 

2003 Bjørn Dahle Dr. scient 
Biology 

Reproductive strategies in Scandinavian brown 
bears 

2003 Cyril Lebogang Taolo Dr. scient 
Biology 

Population ecology, seasonal movement and 
habitat use of the African buffalo (Syncerus caffer)
in Chobe National Park, Botswana 

2003 Marit Stranden Dr.scient 
Biology 

Olfactory receptor neurones specified for the same 
odorants in three related Heliothine species 
(Helicoverpa armigera, Helicoverpa assulta and 
Heliothis virescens)

2003 Kristian Hassel Dr.scient 
Biology 

Life history characteristics and genetic variation in 
an expanding species, Pogonatum dentatum 

2003 David Alexander Rae Dr.scient 
Biology 

Plant- and invertebrate-community responses to 
species interaction and microclimatic gradients in 
alpine and Artic environments 

2003 Åsa A Borg Dr.scient 
Biology 

Sex roles and reproductive behaviour in gobies and 
guppies: a female perspective 
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