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Abstract 

 

This thesis examines the interaction between woody plants, elephants and other browsers 

in a semi-arid savanna in northern Botswana, southern Africa. Particularly I studied how 

woody plants respond to herbivory, how browsers respond to previously browsed trees, 

and how the browsers share food resources.   

Browsing pressure by twig biting ungulates showed a unimodal relationship with 

shoot vigour (first PCA axis scores generated from four shoot variables) of 14 tree 

species, which may be caused by low quantity and quality of food on trees with low 

vigour, and too large shoot diameters on the most vigorously growing tree species. 

Browsing pressure by elephants showed no relation with shoot vigour of plant species. 

Elephants, giraffe, impala and kudu largely used different food resources in terms of 

browse species and height levels selected. There was little resource-use overlap 

(Schoener’s index) between the herbivore species. Elephants (ca. 3000 kg) predominantly 

browsed other woody species than those browsed by giraffe (ca. 1000 kg), impala (ca. 50 

kg) and kudu (ca. 200 kg). Differences in body size could not explain this difference in 

food choice, as giraffe, impala and kudu browse the same tree species independent of 

considerable difference in body size. The differences in food selectivity may instead be 

explained by difference in digestive systems. Elephants are hindgut fermenters whereas 

the others are foregut fermenters (ruminants).   

Trees that were strongly affected by elephant browsing had more shoots at low 

height levels than individuals without elephant impact. Impala and kudu preferred to 

browse from trees previously browsed by elephant rather than from trees without any 
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elephant impact. This indicates that elephants facilitate the foraging by these two species. 

Elephants themselves are known to rebrowse previously impacted trees, and were found 

to recognize and preferentially browse trees that had been subject to simulated browsing 

three years earlier and since then protected from large herbivores.   

The study did not find evidence that elephants compete with and deplete food for other 

browsers. Results in this thesis do not justify manipulation of elephant population and 

distribution as a means to increase populations of the other animal species investigated in 

this thesis. Instead it seems that elephants may act to facilitate browsing by other 

investigated animal species. 
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Introduction 

Forage selection by browsers 

Herbivores make foraging decisions at different spatial scales, e.g., on the level of 

landscape, habitat type, feeding patch and the single plant or plant module (Senft et al. 

1987; Skarpe et al. 2000). A feeding patch or a feeding station for a browser may be a 

stand, a tree or a part, e.g., a height section, of a tree (Senft et al. 1987; Danell et al 1991; 

Spencer et al.1995). Herbivores respond to variation in food abundance or biomass in 

different ways (Gordon 2003). Herbivores may forage resources distributed patchily in a 

pattern that match availability, i.e., linear response (Senft et al. 1987; Spencer et al. 1995; 

Gordon 2003). However, herbivores may also employ foraging patterns, which are 

nonlinearly related to forage abundance (Senft et al. 1987). The nonlinearly foraging 

responses have been described as “overmatching”, when resource use in a patch is 

disproportionately high or “undermatching”, when resource use in a patch is 

disproportionately low (Staddon 1983; Senft et al. 1987; Spencer et al. 1995) 

Differential selection of food items by herbivores relates to plant and animal 

characteristics. Plant characteristics involved may comprise morphology (Campbell 

1986; Cooper and Owen-Smith 1986; Cooper and Ginnett 1998), chemistry (Coley et al. 

1985; Bryant et al. 1992a; Bryant 2003), spatial distribution (Senft et al. 1987; Vivås and 

Sæther 1987) and earlier herbivory (du Toit et al.1990; Bergström et al. 2000; Bergqvist 

et al. 2003). Herbivores select food items from a chemically and structurally 

heterogeneous source. The chemical and structural properties of food items vary with 

plant species, plant parts, plant vigour, plant phenology and habitat conditions (Feeny 
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1976; Coley et al. 1985; Campbell 1986; Cooper and Owen-Smith 1986; Coley 1988; 

Bryant et al. 1992a; Grubb 1992; Cooper and Ginnett 1998; Bryant 2003).  

Several theories, models and hypotheses with widely different purpose and scope, 

have been put forward to explain selection of food items by herbivores (White 1974; 

Pyke et al. 1977; Owen-Smith and Novellie 1982; Price 1991). Most of them are based 

on one or more of the assumptions that herbivores should (1) maximise intake rate of 

nutrients and/or energy, (2) minimise the intake rate of harmful compounds, (3) use 

optimal time in a feeding patch, and (4) move in an optimal way between feeding 

patches. Two theories (White 1974; Price 1991) use plant characteristics, stress level and 

plant vigour, respectively, which are not in themselves relevant for herbivore foraging, as 

proxy variables in order to explain differences in herbivore attack on plants and plant 

parts. The plant vigour hypothesis (Price 1991) proposes that any plant module, 

individual or species, that grows rapidly and ultimately reaches a large size, relative to 

the mean growth rate and ultimate size of the population of modules, individual plants or 

plant species, suffers enhanced probability of herbivore attack. The plant vigour 

hypothesis has been developed and tested mainly for insect attack on plant modules 

within a plant or a plant species (Whitham 1980; Price et al. 1987; Faria and Fernandes 

2001). It has, however, also successfully described differences between plants within a 

species or between closely related species in attack by large mammalian herbivores both 

in temperate and tropical regions (Fritz et al. 1987; du Toit et al. 1990; Danell et al. 

1985; Bergström and Danell 1987; Bergström et al. 2000). Price (1991) stated that if the 

plant vigour hypothesis gains support from patterns of herbivore attack within plant 
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species, equivalent patterns should be expected on the broader scale of among species 

variation in herbivore attack.   

Animal characteristics that have been used to explain differences in food selection 

include body size (Bell 1971; Jarman 1974; Jarman and Sinclair 1979; Owen-Smith 

1988) and digestive system (Hanley 1982; Owen-Smith 1988). Body size of an animal 

relates to gut volume and retention time of food and hence affects the extent of digestion 

of the diet. This, together with the relatively lower energy requirement for maintenance 

metabolism of a large animal compared to a small one, makes it possible for large-bodied 

species to sustain themselves on food of much lower quality than that required by a 

small-bodied species (Jarman and Sinclair 1979; Owen-Smith 1988). The body size 

hypothesis or Jarman-Bell principle based on body size has therefore been considered as 

a possible mechanism for interspecific differences in diet (Bell 1971; Jarman 1974; 

Demment and Van Soest 1985). The digestive system also influence retention and 

digestion of the diet, with hindgut fermenters (e. g., elephant, horses and pigs) having 

faster passage rate and lower digestibility of forage than foregut fermenters (ruminants) 

of comparable size, and has also been considered as a possible mechanism for 

interspecific differences in food selection (Clauss et al. 2003). 

 

Interactions between herbivores and plants 

Plants respond to herbivory both in evolutionary and ecological time. Generally, the 

strategy of plants evolved in resource poor environments is to minimise loss of resources, 

i.e., to develop resistance traits like mechanical or chemical defences while plants 

evolved in resource rich environments have instead developed tolerance traits and 
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maximise resource acquisition and growth (Coley et al. 1985; Grubb 1982; Stamp 2003). 

In ecological time plants respond phenotypically to herbivory within the limits set by the 

genetic variation and physiological restrictions (Herms and Mattson 1992; Stamp 2003).  

Studies on plant responses to real or simulated herbivory have generated different 

results depending on plant species characteristics (Haukioja and Niemelä 1979; du Toit et 

al. 1990; Duncan et al. 1998; Rooke et al. 2004b; Bryant 1981; Bryant et al. 1983, 

Karban and Myers 1989; McNaughton 1979; Bowyer and Bowyer 1997; Bergström et al. 

2000) timing, intensity and frequency of herbivore damage (Canham et al. 1994; Danell 

et al. 1994; Bergström et al. 2000; Rooke et al. 2004b), type of plant tissue removed and 

nutrient availability in the environment (Maschinski and Whitham 1989; Hjältén et al. 

1993).   In a number of studies plants have been found to respond with increased biomass 

production (McNaughton 1976, 1984; Dangerfield and Madukanele 1996). Some studies 

of browsing effects on woody plants have found browsed trees to produce larger, 

although fewer shoots   (Bergström and Danell 1987; Molvar et al. 1993, Bergström et al. 

2000) compared to unbrowsed individuals. In most of these cases, however, the total 

biomass of current season’s shoots is lower on the browsed than on the unbrowsed 

individuals (Bergström and Danell 1987; Molvar et al. 1993; Bergström et al. 2000). The 

shoots developed following browsing may also have increased nitrogen concentration and 

decreased concentration of secondary compounds like condensed tannins (du Toit et al. 

1990) compared with undamaged individuals. Plants that respond to herbivory with 

increased production (totally or of single modules) and chemical quality suffer enhanced 

risk for repeated grazing/browsing compared with previously not eaten individuals. Such 

responses of plants and animals may result in a ‘feeding loop’, leading to the creation of 
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‘grazing lawns’ or ‘browsing lawns’ (McNaughton 1976, 1984; du Toit et al. 1990; 

Bowyer and Bowyer 1997; Bergström et al. 2000; Bergqvist et al. 2003). 

Food mediated interactions between herbivores 

Interaction among species with similar food requirements has been a subject of 

investigation in ecology for decades (Schoener 1974; McNaughton 1976; Hanley and 

Hanley 1982; Sinclair and Norton-Griffiths 1982; Owen-Smith 1988; Gordon and Illius 

1989; du Toit 1990; Putman 1996; Van der Wal et al. 1998; Voeten and Prins 1999; 

Mysterud 2000; Hulbert and Andersen 2001; McDonald 2002). The results of most of 

these studies show that species with similar food requirements coexist despite overlaps in 

fundamental niches provided the overlap in potential resource use is incomplete (Putman 

1996). Interspecific competition and facilitation have both been proposed to promote 

niche separation and co-existence of species (Zaret and Rand 1971; Schoener 1974; 

Sinclair and Norton-Griffiths 1982). 

Competition for limited food is a major driving force of evolution within 

assemblages of related and morphologically similar species (MacArthur and Levins 

1967). Natural selection should therefore favour a separation in food niches among 

competing species (Levin 1970; Abrams 1983). Interspecific exploitation competition is 

likely to happen when there is overlap in habitat use, in diet consumed and the shared 

resources are limited (De Boer and Prins 1990; Mysterud 2000). Facilitation becomes 

possible when, first, consumption by a consumer produces a flow of resources into 

another consumer and, second, the latter consumer specialises on consuming the 

produced resource (Farnsworth et al. 2002). In facilitation, often one consumer increases 

the accessibility to food for another (Guy 1981; van de Koppel and Prins 1998), but 
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facilitation may also be in the terms of enhanced quality of food (McNaughton 1976, 

1984). Competition and facilitation are not mutually exclusive, but may take place at the 

same time concerning different species or vary over time (van de Koppel and Prins 1998; 

Taolo 2003). 

Differences in body size and the associated differences in quantitative and 

qualitative food requirements, as discussed above, is often important in interactions 

between large herbivores. In many of the interacting systems described in literature a 

relatively large bulk feeder (e. g., wildebeest and/or zebra) facilitates subsequent foraging 

by a smaller more selective species (e. g., Thompson’s gazelle) (Vesey-Fitzgerald 1960; 

Bell 1971; McNaughton 1976; Sinclair and Norton-Griffiths 1982; Sinclair et al.1985). 

The smaller species may at the same time compete with the larger species, by pre-

empting the high nutrient component of the forage (van de Koppel and Prins 1998; 

Woolnough and du Toit 2001).  

 

Food mediated interactions involving megaherbivores 

Megaherbivores (herbivore species whose adult individuals attain a body mass over 103 

kg) (Owen-Smith 1988) such as the African elephant (Loxodonta africana Blumenbach) 

are bulk feeders and  are capable of transforming woodlands into shrublands (Owen-

Smith 1988; Ben-Shahar 1993; Mosugelo et al. 2002) and grasslands (Laws 1970; 

Caughley 1976; Pellew 1983: Cumming et al. 1997). Many studies have suggested that 

such changes show a cyclic pattern (Laws 1970; Caughley 1976; Pellew 1983: Dublin et 

al. 1990). Caughley (1976) proposed that elephant and trees coexist in a stable limit 

cycle. However, Duffy et al. (1999) showed with realistic data that limit cycles are highly 
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unlikely. It has been proposed that savanna-woodland ecosystems may switch between 

multiple stable states, as triggered by herbivores or fire (Dublin et al 1990). 

Basically, these models assume that high populations of elephants lead to a change 

from woodland to grassland, which causes elephant populations to decline because of 

shortage of food until populations are low enough for the woodlands to re-establish and 

the elephant population to increase again. There is increasing evidence that small 

herbivores or the interactions between large and small herbivores strongly influence the 

shifts in savanna vegetation. While the destruction of mature trees by elephants is 

undeniable, their influence on savanna dynamics may be limited, as the regeneration and 

establishment of trees is governed by smaller browsers, primarily impala (Belsky 1984; 

Prins and van der Jeugd 1993; Rutina 2004). Van de Koppel and Prins (1998) 

hypothesise that in a situation with low plant biomass (grassland) there is competition 

between large and small herbivores for food, and small herbivores are generally the 

superior competitor. With increasing plant biomass, (larger proportion of woody 

vegetation) facilitation becomes more important, as reduction in the plant biomass from 

foraging increases the proportion of plant matter within reach for the small herbivore and 

makes access easier also for the larger species. The model by van de Koppel and Prins 

(1998) does only under specific conditions lead to a cyclic behaviour of the system. Fritz 

et al. (2002) analysed wildlife censuses from 31 conserved African ecosystems and 

concluded that elephants negatively affected populations of browsers and mixed feeders, 

but had no influence on grazers. However, facilitation of smaller browsers by elephant 

foraging, as suggested by the model by van de Koppel and Prins (1998), has also been 

found (Guy 1981).  
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Aims of the thesis 

The main aim of this thesis is to examine the interactions between woody plants, 

elephants and other browsers, with a purpose to increase the predictive understanding of 

the dynamics of the Chobe Riverfront ecosystem. Emphasis is on food mediated 

interactions, including responses of woody plants to herbivory, the subsequent responses 

by herbivores to the changes in plant properties, and the sharing of food resources 

between mammalian herbivore species. 

 

Specifically I examine: 

1. The influence of browse quality and quantity on forage selection (Paper I, II, III) 

2. The food resource partitioning between elephant, giraffe, impala and kudu (Paper 

II) 

3. The significance of previous browsing on trees for subsequent foraging by 

browsers (Paper II, III, IV). 

 

The study area 

Location and Climate 

The study was done in the northern most section of Chobe National Park, ca. 17o49' - 

17o55' S, 24o50' - 24o59' E, in northern Botswana. The Chobe River forms the northern 

boundary of the study area, which stretches ca. 50 km E-W along the river and ca. 10 km 

S from it. There are a number of roads or tracks running almost perpendicular from the 

river southwards ca. 10 km to a major road and some roads along the river. The climate is 

semi-arid with summer rainfalls, mainly between November and April. The average 
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annual rainfall is about 640 mm. Mean maximum and mean minimum monthly 

temperatures in October (hottest month) are 39º and 14ºC, respectively and in July 

(coldest month) are 30º and 4ºC, respectively (Botswana Meteorological Service 

Department, unpublished). The soils are mainly deep, well-drained, nutrient-poor 

Kalahari sands with some alluvial clay soils along the Chobe River. 

 

Past and present woody vegetation  

Over the last, past two centuries the structure and composition of vegetation not least the 

woody component has been dynamic (Simpson 1974, 1975; Moroka 1984; Walker 1986; 

Spinage 1990; Gibson et al. 1998; Mosugelo et al. 2002; Skarpe et al. 2004). The area on 

the alluvial soil that is now shrublands along the Chobe River was in the 1870s open flats 

(Selous 1881). At the beginning of the 1900s, a woodland with large Acacia and 

Combretum trees established (Fig. 1) possibly due to the decline of elephant and other 

herbivores caused by ivory hunting and of the 1890s rinderpest outbreak (Simpson 1975; 

Walker 1986; Skarpe et al. 2004). Since the 1960s the woodland on the alluvial soil has 

been declining (Mosugelo et al. 2002). A comparison of vegetation descriptions from the 

riverfront by Simpson (1974) and Addy (1993) with the present situation shows a 

succession of small woody species after the decline of the tall woodland. Many of the 

species most common today were not mentioned among the 15 most common species by 

Simpson (1974). Some of the species increasing on the alluvial soil, e. g., Capparis 

tomentosa and Combretum mossambicense are species that are not much eaten by 

elephants, but preferred by many ruminant browsers. The vegetation dynamics before the 

1960s on Kalahari sands further away from Chobe River is less known. The available 
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literature shows that vegetation next to the alluvial soil from the Chobe River was a strip 

of mixed woodland followed by a woodland (Mosugelo et al. 2002). The same zones 

exist today, but may have retreated further away from the river (Mosugelo et al. 2002; 

Skarpe et al. 2004).  

Woody species recruitment is low along the Chobe Riverfront particularly in the 

riparian woodland (Mathumo 2003; Rutina 2004). Rutina (2004) showed that woody 

seedling survival was negatively correlated with impala density, but neither with kudu 

nor elephant density (Rutina 2004), similar to the situation recorded in Lake Manyara 

National Park, Tanzania, by Prins and van der Jeugd (1993).   

