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Abstract

The structure and the relation between the total mass, the radius and the central energy
density of a neutron star may be found by numerically solving a set of three coupled dif-
ferential equations. One of these equations is the equation of state, relating the pressure to
the energy density. In this thesis, after introducing some important concepts of general rel-
ativity, quantum mechanics, quantum field theory and thermal field theory, we will discuss
the equation of state using different models. The first is the σ–ω model, later expanded to
include leptons and the ρ meson in what in the literature is referred to as npeµ matter. In
the last part we also consider the shift in the vacuum energy due to the presence of matter.
Some focus has been given to the first-order phase transition in neutron matter conceived
by Chin & Walecka [7]. Although unphysical, the theory behind the phase transition is a
first step for understanding more complex phase transitions between hadronic and quark
matter in hybrid stars.
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Chapter 1
Introduction

By the word “star” we usually mean enormous celestial bodies made of plasma, held to-
gether by gravity and glowing of the light originating from the nuclear fusion in their cores.
Although this is indeed the case, it is not the whole truth. The description above is in fact
true only for the middle phase of what we may call the “lifetime” of a star, which can be
subdivided into three main phases: birth, life and death.
Stars are usually born from the gravitational collapse of parts of a gaseous nebula mainly
consisting of hydrogen. When contracting, the density and the temperature increase al-
lowing for the nuclear fusion of hydrogen atom nuclei to happen at its core. This in turn
releases energy, increases temperatures even more and eventually results in an enormous,
continuous explosion exerting a pressure keeping the sphere of gas from further collapse.
When a stable equilibrium between these two pressures is reached, we are into the second
phase of the star’s lifetime. This phase may continue for millions or billions of years, until
the amount of hydrogen is no longer enough to sustain the nuclear reaction in its core.
When this happens, the exerted pressure diminishes and gravity wins, resulting in the col-
lapse of the star. While this implosion may result in higher pressures and temperatures
triggering another thermonuclear reaction not previously possible, a point is eventually
reached when the attained pressures are either not big enough to sustain the next step of
nuclear fusion, or fusion becomes energetically unfavorable leading to the further gravita-
tional collapse of the star’s core. We enter then the third and final phase: the death of the
star. In the case when the newly attained pressure do not allow further nuclear fusion to
happen, the core becomes an inert collection of atomic nuclei in a sea of electrons, while
the outer layers dissipate in a stellar nebula. These core remnants are called white dwarfs:
stars held together by gravity and kept from collapse by the Pauli pressure exerted by elec-
trons. This will be the fate of the Sun and of stars that do not exceed approximately three
times its mass. The fusion of atomic nuclei heavier than 56Fe is energetically unfavorable,
and when a star reaches pressures that allow such a nuclear reaction, it will result in the
collapse of its core and the release of enormous amounts of gravitational energy. This in
turn provokes the expulsion of the outer layers of the former star: a big explosion, called
supernova. While the implosion of the cores of many massive stars results in black holes,
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Chapter 1. Introduction

some have just enough mass to win over the Pauli pressure of electrons, but not enough to
overcome the one of the nucleons. These remnants are neutron stars.

A neutron star’s typical mass lies around 1.5 solar masses, and its radius on the order of
10 km. Since their density is comparable to the one of atomic nuclei, it makes them fully
relativistic objects that have to be described in terms of special and general relativity. They
are very interesting physical objects as they show conditions that are impossible to emulate
on Earth. Our theoretical understanding neutron stars is limited to the extrapolation of
the behavior of physical laws we know working for previously observed systems in our
laboratories. On the other hand, these star present us with the possibilities of testing these
laws and possibly improve them, giving us a tool to observe matter at very high densities.

Although the idea of giant atomic nuclei in space is attributed to Landau in 1931 [27],
it was Baade and Zwicky in 1934 who proposed the existence of stars mainly consisting of
neutrons as a result of gravitational collapse [1]. The first observation of a variable radio
source was by Hewish et al. in 1967 [21], identified later as a pulsar, or rapidly rotating
neutron star, for which he was rewarded the Nobel prize in 1975. Since then many other
neutron stars have been discovered, increasing the amount of theoretical research done to
explain their structure.

This Master’s thesis will look into the different models for the structure of neutron
stars, and the implied relationship between the central density, radius and total mass. The
first chapters will mostly lay the theoretical foundations which will be applied in the rest of
the thesis. In Chapter 2 general relativity and the Tolman-Oppenheimer-Volkoff equations
are introduced; these, together with the equation of state, are the framework we will use in
order to calculate the above mentioned relationship. The equation of state can be derived
by what we assume the neutron star is made of, how the constituents interact with each
other and the kind of approximation we are using. In Chapter 2 we will also explore the
most simple models for a neutron star, idealized as made of cold, relativistic Fermi gas of
non-interacting neutrons, based on the 1939 seminal works of Tolman [40], Oppenheimer
and Volkoff [29]. In Chapter 3 we will introduce the reader to the path integral formula-
tion of quantum field theory as well as finite-temperature thermal field theory. Chapter 4
improves the model of neutron stars by allowing for interactions between nucleons. This
is the σ–ω model (or Walecka model [41]), which the improved npeµ model of Chapter 5
is based from. Lastly in Chapter 6 the vacuum fluctuations are considered, together with
their contribution to the equation of state and the mass-radius relation.

On the front cover are shown the mass-radius relations for each of the models. The
magenta line shows the mass-radius relation according to the model of a Fermi gas of
noninteracting cold neutrons, the blue line according to the σ–ω model, the green line to
the npeµ model and the cyan one to the renormalized npeµ model for slightly modified
nuclear properties. The dashed lines represent the respective unstable solutions for each
model.
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Chapter 2
The Tolman-Oppenheimer-Volkoff
equation

This chapter derives the Tolman-Oppenheimer-Volkoff (TOV) equation, essential for an-
alyzing the curvature of spacetime inside a neutron star and its structure. The chapter is
divided in three parts. The first part introduces important theoretical aspects as classical
mechanics, special and general relativity. This will be needed in the second part in order
to derive the TOV equation. Finally in the last part we will apply this equation to a naive
model of a neutron star only consisting of noninteracting neutrons.

2.1 Theoretical background

2.1.1 Classical mechanics

In classical mechanics we can obtain the equations of motions of a system using the vari-
ational principle (also known as Hamilton’s principle). The principle says that when the
action S of a system is extremized with respect to some generalized coordinates q(t), we
obtain the differential equations describing its dynamics. The generalized coordinates are
the available degrees of freedom of the system, i.e. the degrees of freedom of a free system
minus its constraints [14]. The principle is expressed as

δS

δq(t)
= 0. (2.1)

The action S must be expressed in the same coordinates, and it is defined as the integral
of the Lagrangian function L in the time interval between t1 and t2,

S ≡
∫ t2

t1

L
[
q(t), q̇(t), t

]
dt. (2.2)

3



Chapter 2. The Tolman-Oppenheimer-Volkoff equation

The Lagrangian is defined as a function describing all the physical properties and forces
acting on the system taken into consideration. It often takes the form

L = T − V, (2.3)

where T and V are respectively the expressions for the kinetic and the potential energy of
the system. The equations of motion can be found by directly applying the variational prin-
ciple to the action. Most of the times it is convenient to use the Euler-Lagrange equations,
which are the conditions the Lagrangian must satisfy in order to extremize the action:

δS =

∫ t2

t1

δL (q(t), q̇, t) dt

=

∫ t2

t1

[
∂L

∂q(t)
δq(t) +

∂L

∂q̇(t)
δq̇(t)

]
dt

=

∫ t2

t1

[
∂L

∂q(t)
δq(t) +

d
dt

(
∂L

∂q(t)
δq(t)

)
− d

dt

(
∂L

∂q̇(t)

)
δq(t)

]
dt

=
∂L

∂q(t)
δq(t)

∣∣∣∣t=t2
t=t1

+

∫ t2

t1

[
∂L

∂q(t)
− d

dt

(
∂L

∂q̇(t)

)]
δq(t)dt = 0.

In the last step we can evaluate the first term at the boundary points, where δq(t) is zero
by assumption. This tells us that the variational principle is satisfied when the integrand in
the second term is set to zero, yielding the Euler-Lagrange equations:

d
dt

∂L

∂q̇(t)
=

∂L

∂q(t)
. (2.4)

2.1.2 Scalar fields

A scalar field φ(q, t) is a function that associates a scalar value to every point in space and
time it is defined in; these are physical systems and can be described using the Lagrangian
formalism [38]. Since these maps are defined in a volume V rather than a single point, we
introduce the Lagrangian density L:

L ≡
∫
V

L dx dy dz. (2.5)

We now define dv = dtdxdydz as the infinitesimal three dimensional volume times the
infinitesimal time, and Ω = V × [t1 : t2] a the three dimensional volume times the
time interval where the integration of action is taken. By eliminating every explicit time
dependence in the Lagrangian density, (everything should be described by the fields and
their derivatives) we can express the action specifically for scalar fields in this way:

S =

∫
Ω

L
[
φ(q, t),∇φ(q, t), ∂tφ(q, t)

]
dv. (2.6)
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2.1 Theoretical background

2.1.3 Geometry of spacetime
In the following sections we will introduce the geometry of spacetime and general rela-
tivity. This theoretical part is largely inspired by the description of these subjects in the
classical textbooks of general relativity from James B. Hartle [19] and Steven Weinberg
[42]. In special and general relativity we consider time to be a dimension like the spatial
ones. Points in spacetime need four coordinates in order to be specified and are called
events, where the time coordinate is inserted at the zeroth index. Consequently normal
three-dimensional position vectors will be changed to four-vectors. While time intervals
and spatial lengths may be relative to the frame of reference according to the special theory
of relativity, we can find quantities that are invariant, meaning that they are the same in
every such frame. One of the most useful invariants is the length of a four dimensional
distance vector between two events. A line element ds is the infinitesimal version of such
four dimensional distance, and can be used to describe the geometry of spacetime. For flat
spacetime this is defined as:

ds2 = (cdt)2 − dx2 − dy2 − dz2 (2.7)

In special and general relativity it is common to operate with c = 1 units, where the first
term in equation (2.7) becomes dt2. With this notation we introduce the flat spacetime
metric ηµν , describing the coefficients in front of the terms in ds2. The metric is a second
degree tensor defined as:

ηµν = ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , (2.8)

for which the line element described in equation (2.7) can be rewritten as

ds2 = ηµνdxµdxν . (2.9)

We are using the Einstein convention of repeated indices, so a sum is implied over both µ
and ν. In special and general relativity is also usual to indicate a covariant tensor with low
indices (like gµν) and a contravatiant tensor with high indices (like both dxµ and dxν in
2.9). For curved spacetimes the line element ds2 is still invariant, but the metric may be
different. In curved spacetimes it will be expressed as gµν(x): a symmetric, position and
time dependent, second rank tensor1. The line element in curved spacetime will be then
given by

ds2 = gµν(x)dxµdxν . (2.10)

By assuming a diagonal gµν2, we are able to find volume elements in curved spacetimes.
The metric in equation (2.10) tells us that for lengths along the x-direction, we will have
dl1 =

√
g11(x)dx1. This is of course valid for every direction with the special case of

1When dealing with functions of the coordinates, f(x) will be shorthand for f(x0, x1.x2, x3), as there is no
danger of confusion.

2This leads to no loss of generality: every symmetric matrix can be diagonalised.
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Chapter 2. The Tolman-Oppenheimer-Volkoff equation

the one along time, where dl0 =
√
−g00(x)dx0. We can now define what will be the

infinitesimal, position and time dependent volume element in curved spacetime:

dv =
√
−g00(x)g11(x)g22(x)g33(x)dx0dx1dx2dx3. (2.11)

If we define g(x) to be the determinant of gµν(x) considered as a matrix, we can express
the four-volume as

dv(x) =
√
−g(x)d4x. (2.12)

Equation (2.12) is valid even for non-diagonal matrices. From now on we will drop the x
dependence in the metric tensor gµν(x) and its determinant g(x).

2.1.4 Symbols and definitions
Special and general relativity make use of many symbols and shorthands that are useful for
describing its laws in a compact and clear way. The proper time τ is the time measured in
the frame of reference of a system and is one of the most fundamental concepts in special
relativity. It is related to the line element ds by the identity

dτ2 ≡ ds2. (2.13)

Since time is relative to the frame of reference, most of the laws in relativity are expressed
in terms of the proper time. Particles moving freely in spacetime follow paths called
geodesics. These are described by the geodesic equation which makes use of one of the
most useful tools in general relativity: the Christoffel symbols Γδβγ . These are defined as

gαδΓ
δ
βγ =

(
∂gαβ
∂xγ

+
∂gαγ
∂xβ

− ∂gβγ
∂xα

)
. (2.14)

With this definition we can express the geodesic equation as

d2xα

dτ2
= −Γαβγ

dxβ

dτ
dxγ

dτ
. (2.15)

In relativity, operations between vectors are defined only at one event. This means we
need a new definition of derivative for four-vectors in curved spacetime. This is called
covariant derivative and for a generic four-vector vβ is defined as

∇αvβ =
∂vβ

∂xα
+ Γβαγv

γ . (2.16)

With this new tool, we are able to write the geodesic equation more elegantly. By intro-
ducing the tangent vector uα = dxα

dτ we have

∇αuα = 0. (2.17)

A way to describe spacetime curvature is the Riemann curvature tensor, a fourth rank
tensor defined as

Rαβγδ =
∂Γαβδ
∂xγ

−
∂Γαβγ
∂xδ

+ ΓαγεΓ
ε
βδ − ΓαδεΓ

ε
βγ . (2.18)
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2.1 Theoretical background

The Ricci curvature is a second rank tensor defined as

Rαβ = Rγαγβ , (2.19)

from which we can also define the Ricci salar R

R ≡ gαβRαβ . (2.20)

The stress-energy tensor Tαβ is a 4 × 4 second rank tensor describing the distribution of
energy and momentum in spacetime. It can be represented like this:

Tαβ =


energy energy
density flux

mom. stress
density tensor

 . (2.21)

Finally we introduce the cosmological constant Λ, which accounts for the energy density
in the vacuum.

The Einstein field equations

With the Ricci curvature in (2.19), the Ricci scalar in (2.20) the stress-energy tensor, the
speed of light c, the cosmological constant Λ and the gravitational constant G, we are able
to write the Einstein field equations:

Rαβ −
1

2
Rgαβ + Λgαβ =

8πG

c4
Tαβ . (2.22)

We can do a final simplification defining the Einstein curvature tensor as

Gαβ ≡ Rαβ −
1

2
Rgαβ , (2.23)

with which we can rewrite the field equations in the more compact (and known) form

Gαβ + Λgαβ =
8πG

c4
Tαβ . (2.24)

2.1.5 The Einstein-Hilbert action
We can obtain the equations of motion of a system by knowing its Lagrangian, and by
then using the principle of least action in (2.1). This suggests that a carefully chosen
Lagrangian could lead us the Einstein field equations in (2.24), the equations of motion
of general relativity. The action built from this Lagrangian is called the Einstein-Hilbert
action, and we will label it as SEH. The Einstein field equations are to be considered as
fundamental laws of nature, this because to this day we do not have more fundamental laws
to derive it from. It is nevertheless possible to express the same laws in the Lagrangian

7



Chapter 2. The Tolman-Oppenheimer-Volkoff equation

formalism. According to Hamilton’s principle, a variation of the Einstein-Hilbert action
in the metric will be zero:

δSEH

δgµν
= 0. (2.25)

The Einstein equations in (2.24) can be seen as consisting of three terms: the distribution
of mass and energy Tµν , the curvature of spacetime Gµν and the cosmological constant
Λ. This means that we can try to split the Einstein-Hilbert action into a cosmological term
SΛ, a matter term SM and a curvature term SC:

SEH = SΛ + SM + SC. (2.26)

Using the definition of the four volume element in (2.12) we can define SΛ to be

SΛ = −2

∫
Λ
√
−gd4x. (2.27)

By the definition of Lagrangian density in (2.5), the matter term of SEH can be expressed
in a general way introducing a matter Lagrangian density LM such that

SM = 2κ

∫
LM
√
−gd4x. (2.28)

When it comes to SC, will see that expressing it as

SC =

∫
R
√
−gd4x, (2.29)

will lead to the curvature term in the Einstein field equations. in (2.28) is κ = 8πG, G
the gravitational constant and R the Ricci scalar as defined in (2.20). The variation in the
Einstein-Hilbert action can be written as

δSEH = δSΛ + δSM + δSC = 0, (2.30)

and we will now see how the above choices will lead us to the Einstein field equations. We
will consider the three terms separately in the following sections. All the derivations here
follow the steps described in [42].

The cosmological term

A variation in the metric in the cosmological term of the Einstein Hilbert equation will
give us

δSΛ =
δSΛ

δgµν
δgµν = −

∫
δ(2Λ

√
−g)

δgµν
δgµνd4x

= −2Λ

∫
δ
√
−g

δgµν
δgµνd4x, (2.31)
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2.1 Theoretical background

where we can take the 2Λ term out of the integration since constant by definition. The
δ
√
−g/δgµν fraction can be calculated using Jacobi’s formula. Considering g as a matrix,

Jacobi’s formula tells us that

δg = Tr
(

adj (g) δg
)
.

The metric g is invertible, thus adj(g) = det(g)g−1, and renaming the determinant of g
as det(g) = g, we obtain

δg = tr(gg−1δg) = ggαβδgαβ . (2.32)

By also using that gαβδgαβ = −gαβδgαβ , we get

δ
√
−g

δgµν
=
−g

2
√
−g

gαβδgαβ
δgµν

=

√
−g
2

gαβδgαβ
δgµν

=−
√
−g
2

gαβδg
αβ

δgµν
=−
√
−g
2

gµν . (2.33)

Plugging in the result from (2.33) into (2.31), we obtain

δSΛ =

∫
Λgµν

√
−gδgµνd4x. (2.34)

The matter term

We now consider the matter term in SEH, namely equation (2.28). A variation in the metric
gµν will give us:

δSM =
δSM

δgµν
δgµν = 2κ

∫
δ(
√
−gLM)

δgµν
δgµνd4x

= 2κ

∫ (
LM√
−g

δ
√
−g

δgµν
+
δLM

δgµν

)√
−gδgµνd4x.

The δ
√
−g/δgµν derivative is already evaluated in (2.33), thus

δSM =2κ

∫ (
−1

2
LMgµν+

∂LM

∂gµν

)√
−gδgµνd4x=−κ

∫
Tµν
√
−gδgµνd4x, (2.35)

where we have defined the energy-stress tensor as

Tµν = −2
∂LM

∂gµν
+ LMgµν . (2.36)

The curvature term

From equation (2.29) we have

δSC =

∫
δ(
√
−gR)

δgµν
δgµνd4x =

∫ (√
−g δR

δgµν
+R

δ
√
−g

δgµν

)
δgµνd4x (2.37)

9



Chapter 2. The Tolman-Oppenheimer-Volkoff equation

and, by using Jacobi’s formula as described in (2.33) we can write

δSC =

∫ (
δR

δgµν
− 1

2
Rgµν

)√
−gδgµνd4x. (2.38)

We now focus on δR. We know that R ≡ gµνRµν , and Rµν ≡ Rλµλν so

δR = gµνδRλµλν +Rµνδg
µν (2.39)

Being Rρσµν shorthand for ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ , we have

δRρσµν = ∂µδΓ
ρ
νσ−∂νδΓρµσ+δΓρµλΓλνσ+ΓρµλδΓ

λ
νσ−δΓ

ρ
νλΓλµσ−ΓρνλδΓ

λ
µσ. (2.40)

The covariant derivative of the variation of the Christoffel symbol is

∇µ(δΓρνσ) = ∂µ(δΓρνσ) + ΓρλµδΓ
λ
νσ − ΓλνµδΓ

ρ
λσ − ΓλσµδΓ

ρ
νλ, (2.41)

and using the the identity Γαβγ = Γαγβ , equation (2.40) may be rewritten as

δRρσµν = (∂µδΓ
ρ
νσ + ΓρµλδΓ

λ
νσ − ΓλµσδΓ

ρ
νλ)− (∂νδΓ

ρ
µσ − ΓλνσδΓ

ρ
µλ + ΓρνλδΓ

λ
µσ)

= (∂µδΓ
ρ
νσ + ΓρλµδΓ

λ
νσ − ΓλνµδΓ

ρ
λσ − ΓλσµδΓ

ρ
νλ)

− (∂νδΓ
ρ
µσ + ΓρλνδΓ

λ
µσ − ΓλµνδΓ

ρ
λσ − ΓλσνδΓ

ρ
µλ)

=∇µ(δΓρνσ)−∇ν(δΓρµσ). (2.42)

Using the result of the calculations in (2.42), δRµν becomes

δRµν = δRρµρν = ∇ρ(δΓρνµ)−∇ν(δΓρρµ). (2.43)

By remembering the identity∇λgµν = 0, we obtain

gµνδRµν = ∇ρ(gµνδΓρνµ)−∇ν(gµνδΓρρµ). (2.44)

These are two divergences for the covariant derivative. Using equation (4.7.7) from [42],
it becomes

gµνδRµν =
1√
−g

∂

∂xρ
(√
−ggµνδΓρµν

)
− 1√
−g

∂

∂xν
(√
−ggµνδΓρµρ

)
, (2.45)

which, in equation (2.39) gives

δR =
1√
−g

∂

∂xρ
(√
−ggµνδΓρµν

)
− 1√
−g

∂

∂xν
(√
−ggµνδΓρµρ

)
+Rµνδg

µν . (2.46)
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2.2 The Tolman-Oppenheimer-Volkoff equation

This will substitute δR in the first term of equation (2.38), which becomes

∫
δR

δgµν
√
−gδgµνd4x

=

∫
1

δgµν

(
∂

∂xρ
(√
−ggµνδΓρµν

)
− ∂

∂xν
(√
−ggµνδΓρµρ

)
+
√
−gRµνδgµν

)
δgµνd4x

=

∫ (
∂

∂xρ
(√
−ggµνδΓρµν

)
− ∂

∂xν
(√
−ggµνδΓρµρ

))
d4x+

∫
Rµνδg

µν√−gd4x,

where the first term is an integral over a cross product that by Stoke’s theorem gives the
boundary terms. These are fixed by the variational principle, therefore the terms vanishes.
We have now shown that δR

δgµν = Rµν . We can plug it in equation (2.38) and obtain

δSC =

∫ (
Rµν −

1

2
Rgµν

)√
−gδgµνd4x. (2.47)

The Einstein-Hilbert action

For the variational principle, we will obtain

δSEH = δSΛ + δSC + δSM = 0. (2.48)

We now have expressions for δSΛ, δSM and δSC, namely equations (2.34), (2.35) and
(2.47). By substituting into equation (2.48) we obtain∫ (

Rµν −
1

2
Rgµν + Λgµν − κTµν

)√
−gδgµνd4x = 0. (2.49)

The integral will be zero if the argument equals zero. We then recognize the Einstein field
equations

Rµν −
1

2
Rgµν + Λgµν = κTµν , (2.50)

which can be easily rewritten in terms of equation (2.24).

2.2 The Tolman-Oppenheimer-Volkoff equation
The Tolman-Oppenheimer-Volkoff (TOV) equation describes how the rate of change in
pressure of a spherically symmetric body of isotropic material changes as a function of
the radius r, energy density ε, pressure P and the enclosed mass M . The body is in
gravitational equilibrium (no explicit time dependence) and the equation is derived from
the Einstein field equations in (2.24) [29], [40]. The TOV equation reads:

dP (r)

dr
= −Gε(r)M(r)

r2c2

(
P (r)

ε(r)
+ 1

)(
4πr3P (r)

c2M(r)
+ 1

)(
1− 2GM(r)

c2r

)−1

. (2.51)
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Chapter 2. The Tolman-Oppenheimer-Volkoff equation

2.2.1 Derivation

Since we are interested in spherically symmetric systems, it makes sense to express the
metric in spherical coordinates. This means that the matrix elements g22 and g33 will be
as in flat spacetime. Keeping the g00 and g11 components generic, we can build a metric
tensor in the form:

gµν(r) = diag
(
eν(r),−eλ(r),−r2,−r2 sin2 θ

)
. (2.52)

The fact that we use exponentials to represent the g00 and g11 functions does not lead
to any loss of generality. ν(r) and λ(r) in equation (2.52) are unknown functions to be
found given the isotropy and time-independence constraints to the stress-energy tensor and
ultimately the Einstein equations. With this metric we can calculate the Einstein tensor
Gµν on the left side of equation (2.24). We now define the stress-energy tensor. This
can be done by applying isotropy, time-independence and spherical symmetry constraints,
obtaining:

T νµ = diag
(
ε(r),−P (r),−P (r),−P (r)

)
. (2.53)

With this we have all that is needed to solve the Einstein field equations. The stress-energy
tensor is diagonal, so the Einstein tensor must be diagonal as well. This reduces the field
equations from ten to four.
We start by evaluating G00. This can be found by hand with the definitions in Section
2.1.4 of the Einstein tensor, Ricci curvature and Riemann tensor, or by using a computer
program to evaluate it. The result will be

G00 =
1

r2

[
1− d

dr

(
re−λ(r)

)]
eν(r). (2.54)

The right hand side of the Einstein equations will read Tµν = gµσT
σ
ν , thus the first one

will be

1

r2

[
1− d

dr

(
re−λ(r)

)]
eν(r) = κeν(r)ε(r), (2.55)

which can be simplified to

1− d
dr

(
re−λ(r)

)
= κr2ε(r). (2.56)

The mass of a shell of thickness dr at a distance r from the center is given by

dM(r) = 4πε(r)r2dr. (2.57)

We can use this to rewrite equation (2.56) as

1− d
dr

(
re−λ(r)

)
=

κ

4π

dM(r)

dr
. (2.58)
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2.2 The Tolman-Oppenheimer-Volkoff equation

By integrating both parts from 0 to r, we get the solution for g00:

e−λ(r) = 1− κ

4πr
M(r). (2.59)

We now consider G11 and T11. The Einstein equation will read

1

r2

(
r

d
dr
ν(r)− eλ(r) + 1

)
= κP (r)eλ(r). (2.60)

This can be solved for ν′(r) and by using the newly obtained expression for e−λ(r) in
equation (2.59):

ν′(r) =
dν(r)

dr
=
(
κrP (r) +

κ

4πr2
M(r)

)(
1− κ

4πr
M(r)

)−1

. (2.61)

Another relation for ν′(r) can be found by using the energy-momentum conservation re-
lation for r.

∇µTµ1 =
∂Tµ1
∂xµ

− Γρ1µT
µ
ρ + ΓµρµT

ρ
1 = 0 (2.62)

The only nonzero derivative of the first term of equation (2.62) is dT 1
1 /dr. The equation

will then take the form

∇µTµ1 =
dT 1

1

dr
− (Γ0

01T
0
0 + Γ1

11T
1
1 + Γ2

12T
2
2 + Γ3

13T
3
3 )

+ T 1
1 (Γ0

10 + Γ1
11 + Γ2

12 + Γ3
13).

Noticing that T 1
1 = T 2

2 = T 3
3 , the expression simplifies to

dT 1
1

dr
+ Γ0

10(T 1
1 − T 0

0 ) = 0.

We calculate Γ0
10 with equation (2.14) and substitute T 1

1 and T 0
0 with the values we defined

in (2.53). Solving for ν′(r) will yield

ν′(r) = −2
dP (r)

dr
1

P (r) + ε(r)
(2.63)

which can be plugged into (2.61). Finally, after some math, we obtain

dP (r)

dr
= −2

(
P (r) + ε(r)

)(
κrP (r) +

κ

4πr
M(r)

)(
1− κ

4πr
M(r)

)−1

. (2.64)

By going back to c 6= 1 units, writing κ explicitly and taking out some terms from the
parenthesis in order to make them dimensionless, we get the TOV equation as described
in (2.51):

dP (r)

dr
= −Gε(r)M(r)

r2c2

(
P (r)

ε(r)
+ 1

)(
4πr3P (r)

c2M(r)
+ 1

)(
1− 2GM(r)

c2r

)−1

. (2.65)
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Chapter 2. The Tolman-Oppenheimer-Volkoff equation

This, coupled with the mass equation (2.57) in its differential form

dM(r)

dr
= 4π

ε(r)

c2
r2, (2.66)

and an equation of state relating the pressure to the energy density, form a system of three
coupled differential equations describing the structure of spherically symmetrical bodies
consisting of isotropic material in gravitational equilibrium. We will idealize neutron stars
to have these properties throughout this thesis, and we will thus use these equations in or-
der to derive important relations like their masses and radii. This system of three equations
can be solved analytically for some simple cases, numerically otherwise.

2.3 Solutions to the TOV equation
The set of three equations (2.51), (2.66) and the equation of state can be solved either
analytically or numerically, depending on the complexity of the latter. In this section we
will consider the cases of constant density, non-relativistic and ultra-relativistic Fermi gas,
all of which can be solved in analytical form. In the end we will plot the general case,
which has to be calculated numerically. Much of the chapter has been inspired by the
work of Richard Silbar and Sanjay Reddy Neutron Stars for Undegraduates [37].

2.3.1 Constant density
Assuming constant energy density throughout the entire neutron star, we can solve the
set of three differential equations analytically. Although unrealistic, the solution gives
some insight to some of the properties relativistic stars have. When the energy density is
constant, we can integrate equation (2.66) and obtain

M(r) =
4π

3

ε

c2
r3. (2.67)

Inserting (2.67) into the TOV equation and setting the energy density as constant, ε(r) = ε,
we obtain:

dP (r)

dr
= −Gε

24πr

3c4

(
1 +

P (r)

ε

)(
1 +

3P (r)

ε

)(
1− 8πGr2ε

3c4

)−1

. (2.68)

Introducing a2 = 3πc4

8εG , we may rewrite this as

dP (r)

dr
= −r (ε+ P (r)) (ε+ 3P (r))

2εa2
(
r2

a2 − 1
) . (2.69)

Equation (2.69) is a separable differential equation and can be rewritten as∫ P (r′)

Pc

2ε dP (r)(
ε+ P (r)

)(
ε+ 3P (r)

) = − 1

a2

∫ r′

0

r dr
1− r2

a2

, (2.70)
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2.3 Solutions to the TOV equation

where we have set the limits so that the pressure is P (r = 0) = Pc (the central pressure)
and P (r′) at a radius r′. We first take a look at the integral on the right hand side. By
substituting u = r2

a2 we get du = 2r
a2 dr, thus

−
∫ r′2

a2

0

1

2

du
1− u

= ln

√
1− r′2

a2 . (2.71)

The left hand side integral is instead∫ P (r′)

Pc

2ε dP (r)(
ε+ P (r)

)(
ε+ 3P (r)

) (2.72)

and can be rewritten with partial fraction decomposition as∫ P (r′)

Pc

[
1

ε
3 + P (r)

− 1

ε+ P (r)

]
dP (r) = ln

[
ε/3 + P (r)

ε+ P (r)

]P (r′)

Pc

= ln

[
ε+ 3P (r′)

ε+ P (r′)

]
+ ln

[
ε+ Pc
ε+ 3Pc

]
.

Plugging in the integrated left and right hand sides into equation (2.70), we obtain

ε+ 3P (r′)

ε+ P (r′)

ε+ Pc
ε+ 3Pc

=

√
1− r′2

a2 . (2.73)

All integrations are taken, and we may as well call r′ again as r again without fear of
confusion. First, we isolate P (r) and obtain an expression for the pressure, now a function
of r and with Pc as a parameter:

P (r) =

√
1− r2

a2 −
ε+Pc
ε+3Pc

3 ε+Pc
ε+3Pc

−
√

1− r2

a2

ε. (2.74)

We may then denote with R the radius at surface. The pressure at the surface is zero,
P (R) = 0, so (2.73) becomes

ε+ Pc
ε+ 3Pc

=

√
1− R2

a2 . (2.75)

Isolating R2, we obtain an analytical solution for the square radius of the star as a function
of the central pressure

R2 = a2

[
1−

(
ε+ Pc
ε+ 3Pc

)2
]
. (2.76)

It is then possible to take the derivative of it in terms of Pc and look for its roots in order
to find for which central pressure we have the largest radius. The derivative will read

dR2

dPc
=

a2ε

(Pc + ε)
2

(3− 2ε)
3 =

a2ε (Pc + ε)

[3 (Pc + ε)− 2ε]
3 = 0, (2.77)

15



Chapter 2. The Tolman-Oppenheimer-Volkoff equation

which we notice is only satisfied in the limit where Pc → ∞. The limit can be inserted
into equation (2.76), which then yields

R2
max =

8a2

9
=
πc4

3εG
. (2.78)

This is the maximum radius a star with constant density can obtain, showing also that the
maximum radius will decrease for increasing densities.