 

 

Elephants and other browsers
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Fig. 1. Dynamics of herbivores and trees in the Chobe Riverfront 
(modified from Walker 1986) 

 

 

 

 

 

 

 

 

Mammalian herbivore species - past and present population status  

The Chobe Riverfront has a high diversity of mammal species. As Chobe River is the 

only permanent water source in northern-east Botswana, many species during the dry 

season gather along the river and disperse southwards during the wet season (Ben-Shahar 
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1993, Gibson et al. 1998; Verlinden and Gavor 1998; Omphile and Powell 2002; Stokke 

and du Toit 2002; Skarpe et al. 2004). Such migratory species include African elephant 

(Loxodonta africana), buffalo (Syncerus caffer), giraffe (Giraffa camelopardalis), greater 

kudu (Tragelaphus strepsiceros), roan antelope (Hippotragus equinus) and sable 

(Hippotragus niger). Resident species at the Chobe Riverfront include impala (Aepyceros 

melampus), puku (Kobus vardonii), bushbuck (Tragelaphus scriptus), waterbuck (Kobus 

ellipsiprymnus) and hippopotamus (Hippopotamus amphibious). Animal nomenclature 

accords to Skinner and Smithers (1990).  

The population status of animals before 1973 is not well known since no formal 

population estimates were done (Vandewalle 2003). However, at the beginning of the 

1800s, elephants were probably distributed almost throughout Botswana and there may 

have been as many as 400 000 animals (Campbell 1990; Gibson et al. 1998). Drought 

around 1870s, and before that, uncontrolled hunting reduced elephant numbers and by the 

beginning of the 1900s elephants were rare even in Chobe National Park (Walker 1986; 

Gibson et al. 1998) (Fig. 1). Also the population of browsing ungulates declined due to 

rinderpest that swept through Botswana during the 1890s and due to drought (Walker 

1986; Vandewalle 2003) (Fig. 1). The populations of elephants and other browsing 

herbivores have now increased (Fig. 1). In 1987 the elephant population was estimated at 

50 000 (Gibson et al. 1998) but in 2003 it was estimated at 130 000 in northern Botswana 

(DWNP 2003). The annual rate of increase of the elephant population is about 6 % 

(Gibson et al. 1998). Along the Chobe Riverfront the elephant density can be as high as 

4/km2 (Gibson et al., 1998) or 8.5/km2 (DWNP 2003) during the dry season but during 

the wet season can be reduced to 0.5/km2 (Gibson et al. 1998). Elephant densities above 
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0.6/km2 have been shown in some ecosystems to cause major vegetation changes 

(Jachmann and Croes 1991). The populations of impala and buffalo have been shown to 

increase with that of elephant (Taolo 2003; Rutina 2004). For bushbuck, comparison of 

average monthly counts (Child 1968; Simpson 1974; Addy 1993; Dipotso et al. 

unpublished) from the Chobe suggests a pronounced decline in density between the 

1970s and 1990s followed by a stabilisation or slight increase (Dipotso et al. 

unpublished).    

Elephant population increase a concern 

Unlike in some countries, elephants in Botswana are not culled and poaching is not 

prevalent. Concerns have been raised that the Chobe Riverfront is over-utilised by 

elephants and therefore, unattractive to tourists (Walker 1986; Omphile and Powell 

2002). Concerns have also been raised that elephants compete with and deplete food 

available for other herbivores raising concerns that other species might be adversely 

affected (Owen-Smith 1989; Herremans 1995; Cumming et al. 1997; Fritz et al. 2002). 

The elephant, however, has also been identified as a ‘keystone species’ that play a 

disproportionately large role in the community structure (Owen-Smith 1987; Owen-

Smith 1989). Owen-Smith (1987; 1989) argues that elimination of megaherbivores might 

negatively affect the population of some species. The importance of megaherbivores for 

ecosystem processes like nutrient dynamics and species diversity has also been 

hypothesised by e.g., Zimov et al. (1995). However, knowledge about interspecific 

competition, facilitation resource sharing and forage selection among species with similar 

food requirements in the Chobe system is just beginning to accumulate, but is still largely 

unknown.   
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Although the African elephant is unique in its size, the kind of concern alluded to 

above is not unique for elephant dominated ecosystems. Increasing populations of 

ungulates raise similar concerns in much of Europe and North America (Kay 1997; 

Weisberg and Bugmann 2003). A difference between the systems may be that while the 

ungulate populations historically to greater or smaller extent have been controlled by 

large predators until these recently were reduced or eradicated by man (Ripple et al. 

2001), there is not in the modern fauna a predator that could more than marginally affect 

the elephant population. 

The interactions of woody plants and browsing megaherbivores and mesoherbivores 

along the Chobe Riverfront are thought to be as shown on the conceptual model in Figure 

2. The browsers share some food species but not others. Herbivory results in woody 

species responding to the damage and the response might or might not attract rebrowsing 

(feeding loop) by the same herbivore species or others.   
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The study concentrated on woody species including both shrubs and trees (henceforth 

called ‘trees’). The species differed in many characteristics (Table 1). Plant nomenclature 

is according to Coates Palgrave (2002). 

Plant species 

Study species 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Conceptual model demonstrating interactions between megaherbivores, 
mesoherbivores and woody species as examined in this thesis. Dashed boxes and arrows 
indicate parts of the model not assessed. Several processes are not shown, e.g. mortality 
of established plants in connection with browsing, drought or fire. Also shift in species 
composition caused by browsing is not shown. 
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Table 1. Woody species characteristics according to Coates Palgrave (2002) and van Wyk and van Wyk (1997). + and – in the 

spinescence column refers to having spines and having no spines respectively. Height is common height of mature individuals. 

15

 Species Family/subfamily Life Form  Height (m)  Leaf type Spinescence  Leaf fall Paper 

Baikiaea plurijuga Caesalpinioideae Tree 8 - 16 Pinnate     - Deciduous I, IV 

Baphia massaiensis Papilionoideae Shrub 2 – 4 Simple     - Deciduous I, IV 

Bauhinia petersiana Caesalpinioideae Shrub 3 - 4 Lobed     - Deciduous IV 

Boscia albitrunca Capparaceae Tree 7 Simple     - Evergreen II 

Canthium glaucum1 Rubiaceae Shrub 5 Simple     + Deciduous I, II 

Capparis tomentosa Capparaceae   

   

   

 

Shrub/tree 10 Simple     + Evergreen I, II, III 

Combretum apiculatum Combretaceae Tree/shrub 3 - 10 Simple     - Deciduous I, II, III, IV 

Combretum elaeagnoides Combretaceae Tree/shrub 6 Simple     - Deciduous I, II, III 

Combretum mossambicense Combretaceae Tree/shrub 5 Simple     + Deciduous I, II, III 

Croton megalobotrys Euphorbiaceae Tree/shrub 15 Simple     - Deciduous I, II 

Dichrostachys cinerea Mimosoideae Shrub 5-6 Bipinnate     + Deciduous II 

Erythrophleum africanum Caesalpinioideae Tree 4 - 12 Bipinnate     - Deciduous I 

Erythroxylum zambesiacum Erythroxylaceae Tree/shrub 3 - 7 Simple     - Deciduous I, III 

Flueggea virosa2 Euphorbiaceae Shrub 2 - 3 Simple     - Deciduous I, II, III 

Friesodielsia obovata Annonaceae Shrub 7 Simple     - Deciduous I, II 

Markhamia zanzibarica Bignoniaceae Tree 7 Pinnate     - Deciduous II, III, IV 

Ochna pulcra Ochnaceae Tree 3 - 7 Simple     - Deciduous I 

Philenoptera nelsii3 Papilionoideae Tree 4 Simple     - Deciduous I, II 

Strychnos potatorum Strychnaceae Tree 5 - 15 Simple     - Deciduous II 
1 Synonym is Canthium frangula.  2 Synonym is Securinega virosa.  3 Synonym is Lonchocarpus nelsii.

 



Animal species 

Four mammalian browsing species, the African elephant (Loxodonta africana), giraffe 

(Giraffa camelopardalis), impala (Aepyceros melampus) and greater kudu (Tragelaphus 

strepsiceros) were considered in this thesis (Table 2). They differ in body sizes and 

digestive systems (Table 2). 

 

Table 2. Description of the studied animal species. Feeding and digestion types for all 
species and measurements for giraffe and kudu are according to Skinner and Smithers 
(1990). Elephant measurements are according to Haltenorth and Diller (1980) while 
impala measurements are according to Smithers (1992) 
 

Shoulder height (m) Weight (kg) Species 
male female male female 

Feeding type Digestion type 

Elephant 3.5 2.7 4 550 2350 mixed feeder hindgut fermenter 
Giraffe 3.0 2.7 1192 828 browser foregut fermenter 
Impala 0.9 0.85 55 40 mixed feeder foregut fermenter 
Kudu 1.4 1.3 228 157 browser foregut fermenter 
 

 

 Methods 

 

Growth measurements of plant species 

Shoot growth rate of 14 woody species was determined from monthly shoot 

measurements. Ten new shoots on 10 individual trees per species were randomly selected 

and marked in October and November 2002, when trees sprouted. The lengths of the 

shoots were measured to the nearest mm, each month over the complete growing season 

until April 2003. In February or in April 2003, when growth had terminated, basal shoot 

diameters were measured in order to determine annual shoot volumes. Growth rates of 

shoots, shoot lengths, basal shoot diameters and annual shoot volumes were used in a 
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principal components analysis (PCA) (CANOCO software, ter Braak and Šmilauer 1998) 

to generate samples scores. In the further statistical analyses, the scores of the first PCA 

axis were used to represent the shoot vigour of the plant species. 

 

Chemical analysis of plant samples 

Leaves from trees monitored for growth rates were sampled in January 2003. The leaves 

were first air dried in paper bags indoors and later taken to the laboratory where they 

were dried for 24 hours at 80˚C, and then ground to pass through a 2 mm sieve prior to 

the analyses. The leaves were analysed for contents of nitrogen, potassium, sodium, 

magnesium, calcium, phosphorus, acid detergent fibre and neutral detergent fibre. 

Nitrogen was determined using Kjeldahl procedures (AOAC 1995). Potassium and 

sodium concentrations were determined using flame photometer (Corning Flame 

Photometer 410). Magnesium and calcium concentrations were determined by measuring 

the absorption with an atomic absorption spectrophotometer (manufactured by Varian 

Techron, Australia) at 285.2 nm and 422.7 nm wavelengths, respectively (AOAC 1995). 

Phosphorus was determined by measuring the absorption at 670.0 nm wavelengths on an 

UV Visible recording spectrometer (manufactured by Shimadzu Corporation, Japan) 

(AOAC 1995). Acid detergent fibre and neutral detergent fibre were determined using 

Ankom technology procedures (Ankom Technology Corporation 1997). Tuulikki Rooke 

(Swedish University of Agricultural Sciences, Umeå) kindly let us use data on tannin 

activity assessed through protein precipitation, using Hagerman (1987) radial diffusion 

procedure (Rooke et al. 2004a).  
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Browsing pressure 

Data on ungulate and elephant browsing pressure were sampled in 58 plots of 20 m x 20 

m including all vegetation types in a stratified design, 28 plots in the shrubland, 15 plots 

in the mixed woodland and 15 plots in the Baikiaea woodland. For all woody plant 

individuals > 0.5 m in height, numbers of current season’s shoots, separated between 

shoots with and without bites, were counted up to the height of 2.5 m above ground. This 

height includes the browsing heights of most ungulates and also the preferred browsing 

height for elephant (Stokke and du Toit 2000). Bites included twig bites and removal of 

shoot tips during leaf stripping (Skarpe et al. unpublished). Browsing pressure of 

ungulates was calculated as the percentage of current season's shoots below 2.5 m of each 

tree species that was browsed within a plot. Browsing pressure of elephant was calculated 

as the percentage of individual trees of each species within a plot that had been browsed 

by elephants during the current season. 

 

Browsing observations 

From a vehicle driven at 20 km h-1 along the tracks in the study area, browsing animals 

were sighted and then observed. Whenever an animal or a group of animals of the four 

studied species, elephant, giraffe, impala and kudu, was seen, the vehicle was stopped 

and the animal or any animal in the group seen browsing was observed as it browsed. 

With the aid of a pair of binoculars, the tree species and the browsed plant parts were 

identified and recorded. After records were made, the plant was visited to measure the 

browsing height and to verify the species and the browsed plant parts. Accumulated 

 18



elephant impact was visually determined and categorized into three levels according to 

the degree of change in tree growth form compared to “normal” growth of unaffected 

specimens of the species in question. Levels were: (0) no accumulated elephant impact, i. 

e., no obvious change in the growth form of the tree (generally the main stem and main 

branches with no signs of old breaking and/or biting by elephant), (1) low accumulated 

elephant impact, i. e., growth form of the tree obviously changed (generally signs of old 

breaking and/or biting by elephant being present on less than half of the total number of 

main branches and stems) and (2) high accumulated elephant impact, i. e., growth form of 

tree strongly changed (generally tree broken down or more than half of the total number 

of main branches and stems with old signs of breaking and/or biting by elephant). 

On trees browsed by kudu and impala, the vertical distribution of shoots was 

determined. This was done by placing on the side where the animal had browsed, a frame 

3 m x 1 m, marked with horizontal fish lines at every 20 cm along the vertical 3 m side. 

In each 20 cm by 1 m section from ground level to a height of 2.6 m, the number of 

shoots (defined as twig ends < 6 mm in diameter) was counted. A calliper was used to 

check the diameter of the shoots. 

 

Browse availability on trees differentially impacted by elephant 

Twenty plots, 25 m x 25 m, were used. The plots were distributed along four tracks 

perpendicular to the Chobe River. There were five plots along each track, the first was 

200 m from the river and they were 400 m apart. All these plots were within 2 km from 

the river. In the plots all trees more than 0.5 m high were assessed and classified in three 

different classes for accumulated elephant impact as described above. Also the number of 
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shoots in 20 cm height sections up to 2.6 m high on these trees was counted as described 

above. The frame was placed on a randomly selected side of the tree. 

 

Rebrowsing by elephant 

Rebrowsing by elephants of trees with previous different intensities of (simulated) 

browsing was assessed in an experiment. A simulated browsing trial had been performed 

in a fenced area which excluded large herbivores. The treatments, applied in November 

1999, were, severe browsing, meaning that all stems were cut at 50 cm height, and that 

100 % of the leaves were removed, light browsing, meaning that all twigs were cut at the 

8 mm diameter and that 50 - 75 % of all leaves were removed and finally no browsing, 

meaning that the trees were left intact as controls. Three years after the treatment, in 

October 2002 elephants broke into the fenced camp and browsed trees in the area. In 

November 2002 the trees used in the experiment were revisited and the number of 

browsed and unbrowsed twigs < 10 mm in diameter was counted.  

 

Results and discussion 

Forage selection and resource partitioning between browsers  

Elephant, giraffe, impala and kudu selectively browsed woody species (Paper I, II and 

IV). Elephants predominantly browsed woody plant species different from those browsed 

by giraffe, impala and kudu. Giraffe, impala and kudu browsed the same woody species 

but at different heights (Paper II). Impala and kudu seemed to treat height levels of trees 

as feeding patches, and used them differently depending on density of shoots available. 
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Both species showed a pattern of overmatching (sensu Senft et al. 1987) in relation to 

relative shoot availability in the different height levels (Paper III). There was little 

overlap, measured as Schoener’s index (Schoener 1970), in resource use (plant species, 

plant parts and height levels) between the four species. Browsing height stratification 

between the three ruminants was dependent on the size of the animals and on 

interspecific scramble competition (Illius and Gordon 1987; Stokke and du Toit 2000; 

Paper II). Overlap in resource-use was not larger in the wet season, when food was 

relatively abundant, than in the dry season, when food was scarce, as might have been 

expected if there were strong interspecific competition for food (Gordon and Illius 1989; 

Mysterud 2000). Elephant, impala and kudu browsed more on trees that had previously 

been browsed by elephants or subjected to simulated browsing than from previously 

unbrowsed trees (Papers III and IV).  Shoot vigour among tree species (first PCA axis 

scores generated from 4 measured shoot growth variables) was positively correlated with 

nutrient concentrations and negatively correlated with concentrations of fibre in the 

leaves (Paper 1). The relationship between plant species' shoot vigour and browsing 

pressure by twig biting ungulates showed a unimodal pattern, instead of positive 

monotonic as predicted by the plant vigour hypothesis (Price 1991). There was no 

relationship between shoot vigour of woody species and elephant browsing pressure 

(Paper I). 

Mammalian herbivores are selective feeders that choose among alternative foods on 

the basis of their nutritional value, structural and chemical defences, spatial distribution 

and growth architecture as related to intake rate of food (Owen-Smith 1982; Owen-Smith 

and Novellie 1982; Danell et al. 1985; Cooper and Owen-Smith 1986; Vivås and Sæther 
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1987; Jachmann 1989; Coley and Aide 1991; Price 1991; Bryant et al. 1992b, Holdo 

2003; Wilson and Kerley 2003). It was expected that the difference in woody species 

browsed by the different herbivore species would be explained by a combination of the 

body size hypothesis or Jarman-Bell principle (Bell 1971; Jarman 1974) and the 

difference in animal species digestive systems (Demment and van Soest 1985; Clauss 

2003). These theories predict that a large animal or a hindgut fermenter requires large 

amounts of food and can use forage of low quality, which is usually abundant, while a 

small animal or a foregut fermenter (a ruminant) needs small quantities of high quality 

food, which is usually rare. The giraffe, impala and kudu are all foregut fermenters and 

this might explain why they browse different plants from the elephant. However, we do 

not know explicitly what traits of the respective tree species that govern the selectivity. 

The difference in body size between the giraffe (ca. 1000 kg) and the impala (ca. 50 kg) 

does, however, not seem to influence choice of food species or items (Paper II). While 

large-bodied animals have the capacity to persist on poor quality food, they will select 

food of high quality if the availability is adequate. We still know little about the quality 

and quantity of the browse resource for ungulates along the Chobe Riverfront. 

Large herbivores interact with food resources in different spatial scales, often 

described as a hierarchy of decisions taken by the herbivore (Senft et al. 1987). 

Hebivores may forage selectively in scales from regional systems to landscapes, plant 

communities and micropatches (or feeding stations or plants) (Senft et al. 1987). We 

found the foraging response by impala and kudu to change with vertical variation in shoot 

abundance within a tree and to show an overmatching pattern (Paper III). This agrees 

with some findings that have shown a nonlinear relationship between relative food 
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abundance and intake rate (Allen and Clarke 1968; Cook and Miller 1977; Fullick and 

Greenwood 1979; Lundberg and Danell 1990; Fritz and de Garine-Wichatitsky 1996). 

However, our result may differ from those suggesting that the consumption of browse by 

browsers give a linear relationship between the biomass available and the intake rate 

(Renecker and Hudson 1986; Spalinger et al. 1988; Spalinger and Hobbs 1992). It is, 

however, possible that different functional responses describe food selection by the same 

animal in different spatial scales. Further, we did not measure intake rate, only the 

relative frequency of browsing observed in the different height levels. The likely 

explanation to the overmatching observed may be that animals select patches with high 

density of food in order to optimize intake and reduce searching time (Schoener 1971). 

This is important for animals browsing in a group, like impala, because other profitable 

sites might be occupied by other members of the group (Fritz and de Garine-Wichatitsky 

1996). 

The separation in browsing height between the three ungulate species appears to 

depend on the height of the animal and on interspecific scramble competition (Paper II). 

For animals of different size, the hypothesis on scramble competition (Hughes 1980; 

Illius and Gordon 1987; Woolnough and du Toit 2001) would predict that the smaller 

species pre-empt the high quality food at low heights in the tree canopy, displacing 

animal species of intermediate height, which in turn force large animal species to browse 

high in the tree canopy (Paper II). There was no decrease in resource-use overlap during 

the period of food scarcity (dry season), which could have indicated increased 

interspecific competition (Gordon and Illius 1989, Mysterud 2000), on the other hand, 

overlap was very small during both seasons.  As the elephant browse different woody 
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species than the ruminants, it is unlikely that elephant influence the competition between 

the ruminant species. 

The preference by browsers for previously browsed trees compared to previously 

unbrowsed ones is a common response (Danell et al. 1985; Owen-Smith 1988; du Toit et 

al. 1990; Bergström et al 2000; Bergqvist et al. 2003), although the opposite response, 

where induced defences reduce the palatability of browsed trees, also is reported (Bryant 

1981; Hulbert and Andersen 2001). Regrowth shoots after browsing may differ from 

shoots on unbrowsed trees in morphological and chemical characteristics as well as in 

position on the tree, thus affecting both quality and availability of browse.  

 The plant vigour hypothesis predicts a positive monotonic relationship between 

plant vigour and herbivore attack (Price 1991). Studies supporting the plant vigour 

hypothesis have mostly concerned selection of modules within plants (Whitham 1980; 

Price et al. 1987; Faria and Fernandes 2001) and of plants within a species (Fritz et al. 

1987; du Toit et al. 1990; Danell et al. 1991; Bergström et al. 2000). Broadening the 

scale in variation of herbivore attack from variation between modules within a plant to 

intraspecific variation among individual plants and to interspecific variation among plant 

species logically implies increasing variation in other herbivory related plant traits 

without relation to plant vigour, possibly reducing the predictive power of the hypothesis. 

Price (1991) also states that regrowth shoots after herbivory often show enhanced vigour 

compared with shoots from unbrowsed plants, which may contribute to the high 

probability for herbivory on such shoots. Also the size of the herbivore in relation to the 

attacked unit plant may be of significance. An insect, typically consuming a portion of a 

leaf or a shoot, is likely to respond to chemical and structural properties of the module 
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(Haukioja and Niemelä 1979) but not to the size as such. However, a mammal, typically 

consuming whole modules, is likely to respond to chemical and structural quality (Bryant 

1981; Palo 1984; Cooper and Owen-Smith 1986) but also to the size and shape of the 

module (Vivås et al. 1991; Wilson and Kerley 2003).  

Instead of the positive monotonic relationship between woody species' shoot vigour 

and browsing pressure by twig biting ungulates, we found a unimodal relationship (Paper 

I). The preference by browsers for tree species with intermediate shoot vigour was 

supported by the observation that these species contributed substantially to the diets of 

browsing ungulates (Paper II). The unimodal response by browsers to shoot vigour may 

be explained by shoots with low vigour having poor nutritive value and offering small 

bite size while the most vigorous shoots had high nutritive value but a shoot diameter 

exceeding the bite diameter for most ungulates. Thus, the plant vigour hypothesis was not 

supported by browsing pressure exerted by twig biting ungulates on plants across woody 

species (Paper I). Shoots of some woody species, particularly following browsing, may 

grow fast and reach larger diameters than the bite diameters of most ungulates (du Toit et 

al. 1990; Paper I). This might be an evolutionary strategy by such woody species to 

escape predation by twig biting ungulates. Elephants are fairly independent of shoot 

diameters, being able to break branches as thick as 333 mm (Stokke and du Toit 2000). 

Hence, they could be expected to respond to the nutritive properties of the shoots and 

show the predicted monotonic response to shoot vigour. However, we found no 

relationship between shoot vigour of plant species and elephant browsing pressure.  

Effect of browsing on shoot distribution on trees and on rebrowsing  

The accumulated elephant impact on woody plants varied between species (Paper III).   
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Fig. 3. RDA ordination of shoot numbers in different height sections with accumulated 
elephant impact being the environmental variable. (a) Capparis tomentosa (b) Combretum 
apiculatum, (c) Combretum mossambicense, (d) Erythroxylum zambesiacum, (e) Flueggea 
virosa and (f) Markhamia zanzibarica. 



 Elephant impacted trees were shorter than those not impacted. Trees with accumulated 

elephant impact had more shoots (diameter < 6 mm) on low levels in the canopy than 

trees with no accumulated elephant impact (Paper III).  The pattern of vertical 

distribution of shoots was statistically tested using nonparametric multivariate analysis 

(Paper III) and also confirmed graphically by the use a redundancy analysis (RDA) (Fig. 

3). Impala and kudu browsed more on trees with either high or low accumulated elephant 

impact than on trees with no accumulated elephant impact (Paper III). Both herbivores 

treated the height levels of trees as foraging patches, as described above. Three years 

after a trial with simulated browsing, elephants distinguished between treated and 

untreated trees and browsed more on previously cut or clipped trees than on control trees 

of preferentially browsed species, whereas there was no difference in browsing pressure 

with treatment on little used browse plants (Paper IV). 

The large absolute number of shoots at low levels on trees with high accumulated 

elephant impact could be explained by the activation of dormant lateral buds after 

weakening of the apical dominance by removal of leading shoots (Järemo et al. 1996; 

Smit and Bolton 1999) as described above (Introduction). A common result of this is the 

development of fewer but larger shoots on browsed trees, as discussed above 

(Introduction) (Danell et al. 1985, 1994; Bergström 1992). Such responses have also been 

recorded in studies in Botswana (Bergström et al. 2000; Rooke et al. 2004). The high 

densities of resprouting shoots on trees in our study area may represent an adaptation to 

severe impact by browsing animals and/or fires (Bond and Midgley 2001). As canopy 

architecture varies between tree species, all comparisons of shoot numbers were within 

species. Resprout shoots on trees after browsing are often larger (but fewer) than on 
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unbrowsed trees and differ in chemical characteristics (Danell et al. 1985; du Toit et al. 

1990; Duncan et al. 1998; Bergström et al. 2000), and enhanced shoot size and vigour 

following browsing is one explanation for rebrowsing (Danell et al. 1985; Price 1991). In 

those cases high quality of shoots attract rebrowsing, in spite of fewer shoots and often 

lower total shoot biomass than on unbrowsed trees (Bergström et al 2000). In this study 

we did not assess size or chemistry of shoots, and except the number of shoots, we do not 

know whether other shoot properties, differed within plant species between trees with 

different levels of accumulated elephant impact (Paper III). Further, we defined shoots as 

any twig end less than 1 year old with a diameter < 6 mm. Thus, we cannot exclude that 

some of our “shoots” are in fact branches on large annual shoots.  

The fact that impala and kudu preferred to browse tree individuals impacted by 

elephant, is an indication that elephants facilitates browsing by these species, as described 

from other ecosystems by Jachmann and Croes (1991), Prins and Olff (1998), van de 

Koppel and Prins (1998) (Paper III). The relationship is analogous to the situation in 

Serengeti where grazing by wildebeest facilitates grazing by Thompson’s gazelle (Bell 

1971; McNaughton 1976). Elephants facilitate browsing by impala and kudu by 

conversion of tall trees to ‘browsing lawns’ that lead to more and possibly higher quality 

shoots within reach for ungulates in some plant species. On the Chobe Riverfront 

browsing pressure is intense during the dry season, when animals gather along the river 

and when plants are largely dormant. During the wet season trees grow with 

comparatively little browsing, as elephant and other migratory browsers have dispersed to 

their wet season ranges and the resident impala predominantly graze during the wet 

season (Omphile 1997). 
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We expected the response by browsing elephants on previous (simulated) browsing 

treatment to be most pronounced for intermediately preferred tree species, presuming the 

most preferred ones to be heavily browsed independent of previous treatment, and those 

most avoided not to be accepted even after treatment. Elephant browsing pressure (% of 

shoots browsed) was high on three of the five species in the trial, low on one species and 

there was virtually no browsing on the fifth species (Paper IV). For the three much 

browsed species previously treated trees had significantly higher browsing pressure than 

the control trees, p = 0.014, p = 0.003 and p < 0.001 (in declining order of browsing 

pressure). Thus the expectation of strongest treatment effect on intermediately browsed 

species may be true for the ranking of species in the current study, it does, however, not 

fully agree with the ranking of elephant food species in the region by Omphile (1997) and 

Stokke and du Toit (2000) (Paper IV).  The expectation that the treatment effect would 

not make any difference for the species with lowest acceptability was confirmed.  

Rebrowsing by elephant creating highly productive coppice stands, ‘browsing 

lawns’ has been described by e. g., Jachmann and Bell (1985) and Owen-Smith (1988, 

2003), and rebrowsing of previously affected trees is common in different ecosystems 

and with different animal and tree species (Danell and Bergström 1989; Duncan et al. 

1998; Bergström et al. 2000) as discussed in the Introduction. The treatment response by 

the three preferred species was obviously one of increased palatability. At the evaluation 

of the initial experience, treated trees of all five species had longer and heavier shoots 

than control trees of the same species (Skarpe et al. unpublished). No measurements on 

trees or shoots were made at the analysis of rebrowsing two years later. The duration and 

long term dynamics of tree responses following real or simulated browsing is little 
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known. Most studies recording increased palatability following browse treatment have 

used a year or shorter response time (Paper III). Fox and Bryant (1984) showed that 

reduced palatability and biomass of regrowth in North American species responding to 

browsing with induced defences lasted between 2 and 10 years. In at least 3 of our 5 

species treatment effect obviously remained after 3 years, but we do not know whether 

duration and dynamics of the effects on elephant foraging differ between plant species, 

and how ranking of tree species according to elephant responses to treatment may vary 

over time.   

 

Likely consequences of continued elephant population increase 

 

There is no doubt that elephant impact result in a decline in the number of mature trees of 

some species like the Acacia (Walker 1986; Barnes 2001). In the past, the woodland 

along the Chobe River was replaced by a shrubland (Mosugelo 2002; Skarpe et al. 2004). 

It is likely that with the increase in elephant population, the shrubland might extend into 

the mixed woodland and the result might be a more open and patchy mosaic shrubland, as 

also predicted by Owen-Smith (1987, 1989). The species composition of the shrubland 

might be devoid of species like which we show in this thesis to be heavily impacted by 

elephant (Paper III) but this will depend on other factors such as fire, predation by other 

herbivores and how the plant species respond to herbivory. How far into the woodlands 

the change will proceed will depend on the future development of the elephant population 

and the herbivore community as a whole.  
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  Whether the increase in elephant population might drive the vegetation on the 

raised alluvial soils close to the river into an open flat as it was in the 1870s (Selous 

1881) is difficult to predict as various factors like fire, climate conditions and other 

herbivores play a role in vegetation change. Not only will the density of elephants be 

important for the future development of the Chobe Riverfront ecosystem, but also their 

dynamics. Van de Koppel and Prins 1998 and Duffy et al (1999) suggest that elephant 

dominated ecosystems could not behave cyclic. A cyclic behaviour means that large 

numbers of elephants would either migrate out of the area or die in the decline phase. A 

major die-off may be unproblematic from an ecological point of view, but may raise 

major concern among the public, unless proper information is given.      

The elephant increase appears to be associated with an increase of other herbivore 

species like buffalo and impala (Taolo 2003; Rutina 2004); hence these other herbivore 

species might retard regeneration of species they favour by seedling predation (Barnes 

2001; Rutina 2004). In this thesis we report that impala browse Capparis tomentosa and 

Combretum mossambicense the most (Paper I and II), the species that have been reported 

to increase along the Chobe Riverfront, hence the increase of these species is likely to be 

retarded. However, in the absence of fire the Chobe Riverfront might still not be modified 

into grassland because some of the woody species, preferred by elephant, although not 

Acacia spp., show profuse seasonal regrowth (coppicing) following elephant use 

(Jachmann and Bell 1985; Makhabu 1994; Ben-Shahar 1993). The results in this thesis 

support this profuse seasonal regrowth of some species in that we found that the shoot 

vigour of plant species heavily browsed by elephant was higher than those elephants 

avoided (Paper I and II). A new stable state might exist as proposed in the multiple stable 
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states scenario (Dublin et al. 1990). Therefore, the vegetation of the Chobe Riverfront 

should be expected to be dynamic and not to remain as a woodland as it was in the 1950s 

as some people wish.   

How long the elephant population of Chobe Riverfront will continue to increase is 

not known, but in the past there has been a population crash due to poaching and natural 

factors like diseases and drought (Walker 1986). Apart from the occasional outbreaks of 

diseases like anthrax, the area has predators and frequent drought years. No populations 

can grow infinitely, and the Chobe elephant population is likely to level out as a result of 

density-dependent dry season mortality caused by inadequate nutrition. 

This study did not find evidence to support the concern that elephants compete for 

food with other browsing animals. This conclusion is based on that elephants and the 

other browsers do not predominantly browse the same woody species and that their wet 

and dry seasons woody species use overlaps do not differ. Contrary, it appears that 

elephants facilitate browsing by some of these other browsing herbivores. It therefore, 

seems unlikely that the increase in elephant population might negatively affect browse 

available for giraffe, impala and kudu. Thus the population of each of these herbivore 

species is unlikely to be negatively affected by food depletion caused by elephant. 

 

Management implications 

 

The decisions on elephant management are usually based on ecological, economic, social, 

political, ethical and practical considerations (Waithaka 1997). This thesis addresses 

some ecological aspects only. The findings call for a careful balanced assessment of the 
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ecological role of major species in the ecosystem before decisions to manipulate 

population and distribution of any of them can be done. In the case of elephants, rather 

than mostly considering them as bad for other herbivores they could also be considered as 

a ‘keystone herbivore’ that benefit other species such as the example of facilitation of 

browsing of impala and kudu reported in this thesis. In the management of elephant 

populations it is sometimes debated which policy to adopt among various options 

comprising “cropping” (maintaining a stable elephant population by culling or 

harvesting), “laissez faire” (letting elephant populations rise and/or fall naturally) and 

translocation (Chafota and Owen-Smith 1996; Waithaka 1997). The findings in this thesis 

appear not to support the concern that elephant deplete food available for other browsers, 

hence it may not be valid to adopt the “cropping” policy on the management of elephant 

populations along the Chobe Riverfront based on this concern. Probably adopting the 

“laissez faire” policy as currently done in National Parks of Botswana is not a bad option. 

In 1966 the “laissez faire” policy was adopted in Tsavo National Park, Kenya and the 

elephant population was in the 1970s reduced by mortalities caused by drought. Unlike 

the Tsavo elephants, the Chobe elephants have some flood plain grasses available to them 

during the dry season (Spinage 1990) and also have the possibility to migrate to other 

areas. The Chobe elephant range is fairly large, hence elephants can move in search of 

food in their wet and dry season ranges which extend beyond the borders of Botswana 

into Zimbabwe and Caprivi Strip in Namibia (Verlinden and Gavor 1998). In Chobe 

National Park, some artificial watering points have been developed in areas where there 

is no perennial surface water. This has some benefits but might allow elephant population 

to increase and the impact of elephant on woodland to spread to larger areas (Owen-
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Smith 2003). Provision of artificial watering points possibly should be restricted to the 

now dry rivers that used to be perennials like Savuti River, and with the understanding 

that it is likely to further increase the elephant population.  Adoption of the “laissez faire” 

policy might result in an increase of elephant that might be forced to forage in areas that 

they might conflict with people. Probably the cropping and translocation elephant 

management policies might be justifiable in such areas where elephants are in conflict 

with people.  