Plotting

By using equations (2.67) and (2.74) we can plot analytically the pressure and the mass in
terms of the radius for any choice of Pc and ε. For example, by choosing typical values
for a neutron star at ε/c2 = 4× 1017 kg/m3 and Pc = 1033 Pa we obtain the plots below:

Figure 2.1: Plot of equations (2.67) (left) and (2.74) (right) with ε/c2 = 4.0 × 1017 kg/m3 and
Pc = 1.0× 1034 Pa, typical values for a neutron star.

2.3.2 Cold Fermi gas approximation for neutron stars
A neutron star can be approximated to a Fermi gas of neutrons, where the degeneracy
pressure from the Pauli exclusion principle holds the star from gravitational collapse. The
particle distribution in such gases is described by the Fermi-Dirac distribution [34]

n(ε) =
1

e(E−µ)/kBT + 1
, (2.79)

where E is the particle energy, µ is the chemical potential, kB is the Boltzmann constant
and T the temperature. A further approximation is to take the zero temperature limit,
where T → 0. This is a common and valid approximation, and has its justification in the
fact that the star’s temperature usually is well below 1 MeV (≈ 1010 K). This is small at
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nuclear scales and the star can be thought as cold, especially when we are only interested in
the star’s bulk properties such as its mass and radius. Temperature only becomes important
when considering the surface of the star. As it treated in more depth in Section 5.1.4,
the outer crust consists of fully ionized iron atoms, whose thermal energy becomes more
and more important as pressures become low enough not to be able to support the lattice
structure. For a common neutron star of 10 km radius and a mass of 1.5 solar masses, this
last layer where temperature becomes important is only 0.76 m thick [10]. We choose then
to ignore the temperature effects altogether throughout this thesis, and only consider cold,
nuclear matter. When only considering a cold Fermi gas, and the distribution becomes

lim
T→0

1

e(E−µ)/kBT + 1
= θ(µ− E), (2.80)

where θ is the Heaviside step function, defined as:

θ(x) =

{
0, x < 0,

1, x ≥ 0.
(2.81)

The Fermi momentum pF will be then related to EF , the energy of the most energetic
fermion in the cold Fermi gas through

EF =
√
p2
F +m2. (2.82)

The integral for the energy density will be an integral over all momenta of the energy for
every particle and their distribution. The limit in (2.80) tells us that we have no particles
above pF and that all states below are occupied by two particles (spin up and down). The
integral will read as

ε(pF ) =
2

(2π~)3

∫ pF

0

√
p2 +m2d3p. (2.83)

Changing to spherical coordinates, integrating for the angles and introducing the dimen-
sionless variable u = p/m and the constant x = pF /m, we obtain

ε(x) = ε0

∫ x

0

(
u2 + 1

)1/2
u2du, (2.84)

where we have defined ε0 = m4c5

π2~3 in c 6= 1 units. Similarly for the pressure, we have

P (x) = ε0

∫ x

0

(µ− E)du = ε0

∫ x

0

[(
x2 + 1

)1/2 − (u2 + 1
)1/2]

u2du. (2.85)

Ultrarelativistic (UR) limit for the equation of state

In the UR limit the Fermi energy is much larger than the rest mass, pf � m, so x � 1.
Expanding u accordingly, in equation (2.84) the square root

√
u2 + 1 becomes a u and we

find:

ε(x) = E0
∫ x

0

u3du =
ε0
4
x4 (2.86)
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Similarly, for equation (2.85):

P (x) =

∫ x

0

(
xu2 − u3

)
du =

ε0
12
x4.

These two can be combined, finding the equation of state in the UR limit:

P =
1

3
ε. (2.87)

By substituting equation (2.87) into equation (2.51) we will get

dP (r)

dr
= −4GP (r)M(r)

r2c2

(
4πr3P (r)

c2M(r)
+ 1

)(
1− 2GM(r)

c2r

)−1

. (2.88)

In order to find an analytical solution to equation (2.88), we guess something in the form
Krn. The terms in the parenthesis are all dimensionless, and by looking at the last factor
we understand that the mass must go like M(r) ∝ r. The pressure must then be P ∝ r−2

to balance the first parenthesis. We then speculate a solution like P (r) = K
r2 , with K a

constant to evaluate. By remembering that ε(r) = 3P (r) = 3K/r2, we can immediately
compute the mass and the derivative of the pressure:

M(r) =

∫ r

0

4π
ε(r′)

c2
r′2dr′ =

12πK

c2

∫ r

0

dr′ =
12πKr

c2
, (2.89)

dP (r)

dr
= −2

K

r3
. (2.90)

Equations (2.89) and (2.90) can be finally inserted in (2.88)

1 =
24πGK

c4

(
1

3
+ 1

)
c4

c4 − 24πGK
, (2.91)

where we can isolate K, obtaining K = c4

56πG , for which the pressure will be

P (r) =
c4

56πGr2
. (2.92)

This solution is unphysical for two reasons: it blows up at r → 0, and has infinite radius
(there is no solution for P (r) = 0). This has to do with the fact that equation (2.87) used
as assumption P, ε� 1 leading to infinite central mass and densities.

The non-relativistic limit

By taking the non-relativistic approximation of (2.84) and (2.85), i.e. by taking the limit
where x� 1, we obtain

ε(x) = ε0

∫ x

0

u2
√
u2 + 1du = ε0

∫ x

0

u2

(
1 +

u2

2
+O(u4)

)
= ε0

(
1

3
x3 +

x5

10
+O(x7)

)
≈ 1

3
ε0x

3 (2.93)
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and

P (x) =

∫ x

0

[√
x2 + 1−

√
u2 + 1

]
u2du

= ε0

(
1 +

1

2
x2 +O(x4)

)
1

3
x3 − ε0

(
1

3
x3 +

1

10
x5 +O(x7)

)
≈ 1

15
ε0x

5. (2.94)

We can recast the energy density and the pressure in dimensionless form by using ε0 as
scaling constant:

ε(x) = ε0ε(x) P (x) = ε0P (x),

and with these write the equation of state for the non-relativistic limit using equations
(2.93) and (2.94):

ε =
15

3
5

3
P

3
5 . (2.95)

We can make the TOV equation and the mass equation dimensionless by introducing

M(r) =
M(r)

M�
β =

4πε0
M�c2

R0 =
GM�
c2

,

where M� is the Sun’s mass and R0 the Schwarzschild radius of the Sun. The new,
dimensionless TOV and mass equations will then read

dP
dr

= −R0Mε

r2

(
P

ε
+ 1

)(
βr3 P

M
+ 1

)(
1− 2R0M

r

)−1

(2.96)

dM
dr

= βr2ε. (2.97)

We can then write a script coupling the two differential equations (2.96), (2.97) and the
equation of state in (2.95). As boundary term we choose a central normalized pressure P c
and we can evaluate the system in a while-loop until P > 0, the surface of the star.

2.3.3 The general case
It is of course possible to evaluate the original TOV equation in (2.51) numerically, using
the solution of the integrals in (2.84) and (2.85). The solution of the first one can be
checked in integral tables [32], and will be

ε(x) = ε0

∫ x

0

(
u2 + 1

)1/2
u2du

=
1

8
ε0

[(
2x3 + x

) (
1 + x2

)1/2 − sinh−1(x)
]
, (2.98)
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and we can use this result to evaluate the second integral,

P (x) = ε0

∫ x

0

((
x2 + 1

)1/2 − (u2 + 1
)1/2)

u2du

=
1

24
ε0

[(
2x3 − 3x

) (
1 + x2

)1/2
+ 3 sinh−1(x)

]
. (2.99)

The numerical evaluation is done as follows. We choose a first central pressure Pc, with
which we can find a root for equation (2.99), giving us the associated dimensionless Fermi
momentum x. This can be used as input for equation (2.98), which will give us the energy
density associated to Pc. This can be done for every pressure P , giving us the possibility
to evaluate the energy density ε from every pressure P . The equation system for the
cold Fermi gas approximation for neutron stars is then closed. We can compare the non-
relativistic approximation to the exact relativistic solution by starting from the same central
pressure. As an example we can look at the first two plots in Figure 2.4, where we chose
P c = 10−6. The approximation and the exact relativistic solutions are quite similar, but
they diverge more and more as the central pressure increases, as we see in the following
plots. The relativistic model ends up having less mass than the non-relativistic model
for the same radius. This can be explained by looking at the TOV equation in (2.51).
The P (r)/ε(r) and the 4πr3P (r)/c2M(r) terms are the relativistic corrections to the
Newtonian model, while the last factor adds the correction from the spacetime curvature.
All these three terms act as a booster for gravity, and we can think of a “stronger than
Newtonian” gravity when taking into account these relativistic effects. This is the reason
why the pressure slope will be steeper in the relativistic case, leading to smaller stars with
shorter radius than the non-relativistic model when starting with the same central pressure
Pc. A way to get a complete picture of how the radii and the masses for the two models
diverge would be to plot their end values for the exact numerical solution and the non-
relativistic approximation starting from different values of P c (Fig. 2.2). When choosing
a realistic criterion for which we can use the non-relativistic approximation, a natural first
choice would be when the kinetic energy of the central neutrons, pF,cc, is not bigger than
its rest mass. Equation (2.99) links the pressure to the ratio between the Fermi energy and
the neutron mass: x = pF /mnc in c 6= 1 units. Analytically, our condition translates to
finding for which central pressures Pc this ratio is x < 1. By checking for the normalized
central pressure P c(x) = P (x)/ε0, we find for x = 1 that

P c(1) =
1

24

[
(2− 3) (2)

1/2
+ 3 ln

(
1 +
√

2
)]
≈ 0.17624 (2.100)

Giving us a threshold around P c = 10−1, or Pc ≈ 1035 Pa. This corresponds to the
plots in the third row of Figure 2.4, where the difference in total mass is above 20%:
too much for the non-relativistic approximation to be valid. We could change approach
and require the mass ratio to be less than 10%. With this requirement, we see from the
numerical calculations in Figure 2.3) that the mass in the non-relativistic approximation
becomes more than 10% bigger for values of Pc around 8.3 × 10−3, where we can set
our limit for the validity of the non-relativistic model. The 10% threshold corresponds to
a radius RR = 12.73 km and mass MR = 0.62M� for the relativistic case, and radius
RNR = 13.82 km and mass MNR = 0.68M� for the non-relativistic case.
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2.3 Solutions to the TOV equation

Maximum mass and unstable solutions

Wheeler et al. [18] and Weinberg in Gravitation and Cosmology [42] wrote how a star is
stable under density variations until the condition ∂E(ρc)/∂ρc = 0 is met, where E stands
for the total energy (mass plus kinetic energy) for a star with central density ρ(r = 0) = ρc.
If all the dissipative forces are absent, dynamical equations will be invariant under time-
reversal, and will give real normal modes ωi, or alternatively positive ω2

i . This corresponds
to oscillating modes or, in case of spherically symmetric bodies, radial (or “breathing”)
modes. A breathing mode would be described for example by an equation in the form

r̃(t) = Aeiωrt −Be−iωrt, (2.101)

whereA andB are constants. The oscillation is periodic, as the system returns to the same
configuration after every period of 2π/ωr. By neglecting the phase and allowing for A
and B to be equal, we also see that the equation is invariant under time reversal t → −t.
A configuration is instead unstable when the normal mode becomes complex, or ω2

i < 0.
If ωi ∈ C and Im{ωi} 6= 0, the real part of ωi would give an oscillation, but the imaginary
part would contribute with a terms blowing up at either t→∞ or t→ −∞. These terms
are not periodic and make the system not invariant under time-reversal, thus unstable. The
transition between stability and instability will occur at ω2

i = 0. In our breathing mode
example, this would mean either an implosion or an explosion, depending on the signs of
A andB. The oscillating modes are described as variations in the density δρ(r). Since any
equilibrium configuration is entirely specified by its value at ρ(0) = ρc, we can choose
one for which a frequency ωr is nearly zero. With this choice, the variations in density
will be so slow that the ρ(r) δρ(r) will also be an equilibrium configuration with the same
chemical composition and same energy E . At the same time δρc can not be zero, otherwise
δρ(r) would be zero at all radii and the normal mode would vanish. This means that small
oscillation in the radial direction in the vicinity of ωr ≈ 0 lead to new equilibrium solution
with a new ρc, i.e. these solutions are unstable. When going from stability to instability
we will then see that

∂E(ρc)

∂ρc
= 0. (2.102)

Given Einstein’s famous identity E = mc2 and the correspondence between the energy
density and the pressure (equation of state), we can rewrite (2.102) in a more revealing
way:

∂M

∂Pc
= 0 (2.103)

From Figure 2.2 we see how the star decreases in volume and increases in mass as the
central pressure becomes larger. By focusing on the relativistic plot, we see how it reaches
a top at radius R ≈ 10 km and mass M ≈ 0.7M�. Here the condition in (2.103) is
met and the equilibrium points from there will be unstable. From these observations we
understand that, according to the cold Fermi gas model, a neutron star will not have stable
solutions for radii under R ≈ 10 km and masses above M ≈ 0.7M�.
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Chapter 2. The Tolman-Oppenheimer-Volkoff equation

Figure 2.2: Plot of the mass-radius relation for the non-relativistic approximation (blue) and the
relativistic, correct equations for P c from 10−6 (to the right) growing up to 101 (to the left). We
see how they start in a similar way, for then diverge at radii around 20 km, corresponding to central
pressures between 10−4 and 10−3. The dashed part of the plot corresponds to the unstable solutions.

Figure 2.3: Plot of the ratio between the non-relativistic and relativistic mass MNR/MR, for the
same central pressures Pc. The MNR/MR = 1.10 threshold is plotted in red for reference, and
corresponds to the radius RR = 15.6 km and mass MR = 0.50M� for the relativistic case, and
radius RNR = 15.97 km and mass MNR = 0.55M�. The threshold normalized central pressure
is P c = 6.6 × 10−4, the crossing point between the plot of the ratio and the threshold (red plot).
Again, the dashed plot corresponds to the unstable solutions.
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2.3 Solutions to the TOV equation

Figure 2.4: Plot of the non-relativistic equations (2.96) in the left panels and (2.97) in the right right
panels in blue, and the exact, relativistic equations (2.51) and (2.66) in red in the left and right panels
respectively. The central pressure is P c = 10−6 in the first row, 10−3 in the second and 10−2 in
the third. We can see how the plots for the radius and the mass are quite similar for low central
pressures, and start to diverge as the central pressure increases.
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Chapter 3
Thermal Field Theory

In this chapter we will attempt to find an expression for the behavior of fermions starting
from concepts of quantum field theory (QFT) and thermodynamics. we will start with a
brief review of statistical and quantum mechanics, for then using the path integral formal-
ism in order to obtain the grand canonical partition function for a fermion gas. The study
of QFT at finite temperatures is often referred to as thermal field theory (TFT), and all
the derivations in this chapter follow loosely the ones in Finite-Temperature Field Theory,
Principles and Applications by Gale and Kapusta [26]. When writing Section 3.1, the
sources [15], [20] and [25] have been used as reference.

3.1 Review of central concepts for the theory

3.1.1 Classical statistical mechanics

The grand canonical partition function Z is an important tool in thermodynamics, as it
can be used to find many physical properties of a system. It is defined as

Z = tr exp

[
−β

(
H −

∑
i

µiNi

)]
, (3.1)

where β = T−1, T is the temperature, H the Hamiltonian of the system, µi and Ni
respectively the chemical potential and the number of particles of the species i. Here tr
indicates the trace operation, defined for a n× n matrix A as

trA =

n∑
i=1

aii, (3.2)

where aij is the element of the matrix A in the i-th row and the j-th column. The ex-
ponential in (3.1) is a matrix exponential, defined, again for a general square matrix A
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Chapter 3. Thermal Field Theory

as

eA =

∞∑
k=0

1

k!
Ak. (3.3)

We are again using natural units, kB = c = G = ~ = 1, where kB is the Boltzmann
constant and ~ the reduced Planck constant. The physical properties that can be derived
from Z are the energy, the pressure, the entropy and the particle numbers in its infinite-
volume limit

E =− PV + TS + µiNi (3.4)

P =
∂(T lnZ)

∂V
(3.5)

S =
∂ (T lnZ)

∂T
(3.6)

Ni =
∂ (T lnZ)

∂µi
. (3.7)

In (3.4) and the rest of the thesis repeated indices are assumed to be summed over.

3.1.2 Quantum mechanics and path integrals
Quantum mechanics is generally formulated using the Dirac bra-ket formalism. In this
formalism, we describe quantum states as state vectors | · · · 〉 in a complex, linear vector
space called Hilbert space. For any vector |α〉 there is an associated dual vector 〈α|. The
two vectors are called bra (for 〈· · · |) and ket (for | · · · 〉). The inner product is defined as a
complex number

〈a| · |b〉 ≡ 〈a|b〉

with the property

〈a|b〉 = 〈b|a〉∗

where ∗ means complex conjugation. For an n-dimensional space, we can choose a com-
plete set of orthonormal states |1〉, |2〉, |3〉 · · · |n〉 as a basis. Orthonormality means that
the basis vectors |n〉 satisfy the relation

〈ni|nj〉 = δij (3.8)

where δij is the Kronecker delta function, defined as

δij =

{
1, fori = j

0, fori 6= j.
(3.9)

Normal quantum states can be expressed as a linear combination of these basis vectors

|α〉 =
∑
n

cn|n〉 (3.10)
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3.1 Review of central concepts for the theory

where cn are normalized amplitudes that satisfy∑
n

|cn|2 = 1 (3.11)

and that can be found by

cm = 〈m|α〉. (3.12)

This last identity allows us to rewrite equation (3.10) as

|α〉 =
∑
n

〈n|α〉|n〉 =
∑
n

|n〉〈n| · |α〉, (3.13)

from which follows the completeness relation∑
n

|n〉〈n| = 1. (3.14)

An operator Q̂ in Hilbert space transforms a vector into another vector

Q̂|a〉 = |b〉.

When the transformed vector |b〉 is proportional to |a〉 by a complex number λa we may
write

Q̂|a〉 = λa|a〉,

then |a〉 is said to be an eigenvector (or eigenstate when talking about the respective quan-
tum state) for the operator Q̂, and λa the associated eigenvalue (or eigenfunction, when a
function). One of the postulates of quantum mechanics is the Schrödinger equation

i
∂

∂t
Ψ(x, t) =

(
− 1

2m

d2

dx2
+ V (x, t)

)
Ψ(x, t) (3.15)

which describes the time evolution for a quantum state Ψ in position space. Although non-
relativistic, the Schrödinger equation gives a starting point from which we can develop the
path integral formalism, a very important tool in both QFT and TFT.
For free particles the Schrödinger equation will have zero potential

i
∂

∂t
Ψ(x, t) = − 1

2m

d2

dx2
Ψ(x, t), (3.16)

which, using the Dirac formalism, can be rewritten as

i
∂

∂t
|Ψ(t)〉 = Ĥ|Ψ(t)〉, (3.17)

where we have identified the operator acting on the right hand side of (3.16) as the Hamil-
tonian operator Ĥ . A powerful property of the Dirac formalism is that the |Ψ(t)〉 eigen-
state does not necessarily have to be in position-space. The time evolution operator (or
propagator) Û(t, t0) transforms a state |Ψ(t0)〉 into its time evolution at time t:

|Ψ(t)〉 = Û(t, t0)|Ψ(t0)〉, (3.18)
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Chapter 3. Thermal Field Theory

where the propagator can be expressed as

Û(t, t0) = e−i(t−t0)Ĥ . (3.19)

Using the definition of the propagator in (3.18) in (3.19), we can show that it satisfies
the Schrödinger equation. We let q be the basis for the position space, and insert our
propagator

Ψ(q′, t′) = 〈q′|Ψ(t′)〉 = 〈q′| exp
(
−iĤ(t′ − t)

)
|Ψ(t)〉. (3.20)

by then inserting the continuous completeness relation 1 =
∫

d3q|q〉〈q|, we get

Ψ(q′, t′) =

∫
d3q〈q′| exp

(
−iĤ(t′ − t)

)
|q〉〈q|Ψ(t)〉

=

∫
d3qK(q′, t′; q, t)Ψ(q, t) (3.21)

where we have defined the position space propagator

K(q′, t′; q, t) = 〈q′|e−iĤ(t′−t)|q〉.

Being translationally invariant in time, the propagator depends only on the time difference
τ = t′ − t, so

K(q′, q; τ) = 〈q′|e−iĤτ |q〉. (3.22)

The propagator tells us what is the probability amplitude A for a particle originating at a
point q to be found in another point q′ after a time τ . We can split the time evolution in
smaller steps by writing

e−iĤτ = e−iĤ(τ−τN )e−iĤ(τN−τN−1) · · · e−iĤ(τ2−τ1)e−iĤτ1

where τ > τN > τN−1 > · · · > τ1. For N equally spaced time intervals of length
∆t is t = N∆t and by splitting the time evolution in these intervals we can express the
probability amplitude for a free particle moving from q to q′ as

A = 〈q′|e−iĤ∆te−iĤ∆t...|q〉. (3.23)

When talking about the position and momenta of fields, the states will not be discrete but
continuous. A Schrödinger-picture field operator φ̂(x, 0) acting on the field eigenvectors
|φ〉 at time t = 0 gives

φ̂(x, 0)|φ〉 = φ(x)|φ〉 (3.24)

where φ(x) is its eigenfunction, and the completeness (introduced above) and orthonor-
mality relations tell us that∫

dφ(x)|φ〉〈φ| = 1, 〈φa|φb〉 =
∏
x

δ(φa(x)− φb(x)). (3.25)
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3.1 Review of central concepts for the theory

For the momentum field operator p̂(x, 0), acting on the field momentum eigenstates |p〉
we have

p̂(x, 0)|p〉 = p(x)|p〉 (3.26)

where p(x) is the associated eigenfunction, and from this follow the completeness and
orthonormality relations for momentum eigenstates:∫

dp(x)

2π
|p〉〈p| = 1, 〈pa|pb〉 =

∏
x

δ(pa(x)− pb(x)). (3.27)

When talking about quantum fields we can either work in position or momentum space,
and we can switch between position and momentum eigenstates by using

〈φ|p〉 = ei
∫

d3xφ(x)p(x), (3.28)

for which

p(x) =

∫
dφ(x)〈φ|p〉φ(x). (3.29)

When dealing with fields, we will use the Hamiltonian density H, described in a similar
way as the Lagrangian density in (2.5):

H =

∫
d3xH(φ̂, p̂). (3.30)

3.1.3 The Dirac equation
The equation describing the motion of a relativistic spin-1/2 particle is the Dirac equation(

i/∂ −m
)
ψ = 0. (3.31)

Here ψ is the four-component spinor describing the state of the fermion, m its mass and
we have introduced the Feynman slash notation, for which /∂ = γµ∂µ where γµ are the
four 4× 4 matrices called gamma matrices. The defining property of the gamma matrices
is the anticommutation relation

{γµ, γν} = γµγν + γνγµ = 2ηµν (3.32)

where ηµν is the flat spacetime metric defined in (2.8). A possible representation of the
four matrices is

γ0 =

(
1 0
0 −1

)
γi =

(
0 σi
−σi 0

)
, (3.33)

where i runs from 1 to 3, 1 stands for the 2×2 identity matrix, and σi are the Pauli matrices

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
. (3.34)
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The Lagrangian for a free fermion with mass m is

L = ψ
(
i/∂ −m

)
ψ (3.35)

where ψ = ψ†γ0, and ψ† stand for the hermitian conjugate of ψ. Written in its explicit
form, the Lagrangian is

L = ψ†γ0

(
iγ0 ∂

∂t
+ iγ · ∇ −m

)
ψ. (3.36)

From this Lagrangian we can find the Hamiltonian density H by a Legendre transforma-
tion. The canonical momentum is1

p =
∂L

∂ (∂ψ/∂t)
= iψ†, (3.37)

so

H = p
∂ψ

∂t
− L = ψ (−iγ · ∇+m)ψ. (3.38)

The Lagrangian in (3.36) has a global U(1) symmetry, and it is invariant under the trans-
formations ψ → ψe−iα and ψ → ψeiα, where α is a real constant. From this symmetry
we are able to find the conserved Noether current. This is defined as

jµ =
δL

δ (∂ψi)
δψi, (3.39)

where i runs over 1 and 2, being ψ1 = ψ and ψ2 = ψ the two independent fields. A deriva-
tion of the Noether current can be found in the Appendix. By renaming the transformed
field as ψ′ = ψ + δψ, for small δψ we find

δψ = ψ′ − ψ =
∂ψ

∂α

∣∣∣∣
α=0

= −iψ (3.40)

and δψ = iψ respectively. The derivative of the Dirac Lagrangian in the gradient of the
fields is

δL
δ (∂ψ)

= iψγµ (3.41)

and δL
δ(∂ψ)

= 0 since the Lagrangian is not dependent on ∂ψ. This gives the current

jµ = ψγµψ (3.42)

which satisfies the relation

∂µj
µ = ∂µ(ψγµψ) = 0. (3.43)

The conserved charge is defined as Q =
∫

d3xj0, so

Q =

∫
d3xψγ0ψ =

∫
ψ†γ0γ0ψ =

∫
d3xψ†ψ. (3.44)

In this case, we can interpret the charge as the fermion number.
1We will denote the canonical momentum with p and the usual, vector momentum as p, in boldface. Later

in the section we will take the norm of p and write is as |p| = p, the distinction from the canonical momentum
should be clear from the context.
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3.2 Quantum field formalism for statistical mechanics

3.2 Quantum field formalism for statistical mechanics
Statistical mechanics can help us describe systems in stable equilibrium, i.e. systems that
will go back to their original state after some time Tt. Considering a time interval (0, Tt)
and dividing it into N steps such that ∆t = Tt/N , we can write the path similarly to
(3.23). By alternating between inserting position and momentum completeness relations
(from (3.25) and (3.27)) we will obtain

〈φa|e−iHTt |φa〉 = lim
N→∞

∫ ( N∏
i=1

dpidφi/(2π)

)
× 〈φa|pN 〉〈pN |e−iH∆t|φN 〉〈φN |pN−1〉
× 〈pN−1|e−iH∆t|φN−1〉...
× 〈φ2|p1〉〈p1|e−iH∆t|φ1〉〈φ1|φa〉 (3.45)

where from (3.25) we know that 〈φ1|φa〉 = δ(φ1 − φa). Notice that by now we drop the
hat for all operators, unless the context makes it necessary to distiguish operators from,
say, functions. From (3.28) we have that

〈φi+1|pi〉 = ei
∫

d3xpi(x)φi+1(x) (3.46)

and by introducing

Hi =

∫
d3xH(pi(x), φi(x)) (3.47)

for the limit where ∆t→ 0 we obtain

〈φi|e−iHi∆t|pi〉 ≈ 〈φi| (1− iHi∆t) |pi〉
= 〈φi|pi〉 (1− iHi∆t)

= e−i
∫

d3xpiφje−i∆t
∫

d3xH(pi(x),φi(x)). (3.48)

By substituting (3.46) and (3.48) into (3.45) we get

〈φa|e−iHTt |φa〉 = lim
N→∞

∫ ( N∏
i=1

dpi
2π

dφi

)
δ(φi − φa)

× exp

i∆t N∑
j=1

∫
d3x (pj(φj+1 − φj)/∆t−H(pj , φj))

 . (3.49)

The final step is to take the N →∞ limit and introduce the notation of functional integra-
tion ∫

Dp = lim
N→∞

∫ N∏
i=1

dpi
2π

∫
Dφ = lim

N→∞

∫ N∏
i=1

dφi
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and then taking the limit ∆t→ 0 transforming the sum in the exponential into an integral.
The path integral will be

〈φa|e−iHTt |φa〉 =

∫
DpDφ exp

[
i

∫ Tt

0

dt
∫

d3x

(
p

dφ
dt
−H(p, φ)

)]
. (3.50)

3.2.1 The partition function
By recalling the definition of the partition function in (3.1), we can write

Z =
∑
a

∫
dφa〈φa|e−β(H−

∑
i µiNi)|φa〉, (3.51)

where the trace is taken by summing over the complete set of states φa spanning the Hilbert
space. Equation (3.51) is very similar to (3.50), and we can express Z as an integral of the
fields. In order to make the exponent real we integrate over imaginary time, making the
substitutions Tt = β/i and t = τ/i, giving

Z =

∫
DpDφ exp

[∫ β

0

dτ
∫

d3x

(
ip

dφ
dτ
−H(p, φ)

)]
. (3.52)

3.3 The partition function for relativistic fermions
Equation (3.52) works for bosons. In order to make the fermion version, we will have
to use the Dirac Hamiltonian density, together with the transformation for the conserved
charge density j0:

H → H+ µj0.

The Dirac Hamiltonian has two independent fields ψ and ψ, so we will have to make the
functional integration run over these two fields instead of the field and the momentum as
we did for bosons. One peculiarity of the Dirac four-spinors is that, by defining

ψ̂(x, 0)|ψ〉 = ψ(x)|ψ〉 (3.53)

and the anticommutation relations for fermionic spinors

{ψ̂α(x, t), ψ̂†β(y, t)} = ~δαβδ(x− y) (3.54)

{ψ̂α(x, t), ψ̂β(y, t)} = {ψ̂†α(x, t), ψ̂†β(y, t)} = 0 (3.55)

the eigenvalues must anticommute. This can be tricky since we would like to integrate
over these eigenvalues in order to get to the fermion equivalent of (3.52)2:

Z =

∫
Diψ†Dψ exp

[∫ β

0

dτ
∫

d3xψ†
(
− ∂

∂τ
+ iγ0γ · ∇ − γ0m+ µ

)
ψ

]
. (3.56)

2The reason why we are integrating through iψ† instead of ψ will be clear later.

32



3.3 The partition function for relativistic fermions

We can do this by using the Grassmann algebra, made exactly fo the purpose of handling
numbers that anticommute.
Grassmann variables {ηi} are defined by their anticommutation relation:

{ηi, ηj} = {η†i , ηj} = {η†i , η
†
j} = 0, (3.57)

and the integration is defined almost as a differentiation,

∫
dη = 0

∫
ηdη = 1. (3.58)

A general function of Grassmann variables can be expressed as

f = a+
∑
i

aiηi +
∑
i

biη
†
i +

∑
i,j

aijηiηj +
∑
i,j

bijηiη
†
j

+ · · ·+ Cη†1η1η
†
2η2η

†
3 . . . η

†
NηN , (3.59)

where ai, bi, aij · · · are constants. Integrating the above function over all variables gives

∫
dη†1dη1dη†2 · · · dη

†
NdηNf = C, (3.60)

and from this follows the property that

∫
dη†1dη1 · · · dη†NdηNeη

†Dη =

N∏
i=1

(
dη†i dηi

)
eη
†Dη

=

∫
Dη†Dηeη

†Dη = detD, (3.61)

where D is a N ×N matrix. We see the similarities with (3.56), but before going on it is
useful to expand ψα(x, τ) in a Fourier series

ψα(x, τ) =
1√
V

∑
n

∑
p

ei(p·x+ωnτ)ψ̃α,n(p), (3.62)

where p is the momentum, ωn the Matsubara (imaginary-time) frequencies, and V the
volume in order to normalize the sum over the momenta.
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With the new expansion of ψ in (3.62) we can rewrite our partition function in (3.56)

Z =

∫
Diψ†Dψ exp

[∫ β

0

dτ
∫

d3xψ†
(
− ∂

∂τ
+ γ0γ · ∇ − γ0m+ µ

)
ψ

]

=

∫
Diψ†Dψ exp

[ ∫ β

0

dτ
∫

d3x
1

V

∑
n

∑
p

× ψ̃†n(p)e−i(p·x+ωnτ)

(
− ∂

∂τ
+ γ0γ · ∇ − γ0m+ µ

)
ei(p·x+ωnτ)ψ̃n(p)

]
=

∫
Diψ†Dψ exp

[
1

V

∑
n

∑
p

∫ β

0

dτ
∫

d3x

× ψ̃†n(p)
(
−iωn − γ0γ · p−mγ0 + µ

)
ψ̃n(p)

]
=

∫
Diψ†Dψ exp

[∑
n

∑
p

iψ̃†n(p)(−iβ)
(
−iωn − γ0γ · p−mγ0 + µ

)
ψ̃n(p)

]
.