 

Future studies 

The Botswana Norway Institutional Cooperation and Capacity Building Project 

(BONIC), of which these studies form part, has initiated research to understand the main 

processes governing the dynamics of the Chobe Riverfront ecosystem, and has created a 

base for future research to build on. The studies done up to now are all of relatively short 

duration, ca 5 years. As the rainfall is one of the main external drivers of the ecosystem 

and is highly variable between years with a tendency to 20 years cycles, a much longer 

period of research is necessary for understanding more of the dynamics and increase 

reliability of results and conclusions. The new GPS telemetry has been little used in 

Chobe, but the technique offers immensely improved possibilities for data collection on 

animal movements and utilisation of different habitat types. It could, for example, be 

applied for understanding more of the bushbuck habitat preferences and use in the park 

which is not covered in this thesis. We may even need to learn more about the detailed 

movements and habitat utilisation of the Chobe elephants.  Among the most important 

determinants of the Riverfront ecosystem is the interactions between vegetation and large 
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and small herbivores, e. g. elephants and impala. To solve such questions and test the 

existing hypotheses an experimental approach is needed, and in the future much more 

experimental studies should be carried out, targeting the facilitation-competition relations 

between small and large herbivores, as well as the significance of different herbivores or 

herbivore assemblages for the vegetation dynamics 
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Abstract 

The way herbivores select what to eat is of considerable practical and theoretical interest, and has 

given rise to different theories and hypotheses. The plant vigour hypothesis predicts that 

herbivores feed preferentially on vigorous, i. e., large and/or fast-growing plants or plant parts. 

These predictions have previously primarily been tested on variation within plant species. Here 

we test whether differences in vigour among plant species in the same environment can explain 

differences in herbivore attack. We studied variation in browsing pressure by a guild of large 

herbivores on different woody species in an African savanna ecosystem. Shoot growth rate, 

annual shoot length, basal shoot diameter and annual shoot volume of fourteen woody plant 

species were measured in the field. Plant species' shoot vigour represented by the first PCA axis 

scores generated from the four shoot variables were then related to browsing pressure (% 

utilisation) on each of the species by native ungulates and elephant. Nutrient and fibre 

concentrations and tannin activity were also determined for the fourteen woody plant species. We 

found ungulate browsing pressure to show a unimodal relationship with plant species' shoot 

vigour. The heaviest browsing pressure was on plant species with shoots of intermediate vigour. 

We suggest that species with less vigorous shoots had low nutrient and high fibre concentrations 

and offered small bite sizes, whereas species with vigorous shoots had high nutrient 

concentrations but larger shoot diameters than the bite diameters of browsing ungulates. Elephant 

browsing pressure was not related to plant species' shoot vigour.  

 

Key words: Botswana, plant nutrients, tannin activity, unimodal relationship, fibre content 
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Introduction 

Studies on herbivore feeding have generated a number of hypotheses to explain why herbivores 

preferentially feed on certain plants or plant parts (Greenbank 1956; White 1974; Mattson and 

Haack 1987; Price 1991). The plant vigour hypothesis (Price 1991) proposes that any plant 

module, individual or species, that grows rapidly and ultimately reaches a large size, relative to 

the mean growth rate and ultimate size of the population of modules, individual plants or plant 

species, suffers enhanced probability of herbivore attack. Studies supporting this hypothesis have 

mostly concerned selection of modules within plants and of plants within a species. Whitham 

(1980), Price et al. (1987) and Faria and Fernandes (2001) found a strong preference in galling 

insects for large young leaves and rapidly growing shoots. Both insect and mammalian herbivores 

have been shown to prefer vigorously growing plant modules and individual plants within a 

species (Fritz et al. 1987; du Toit et al. 1990; Danell et al. 1991, Bergström et al. 2000). If the 

plant vigour hypothesis is supported by patterns of herbivore attack within plant species, 

equivalent patterns may be expected to apply on the broader scale of differences in herbivory 

among plant species (Price 1991).  

 Broadening the scale of variation in herbivore attack from differences between modules 

within a plant to intraspecific differences among individual plants and to interspecific variation 

among plant species logically implies increasing the range of variation in other herbivory related 

traits besides plant vigour, possibly reducing the predictive power of the hypothesis. On the other 

hand, the size of the herbivore in relation to the plant unit being attacked may be of significance 

in testing the plant vigour hypothesis. An insect herbivore, typically consuming a portion of a leaf 

or a shoot, is likely to respond to chemical and structural properties of the module but not to the 

size as such. However, a mammalian herbivore, typically consuming whole modules, is likely to 
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respond not only to the chemical and structural quality (Palo 1984; Cooper & Owen-Smith 1986) 

but also to the size and shape of the module (Vivås et al. 1991; Wilson and Kerley 2003). The 

mechanistic basis for the plant vigour hypothesis (Price 1991) suggests that there should be a 

positive correlation of nutrient concentration and/or a negative correlation of plant defences with 

plant vigour. Such a correlation is also predicted for phenotypic variation between plants and, 

possibly, for variation within plants by the growth differentiation balance hypothesis (Herms and 

Mattson 1992; Stamp 2003), as well as for genotypic variation between or within plant species by 

the resource availability hypothesis (Coley et al. 1985).    

We tested predictions from the plant vigour hypothesis (Price 1991) on the relationship 

between browsing pressure by large mammals and variation in shoot vigour among a suite of 

woody plant species in a southern African savanna ecosystem. African savanna ecosystems are 

suitable for studying plant-herbivore interactions due to their long evolutionary history and the 

high species richness of large herbivores. We investigated patterns of shoot growth rate, final 

shoot length and basal diameter, leaf nutrient and fibre concentrations, tannin activity, and 

browsing pressure by a guild of ungulate browsers and elephant on 14 co-occurring woody 

species in order to test the following hypotheses: 

1. Vigorously growing species have higher nutrient concentrations, lower tannin activity and 

lower fibre concentrations than less vigorously growing species.  

2. Browsing ungulates and elephant browse more on vigorously growing species than on less 

vigorously growing species (the plant vigour hypothesis). 

 

Methods 
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The study area 

 
The study area was the northern-most section of the Chobe National Park, ca. 17o49' - 17o55' S, 

24o50' - 24o59' E, in northern Botswana. The Chobe River forms the northern boundary of the 

study area, which stretches ca. 50 km E-W along the river and ca. 10 km S from it. The climate is 

semi-arid with summer rain falling mainly between November and April. The average annual 

rainfall at Kasane, 1 km east of the study area, is about 640 mm.  Average monthly maximum and 

minimum temperatures in October (hottest month) are 39o and 14o C, respectively and in July 

(coldest month) are 30o and 4oC respectively (Botswana Meteorological Service Departmental 

records). The soils are mainly deep, well-drained, nutrient-poor Kalahari sands with some alluvial 

clay soils along the Chobe River. 

The vegetation forms zones running more or less parallel to the Chobe River (Skarpe et al. 

2004). Shrub vegetation with Capparis tomentosa and Combretum spp. dominates near the river 

on alluvial soils and in the transition between alluvial soils and Kalahari sands. Mixed woodlands 

with scattered large Baikiaea plurijuga and many smaller species like Combretum spp. and 

Philenoptera nelsii grow on Kalahari sands. Further inland also on Kalahari sands, Baikiaea 

plurijuga woodlands dominate (Skarpe et al. 2004). 

Large mammal browsers in the area include African elephant (Loxodonta africana), giraffe 

(Giraffa camelopardalis), greater kudu (Tragelaphus strepsiceros), impala (Aepyceros 

melampus), steenbok (Raphicerus campestris) and bushbuck (Tragelaphus scriptus). All species 

except giraffe browse mainly below 2.5 m (du Toit 1990; Stokke and du Toit 2000). Kudu and 

impala are the most common large browsing ungulate species. Animal species nomenclature 

follows Skinner and Smithers (1990). 
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Data collection 

 
The study was conducted in 2002 and 2003. Fourteen common woody plant species with 

different characteristics (Table 1) were studied in the shrub and mixed woodland vegetation types. 

Growth measurements of each species were done in the vegetation type where it was most 

common. Plant species nomenclature is according to Coates Palgrave (2002).  

Shoot growth rates were determined by measuring the length of individually marked new 

shoots over the growing season. During October and November 2002, when new shoots started to 

sprout, we randomly selected 10 individual, medium sized, actively growing woody plants 

(henceforth called ‘trees’) of each of the 14 study species, for a total of 140 trees. Selected trees 

showed insignificant or no signs of prior browsing. Ten new shoots per tree distributed 

throughout the canopy were randomly chosen for measurement, excluding the leading shoots and 

regrowth from the base. The total number of shoots measured was then 1400, with 100 shoots per 

species. A numbered metallic tag was fastened to the main branch next to the new shoot to mark 

it. Measurements included monthly records of shoot length (mm) and two measures of shoot 

basal diameter (diameter of the shoot just above the point where it emerges from the main branch; 

0.1 mm) conducted in February and April 2003, when the shoots were fully-grown. In January 

2003, when most leaves were fully grown and wilting had not started, about 5 g (wet weight) of 

leaves were collected for chemical analyses from unmarked branches of selected individual trees. 

The leaves were placed in paper bags and air-dried at room temperature (27º C). 

Data on ungulate and elephant browsing pressure were collected late in the rainy season, 

mainly in March and April. Sampling during these months (the end of the growing season) 

allowed us to include all browsing on that shoot generation before leaf fall. Sampling was 

conducted in 58 plots of 20 m x 20 m, including all vegetation types in a stratified design (28 
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plots in the shrubland, 15 plots in mixed woodland and 15 plots in Baikiaea woodland). For each 

species, only data from the vegetation type(s) where it occurred in at least three plots were used. 

For all woody plants > 0.5 m in height, current season's shoots with and without bites, separating 

between ungulate bites and elephant bites and "breaks" (Stokke and du Toit 2000), were counted 

within browsing height (< 2.5 m above ground). All bites on current season’s shoots were 

recorded, including twig bites and removal of shoot tips during leaf stripping.  

 

Laboratory methods 

All analyses except that for tannin activity were done at the Plant Laboratory of the Department 

of Agricultural Research at Sebele in Botswana. The sampled leaves were dried for 24 hours at 

80o C and then ground to pass through a 2 mm sieve.  Nitrogen was determined using Kjeldahl 

procedures (AOAC 1995). Potassium (K) and sodium (Na) concentrations were determined using 

a flame photometer (Corning Flame Photometer 410). Magnesium (Mg) and calcium (Ca) 

concentrations were determined using an atomic absorption spectrophotometer (Varian Techron, 

Australia) at 285.2 nm and 422.7 nm wavelengths, respectively (AOAC 1995). Phosphorus (P) 

was determined by measuring the absorption at 670.0 nm wavelengths on an UV Visible 

recording spectrometer (Shimadzu Corporation, Japan) (AOAC 1995). Acid detergent fibre (ADF) 

and neutral detergent fibre (NDF) were determined using Ankom technology procedures (Ankom 

Technology Corporation 1997). Tannin activity data, including all our species and sampled in the 

same study area as we used, were kindly provided by Dr. Tuulikki Rooke, (Swedish University of 

Agricultural Sciences). She assessed tannin activity through protein precipitation using the 

Hagerman (1987) radial diffusion procedure. Sampling and laboratory procedures for tannin 

activity determinations are described in Rooke et al. (2004).   
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Data Analysis 

For each shoot, the maximum shoot growth rate was determined by plotting changes in shoot 

length (mm) against time (days) and then calculating the slope of the steepest section of the graph. 

The formula used was: 

 

Shoot growth rate = (Ln-Ln-1)/ (tn-tn-1), 

 

where Ln and Ln-1 are shoot lengths at time tn and tn-1 respectively of the steepest section of the 

graph (modified from Hunt 1990). The maximum shoot growth rate for each species was 

calculated from the average of the individual shoots on each tree (n = 10).   

Annual shoot length is the average shoot length for each species (n = 10) in April, when 

shoot growth had flattened out and sampling was terminated. Shoot growth rate is usually 

measured as length increment over time. However, plant resource allocation to growth is 

probably best measured as increment in biomass (Hunt 1990). If biomass cannot be measured, a 

function including shoot basal diameter as well as shoot length may correspond better to resource 

allocation than does only shoot length or diameter separately (Bilbrough and Richards 1993). 

Annual shoot volume was calculated using the formula for the volume of a cone. 

 

Annual shoot volume = (shoot basal area x annual shoot length)/3 

              = (πr2L)/3, where r is the basal radius and L the annual shoot length. 
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The annual shoot length, annual shoot volume, annual basal shoot diameter and maximum 

shoot growth rate were included in a principal components analysis (PCA) performed using 

CANOCO software (ter Braak and Šmilauer 1998) to generate sample scores for shoot ‘vigour’ 

summarising the four growth measures taken on the shoots of each species. This was done after 

the values of the four shoot growth variables were standardised ( 1

( )

i

i

YY
SD YY −

= ) to stabilise the 

variance. The eigenvalue of the first PCA axis was high (0.861) and hence the sample scores of 

the first axis were used to represent shoot vigour in further calculations. Vigour, as used in the 

plant vigour hypothesis includes both growth rate and final size of the plant module. 

Ungulate browsing pressure was calculated as the percentage of current season's shoots 

below 2.5 m of each tree species that was browsed within a plot. Elephant browsing pressure was 

calculated as the percentage of individual trees of each species within a plot that had been 

browsed by elephants during the current season. There were no significant differences in 

browsing pressure within species among the vegetation types sampled (P > 0.05, ANOVA). The 

mean browsing pressure for each species was then calculated from the plot means and used in the 

analysis (n was the number of plots taken for each species, ranging from 9-37).  

Spearman rank (bivariate) correlations between plant species' shoot vigour (represented by 

the first PCA axis scores) and nitrogen, phosphorus, calcium, potassium and magnesium 

(“nutrients¨) and acid and neutral detergent fibre and tannin activity (“defence”) and browsing 

pressure were calculated in SPSS 12.0.1 for Windows (2003). The non-parametric Spearman rank 

(bivariate) correlation was done after the values of nutrients, defence and browsing pressure were 

graphically checked for normality and were found not to comply with the requirements for 

parametric analyses. All tests were regarded significant at P < 0.05 and to be marginally 

significant when P-values were between 0.05 and 0.10. 
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Results 

Shoot vigour of plant species in relation to nutrients, fibres and tannin activity 

Plant species with less vigourous shoots had higher content of both ADF and NDF than plant 

species with vigourous shoots (Table 2). Plant species' shoot vigour was positively correlated 

with the concentration of nitrogen, phosphorus, calcium and potassium but not with magnesium 

and sodium (Table 3). Fibre concentration was negatively correlated with plant species' shoot 

vigour. Tannin activity did not significantly correlate with shoot vigour across plant species 

(Table 3). 

 

Shoot vigour of plant species and browsing pressure 

 

Browsing pressure by ungulates had no monotonic correlation with plant species' shoot vigour. 

The best fit was a quadratic polynomial curve describing a unimodal relationship (Fig. 1). The 

fitted curve (y = -4.128 x2 + 0.599 x + 9.233) comprised a significant quadratic term (P = 0.038) 

but the overall model was only marginally significant (F (2,11) = 3.22 and P = 0.08).  

The PCA-ordination diagram (first and second axes scores) based on shoot growth variables 

placed the species in a pattern similar to the extent they were browsed by ungulates (Fig. 2). Only 

the position of Baphia massaiensis was different in that it was grouped with species heavily 

utilised by ungulates whereas it was not (Fig. 2). Combretum elaeagnoides, Croton megalobotrys 

and Philenoptera nelsii, which were separated from the other species in the ordination space, 

were less browsed and had a large basal shoot diameter (Fig. 3). Plant species showing the 
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highest browsing pressures were those with an intermediate basal shoot diameter (Figs. 2 and 3). 

Flueggea virosa, which had a vigorous growth (high score on the first PCA axis) but slender 

shoots with intermediate basal shoot diameter, was browsed more heavily than Combretum 

elaeagnoides, Croton megalobotrys and Philenoptera nelsii, which also had vigorous shoots but 

were shorter and had larger shoot diameter. Browsing pressure by elephant showed no significant 

correlation with plant species' shoot vigour.  

 
 
Discussion 

 
Shoot vigour of plant species in relation to nutrients and defences 

 

We have tested whether variation in plant vigour among woody species growing under the same 

habitat conditions could account for differences in browsing pressure by a guild of browsing 

mammals. Price (1991) states that the plant vigour hypothesis can be expected to relate to 

patterns across plant species as well as to patterns within plant populations. However, to our 

knowledge, this extension of the original hypothesis has rarely been tested.  