(3.63)

The partition function in (3.63) may then be written as

Z =
∏
p

∫
D(iψ†ψ) exp

[∑
n

∑
p

iψ̃†α,n(p)Dαρψ̃ρ,n(p)

]
(3.64)

where

D = −iβ
[
(−iωn + µ)− γ0γ · p−mγ0

]
. (3.65)

Finally we can apply (3.61) to our partition function in (3.64) and obtain

Z = detD. (3.66)

The determinant is taken through all the indices: both the 4 × 4 gamma matrices, the
frequency and the momentum indices. We can start by finding the determinant of the
gamma matrices

detD = det−iβ
[
(−iωn + µ)− γ0γ · p−mγ0

]
= detβ

[
−(ωn + iµ) + iγ0γ · p+ imγ0

]
= detβ

{(
−1((ωn + iµ) + im) 0

0 −1((ωn + iµ)− im)

)
+ i

(
0 p · σ

p · σ 0

)}
= detβ

(
−1((ωn + iµ) + im) ip · σ

ip · σ −1((ωn + iµ)− im)

)
= detβ2

{
1
[
(ωn + iµ)2 +m2

]
+ (p · σ)2

}
= detβ2

[
(ωn + iµ)2 +m2 + p2

]
1

= β4
(
(ωn + iµ)2 + ω2

)2
(3.67)
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where we have used (p · σ)2 = p2, introduced ω =
√
m2 + p2, and indicated by 1 the

2 × 2 identity matrix. Between the fourth and fifth step, we have used the property for
square matrices of the same order A, B, C and D where

det

(
A B
C D

)
= det (AD −BC) for CD = DC,

and consequently in the fifth and sixth step we are taking the determinant of a 2×2 matrix.
We are now left with finding the determinant through all n and p for which D is defined
in (3.64). Instead of taking the determinant, we can use Jacobi’s formula

ln detA = tr lnA, (3.68)

valid for any matrix A. Since we are only interested in lnZ this turns out to be useful, and
we apply the formula to D:

lnZ = ln detD = tr lnD =
∑
n

∑
p

lnβ4
(
(ωn + iµ)2 + ω2

)2
. (3.69)

The summation is over both positive and negative Matsubara frequencies, thus we can
rewrite (3.69) as

lnZ =
∑
n

∑
p

lnβ4
(
(ωn + iµ)2 + ω2

)2
=
∑
n

∑
p

ln
[
β4
(
(ωn + iµ)2 + ω2

) (
(−ωn + iµ)2 + ω2

)]
=
∑
n

∑
p

ln
[
β4
(
ω2
n + ω2 − µ2 + 2iωnµ

) (
ω2
n + ω2 − µ2 − 2iωnµ

)]
=
∑
n

∑
p

ln
{
β4[ωn−i(ω−µ)] [ωn+i(ω+µ)] [ωn+i(ω−µ)] [ωn−i(ω+µ)]

}
=
∑
n

∑
p

ln
[
β4
(
ω2
n + (ω − µ)2

) (
ω2
n + (ω + µ)2

)]
=
∑
n

∑
p

[
lnβ2

(
ω2
n + (ω − µ)2

)
+ lnβ2

(
ω2
n + (ω + µ)2

)]
. (3.70)

We can find an expression for ωn by analyzing the relation between the Green functions
GF (x,y; τ, 0) and GF (x,y; τ, β). The Green function is defined as

G(x,y; τ1, τ2) = Z−1tr
[
e−βKTτ

[
ψ̂(x, τ1)ψ̂(y, τ2)

]]
(3.71)

where we have introduced the time-ordering operator Tτ

Tτ

[
ψ̂(τ1)ψ̂(τ2)

]
= ψ̂(τ1)ψ̂(τ2)θ(τ1 − τ2)− ψ̂(τ2)ψ̂(τ1)θ(τ2 − τ1) (3.72)

and shortened the notation with the substitution K = H − µQ. For fermions we will then

35



Chapter 3. Thermal Field Theory

have

GF (x,y; τ, 0) = Z−1tr
[
e−βK ψ̂(x, τ)ψ̂(y, 0)

]
= Z−1tr

[
ψ̂(y, 0)e−βK ψ̂(x, τ)

]
= Z−1tr

[
e−βKeβK ψ̂(y, 0)e−βK ψ̂(x, τ)

]
= Z−1tr

[
e−βK ψ̂(y, β)ψ̂(x, τ)

]
= Z−1tr

[
e−βKTτ

[
ψ̂(x, τ)ψ̂(y, β)

]]
= −GF (x,y; τ, β), (3.73)

where we have used the cycling property of the trace and the fact that, in the Heinsenberg
picture, ψ̂(x, τ0) = eτ0K ψ̂((x), 0)e−τ0K . This means that ψ(x, 0) = −ψ(x, β) and that
the wavefunction will be antiperiodic in the interval 0 < τ < β for periods of 2β/(2n+1)
where n = 0,±1,±2,±3 . . . . We will then have

ωn(2n+ 1)
π

β
. (3.74)

We can take the summation over n in (3.70) by using the definition of ωn in (3.74), and
rewriting both logarithms in integral form

∞∑
n=−∞

ln
[
(2n+ 1)2π2 + β2(ω ± µ)2

]
=

∞∑
n=−∞

[
ln
[
1 + (2n+ 1)2π2

]
+

∫ β2(ω±µ)2

1

dθ2

θ2 + (2n+ 1)2π2

]
, (3.75)

where we can drop the first term since it is independent of β, µ and V and would vanish
when taking the differentiations in (3.5), (3.6) and (3.7). We now take the summation
inside the integral, an by using the identity

∞∑
n=−∞

1

(n− x)(n− y)
=
π(cotπx− cotπy)

y − x
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3.3 The partition function for relativistic fermions

we get

∞∑
n=−∞

1

[(2n+ 1)π + iθ] [(2n+ 1)π − iθ]

=
1

(2π)2

∞∑
n=−∞

1[
n−

(
− 1

2 −
iθ
2π

)] [
n−

(
− 1

2 + iθ
2π

)]
=

1

(2π)2

π
(
cot
(
−π2 −

iθ
2

)
− cot

(
−π2 + iθ

2

))
iθ/(2π)

=
1

4iθ

(
tan

(
iθ

2

)
− tan

(
− iθ

2

))
=

1

2iθ
tan

iθ

2
=

1

2θ
(−i) tan

(
i
θ

2

)
=

1

2θ
tanh

θ

2

=
1

2θ

eθ/2 − e−θ/2

eθ/2 + e+θ/2
=

1

2θ

eθ − 1

eθ + 1
=

1

2θ

(
eθ − 1 + 2

eθ + 1
− 2

eθ + 1

)
=

1

θ

(
1

2
− 1

eθ + 1

)
, (3.76)

where we have used the trigonometric identities cot(−x) = − cot(x), cot(π/2 − x) =
tanx, tan(−x) = − tanx and−i tan(ix) = tanhx. We can now plug the result in (3.76)
into (3.75), obtaining ∫ β2(ω±µ)2

1

1

θ

(
1

2
− 1

eθ + 1

)
dθ2. (3.77)

We would now like to do the substitution dθ2 = 2θdθ, but the limit in the integral could
be either positive or negative. We then name C = β(ω ± µ) and write∫ ±C

±1

(
1− 2

2

eθ + 1

)
dθ = ±C ∓ 1− 2

∫ ±C
±1

dθ
eθ + 1

.

We can now make the substitution u = eθ, thus

± C ∓ 1− 2

∫ e±C

e±1

du
u(u+ 1)

= ±C ∓ 1− 2

∫ e±C

e±1

(
1

u
− 1

u+ 1

)
du

= ∓C ± 1 + 2 ln
(
e±C + 1

)
− ln

(
e±1 + 1

)
,

and by dropping the terms independent of C for the same reason as in (3.75), we get

∓C + 2 ln
(
e±C + 1

)
. (3.78)

In (3.78) we see that by choosing the upper sign the logarithm diverges, so we have to pick
the lower one,

β(ω ± µ) + 2 ln
[
e−β(ω±µ) + 1

]
, (3.79)
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which is the final result for our sum over n in (3.75). Substituting in (3.70) will give

lnZ =
∑
p

{
β(ω + µ) + β(ω − µ) + 2 ln

[
e−β(ω+µ) + 1

]
+ 2 ln

[
e−β(ω−µ) + 1

]}
= 2V

∫
d3p

(2π)3

[
βω + ln

(
e−β(ω+µ) + 1

)
+ ln

(
e−β(ω−µ) + 1

)]
, (3.80)

where we have taken the continuum limit of the momentum

1

V

∑
p

→
∫

d3p

(2π)3
.

In (3.80) we notice the contribution of particles (µ) and antiparticles (−µ), as well as the
zero-point energy (βω). We may integrate this expression, and obtain

lnZ = 2V

∫
d3p

(2π)3
βω +

V

3π2

[
p3 ln

(
1 + e−β(ω+µ)

)
+ β

∫
p4ω

− 1
2 e−β(ω+µ)

1 + e−β(ω+µ)
dp

+ p3 ln
(

1 + e−β(ω−µ)
)

+ β

∫
p4ω

− 1
2 e−β(ω−µ)

1 + e−β(ω−µ)
dp

]∞
0

= 2V

∫
d3p

(2π)3
βω +

V β

3π2

∫ ∞
0

p4dp√
p2 +m2

[
1

1 + eβ(ω+µ)
+

1

1 + eβ(ω−µ)

]
,

where the terms appearing from the partial integration vanish at 0 and∞. The expression
for the pressure is easily found by using (3.5) and remembering that T = β−1:

P =
∂(T lnZ)

∂V
= 2

∫
d3p

(2π)3
ω

+
1

3π2

∫ ∞
0

p4dp√
p2 +m2

[
1

1 + e(ω+µ)/T
+

1

1 + e(ω−µ)/T

]
. (3.81)

In the terms in the square parenthesis we recognize the Fermi-Dirac distribution for par-
ticles and anti-particles (2.79). By taking the T → 0 limit, the distribution for particles
becomes the Heaviside step function, and the anti-particles term vanish. If we then ignore
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3.3 The partition function for relativistic fermions

the divergent term3, we recover the equation for the pressure in a cold, free Fermi gas:

lim
T→0

P =
1

3π2

∫ ∞
0

p4√
p2 +m2

θ(pF − p)dp

=
1

3π2

∫ pF

0

p4√
p2 +m2

dp

=
m4

3π2

∫ x

0

u√
u2 + 1

u3du

=
m4

3π2

[
u3
√
u2 + 1−

∫
3u2
√
u2 + 1

]x
0

=
m4

3π2

∫ x

0

(
3u2
√
x2 + 1− 3u2

√
u2 + 1

)
du

=
m4

π2

∫ x

0

(√
x2 + 1−

√
u2 + 1

)
u2du

=
m4

24π2

[(
2x3 − 3x

) (
1 + x2

)1/2
+ 3 sinh−1(x)

]
(3.82)

which is the same result as in (2.99) expressed in natural units. Similarly, we can find the
energy density for particles from (3.4):

ε =
E

V
= −P +

T

V
S +

µ

V
N

= −P +
T

V

∂(T lnZ)

∂T
+ µ

∂(T lnZ)

∂µ

= −P + 2T
∂

∂T

[
T

∫
d3p

(2π)3
ln
(
e−(ω−µ)/T + 1

)]
+ 2µT

∂

∂µ

[∫
d3p

(2π)3
ln
(
e−ω/T+µ/T + 1

)]
,

(3.83)

we have already calculated the pressure in (3.82), and the second term would eventually
vanish when the T → 0 limit is taken. We then focus on the third term:

2µT
∂

∂µ

[∫
d3p

(2π)3
ln
(
e−ω/T+µ/T + 1

)]
=2µT

∫
d3p

(2π)3

1
T e
−(ω−µ)/T

e−(ω−µ)/T + 1

=2µ

∫
d3p

(2π)3

1

e(ω−µ)/T + 1
, (3.84)

where, again, the integrand is the Fermi-Dirac distribution. We plug this where we left in

3This will be treated in Chapter 6.

39



Chapter 3. Thermal Field Theory

(3.83), our result for the zero-temperature pressure, and take the T → 0 limit:

ε =− m4

π2

∫ x

0

(√
x2 + 1−

√
u2 + 1

)
u2du+ lim

T→0
2µ

∫
d3p

(2π)3

1

e(ω−µ)/T + 1

=− m4

π2

∫ x

0

(√
x2 + 1−

√
u2 + 1

)
u2du+

√
p2
F +m2

∫ pF

0

dp
π2
p2

=− m4

π2

∫ x

0

(√
x2 + 1−

√
u2 + 1

)
u2du+

m4

π2

∫ x

0

u2du
√
x2 + 1

=
m4

π2

∫ x

0

u2du
√
u2 + 1

=
m4

8π2

[(
2x3 + x

) (
1 + x2

)1/2 − sinh−1(x)
]
, (3.85)

which again is the same result as obtained in (2.98).

3.4 The partition function for relativistic bosons
We already have found the partition function for bosons in (3.52), and in case of a scalar,
real, neutral and spin-zero field φ, we would have a Lagrangian

L =
1

2
(∂µφ)(∂µφ)− 1

2
m2φ2. (3.86)

We can find the partition function by finding the canonical momentum4,

p =
L

∂(∂φ/∂t)
=
∂φ

∂t
, (3.87)

then doing the usual Legendre transformation in order to obtain the Hamiltonian density,

H = p
∂φ

∂t
− L =

1

2
p2 +

1

2
(∇φ)2 +

1

2
m2φ2. (3.88)

and then inserting this into (3.52):

Z =

∫
DpDφ exp

[∫ β

0

dτ
∫

d3x

(
ip
∂φ

∂τ
− 1

2
p2 − 1

2
(∇φ)2 − 1

2
m2φ2

)]
. (3.89)

We can get rid of the momentum path integral by discretizing it once again as in (3.49):

Z = lim
N→∞

(
N∏
i=1

∫ ∞
−∞

dpi
2π

∫
dφi

)

× exp

{
N∑
j=1

∫
d3x

[
ipj(φj+1 − φj)

−∆τ

(
1

2
p2
j +

1

2
(∇φj)2 +

1

2
m2φ2

j

)]}
(3.90)

4See footnote in page 30.
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and dividing position space into M3 small cubes, M being an integer and the cubes of
volume V = L3, L = aM , where a is an infinitesimal length:∫

d3x =

∫
dx1

∫
dx2

∫
dx3 =

M∑
i=1

ai

M∑
j=1

aj

M∑
k=1

ak =

M3∑
k

a3
k. (3.91)

We do this in order to enforce the periodicity of φ. The cubes are small and we will be
taking the M → ∞ limit after the integration is taken. In order to keep Z dimension-
less we integrate over Aj , where pj = Aj/(a

3
j∆τ)1/2. Taking only the integration over

momentum in (3.90) with the above substitutions, we obtain

N∏
i=1

∫
dφi

∫
1√
a3
i∆t

dAi
2π

exp

M3∑
k=1

a3
k

N∑
j=1

(
i
Aj(φj+1 − φj)

(a3
j∆t)

1/2
− 1

2

A2
j

a3
j

) . (3.92)

Here is only relevant to take integrals where i = j = k, so, for each cube,

1√
a3
j∆τ

∫ ∞
−∞

dAj
2π

exp

[
−1

2
A2
j − 2

(φj+1 − φj)
√
a3

2i
√

∆τ

]
(3.93)

Each dAj integration is a Gaussian integral that can be looked up on tables [32], with
solution ∫ ∞

−∞
dxe−bx

2−2cx =

√
π

b
e
c2

b . (3.94)

In our case is b = 1/2 and c = i(φj+1 − φj)/
√
a3/4∆t, so the solution of the integral is

1√
a3∆τ

1√
2π

exp

[
−a3(φj+1 − φ1)2

2∆τ

]
, (3.95)

Recovering the integral over position space using (3.91) and (3.95) in the original discrete
path integral, we have

lim
M,N→∞

1

(2πa3∆τ)M3N/2

∫ ( N∏
i=1

Dφi

)

× exp

{
∆τ

N∑
j=1

∫
d3x

[
− 1

2

(
φj+1 − φj

∆τ

)2

− 1

2
(∇φj)2 − 1

2
m2φ2

j

]}
. (3.96)

As before, we take the continuous limit and recover the integral over dτ :

Z = N ′
∫
Dφ exp

{∫ β

0

dτ
∫

d3x

[
−1

2

(
∂φ

∂τ

)2

− 1

2
(∇φ)2 − 1

2
m2φ2

]}

= N ′
∫
Dφ exp

(∫ β

0

dτ
∫

d3xL

)
= N ′

∫
DφeS (3.97)
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where again we have used the identity dτ = idt in the first term of the Lagrangian. From
now on, as done with fermions, we might drop the constant N ′. In contrast to the antiperi-
odic fermions, φ is periodic, so that φ(x, 0) = φ(x, β). This allow us to partially integrate
both the time and space derivatives in the integral in the exponential of (3.97),

S =− 1

2

∫ β

0

dτ
∫

d3x

[(
∂φ

∂τ

)2

+ (∇φ)2 −m2φ2

]

=− 1

2

{∫ [
φ
∂φ

∂τ

]β
0

d3x+

∫ β

0

[φ∇φ]
+∞
−∞ dτ +

∫ β

0

dτ
∫

d3x

(
−φ∂

2φ

∂τ2
− φ∇2φ

)}

=− 1

2

∫ β

0

dτ
∫

d3xφ

(
− ∂2

∂τ2
−∇2 +m2

)
φ. (3.98)

Where the [φ∇φ] term vanishes at infinity. We then follow the same procedure used with
the fermion partition function by Fourier transforming the field. The φ field is real, so two
equivalent transformations are possible:

φ(x, τ) =

√
β

V

∞∑
n=−∞

∑
p

e−i(p·x+ωnτ)φ∗n(p), (3.99)

φ(x, τ) =

√
β

V

∞∑
n=−∞

∑
p

ei(p·x+ωnτ)φn(p), (3.100)

where we have inserted ωn = 2πn/β, different from the fermion one because of period-
icity. Inserting these in the action S of (3.98) and recalling the notation ω =

√
p2 +m2,

we obtain:

S = −1

2

∫ β

0

dτ
∫

d3x
β

V

∑
n

∑
p

(
ω2
n + ω2

)
φ∗(p)φ(p)

= −1

2
β2
∑
n

∑
p

(
ω2
n + ω2

)
φ∗n(p)φn(p). (3.101)

The sums become products when taken out of the exponential, and the path integral is only
dependent on the magnitude of the field An = (A∗nAn)1/2, so

Z =
∏
n

∏
p

{∫ ∞
−∞

dAn(p) exp

[
−1

2
β2
(
ω2
n + ω2

)
A2
n(p)

]}
. (3.102)

This is again a Gaussian integral in the form of (3.94) with c = 0, yielding

Z =
∏
n

∏
p

√
2π
[
β2
(
ω2
n + ω2

)]− 1
2 , (3.103)

where we can safely drop the
√

2π term. We now take the logarithm of the above function

lnZ = −1

2

∑
n

∑
p

ln
[
β2
(
ω2
n + ω2

)]
, (3.104)
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and rewrite it in the same way as in (3.75)

lnZ = −1

2

∑
n

∑
p

ln
[
(2πn)2 + β2ω2

]
(3.105)

= −1

2

∑
n

∑
p

∫ β2ω2

1

dθ2

θ2 + (2πn)2
− 1

2
ln[1 + (2πn)2]. (3.106)

In (3.105) we can drop the last term, make the substitution dθ2 = 2θdθ, changing the
limits as with the fermion case, and rewrite it as

lnZ = −
∑
n

∑
p

1

4π2

∫ ±βω
±1

θdθ

n2 +
(
θ

2π

)2 , (3.107)

for so using the identity

∞∑
n=−∞

1

n2 +
(
θ

2π

)2 =
2π2

θ

(
1 +

2

eθ − 1

)
(3.108)

in (3.107), and obtaining

lnZ = −
∑
p

∫ ±βω
±1

dθ
(

1

2
+

1

eθ − 1

)
. (3.109)

In order to integrate we mimic the procedure used with fermions, making the substitution
u = eθ, where dθ = du/u and

lnZ =
∑
p

[
∓βω

2
± 1

2
+

∫ e±βω

e±1

du
u(u− 1)

]

=
∑
p

[
∓βω

2
± 1

2
+

∫ e±βω

e±1

(
1

u− 1
− 1

u

)
du

]

=
∑
p

[
∓βω

2
± 1

2
+ ln

(
1− e∓βω

)
− ln

(
1− e∓1

)]
.

Here the reasonable choice is to pick the upper signs so to avoid negative numbers in the
logarithms. Scrapping also all the terms not dependent on the temperature, we are left with

lnZ = −
∑
p

[
1

2
+ ln

(
1− e−βω

)]
(3.110)

which, taking the continuous limit for the momentum, gives

lnZ = V

∫
d3p

(2π)3

[
−1

2
βω − ln(1− e−βω)

]
. (3.111)
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Chapter 3. Thermal Field Theory

Equation (3.111) is our partition function for neutral, scalar fields. From this we can obtain
all the thermodynamical quantities of interest, such as the pressure and the energy density
using equations (3.4) and (3.5). By defining lnZ0 to be the divergent part of the partition
function,

lnZ0 = V

∫
d3p

(2π)3

(
−1

2
βω

)
, (3.112)

we obtain for the zero-point pressure and energy density

PZP =
∂(T lnZ0)

∂V
= −1

2

∫
d3p

(2π)3

√
p2 +m2 (3.113)

and

εZP =
EZP

V
=
−PZPV

V
=

1

2

∫
d3p

(2π)3

√
p2 +m2. (3.114)

These are divergent and independent of the temperature, and will have to be renormalized.
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Chapter 4
The σ–ω model

A neutron star is mainly composed of neutrons. Up to now we have considered this kind
of star as a Fermi gas consisting of noninteracting cold neutrons, but we should expect
a small fractions of other particles such as protons and electrons emerging from the beta
decay of neutrons, and possibly heavier leptons and baryons forming at higher densities.
Baryons interact by the strong nuclear force, and this interaction should give a contribu-
tion to the equations of energy density and pressure, modifying the equation of state. This
motivates us to look for a model which takes into account these phenomena. The strong
force can be described using relativistic mean-field (RMF) models, where it is mediated
by the exchange of massive spin-zero and spin-one mesons between baryons. These inter-
actions are best described by the quantum chromodynamics (QCD) theory, but the RMF
models are much easier to deal with when handling big statistical systems such as neutron
stars. The simplest RMF model is the σ–ω model, developed among others by Chin and
Walecka [7] [41]. In this description the strong nuclear force is carried by the two massive
mesons: the σ and the ω, the first being a scalar field and the second a vector field. The
model exploits the fact that the neutron and the proton masses are very similar and treats
them as one single particle, the nucleon, where the proton and the neutron can be seen as
its two possible states. The steps in this chapter follow the ones used in Compact Stars by
Glendenning [10].

4.1 The σ–ω model

4.1.1 Spin-zero and spin-one Lagrangian
the spin-zero σ field is a spinless, scalar field described by the free Klein-Gordon equation:(

� +m2
)
σ = 0. (4.1)

This can be derived by the scalar Lagrangian

Lσ =
1

2
(∂µσ)(∂µσ)− 1

2
m2σ2 (4.2)

45



Chapter 4. The σ–ω model

using the Euler-Lagrange equations in (2.4) for scalar fields,

∂µ
∂L

∂(∂µσ)
=
∂L
∂σ

. (4.3)

If the field is complex, we can rewrite the Lagrangian as

Lσ =
1

2
(∂µσ)∗(∂µσ)− 1

2
m2σ∗σ. (4.4)

It has an internal global symmetry when we make the transformation σ′ → e−iθσ and
σ∗′ → eiθσ∗ for a constant, real phase θ, and it is manifestly invariant. Since δσ =
∂
∂θ (σ′ − σ) = −iσ and similarly δσ∗ = iσ∗, we can use the Noether theorem to find the
conserved current:

Jµ =
δL

δ(∂µσ)
δσ +

δL
δ(∂µσ∗)

δσ∗ =
i

2
(σ∗∂µσ − σ∂µσ∗). (4.5)

The spin-one ω field is instead a massive vector field described by the Proca equation

(� +m2)ωµ − ∂µ∂νων = 0 (4.6)

and is derived by the free Lagrangian

Lω = −1

4
ωµνω

µν +
1

2
m2ωµω

µ, (4.7)

where ωµν = ∂µων − ∂νωµ. By taking the derivative of the Proca equation,

(� +m2)∂µωµ −�∂µωµ = 0, (4.8)

it follows that m2∂µωµ = 0. Since m cannot be zero, the field must be divergenceless
and the last term of the Proca equation in (4.6) cancels. The equation of motion for each
component can be then described with the Klein-Gordon equation in (4.1).

4.1.2 The nucleon spinor and Lagrangian
By assuming the neutron and the proton to have the same mass m, we can write a free
nucleon Lagrangian as the sum of the neutron and proton Dirac Lagrangians,

Lnucl = ψn(i/∂ −m)ψn + ψp(i/∂ −m)ψp, (4.9)

where ψn and ψp are the neutron and proton spinors, and ψn and ψp their adjoints. With
these definitions we can define a new, eight-components nucleon spinor

ψ ≡
(
ψp
ψn

)
, (4.10)

with which we can rewrite the nucleon Lagrangian as

Lnucl = ψ(i/∂ −m)ψ. (4.11)
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4.1 The σ–ω model

This Lagrangian still has a global U(1) symmetry, leading to the current already derived in
(3.42),

jµ = ψγµψ,

which in this case means conservation of nucleon number. In addition the Lagrangian in
(4.11) has an isospin symmetry, i.e. it is invariant under the ψ′ → e−iτ ·Λ/2ψ transforma-
tion where τ = (τ1, τ2, τ3) denote the Pauli matrices1 and Λ = (Λ1,Λ2,Λ3) a normalized
vector in isospin space. We find δψ = − 1

2 iτ ·Λψ and since δL
δ(∂µψ)

= 0, by the Noether
theorem we have

Iµ =
δL

δ(∂µψ)
δψ =

1

2
ψγµτ ·Λψ. (4.12)

By making Λ an infinitesimal vector, the transformation represents an infinitesimal rota-
tion in isospin-space, from which we get the vector current

Iµψ =
1

2
ψγµτψ. (4.13)

Its third component would look like

Jµ3 =
1

2
ψγµτ3ψ (4.14)

where, since

τ3 =

(
1 0
0 −1

)
(4.15)

the time component will be

J0
3 =

1

2
(ψ†pψp − ψ†nψn). (4.16)

Here ψ†pψp and ψ†nψn are the proton and neutron density respectively. This allows us to
rewrite the last equation as

J0
3 =

1

2
(ρp − ρn). (4.17)

4.1.3 Lagrangian for the σ–ω model
The Lagrangian for this model will be a sum of the Lagrangians for the nucleon spinors,
the σ and ω fields and the interaction terms between these particles:

L = Lnucl + Lσ + Lω + Lint. (4.18)

1It is convention to denote the Pauli matrices with τ when talking about isospin, and with σ when talking
about spin. This is though only convention, as they are the same matrices.
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Chapter 4. The σ–ω model

The nucleon Lagrangian is the Lagrangian in (4.11), the σ meson Lagrangian is that of
a scalar field as seen in (4.2), and the one for the ω spin-one field the one seen in (4.7).
We choose the σ and the ω mesons only to interact with the fermion field and we do
not consider self-interactions or interactions between the two mesons. If we want the
interaction terms to yield a scalar, the σ field will have to couple to the scalar density ψψ,
while the vector ω will interact with the vector quantity ψγµψ,

Lint = gσσψψ − gωωµψγµψ, (4.19)

where gσ and gω are the coupling constants for the σψψ and the ωµψγµψ interactions
respectively. There is no compelling reason to choose the minus sign for gω , but by doing
that we would end up with a positive value for both coupling constants, as we will show.
It is now possible to plug (4.11), (4.2), (4.7) and (4.19) into (4.18), and get

L = ψ
(
i/∂ −m

)
ψ +

1

2
(∂µσ)(∂µσ)− 1

2
m2
σσ

2 − 1

4
ωµνωµν

+
1

2
m2
ωω

µωµ + gσσψψ − gωωµψγµψ. (4.20)

The Lagrangian can also be rewritten in the more revealing form

L = ψ
[
iγµ(∂µ + igωω

µ)− (m− gσσ)
]
ψ

+
1

2

[
(∂µσ)(∂µσ)−m2

σσ
2
]
− 1

4
ωµνωµν +

1

2
m2
ωω

µωµ, (4.21)

where we get an insight in how we can interpret it: instead of the Lagrangian of three
interacting particles, it can be thought of three free Lagrangians where the σ interaction
now acts as a term reducing the mass of the nucleons, while the ω field shares the same
behaviour as for the potential four-vector of the photon in the electromagnetic interaction
(with the only difference that ω is a massive field). The equations of motion are found by
using the Euler-Lagrange equations for fields, The steps leading to the equations of motion
can be found in the Appendix in Section A.4. Here are the derived forms for the σ, ω and
ψ fields:

σ-field (� +m2
σ)σ(x) = gσψ(x)ψ(x), (4.22)

ω-field (� +m2
ω)ωµ(x) = gωψ(x)γµψ(x), (4.23)

ψ-field
[
iγµ
(
∂µ + igωωµ(x)

)
−
(
m− gσσ(x)

)]
ψ(x) = 0. (4.24)

4.1.4 The relativistic mean-field approximation
In our current model we idealize the neutron star as consisting of static, uniform matter in
its ground state. This is done by applying the RMF approximation, where instead of the
meson fields we use their mean values in the ground state. Being static and uniform, both
the currents and the meson fields will be independent of xµ, giving for (4.22) and (4.23)

m2
σ〈σ〉 =gσ〈ψψ〉, (4.25)

m2
ω〈ωµ〉 =gω〈ψγµψ〉, (4.26)
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4.1 The σ–ω model

where the 〈−〉 parenthesis mean we are taking the mean value of the enclosed quantity.
For (4.24) this yields[

iγµ
(
∂µ + igω〈ωµ〉

)
−
(
m− gσ〈σ〉

)]
ψ(x) = 0. (4.27)

Since there is no x-dependence in (4.27), we can easily perform a Fourier transformation
and analyze it in momentum space. We make the substitution ψ(x) = e−ix

νpνψ(p) (p
here being the four-moment) and take the derivative in the kinetic term:[

γµ
(
pµ − gω〈ωµ〉

)
−
(
m− gσ〈σ〉

)]
ψ(p) = 0. (4.28)

We return to the definition of the energy-stress tensor in (2.21). In the rest frame, its
expectation values for the energy density ε and pressure P are on the diagonal,

Tµν = Tµν =


ε 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P

 . (4.29)

We can now use the definition of the canonical energy-stress tensor

Tµν ≡ ηµνL −
∂L

∂(∂µφi)
∂νφi (4.30)

with the Lagrangian in (4.20) for nucleons in momentum space:

Tµν = ηµνL − ∂L
∂(∂µψ)

pνψ − ψ ∂L
∂(∂µψ)

pν . (4.31)

Since ∂L
∂(∂µψ)

= 0, for µ = ν we will obtain

ε =− 〈L〉+ 〈ψγ0p0ψ〉 (4.32)

P =〈L〉+
1

3
〈ψγipiψ〉. (4.33)

In our model for static and uniform meson fields, the expectation value for the Lagrangian
〈L〉 will contain only the σ and ω terms without derivatives. Additionally, we have from
(4.27) that the first term in the Lagrangian is zero, leaving

〈L〉 = −1

2
m2
σ〈σ〉2 +

1

2
m2
ω〈ωµ〉〈ωµ〉. (4.34)

From equations (4.32), (4.33) and our expectation value of the Lagrangian in (4.34) we
see that we can obtain an equation of state for our neutron star model by finding the values
of 1

2m
2
σ〈σ〉2, 1

2m
2
ω〈ωµ〉〈ωµ〉, 〈ψγ0p0ψ〉 and 〈ψγipiψ〉.