   Our first hypothesis, predicting that vigorously growing woody species should have 

higher nutrient concentrations, lower tannin activity and lower fibre concentrations than less 

vigorously growing species was partly supported. The positive relationship observed between 

some of the plant nutrients analysed and shoot vigour (Table 3) can be explained by the close 

relationship between leaf nutrients, particularly nitrogen, and photosynthetic rate (Hirose and 

Werger 1987).  We found species with less vigorous shoots to invest in tissues with high fibre 

content, as predicted by Coley et al. (1985).  However, we did not find evidence that species with 

more vigorous shoots had lower tannin activity than species with less vigorous ones, as would 
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have been predicted from the resource availability hypothesis (Coley et al. 1985), provided that 

interspecific differences in growth rate were due to the species having evolved under different 

resource availabilities. The lack of correlation between shoot vigour of plant species and tannin 

activity was not caused by some species having morphological defence (spines) instead of 

chemical defences. If the three spiny species were not included in the analysis, there would still 

be no linear correlation. The lack of an inverse correlation between shoot vigour and tannin 

activity across species could also reflect the fact that we analysed chemical components of leaves 

and not of twigs with their leaves. The relative concentrations of both secondary metabolites and 

nitrogen often differs between leaves and twigs (Palo 1984; Skarpe and Bergström 1986) and, 

therefore, foliar concentrations might not adequately represent levels of nutrients and chemical 

defences in the corresponding shoots.  

 

The plant vigour hypothesis revisited 

 
The plant vigour hypothesis has previously been tested using selection of plants or plant parts 

within a species by insect herbivores or mammalian browsers (Whitham 1980; Danell et al. 1985; 

Price et al. 1987; Danell and Bergström 1989; Bergström et al. 2000; Faria and Fernandes 2001). 

Here we tested the hypothesis for differences in herbivory across plant species, the herbivores 

being browsing ungulates and elephant. The weak unimodal relationship we found between shoot 

vigour and ungulate browsing pressure differs from the positive monotonic relationship predicted 

by the plant vigour hypothesis (Price 1991). The apparent contradiction between the significance 

of the quadratic term of the model and the marginal significance of the overall model that best 

fitted the relationship between shoot vigour and browsing pressure might have reflected the 

relative small number of plant species (14) sampled in this study. 
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Tree species with intermediate shoot vigour tended to show the highest ungulate browsing 

pressure. The top two and the fifth species with the highest browsing pressures do not only have 

intermediate shoot vigour but also possess spines. African tree species palatable to ungulates have 

often been found to be spinescent (Owen-Smith and Cooper 1987), although spines have been 

found to decrease the feeding rate, particularly by reducing bite size (Cooper and Owen-Smith 

1986).   

We suggest that species with less vigorous shoots experienced low ungulate browsing 

pressure both as a result of their chemical properties and because their shoots offer a small bite 

size, thereby decreasing the animal’s food intake rate (Vivås et al. 1991). We further suggest that 

highly vigorous woody species experienced lower ungulate browsing pressure than those with 

intermediate vigour because their shoot diameters exceeded the common bite diameters of the 

browsing ungulates (Vivås et al. 1991). Herbivores have certain ranges of bite diameters they are 

capable of biting depending mainly on mouth size, which is known to scale with body size (Jia et 

al. 1995; Wilson and Kerley 2003). In our study area, the maximum bite diameters of the two 

most common browsers, impala and kudu, are 4 mm and 4.8 mm respectively. Plant species with 

shoot basal diameters greater than 4 mm experienced lower ungulate browsing pressure. There is 

in many cases a close correlation between shoot diameter and bite diameter (Danell et al. 1985; 

Shipley et al. 1999), but not for very large shoots. With increasing shoot size the food quality 

decreases, as the proportion of wood in relation to leaf, buds and bark increases (Hjeljord et al. 

1982; Owen-Smith and Novellie 1982; Vivås and Sæther 1987). Browsing ungulates have been 

found to make decisions about where to bite a shoot out from the trade-off between maximizing 

the bite size and intake rate or maximizing the nutrient gain (Vivås et al.1991; Shipley et al. 

1999).  If the low browsing pressure on the more vigorously growing species is mainly caused by 

too large a shoot diameter, one might expect animals to bite the tip of large conical shoots where 
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the diameter suits them, unless shoots are even in diameter rather than cone-shaped. However, 

Flueggea virosa, a species with very long but slender shoots, had a high browsing pressure even 

though its shoots grew rather vigorously. Species with vigourously growing shoots might also 

have qualitative defences (Coley et al. 1985), for which we did not analyse in the present study.  

The shoots of vigorously growing woody species may ultimately reach a large basal 

diameter that exceeds the bite diameter of twig biting ungulates, thus escaping from being 

browsed. In our study area, during the wet season when plant growth is very active, the resident 

mixed feeder impala tend to be predominantly grazers (Omphile 1997). Other herbivores migrate 

from the study area to their wet season ranges and only come back at the beginning of the dry 

period (Omphile 1997) when most shoots are fully grown and thicker than the twig bite diameter 

by ungulates.  

Foraging elephants may bite twigs or break branches of up to 333 mm diameter with their 

trunk while feeding (Stokke and du Toit 2000), and are, hence, independent of shoot diameters. 

Thus they would be expected to respond to shoot chemical properties and to show the monotonic 

relationship predicted by the plant vigour hypothesis (Price 1991). However, we found no 

evidence of such a relationship. In most foraging situations, the current season’s shoots form a 

minor part of the bite by elephants, and they may respond to the combined food quality of larger 

branches with wood, bark and leaves, that may not be closely correlated with the quality of 

current season’s shoots. Additional studies that will not only include fibres and tannin activity as 

defences but also toxic substances (qualitative defences) are needed, and might help us 

understand why herbivory pressure by elephants differ among plant species. 
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Legend to figures 

 

Figure 1. Relationship between plant species' shoot vigour (PCA first axis scores of shoot growth 

variables) and browsing pressure by ungulates fitted with a quadratic polynomial curve, r2 = 

0.369, P = 0.038 for the quadratic term of the model (n = 14 species). Plant species abbreviations 

are as in Table 1. Error bars indicate ± SE. 

 
Figure 2. Principal component analysis of basal shoot diameter (BSD), annual shoot length (ASL), 

annual shoot volume (ASV) and maximum shoot growth rate (MSGR). Plant species abbreviations 

are as in Table 1. 

 

Figure 3. Relationship between annual shoot length and basal shoot diameter across 14 woody 

plant species from the Chobe Riverfront, Botswana. Plant species abbreviations are as in Table 1. 

Error bars indicate ± SE (n = 10 plants per species). 
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Table 1. Characteristics of the studied woody plant species according to Coates Palgrave (2002). 

+ and – in the spinescence column refer to the presence and absence of spines, respectively. 

 

Species Family/sub 

family 

Life form Height 

(m) 

Leaf type Spinescence Abbreviations 

Baikiaea plurijuga Caesalpinioideae Tree 8 - 16 Paripinnate - Bpl 

Baphia massaiensis Papilionoideae Shrub 2 – 4 Simple - Bma 

Canthium glaucum1 Rubiaceae Shrub 5 Simple + Cgl 

Capparis tomentosa Capparaceae Shrub/tree 10 Simple + Cto 

Combretum apiculatum Combretaceae Tree/shrub 3 - 10 Simple - Cap 

Combretum elaeagnoides Combretaceae Tree/shrub 6 Simple - Cel 

Combretum mossambicense Combretaceae Tree/shrub 5 Simple + Cmo 

Croton megalobotrys Euphorbiaceae Tree/shrub 15 Simple - Cme 

Erythrophleum africanum Caesalpinioideae Tree 4 - 12 Bipinnate - Eaf 

Erythroxylum zambesiacum Erythroxylaceae Tree/shrub 3 - 7 Simple - Eza 

Flueggea virosa2 Euphorbiaceae Shrub 2 - 3 Simple - Fvi 

Friesodielsia obovata Annonaceae Shrub 7 Simple - Fob 

Ochna pulcra Ochnaceae Tree 3 - 7 Simple - Opu 

Philenoptera nelsii3 Papilionoideae Tree 4 Simple - Pne 

1 Synonym is Canthium frangula;    2 Synonym is Securinega virosa;    3 Synonym is Lonchocarpus nelsii.
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Table 2. Chemical properties, neutral detergent fibre (NDF) and acid detergent fibre (ADF) of leaves of each 

species (± SE). Sodium concentration for all species was lower than 0.001 %.  

 

Species N (%) P (%) Ca (%) K (%) Mg (%) NDF (%) ADF (%) 

Baikiaea plurijuga 3.45 ± 0.09 0.15  ± 0.01     0.48  ± 0.02 1.27  ± 0.04 0.23  ± 0.01 52.37  ± 0.63 31.96  ± 0.54 

Baphia massaiensis 4.24 ± 0.16      

      

      

      

      

      

      

      

      

      

      

      

      

0.22 ± 0.01 1.12 ± 0.40 1.68 ± 0.08 0.23 ± 0.01 37.17 ± 1.70 24.61 ± 1.10 

Canthium glaucum 4.17 ± 0.10 0.19 ± 0.01 1.59 ± 0.10 2.66 ± 0.07 0.32 ± 0.01 30.27 ± 0.81 23.14 ± 0.69 

Capparis tomentosa 3.48 ± 0.06 0.10 ± 0.01 1.51 ± 0.08 2.56 ± 0.08 0.78 ± 0.05 30.07 ± 0.33 17.38 ± 0.16 

Combretum apiculatum 2.73 ± 0.04 0.13 ± 0.01 1.19 ± 0.06 1.70 ± 0.07 0.42 ± 0.01 32.8 ± 0.89 18.95 ± 0.39 

Combretum elaeagnoides 3.96 ± 0.12 0.17 ± 0.01 1.12 ± 0.08 1.37 ± 0.12 0.21 ± 0.01 38.46 ± 1.96 26.4 ± 1.70 

Combretum mossambicense 3.05 ± 0.03 0.17 ± 0.01 2.71 ± 0.05 1.52 ± 0.03 0.25 ± 0.01 37.79 ± 0.30 23.86 ±0.27 

Croton megalobotrys 4.31 ± 0.08 0.24 ± 0.01 2.56 ± 0.20 2.61 ± 0.13 0.62 ± 0.06 28.49 ± 0.6 19.17 ±0.67 

Erythrophleum africanum 3.19 ± 0.09 0.11 ± 0.01 0.74 ± 0.08 0.65 ± 0.04 0.27 ± 0.02 55.46 ± 0.79 41.23 ± 1.24 

Erythroxylum zambesiacum 2.30 ± 0.04 0.18 ± 0.01 1.07 ± 0.05 1.22 ± 0.07 0.31 ± 0.02 34.07 ± 0.48 19.86 ± 0.25 

Flueggea virosa 4.03 ± 0.04 0.19 ± 0.01 2.53 ± 0.14 2.33 ± 0.06 0.33 ± 0.01 17.90 ± 0.29 11.98 ± 0.37 

Friesodielsia obovata 3.46 ± 0.13 0.14 ± 0.03 0.97 ± 0.09 1.28 ± 0.23 0.33 ± 0.03 48.06 ± 1.92 25.18 ± 2.64 

Ochna pulcra 2.62 ± 0.12 0.11 ± 0.01 0.38 ± 0.05 0.89  ± 0.04 0.20  ± 0.01 52.36  ± 0.64 36.74  ± 0.53 

Philenoptera nelsii 4.52 ± 0.10 0.14  ± 0.01 1.11  ± 0.08 1.60  ± 0.05 0.35  ± 0.01 56.73  ± 0.67 33.45  ± 0.46 



Table 3. Spearman bivariate correlations between plant species traits and plant species' shoot 

vigour, represented by the first PCA axis scores of shoot growth variables. P values are 2-tailed. 

 
Plant traits r P 

Nitrogen 0.569 0.034 

Phosphorus 0.727 0.003 

Calcium 0.582 0.029 

Potassium 0.582 0.029 

Magnesium 0.182 0.533 

Sodium 0.216 0.459 

Neutral detergent fibre -0.538 0.047 

Acid detergent fibre -0.547 0.043 

Tannin activity -0.448 0.108 
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Abstract: Resource partitioning between elephant, giraffe, kudu and impala was assessed. This was to address concerns
that elephant population increase adversely affects other species through depleting their food in key areas close to
permanent water. Resources considered were woody species browsed, height browsed and plant parts browsed.
Animals were observed as they browsed and the plant species, browsing heights and plant parts browsed were
recorded. Observations were made over 1 y and the data were divided between wet and dry season. Schoener’s index of
resource use overlap was calculated for plant species, browsing heights and plant parts eaten and differences in overlap
between wet and dry season were tested. Levin’s measure of niche breadth in plant species utilized by the different
browsers was calculated. Woody species identity was the main separator between food resources that elephant used
and those giraffe, impala and kudu used. Giraffe, kudu and impala mainly browsed the same species and plant parts but
browsed at different heights. There was no difference in resource use overlap between seasons with different resource
availability. Since elephant browsed different woody species from those browsed by the others, it is unlikely that the
increasing elephant population will deplete food resources for the other browsers.

Key Words: Botswana, browsing, elephant, giraffe, impala, kudu, niche breadth, overlaps

INTRODUCTION

Resource partitioning is the differential use of resources
such as food and space by species in the same
community (Schoener 1974, Voeten & Prins 1999).
Resource partitioning between animal species has been
described for many taxa in various ecosystems (Gordon &
Illius 1989, Hansen & Reid 1975, Jarman & Sinclair
1979, Leuthold 1978, McDonald 2002, Mysterud 2000,
Putman 1996, Voeten & Prins 1999). Species coexist
despite overlaps in fundamental niches provided the
overlap in potential resource use is incomplete (Putman
1996). Each species can occupy a distinct and non-
overlapping ‘realized’ or ‘post-interactive’ niche in the
presence of the other potentially competing species
(Putman 1996).

The Jarman–Bell principle, that relates body size to
diet quality, states that larger ungulates can tolerate a
wider range of diet quality than smaller ungulates (Bell
1971, Jarman 1974, Stokke & du Toit 2000). This ‘body
size hypothesis’ has been used to explain differences in

1Email: shimane.makhabu@bio.ntnu.no or smakhabu@yahoo.co.uk

resource use depending on different metabolic demands
both within and between species (Jarman & Sinclair
1979, Stokke & du Toit 2000). The dilemma faced by
animals is that high-quality forage is rare whereas low-
quality forage is common (Demment & Van Soest 1985).
Partition of resources by animal species could, however,
also be explained by the scramble competition hypothesis
(Hughes 1980, Illius & Gordon 1987, Stokke & du Toit
2000). The scramble competition involves exploitation
and interference components whereby an animal species
displaces other species from prime areas or diets forcing
them to feed in lower quality areas or to accept poorer
diets. Stokke & du Toit (2000) described scramble
competition in detail for elephant. When dealing with
animal species that differ in body size, it could be predicted
that small animal species browse at lower heights of tree
canopies displacing animal species of intermediate size
which will in turn force large animal species to browse
high in the tree canopy. Food availability might also
be the reason behind browsing height stratification
between animal species of different body sizes. It has been
suggested that giraffe browse higher in the tree canopy to
gain a bite-size advantage by browsing above the reach of
smaller species (Woolnough & du Toit 2001).
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Table 1. Descriptions of the studied animal species. Feeding and digestion types for all species and measurements for giraffe
and kudu are according to Skinner & Smithers (1990). Elephant measurements are according to Haltenorth & Diller
(1980) while impala measurements are according to Smithers (1992).

Shoulder height (m) Weight (kg)

Species Male Female Male Female Feeding type Digestion type

Elephant 3.5 2.7 4550 2350 mixed feeder hindgut fermenter
Giraffe 3.0 2.7 1192 828 browser foregut fermenter
Kudu 1.4 1.3 228 157 browser foregut fermenter
Impala 0.90 0.85 55 40 mixed feeder foregut fermenter

Resource use overlap between competing species is
expected to be high during the periods of food abundance
(wet season) and low during the periods of food scarcity
(dry season). This is because during the periods of
food abundance both species have enough food even if
resource use overlaps (Gordon & Illius 1989, Mysterud
2000). However, when food becomes scarce one of the
competing species turns to feed on less suitable food
and reduce competition (Gordon & Illius 1989, Mysterud
2000).

The Chobe Riverfront in Chobe National Park, northern
Botswana has high abundance and diversity of wild
animals including the elephant population that is
increasing at an annual rate of 6% (Gibson et al. 1998).
The Chobe Riverfront is here referred to as a key habitat in
reference to its high importance to the water-dependent
animal species compared to other surrounding areas.
The Chobe–Zambezi river system is the only dry-season
water source in the ecosystem. This forces all water-
dependent animals to use the Riverfront during the dry
season (Ben-Shahar 1993, Gibson et al. 1998, Omphile &
Powell 2002, Skarpe et al. 2004, Stokke & du Toit 2002,
Verlinden & Gavor 1998). In this habitat, herbivores
that mainly browse woody species during the dry season
include elephant (Loxodonta africana), giraffe (Giraffa
camelopardalis), greater kudu (Tragelaphus strepsiceros),
impala (Aepyceros melampus), steenbok (Raphicerus
campestris) and bushbuck (Tragelaphus scriptus). However,
little is known on resource partitioning between these
coexisting species, and there is concern that the increasing
elephant population may deplete food resources for other
browsers. Information on resource partitioning between
these species in this key habitat would therefore be an
indicator of how they share resources when they use
the same area and whether the elephants are likely to
compete with other browsers for food. It should, however,
be noted that elephant, giraffe and kudu do not entirely
depend on food resources in the study area even during
the dry season but also forage in the woodlands further
away from the river (Omphile & Powell 2002, Stokke & du
Toit 2002). Animal nomenclature accords to Skinner &
Smithers (1990).

The study estimates resource partitioning between
impala, kudu, giraffe and elephant. Steenbok and
bushbuck are rare and they are not considered. Resource

partitioning between the species was expected to be
according to difference in body size and digestive system
(Table 1). Particularly the study addressed the following
questions: (1) Do impala, kudu, giraffe and elephant
browse different woody species? (2) Do impala, kudu,
giraffe and elephant browse at different heights? (3) When
browsing the same species, do impala, kudu, giraffe and
elephant browse different plant parts? (4) Is overlap in
resource use within the browsing guild larger during the
period of food abundance (wet season) than when food is
scarce (dry season)?

METHODS

Study site

The research was conducted in the northern part of
Chobe National Park (17◦49′–17◦55′S, 24◦50′–24◦59′E)
in semi-arid northern Botswana. The northern boundary
of the study area is the Chobe River. The rainfall
is seasonal, with the wet season in summer between
November and April. Annual average rainfall is about
640 mm (Botswana Meteorological Service Department,
unpubl. data). The period from May to October, is the dry
season. Mean maximum and mean minimum monthly
temperatures during October (hottest month) are 39 ◦C
and 14 ◦C, respectively and in July (coldest month) 30 ◦C
and 4 ◦C, respectively (Botswana Meteorological Service
Department, unpubl. data).

The vegetation in the study area tends to form zones
from the river changing with soil type and herbivore
impact. Along the river on the alluvial soils is a thin
strip of riparian forest followed by shrublands dominated
by Capparis tomentosa and Combretum mossambicense
(Mosugelo et al. 2002, Skarpe et al. 2004). Over the past
decades woodland has gradually retreated away from
the Chobe Riverfront (Mosugelo et al. 2002). The area
that is now shrubland on the alluvial soils earlier had
large Acacia and Combretum trees, and before that it was
open flats (Skarpe et al. 2004). Further away from the
river, on Kalahari sand, woodlands with Baikiaea plurijuga
occur (Mosugelo et al. 2002, Skarpe et al. 2004). Plant
nomenclature accords to Coates Palgrave (2002).
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Data collection

The study was done for 1 y from July 2002 to June 2003.
Impala, kudu, giraffe and elephant were observed while
browsing. A vehicle was driven at 20 km h−1 along the
road network in the study area. Whenever a group or a
single animal of the four species was sighted, the vehicle
was stopped and the animal or any animal seen browsing
in the group was observed as it browsed. With the aid
of a pair of binoculars, woody species and plant parts
browsed were identified. The plant parts were categorized
as leafless shoots, shoot with leaves, leaves only and bark.
After records were made, the plant was visited to measure
the browsing height and to verify the plant species and
part browsed. The point browsed was in most cases easy to
locate because the fresh wet bites could be seen. Browsing
height was measured with a measuring rod to the nearest
10 cm. If the animal had browsed several points on
an individual tree, each point was recorded and height
measured. In such a case the average height browsed was
used in the calculations. Browsing heights of elephant
were sometimes estimated when animals did not move
away from the browsed plant.

A total of 2885 observations were made. They
comprised 670 for elephant, 461 giraffe, 971 impala
and 783 for kudu. More animals were observed browsing
during the dry season than during the wet season because
most of the elephants, giraffe and kudu move out of the
study area during the wet season. Impala and elephant
shift more to grazing than browsing during the wet
season whereas they predominantly browse during the
dry season. During the dry season the observations
were distributed as 517 elephant, 352 giraffe, 595
impala and 669 kudu. The wet season observations were
distributed as 153 elephant, 109 giraffe, 376 impala and
114 kudu.

Data analysis

The data were analysed both for the whole year across
seasons and separated into wet and dry season. The pro-
portion contributed by each plant species to the total
observed browsing by each herbivore species, here
referred to as ‘diet composition’ was calculated from the
data of observed browsing. Spearman rank correlation
based on these proportions was used to compare diet
compositions of each pair of herbivore species. Overlap
in resource use in terms of browsed species, browsing
height and plant parts browsed were assessed using the
Schoener’s index (Schoener 1970). This measure has
been recommended by Abrams (1980) because it meets
all the criteria required in choosing an overlap measure.
The Schoener’s index used for browsed species overlap

was:

Ojk = 1 − 1
2

n∑
i=1

|Pij − Pik|

where Ojk is the overlap between herbivore species j and k.
Pij is the proportion of all browsing events on plant species i
by the herbivore species j, while Pik is the same proportion,
but for the herbivore species k and n is the number of
plant species. In calculating browsing height overlaps,
the browsing height section replaced plant species in the
above Schoener’s index. Heights were categorized into
classes of 20-cm intervals and each interval represented
browsing height section (i) in the Schoener’s index. To
calculate browsed parts overlaps, the Schoener’s index
was:

Ojk = 1 − 1
2

n∑
i=1

|Phij − Phik|

where Ojk is the overlap between herbivore species j and
k. Phij is the proportion of all browsing events on plant
part i on plant species h by the herbivore species j, Phik is
the same proportion, but for the herbivore species k.

The Schoener’s index ranges from zero to one. It is zero
when species do not share any resources and one when
they use identical resources (Wallace 1981). Overlap
indices are generally considered significant when the
value exceeds or equals 0.60 (Wallace 1981, Zaret & Rand
1971). The Mann–Whitney U-test was applied to test the
difference between the wet and dry season overlaps in
plant species and parts eaten by comparing the |Pij − Pik|
part of the overlap index equation.

The niche breadth of the use of plant species by herbi-
vores was assessed using Levins’ measure (Levins 1968),

B = 1
/ n∑

i=1

P2
i

where B is the niche breadth, Pi is the proportion of all
feeding observations on woody species i and n is number
of woody species browsed (Menard et al. 2002, Mishra
et al. 2004). It was then standardized to a scale of 0–1
using Hurlbert’s (1978) procedure.

Bs = (B − 1)/(n − 1),

where Bs is the standardized niche breadth. B is the niche
breadth and n is the number of species recorded eaten at
least once by at least one of the herbivore species during
that season. Zero on the standardized niche breadth scale
refers to an ultimate specialist herbivore that browses
only one species and ignores others, while 1 refers to
a perfect generalist herbivore that browses all species
without preferences (Hurlbert 1978).

The Welch’s robust ANOVA test (Quinn & Keough
2002) that does not assume equal variances was applied
to test the differences in browsing heights by different
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herbivore species. It was applied after the Levene’s test
of equality of group variances and the inspection of
box plots revealed that variances were not equal. The
Welch’s robust ANOVA test was followed by multiple
comparisons test using the robust Dunnett’s T3 test that
also does not assume equal variances (Quinn & Keough
2002). In comparing browsing heights it was assumed
that browsing heights were independent of plant species.
The above was done using data of browsing heights
each herbivore species browsed on any woody species.
Calculations were also done using only the data when
giraffe, impala and kudu browsed Capparis tomentosa. All
statistical procedures were undertaken in the SPSS for
Windows (version 12.0.1) statistical package.

RESULTS

Woody plant species browsed

A total of 35 woody species were observed browsed by
at least one of the four herbivore species during either
the wet or the dry season. Few woody species, between
three and six, contributed more than 5% to the diet
composition of each herbivore species during the two
seasons (Table 2). The top two or three most-browsed
woody species contributed more to the diet composition
of giraffe, kudu and impala than to that of the elephant
(Table 2). Contribution of Capparis tomentosa to the diet
compositions of giraffe, kudu and impala increased during
the dry season while that of Combretum mossambicense
decreased (Table 2). Levins’ standardized niche breadth
for plant species browsed was slightly broader for elephant
than for the other herbivore species (Figure 1). The

Figure 1. Seasonal standardized niche breadth of woody plant
species browsed, represented by Levins’ (1968) niche breadth index,
standardized to a scale of 0–1 following Hurlbert (1978). Wet (hatched)
and dry (open) seasons.

browsed species niche breadth for giraffe and impala were
broader during the wet season than during the dry season
(Figure 1).

Plant species browsed by elephant did not significantly
overlap (Schoener’s index < 0.6) with those browsed by
the other herbivore species (Table 3). The overlap in
woody species browsed by giraffe, kudu and impala was
significant between impala and giraffe during the dry
season and between impala and kudu during both seasons
(Table 3). The overlap between giraffe and kudu during
both seasons was not significant but still high (Schoener’s

Table 2. Diet composition of each member of the browsing guild studied. The values are percentage contribution by each plant species to the observed
browsing by each herbivore species. The table only shows plant species that contributed at least 5% to the observed browsing by at least one of the
animal species. Plant species that contributed less than 5% are grouped as others. Plant names are according to Coates Palgrave (2002) while plant
type and evergreenness are according to van Wyk & van Wyk (1997). Deciduousness of Friesodielsia obovata is from own observation.

Elephant Giraffe Kudu Impala

Plant species Leaf fall Plant type Wet Dry Wet Dry Wet Dry Wet Dry

Boscia albitrunca E ST 0.0 0.2 1.3 5.5 0.0 1.5 0.3 1.0
Canthium glaucum D Sh/ST 0.0 1.4 0.0 0.5 1.8 2.4 8.0 0.8
Capparis tomentosa E Sh/ST 5.7 0.8 45.6 50.3 20.2 23.9 11.2 50.4
Combretum apiculatum D ST/MT 0.0 9.1 0.0 0.5 0.0 0.0 0.0 0.2
Combretum elaeagnoides D Sh/ST 39.6 29.8 0.0 0.5 0.0 10.2 0.0 0.7
Combretum mossambicense D Sh/ST 1.9 1.4 20.3 15.7 42.1 35.7 42.0 19.2
Croton megalobotrys D ST/MT 9.4 22.1 1.3 0.8 1.8 0.7 0.8 0.3
Dichrostachys cinerea D Sh/ST 7.5 3.5 10.1 0.5 2.6 1.3 6.4 3.5
Friesodielsia obovata D Sh/ST 5.7 2.5 0.0 0.0 0.9 1.3 1.9 1.8
Philenoptera nelsii D ST/MT 3.8 7.7 0.0 3.1 5.3 1.8 1.3 1.2
Markhamia zanzibarica D ST 0.0 0.6 3.8 6.5 8.8 3.6 6.1 3.7
Flueggea virosa D Sh/ST 3.8 6.2 11.4 3.7 5.3 6.3 12.8 8.2
Strychnos potatorum D ST/MT 15.1 3.3 0.0 2.1 2.6 2.4 0.5 0.7
Others 7.5 11.6 6.3 10.2 8.8 8.8 8.8 8.2

Number of species that contributed with > 5% 6 5 4 4 5 4 6 3

D, deciduous; E, evergreen; Sh, shrub; ST, small tree; MT, medium tree.
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Table 3. Schoener’s indices of resource-use overlap during the dry and wet seasons for the studied browsing guild.

Plant species Height Plant part Species × Combined overlap
overlap (S) overlap (H) overlap (P) height (H × S) (S × H × P)

Species pair Wet Dry Wet Dry Wet Dry Wet Dry Wet Dry

Elephant/impala 0.24 0.22 0.46 0.44 0.12 0.07 0.11 0.10 0.01 0.01
Elephant/giraffe 0.23 0.20 0.35 0.40 0.10 0.10 0.08 0.08 0.01 0.01
Elephant/kudu 0.24 0.32 0.45 0.58 0.15 0.14 0.11 0.18 0.02 0.03
Impala/giraffe 0.58 0.82∗ 0.10 0.04 0.49 0.70∗ 0.06 0.03 0.03 0.02
Impala/kudu 0.76∗ 0.63∗ 0.35 0.32 0.72∗ 0.59 0.27 0.20 0.19 0.12
Giraffe/kudu 0.56 0.57 0.33 0.37 0.52 0.55 0.18 0.21 0.10 0.12

* Values above or equal to 0.6 are considered significant for single variables (species, height and plant parts).

Table 4. Spearman rank correlation coefficients between animal species’
diet compositions (woody species that at least contributed with 5% and
the rest grouped as others) during the wet season (bottom left section of
the table) and during the dry season (upper right section of the table).
n = 14 in all cases and is the number of pairs of woody species in the
correlation test.

Elephant Giraffe Kudu Impala

Elephant – − 0.382 − 0.178 − 0.426
Giraffe − 0.043 – 0.657 0.687
Kudu − 0.027 0.714 – 0.663
Impala − 0.148 0.754 0.815 –

index > 0.5). The Spearman rank correlation between
diet compositions for the different browsers (Table 4)
supported the diet overlaps shown by the Schoener’s
index. There was a positive correlation in diet composition
between giraffe, kudu and impala but no correlation
between the diet composition of elephant and the other
species (Table 4). The rank correlation coefficients were
slightly weaker in the dry season (Table 4).

There was no difference in overlap of plant species eaten
by the herbivores between the wet and the dry season
(P > 0.05, Mann–Whitney U-test).

Browsing height stratification

The browsing height ranges by elephant and giraffe
during both wet and dry seasons were much wider
than of impala and kudu (Figure 2). There was no
difference in browsing heights between the wet and the
dry season for elephant (F1,65 = 2.39, P = 0.13) or kudu
(F1,52 = 3.29, P = 0.07). Browsing height was higher in
the dry season than in the wet season for both giraffe
(F1,126 = 10.9, P = 0.001) and impala (F1,350 = 6.63, P =
0.01). Browsing height differed between the herbivore
species during both the wet season (F3,106 = 123,
P = 0.001) and the dry season (F3,995 = 602, P = 0.001).
Multiple comparisons showed that mean browsing
heights by elephant and impala were not different.

The overlaps in browsing heights between all pairs
of species were not significant (Schoener’s index < 0.6)
during any of the seasons (Table 3). Even if not
significant, the index was higher when elephant was

Figure 2. Box plots showing location and variation in heights browsed
by animal species during the wet (hatched) and dry (open) seasons.
The lines in the box are sample medians, the lower and upper box ends
are 25th and 75th quartiles respectively, and the lines outside the box
extend to the minimum and maximum values within the next 25th
quartile from the box hinges while the symbols beyond the lines are
outlying observations.

included than when the other species were paired between
themselves (Table 3). The overlap was lowest when giraffe
was paired with impala. Browsing height stratification
between giraffe, impala and kudu was even stronger
when considering heights they browsed on Capparis
tomentosa, a species they both heavily browse during the
dry season. During the dry season the browsing height
overlap between giraffe and impala when browsing on
Capparis tomentosa was 0.03, while between impala and
kudu was 0.23 and between kudu and giraffe was 0.29.
The mean browsing heights on Capparis tomentosa by
giraffe, impala and kudu were different (F2,648 = 547,
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Table 5. Percentages each plant part was observed browsed by each
animal species throughout the year.

Animal species

Plant part Elephant Giraffe Kudu Impala

Leafless shoots 34.1 2.2 1.9 0.2
Shoots + leaves 26.1 25.9 22.6 24.3
Leaves only 39.6 65.1 72.2 74.6
Bark 0.2 1.7 0 0.7
Flowers/fruits 0 5.2 3.3 0.2

P < 0.001). Multiple comparisons of mean browsing
height on Capparis tomentosa between each pair of the
three species were significantly different (P < 0.001).

Browsed plant parts

Elephant browsed fairly equal proportions of leaves,
leafless shoots and shoots with leaves whereas giraffe,
kudu and impala mostly browsed leaves (Table 5). When
Combretum elaeagnoides had leaves, the elephant stripped
off the leaves and ate the leafless shoots. Contrary to
the elephant, the kudu was observed eating the leaves of
Combretum elaeagnoides but not the shoots. The elephant,
however, stripped the leaves of Croton megalobotrys to eat,
leaving the shoots. Bark eating by giraffe was mainly on
Markhamia zanzibarica.

There was no overlap in plant parts browsed between
elephant and the other species (Table 3). Impala and
giraffe overlapped in plant parts browsed during the dry
season while impala and kudu overlapped in the wet
season (Table 3). Overlap between plant parts browsed by
giraffe and impala was lower during the wet season than
during the dry season (P < 0.05). There was no difference
between the dry- and wet-season overlaps in plant parts
browsed by other species.

Woody species, browsing height and browsed plant parts
combined overlaps

The products of browsed plant species and height overlaps
were low for all species pairs, with those for impala and
kudu and for giraffe and kudu being higher than for other
species pairs (Table 3). The combined overlaps (plant
species × height × plant parts) were also low, with that
for impala and kudu, and giraffe and kudu pairs being
higher than for other pairs (Table 3).

DISCUSSION

Woody plant species browsed

The elephant predominantly browses woody plant species
different from those mostly browsed by impala, kudu
and giraffe (Table 2). The choices of woody plant species

browsed by each of the four herbivores agree with
those reported in other studies conducted in the same
area (Omphile 1997, Stokke & du Toit 1999). The
difference in woody species browsed by elephant and
those browsed by the other species could be explained
by a combination of differences in body sizes and
digestive systems (Table 1). Relative energy requirement
decreases with increasing body size, whereas total energy
requirements and retention times increase, while the
gut capacity remains virtually constant in relation to
body mass (Bell 1971, Clauss et al. 2003, Demment &
Van Soest 1985). This allows the larger animal species
to use forage of lower quality, which in most cases is
available in large quantities while small animal species
meet their high relative energy requirements by browsing
rare high-quality foods (Clauss et al. 2003, Demment &
Van Soest 1985, Jarman 1974). The elephant, a hindgut
fermenter, however, has comparatively fast passage rate
and achieves only low digestibility coefficients (Clauss
et al. 2003) which allow it to use forage of even lower
quality than other large herbivore species that are foregut
fermenters like the giraffe. The body size hypothesis is not
supported by the data in this study because the giraffe, a
large foregut fermenter, browses largely the same woody
species as browsed by the smaller foregut-fermenting
kudu and impala.