We now analyze the mean-field nucleon Dirac equation in (4.28). We introduce the new
variables Kµ and m∗ defined as Kµ ≡ pµ − gµ〈ωµ〉 and m∗ ≡ m − gσ〈σ〉, and rewrite
the equation of motion as [

/K −m∗
]
ψ(p) = 0. (4.35)
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Multiplying by [ /K +m∗] on the left side, we obtain

[
/K +m∗

] [
/K −m∗

]
ψ(p) =

(
KµKν γµγν + γνγµ

2
−m∗2

)
ψ(p) = 0. (4.36)

Here we have taken into consideration both cases where the index µ and the index ν come
first, since Kµ and Kν commute with themselves and the gamma matrices, but the gamma
matrices do not. Given the properties in (3.32), we conclude that[

KµKµ −m∗2
]
ψ(p) = 0. (4.37)

From the above equation we notice that the nucleon momentum spinor ψ(p) is multiplied
with a number(not an operator), giving zero as result. Excluding the trivial solution where
ψ(p) = 0, the number must equal zero, and given KµKµ = K2

0 −K2, we obtain

K0 =
√
K2 +m∗2. (4.38)

The energy eigenvalues of the nucleon Dirac equation (the time component of the momen-
tum eigenvalues pµ) can be now written as

e(p) = p0 = K0(p) + gω〈ω〉. (4.39)

We still have to find the expectation value for the nucleon currents in (4.25) and (4.26).
The system we are studying is in its ground state, so the expectation value of any operator
Q̂ would be

〈ψQ̂ψ〉 =
∑
i

∫
d3p

(2π)3
(ψQ̂ψ)κiθ(µ− e(p)). (4.40)

The Heaviside step function in (4.40) is the particle distribution for fermions in their
ground state (the same limit for T → 0 we already have used in the previous chapters),
while the sum runs over the possible combinations of nucleon isospin and spin states κi.
For every energy eigenvalue we have four different combinations of spin and isospin, as
both can either take the value of−1/2 or 1/2. The degeneracy for the nucleon is thus four,
and being the matter in its groun state at T = 0, they are all occupied. The sum over i
will then simplify to a coefficient of 4 in front of the integral. From the mean-field Dirac
equation for the nucleons in (4.27), it is easy to obtain a Lagrangian,

Lnucl,mean = ψ(x) [γµ(i∂µ − gω〈ωµ〉)−m∗]ψ(x), (4.41)

from which it is possible to derive the Hamiltonian via a Legendre transformation in a
similar way to (3.38). In momentum space it becomes

H = ψ(p) [γ · p+ gωγµ〈ωµ〉+m∗]ψ(p) = ψ†(p)HDψ(p). (4.42)

where we have defined the Hamiltonian operator as

HD = γ0 [γ · p+ gωγµ〈ωµ〉+m∗] . (4.43)
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4.1 The σ–ω model

By now dropping the spinor’s (p) for convenience, the expectation value of the energy
〈ψHDψ〉κi for a single nucleon state is our energy eigenstates found in (4.39),

(ψ†HDψ)κi = K0(p) + gω〈ω0〉. (4.44)

We can take derivatives of any variable α in the Hamiltonian by using

∂

∂α

(
ψ†HDψ

)
κi

=

(
ψ†
∂HD

∂α
ψ

)
κi

+ (K0(p) + gω〈ω0〉)
∂

∂α
(ψ†ψ)κi , (4.45)

thus the differential of (4.44) with respect to 〈ω0〉 is

∂

∂〈ω0〉
(K0(p) + gω〈ω0〉) = (ψ†γ0

(
gωγ

0ω0

)
ψ)κi

+ (K0(p) + gω〈ω0〉)
∂

∂〈ω0〉
(ψ†ψ)κi .

Since K0 is independent of 〈ω0〉, this simplifies to

gω
(
〈ψ†ψ〉κi − 1

)
+ (K0(p) + gω〈ω0〉)

∂

∂〈ω0〉
〈ψ†ψ〉κi = 0, (4.46)

which is satisfied for (ψ†ψ)κi = 1, and shows that the nucleon field is normalized. This
gives us a simplified version of (4.45):

∂

∂α
(ψ†HDψ)κi =

(
ψ†
∂HD

∂α
ψ

)
κi

. (4.47)

We use the above equation to calculate the derivative in px

∂

∂px
K0(p) = (ψ†γ0γxψ)κi = (ψγxψ)κi . (4.48)

This is useful in calculating the nucleon current density:

〈ψγjψ〉 =4

∫
dpxdpydpz

(2π)3

(
∂K0(p)

∂px

)
θ(µ− e(p))

=4

∫
dpydpz
(2π)2

∫
dpx
2π

(
∂K0(p)

∂px

)
θ(µ− e(p))

=4

∫
dpydpz
(2π)3

∫
dK0(p)θ(µ− e(p)) = 0. (4.49)

The result is zero because the Heaviside step functions sets the limits of the integration
at e(p) = µ = K0(p) + gω〈ω0〉, meaning that K0(p) = µ − gω〈ω0〉 everywhere on
the boundary. Since the nucleon three-current 〈ψγjψ〉 is zero, the mean-field equation of
motion for the ω field in (4.26) yields

mω〈ωi〉 = 0, (4.50)
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and since the field is not massless, we conclude that 〈ωi〉 = 0. The ground state occupies
a sphere in momentum-space, and we can rewrite the four-momentum eigenvalues as

e(p) = K0(p) + gω〈ω0〉, K0(p) =
√
p2 +m∗2. (4.51)

From the normalization 〈ψ†ψ〉κi = 1, we can again apply the equation for the expectation
values (4.40) to find 〈ψ†ψ〉:

〈ψ†ψ〉 = 4

∫
d3p

(2π)3
θ(µ− e(p)) =

16π

(2π)3

∫ pF

0

p2dp =
2p3
F

3π2
, (4.52)

where the momentum that satisfies e(p) = µ is the Fermi momentum pF . The last term
to evaluate is 〈ψψ〉. This can be found by taking the mass derivative in (4.44) and (4.47),
and get

∂

∂m
(ψ†HDψ)κi =

∂K0(p)

∂m
=

(
ψ†
∂HD

∂m
ψ

)
κi

= (ψψ)κi .

We can now finally use (4.40) and get

〈ψψ〉 =4

∫
d3p

(2π)3

∂

∂m

√
p2 + (m− gσ〈σ〉)2θ(µ− e(p))

=
2

π2

∫ pF

0

dp
p2(m− gσ〈σ〉)√
p2 + (m− gσ〈σ〉)2

. (4.53)

We now have everything we need to evaluate the mean σ and ω fields. We combine (4.25)
and (4.26) with the newly found results for 〈ψ†ψ〉 in (4.52) and for 〈ψψ〉 in (4.53), and get

gσ〈σ〉 =

(
gσ
mσ

)2
2

π2

∫ pF

0

dp
p2(m− gσ〈σ〉)√
p2 + (m− gσ〈σ〉)2

, (4.54)

gω〈ω0〉 =

(
gω
mω

)2
2pF

3

3π2
, (4.55)

gω〈ωi〉 =0. (4.56)

The three relations above can be easily arranged to yield a result for both mσ〈σ〉 and
mω〈ω0〉, needed for the expectation value of the Lagrangian in the expressions for the
energy density and pressure in (4.32) and (4.33). In order to calculate 〈ψγ0p0ψ〉 and
〈ψγipiψ〉 needed to find the equation of state in (4.32) and (4.33), we use the same method
as before. The term 〈ψγ0p0ψ〉 is the contribution to the energy density given by the energy
momentum states. For each nucleon isospin state, the energy eigenvalues are given by e(p)
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in (4.51), so we can use (4.40) and find

〈ψγ0p0ψ〉 =4

∫
d3p

(2π)3
e(p)θ(µ− e(p))

=
2

π2

∫ µ

0

dpp2
(
gω〈ω0〉+

√
p2 + (m− gσ〈σ〉)2

)
=gω〈ω0〉

2pF
3

3π2
+

2

π2

∫ pF

0

dpp2
√
p2 + (m− gσ〈σ〉)2

=m2
ω〈ω0〉2 +

2

π2

∫ pF

0

dpp2
√
p2 + (m− gσ〈σ〉)2. (4.57)

We then observe from (4.47) that by differentiating with respect to p we obtain

(ψγψ)κi =
∂K0(p)

∂p
.

Taking the dot product with p on both sides we can finally use (4.40) and obtain

〈ψγ · pψ〉 = 〈ψγipiψ〉 =4

∫ pF

0

d3p

(2π)3

∂K0(p)

∂p
· p

=
2

π2

∫ pF

0

dp
p4√

p2 + (m− gσ〈σ〉)2
. (4.58)

We can now plug in the expectation values in (4.57) and (4.58) and for the Lagrangian in
(4.34) (where we set 〈ωi〉 = 0) into the equation of state, obtaining

ε =
1

2
m2
σ〈σ〉2 +

1

2
m2
ω〈ω0〉2 +

2

π2

∫ pF

0

dpp2
√
p2 + (m− gσ〈σ〉)2 (4.59)

P =− 1

2
m2
σ〈σ〉2 +

1

2
m2
ω〈ω0〉2 +

2

3π2

∫ pF

0

dp
p4√

p2 + (m− gσ〈σ〉)2
, (4.60)

where m2
σ〈σ〉2, m2

ω〈ω0〉2 and gσ〈σ〉 can be derived from equations (4.54) and (4.55).
All quantities in the energy density and pressure can be derived by a chosen value of the
Fermi momentum pF . We can then find all the values of interest for our equation of state
by evaluating the above equations for a chosen range of Fermi momenta.

4.2 Peculiarities and computation
The σ–ω model is the simplest RMF framework to describe nuclear matter. It has two
free parameters (gσ/mσ and gω/mω) which can be adjusted so that the theory yields ex-
perimental values of nuclear matter properties like the binding energy per nucleon and the
Fermi momentum at saturation density, that being the density at which the pressure is zero
and the system is in static equilibrium. According to recent evidence [28], the binding
energy per nucleon for infinite nuclear matter is B/A = −16.3 MeV and the Fermi mo-
mentum (linked to the radius parameter and the saturation density) is pF,sat = 1.31 fm−1.
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From these values it is possible calculate algebraically the values of the two free parame-
ters of the theory [10]. Walecka in [7] and [41] sets somewhat wrongly the binding energy
at −15.75 MeV and the Fermi momentum at saturation density at pF,sat = 1.42 fm−1 to
model nuclear matter, and obtains the parameters (gσ/mσ)2 = 3.033× 10−4 MeV−2 and
(gω/mω)2 = 2.224× 10−4 MeV−2. Although managing to yield the above experimental
values, the model fails in reproducing other properties of nuclear matter like the compres-
sion modulus K, the effective mass m∗ and the symmetry energy asym, which are in poor
agreement with the experimental data. It is nevertheless illustrative to show the results of
such a model.

4.2.1 Nuclear matter and neutron matter
The σ–ω model idealizes the proton and neutron as the same, neutral particle with four
possible states, given by the possible combinations of spin and isospin states. We may call
this as nuclear matter. Although useful for atomic nuclei, this model cannot be used for
neutron stars, which are systems mainly made of neutrons. We can then speak of neutron
matter when modeling the structure of the star. Neutron matter will be akin to nuclear
matter, but with only occupation 2 for the degenerate states: two for spin, but only one
for isospin. Mathematically this means that we would only have to count two degenerate
states in (4.54) and (4.55), which will become

gσ〈σ〉 =

(
gσ
mσ

)2
1

π2

∫ pF

0

dp
p2(m− gσ〈σ〉)√
p2 + (m− gσ〈σ〉)2

, (4.61)

gω〈ω0〉 =

(
gω
mω

)2
pF

3

3π2
. (4.62)

Equations (4.57) and (4.58) will also be modified, and subsequently the equation of state
in (4.59) and (4.60), which become

ε =
1

2
m2
σ〈σ〉2 +

1

2
m2
ω〈ω0〉2 +

1

π2

∫ pF

0

dp p2
√
p2 + (m− gσ〈σ〉)2, (4.63)

P =− 1

2
m2
σ〈σ〉2 +

1

2
m2
ω〈ω0〉2 +

1

3π2

∫ pF

0

dp
p4√

p2 + (m− gσ〈σ〉)2
. (4.64)

Nuclear and neutron matter also differ when it comes to binding energy. While nuclear
matter has bound states (as we would expect from the existence of stable atomic nuclei),
we should expect none for neutron matter, as these bound states have never been observed
in nature. Nevertheless, the σ–ω model for neutron matter predicts a local minimum in
the binding energy. This minimum can be negative (in which case we should expect a
bound state for neutron matter) or positive (which leads to a phase transition between a
Fermi liquid and Fermi gas). This can be understood using the same framework used
to qualitatively explain phase transitions between the different states in matter – that be
solid, liquid and gaseous state. We will use Section 4.2.2 to explain the reasoning behind
phase transitions and their application to neutron matter, for then in Section 4.2.3 using
the newly found equation of state together with the TOV equation in order to calculate the
mass-radius relation for this model.
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4.2.2 Phase transition and Maxwell construction
The case with a positive local minimum in the binding energy per nucleon is taken into
consideration in the 1974 paper from Chin and Walecka [7]. While using the same σ–ω
model for T = 0 as developed in this chapter, the star would undergo a phase transition
between a liquid core and a gaseous atmosphere, both purely made of neutrons interacting
with the mesonic mean-fields. The equation of state for neutron matter is similar in shape
to the Van der Waals one, as they both idealize particles as bodies with a strong, short range
repulsion and a longer range attraction - ideal molecules or atoms for the Van der Waals
equation, neutrons for our star model. Exactly as the Van Der Waals equation of state,

Figure 4.1: Equation of state for neutron matter. Plot of pressure against energy density on the
left, and pressure against volume per unit energy on the right. The two plots are equivalent. As
we see, they both show a region with negative pressure, and an unstable region with dP/dε < 0 (or
alternatively dP/dV > 0). V/E is the relativistic version of the volume occupied by a fixed number
of particles, since our equation of state involves the energy density (i.e. energy per unit volume) and
not the particle density.

in the second panel of Figure 4.1 our shows a region with positive dP/dV , breaking the
Le Chatelier’s principle of microscopic stability. The principle simply states that stability
in a system is attained when any deviation from equilibrium results in a restoring force
towards the original equilibrium state [42]. The quantity we should look to when assessing
thermodynamical stability of an equilibrium state is the Gibbs free energy:

G = U − TS + PV. (4.65)

In (4.65), U is the internal energy of the system, T its temperature, S the entropy, P the
pressure and V the volume. The Gibbs free energy takes into consideration the contribu-
tion of the temperature and the pressure to the total energy with the −TS and +PV terms
respectively. This means that it is the lowest Gibbs free energy, and not the lowest internal
energy U , that will characterize the most stable state in thermodynamical equilibrium with
its surroundings [34]. In our case the temperature is zero by assumption and the−TS term
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vanishes. By keeping the volume per energy unit and the internal energy constant, from
(4.65) we obtain the relation

dG = V (P )dP. (4.66)

The Gibbs free energy can then be found by numerical integration. As with any system

Figure 4.2: The Gibbs free energy calculated by numerical integration of equation (4.66). The states
in the loop are unstable. The pressure where the phase transition takes place is the one of the crossing
point.

with an equation of state in the form of Figure 4.1, the Gibbs free energy would give up
to three equilibrium states for a range of pressures, as we see in Figure 4.2. All states
in the triangular loop (except the lower ones in the region with negative pressure) are to
be understood as unstable, and thus not present for a neutron star in its thermodynamical
ground state. Since the TOV equation do not allow for constant pressure along the radius
of the star for nonzero values of pressure or energy density, this phase transition will
physically translate in an abrupt jump in energy density at a specific pressure along the
radial direction. At the pressure of this jump (the one of the crossing point in Figure 4.2)
we will have an interface between a “liquid core” and a gaseous “atmosphere” of neutrons
obeying the Fermi-Dirac statistics. Ignoring the different particle compositions, this may
be intuitively understood by comparing such interface to the more familiar one between
sea and air on Earth. The phase transition pressure for an isotherm equation of state like
ours can be either found by plotting the Gibbs free energy as a function of the pressure and
check where it crosses itself (Figure 4.2), or by using the Maxwell construction method.
The latter is based on the fact that the net change in the Gibbs free energy in the loop is
zero: ∫

loop
dG = 0. (4.67)
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By then inserting the relation for the infinitesimal of the Gibbs free energy found in (4.66)
we have ∫

loop
V (P )dP = 0. (4.68)

This integration is shown graphically in Figure 4.3. Since we are now treating P as the
independent variable, it will be more clear to plot it along the x-axis. We divide our inte-
gration in four steps: 1) from the top point where the equation of state crosses the transition
pressure, Pcrit, for the first time. That would be the first time we reach the crossing point in
Figure 4.2 starting from below. Here we integrate up to the local maximum of the pressure.
In Figure 4.3 this corresponds to the areas shaded in light and dark red. 2) From the local
maximum in the pressure to the second occurrence of Pcrit. This is area shaded in dark red,
and since it goes backwards it cancels some of the shaded red area. 3) From the second
occurrence of Pcrit to the minimum in the pressure. This is the area corresponding to the
regions shaded in green and blue. Since integrating backwards, this area will have a minus
sign. 4) Finally, from the minimum in the pressure to the third and last occurrence of Pcrit.
This is the area shaded in blue. This has positive sign since we integrate forward with
respect to P , and cancels some of the area integrated in point 3). After all cancellations,

Figure 4.3: Integration in steps of (4.68).

we are only left with the regions shaded in light red, and the one in green. These have
opposite signs, and their sum must give zero because of (4.68). By calling the light red
area for A and the one in green for B, we write that

A−B = 0. (4.69)

Doing a Maxwell construction consists in finding the pressure Pcrit for which these two
areas are the same, and cancel each other. When found, we can return to plotting the vol-
ume along the x-axis, and illustrate the new, stable equation of state in Figure 4.4. Plotted
against the energy density, the new, stable equation of state will yield Figure 4.5. Both

57



Chapter 4. The σ–ω model

Figure 4.4: Pressure plotted against volume per MeV, with Maxwell construction. On the left panel
we see the shaded areas that must be the same when the right Pcrit is chosen. On the right panel the
straight line corresponds to the stable solutions, while the dashed line to the unstable ones.

Figure 4.5: Equation of state for neutron matter. The dashed line corresponds to the unstable solu-
tion, while the dash-and-point line corresponds to the equation of state of a relativistic Fermi gas in
(2.98) and (2.99). We see how this almost overlaps the low density region where we expected the
model to yield a Fermi gas, as opposed to the Fermi liquid on the right.

show the critical pressure Pcrit at 2.13× 1030 dyne/cm2. When considering nuclear mat-
ter, we would have to use the equation of state derived in chapter 4.1.4, the one occupying
all four degenerate states for the nucleons for each energy eigenstate: equations (4.54),
(4.55), (4.59) and (4.60). This equation of state does not present any special cases as for
neutron matter, but is similar in shape, when not considering the region of phase transition.
This is shown in Figure 4.6.
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Figure 4.6: Equation of state for neutron matter in red, for nuclear matter in blue.

4.2.3 The TOV equation applied to neutron and nuclear matter
When the equations of state for neutron and nuclear matter are obtained, it is possible to
couple them to the TOV and the mass equations in (2.51) and (2.66) respectively, and find
solutions for different central pressures in the same way we did for the free, cold, neutron
Fermi gas in Chapter 2. For neutron matter, the algorithm gives small stars for low central
pressures. For central pressures below the phase transition, stars are much smaller than
what obtained with the equation of state in (2.98) and (2.99). It gives though a maximum
mass atMmax = 2.60M� atR = 12.19 km radius. For nuclear matter the mass and radius
are bigger — M = 3.13M� and R = 18.57 km — as we would expect when allowing
double as many nucleons per state. The results are shown in picture 4.7. A discussion on
the “curls” in the spirals and the corresponding region with ∂M/∂ε0 > 0 on the right side
of plot in the right panel is taken in the Outlook in Chapter 7.

4.2.4 Computation
For this computation, the neutron mass m has been used as normalization constant. The
dimensionless fields become

gσσ =
gσ〈σ〉
m

,

gωω0 =
gω〈ω〉
m

,

the momenta and the Fermi momentum are

p =
p

m

pF =
pF
m
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Figure 4.7: Relationship between radii and total masses on the left, and between central densities
and total masses on the right. The dashed lines show the unstable solution. Red is for neutron matter,
blue for nuclear matter.

and the energy and pressure as

ε =
ε

m4

P =
P

m4
.

Expressing then the equation of state in terms of these dimensionless quantities, equations
(4.54) and (4.62) become

gσσ =

(
gσ
mσ

)2
fm2

2π2

∫ pF

0

dp
p2(1− gσσ)√
p2 + (1− gσσ)2

,

gωω0 =

(
gω
mω

)2
fm2p3

F

6π2
,

where f indicates the degeneracy: f = 4 for nuclear matter and f = 2 for neutron matter.
Since gσσ is only dependent on pF and not on p, we can substitute the latter in the σ-field
equation with u = p

(1−gσσ) and obtain

gσσ =

(
gσ
mσ

)2
f

2π2
m2 (1− gσσ)

3
∫ uF

0

du
u2√
u2 + 1

=

(
gσ
mσ

)2
f

4π2
m2 (1− gσσ)

3

(
uF

√
u2
F + 1− sinh−1 (uF )

)
. (4.70)

The values of gσσ can be then found by moving all terms to the left side and using a
root finding function for different values of pF . From the same values we can also find
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the other needed quantities like gωω0 and the integrals in both the energy density and
pressure expression. These are also analytically solvable (as seen in (2.98) and (2.99)).
When we have evaluated enough data points, we can interpolate the solutions in order to
have a continuous equation of state. This can then be coupled to the TOV and the mass
equations, obtaining a system of coupled differential equations with the central pressure as
the boundary term, uniquely defining the mass, the radius and the structure of the star. The
system can finally be evaluated for many different central pressures to obtain Figure 4.7.
When making the Maxwell construction, the code loops through all possible straight lines
between 0 and the local maximum in the pressure (at around 0.2× 1032 dyne/cm2, as we
can see in Figures 4.2 and 4.4). For each of these lines, the code finds the crossing points
and numerically integrates the enclosed areas. The pressure that yields the least difference
between the two enclosed areas corresponds to our closest guess for the phase transition
pressure.
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Chapter 5
The npeµ model

5.1 The npeµ model
The σ–ω model lays the framework for a more general relativistic mean-field (RMF) the-
ory. Even when taking into consideration the strong nuclear force between the nucleons,
there are several aspects we have not taken into account when just using the σ–ω model.
Some of these aspects are linked to the bulk properties of nuclear matter. The σ–ω model
has two parameters (gσ/mσ and gω/mω) and these allow us to fix only two bulk proper-
ties, whereas a model with five parameters could help us fixing five properties: the binding
energy per nucleon at saturation (B/A), the effective mass at saturation (m∗), the com-
pression modulus (K), the baryon density at saturation (ρ0) and the symmetry energy
density (asym). In Compact Stars by Glendenning [10] and in [41] the parameters are
fixed using empirical values of B/A and ρ0, but fixing only two bulk properties yields
values for the others that are far from the ones observed in experiments. Most notably we
would get a compression modulus of K ≈ 550 MeV opposed to the accepted empirical
value of K = 234 MeV [28]. Other factors that the σ–ω model does not consider are the
beta stability of neutrons in neutron matter (there should be a small concentration of pro-
tons and electrons in dynamic beta equilibrium with neutrons), and the condition of charge
neutrality. As it will be explained in this chapter, we can account for all these five bulk
properties by introducing self-interactions in the σ field, and an isospin symmetry restor-
ing force mediated by the ρ meson. The global charge neutrality condition is satisfied by
the introduction of leptons (electrons and muons) in the model.

5.1.1 Self-interaction for the σ meson

In order to account for two more bulk properties for high-density nuclear matter we can
introduce two self-interaction terms for the scalar field to the Lagrangian, where the cou-
pling constants b and c will be the parameters helping us reproducing the empirical values
of the compression modulus K and the reduced mass m∗ at saturation density. The first
ones to introduce the self interactions in the σ field were Boguta and Bodmer in 1977 [5].
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The two self interacting terms will be cubic and quartic in the field, and we can define the
potential

U(σ) =
1

3
mnb (gσσ)

3
+

1

4
c (gσσ)

4
. (5.1)

In (5.1), b and c are our new parameters and mn = 938 MeV is a constant (originally
thought to be like the neutron mass) which makes b dimensionless and the whole term with
dimension MeV4, as we should expect for a Lagrangian term. Adding the self-interaction
term to the Lagrangian in (4.21) gives

L = ψ
[
iγµ(∂µ + igωω

µ)− (m− gσσ)
]
ψ +

1

2

[
(∂µσ)(∂µσ)−m2

σσ
2
]

− 1

4
ωµνωµν +

1

2
m2
ωω

µωµ −
1

3
mnb (gσσ)

3 − 1

4
c (gσσ)

4
, (5.2)

where the choice of sign for the self-interacting terms bear no physical meaning (the minus
sign can always be absorbed in the chosen values of b and c). We can obtain the new Euler-
Lagrange equation for the σ field following the steps shown in the appendix until (A.13),
which with the self-interaction term would instead yield

∂ (Lσ + Lint − U(σ))

∂σ
= −m2

σσ(x) + gσ
(
ψψ −mnb(gσσ(x))2 − c(gσσ(x))3

)
. (5.3)

The mean-field version of this would be

m2
σ〈σ〉 = gσ

(
〈ψψ〉 −mnb(gσ〈σ〉)2 − c(gσ〈σ〉)3

)
. (5.4)

The 〈ψψ〉 term was already computed in (4.53). Plugging the result and rewriting in terms
of gσ〈σ〉 we get

gσ〈σ〉=
(
gσ
mσ

)2
[
−mnb (gσ〈σ〉)2−c (gσ〈σ〉)3

+
2

π2

∫ pF

0

dp
p2(m−gσ〈σ〉)√
p2+(m−gσ〈σ〉)

]
. (5.5)

The expectation value of the Lagrangian in (5.2) is unmodified except for the new terms,

〈L〉 = −1

2
m2
σ〈σ〉2 +

1

2
m2
ω〈ω0〉2 −

1

3
mnb (gσ〈σ〉)3 − 1

4
c (gσ〈σ〉)4

. (5.6)

The equation of state with the scalar self-interaction is

ε =
1

2
m2
σ〈σ〉2 +

1

2
m2
ω〈ω0〉2 +

1

3
mnb (gσ〈σ〉)3

+
1

4
c (gσ〈σ〉)4

+
2

π2

∫ pF

0

dpp2
√
p2 + (m− gσ〈σ〉)2,

(5.7)

P = −1

2
m2
σ〈σ〉2 +

1

2
m2
ω〈ω0〉2 −

1

3
bm (gσ〈σ〉)3 − 1

4
c (gσ〈σ〉)4

+
2

3π2

∫ pF

0

dp
p4√

p2 + (m− gσ〈σ〉)2
.

(5.8)
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By setting b = 8.659 · 10−3 and c = −2.421 · 10−3 we fix the value of the compression
modulus to K = 240 MeV and the reduced mass at saturation density to m∗ = 0.78m
[10]. Before proceeding, it is important to address the possible problem arising from the
negative sign for c. A negative quartic term in the Lagrangian would make the energy
density in (5.7) unbounded from below. Although this would be a theoretical problem for
a quantum field theory regarding single particles, the mean-field approximation is purely
phenomenological and only valid for the statistical limit of many interacting baryons. The
model is in addition well behaved in the range of interest, and does not show problems
before long beyond the range of validity. This is enough for our effective theory. The
value of gσ〈σ〉 must in fact satisfy equation (5.5), where it grows monotonically from 0 to
m, approaching asymptotically the latter value only at high densities [17].

5.1.2 The ρ meson
The ρ meson is a three-component, charged vector meson defined as

ρµ = (ρµ1 , ρ
µ
2 , ρ

µ
3 ), (5.9)

Each ρiµ component behaves as the ω meson, so the free Lagrangian can be compactly
written as

Lρ,f = −1

4
ρµν · ρµν +

1

2
m2
ρρµ · ρµ, (5.10)

where ρiµν = (∂µρiν − ∂νρiµ). Since the meson is massive, we use the same reasoning as
for the ω meson to conclude that every component must obey the Klein-Gordon equation

(� +m2
ρ)ρ

µ
i = 0. (5.11)

The Lagrangian in (5.10) is invariant under isospin rotation. We can show this by trans-
forming the field as ρµ → ρµ −Λ× ρµ, and we see that

L′ρ,f = −1

4

[[
∂µ(ρν −Λ× ρν)− ∂ν(ρµ −Λ× ρµ)

]
·
[
∂µ(ρν −Λ× ρν)− ∂ν(ρµ −Λ× ρµ)

]]

+
1

2
(ρµ −Λ× ρµ) · (ρµ −Λ× ρµ)

(5.12)

= −1

4
(ρµν −Λ× ρµν) · (ρµν −Λ× ρµν) +

1

2

(
ρµ · ρµ +O(Λ2)

)
= −1

4

(
ρµν · ρµν +O(Λ2)

)
+

1

2

(
ρµ · ρµ +O(Λ2)

)
= −1

4
ρµν · ρµν +

1

2
m2
ρρµ · ρµ = Lρ,f,

where all the dot products such as ρµ · (Λ × ρµ) give zero (since the cross product of a
vector is always orthogonal to itself) and if we treat Λ an infinitesimal rotation in isospin
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space we can safely discard theO(Λ2) terms. This symmetry leads to a conserved current.
By rewriting the field transformation in index notation

ρiν → ρiν − εijkΛjρkν , (5.13)

we may describe the variation δρ as

δρiν = −
∑
j

εijkρkν (5.14)

and using the equation for the Noether current in (3.39) we obtain

Iµρ = −
∑
j

δLρ
δ(∂µρiν)

εijkρkν

= −ρν ×
δLρ

δ(∂µρν)

= ρν × ρµν , (5.15)

where all the steps are shown in the appendix. The proton and the neutron in this model
are treated as the same particle with opposite projection along the third axis in isospin
space: the proton with projection 1/2 and the neutron with projection −1/2. If we do
not account for external factors such as the electrical charge, the ground state is achieved
when all the degenerate energy states are occupied, and there are as many neutrons as
protons. We call this symmetric nuclear matter. The valley of β stability for ordinary
atomic nuclei is an illustration of this reasoning, where the number of protons tends to
match the one of neutrons, only to deviate when the electromagnetic repulsion between
protons becomes too big to be ignored. The ground state for nuclear matter, as long as
only isospin is concerned, is supposed to be symmetric nuclear matter, and all other states
would be excited states. We can translate this observation into algebra by introducing a
symmetry restoring force in the form of a term in the energy density which is quadratic in
the deviation from symmetry, such that the least energy is achieved when the proton and
the neutron densities are alike. The ρ meson forms a charged isospin triplet and can be
chosen to mediate such force between nucleons. This means that we should add a term
to the Lagrangian which describes the interaction between the nucleons and the meson.
Following the reasoning in [10], the ρ meson should couple to the sum of the nucleon and
meson isospin currents in (4.13) and (5.15), so that

Lρ,int = −gρρµ ·
(

1

2
ψγµτψ + ρν × ρµν

)
. (5.16)

Unfortunately this is not entirely correct, since the ρ current in the second term in (5.16)
contains the derivative of the field, which means it would yield another term to the current.
This is shown by applying the Noether current expression (3.39) to this current:

δLρ,int

δ(∂µρν)
δρν = −ρν ×

δLρ,int

δ(∂µρν)

= 2gρ (ρν × ρµ)× ρν (5.17)
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(all steps are shown in the appendix). Adding this last term to (5.16) we obtain

Lρ,int = −gρρµ ·
(

1

2
ψγµτψ + ρν × ρµν + 2gρ (ρν × ρµ)× ρν

)
= −gρρµ · Iµ. (5.18)

With this new interaction term, we can find the new equations of motion for the ψ field:[
γµ
(
i∂µ − gωωµ(x)− 1

2
gρτ · ρµ(x)

)
−
(
m− gσσ(x)

)]
ψ(x) = 0. (5.19)

When trying to find the mean ρ field, we can simplify the Lagrangian and the equations of
motion by considering some facts. First, the ρ meson can be considered as two complex
fields and one real,

ρµ =
(
ρµ±, ρ

µ
3

)
, (5.20)

where the complex fields ρµ± can be defined as the raising and lowering operators in isospin
space for the third axis (analogously as in spin space):

ρµ± =
1√
2

(ρµ1 ± iρ
µ
2 ) . (5.21)

The projection on the third axis in isospin space is the one distinguishing protons from
neutrons. In a ground state configuration we would expect the neutron and proton densities
to be constant, therefore the expectation value for the raising or lowering operators should
be zero. The only nonzero component of ρ would then be ρµ3 . Secondly, as for the ω
meson, following the same steps leading to (4.50) we should expect the spatial components
to disappear, leaving only the ρ0

3 term (henceforth referred as ρ03). This simplifies the
expectation of Lρ considerably. The derivatives disappear from both Lρ,f and Lρ,int and
the third term in Lρ,int also disappears since the only vector surviving from the reasoning
above is ρ0 and the cross product between parallel vectors gives zero. Being left with only
the time component of one of the components of ρ vector, the form of the equation of
motion for the mean ρ field will be analogous to the one for the ω field:

gρ〈ρ03〉 =
1

2

(
gρ
mρ

)2

〈ψγ0τ3ψ〉 =
1

2

(
gρ
mρ

)2

(ρp − ρn) (5.22)

gρ〈ρi3〉 =
1

2

(
gρ
mρ

)2

〈ψγiτ3ψ〉 = 0, (5.23)

where the value of 〈ψγ0τ3ψ〉 was already found in (4.17). What then survives of the ρ free
Lagrangian is

〈Lρ,free〉 =
1

2
m2
ρ〈ρ03〉2. (5.24)
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Writing all the fields of the theory, we obtain:

gσ〈σ〉 =

(
gσ
mσ

)2
(
−mnb (gσ〈σ〉)2 − c (gσ〈σ〉)3

+
1

π2

∑
B

∫ pB

0

p2(m− gσ〈σ〉)dp√
p2 + (m− gσ〈σ〉)2

)
,

(5.25)

gω〈ω0〉 =

(
gω
mω

)2

ρ, (5.26)

gρ〈ρ03〉 =
1

2

(
gρ
mρ

)2

(ρp − ρn) , (5.27)[
γµ
(
i∂µ − gω〈ωµ〉 −

1

2
gρτ3〈ρµ3〉

)
−
(
m− gσ〈σ〉

)]
ψ(x) = 0, (5.28)

where ρ =
∑
B ρB is the total baryon density, each density is defined at T = 0 as

ρB =
pB

3

3π2
. (5.29)

Here the sum overB is over the baryons in the model (here only neutrons and protons) and
pn and pp are the Fermi momenta of the neutron and the proton respectively. Recalling
equations (4.32) and (4.33), we need to find the new values for 〈ψγ0p0ψ〉 and 〈ψγipiψ〉.
In order to find these, it is necessary to find the new energy eigenvalues for the nucleons.
These are found by following the same steps leading to (4.51). First we find the Fourier
transform of equation (5.19) and consider the equation of motion in momentum space:[

γµ
(
pµ − gω〈ω0〉 −

1

2
gρτ3〈ρ03〉

)
−
(
m− gσ〈σ〉

)]
ψ(p) = 0. (5.30)

Recalling then the procedure leading to the energy eigenvalues in the σ–ω model, we
introduce the reduced mass m∗, collect the four-vectors under Kµ and repeat the same
steps from (4.35) to (4.39), obtaining this time

eB(p) = gω〈ω0〉+ IBgρ〈ρ03〉+
√
p2 +m∗2, (5.31)

with IB being the projection of isospin on the third axis. Here we notice how the new term
gives a positive value when the baryon taken into consideration is in abundance compared
to the other, increasing its energy. Since the ground state is per definition the least energetic
state, these states are isospin unfavored, compared to the symmetric ones. As we will see
when treating charge neutrality and beta-decay balance, the isospin symmetric state is not
necessarily the least energetic one. On the lines of (4.57) and (4.58) we then obtain

〈ψγ0p0〉 =
1

π2

∑
B

∫ pB

0

p2
(
gω〈ω0〉+ IBgρ〈ρ03〉+

√
p2 +m∗2

)
dp (5.32)

=m2
ω〈ω0〉2 +m2

ρ〈ρ03〉2 +
1

π2

∑
B

∫ pB

0

p2
√
p2 +m∗2dp (5.33)

68



5.1 The npeµ model

and

〈ψγipiψ〉 =
∑
B

1

π2

∫ pB

0

p2dp
p2√

p2 + (m− gσ〈σ〉)2
, (5.34)

yielding finally

ε =
1

2
m2
σ〈σ〉2 +

1

2
m2
ω〈ω0〉2 +

1

2
m2
ρ〈ρ03〉2 +

1

3
mnb (gσ〈σ〉)3

+
1

4
c (gσ〈σ〉)4

+
∑
B

1

π2

∫ pB

0

dpp2
√
p2 + (m− gσ〈σ〉)2, (5.35)

P = −1

2
m2
σ〈σ〉2 +

1

2
m2
ω〈ω0〉2 +

1

2
m2
ρ〈ρ03〉2 −

1

3
mnb (gσ〈σ〉)3 − 1

4
c (gσ〈σ〉)4

+
∑
B

1

3π2

∫ pB

0

dp
p4√

p2 + (m− gσ〈σ〉)2
. (5.36)

5.1.3 Charge neutrality and beta decay
The last parts we would like to incorporate in our equation of state is charge neutrality
by introducing leptons such as electrons and muons. These are not affected by the strong
nuclear force, and only interact with the weak and electromagnetic force. We will only
treat the weak interaction by enforcing beta stability and muon decay statistically, and
ignoring the Coulomb contribution of the leptons to the energy density and the pressure.
This means that they will contribute to the Lagrangian only with their free Dirac equations:

Lleptons =
∑
λ

ψλ (iγµ∂µ −mλ)ψλ. (5.37)

Here the sum runs over the leptons in the theory (electrons and muons), while the energy
eigenvalues are given by

ee(p) =
√
p2 +m2

e, (5.38)

eµ(p) =
√
p2 +m2

µ. (5.39)

Both electrons and muons are negatively charged. In order to enforce global charge neu-
trality we need to find an expression for their charge density, and say that it must be as big
as the positive charge density from the protons. Fortunately the absolute value of charge
of all these particles is of the same strength (+1 or −1), so this is equivalent to saying that
the proton density must be the same as the sum of electron and muon densities,

ρp = ρe + ρµ =
1

3π2

(
p3
e + p3

µ

)
. (5.40)

With the introduction of electrons, we should enforce statistical beta stability, i.e. the fact
that in β equilibrium as many neutrons decay into a protons and electrons as there are
electron captures from protons, forming new neutrons:

n↔ p+ e−(+νe). (5.41)
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The term in parenthesis is an electronic antineutrino. In this model we will ignore neutrinos
and antineutrinos, since their very small masses make their contribution to the equation of
state negligible as long as we assume uniform nuclear matter [17]. Mathematically, this
equilibrium translates into the equality of their chemical potentials,

µn = µp + µe (5.42)

which, for T = 0, are the same as their Fermi energy, in other words their energy eigen-
values evaluated at their Fermi momenta:

en(pn) = ep(pp) + ee(pe). (5.43)

At high Fermi momenta we would also expect the inverse muon decay to happen, i.e. the
capture from an electron of an anti-electronic and a muonic neutrino to give a muon:

e− + νe + νµ ↔ µ. (5.44)

Neglecting the (nearly) massless neutrinos, we can express this equilibrium by chemical
potentials,

µe = µµ, (5.45)

or, by the T = 0 idealization, their energy eigenvalues evaluated at Fermi momentum

√
p2
e +m2

e =
√
p2
µ +m2

µ. (5.46)

Since the muon mass (mµ = 105.658 MeV) is much bigger than the electron mass (me =
0.511 MeV) [31], these particles are highly unstable and decay into electrons for low
densities. Muons will not appear before the total energy of the electron is enough to
be transformed into the rest mass of a muon at rest. From (5.46) we will then have the
following condition for muon presence:

p2
e > m2

µ −m2
e. (5.47)

Electrons and muons give a contribution with their energies and masses to the equation of
state. Their contribution to the pressure and energy density comes from 〈ψλγ0p0ψλ〉 and
〈ψλγipiψλ〉:

〈ψλγ0p0ψλ〉 =
∑
λ

1

π2

∫ pλ

0

p2dp
√
p2 +m2

λ, (5.48)

1

3
〈ψλγipiψλ〉 =

∑
λ

1

3π2

∫ pλ

0

p4√
p2 +m2

λ

dp, (5.49)
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giving

ε =
1

2
m2
σ〈σ〉2 +

1

2
m2
ω〈ω0〉2 +

1

2
m2
ρ〈ρ03〉2 +

1

3
mnb (gσ〈σ〉)3

+
1

4
c (gσ〈σ〉)4

+
∑
λ

1

π2

∫ pλ

0

p2dp
√
p2 +m2

λ

+
∑
B

1

π2

∫ pB

0

dpp2
√
p2 + (m− gσ〈σ〉)2, (5.50)

P =− 1

2
m2
σ〈σ〉2 +

1

2
m2
ω〈ω0〉2 +

1

2
m2
ρ〈ρ03〉2 −

1

3
mnb (gσ〈σ〉)3 − 1

4
c (gσ〈σ〉)4

+
∑
λ

1

3π2

∫ pλ

0

p4√
p2 +m2

λ

+
∑
B

1

3π2

∫ pB

0

dp
p4√

p2 + (m− gσ〈σ〉)2
. (5.51)

5.1.4 The crust
Neutron stars were initially thought as densely packed neutrons, held together by the grav-
itational pull and obeying the laws of statistical quantum physics. This was the idea be-
hind the papers from Tolman [40], Oppenheimer and Volkoff [29] in 1939, reproduced in
the results of Section 2.3.3. This is an unrealistic idealization for many reasons already
discussed, but also because the energy density grows from zero at the surface, and the neu-
tron matter has to go through a phase with sub-nuclear density. Before reaching nuclear
densities we should expect more familiar matter made of atoms, ions and plasma, before
becoming proper nuclear matter. We may call this outer layer the crust of the neutron star.
A good description of the crust is given in the paper from Baym, Pethick and Sutherland
(hereafter referred as BPS) in 1971 [4]. When the matter in a neutron star is in its ground
state and at T = 0, we should expect a region to be in thermodynamical equilibrium when
its Gibbs energy is minimized, i.e. matter prefers to be in its most thermodynamically sta-
ble state. This reasoning leads us to think that the outermost layer of a neutron star, when
neglecting the possibility for an atmosphere, must consist of a lattice of 56Fe nuclei, the
most stable for such densities and pressures. This remains the ground state up to ε ≈ 107

g/cm3, where the pressure becomes high enough to make an heavier atomic nucleus more
stable, 62Ni. The same situation occurs at higher densities: 64Fe becomes the most stable
nucleus and appears at 2.71 × 108 g/cm3, 66Ni at 1.30 × 109 g/cm3 etc. When a nucleus
becomes more energetically favorable than another, we have a phase transition similar to
the one considered in the σ–ω model, where we have a jump in energy density for constant
pressure. We have 13 such phase transitions according to Haensel & Pichon [16], where
nuclei becomes bigger and bigger, and more neutron rich. This phase of crust ends at den-
sities around 4.32 × 1011 g/cm3, where µn −mn (the chemical potential of the neutron
minus its mass) reaches the value of its lowest continuum state in the lattice. At these
densities neutrons start to ”drip out” the nuclei and populate the continuum energy range,
in effect being a neutron gas in between the lattice of nuclei. As the energy density and the
pressure increase the more we approach the center of the star, we meet atomic nuclei with
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different shapes than spherical (first elongated structures as rods, then plates). It comes
then a point when nuclear matter occupies more than 50% of the volume, and we would
have first plates, then rods and finally bubbles of neutron gas inside blocks of nuclear mat-
ter [3] [17]. This transition between spherical nuclei to uniform nuclear matter happens
between ε ≈ 1013.5 g/cm3 and ε = εcc ≈ 1014 g/cm3, where we name the layer where this
last density occur as the crust-core interface. The core has then densities above εcc, where
we can use our RMF theory to describe the nuclear matter in it. Values for the equation
of state in the crust region are usually given in tables. Although not a big problem, it is
easier to use parametrized versions as the ones shown in [17] for computation. The two
equations of state for the crust region are the Skyrme Leon (SLy) developed by Douchin
and Haensel [8] and the Friedman Pandharipande and Skyrme (FPS) developed by Pand-
haripande and Ravenhall [30]. These are quite comparable, the only difference being their
modeling of the crust-core interface. While the FPS model takes care of the exotic nuclear
shapes (rods, plates etc.) near εcc, the SLy model models the interface as a small phase
transition, with a relative jump in energy density of 1%. While the structure of the neutron
star may be important for effects such as neutrino emission and elastic properties of the
matter, their effect on the final equation of state is small enough to be neglected. For our
calculation, we will be using the FPS analytical approximation from [17]:

P̃ =
a1 + a2ε̃+ a3ε̃

3

1 + a4ε̃
f0(a5 (ε̃− a6)) + (a7 + a8ε̃) (a9 (a10 − ε̃))

+ (a11 + a12ε̃) f0 (a13 (a14 − ε̃)) + (a15 + a16ε̃) f0 (a17 (a18 − ε̃)) , (5.52)

where P̃ and ε̃ are respectively the logarithms in base 10 of the pressure and the energy
density measured in dyne/cm2 and g/cm3, and a1−18 are fitting constants, with values
listed in Table 5.1.

a1 a2 a3 a4 a5 a6

11.4950 -22.775 1.5707 4.3 14.08 27.80

a7 a8 a9 a10 a11 a12

-1.653 1.50 14.67 6.22 6.121 0.005925

a13 a14 a15 a16 a17 a18

0.16326 6.48 11.4971 19.105 0.8938 6.54

Table 5.1: Fitting parameters for the FPS crust equation of state, as retrieved from [17].

The function f0 is defined as

f0(x) =
1

ex + 1
. (5.53)

5.2 Mass-radius relation and particle population
The equation of state obtained for the npeµ model, i.e. the one containing neutrons, pro-
tons, electrons and muons given in (5.50) and (5.51) is shown in Figure 5.1. It is softer (i.e.
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it grows more slowly) than the one developed in the σ–ω model for both neutron and nu-
clear matter. When coupled to the TOV and mass equations it yields the mass-radius rela-
tion shown in Figure 5.2. This equation of state gives a maximum mass of M/M� = 2.02
and a corresponding minimum radius of R = 11.31 km. At the crust-core interface the

Figure 5.1: Equation of state for npeµ matter.

Figure 5.2: Relationship between radii and total masses on the left, and between central densities
and total masses on the right, for npeµ matter. The dashed lines show the unstable solutions.

crust’s atoms are very neutron rich, and the star’s matter may be approximated as purely
consisting of neutrons. Our calculations take then this assumption as a starting point in
order to find the particle populations at different densities. As we can see in Figure 5.3,
the relative neutron density decreases as a result of the increasing isospin restoring force,
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while charge neutrality is always preserved by the presence of electrons, and later muons.
These appear when the momentum of the electrons is big enough to allow the reaction in
(5.44) to happen, at ρ = 0.128ρ0. Here we will idealize the core of neutron stars as pure
npeµ matter. The particle relative population is shown in Figure 5.3.

5.2.1 Computation
The RMF approximation of dense npeµmatter consists of a system of nonlinear equations:

ρ = ρp + ρn,

ρp =
p3
p

3π2
,

ρn =
p3
n

3π2
,

gσ〈σ〉 =

(
gσ
mσ

)2
[

1

π2

(∫ pp

0

dp
p2(m− gσ〈σ〉)√
p2 + (m− gσ〈σ〉)

+

∫ pn

0

dp
p2(m− gσ〈σ〉)√
p2 + (m− gσ〈σ〉)

)
−mnb (gσ〈σ〉)2 − c (gσ〈σ〉)3

]
,

gω〈ω0〉 =

(
gω
mω

)2

(ρn + ρp) ,

gρ〈ρ03〉 =

(
gρ
mρ

)2(
1

2
ρp −

1

2
ρn

)
,

µp = ep(pp) = gω〈ω0〉+
1

2
gρ〈ρ03〉+

√
p2
p +m∗2,

µn = en(pn) = gω〈ω0〉 −
1

2
gρ〈ρ03〉+

√
p2
n +m∗2,

µe = ee(pe) =
√
m2
e + p2

e,

µµ = eµ(pµ) =
√
m2
µ + p2

µ,

µn = µp + µe,

µe = µµ,

ρp =
1

3π2

(
p3
e + p3

µ

)
.

This is just the collection of the equations we have already discussed throughout this
chapter. The first three are the baryon, the proton and neutron particle densities (5.29),
number 4, 5 and 6 are the σ, ω0 and ρ03 mean-fields encountered in (5.25), (5.26) and
(5.27). Number 7, 8, 9 and 10 describe the chemical potential at T = 0 for every baryon
and lepton species in terms of their energy eigenvalue at Fermi momentum (5.31), 11
and 12 the electron capture/neutron beta decay (5.42) and neutrino capture/muon decay
at thermodynamical equilibrium (5.45) respectively, and lastly the charge neutrality con-
dition (5.40). Before muon appearance, pµ is set to 0. Even if some of these equations
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Figure 5.3: Relative particle populations at various densities. Blue indicates the relative population
for neutrons, red for protons, dashed blue for electrons and dashed black for muons.

are nonlinear, many other are linear and can be substituted into the others, diminishing the
number of equations that eventually will have to be evaluated in a numerical computation.
After some tedious algebra, we end up with three nonlinear equations and four unknowns:

gσ〈σ〉 −
(
gσ
mσ

)2
[
− bmn(gσ〈σ〉)2 − c(gσ〈σ〉)3

+m∗3

((
pp
m∗

√( pp
m∗

)2

+ 1− sinh−1
( pp
m∗

))

+

(
pn
m∗

√( pn
m∗

)2

+ 1− sinh−1
( pn
m∗

)))]
= 0,

(5.54)

gρ〈ρ03〉+
√
p2
p +m∗2 −

√
p2
n +m∗2 +

√
p2
e +m2

e = 0, (5.55)

pp − pe = 0, (5.56)

where the last one changes to

pp −
(
p3
e + p3

µ

)1/3
= 0 (5.57)

after the condition in (5.47) is met. In (5.54) the integrals in (5.25) are written explicitly,
as seen in (4.70).
The four unknowns are ρ, ρn, gσ〈σ〉 and pe, and the other variables in (5.54), (5.55), (5.56)
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and (5.57) are uniquely defined in terms of these:

pp ≡
(
3π2(ρ− ρn)

)1/3
,

pn ≡
(
3π2ρn

)1/3
,

gρ〈ρ03〉 ≡
(
gρ
mρ

)2(
1

2
ρ− ρn

)
,

m∗ ≡ m− gσ〈σ〉,

pµ ≡
√
m2
e + p2

e −m2
µ.

This system of equations can now be evaluated for a range of values of ρ, i.e. every value
of ρ gives unique values for ρn, gσ〈σ〉 and pe. With these we can obtain all other values
of interest in order to find solutions to the equation of state. The computation consists in
creating an array of values for ρ, and then building a long equation where all left sides
of equations (5.54), (5.55) and (5.56) — the last one substituted by (5.57) after muon
appearance — are squared and summed, for then trying to find a root for the equation. The
values that the four unknowns have to have in order to give zero in the sum of squares are
the values that satisfy the original system of equations. The found values of ρn, gσ〈σ〉
and pe will be saved in respective arrays, and used as guesses for the next iteration where
we will be searching for the values of the same unknowns for slightly increased value
of ρ. With every set of four values we will be able to compute the energy density and
the pressure in (5.50) and (5.51), giving us a numerical solution for the equation of state,
which can be used together with the TOV and mass equations to give the relations in Figure
5.2.
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Chapter 6
Renormalization

We have previously shown how we can idealize neutron star matter as a cold Fermi gas
consisting of noninteracting neutrons (Chapter 2), how we can derive the same equation of
state from QFT and thermodynamical principles (Chapter 3), for then including nucleon
interactions in the framework of the σ–ω model using the RMF approximation (Chapter
4). Later we expanded the σ–ω model to include electrons, muons, the ρ meson (Chapter
5) and to account for scalar self-interactions, isospin asymmetries, beta decay, and charge
neutrality. However, in order to retrieve the same equations for the relativistic free Fermi
gas, in Chapter 3 we have ignored the first, divergent, vacuum term in the partition function
in (3.80). If we were to derive the npeµ equation of state using the more fundamental TFT
framework, we would expect to obtain a similar term, as we will show in this chapter.

6.1 Path integral derivation of the RMF npeµ model
Using the same formalism we developed and used in Chapter 3, we are expected to obtain
the same equation of state for npeµ matter, plus a vacuum term. The derivations in this
section follow loosely the ones in [33]. Accounting for the chemical potentials of every
fermion, the Lagrangian of the npeµ model is

L =
∑
B

ψB

(
iγµ∂µ − gωγµωµ + gσσ −

1

2
gρρµ · γµτ −mB + µBγ

0
)
ψB

−1

3
b̃(gσσ)3 − 1

4
c(gσσ)4 − gρρ ·

(
ρν × ρµν + 2gρ(ρ

ν × ρµ)× ρν
)

+
∑
λ

ψλ
(
iγµ∂µ −mλ + µλγ

0
)
ψλ

+
1

2

(
(∂µσ)(∂µσ)−m2

σσ
2 − 1

2
ωµνωµν +m2

ωω
µωµ −

1

2
ρµν · ρµν +m2

ρρ
µ · ρµ

)
,

(6.1)

where the B and the λ sums run over the baryons (protons and neutrons) and the leptons
(electrons and muons) of the model respectively, and b̃ is shorthand for the former coupling
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constant b times 938 MeV: b̃ = 938 × b MeV. The first line of (6.1) takes care of the
Dirac Lagrangian for both baryons and their interaction terms with the meson fields. The
second line includes the self-interactions of the mesons, in the third line is written the
Dirac Lagrangian for the two lepton species of the theory, and the fourth line collects the
free Lagrangians for the three meson fields. For such a Lagrangian, the partition function
would take the form

Z =

∫ ∏
B

(
DψBDψB

)∏
λ

(
DψλDψλ

)
DσDωDρ exp

[∫ β

0

dτ
∫

d3xL

]
. (6.2)

Allowing the meson fields to have nonzero expectation values, we may rewrite the σ, ω
and ρ fields in terms of this and a fluctuation about the mean value:

σ → 〈σ〉+ σ̃, (6.3)
ωµ → 〈ωµ〉+ ω̃µ, (6.4)
ρµ → 〈ρµ〉+ ρ̃µ. (6.5)

The RMF approximation then consists in neglecting these fluctuations. We can use the
same arguments from Chapters 4 and 5 to find that the only nonzero terms of the ω and
ρ fields in static equilibrium are 〈ω0〉 and 〈ρ03〉. In addition, we can define the baryonic
effective mass m∗B and effective chemical potential µ∗B as,

m∗B =mB − gσ〈σ〉, (6.6)
µ∗B =µB − gω〈ω0〉 − IBgρ〈ρ03〉, (6.7)

where IB is the projection of the isospin along the third axis (1/2 for protons and −1/2
for neutrons). With these simplifications, the Lagrangian in (6.1) becomes

Lmean =
∑
B

ψB

(
iγµ∂µ −m∗B + µ∗Bγ

0
)
ψB +

∑
λ

ψλ

(
iγµ∂µ −mλ + µλγ

0
)
ψλ

−1

2
m2
σ〈σ〉2 +

1

2
m2
ω〈ω0〉2 +

1

2
m2
ρ〈ρ03〉2 −

1

3
b̃(gσ〈σ〉)3 − 1

4
c(gσ〈σ〉)4,

(6.8)

and, subsequently, the partition function in (6.2) becomes

Z =

∫ ∏
B

(
DψBDψB

)∏
λ

(
DψλDψλ

)
exp

[∫ β

0

dτ
∫

d3xLmean

]
or, in explicit form,

Z = exp

[
Vβ

(
−1

2
m2
σ〈σ〉2+

1

2
m2
ω〈ω0〉2+

1

2
m2
ρ〈ρ03〉2−

1

3
b̃(gσ〈σ〉)3− 1

4
c(gσ〈σ〉)4

)]
×
∫ ∏

B

(
DψBDψB

)
exp

[∫ β

0

dτ
∫

d3x
∑
B

ψB

(
iγµ∂µ−m∗B+µ∗Bγ

0
)
ψB

]
(6.9)

×
∫ ∏

λ

(
DψλDψλ

)
exp

[∫ β

0

dτ
∫

d3x
∑
λ

ψλ

(
iγµ∂µ −mλ + µλγ

0
)
ψλ

]
.
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Here we have moved the exponentials involving only the meson fields out of the path-
integral and we have divided the baryon and lepton path-integrals for more clarity. These
are four Dirac path-integrals in the same form as those evaluated in Chapter 3, and the
exponentials can be easily translated into (3.56). By following exactly the same steps
leading to (3.80), we obtain

lnZ =

[
V β

(
−1

2
m2
σ〈σ〉2 +

1

2
m2
ω〈ω0〉2 +

1

2
m2
ρ〈ρ03〉2 −

1

3
b̃(gσ〈σ〉)3 − 1

4
c(gσ〈σ〉)4

)]
+ 2V

∫
d3p

(2π)3

{
βω∗ +

∑
B

[
ln
(
e−β(ω∗B+µ∗B) + 1

)
+ ln

(
e−β(ω∗B−µ

∗
B) + 1

)]

+
∑
λ

[
ln
(
e−β(ωλ+µλ) + 1

)
+ ln

(
e−β(ωλ−µλ) + 1

)]}
, (6.10)

where β = 1/T , T is the temperature, and

ω∗B =
√
p2 +m∗2B , (6.11)

ωλ =
√
p2 +m2

λ, (6.12)

ω∗ =
∑
B

ω∗B +
∑
λ

ωλ. (6.13)

We can then use the thermodynamical identities in (3.4) and (3.5) to obtain the equation
of state. Starting from the pressure, we follow the steps leading to (3.81) — this time
retaining the divergent term— and obtain

P =
∂(T lnZ)

∂V

=− 1

2
m2
σ〈σ〉2 +

1

2
m2
ω〈ω0〉2 +

1

2
m2
ρ〈ρ03〉2 −

1

3
b̃(gσ〈σ〉)3 − 1

4
c(gσ〈σ〉)4

+
1

3π2

∑
B

∫ ∞
0

p4dp
ω∗B

(
1

e(ω∗B−µ∗B)/T + 1
+

1

e(ω∗B+µ∗B)/T + 1

)
+

1

3π2

∑
λ

∫ ∞
0

p4dp
ωλ

(
1

e(ωλ−µλ)/T + 1
+

1

e(ωλ+µλ)/T + 1

)

+ 2

∫
d3p

(2π)3
ω∗.

(6.14)

The expressions for three meson fields can then be found by maximizing the pressure. For
the 〈σ〉 field we have

0 =
∂P

∂〈σ〉
= −m2

σ〈σ〉 − b̃g3
σ〈σ〉2 − cg4

σ〈σ〉3 + 2
∑
B

∫
d3p

(2π)3

∂

∂〈σ〉
ω∗B

+ 2T
∑
B

∫
d3p

(2π)3

∂

∂〈σ〉

[
ln
(
e−(ω∗B+µ∗B)/T + 1

)
+ ln

(
e−(ω∗B−µ

∗
B)/T + 1

)]
. (6.15)
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We take the partial differentiation in 〈σ〉, and obtain

m2
σ

gσ
〈σ〉 = −b̃(gσ〈σ〉)2 − c(gσ〈σ〉)3 − 2

∑
B

∫
d3p

(2π)3

m∗B
ω∗B

+ 2
∑
B

∫
d3p

(2π)3

m∗B
ω∗B

[
e−(ω∗B+µ∗B)/T

1 + e−(ω∗B+µ∗B)/T
+

e−(ω∗B−µ
∗
B)/T

1 + e−(ω∗B−µ∗B)/T

]
,

where a simple division by the common exponential in both the numerator and the de-
nominator in the two fractions in the square brackets shows us that they are indeed the the
Fermi-Dirac distributions for particles and anti-particles. By then taking the T → 0 limit,
the first term vanishes and the second becomes a step function, giving

gσ〈σ〉 =

(
gσ
mσ

)2
[
− b̃(gσ〈σ〉)2 − c(gσ〈σ〉)3

+
1

π2

∑
B

∫ pB

0

mB − gσ〈σ〉√
p2 + (mB − gσ〈σ〉)2

p2dp

− 2
∑
B

∫
d3p

(2π)3

mB − gσ〈σ〉√
p2 + (mB − gσ〈σ〉)2

]
, (6.16)

which is the same result as obtained in (5.25), except for the last divergent integral. The
other meson fields are obtained in a similar way. For the 〈ω0〉 field we have

0 =
∂P

∂〈ω0〉
= m2

ω〈ω0〉+ 2T
∑
B

∫
d3p

(2π)3

∂

∂〈ω0〉

[
ln
(
e−(ω∗B+µ∗B)/T + 1

)
+ ln

(
e−(ω∗B−µ

∗
B)/T + 1

)]
. (6.17)

Here again we take the differentiation in the mean-field, and obtain

m2
ω〈ω0〉 = 2gω

∑
B

∫
d3p

(2π)3

[
e−(ω∗B−µ

∗
B)/T

1 + e−(ω∗B−µ∗B)/T
− e−(ω∗B+µ∗B)/T

1 + e−(ω∗B+µ∗B)/T

]
. (6.18)

As before we have the Fermi-Dirac distribution, which for T → 0 gives the usual step
function, and the 〈ω0〉 field becomes

gω〈ω0〉 =

(
gω
mω

)2∑
B

∫ pB

0

p2dp
π2

=

(
gω
mω

)2 p3
p + p3

n

3π2
=

(
gω
mω

)2

ρ (6.19)

as obtained in (5.26). Finally we consider the 〈ρ03〉 field,

0 =
∂P

∂〈ρ03〉
= m2

ρ〈ρ03〉+ 2T
∑
B

∫
d3p

(2π)3

∂

∂〈ρ03〉

[
ln
(
e−(ω∗B+µ∗B)/T + 1

)
+ ln

(
e−(ω∗B−µ

∗
B)/T + 1

)]
. (6.20)
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The differentiation gives a result in the same form as the one obtained with the 〈ω0〉 field,
just with an extra IB factor:

gρ〈ρ03〉 =

(
gρ
mρ

)2∑
B

∫ pB

0

IBp
2dp
π2

=

(
gρ
mρ

)2
ρp − ρn

2
. (6.21)

This is again in accordance with what obtained previously in (5.27). We now look for the
expression of the pressure in (6.14) at the zero-temperature limit. For T → 0, the second
terms in both integrands vanish. The first term, corresponding to particles, gives the usual
step function and yields

P =− 1

2
m2
σ〈σ〉2 +

1

2
m2
ω〈ω0〉2 +

1

2
m2
ρ〈ρ03〉2 −

1

3
b̃(gσ〈σ〉)3 − 1

4
c(gσ〈σ〉)4

+
∑
λ

1

3π2

∫ pλ

0

p4dp√
p2 +m2

λ

(6.22)

+
∑
B

1

3π2

∫ pB

0

p4dp√
p2 +m∗2B

+ 2

∫
d3p

(2π)3
ω∗.