Browsed plant parts

The difference in digestive system appears also to be the
reason for the absence of overlaps between elephant and
other species in plant parts browsed. The rate of passage
of food in ruminants is low when the diet contains much
cell wall material particularly if heavily lignified (Bell
1971). By feeding on plant parts with high lignin content
or fibrous tissues, a ruminant fails to assimilate enough
protein for its maintenance requirement. This forces a
ruminant to select components of vegetation that have
thin cell walls and high concentration of protein such as
leaves and fruits (Bell 1971, Jarman 1974). The hindgut-
fermenting elephant browses shoots more than the other
species do (Table 5). This might be explained by the fact
that shoots pass through the gut of an elephant relatively
faster, even if less digested, than they will pass through
the guts of the other ruminant species (Bell 1971, Clauss
et al. 2003). The bark contribution to diet compositions
of animals was low (Table 5). However, shoots were
probably ingested more for the bark than for the woody
material. Barks of some woody species have low lignin
content hence they might improve the digestibility of
ingested shoots (Malan & Van Wyk 1993).

The elephant eat shoots of Combretum elaeagnoides but
not its leaves whereas the kudu eat the leaves but not its
shoots, possibly because the two herbivore species have
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different tolerance for plant chemical defences. Types and
quantity of secondary metabolites can differ between parts
of an individual plant (Palo 1984). Hindgut fermenters
like the elephant may be more sensitive to rapidly
absorbed toxins like alkaloids whereas foregut fermenters
like kudu may be more sensitive to digestibility-reducing
compounds (Palo 1987).

Food quality changes with season (Senft et al. 1987), as
does food availability. The increase of Capparis tomentosa
and a decrease of Combretum mossambicense in diet com-
position of giraffe, kudu and impala during the dry season
may be due to these herbivore species mostly browsing
leaves (Table 2 and 5). Capparis tomentosa is ever-
green whereas Combretum mossambicense is deciduous
(Table 1). This might also explain why the browsed species
niche breadth of giraffe and impala shrinks during the
dry season whereas that of elephant expands (Figure 1).
When deciduous species lose their leaves, animal species
that mostly eat leaves have fewer woody species to choose
from. The elephant, that mostly eats shoots, can instead
distribute its browsing to more species during the dry
season when food becomes scarce.

Browsing height stratification

Browsing height stratification reduces overlap in the
use of browse resources among browsers (du Toit
1990, Leuthold 1978). Browsing height stratification
considerably reduced the overlap in resources used by
impala, kudu and giraffe but it more effectively reduced
overlap between impala and giraffe (Table 3, Figure 2).
This agrees with results found in Kruger National
Park, South Africa (du Toit 1990). An elephant often
uses its trunk to collect food (Owen-Smith 1988), and
thus overlaps with other species in browse height.
I suggest that browsing height stratification between
impala, kudu and giraffe can, apart from body size
differences (Leuthold 1978), be explained by the scramble
competition hypothesis that relates to food availability
(Hughes 1980, Illius & Gordon 1987, Stokke & du
Toit 2000). At lower levels of the tree canopy, the
smaller browsers like impala reduce food quality by taking
small selective bites and removing individual leaves
(Woolnough & du Toit 2001). Giraffe therefore profit from
browsing at higher levels in the canopy than impala and
kudu as predicted by the scramble competition hypothesis
(Hughes 1980, Illius & Gordon 1987, Stokke & du Toit
2000). This might also be the reason why the mean
heights browsed by giraffe and impala were higher during
the period of food scarcity (dry season) than during the
period of food abundance (wet season). When animals
deplete the food lower in the canopy they search for food
at higher reachable levels. The likely explanation for no
difference in mean heights browsed by kudu between the

two seasons might be that they do not profit from browsing
higher up in the canopy during the dry season. The mean
heights browsed by kudu during both seasons were above
the reach of impala that selectively picks leaves.

Resource partitioning at the Chobe riverfront

I did not find support for the hypothesis that overlap in
resource use within the browsing guild is higher during
the period of food abundance (wet season) than when
food is scarce (dry season) which could have indicated
interspecific competition between species (Gordon & Illius
1989, Mysterud 2000). Overlap in resources did not
increase during food scarcity as predicted for an optimally
foraging ungulate (Owen-Smith & Novellie 1982). The
species widened their foraging without increasing overlap
in resource use between each other. The elephant
achieved that by expanding its browsed species niche
breadth without a change in browsing height. Giraffe and
impala reduced their browsed species niche breadth but
they browsed higher in the canopy during food scarcity.
The kudu was the only exception because neither its
browsed species niche breadth (Figure 1) nor its browsing
height differed between the two seasons.

Since the elephant browse different woody species from
those browsed by the other browsers the increase in
elephant population is unlikely to cause an increase in
interspecific competition between it and the other three
species. It is likely to cause intraspecific competition
within the elephant population, but Stokke & du Toit
(1999) found no evidence of this in the same study
area. The concerns that elephant population increase
could result in them depleting food for impala, kudu
and giraffe thus, negatively affecting their population is
not supported by this study. It would therefore not be
appropriate to manipulate the elephant population on
the basis that it competes for food with impala, kudu
and giraffe. However, there may be social and economic
reasons to limit elephant numbers outside the Park, as
suggested by Skarpe et al. (2004). It should also be noted
that this study did not take into account other factors that
elephant population increase can have on other species,
such as behavioural intolerance, changing vegetation
structure offering shelter and hiding, interference at water
sources, disease and parasites shared. It also did not
consider the benefits the effect of elephant has on other
browsers such as opening dense thickets and keeping trees
and shrubs down to a level reachable by smaller browsers.
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Abstract 

 

In order to determine the effects of a megaherbivore, the African elephant (Loxodonta 

africana Blumenbach) on browse available for mesoherbivores, we assessed the vertical 

distribution of shoots (< 6 mm in diameter) on trees with different accumulated elephant impact. 

We also determined the foraging responses by a mixed feeder, impala (Aepyceros melampus 

Lichtenstein) and a browser, greater kudu (Tragelaphus strepsiceros Pallas) which are 

mesoherbivores. The foraging responses by impala and kudu were in terms of preferences of trees 

with different accumulated elephant impact levels and whether animals browsed in different 

height sections in proportion to availability of shoots. We counted shoots in each 20 cm height 

section up to 2.6 m on trees in 25 m by 25 m plots and on trees observed to be browsed by impala 

and kudu. In most tree species, individuals with high accumulated elephant impact were shorter 

and had more shoots at low levels than tree individuals with either low or no accumulated 

elephant impact. Impala and kudu preferred to browse tree individuals with accumulated elephant 

impact over those without such impact. Impala and kudu browsed more than expected at height 

sections with many shoots and less than expected at height sections with fewer shoots indicating 

a nonlinear overmatching foraging response. We suggest that increased shoot abundance at low 

levels in the canopy might explain part of the observed preferences. Elephants, therefore, seem to 

facilitate browsing by mesoherbivores by generating ‘browsing lawns’. Such benefits need to be 

considered when making decisions on how to manage populations of megaherbivores like 

elephant. 

 

Keywords: Accumulated elephant impact; Botswana; Chobe Riverfront; Impala; Kudu 
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1. Introduction 

 
Ecologically similar mammal species may directly or indirectly interfere with the food 

resources for each other and could alter each others’ foraging behaviour and population dynamics 

(Bell, 1971; McNaughton, 1976; Sinclair and Norton-Griffiths, 1982; Belovsky, 1984; de Boer 

and Prins, 1990; Western and Gichohi, 1993; Putman, 1996; Prins and Olff, 1998; Makhabu et al., 

2002). Interspecific competition (Belovsky, 1984; Putman, 1996; Hulbert and Andersen, 2001) 

and facilitation (McNaughton, 1976; Guy, 1981; van de Koppel and Prins, 1998) has been 

reported, as well as indifference (de Boer and Prins, 1990). Competition and facilitation are not 

mutually exclusive, but may occur at the same time concerning different species or fluctuate over 

time (van de Koppel and Prins, 1998; Taolo, 2003).  Facilitation becomes possible when, first, 

consumption by a consumer produces a flow of resources into another consumer and, second, the 

latter consumer specializes on consuming the produced resource (Farnsworth et al., 2002). In 

facilitation, often one consumer increases the accessibility to food for another (Guy, 1981; van de 

Koppel and Prins, 1998), but also the quality of food may be enhanced (McNaughton, 1976). 

Body size has often been found important for food mediated interactions between small and large 

herbivore species. Relatively small species consume highly nutritious plant parts and survive on 

low food biomass, and may, thus, pre-empt food resources for larger species and out compete 

them (van de Koppel and Prins, 1998; Woolnough and du Toit, 2001; Taolo, 2003). Relatively 

large-bodied herbivores may, on the other hand, by consuming large amounts of relatively 

nutrient poor plant material, increase the production and/or availability of young nutritious plant 

tissue for smaller herbivores, thus facilitating their foraging (Bell, 1971; McNaughton, 1976, 

1984; Guy, 1981; van de Koppel and Prins, 1998; Taolo, 2003). For animals browsing on trees 
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also the height distribution of nutritious regrowth is important for which herbivore species are 

able to use it.  

 Large herbivores have the potential to modify the architecture, physiology, biochemistry 

productivity and phenology of plants they feed on (Laws, 1970; Bryant, 1981, 2003; Bergström 

and Danell, 1987; du Toit et al., 1990; Ben-Shahar, 1993; Prins and Olff, 1998). Such 

modification of plants by herbivores may include the activation of resistance traits,   reducing 

subsequent herbivory (Bryant, 1981; Karban and Meyers, 1989; Hulbert and Andersen, 2001). 

More often it leads to increased palatability and probability for repeated foraging (Bell, 1971; 

McNaughton, 1976, 1984; Danell et al., 1985; du Toit et al., 1990; Duncan et al., 1998; 

Bergström et al., 2000).  Thus a “feeding loop” can develop, where animal induced changes in 

plant morphology and physiology lead to further herbivory and further changes in the plants 

(McNaughton, 1984; du Toit et al., 1990; Bergqvist et al., 2003). Such “feeding loops” are, by 

definition, advantageous for the herbivore creating them, but may also facilitate foraging by other 

species, which, if smaller than the herbivore initiating the loop, may be more efficient harvesters 

of the nutritious regrowth biomass. While much of the fundamental studies of herbivore 

competition/facilitation is related to one-layered herbaceous vegetation or a theoretical single 

compartment vegetation (McNaughton, 1976, 1984; Prins and Olff, 1998; van de Koppel and 

Prins, 1998; Farnsworth et al., 2002), the three-dimensional browsing system may be more 

complex (du Toit 1990; Makhabu 2005). In such systems not only quality and quantity of plant 

regrowth following (repeated) browsing, but also the height distribution of such regrowth in 

relation to possible foraging heights and foraging responses by members of the browsing guild, is 

essential. Browsing by megaherbivores, e. g., African elephant (Loxodonta africana) or giraffe 

(Giraffa camelopardalis) has been shown in savanna ecosystems to reduce the height of browsed 

trees (Pellew, 1983; Belovsky, 1984; Owen-Smith, 1988; Ben-Shahar, 1993) but the effect on 
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shoot distribution within the canopy of these trees is little known. Foraging herbivores may 

respond differently to variation in food biomass or density, and linear (matching), asymptotic and 

exponential (overmatching) relationships between intake rate and food availability have been 

described (Stephens and Krebs, 1986; Senft et al., 1987; Spalinger and Hobbs, 1992; Ginnett and 

Demment, 1995; Gordon 2003). The response may be scale dependent as animals make foraging 

decisions at different scales, e. g., on the level of a tree stand, a tree or a height section of a tree 

(Senft et al., 1987; Danell et al., 1991; Spencer et al. 1995). Browsers have been shown to 

preferentially feed at about neck height (du Toit, 1990; Makhabu 2005; Rutina et al. 2005), but 

differences in browse availability between different height levels may modify this pattern.  

We studied the effects of accumulated elephant impact on trees on distribution  of shoots and 

on browse utilisation by the two most common smaller browsing, “mesoherbivore”,  species, the 

greater kudu (Tragelaphus strepsiceros) and impala (Aepyceros melampus) in order to assess 

competition/facilitation between elephant and the smaller herbivores. We predicted that: 

(a) accumulated elephant impact has a negative effect on tree height 

(b) accumulated elephant impact has a positive effect on shoot numbers in lower levels of 

the tree canopy 

(c) feeding frequencies by mesoherbivores in different height sections is in proportion to 

the abundance of shoots present at those height sections (i. e., a linear response)  

(d) browsing mesoherbivores prefer trees with accumulated elephant impact to such 

without.  

  

2. Materials and methods 

 

2.1. Study area 
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The research was conducted in the northern part of Chobe National Park (17º49' - 17º55' S, 

24º50' - 24º59' E) in semi-arid northern Botswana. The study area stretches ca. 50 km along the 

south side of the Chobe River and being within 2 km of the river but excluding the riparian forest 

on the banks of the river. The rainfall is seasonal, with the wet season in summer mainly between 

November and April. Annual average rainfall is about 640 mm. Mean maximum and mean 

minimum monthly temperatures in October (the hottest month) are 39ºC and 14ºC, respectively 

and in July (the coldest month) 30ºC and 4ºC, respectively (Botswana Meteorological Service 

Department records). 

The vegetation in the region of the study area is mainly a shrubland apart from floodplains 

and a narrow and in some places broken strip of riparian forest. The shrubland is dominated by 

Capparis tomentosa in some sections and by Combretum mossambicense in others (Mosugelo et 

al., 2002; Skarpe et al., 2004). The species composition in the shrubland further from the river 

becomes mixed with small and medium sized tree species. The soils are Kalahari sands with a 

strip of alluvial soil along the river (Mosugelo et al., 2002; Skarpe et al., 2004). The area that is 

now shrubland on alluvial soil was open flats in the 1870s (Selous, 1881). After the 1870s a 

woodland established, which with time was dominated by large Acacia and Combretum trees. 

Subsequently in the 1960s the woodland declined and was replaced by shrublands (Simpson, 

1975; Skarpe et al., 2004). This change from open flats to woodland and then to shrublands has 

been attributed to the decline and later recovery of the populations of large herbivores, 

particularly elephant and impala (Rutina 2004; Skarpe et al. 2004). Bushfires have been absent 

for some years in the area largely as a result of a major road ca. 10 km south of the river  acting 

as a firebreak (Mosugelo et al., 2002; Taolo, 2003).  
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In the study area, browsing megaherbivores comprise the African elephant (Loxodonta 

africana) and giraffe (Giraffa camelopardalis) while browsing mesoherbivores include greater 

kudu (Tragelaphus strepsiceros), impala (Aepyceros melampus), steenbok (Raphicerus 

campestris) and bushbuck (Tragelaphus scriptus). Animal nomenclature accords to Skinner and 

Smithers (1990). The elephant population is increasing at an annual rate of 6 % and its density 

along the Chobe Riverfront during the dry season can be as high as 4/km2 (Gibson et al., 1998) or 

8.5/km2 (DWNP, 2003) but during the wet season it can be reduced to 0.5/km2 (Gibson et al., 

1998). Elephant densities above 0.6/km2 have been shown in some ecosystems to cause major 

vegetation changes (Jachmann and Croes, 1991). The elephant population of northern Botswana, 

unlike in many other ecosystems, remain little affected by either management culling or illegal 

hunting (Owen-Smith, 1989). However, that elephants and other herbivores have transformed the 

woodland fringing the Chobe River to shrubland is of great concern among some conservationist 

and members of the public (Owen-Smith, 1989; Cumming et al., 1997). One of the concerns is 

that elephants deplete food resources for other herbivores. The elephant, however, has also been 

identified as a ‘keystone species’ that play a disproportionately large role in the community 

structure (Owen-Smith, 1987, 1989). Owen-Smith (1987, 1989) argues that elimination of 

megaherbivores might negatively affect the population of some species. 

 

2.2. Data collection 

 

Data were collected during June - August 2004 and consisted of three datasets. These were: 

(a) food selection by impala and kudu in relation to shoot distribution and level of accumulated 

elephant impact, (b) proportions in the environment of woody plants (henceforth called ‘trees’) 
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with different levels of accumulated elephant impact ,and (c) shoot distributions on trees with 

different accumulated elephant impact levels.  