This is the same expression as in (5.51), except for the last divergent vacuum term. In
order to find the expression for the energy density we then use the identity in (3.4):

ε =
E

V
= −P +

T

V

∂(T lnZ)

∂T
+
µi
V

∂(T lnZ)

∂µi
, (6.23)

where µi runs over µp, µn, µe and µµ. The terms dependent on T in lnZ have the same
kind of dependency as in (3.83), thus we do not need to evaluate the second term, which
will eventually vanish when taking the zero-temperature limit. The term of interest is the
third, which reads:

µi
V

∂(T lnZ)

∂µi
=2µi

∫
d3p

(2π)3

∂

∂µi

{
∑
B

δiB

[
ln
(
e−ω

∗
B/T+µ∗B/T + 1

)
+ ln

(
e−ω

∗
B/T−µ

∗
B/T + 1

)]
+
∑
λ

δiλ

[
ln
(
e−ωλ/T+µλ/T + 1

)
+ ln

(
e−ωλ/T−µλ/T + 1

)]}
,

where all the terms independent of µ have vanished, included the divergent term. The δs
are to be intended as Kronecker deltas as defined in (3.9), and have been inserted in order
to express the sum over i in a more compact and clear way. The lepton expressions are
the same as for any generic fermion, and have already been treated in the steps leading to
(3.85). The baryon integrals are slightly different. We start by noticing that

∂

∂µB

µ∗B
T

=
∂

∂µ∗B

µ∗B
T

=
1

T
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and after taking the differentiation in µB we can easily follow the steps leading to (3.84),
obtaining for the baryon term

2
∑
B

µB

∫
d3p

(2π)3

(
1

e(ω∗B−µ∗B)/T + 1
− 1

e(ω∗B+µ∗B)/T + 1

)
. (6.24)

The second term of the integrand in (6.24) vanishes when taking the T → 0 limit, while
the first term becomes the usual step function which puts the upper limit of the integral to
pB . Now the Fermi energy ω∗B equals the reduced chemical potential µ∗B , and using the
definition in (6.7), we obtain for the baryon term in (6.24)∑

B

(
gω〈ω0〉+ IBgρ〈ρ03〉+

√
p2
B +m∗2B

)∫ pB

0

dp
π2
p2

= gω〈ω0〉
p3
p + p3

n

3π2
+

1

2
gρ〈ρ03〉

p3
p − p3

n

3π2
+
∑
B

1

π2

∫ pB

0

p2dp
√
p2
B +m∗2B

= m2
ω〈ω0〉2 +m2

ρ〈ρ03〉2 +
1

π2

∫ pp

0

p2dp
√
p2
p +m∗2p +

1

π2

∫ pn

0

p2dp
√
p2
n +m∗2n ,

where we have used the equations of motion for the 〈ω0〉 and 〈ρ03〉 fields in (6.19) and
(6.21). Using this last result, the third term of (6.23) becomes

µi
V

∂(T lnZ)

∂µi
= m2

ω〈ω0〉2 +m2
ρ〈ρ03〉2 +

∑
B

1

π2

∫ pB

0

p2dp
√
p2
B +m∗2B

+
∑
λ

1

π2

∫ pλ

0

p2dp
√
p2
λ +m2

λ. (6.25)

Equation (6.25) will be the third term in (3.84). We may also rewrite the pressure in (6.22)
before plugging it in (3.84) using the following equality, already seen in (3.82):

1

3π2

∫ pF

0

p4√
p2 +m2

dp =
1

π2

∫ pF

0

(√
p2
F +m2 −

√
p2 +m2

)
p2dp. (6.26)

We then plug (6.25) and (6.22) into the expression for the energy density in (3.84) and
obtain

ε = −P +
µi
V

∂(T lnZ)

∂µi

=
1

2
m2
σ〈σ〉2 +

1

2
m2
ω〈ω0〉2 +

1

2
m2
ρ〈ρ03〉2 +

1

3
b̃(gσ〈σ〉)3 +

1

4
c(gσ〈σ〉)4

+
∑
B

1

π2

∫ pB

0

√
p2 +m∗2B p

2dp

+
∑
λ

1

π2

∫ pλ

0

√
p2 +m2

λp
2dp− 2

∫
d3p

(2π)3
ω∗,

(6.27)

which is the same expression as obtained in (5.50), except for the divergent vacuum term.
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6.2 The divergent terms

6.2.1 Fermions
We have seen how the TFT framework developed in Chapter 3 yields the same results
we obtained so far, adding some divergent terms in the 〈σ〉 field, the energy density and
the pressure. We could name the ones obtained in Chapter 5 as 〈σ〉RMF, εRMF and PRMF,
these being equations (5.26), (5.50) and (5.51) respectively. The results obtained in the
previous section, equations (6.16), (6.22) and (6.27), will be denoted by 〈σ〉RMF,V, εRMF,V
and PRMF,V. The relation between these is

gσ〈σ〉RMF,V =gσ〈σ〉RMF − Vσ (6.28)
εRMF,V =εRMF + VD (6.29)
PRMF,V =PRMF − VD, (6.30)

where

VD = −2

∫
d3p

(2π)3

(∑
B

√
p2 +m∗2B +

∑
λ

√
p2 +m2

λ

)
(6.31)

Vσ =
gσ
m2
σ

∂

∂〈σ〉
VD = 2

(
gσ
mσ

)2 ∫ d3p

(2π)3

∑
B

m∗B√
p2 +m∗2B

. (6.32)

The m∗B dependence in (6.31) tells us how the zero-point energy for the fermions is only
affected by the presence of the σ field. This motivates us to find what is the shift in
the zero-point energy due to the presence of this scalar field and its interaction with the
baryons. In order to do this, we define a function fV (a),

fV (a) = −2

∫
d3p

(2π)3

(∑
B

√
p2 + a2 +

∑
λ

√
p2 +m2

λ

)
, (6.33)

with a as a parameter. We will then use this function in order to compactly express the
shift in the vacuum energy due to the interaction between the σ field and the baryons:

VZP,B = fV (m∗B)− fV (mB)

= −2

∫
d3p

(2π)3

(∑
B

√
p2 +m∗2B +

∑
λ

√
p2 +m2

λ

)

+ 2

∫
d3p

(2π)3

(∑
B

√
p2 +m2

B +
∑
λ

√
p2 +m2

λ

)

= −2

∫
d3p

(2π)3

∑
B

(√
p2 +m∗2B −

√
p2 +m2

B

)
. (6.34)

Due to the fact that leptons do not couple via the strong force and thus the σ field, their
contribution to the shift in the vacuum energy vanishes. The expression in (6.34) is di-
vergent and needs to be regularized. Its dimensional regularization is carried out in the
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Appendix (section A.6), and yields:

VZP,B =

− 1

16π2

{(
m∗4B −m4

B

)[
Γ
(
−1+

ε

2

)
− 1

2
+ln

(
m2
B

4πµ2

)]
+m∗4B ln

(
m∗2B
m2
B

)}
+O(ε). (6.35)

By recalling that m∗B = mB − gσσ, (where for convenience we indicate by σ the mean
value 〈σ〉) we expand m∗4B in the first product in (6.35), and obtain

− 1

16π2

(
− 4m3

B(gσσ) + 6m2
B(gσσ)2 − 4mB(gσσ)3 + (gσσ)4

)
×
[
Γ
(
−1 +

ε

2

)
− 1

2
+ 2 ln

(
mB√
4πµ

)]
. (6.36)

From (6.36) we see how the divergence in the gamma function multiplies four terms in
growing powers of σ from 1 to 4. These terms represent the four divergent loops arising
from the coupling of the σ field to the baryons. In order to renormalize these terms, we
have to add counterterms to the Lagrangian in (6.8) in order to absorb the divergences into
finite values. These will be dependent upon renormalization scheme. Any finite remainder
in the first power of σ yielded from the regularization is a contribution to the expectation
value of σ in the vacuum, which we should expect to be zero in our effective theory.
This is moreover an odd power of the scalar field, and it makes the energy density not
bounded from below. We decide to choose a counterterm δσ that cancels not only the
divergence, but also every finite remainder in this power of σ. The remainders in σ2 are
in the same order of the mass term, and the counterterms from each baryon will act as
contributions to m2

σ in the Lagrangian. We may call the sum of these baryon counterterms
as δm2

σ , and the new, renormalized mass as M2
σ = m2

σ + δm2
σ . The scalar meson mass

is specified by the bulk properties of nuclear matter and is already “physical”, in the sense
that its value is fixed in order to yield certain values for some nuclear matter properties.
Whichever renormalization scheme we choose, may it be on-shell, MS or MS, it would
add a divergent and/or a finite contribution to M2

σ , which will eventually have to be fitted
to the same experimental values of the nuclear matter bulk properties. For this reason
we may as well renormalize this term in such a way that the δm2

σ counterterm cancels
exactly all the contributions in σ2 arising from the regularization, both divergent and finite
[36]. In this way the physical mass keeps its previous name: mσ . The terms in σ3 and σ4

are the vacuum-shift contributions to the three and four-couplings −b̃g3
σ/3 and −cg4

σ/4,
and we may call these counterterms as δb and δc. As with the mass term, both b̃ and c
are parameters that have to be fitted to the nuclear matter bulk properties. These may be
renormalized in a similar way as with the mass term, where δb̃ and δc are chosen in order
to cancel all contributions in σ3 and σ4 respectively. Our chosen renormalization scheme
then corresponds in practice to choosing the counterterms so that all the terms of the zero-
point energy shift in the σ field up to the fourth order vanish. These correspond to all the
terms in the first product of (6.35), but also the first four terms in the expansion of the last

84



6.2 The divergent terms

logarithm:

m∗4B ln
m∗B
mB

= −m∗4B

 ∞∑
k=1

(−1)k
(
−1 +

m∗B
mB

)k
k


= −

(
m4
B−4m3

B(gσσ)+6m2
B(gσσ)2−4mB(gσσ)3+(gσσ)4

)
×
(
gσσ

mB
+

(gσσ)2

2m2
B

+
(gσσ)3

3m3
B

+
(gσσ)4

4m4
B

+O(σ5)

) (6.37)

= −m3
B(gσσ) +

7

2
m2
B(gσσ)2 − 13

3
mB(gσσ)3 +

25

12
(gσσ)4 +O(σ5),

so that the zero-point shift due to the σ field interaction with baryons will be on the order
of O(σ5). This translates to choosing these counterterms:

δσ =
∑
B

c1,Bσ δm2
σ =

∑
B

c2,Bσ
2

δb =
∑
B

c3,Bσ
3 δc =

∑
B

c4,Bσ
4,

(6.38)

where the ci,B coefficients are

c1,B =
gσ

16π2

[
4m3

BΓ
(
−1 +

ε

2

)
+ 8m3

B ln

(
mB√
4πµ

)]
c2,B = − g2

σ

16π2

[
6m2

BΓ
(
−1 +

ε

2

)
+ 12m2

B ln

(
mB√
4πµ

)
+ 4m2

B

]
,

c3,B =
g3
σ

16π2

[
4mBΓ

(
−1 +

ε

2

)
+ 8mB ln

(
mB√
4πµ

)
+

20

3
mB

]
,

c4,B = − g4
σ

16π2

[
Γ
(
−1 +

ε

2

)
+ 2 ln

(
mB√
4πµ

)
+

11

3

]
.

(6.39)

Here we can clearly see how the coefficients of the gamma functions and the logarithms
match and cancel with those in (6.36), and the finite terms yield the ones that cancel the
first four terms in the expansion of the logarithm in (6.37). We may then rewrite the
single-baryon zero-point energy shift in (6.35), subtracting the counterterms:

∆εB = VZP,B −
4∑
i=1

ci,Bσ
i = − 1

8π2

[
m∗4B ln

m∗B
mB

+m3
B(gσσ)

− 7

2
m2
B(gσσ)2 +

13

3
mB(gσσ)3 − 25

12
(gσσ)4

]
. (6.40)

Here we recognize the terms in the expansion of the logarithmic term shown in (6.37),
canceling the first four terms of the Taylor expansion of the first term. Equation (6.40) is
the remainder of the zero-point energy shift after having renormalized the infinities into
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the existing physical values of mσ , b̃ and c, and is the same obtained in [6] and [36]. It
is important to remember that the zero-point energy shift in (6.40) is valid for only one
baryon species. The npeµ model has two baryon species: neutrons and protons, and both
their contributions have to be summed.

6.2.2 Bosons

The form the Lagrangian in (6.1) is written emphasizes the way we treat the physics of
nuclear matter in neutron stars. Instead of considering nucleons, leptons and mesons in-
teracting with each other, we treat the σ, ω and ρ particles as fields and the nucleons
as quantum particles moving in the mean value of such fields. Since we are using the
mean-field approximation we are allowed to operate in terms of an effective mass and ef-
fective chemical potential and treat the fields as free. The ω and the ρ meson fields are
essentially free, except for their interaction with the baryons: the model does not include
self-interactions for the ω meson, and the self-interacting terms of the ρ meson disappear
when enforcing the mean-field approximation, as explained in Chapter 5. This means that
we should not expect any contribution to the shift in the vacuum energy from their pres-
ence. The σ field has instead self-interaction terms that do not vanish when taking the
RMF approximation. We will see in this section how their presence yields a contribution
to the shift in the vacuum energy. In order to show this, we account for the quantum fluc-
tuations in the σ field separately. This section closely follows the procedures in [22] and
[36]. Naming the quantized field as σq , we can divide the classical (σ0) from the quantum
part (σ̃):

σq = σ0 + σ̃. (6.41)

Accounting only for the quantum corrections up to O(σ̃2), and recalling the definition of
U(σ) in (5.1),

U(σ) =
1

3
b̃(gσσ)3 +

1

4
c(gσσ)4, (6.42)

the insertion of σq in the Lagrangian for our σ field leads to

Lσq =
1

2
(∂µσq)(∂µσq)−

1

2
m2
σσ

2
q + gσσqψψ − U(σq)

=
1

2

(
(∂µσ0)(∂µσ0)−m2

σσ
2
0

)
+ gσσ0ψψ

+ (∂µσ0)(∂µσ̃)−m2
σσ0σ̃ + gσσ̃ψψ +

1

2

(
(∂µσ̃)(∂µσ̃)−m2

σσ̃
2
)

− 1

3
b̃g3
σ

(
σ3

0 + 3σ2
0 σ̃ + 3σ0σ̃

2
)
− 1

4
cg4
σ

(
σ4

0 + 4σ3
0 σ̃ + 6σ2

0 σ̃
2
)

+O(σ̃3).
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This may be rewritten as

Lσq =

[
1

2

(
(∂µσ0)(∂µσ0)−m2

σσ
2
0

)
+ gσσ0ψψ − U(σ0)

]
+
[
(∂µσ0)(∂µσ̃)−m2

σσσ̃ + gσσ̃ψψ − σ̃U ′(σ0)
]

+

[
1

2

(
(∂µσ̃)(∂µσ̃)−m2

σσ̃
2
)
− σ̃2

2
U ′′(σ0)

]
=Lσ0

+ Lσ0σ̃ + Lσ̃, (6.43)

where we have divided the Lagrangian in three parts, each one consisting of the terms in
the three square parenthesis in the order they have been written, and where U ′(σ0) and
U ′′(σ0) represent the first and second derivative in σ0 respectively. The partition function
for the σq field is

Z =

∫
Dσq exp

[∫
d4x(Lσ0

+Lσ0σ̃+Lσ̃)

]
=

∫
Dσq exp[Sσ0

+Sσ0σ̃+Sσ̃]. (6.44)

The σ0 field is classical and the action in Lσ0
can be taken out of the path integral. We

already know its equation of motion from (A.13) and (5.3):

(� +m2
σ)σ0 = gσψψ − U ′(σ0). (6.45)

By partial integration, we find that Sσ0σ̃ vanishes:

Sσσ̃ =

∫
d4x

[
(∂µσ0)(∂µσ̃)−m2

σσ0σ̃ + gσσ̃ψψ − σ̃U ′(σ0)
]

= σ̃∂µσ0 +

∫
d4x

[
−
(
� +m2

σ

)
σ0 + gσψψ − U ′(σ0)

]
σ̃, (6.46)

where the term outside the integral vanishes at the boundary (as usual we require the field
and its derivative to go to zero at infinity) and we recognize the equation of motion (6.45)
in the integral. Being the σ0 field classical the path-integral will only be over σ̃, giving for
the partition function in (6.44)

Z = eiSσ0
∫
Dσ̃ exp

{
1

2

∫
d4x

[
(∂µσ̃)(∂µσ̃)−m2

σσ̃
2 − σ̃2U ′′(σ0)

]}
. (6.47)

Introducing the mean-field approximation, (and reinstating from now on the notation for
which 〈σ0〉 → σ) the eSσ factor corresponds to the terms already found in (6.8) and will
not contribute to the shift in the zero-point energy. From the above partition function,
we observe how the mean-field potential U ′′(σ) may be regarded as a modification of the
mass term. We can then introduce the effective σ meson mass m∗σ ,

m∗2σ = m2
σ + U ′′(σ) = m2

σ + 2b̃g3
σσ + 3cg4

σσ
2 (6.48)

for which the partition function becomes

Z =

∫
Dσ̃ exp

(∫
d4xLσ̃

)
=

∫
Dσ̃ exp

[
1

2

∫
d4x

(
(∂µσ̃)(∂µσ̃)−m∗2σ σ̃2

)]
. (6.49)
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By then switching to imaginary time τ = it, making the field periodic in τ in the same
way as done in Chapter 3, and defining the canonical momentum

p =
Lσ̃

∂(∂σ̃/∂t)
=
∂σ̃

∂t
,

we rewrite the partition function as

Z =

∫
Dσ̃Dp exp

[∫ β

0

dτ
∫

d3x

(
ip
∂σ̃

∂τ
− 1

2
p2 − 1

2
(∇σ̃)2 −m∗2σ σ̃2

)]
. (6.50)

The partition function in (6.50) has the same form as the one for free bosons used in
Chapter 3.4. This allows us to use the same results we obtained at the end of the section.
We are specifically interested in the zero-point contribution for bosons for the pressure
(3.113) and energy density (3.114):

PZP,σ −
1

2

∫
d3p

(2π)3

√
p2 +m∗2σ (6.51)

εZP,σ =
1

2

∫
d3p

(2π)3

√
p2 +m∗2σ . (6.52)

As with the fermion case, we need to find the shift in the vacuum energy due to the pres-
ence of the U ′′(σ) potential. The integrals look very similar to VZP,B in (6.34), only
different for a factor of 1/4 and the different effective masses:

VZP,σ = −1

2

∫
d3p

(2π)3

(√
p2 +m∗2σ −

√
p2 +m2

σ

)
. (6.53)

The regularization follows the same steps as with the fermion case in Appendix A.6, giving

VZP,σ =

− 1

(8π)2

{(
m∗4σ −m4

σ

)[
Γ
(
−1+

ε

2

)
− 1

2
+ln

(
m2
σ

4πµ2

)]
+m∗4σ ln

(
m∗2σ
m2
σ

)}
+O(ε). (6.54)

The renormalization scheme follows the same conclusions we made in the fermion case.
Since mσ , gσ , b̃ and c already are physical, we would like the counterterms to cancel not
only the divergences, but also all the finite terms in σ up to the fourth order, included those
in the expansion of the logarithmic term. We then have

∆εσ = VZP,σ − Counterterms

= VZP,σ −
∑
i

ci,σσ
i =

1

(8π)2

[
m∗4σ ln

(
m∗2σ
m2
σ

)
− C

]
, (6.55)

where i runs over 1, 2, 3 and 4, in ci,σ are collected the four coefficients of the counterterms
as done with the fermion case, and in C are instead collected the first four terms in σ in
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the Taylor expansion of the first term of (6.55). We can find these terms by expanding this
term. The algebra is tedious and is easier done when making the following substitutions:

σ1 =

(
gσ
mσ

)2

2b̃gσσ, σ2 =

(
gσ
mσ

)2

3c(gσσ)2,

where

m∗2

m2
σ

= 1 +
U ′′(σ)

m2
σ

= 1 + σ1 + σ2.

The expansion of the logarithmic term yields

m∗4σ ln

(
m∗2σ
m2
σ

)
= m4

σ(1 + σ1 + σ2)2

(
−
∞∑
k=1

(−σ1 − σ2)
k

k

)
= m4

σ

(
1 + 2σ1 + 2σ2 + σ2

1 + 2σ1σ2 + σ2
2

)
×
(

(σ1+σ2)− (σ1+σ2)2

2
+

(σ1+σ2)3

3
− (σ1+σ2)4

4

)
+O(σ5)

= m4
σ

(
(σ1+σ2)+

3

2
(σ1+σ2)2+

1

3
σ2

1 (σ1+3σ2)− 1

12
σ4

1

)
+O(σ5).

In C in (6.55) we only keep the terms up to O(σ4) of the above result, and obtain

∆εσ =
m4
σ

(8π)4

(
(1 + σ1 + σ2)2 ln (1 + σ1 + σ2)− (σ1 + σ2)− 3

2
(σ1 + σ2)2

− 1

3
σ2

1 (σ1 + 3σ2) +
1

12
σ4

1

)
. (6.56)

This is the result obtained in both [6] and [36] and reported in [10]. It is worth noting how
the vacuum shift for the σ meson is dependent on mσ alone, and not on the ratio gσ/mσ .
The mass of the σ meson is taken to be 600 MeV in [12] and 550 MeV in [35].

6.3 Vacuum shift contribution to the equation of state
Now we have derived the contributions for the vacuum shift for the baryons in (6.40) and
the σ meson in (6.56). Finally we can use these results to rewrite the energy density in
(6.29), the pressure in (6.30) and the σ field as

εRMF,V = εRMF +
∑
B

∆εB + ∆εσ, (6.57)

PRMF,V = PRMF −
∑
B

∆εB −∆εσ (6.58)

gσσRMF,V = gσσRMF −
gσ
m2
σ

∂

∂σ

(∑
B

∆εB + ∆εσ

)
. (6.59)
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The model accounting for the shift in the vacuum energy is frequently called as the rel-
ativistic Hartree approximation in the literature [10], which is in essence the mean-field
approximation applied to the path-integral formalism. The above equation of state has
been derived from QFT and thermodynamical principles, using the RMF approximation,
and the accounting of only the terms up to O(σ̃2) in the calculations of the vacuum energy
shift contribution by the σ meson’s self-interaction.

6.4 Renormalized versus effective RMF theory
Although necessary from a theoretical point of view, the renormalization of the npeµ
model consists in adding terms in O(σ5) to the σ field equation, the pressure and the
energy density, and their contribution is not expected to be big. This has already been
noticed by [11] and [12] and is confirmed by the plot of the two solutions in Figure 6.1.
The difference in the largest mass and radius is minimal. By using the parameters in Table
A.4, fitting the same bulk properties as in Chapter 4 except for the compression modulus
now set to K = 300 MeV, we obtain a mass of M/M� = 2.0829 and a corresponding
radius of R = 11.800 km for the renormalized model, against M/M� = 2.0662 and
R = 11.763 km for the non-renormalized npeµ model.

Figure 6.1: Relationship between radii and total masses on the left, and between central densities
and total masses on the right. The renormalized solutions are shown in red, while the npeµ model
of Figure 5.2 is reproduced in blue for comparison. We see how the difference is minimal.
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Chapter 7
Conclusions and outlook

7.1 Conclusions

In this Master’s degree thesis we have shown in Chapter 2 how the mass-radius relation
for neutron stars may be found by using a system of three coupled differential equations:
the mass equation, the TOV equation and the equation of state. The mass equation gives
the mass enclosed by a spherical surface of a certain radius, the TOV equation describes
the curvature of spacetime due to the presence of this mass and is a solution to the Ein-
stein equations, and the equation of state links the energy density to the pressure. As a
first application of this system of equations we have reproduced the 1939 work of Oppen-
heimer and Volkoff [29], where we used an equation of state describing non-interacting,
relativistic, cold neutrons kept from collapsing by the Pauli exclusion principle. Later we
laid the framework for the RMF theory introducing the σ–ω model, otherwise known as
Walecka model. The interactions between nucleons are modeled by an attractive, scalar
σ meson and a repulsive, vector ω meson. The model has two free parameters allowing
us to fit the theory to two of the five bulk properties of neutron and nuclear matter, these
being the binding energy per nucleon for saturated nuclear matter, the saturation particle
density, the compression modulus, the symmetry energy density and the effective mass
ratio at saturation. Although describing neutron stars in a better way, this model yields
results for the other three properties that far from the experimental ones [7]. We can
though account for all five bulk properties using the npeµ model, described in Chapter
5. Here the σ–ω model is improved by taking care of beta and isospin balance, global
charge neutrality, self-interactions between σ mesons and the appearance of muons. The
npeµ model has five parameters, we are able to fit the theory to all five bulk properties of
nuclear matter, and obtain a good description of npeµ matter. In Chapter 3 we develop the
path-integral formalism which, at zero temperature, yields the relativistic Fermi-Dirac and
Bose-Einstein particle distributions for fermions and bosons respectively, plus a divergent,
temperature independent vacuum term for both. In Chapter 6 we use this formalism to
derive the npeµ model with its respective vacuum term and find out to what degree the
shift in the vacuum energy density due to interactions and self-interactions contributes to
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the equation of state and, eventually, the mass-radius relation. The contribution has been
found to be minimal, in accordance with earlier results [11], [12]. A long digression in
Chapter 4 has been reserved to the phase transition neutron matter undergoes for the choice
of parameters in [7]. For this choice in fact the equation of state shows a region where Le
Chatelier’s principle of microscopic stability is violated, a situation similar to the equation
of state originating from the description of atomic and molecular matter of the Van der
Waals model. Although the unphysical nature of pure neutron matter (unstable to beta
decay), the framework behind such a system’s behavior shows many interesting features.
These can be useful in order to obtain a qualitative, approximative understanding of other
phenomena involving phase transitions, such as the transition between hadronic and quark
matter in hybrid stars [2], the crust-core interface [3], and the transition between stable
nuclei at different energies in the neutron star crust [4].

7.2 Outlook

Exotic cores, quark matter and hybrid stars

Current models for neutron star matter include the baryon octet for denser cores, and for
the heaviest stars it is thought that the inner core consists of quark-hadron matter [10]. Ex-
otic hadrons start to appear when the momenta of neutrons and protons are large enough
to generate new, heavier particles in a similar way as we treated the appearance of muons
in Chapter 5. These hadrons are the Λ particle, the Σ particles and the Ξ particles. They
consist of at least one strange quark making them exotic particles, and their presence soft-
ens the equation of state yielding lower values for the largest mass [24]. A more complete
discussion of the RMF theory should include these particles [10]. Moreover, quarks will
start to be deconfined at baryon densities of ρ ≈ 0.24 fm−3, coexisting with hadrons at
lower densities [39], and then being pure quark matter at larger densities. Stars consisting
of both hadronic and quark matter are also called hybrid stars. The phase transition treated
in Chapter 4 is of the first order, and is inadequate for a correct explanation of the transi-
tion between npeµ matter and quark matter. This has to do with the fact that a first-order
phase transition is inadequate when handling systems with two conserved charges, here
being the baryon number and the electrical charge [10]. More factors that should be taken
into account when considering the mass-radius relation are the rotation and the magnetic
field of neutron stars.

Third family of compact stars: non-identical twins

Although not yet observed, the current models based on the RMF theory allow for another
region stable against gravitational collapse. Bodies in this third family of compact stars
(white dwarfs and neutron stars being the first and the second family respectively) are
called non-identical twins of neutron stars [13]. This stable region for npeµ matter is
shown in Figure 7.1 as an extension of Figure 5.2 for higher densities. Glendenning in
[10] shows how a similar region can also be found using a more complete equation of state
for hybrid stars, accounting for the presence of hyperions and quarks. This equation of
state yields two different stable configurations with the same mass: one is in the family of
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neutron and hybrid stars, and the other — consisting of smaller and more dense stars —
is the new, third family. Two stars belonging to a different family but with the same mass
are said to be non-identical twins (Figure 7.2).

Figure 7.1: Relationship between radii and total masses on the left, and between central densities
and total masses on the right, for npeµ matter. The dashed lines show the unstable solutions. The
small, stable region at the “curl of the spiral” in the left panel and its corresponding region on the
right of the right panel represent the neutron stars’ non-identical twins.

Figure 7.2: The particle distribution of two “twins” of the same mass. The plot on the left panel
corresponds to the particle distribution for hybrid stars accounting for the presence of hyperons and
free quarks (u stands for up, d for down and s for strange quarks), while the one on the right panel
considers the same distribution for a star in the hypothetical third family of compact stars. Courtesy
of Astronomy and Astrophysics [9].
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Appendix A
Theorems and Derivations

A.1 Notation and conventions

Throughout the Appendix and the thesis we use natural units with ~ = c = G = kB = 1
unless otherwise specified. Here ~ is the reduced Planck constant, c the speed of light in
vacuum, G the Newton gravitational constant and kB the Boltzmann constant. Energy is
measured in MeV= 106 eV ≈ 1.602× 10−13 J.
Due to the nature of neutron stars, we will operate in two scales: nuclear and stellar.
Lengths at nuclear scale are measured in fm = 10−15 m, and particle densities in 1/fm3,
while at stellar scale lengths are measured in km = 103 m and masses inM�, where 1M�
correspond to one solar mass, approximately equal to 1.988 × 1030 kg. Otherwise, when
switching back to non-natural units, we will follow the conventions set by the literature on
neutron stars and use CGS units, except for Chapter 2 where SI units will be used. The
use of CGS units means in practice that mass densities will be expressed in g/cm3 = 103

kg/m3 and pressures in dyne/cm2 = 10−1 Pa.
When indexing tensors the Einstein’s summation convention is implied, where Greek la-
bels will run over the indices 0, 1, 2, 3 and Latin labels will run over the indices 1, 2, 3 if
not otherwise specified.
We use the signature −2 of the metric tensor in Minkowski space, where

ηµν = ηµν = (+1,−1,−1,−1),

meaning that contravariant and covariant will be

xµ = (x0, x1, x2, x3) xµ = (x0,−x1,−x2,−x3).

Boldface will indicate three-vectors v = (vx, vy, vz) or the spacelike part of a four-vector
vµ = (v0,v). The d’Alembert operator is

� ≡ ∂µ∂µ = ∂µ∂νη
µν ,
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where ∂µ is the four-dimensional operator

∂µ =
∂

∂xµ
=

(
∂

∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z

)
=

(
∂

∂t
,∇
)
.

Integrals without set limits are understood to be taken from −∞ to +∞.

A.2 Bulk properties and parameters
In our computations we have used different parameters in order to fit the theory to the
experimental data. In Chapter 4 we use the parameters given in [7], fitting the σ–ω model
to reproduce a binding energy of B/A = −15.75 MeV and and a density at saturation of
ρ0 = 0.101 fm−3, and are listed in Table A.1.

(gσ/mσ)
2

(gω/mω)
2

×104 MeV−2 ×104 MeV−2

3.033 2.224

Table A.1: Fitting parameters used in Chapter 4.

In Chapter 5 the parameters are chosen in order to fit the nuclear matter bulk properties
values of Table A.21. The fitting parameters are taken from [10] and are listed in Table
A.3.

B/A ρ0 K asym m∗/m

MeV fm−3 MeV MeV

−16.3 0.153 240 32.5 0.78

Table A.2: Values of the bulk properties used in Chapter 5.

(gσ/mσ)
2

(gω/mω)
2

(gρ/mρ)
2

b̃ c

×104 MeV−2 ×104 MeV−2 ×104 MeV−2 ×93800 × 100

2.549 1.238 1.230 8.661 −2.421

Table A.3: Fitting parameters used in Chapter 5.

In Chapter 6 we use parameters that fit the same bulk properties as in Table A.2 except
for the compression modulus, which now has a value of K = 300 MeV. The parameters

1The meaning of these bulk properties is explained in the same chapter.
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are taken from [12] and are listed in Table A.4. RMF,V indicates the parameters used in
the renormalized model, RMF in the effective relativistic mean-field npeµ model. The σ
meson mass is taken to be mσ = 600 MeV in accordance with [12].

(gσ/mσ)
2

(gω/mω)
2

(gρ/mρ)
2

b̃ c

×104 MeV−2 ×104 MeV−2 ×104 MeV−2 ×93800 × 100

RMF,V 2.375 1.215 1.238 5.723 0.601

RMF 2.319 1.216 1.239 3.305 1.529

Table A.4: Fitting parameters used in Chapter 6.

A.3 Noether theorem
The Noether theorem observes that global symmetries in a Lagrangian lead to conserved
currents [25]. Considering an infinitesimal change in a field δφa that keeps the Lagrangian
density L(φa, ∂µφa) invariant, we have

δL =
δL
δφa

δφa +
δL

δ∂µφa
δ∂µφa = 0. (A.1)

We now observe that we can use the Lagrange equations δL/δφa = ∂µ(δL/δ∂µφa) in the
first term, and the Leibniz rule δ∂µ = ∂µδ in the second term, obtaining

δL = ∂µ

(
δL

δ∂µφa

)
δφa +

δL
δ∂µφa

∂µδφa = ∂µ

(
δL

δ∂µφa
δφa

)
. (A.2)

The conserved quantity

jµ =
δL

δ∂µφa
δφa (A.3)

is the Noether current associated to the symmetry in the field φ′a → φa + δφa that leaves
the Lagrangian invariant. Moreover we can define the Noether charge Q as the integral
over space of the zeroth component of the current:

Q =

∫
d3xj0. (A.4)

A.4 Derivation of the equations of motion for the σ–ω
model

The Lagrangian for the σ–ω model can be seen as the sum of the free Langrangians for the
three involved fields and the interaction term,

L = Lnucl + Lσ + Lω + Lint, (A.5)
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where

Lnucl = ψ(iγµ∂µ −m)ψ (A.6)
Lσ = 1

2

(
(∂µσ)(∂µσ)−m2

σσ
2
)

(A.7)
Lω = − 1

4ω
µνωµν + 1

2m
2
ωω

µωµ (A.8)

Lint = gσσψψ − gωωµψγµψ (A.9)

and ωµν = ∂µων − ∂νωµ. Explicitly, the Lagrangian can be written as in (4.20):

L = ψ (iγµ∂µ −m)ψ +
1

2
(∂µσ)(∂µσ)− 1

2
m2
σσ

2 − 1

4
ωµνωµν

+
1

2
m2
ωω

µωµ + gσσψψ − gωωµψγµψ. (A.10)

When deriving the equations of motion, we will have to use the Euler-Lagrange equations
for fields

∂α
∂L

∂(∂αφi)
=
∂L
∂φi

, (A.11)

where φ is a general field, in our case the σ, the ω and the ψ fields.

A.4.1 Equation of motion for the σ field
The only terms of the Lagrangian that are dependent on the σ field are Lσ and Lint, so

∂α
∂(Lσ + Lint)

∂(∂ασ)
=
∂(Lσ + Lint)

∂σ
. (A.12)

The interaction Lagrangian is independent of ∂ασ, so ∂Lint
∂(∂ασ) = 0. We evaluate first the

left hand side (LHS) of (A.12):

∂α
∂Lσ
∂(∂ασ)

= ∂α
∂

∂(∂ασ)

1

2

(
(∂µσ)(∂µσ)−m2

σσ
2
)

=
1

2
∂α

∂

∂(∂ασ)
[(∂µσ)(∂νσ)ηνµ]

=
1

2
ηνµ∂α

[
∂νσ

∂

∂(∂ασ)
(∂µσ) + ∂µσ

∂

∂(∂ασ)
(∂νσ)

]
=

1

2
ηνµ∂α (∂νσδ

µ
α + ∂µσδ

ν
α)

=
1

2
(∂α∂

µδµα + ∂α∂
νδνα)

= ∂µ∂µσ = �σ,

and then the right hand side (RHS)

∂(Lσ + Lint)

∂σ
= −m2

σσ + gσψψ. (A.13)

Plugging the results for the LHS and the RHS into (A.12) will give

(� +m2
σ)σ = gσψψ. (A.14)
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A.4.2 Equation of motion for the ω field
As with the σ field, we only take the terms in the Lagrangian that are dependent on the
field taken into consideration. For the ω field we have

∂α
∂(Lω + Lint)

∂(∂αωβ)
=
∂(Lω + Lint)

∂ωβ
. (A.15)

We start by evaluating the LHS. the interaction Lagrangian has again no dependency on
∂αω

β , so

∂α
∂(Lω+Lint)

∂(∂αωβ)
=∂α

∂Lω
∂(∂αωβ)

=∂α
∂

∂(∂αωβ)

(
−1

4
ωµνωµν+

1

2
m2
ωω

µωµ

)
=−1

4
∂α

∂

∂(∂αωβ)
(ωµνωµν)

=−1

4
∂α

∂

∂(∂αωβ)
(∂µων − ∂νωµ)(∂µων − ∂νωµ)

=−1

4
∂α

∂

∂(∂αωβ)
(∂µων∂µων−∂µων∂νωµ−∂νωµ∂µων+∂νωµ∂νωµ) .

(A.16)

We then evaluate the terms separately:

∂α
∂

∂(∂αωβ)
∂µων∂µων = ∂α

[
∂µων

∂

∂(∂αωβ)
(∂γω

νηγν) + ∂µων
∂

∂(∂αωβ)
(∂µω

γηγν)

]
= ∂α

(
∂µωνδ

γ
αδ
ν
βη

γµ + ∂µωνδµαδ
β
γ ηγν

)
= ∂α(∂α)ωβ + ∂αωβ = 2�ωβ , (A.17)

and

∂α
∂

∂(∂αωβ)
∂µων∂νωµ = ∂α

[
∂νωµ

∂

∂(∂αωβ)
(∂γω

νηγν) + ∂µων
∂

∂(∂αωβ)
(∂νω

γηγµ)

]
= ∂α

(
∂νωµδ

γ
αδ
ν
βη

γµ + ∂µωνδναδ
β
γ ηγµ

)
= ∂α(∂βω

α + ∂βω
α) = 2∂βω

α. (A.18)

The third and fourth term of (A.16) are the same as respectively the first and second term.
Plugging these results in, we will get

−1

4
(4�ωβ − 4∂β∂

αωα) = −�ωβ + ∂β∂
αωα. (A.19)

The RHS of equation (A.15) is a derivation in ωβ :

∂(Lω + Lint)

∂ωβ
=

1

2

∂

∂ωβ
(m2

ωω
µωγηµγ)− ∂

∂ωβ
gωω

γψγµψηµγ

=
m2
ωηµγ
2

(
ωγ

∂

∂ωβ
ωµ + ωµ

∂

∂ωβ
ωγ
)
− gωδγβψγ

µψηµγ

=
m2
ω

2

(
ωµδ

β
µ + ωγδ

β
γ

)
− gωδγβψγ

µψηµγ

=m2
ωωβ − gωψγβψ. (A.20)
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Finally we can plug the LHS and RHS in (A.19) and (A.20) into (A.15), obtaining

−�ωβ + ∂β∂
αωα = m2

ωωβ − gωψγβψ,

or, rearranged,

(� +m2
ω)ωβ − ∂β∂αωα = gωψγβψ. (A.21)

By taking the divergence of the above equation, we obtain

�∂βωβ +m2
ω∂

βωβ −�∂αωα = gω∂
βψγβψ, (A.22)

where the first and third term cancel. ψγβψ on the right hand side is the Dirac current we
can find using the same procedure that leads to (3.42). Its divergence is zero, so we are left
with

m2
ω∂

βωβ = 0. (A.23)

Since the ω field is not massless, we conclude it is divergenceless, giving us the final
equation of motion

(� +m2
ω)ωβ = gωψγβψ. (A.24)

A.4.3 Equation of motion for the ψ field
The terms of the σ–ω Lagrangian dependent on ψ and ψ are Lnucl and Lint. The calcula-
tions are easier done in the adjoint field ψ2 so

∂α
∂(Lnucl + Lint)

∂(∂αψ)
=
∂(Lnucl + Lint)

∂ψ
. (A.25)

The LHS simply becomes 0 (there are no terms dependent on ∂αψ), while the RHS be-
comes

∂(Lnucl + Lint)

∂ψ
= (iγµ∂µ −m)ψ + gσσψ − gωωµγµψ, (A.26)

giving the equation of motion

[iγµ(∂µ + igωωµ)− (m− gσσ)]ψ = 0. (A.27)

A.5 The ρ meson

A.5.1 Conserved current of the ρ meson
Using the Noether current in (A.3) and the variation in the ρ field in (5.14), using index
notation, we get

Iµj =
δLρ

δ(∂µρiν)
(−εijkρkν), (A.28)

2By using the ψ field we would reach the adjoint equation of motion, from which is possible to recover the
Dirac Equation by conjugate transposing the result.

102



A.5 The ρ meson

which in vector notation translates to

Iµ = −ρν ×
δL

δ(∂µρν)
. (A.29)

The only term in the Lagrangian dependent on the derivative of the field is the kinetic term,
thus

δL
δ(∂µρν)

= −1

4

δ

δ(∂µρν)
(∂αρβ − ∂βρα) ·

(
∂αρβ − ∂βρα

)
= −1

4

[
(∂αρβ − ∂βρα)

δ

δ(∂µρν)

(
∂αρβ − ∂βρα

)
+
(
∂αρβ − ∂βρα

) δ

δ(∂µρν)
(∂αρβ − ∂βρα)

]
= −1

4

[
(∂αρβ − ∂βρα)

(
ηαµηβν − ηβµηαν

)
+
(
∂αρβ − ∂βρα

) (
δµαδ

ν
β − δ

µ
βδ
ν
α

) ]
= −1

4
(∂µρν + ∂µρν − ∂νρµ − ∂νρµ)

− 1

4
(∂µρν + ∂µρν − ∂νρµ − ∂νρµ)

=
1

2
ρνµ +

1

2
ρνµ = ρνµ.

Our current will then be

ρν × ρµν

A.5.2 Additional current from the −gρρµ · Iµ term

Iµ = −ρν ×
δL

δ(∂µρν)
= −ρν ×

[
−gρ (ρα × ρβ)

∂ραβ

∂(∂µρν)

]
= gρρν × (ρα × ρβ)

(
∂

∂(∂µρν)
∂µρνη

αµηβν − ∂

∂(∂µρν)
∂µρνη

βµηαν
)

= gρρν × (ρα × ρβ)
(
ηαµηβν − ηβµηαν

)
= gρρν × (ρµ × ρν − ρν × ρµ)

= 2gρρν × (ρµ × ρν)

= 2gρ (ρν × ρµ)× ρν

A.5.3 Notes on SU(2) symmetry
In Chapter 4 and 5 we use SU(2) symmetry to show the invariance of the nucleon La-
grangian (4.11) and the ρ Lagrangian (5.10) under rotation in isospin space. Although this
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is the same rotation for both fields, we transform the nucleon spinors as

ψ′ → e−
i
2τ ·Λψ

ψ
′ → ψe

i
2τ ·Λ (A.30)

where τ are the Pauli matrices, and the ρ field as

ρ′ → ρ−Λ× ρ. (A.31)

The meaning of this section is to explain why these expressions are equivalent.

We may start by considering a three-vector x in SU(2) space. This is spanned by the
Pauli matrices, so we can express the rotation as

(x′ · τ ) = e
iλ
2 τ ·n̂(x · τ )e−

iλ
2 τ ·n̂. (A.32)

Here we have made the substitution Λ = λn̂, where λ is an infinitesimal rotation around
the axis along the unit vector n̂. The exponentials can be rewritten as

(
1 cos

λ

2
+ in̂ · τ sin

λ

2

)
(x · τ )

(
1 cos

λ

2
− in̂ · τ sin

λ

2

)
= (x·τ ) cos2λ

2
−i(x·τ )(n̂·τ ) cos

λ

2
sin

λ

2
+i(n̂·τ )(x·τ ) cos

λ

2
sin

λ

2

+(n̂·τ )(x·τ )(n̂·τ ) sin2λ

2
.

(A.33)

We express equation (A.33) in index notation. The first term becomes

xiτi cos2 λ

2
=

1

2
xiτi (1 + cosλ) , (A.34)

using the commutator for Pauli matrices, the second and third terms become

i cos
λ

2
sin

λ

2
(nixjτiτj − xjniτjτi)

=
i

2
nixj [τi, τj ] sinλ

=− nixjεijkτk sinλ

=− (n̂× x) · τ sinλ (A.35)
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and the fourth

[nixjnkτi (1δjk + iεjklτl)]
1

2
(1− cosλ)

=
1

2
[(n̂ · τ )(x · n̂) + inixjnkτiεjklτl] (1− cosλ)

=
1

2
[(n̂ · τ )(x · n̂) + inixjnkεjkl (1δil + iεilmτm)] (1− cosλ)

=
1

2
[(n̂ · τ )(x · n̂) + ixjnlnkεjkl − nixjnkεjklεilmτm] (1− cosλ)

=
1

2
[(n̂ · τ )(x · n̂) + ix · (n̂× n̂) + nixjnkτmεjklεiml] (1− cosλ)

=
1

2
[(n̂ · τ )(x · n̂) + nixjnkτm (δjiδkm − δjmδki)] (1− cosλ)

=
1

2
[(n̂ · τ )(x · n̂) + (n̂ · x)(n̂ · τ )− (x · τ )] (1− cosλ)

=(n̂ · τ )(x · n̂) (1− cosλ)− 1

2
(x · τ ) (1− cosλ) . (A.36)

We then insert the three terms in (A.34), (A.35) and (A.36) in (A.33), and obtain

1

2
x·τ (1+cosλ)−(n̂×x)·τ sinλ+(n̂·τ )(x·n̂) (1−cosλ)− 1

2
(x·τ ) (1−cosλ)

=(x · τ ) cosλ− (n̂× x) · τ sinλ+ (n̂ · τ )(x · n̂) (1− cosλ)

=
[
x cosλ− (n̂× x) sinλ+ n̂(x · n̂) (1− cosλ)

]
· τ , (A.37)

where the term inside the parenthesis in (A.37) is our new, rotated x′ vector:

x′ = (x− n̂(x · n̂)) cosλ− (n̂× x) sinλ+ n̂(x · n̂). (A.38)

The rotation of an infinitesimal angle λ around n̂ is best understood if we let n̂ point in the
z direction. We can do this without any loss of generality. The n̂(x · n̂) is the projection
of x along the z direction, taken in the z direction. This means that the term in cosλ in
(A.38) is to be understood as the vector x minus its z-component, i.e., for

x = (xx̂+ yŷ + zẑ) (A.39)

is

x′ = (xx̂+ yŷ) cosλ− (n̂× x) sinλ+ zẑ. (A.40)

For infinitesimal translations we have cosλ→ 1 and sinλ→ λ, giving

x′ = x− Λ× x, (A.41)

which is the expression used for the ρ meson.
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A.6 Dimensional regularization of the zero-point energy
In this section we show the steps in order to regularize VZP,B . (6.34). This is reproduced
here:

VZP,B = −2

∫
d3p

(2π)3

∑
B

[√
p2 +m∗2B −

√
p2 +m2

B

]
. (A.42)

Defining I(m) as

I(m) = −2

∫
d3p

(2π)3

√
p2 +m2, (A.43)

we may recast VZP,B as

VZP = I(m∗p)− I(mp) + I(m∗n)− I(mn). (A.44)

This means that we only need to dimensionally regularize (A.43) once in order to obtain
the full regularized expression for VZP,B . We begin by rewriting I(m) as

I(m) = −2
µ4−d

(2π)d−1

∫
dd−1p

√
p2 +m2. (A.45)

Here d is the number of dimensions (we will later take limit where d→ 4) and µ is a scale
factor of dimension m in order to make the integral dimensionless. We then introduce
spherical coordinates, obtaining

I(m) = −2
µ4−d

(2π)d−1

∫
dΩd−1

∫ ∞
0

pd−2
√
p2 +m2 dp. (A.46)

The angular integral dΩ can be evaluated using∫
dΩd−1 =

2π(d−1)/2

Γ
(
d−1

2

) , (A.47)

where Γ(x) is the gamma function. Both the angular integral and the gamma function are
taken as defined in [23]. Plugging this result in (A.46), we obtain

I(m) = −4
µ4−d

(4π)(d−1)/2Γ
(
d−1

2

) ∫ ∞
0

pd−2
√
p2 +m2 dp. (A.48)

Next we introduce the dimensionless variable t = p2/m2, for which dt = 2p/m2dp, and
obtain

I(m) = −2
mdµ4−d

(4π)(d−1)/2Γ
(
d−1

2

) ∫ ∞
0

t
d−3
2 (t+ 1)

1
2 dt. (A.49)

In (A.49) we recognize the Beta function in the integral, for which we can use the following
identity[23],

B(a, b) =

∫ ∞
0

dt
ta−1

(t+ 1)a+b
=

Γ(a)Γ(b)

Γ(a+ b)
, (A.50)
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where for a = (d− 1)/2 and b = −d/2 we recover the integral in (A.49). We get then

I(m) =
−2µ4

(4π)(d−1)/2

Γ
(
d−1

2

)
Γ
(
−d2
)

Γ
(
d−1

2

)
Γ
(
− 1

2

) (m
µ

)d
=

−2µ4

(4π)(d−1)/2

Γ (−d/2)

Γ (−1/2)

(
m

µ

)d
=

2µ4

(4π)d/2
Γ

(
−d

2

)(
m

µ

)d
=
−4µ4

(4π)d/2
1

d
Γ

(
1− d

2

)(
m

µ

)d
(A.51)

where we have used that Γ(−1/2) = −2
√
π and the property Γ(z + 1) = zΓ(z). We can

now make the substitution d = 4− ε,

I(m) = − 4µ4

(4π)2− ε2

Γ
(
−1 + ε

2

)
4− ε

(
m

µ

)4−ε

, (A.52)

and expand all our expressions (except the gamma function) for ε→ 0:

(4π)−2+ ε
2 =

1

(4π)2

[
1 +

ε

2
ln(4π) +O(ε2)

]
, (A.53)(

m

µ

)4−ε

=

(
m

µ

)4 [
1− ε ln

(
m

µ

)
+O(ε2)

]
(A.54)

Γ
(
−1 + ε

2

)
4− ε

=
1

4

1

1− ε/4
Γ
(
−1 +

ε

2

)
=

1

4

(
1 +

ε

4
+O(ε2)

)
Γ
(
−1 +

ε

2

)
. (A.55)

By plugging (A.53), (A.54) and (A.55) into (A.52), and recalling that the ε−1 divergence
is still hiding in the gamma function, we obtain our result for I(m):

I(m) = − m4

2(4π)2

[
2 +

ε

2
− ε ln

(
m2

4πµ2

)]
Γ
(
−1 +

ε

2

)
+O(ε). (A.56)
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We are now able to express (A.44). For each baryon we have

VZP,B = I(m∗B)− I(mB)

= − 1

32π2

{
m∗4B

[
2 +

ε

2
− ε ln

(
m∗2B
4πµ2

)]
−m4

B

[
2 +

ε

2
− ε ln

(
m2
B

4πµ2

)]}
× Γ

(
−1 +

ε

2

)
+O(ε)

= − 1

32π2

{
(m∗4B −m4

B)
[
2 +

ε

2

]
− εm∗4B ln

(
m∗2B
4πµ2

)
+ εm4

B ln

(
m2
B

4πµ2

)
+ εm∗4B ln

(
m2
B

4πµ2

)
− εm∗4B ln

(
m2
B

4πµ2

)}
Γ
(
−1 +

ε

2

)
+O(ε)

= − 1

32π2

{
(m∗4B −m4

B)

[
2 +

ε

2
− ε ln

(
m2
B

4πµ2

)]
− εm∗4B ln

(
m∗2B
m2
B

)}
× Γ

(
−1 +

ε

2

)
+O(ε).

We can then use the fact that the divergent term in Γ(−1 + ε/2) is −2/ε and multiply it
into the expression:

VZP,B = − 1

16π2

{(
m∗4B −m4

B

) [
Γ
(
−1 +

ε

2

)
− 1

2
+ ln

(
m2
B

4πµ2

)]
+m∗4B ln

(
m∗2B
m2
B

)}
+O(ε). (A.57)
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Appendix B
Code

All plots and programs were written in Python.

B.1 Chapter 2

1 import math
2 import numpy as np
3 import scipy
4 import scipy.constants as sc
5 import matplotlib
6 import matplotlib.pyplot as plt
7 import scipy.optimize as op
8

9 #constants
10 G = sc.G
11 c = sc.c
12 m = sc.m_n
13

14 #Normalisation constants
15 e0 = 1000.0**3*m**4.0*c**5.0/(sc.pi**2.0*sc.hbar**3.0) # in J/km**3
16 Mo = 1.989e30 # in kg
17 R0 = G*Mo/(1000.*c**2.) # in km
18 beta = 4.0*sc.pi*e0/(Mo*c**2.)
19

20 rstep = 0.01 #in km
21

22 #Define functions that will be used in the loops
23 #TOV-equation
24 def dPdr(r, M, P, eps):
25 return -(R0*eps*M)/r**2.*(P/eps + 1.0)*(beta*r**3.0*P/M + 1.0)

/(1.0-2.0*R0*M/r)
26

27 #Mass equation
28 def dMdr(r, eps):
29 return beta*r**2.*eps
30
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31 #Pressure equation, rewritten for rootfinding
32 def P1(x,Q):
33 return ((2*x**3.0 - 3.0*x)*(1+x**2)**(0.5) + 3.0*np.arcsinh(x))/24.0 -

Q
34

35 #EoS function. Takes the pressure as argument, finds the corresponding
36 #Fermi momentum via rootfinding, and calculates the respective energy
37 def epsilon(Press):
38 xx = op.brentq(P1, -0.01, 5.0,args=(Press,))
39 return 1.0/8.0*((2*xx**3.0 + xx)*(1+xx**2)**(0.5) - np.arcsinh(xx))
40

41 FirstTimeisbiggerthan10percent=False
42 P = Pc = PNR = 1.0e-6
43 M = MNR = 0.0
44 r = rNR = 0.0
45

46 Mlist = []
47 Rlist = []
48 MNRlist = []
49 RNRlist = []
50 energypercent = []
51 centralpressures = []
52 ratios = []
53

54 while Pc < 10:
55 P = Pc
56 PNR = Pc
57 M = 0.0
58 MNR = 0.0
59 r = 0.0
60 centralpressures.append(Pc)
61 energypercent.append(op.brentq(P1, -0.01, 5.0,args=(Pc,)))
62 while (P > 0 or PNR > 0):
63 r = r + rstep
64 if P > 0:
65 eps = epsilon(P)
66 M = M + rstep * dMdr(r, eps)
67 P = P + rstep * dPdr(r, M, P, eps)
68 if P <= 0:
69 Rlist.append(r)
70 Mlist.append(M)
71 if PNR > 0:
72 epsNR = 15.**(3./5.)*PNR**(3./5.)/3.
73 MNR = MNR + rstep * dMdr(r, epsNR)
74 PNR = PNR + rstep * dPdr(r, MNR, PNR, epsNR)
75 if PNR <= 0:
76 RNRlist.append(r)
77 MNRlist.append(MNR)
78 ratio=MNRlist[-1]/Mlist[-1]
79 ratios.append(ratio)
80 if (ratio>1.1 and FirstTimeisbiggerthan10percent==False):
81 Pclimit=Pc
82 Rlimit=Rlist[-1]
83 RNRlimit=RNRlist[-1]
84 Mlimit=Mlist[-1]
85 MNRlimit=MNRlist[-1]
86 FirstTimeisbiggerthan10percent=True
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87 Pc = Pc*1.05
88

89 print(’Limit M is {}’.format(Mlimit))
90 print(’Limit r is {}’.format(Rlimit))
91 print(’Limit MNR is {}’.format(MNRlimit))
92 print(’Limit rNR is {}’.format(RNRlimit))
93 print(’Limit Pc is {}’.format(Pclimit))
94

95 indexbiggestmassM=Mlist.index(max(Mlist))
96 indexbiggestmassMNR=MNRlist.index(max(MNRlist))
97 StableMlist=Mlist[:(indexbiggestmassM+1)]
98 UnstableMlist=Mlist[(indexbiggestmassM+1):]
99 StableRlist=Rlist[:(indexbiggestmassM+1)]

100 UnstableRlist=Rlist[(indexbiggestmassM+1):]
101 StableMNRlist=MNRlist[:(indexbiggestmassMNR+1)]
102 UnstableMNRlist=MNRlist[(indexbiggestmassMNR+1):]
103 StableRNRlist=RNRlist[:(indexbiggestmassMNR+1)]
104 UnstableRNRlist=RNRlist[(indexbiggestmassMNR+1):]
105 #Reproducing the plot in Figure 2.3
106 plt.ylabel(r’$M/M_\odot$’)
107 plt.xlabel(’Radii (km)’)
108 plt.plot(StableRlist, StableMlist, ’r’,
109 StableRNRlist, StableMNRlist, ’b’,
110 UnstableRlist,UnstableMlist,’r--’,
111 UnstableRNRlist,UnstableMNRlist,’b--’)
112 plt.grid()
113 plt.show()
114

115 tenpercentratio=[1.1]*len(centralpressures)
116 logcentralpressures=[np.log10(item) for item in centralpressures]
117

118 StablePc=logcentralpressures[:(indexbiggestmassM+1)]
119 UnstablePc=logcentralpressures[(indexbiggestmassM+1):]
120 Stableratios=ratios[:(indexbiggestmassM+1)]
121 Unstableratios=ratios[(indexbiggestmassM+1):]
122 #Reproducing the plot in Figure 2.4
123 plt.ylabel(r’$M_{NR}/M$’)
124 plt.xlabel(r’$log_{10}(P_c/\epsilon_0)$’)
125 plt.plot(StablePc, Stableratios, ’k’,
126 UnstablePc, Unstableratios, ’k--’,
127 logcentralpressures, tenpercentratio, ’r’)
128 plt.grid()
129 plt.show()
130

131 #Initialise lists
132 Mlists = []
133 MNRlists = []
134 Rlists = []
135 RNRlists = []
136 Plists = []
137 PNRlists = []
138

139 #Reproducing graphs in Figure 2.2
140 #Make list of central pressures we want to calculate
141 Pclist=[1e-6,1e-3,1e-2]
142

143 #Loop for every central pressure

111



Chapter B. Code

144 for index in range(len(Pclist)):
145 P = PNR = Pc = Pclist[index]
146 M = 0.0
147 MNR = 0.0
148 r = 0.0
149 Mlist = []
150 MNRlist = []
151 Rlist = []
152 RNRlist = []
153 Plist = []
154 PNRlist = []
155 #For every central pressure, loop until the surface (P=0) is met for

both
156 #the relativistic and the non-relativistic case. For each, save the

pressures,
157 #the radii and the masses in lists, and save these when the surface is

met.
158 while (P > 0 or PNR > 0):
159 r = r + rstep
160 if P > 0:
161 eps = epsilon(P)
162 M = M + rstep * dMdr(r, eps)
163 P = P + rstep * dPdr(r, M, P, eps)
164 Rlist.append(r)
165 Mlist.append(M)
166 Plist.append(P)
167 if PNR > 0:
168 epsNR = 15.**(3./5.)*PNR**(3./5.)/3.
169 MNR = MNR + rstep * dMdr(r, epsNR)
170 PNR = PNR + rstep * dPdr(r, MNR, PNR, epsNR)
171 RNRlist.append(r)
172 MNRlist.append(MNR)
173 PNRlist.append(PNR)
174 if r>100000:
175 break
176 Mlists.append(Mlist)
177 MNRlists.append(MNRlist)
178 Rlists.append(Rlist)
179 RNRlists.append(RNRlist)
180 Plists.append(Plist)
181 PNRlists.append(PNRlist)
182

183 n=len(Pclist)
184 f, axarr = plt.subplots(n,2,figsize=(9,12))
185

186 for i in range(n):
187 axarr[i,0].ticklabel_format(style=’sci’, axis=’y’, scilimits=(0,0))
188 axarr[i,0].grid(True)
189 axarr[i,0].plot(Rlists[i], Plists[i], ’r’, RNRlists[i], PNRlists[i], ’

b’)
190 axarr[i,0].set_xlabel(’Radius (Km)’)
191 axarr[i,0].set_ylabel(r’$P/\epsilon_0$’)
192 axarr[i,0].set_ylim([0,Pclist[i]*1.1])
193

194 axarr[i,1].grid(True)
195 axarr[i,1].plot(Rlists[i], Mlists[i], ’r’,RNRlists[i], MNRlists[i], ’b

’)
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196 axarr[i,1].set_xlabel(’Radius (Km)’)
197 axarr[i,1].set_ylabel(r’$M/M_\odot$’)
198 axarr[i,1].set_ylim([0,max(MNRlists[i])*1.1])
199

200 plt.show()

B.2 Chapter 4

1 import math
2 import numpy as np
3 import scipy
4 from scipy import interpolate
5 import scipy.constants as sc
6 import scipy.integrate as integrate
7 import matplotlib
8 import matplotlib.pyplot as plt
9 import scipy.optimize as op

10 from matplotlib import rc
11 from bokeh.plotting import *
12 rc(’font’,**{’family’:’sans-serif’,’sans-serif’:[’Helvetica’]})
13 rc(’text’, usetex=True)
14

15 #constants
16 G = sc.G
17 c = sc.c
18 hbar=sc.hbar
19

20 #constants for translating between units
21 MeVtoJoules=1.0e6*sc.eV
22 JoulestoMeV=1.0/MeVtoJoules
23 MeVtoperm=mtoperMeV=MeVtoJoules/(c*hbar)
24 permtoMeV=perMeVtom=1.0/MeVtoperm
25 MeV4togcm3=1000.0*MeVtoJoules/c**2.0*(MeVtoperm/100.0)**3.0
26 MeV4toJouleskm3=MeVtoJoules*(1000.0*MeVtoperm)**3.0
27 MeV4tokgkm3=MeV4toJouleskm3/c**2.0
28 dynetoMeV4=0.1*JoulestoMeV*(permtoMeV)**3.0
29 gcm3toMeV4=1.0/MeV4togcm3
30

31 #other constants
32 Mo = 1.9891e30 # in kg
33 R0 = G*Mo/(1000*c**2.0) # in km
34 m = (939.5654133 + 938.2720813)/2 #in MeV
35 gmsigma2=266.9/m**2.0
36 gmomega2=195.7/m**2.0
37 e0 = m**4.0
38 beta = 4.0*sc.pi*e0*MeV4tokgkm3/Mo #in solarmasses per km3
39 pstep=0.01/m
40 f=2.0 #degeneracy
41 C=gmsigma2*f*m**2.0/(2.0*sc.pi**2.0)
42

43 #First term in the sigma-omega pressure and energy density expression
44 def firstterm(fgsigma):
45 return fgsigma**2.0/(2.0*m**2.0*gmsigma2)
46

47 #Function calculating the omega field from the normalized Fermi momentum
48 def fgomega(x):
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49 return gmomega2*m**2.0*f*x**3.0/(6.0*sc.pi**2.0)
50

51 #Second term in the sigma-omega pressure and energy density expression
52 def secondterm(fgomega):
53 return fgomega**2.0/(2.0*m**2.0*gmomega2)
54

55 #Function calculating the integral in the pressure expression for the
sigma-omega model

56 def pressureintegral(x):
57 return ((2.0*x**3.0 - 3.0*x)*(1.0+x**2.0)**(0.5) + 3.0*np.arcsinh(x))

/8.0
58

59 #Function calculating the integral in the energy density expression for
the sigma-omega model

60 def energyintegral(x):
61 return ((2.0*x**3.0 + x)*(1.0+x**2.0)**(0.5) - np.arcsinh(x))/8.0
62

63 #TOV equation
64 def dPdr(r, M, P, eps):
65 return -(R0*eps*M)/r**2.0*(P/eps + 1.0)*((beta*r**3.0*P)/M + 1.0)

/(1.0-2.0*R0*M/r)
66

67 #Mass equation
68 def dMdr(r, eps):
69 return beta*r**2.0*eps
70

71 #Function calculating the sigma field for the normalized sigma field and
Fermi momentum

72 def gsigmaintegral(y,x):
73 xnorm=x/(1.0-y)
74 return C*(1.0-y)**3.0*(xnorm*np.sqrt(xnorm**2.0+1.0) - np.arcsinh(

xnorm))/2.0-y
75

76 #Generate an array of n values of the normalized Fermi momentum between 0
and kfmax, and the corresponding sigma field.

77 n=50000
78 kfmax=2500/m
79 kf=np.linspace(0,kfmax,n).tolist()
80 gsigmalist=[]
81 gsigma=0.0
82 checker=0
83 for index in range(len(kf)): #looping over all k_F
84 currentkf=kf[index]
85 gsigma=scipy.optimize.newton(gsigmaintegral,gsigma,None,(currentkf,))
86 gsigmalist.append(gsigma)
87

88 #Function taking as input the Fermi momentum and sigma field arrays, and
yielding an array for the pressure values, and one for the energy
density

89 def EquationOfStateSigmaOmega(kmax,gsigmalist1):
90 pressurelist=[]
91 energylist=[]
92 for index in range(n):
93 k=kf[index]
94 gsigma=gsigmalist1[index]
95 gomega=fgomega(k)
96 pressure = -firstterm(gsigma) + secondterm(gomega) + (1.0-gsigma)
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**4.0*pressureintegral(k/(1.0-gsigma))*f/(6.0*sc.pi**2.0)
97 energy = firstterm(gsigma) + secondterm(gomega) + (1.0-gsigma)

**4.0*energyintegral(k/(1.0-gsigma))*f/(2.0*sc.pi**2.0)
98 energylist.append(energy)
99 pressurelist.append(pressure)

100 return pressurelist,energylist
101

102 #Save the pressure and energy density arrays for neutron matter (
degeneracy 2) in "pressurelist2" and "energylist2"

103 [pressurelist2,energylist2]=EquationOfStateSigmaOmega(kfmax,gsigmalist)
104

105 #translate the arrays in dyne/cmˆ2 and g/cmˆ3
106 pressureindyne2=[item*e0/dynetoMeV4 for item in pressurelist2]
107 energyingcm32=[item*e0*MeV4togcm3 for item in energylist2]
108

109 #Calculate pressure and energy density arrays for free, cold Fermi gas
110 freeneutrongaspressure=[]
111 freeneutrongasenergy=[]
112 for counter in range(n):
113 freeneutrongaspressure.append(pressureintegral(kf[counter])/(3.0*sc.pi

**2.0))
114 freeneutrongasenergy.append(energyintegral(kf[counter])/(sc.pi**2.0))
115

116 #translate the arrays in dyne/cmˆ2 and g/cmˆ3
117 freeneutrongaspressuredyne=[item*e0/dynetoMeV4 for item in

freeneutrongaspressure]
118 freeneutrongasenergygcm3=[item*e0*MeV4togcm3 for item in

freeneutrongasenergy]
119

120 #interpolate
121 interpCFG=interpolate.interp1d(freeneutrongasenergy,freeneutrongaspressure

)
122

123 #Make volume and pressure arrays for the pressure-volume EoS
124 energy2Bconverted=energylist2[:]
125 afterpressure=pressurelist2[:]
126 del energy2Bconverted[0]
127 del afterpressure[0]
128 volume2=[(1./(item*e0))*(perMeVtom*1.0e15)**3. for item in

energy2Bconverted]
129 pressure2=[item*e0/dynetoMeV4 for item in afterpressure]
130 volume2.reverse()
131 pressure2.reverse()
132

133 #Plot of Figure 4.1
134 f, axarr = plt.subplots(1,2, sharey=True,figsize=(9,4))
135

136 axarr[0].set_ylabel(r’$P$ (dyne/cm$ˆ2$)’)
137 axarr[0].grid(True)
138 axarr[0].plot(energyingcm32,pressureindyne2,’k’)
139 axarr[0].set_xlabel(r’$\epsilon$ (g/cm$ˆ3$)’)
140 axarr[0].set_xlim(0,2e14)
141

142 axarr[1].grid(True)
143 axarr[1].plot(volume2,pressure2,’k’)
144 axarr[1].set_xlabel(r’$V/E$ (fm$ˆ3$/MeV)’)
145 axarr[1].set_xlim(0,0.4)
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146

147 plt.ylim(-1.8e32,1.5e32)
148 plt.show()
149

150 #find local top in pressure graph
151 leastpressureindex=pressure2.index(min(pressure2))
152 index=leastpressureindex
153 found=False
154 while found==False:
155 index=index+1
156 if pressure2[index]<pressure2[index-1]:
157 found=True
158 maxpressure=pressure2[index-1]
159 maxpressureindex=index-1
160 almostmaxpressure=pressure2[index-2]
161

162 #divide pressure into 3 regions: before volume minimum, between volume
minimum and maximum, after volume maximum. Interpolate

163 firstpartvolume=volume2[:leastpressureindex]
164 firstpartpressure=pressure2[:leastpressureindex]
165 interpvol1=interpolate.interp1d(firstpartpressure,firstpartvolume)
166

167 secondpartvolume=volume2[leastpressureindex:maxpressureindex]
168 secondpartpressure=pressure2[leastpressureindex:maxpressureindex]
169 interpvol2=interpolate.interp1d(secondpartpressure,secondpartvolume)
170

171 thirdpartvolume=volume2[maxpressureindex:]
172 thirdpartpressure=pressure2[maxpressureindex:]
173 interpvol3=interpolate.interp1d(thirdpartpressure,thirdpartvolume)
174

175 #general interpolation
176 interpolatedpressure=interpolate.interp1d(volume2,pressure2)
177

178 #loop different values for pressure between maxpressure and 0, find the
two enclosed areas.

179 n=2000
180 pressure2loop=np.linspace(pressure2[-1],almostmaxpressure,n).tolist()
181 Maxwellintegrals1=[]
182 Maxwellintegrals2=[]
183 for i in range(n):
184 currentpressure=pressure2loop[i]
185 vol1=interpvol1(currentpressure)
186 vol2=interpvol2(currentpressure)
187 vol3=interpvol3(currentpressure)
188 firstintegral,err=integrate.quad(interpolatedpressure,vol1,vol2)
189 firstintegral=firstintegral - currentpressure*(vol2-vol1)
190 secondintegral,err=integrate.quad(interpolatedpressure,vol2,vol3)
191 secondintegral=secondintegral - currentpressure*(vol3-vol2)
192 Maxwellintegrals1.append(firstintegral)
193 Maxwellintegrals2.append(secondintegral)
194

195 #find the free Gibbs energy
196 G=[0]
197 volume2Gibbs=[item/m*1.0e-45*mtoperMeV**3. for item in volume2]
198 pressure2Gibbs=[item*dynetoMeV4 for item in pressure2]
199 currentG=0
200 for i in range(len(pressure2Gibbs)-1):
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201 currentG=currentG+volume2Gibbs[i]*(pressure2Gibbs[i+1]-pressure2Gibbs[
i])

202 G.append(currentG)
203

204 #normalize the Gibbs energy
205 G0=0.009183
206 Gnorm=[(item/G0 + 1.)*10000 for item in G]
207 plt.plot(pressure2,Gnorm)
208

209 #plot of Figure 4.2
210 plt.xlabel(’$P$ (dyne/cm$ˆ2$)’)
211 plt.ylabel(’$G/G_0$’)
212 plt.xlim(-1.8e32,1.5e32)
213 plt.ylim(0,5.2)
214 plt.grid(True)
215 plt.show()
216

217 #Calculate the difference between the encloed areas. Find when it is
closest to 0.

218 Maxwellintegrals=np.add(Maxwellintegrals1,Maxwellintegrals2).tolist()
219 AbsMaxwellintegrals=[abs(item) for item in Maxwellintegrals]
220 minimum=min(AbsMaxwellintegrals)
221 minimumindex=AbsMaxwellintegrals.index(minimum)
222

223 #Find the phase transition pressure
224 Pcritic=pressure2loop[minimumindex]*dynetoMeV4/e0
225 print(Pcritic/dynetoMeV4*e0)
226

227 #Find the three points where the pressure plot crosses the critical
pressure

228 index=0
229 while pressurelist2[index] < Pcritic:
230 index=index+1
231 firstoccurrence=index-1
232 while pressurelist2[index] > Pcritic:
233 index=index+1
234 secondoccurrence=index
235 while pressurelist2[index] < Pcritic:
236 index=index +1
237 thirdoccurrence=index
238

239 #Make new pressure arrays accounting for the phase transition
240 fillin=thirdoccurrence-firstoccurrence
241 maxwellpressure=pressurelist2[:firstoccurrence] + fillin*[Pcritic] +

pressurelist2[thirdoccurrence:]
242 maxwellindyne2=[item*e0/dynetoMeV4 for item in maxwellpressure]
243

244 #Make logs for plot, and plot Figure 4.5
245 def log10neg(x):
246 if x>0:
247 return np.log10(x)
248 else:
249 return -np.log10(-x)
250 logenergyingcm32=[np.log10(item) for item in energyingcm32]
251 logpressureindyne2=[log10neg(item) for item in pressureindyne2]
252 logmaxwellindyne2=[np.log10(item) for item in maxwellindyne2]
253 logfreeneutrongasenergygcm3=[np.log10(item) for item in
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freeneutrongasenergygcm3]
254 logfreeneutrongaspressuredyne=[np.log10(item) for item in

freeneutrongaspressuredyne]
255

256 plt.ylabel(r’log$(P)$ (dyne/cm$ˆ2$)’)
257 plt.xlabel(r’log$(\epsilon)$ (g/cm$ˆ3$)’)
258 plt.ylim(25,39)
259 plt.xlim(9,18)
260 plt.plot(logenergyingcm32,logpressureindyne2,’k--’,
261 logenergyingcm32,logmaxwellindyne2,’k’,
262 logfreeneutrongasenergygcm3,logfreeneutrongaspressuredyne,’k-.’)
263 plt.grid()
264 plt.show()
265

266 #reverse the new pressure array for plotting
267 revmaxwellindyne=maxwellindyne2[:]
268 revmaxwellindyne.reverse()
269 del revmaxwellindyne[0]
270 PcriticDyne=Pcritic/dynetoMeV4*e0
271

272 #Plot Figure 4.4
273 f, axarr = plt.subplots(1,2, sharey=True,figsize=(9,4))
274 plt.ylim(-1.8e32,1.5e32)
275

276 axarr[0].grid(True)
277 axarr[0].fill_between(volume2,revmaxwellindyne,pressure2)
278 axarr[0].set_xlabel(r’$V/E$ (fm$ˆ3$/MeV)’)
279 axarr[0].set_xlim(0,0.4)
280 axarr[0].set_ylabel(r’$P$ (dyne/cm$ˆ2$)’)
281

282 axarr[1].grid(True)
283 axarr[1].plot(volume2,pressure2,’b--’,volume2,revmaxwellindyne,’k’)
284 axarr[1].set_xlabel(r’$V/E$ (fm$ˆ3$/MeV)’)
285 axarr[1].set_xlim(0,0.4)
286 plt.show()
287

288 #plot Figure 4.3
289 firstpartpressuremod=firstpartpressure[:]
290 firstpartvolumemod=firstpartvolume[:]
291 for index in range(len(firstpartpressure)):
292 if firstpartpressure[index]>PcriticDyne:
293 del firstpartpressuremod[0]
294 del firstpartvolumemod[0]
295

296 thirdpartpressuremod=thirdpartpressure[:]
297 thirdpartvolumemod=thirdpartvolume[:]
298 thirdpartpressuremod.reverse()
299 thirdpartvolumemod.reverse()
300 for index in range(len(thirdpartpressure)):
301 if thirdpartpressure[index]<PcriticDyne:
302 del thirdpartpressuremod[0]
303 del thirdpartvolumemod[0]
304

305 plt.plot(revmaxwellindyne,volume2,’k’)
306 plt.fill_between(secondpartpressure,secondpartvolume,facecolor=’green’,

alpha=0.5)
307 plt.fill_between(thirdpartpressuremod,thirdpartvolumemod,facecolor=’red’,
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alpha=0.5)
308 plt.fill_between(firstpartpressuremod,firstpartvolumemod,facecolor=’blue’,

alpha=0.5)
309

310 plt.xlim(-1.6e32,0.5e32)
311 plt.ylim(0,0.3)
312 plt.ylabel(r’$V/E$ (fm$ˆ3$/MeV)’)
313 plt.xlabel(r’$P$ (dyne/cm$ˆ2$)’)
314 plt.grid()
315 plt.show()
316

317 #interpolate the pressure and the energy density
318 EoS=interpolate.interp1d(maxwellpressure,energylist2)
319

320 #Calculate the mass-radii relation for neutron matter
321 Pcstart = 2e32*dynetoMeV4/e0
322 Pcend = 9e38*dynetoMeV4/e0
323 Pcstep = 1.1
324 P = Pc = Pcstart
325 M = 0.0
326 r = 0.0
327 rstep = 0.0005 #in km
328 Mlist2 = []
329 Rlist2 = []
330 centralpressures2 = []
331 while Pc < Pcend:
332 P = Pc
333 M = 0.0
334 r = 0.0
335 centralpressures2.append(Pc)
336 while P > 0:
337 r = r + rstep
338 eps = EoS(P)
339 M = M + rstep * dMdr(r, eps)
340 P = P + rstep * dPdr(r, M, P, eps)
341 Rlist2.append(r)
342 Mlist2.append(M)
343 Pc = Pc*Pcstep
344

345 indexbiggestmass2=Mlist2.index(max(Mlist2))
346 StableMlist2=Mlist2[:(indexbiggestmass2+1)]
347 StableRlist2=Rlist2[:(indexbiggestmass2+1)]
348 UnstableMlist2=Mlist2[(indexbiggestmass2+1):]
349 UnstableRlist2=Rlist2[(indexbiggestmass2+1):]
350 centraldensities2=[EoS(item)*e0*MeV4togcm3 for item in centralpressures2]
351 Stablecentraldensities2=centraldensities2[:(indexbiggestmass2+1)]
352 Unstablecentraldensities2=centraldensities2[(indexbiggestmass2+1):]
353 logStablecentraldensities2=[np.log10(item) for item in

Stablecentraldensities2]
354 logUnstablecentraldensities2=[np.log10(item) for item in

Unstablecentraldensities2]
355

356 #Repeat the procedure, but for nuclear matter (f=4). Here is unnecessary
with the Maxwell contruction.

357 f=4.0
358 n=50000
359 gsigma4list=[]
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360 gsigma4=0.0
361 checker=0
362 for index in range(len(kf)):
363 currentkf=kf[index]
364 gsigma4=scipy.optimize.newton(gsigmaintegral,gsigma4,None,(currentkf,)

)
365 gsigma4list.append(gsigma4)
366

367 [pressurelist4,energylist4]=EquationOfStateSigmaOmega(kfmax,gsigma4list)
368

369 pressureindyne4=[item*e0/dynetoMeV4 for item in pressurelist4]
370 energyingcm34=[item*e0*MeV4togcm3 for item in energylist4]
371

372 #Plot of Figure 4.6
373 logpressureindyne4=[np.log10(item) for item in pressureindyne4]
374 logenergyingcm34=[np.log10(item) for item in energyingcm34]
375 plt.ylabel(r’$\log(P)$ (dyne/cm$ˆ2$)’)
376 plt.xlabel(r’$\log(\epsilon)$ (g/cm$ˆ3$)’)
377 plt.xlim(4,20)
378 plt.ylim(18,40)
379 plt.plot(logenergyingcm32,logmaxwellindyne2,’r’,logenergyingcm34,

logpressureindyne4,’b’)
380 plt.grid(True)
381 plt.show()
382

383 EoS4=interpolate.interp1d(pressurelist4,energylist4)
384

385 Pcstart = 2e32*dynetoMeV4/e0
386 Pcend = pressurelist4[-1]
387 Pcstep = 1.1
388 P = Pc = Pcstart
389 M = 0.0
390 r = 0.0
391 rstep = 0.001 #in km
392 Mlist4 = []
393 Rlist4 = []
394 centralpressures4=[]
395

396 while Pc < Pcend:
397 P = Pc
398 centralpressures4.append(Pc)
399 M = 0.0
400 r = 0.0
401 while P > 0:
402 r = r + rstep
403 eps=EoS4(P)
404 M = M + rstep * dMdr(r, eps)
405 P = P + rstep * dPdr(r, M, P, eps)
406 Rlist4.append(r)
407 Mlist4.append(M)
408 Pc = Pc*Pcstep
409

410 indexbiggestmass4=Mlist4.index(max(Mlist4))
411 StableMlist4=Mlist4[:(indexbiggestmass4+1)]
412 StableRlist4=Rlist4[:(indexbiggestmass4+1)]
413 UnstableMlist4=Mlist4[(indexbiggestmass4+1):]
414 UnstableRlist4=Rlist4[(indexbiggestmass4+1):]
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415 centraldensities4=[EoS4(item)*e0*MeV4togcm3 for item in centralpressures4]
416 Stablecentraldensities4=centraldensities4[:(indexbiggestmass4+1)]
417 Unstablecentraldensities4=centraldensities4[(indexbiggestmass4+1):]
418 logStablecentraldensities4=[np.log10(item) for item in

Stablecentraldensities4]
419 logUnstablecentraldensities4=[np.log10(item) for item in

Unstablecentraldensities4]
420 print(max(Mlist2))
421 print(Rlist2[indexbiggestmass2])
422 print(max(Mlist4))
423 print(Rlist4[indexbiggestmass4])
424

425 #Plot of Figure 4.7
426 f, axarr = plt.subplots(1,2, sharey=True)
427 axarr[0].set_ylabel(r’$M/M_\odot$’)
428 axarr[0].grid(True)
429 axarr[0].plot(StableRlist2, StableMlist2, ’r-’,
430 UnstableRlist2, UnstableMlist2, ’r--’,
431 StableRlist4, StableMlist4, ’b-’,
432 UnstableRlist4, UnstableMlist4, ’b--’)
433 axarr[0].set_xlabel(’Radii (km)’)
434

435 axarr[1].grid(True)
436 axarr[1].plot(logStablecentraldensities2, StableMlist2,’r-’,
437 logUnstablecentraldensities2, UnstableMlist2,’r--’,
438 logStablecentraldensities4, StableMlist4,’b-’,
439 logUnstablecentraldensities4, UnstableMlist4,’b--’
440 )
441 axarr[1].set_xlabel(r’$\log(\epsilon_0)$ (g/cm$ˆ3$)’)
442

443 plt.ylim(0,3.5)
444 plt.show()
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1 import numpy as np
2 import scipy
3 import scipy.constants as sc
4 import scipy.integrate as integrate
5 import matplotlib
6 import matplotlib.pyplot as plt
7 import scipy.optimize as op
8 from scipy import interpolate
9 from operator import add

10 from matplotlib import rc
11 rc(’font’,**{’family’:’sans-serif’,’sans-serif’:[’Helvetica’]})
12 rc(’text’, usetex=True)
13

14 #constants and conversion coefficients
15 G = sc.G
16 hbar=sc.hbar
17 Mo = 1.9891e30 # in kg
18 R0 = G*Mo/(1000*sc.c**2.0) # in km
19 MeVtoJoules=1.0e6*sc.eV
20 JoulestoMeV=1.0/MeVtoJoules
21 MeVtoperm=mtoperMeV=MeVtoJoules/(sc.c*hbar)
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22 permtoMeV=perMeVtom=1.0/MeVtoperm
23 MeV4togcm3=1000.0*MeVtoJoules/sc.c**2.0*(MeVtoperm/100.0)**3.0
24 MeV4toJouleskm3=MeVtoJoules*(1000.0*MeVtoperm)**3.0
25 MeV4tokgkm3=MeV4toJouleskm3/sc.c**2.0
26 dynetoMeV4=0.1*JoulestoMeV*(permtoMeV)**3.0
27 gcm3toMeV4=1.0/MeV4togcm3
28 mn = 938. #neutron mass (approximate value for the self-interaction term

in the sigma field)
29 m=(939.5654133+938.2720813)/2. #nucleon mass, average of p and n
30 me = 0.5109989461 #electron mass
31 mmu = 105.6583745 #muon mass
32 rho0 = (1.0e15*permtoMeV)**3.0 #normalization constant for baryon density

in MeV, 1.0*fmˆ-3
33 e0=m**4.
34 beta = 4.0*sc.pi*e0*MeV4tokgkm3/Mo #in solarmasses per km3
35

36 #parameters
37 gmsigma2=9.927*(1.0e-15*mtoperMeV)**2.0
38 gmomega2=4.820*(1.0e-15*mtoperMeV)**2.0
39 gmrho2=4.791*(1.0e-15*mtoperMeV)**2.0
40 b=0.008621
41 c=-0.002321
42

43 def cube(x): #function to find cube of negative numbers
44 if x >= 0:
45 return x**(1./3.)
46 else:
47 return -(abs(x)**(1./3.))
48

49 def gsigmaintegral(fgsigma,k): #function calculating the integral in
gsigma. Returns normalized gsigma (gsigma/m)ˆ3

50 xnorm=k/(1.0-fgsigma)
51 return (1.0-fgsigma)**3.0*(xnorm*np.sqrt(xnorm**2.0+1.0) - np.arcsinh(

xnorm))/(2.0*sc.pi**2.0)
52

53 def squaresbeforemuons(x,rho): #x0=rhon, x1=gsigma, x2=ke. Equation system
before the appearance of muons

54 kp=cube(3.*sc.pi**2.*(rho-x[0]))
55 kn=cube(3.*sc.pi**2.*x[0])
56 grho=gmrho2*(0.5*rho-x[0])
57 mstar=(1.-x[1]/m)*m
58 return (
59 (x[1] - gmsigma2*(-b*mn*x[1]**2 - c*x[1]**3 + m**3*(

gsigmaintegral(x[1]/m,kn/m) + gsigmaintegral(x[1]/m,kp/m))))**2 +
60 (kp-x[2])**2.0 +
61 (grho + np.sqrt(kp**2. + mstar**2)-np.sqrt(kn**2.+mstar**2.)

+np.sqrt(x[2]**2 + me**2))**2.
62 )
63

64 def squaresaftermuons(x,rho): #x0=rhon, x1=gsigma, x2=ke. Equation system
after the appearance of muons

65 kp=cube(3.*sc.pi**2.*(rho-x[0]))
66 kn=cube(3.*sc.pi**2.*x[0])
67 grho=gmrho2*(0.5*rho-x[0])
68 mstar=(1.-x[1]/m)*m
69 mue2=me**2. + x[2]**2.
70 kmu=np.sqrt(mue2-mmu**2.)
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71 return (
72 (x[1] - gmsigma2*(-b*mn*x[1]**2. - c*x[1]**3. + m**3.*(

gsigmaintegral(x[1]/m,kn/m) + gsigmaintegral(x[1]/m,kp/m))))**2. +
73 (kp-cube(x[2]**3.+kmu**3.))**2. +
74 (grho + np.sqrt(kp**2. + mstar**2.)-np.sqrt(kn**2.+mstar**2.)

+np.sqrt(mue2))**2.
75 )
76

77 def dMdr(r, eps):
78 return beta*r**2.0*eps #returns sunmasses/km
79

80 def dPdr(r, M, P, eps):
81 return -(R0*eps*M)/r**2.0*(P/eps + 1.0)*((beta*r**3.0*P)/M + 1.0)

/(1.0-2.0*R0*M/r) #returns in J/km**2
82

83 bnds=((0,None),(0,None),(0,None)) #rho_n, gsigma and k_e must have
positive values

84 n=2000 #number of steps
85 startrho=0.01*rho0 #initial baryon density
86 rhos=np.linspace(startrho,2.0*rho0,n).tolist() #list for all the baryon

densities we want to evaluate in the system
87 guess=np.array([
88 startrho,
89 gmsigma2*startrho,
90 0.12*m*(startrho/rho0)**(2./3.)
91 ]) #guess for the initial value of our variables. To be

updated in the iteration
92 #initializing lists
93 rhons=[]
94 gsigmas=[]
95 rhonnorm=[]
96 rhomuons=[]
97 rhomuonsnorm=[]
98 rhoesnorm=[]
99 kes=[]

100 kmuons=[]
101 firsttimemuons=False
102 for index in range(len(rhos)):
103 rho=rhos[index]
104 if (guess[2]**2.+me**2.)>=mmu**2. and firsttimemuons==False: #checking

condition for muons
105 print(rho/rho0)
106 firsttimemuons=True
107 if firsttimemuons==False:
108 roots=op.minimize(squaresbeforemuons,guess,(rho,),bounds=bnds)
109 else:
110 roots=op.minimize(squaresaftermuons,guess,(rho,),bounds=bnds)
111 guess=roots.x
112 #save roots in lists
113 rhons.append(guess[0])
114 rhonnorm.append(guess[0]/rho)
115 gsigmas.append(guess[1])
116 kes.append(guess[2])
117 rhoesnorm.append(guess[2]**3.0/(rho*3*sc.pi**2.))
118 if firsttimemuons==True:
119 kmuons.append(np.sqrt(guess[2]**2. + me**2. - mmu**2.))
120 rhomuons.append(kmuons[-1]**3./(3.*sc.pi**2.))
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121 rhomuonsnorm.append(rhomuons[-1]/rho)
122 else:
123 kmuons.append(0.)
124 rhomuons.append(0.)
125 rhomuonsnorm.append(0.)
126

127 #Plot Figure 5.3
128 rhopnorm=[1.-item for item in rhonnorm]
129 rhosnorm=[item/rho0 for item in rhos]
130 logrhopnorm=[np.log10(item) for item in rhopnorm]
131 logrhonnorm=[np.log10(item) for item in rhonnorm]
132 logrhoesnorm=[np.log10(item) for item in rhoesnorm]
133 logrhomuonsnorm=[np.log10(item) for item in rhomuonsnorm]
134 plt.rc(’text’, usetex=True)
135 plt.rc(’font’, family=’serif’)
136 plt.ylabel(r’$\log (\rho_i/\rho)$’)
137 plt.xlabel(r’$\rho(\textrm{fm}ˆ{-3})$’)
138 plt.ylim(-3,0)
139 plt.xlim(0,1)
140 plt.plot(rhosnorm,logrhonnorm,’b’,
141 rhosnorm,logrhopnorm,’r’,
142 rhosnorm,logrhoesnorm,’b--’,
143 rhosnorm,logrhomuonsnorm,’k--’)
144 plt.grid()
145 plt.show()
146

147 #function calculating the integral in the pressure expression for the EoS
148 def pressureintegral(x):
149 return ((2.0*x**3.0 - 3.0*x)*(1.0+x**2.0)**(0.5) + 3.0*np.arcsinh(x))

/8.0
150

151 #function calculating the integral in the energy density expression for
the EoS

152 def energyintegral(x):
153 return ((2.0*x**3.0 + x)*(1.0+x**2.0)**(0.5) - np.arcsinh(x))/8.0
154

155 #Function taking as input the values of the fields and the Fermi momenta
of the different particles, and yielding the pressure and energy
density array

156 def makeEoS(rholist,rhonlist,gsigmalist,kelist,kmulist):
157 energydensitylist=[]
158 pressurelist=[]
159 for index in range(len(rholist)):
160 kp=cube(3.*sc.pi**2.*(rholist[index]-rhonlist[index]))
161 kn=cube(3.*sc.pi**2.*rhonlist[index])
162 selfinteractions=b*mn*gsigmalist[index]**3./3. + c*gsigmalist[

index]**4./4.
163 msigmaterm=0.5*gsigmalist[index]**2./gmsigma2
164 momegaterm=0.5*gmomega2*rholist[index]**2.
165 mrhoterm=0.5*gmrho2*(0.5*rholist[index]-rhonlist[index])**2.
166 pressureints = ((m - gsigmalist[index])**4.0 * (pressureintegral(

kp / (m - gsigmalist[index]) ) + pressureintegral(kn / (m - gsigmalist
[index]))) + me**4. * pressureintegral(kelist[index] / me) + mmu**4. *
pressureintegral(kmulist[index] / mmu))/(3. * sc.pi**2.)

167 energyints=((m - gsigmalist[index])**4.0 * (energyintegral(kp / (m
- gsigmalist[index])) + energyintegral(kn / (m - gsigmalist[index])))
+ me**4. * energyintegral(kelist[index] / me) + mmu**4. *
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energyintegral(kmulist[index] / mmu)) /sc.pi**2.
168 currentenergydensity = selfinteractions + momegaterm + msigmaterm

+ mrhoterm + energyints
169 currentpressure = -selfinteractions + momegaterm - msigmaterm +

mrhoterm + pressureints
170

171 energydensitylist.append(currentenergydensity/e0)
172 pressurelist.append(currentpressure/e0)
173 return energydensitylist, pressurelist
174

175 #Function f0 as defined in Chapter 5
176 def f0(x):
177 return 1.0/(np.exp(x)+1.0)
178

179 #EoS for the crust: pressure as function of the energy density
180 a = [6.22, 6.121, 0.005925, 0.16326, 6.48, 11.4971, 19.105, 0.8938, 6.54,

11.4950, -22.775, 1.5707, 4.3, 14.08, 27.80, -1.653, 1.50, 14.67]
181 def PfromepsLD(eps):
182 return (a[0]+a[1]*eps+a[2]*eps**3.0)*f0(a[4]*a[5]*(eps/a[5]-1.0))

/(1.0+a[3]*eps) + (a[6] + a[7]*eps)*f0(a[8]*a[9]*(1.0-eps/a[9])) + (a
[10] + a[11]*eps)*f0(a[12]*a[13]*(1.0-eps/a[13])) + (a[14] + a[15]*eps
)*f0(a[16]*a[17]*(1.0-eps/a[17]))

183

184 #EoS for the crust: energy density as function of the pressure (
rootfinding)

185 def epsLDroot(eps,P):
186 return PfromepsLD(eps)-P
187

188 def EoSLD(P,guess):
189 logdyneP = np.log10(P*e0/dynetoMeV4)
190 tempeps = scipy.optimize.newton(epsLDroot,guess,None,(logdyneP,))
191 return 10.0**(tempeps)*gcm3toMeV4/e0
192

193 #Evaluate the EoS, save the energy densities and the pressures in two
arrays

194 [energy,pressure]=makeEoS(rhos,rhons,gsigmas,kes,kmuons)
195

196 #Find crossing point between the npemu EoS and the crust’s EoS
197 energygcm3=[np.log10(item*e0*MeV4togcm3) for item in energy]
198 pressuredyne=[np.log10(item*e0/dynetoMeV4) for item in pressure]
199 pressuredyneLD=[PfromepsLD(item) for item in energygcm3]
200 counter=0
201 while PfromepsLD(energygcm3[counter])>pressuredyne[counter]:
202 counter=counter+1
203 crossenergy=energy[counter]
204 crosspressure=pressure[counter]
205

206 #Make an array for the low density EoS (crust)
207 energyLDjoind=np.linspace(10.0e-14,crossenergy,1000).tolist()
208 energyLDjoindlog=[np.log10(item*e0*MeV4togcm3)for item in energyLDjoind]
209 pressureLDjoindlog=[PfromepsLD(item) for item in energyLDjoindlog]
210 pressureLDjoind=[10.0**(item)*dynetoMeV4/e0 for item in pressureLDjoindlog

]
211

212 #Join the two EoS
213 joindener=energyLDjoind + energy[counter:]
214 joindpres=pressureLDjoind + pressure[counter:]
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215

216 #Plot of Figure 5.1
217 joindenerplot=[item*e0*MeV4togcm3 for item in joindener]
218 joindpresplot=[item*e0/dynetoMeV4 for item in joindpres]
219 logjoindenerplot=[np.log10(item) for item in joindenerplot]
220 logjoindpresplot=[np.log10(item) for item in joindpresplot]
221

222 plt.rc(’text’, usetex=True)
223 plt.rc(’font’, family=’serif’)
224 plt.ylabel(r’$\log P (\textrm{dyne/cm}ˆ2$)’)
225 plt.xlabel(r’$\log \epsilon(\textrm{g/cm}ˆ{3})$’)
226 plt.ylim(26,38)
227 plt.xlim(9,16)
228 plt.plot(logjoindenerplot,logjoindpresplot, ’k’)
229 plt.grid()
230 plt.show()
231

232 #Interpolate the EoS
233 EoS=interpolate.interp1d(joindpres,joindener)
234

235 #Calculate the mass-radii relation for npemu matter
236 Pcstart = 4e33*dynetoMeV4/e0
237 Pcend = joindpres[-2]
238 Pcstep = 1.05
239 P = Pc = Pcstart
240 M = 0.0
241 r = 0.0
242 rstep = 0.001 #in km
243 Mlist2 = []
244 Rlist2 = []
245 centralpressures2 = []
246 tol=joindpres[0]
247 while Pc < Pcend:
248 P = Pc
249 M = 0.0
250 r = 0.0
251 centralpressures2.append(Pc)
252 while P > tol:
253 r = r + rstep
254 eps=EoS(P)
255 M = M + rstep * dMdr(r, eps)
256 P = P + rstep * dPdr(r, M, P, eps)
257 Rlist2.append(r)
258 Mlist2.append(M)
259 Pc = Pc*Pcstep
260 indexbiggestmass2=Mlist2.index(max(Mlist2))
261 StableMlist2=[]
262 UnstableMlist2=[]
263 StableRlist2=[]
264 UnstableRlist2=[]
265 StableMlist2=Mlist2[:(indexbiggestmass2+1)]
266 StableRlist2=Rlist2[:(indexbiggestmass2+1)]
267 UnstableMlist2=Mlist2[(indexbiggestmass2+1):]
268 UnstableRlist2=Rlist2[(indexbiggestmass2+1):]
269

270 #Print largest mass and smallest radius
271 print(Rlist2[indexbiggestmass2])
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272 print(Mlist2[indexbiggestmass2])
273

274 #Plot of Figure 5.2
275 centraldensities2=[EoS(item)*e0*MeV4togcm3 for item in centralpressures2]
276 Stablecentraldensities2=centraldensities2[:(indexbiggestmass2+1)]
277 Unstablecentraldensities2=centraldensities2[(indexbiggestmass2+1):]
278 Stablecentraldensities2log=[np.log10(item) for item in

Stablecentraldensities2]
279 Unstablecentraldensities2log=[np.log10(item) for item in

Unstablecentraldensities2]
280

281 f, axarr = plt.subplots(1,2, sharey=True,figsize=(9,4))
282 axarr[0].grid(True)
283 axarr[0].plot(StableRlist2, StableMlist2, ’k-’,
284 UnstableRlist2, UnstableMlist2, ’k--’)
285 axarr[0].set_xlabel(’Radii (km)’)
286 axarr[0].set_ylabel(r’$M/M_\odot$’)
287 axarr[0].set_xlim([8,25])
288 axarr[1].grid(True)
289 axarr[1].plot(Stablecentraldensities2log, StableMlist2,’k-’,
290 Unstablecentraldensities2log, UnstableMlist2,’k--’)
291 axarr[1].set_xlabel(r’$\log \epsilon_0$ (g/cm$ˆ3$)’)
292 axarr[1].set_xlim([14.45,15.8])
293 plt.ylim(0.2,2.15)
294 plt.show()
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