To observe impala and kudu browsing, a car was driven on the dense net of tourist tracks 

taking care to cover different parts of the study area approximately evenly. The area is fairly open 

and during the months the data were collected, animals were visible at distances greater than 100 

m. Whenever a kudu or impala was sighted browsing, the vehicle was stopped and the browsing 

animal was observed for five minutes. Afterwards the browsed tree was visited for identification 

and measurements. A frame, 3 m x 1 m, marked with horizontal fish lines at every 20 cm along 

the vertical 3 m side was placed on the side where the animal browsed. In each 20 cm by 1 m 

section from ground level to a height of 2.6 m, the number of shoots was counted. Shoots were 

defined as any current season twig-end < 6 mm in diameter. A calliper was used to check the 

diameter of shoots. The height browsed by the animal was measured with a measuring rod to the 

nearest cm. Accumulated elephant impact was visually determined and categorized into three 

levels according to the degree of change in tree growth form compared to “normal” growth of 

unaffected specimens of the species in question. Levels were: (0) no accumulated elephant 

impact, i. e., no obvious change in tree growth form (generally the main stem and main branches 

with no signs of old breaking and/or biting by elephant), (1) low accumulated elephant impact, i. 

e., growth form of tree obviously changed (generally signs of old breaking and/or biting by 

elephant on less than half of the total number of main branches and stems) and (2) high 

accumulated elephant impact, i. e., growth form of tree strongly changed (generally tree broken 

down or with old signs of breaking and/or biting by elephant on more than half the total number 

of main branches and stems). 

 In order to determine the overall proportions, within each tree species, with different 

accumulated elephant impact levels, sampling plots were distributed along four transects running 
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ca. 5 km apart and perpendicular to the Chobe River. The plots were 25 m x 25 m. Five plots 

were placed within the study area 400 m apart along each transect, starting 200 m from the river 

making a total of 20 plots.  In each plot, all individuals of the selected tree species (see below) 

higher than 0.5 m were assessed for accumulated elephant impact levels and shoot distributions. 

The shoot distribution was assessed in the same way as was done on trees observed browsed by 

kudu and impala. The frame was placed on a randomly selected side of the tree and shoots were 

counted in each 20 cm height section.  

Two species, Combretum elaeagnoides and Flueggea virosa were heavily impacted in the 

park. To increase sample sizes of low impacted individuals of these species, additional 

individuals were assessed for shoot distribution in shrubland areas with low elephant activity, 

also within 2 km of the Chobe River, in a nearby village. The tree individuals of these species 

near the village were not heavily browsed by small browsers. 

A total of 1749 trees of seven species were assessed of which 193 were Capparis tomentosa, 

254 Combretum apiculatum, 313 Combretum elaeagnoides, 516 Combretum mossambicense, 57 

Erythroxylum zambesiacum, 128 Flueggea virosa and 288 Markhamia zanzibarica. Plant names 

follow Coates Palgrave (2002). 

 
2.3. Data analysis 
 

Calculations were made separately for each tree species. We calculated the proportion of tree 

individuals within each accumulated elephant impact level based only on measurements in the 

plots. We also used measurements in the plots to calculate mean tree height of the three 

accumulated elephant impact levels. Differences in the mean tree heights in these three levels of 

accumulated elephant impact were tested using one-way ANOVA, after testing that the data met 
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the required assumptions. Pair-wise contrasts with Tukey’s HSD test were made when significant 

differences were found. 

To estimate the vertical distribution of shoots on trees with different accumulated elephant 

impact level, we used both tree individuals in plots and those individuals observed browsed by 

impala and kudu. Also included in the calculations were the additional trees of F. virosa with low 

impact sampled near the village. In estimating the vertical distribution of shoots we used only the 

sampled portion of the tree (1 m wide and 2.6 m high) to represent the distribution on the tree. 

The number of shoots in each 20 cm height section was log transformed. The mean of log 

transformed number of shoots in each height section within an accumulated elephant impact level 

was calculated for each tree species.  In calculating these means for C. tomentosa, C. 

mossambicense and F. virosa, which are shrubs to small trees, only individuals at least 2.2 m high 

were included. For C. apiculatum, E. zambesiacum and M. zanzibarica, which are small to 

medium sized trees, only individuals at least 2.6 m high, were included. To establish the 

relationship between height section and the mean number of shoots, a best fit regression curve 

was fitted. 

To test whether accumulated elephant impact affects the number of shoots in each height 

section, a non-parametric multivariate analysis of variance (MANOVA) was done using DISTLM 

v.5 FORTRAN computer program (Anderson, 2004) which does the test by permutation 

(Anderson, 2001; McArdle and Anderson, 2001). XMATRIX FORTRAN computer program 

(Anderson, 2003) was used to generate design matrices corresponding to the factor in ANOVA 

design used in the DISTLM v.5 FORTRAN computer program. The non-parametric MANOVA 

was based on Bray-Curtis dissimilarities measured on log10(x+1) transformed shoot counts data. 

In conducting the test, the number of shoots in each 20 cm height section was the variable and 

accumulated elephant impact level was the only factor. The test was of ANOVA design and in all 
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cases the P-values were obtained with 999 permutations. Both permutation and Monte Carlo P-

values were obtained from the analysis. The number of tree individuals (sample sizes) in the three 

levels of accumulated elephant impact within the species was not equal, hence our tests were of 

an unbalanced ANOVA design. For species with individuals in all the three accumulated elephant 

impact levels, pair-wise contrasts of specific levels of the unbalanced design were made by the 

use of the DISTLM v.5 FORTRAN computer program. The P-values were then adjusted using 

the sequential Bonferroni (Holm, 1979) procedure (Quinn and Keough, 2002).  

To test whether impala and kudu browsed in the different height sections in proportion to the 

number of shoots in the same height sections, the Chi-square test was applied. The mean number 

of shoots in each height section was calculated only from trees observed browsed. The number of 

observations of recorded browsing by an animal species in a height section was used as observed 

values while the expected values were the mean number of shoots in the height section. The 

height sections used were pooled to 40 cm intervals within heights reachable by each species, 1.6 

m for impala and 2.2 m for kudu (Makhabu 2005). 

Preference index (Pijk) for woody species i with accumulated elephant impact level j by 

herbivore species k was calculated as in Hunter (1962) and de Garine-Wichatitsky et al. (2004): 

ijk
ijk

ij

UP
A

=  

 
where Aij is the proportion of the woody species i with accumulated elephant impact j in the 

habitat and Uijk is the proportion of the woody species i with accumulated impact j in the diet 

browsed by herbivore species k. Only trees assessed in the plots were used to calculate Aij. Uijk 

was calculated from trees observed browsed by the herbivores. The preference index ranges from 

0 for species totally avoided to nearly infinity for highly preferred ones. Values > 1 are generally 

understood to indicate preference and values < 1 to indicate avoidance. The index is in this study 
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used only for ranking, and the class of accumulated elephant impact with the highest preference 

index within a species was taken to be the most preferred.  

All analyses except non-parametric MANOVA were carried out using SPSS for Windows 

(version 13.0) statistical package. Non-parametric MANOVA was done using DISTLM v.5 

FORTRAN computer program (Anderson, 2004). All tests were considered significant at P < 

0.05 level. 

 

3. Results 

 

3.1. Tree height and distribution of shoots on trees with different accumulated elephant impacts 

 

A large percentage of the individuals of C. apiculatum, C. elaeagnoides, E. zambesiacum and 

F. virosa were affected by elephants either having low or high accumulated elephant impact (Fig. 

1). Capparis tomentosa and C. mossambicense however, had most of their individuals not 

impacted by elephants. Almost half of the individuals of M. zanzibarica had no accumulated 

elephant impact (Fig. 1). Capparis tomentosa and C. mossambicense individuals with high 

accumulated elephant impact were very few hence this impact level is not used in further analysis 

for these species.  

Trees with high accumulated elephant impact were significantly shorter than those with no 

accumulated elephant impact in all species (Fig. 2). The mean heights of trees with no 

accumulated elephant impact differed significantly from those with low accumulated elephant 

impact in C. mossambicense and M. zanzibarica, but in the other species (Fig. 2). Markhamia 

zanzibarica individuals with low accumulated elephant impact were significantly shorter than 

those with no accumulated elephant impact. Combretum mossambicense was the only species that 
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showed individuals with low accumulated impact being significantly taller than those with no 

accumulated elephant impact (Fig. 2). 

The interaction between accumulated elephant impact and tree species had an effect on the 

number of shoots in different height sections (F2,593 = 50.23; P = 0.001). Species were therefore 

analysed separately. The results of the non-parametric MANOVA test indicated that accumulated 

elephant impact level explained a significant proportion of the variation in the number of shoots 

in height sections of four of the six species (Table 1). This was indicated by a significant 

multivariate variation in number of shoots in different height sections in the overall comparison 

test for all species except for C. apiculatum and C. mossambicense (Table 1). The permutation 

and the Monte Carlo P-values were in all cases in agreement for overall and some pair-wise 

comparisons. The pair-wise contrasts of the variation in the number of shoots in different height 

sections of no and high accumulated elephant impact levels was significant for E. zambesiacum 

and for M. zanzibarica (Table 1). The pair-wise contrasts of no and low accumulated elephant 

impact levels for E. zambesiacum and M. zanzibarica indicated no significant variation in the 

number of shoots in different height sections (Table 1). The pair-wise contrasts of low and high 

accumulated elephant impact levels for E. zambesiacum also indicated no significant variation in 

the number of shoots in different height sections whereas that of M. zanzibarica indicated a 

significant variation (Table 1).  

The relationships between height sections and number of shoots in each height section were 

best fitted (adjusted R2 > 0.9) by second-order polynomial (quadratic) regression models (Fig. 3). 

Few C. elaeagnoides with either low or high accumulated elephant impact levels were at least 2 

m high and hence no comparisons of shoot numbers in different height sections across impact 

levels were made for this species. The fitted second-order polynomial (quadratic) regression 

curves give a general picture of the distribution of shoots in the different height sections for trees 
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with different accumulated elephant impact levels (Fig. 3). Erythroxylum zambesiacum and M. 

zanzibarica with high accumulated elephant impact had more shoots in lower height section than 

trees with no accumulated elephant impact level (Fig. 3d, f). Flueggea virosa individuals with 

high impact had more shoots in lower height sections than trees with low accumulated elephant 

impact level (Fig.3e). On C. tomentosa it was the reverse with more shoots at lower heights on 

trees with no accumulated elephant impact than on trees with low accumulated elephant impact 

(Fig. 3a). Number of shoots in different height sections of C. apiculatum (Fig. 3b) and C. 

mossambicense (Fig. 3c) trees did not differ between different accumulated elephant impact 

levels (Table 1). 

 

3.2. Mesoherbivores foraging patterns in relation to shoot abundance and elephant impact 

 

The observed frequencies of browsing by kudu and impala in different height sections 

differed from expected for all plant species (Table 2). The residuals obtained in the Chi-square 

test indicated that both kudu and impala browsed less than expected in height sections with few 

shoots (Table 2). Impala browsed in height sections below 0.8 m less than expected. Impala 

browsed more than expected in height sections with high numbers of shoots, except that they 

browsed less than expected in the 1.2 - 1.6 m height section of C. tomentosa (Table 2). However, 

even if impala browsed more than expected in 1.2 – 1.6 m height sections of C. mossambicense 

and F. virosa the difference between observed and expected (residuals) was less than for 0.8 – 1.2 

m height section (Table 2). Kudu browsed more than expected in height sections within 1.2 – 2.0 

m but in the 1.6 - 2.0 m height section of C. tomentosa it was just above expected (Table 2).  

Both impala and kudu preferred trees with accumulated elephant impact over trees without 

accumulated elephant impact. This held for all species except C. tomentosa (Table 3). The 
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preferred accumulated elephant impact level for each tree species by either kudu or impala had 

more shoots in lower heights than trees at other accumulated elephant impact levels. However, C. 

tomentosa trees with no accumulated elephant impact were preferred by both impala and kudu 

(Table 3); these had more shoots than individuals with accumulated elephant impact (Fig. 3a). 

Further, impala preferentially browsed C. mossambicense with low accumulated elephant impact 

(Table 3), which was the highest impact level for this species. The number of shoots in height 

sections below 1.6 m on individuals of C. mossambicense with low accumulated elephant impact 

were slightly higher than on individuals with no accumulated elephant impact level (Fig. 3c) but 

not significantly different (Table 3). Impala preferentially browsed F. virosa and M. zanzibarica 

individuals with high accumulated elephant impact level (Table 3). Flueggea virosa individuals 

with high accumulated elephant impact level had more shoots in height sections below 1.8 m than 

individuals with low accumulated elephant impact level (Fig. 3e). Markhamia zanzibarica 

individuals with high accumulated elephant impact level had more shoots in height sections 

below 1.8 m high than individuals with no and with low accumulated elephant impact level (Fig. 

3f). Kudu also preferentially browsed F. virosa individuals with high accumulated elephant 

impact level. Kudu further preferentially browsed E. zambesiacum and M. zanzibarica kudu 

individuals with low accumulated elephant impact level (Table 3).  

 

4. Discussion 

 

4.1. Tree height and distribution of shoots on trees with different accumulated elephant impacts 

 

In this study we found supporting evidence to our first two and the forth hypotheses. This 

indicates that feeding and breakage of stems and branches by elephants promote what might be 
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called “browsing lawns” (Owen-Smith, 2003), whereby tall trees are transformed to short trees (1 

- 3 m tall). Such ‘browsing lawns’ are analogous to the ‘grazing lawns’ produced by wildebeest 

grazing in the Serengeti (McNaughton, 1976, 1984). Our results agree with those of Guy (1981) 

who found that in Sengwa Wildlife Research Area, Zimbabwe, elephant foraging resulted in more 

browse within reach of browsing mesoherbivores. Capparis tomentosa and C. mossambicense 

that did not agree with our first two hypotheses had few individuals with high accumulated 

elephant impact and the comparison was between trees with no impact and those with low impact. 

For the other species it could be argued that the difference in tree height depends on that elephant 

preferentially feeds on small/young trees. However, Makhabu (1994) found that elephant in 

neighbouring Moremi Wildlife Reserve browse trees of the same species with stem diameters at 

breast height of 2 cm to 16 cm without preference.   

Elephants use the study area mostly during the dry period and the majority of them move out 

of the area during the wet season (Gibson et al., 1998), which is the plants' growing period. This 

gives coppiced and regrowth shoots time to grow with minimal interruptions. The increase in the 

number of shoots at low height levels of trees with high accumulated elephant impact is 

explained by the activation of dormant lateral buds with reduced apical dominance following the 

removal of leading shoots (Järemo et al., 1996; Smit and Bolton, 1999). The resprout shoots then 

grow with minimal disturbance during the growing season when most elephants are absent being 

in their wet season ranges. In most situations elephants do not directly damage the tree’s root 

system (Makhabu, 1994). Trees might then grow in such a way as to re-establish the former 

root/shoot ratio (Bergström and Danell, 1987). Some plant species have been found to produce 

fewer but larger shoots that are more branched after real or simulated browsing (Danell et al., 

1985; Bergström and Danell, 1987). In this study we counted twig ends < 6 mm, and the high 

numbers of shoots at low height levels we report here may be a combination of main current 
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season’s shoots and branches on such shoots. The high capacity of these trees to resprout 

following browsing may be an adaptation evolved in response to browsing by large herbivores 

and/or to frequent fires (Bond and Midgley, 2001). Fewer shoots high in the canopies of trees 

with high accumulated elephant impact is more likely a consequence of changes in tree 

architecture following repeated elephant browsing than the result of elephants actually cropping 

the shoots at these levels. Elephant preferred browsing level in the area is 1.0 - 1.5 m (Stokke and 

du Toit, 2000).  

The change in the distribution of the number of shoots on trees due to elephants' browsing 

could be beneficial to mesoherbivores like impala and kudu, in that more shoots become 

available for them at low heights of tree canopies (Guy, 1981). Makhabu (2005) found that the 

woody species browsed by elephant do not significantly overlap with those browsed by impala 

and kudu, but there are some woody species like F. virosa and M. zanzibarica they both browse. 

Therefore the increase in shoot availability at lower heights in such woody species might benefit 

browsing mesoherbivores.  

 

4.2 Mesoherbivores foraging patterns in relation to shoot abundance and elephant impact 

 

Impala and kudu selected between height sections with different browse availability, 

seemingly treating them as separate patches (Senft et al., 1987; Spencer et al., 1995). Their 

browsing frequencies in different height sections were generally a non-linear function of the 

number of shoots, “over-match”. Thus, our third hypothesis is rejected. This finding may 

contradict the suggestion that browsers would show a linear relationship between the available 

biomass and intake rate (Renecker and Hudson, 1986; Spalinger and Thompson Hobbs, 1992). 

The difference could depend on the used scale and the measured variables. In this study, selection 
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was between different height sections (patches) within a plant and the compared variables were 

number of shoots and frequency of browsing in height sections. Even with a linear response, 

browsers would spend most time browsing in height sections with high shoot densities, thus 

increasing the probability for observation. Thus, the overmatch response might be influenced by 

the method used. In other studies selection was between plants or bushes and the variables being 

biomass and intake rate. The likely explanation to the pattern we observed is that animals select 

height sections (patches) with high number of shoots to optimize intake and reduce searching 

time (Schoener, 1971; Stephens and Krebs, 1986). A complex interaction of several components 

such as mean bite rate, bite size and movement rate determine the intake rate of food by 

herbivores (Renecker and Hudson, 1986; Spalinger and Thompson Hobbs, 1992). Renecker and 

Hudson (1986) suggested that for large herbivores to meet their daily requirements they must 

either occupy rich habitats (or at least those with dense forage patches) or reduce selectivity so 

that a greater proportion of available forage is selected as food. By selecting a height section with 

dense shoots, a browser might increase intake rate since it has an opportunity to take more bites 

without the need to move, but intake rate also depends on shoot size, which was not recorded. 

Food intake rate however, could be limited by the need to ruminate while bite rate and size are 

often dictated by vegetation characteristics (Renecker and Hudson, 1986). It could be argued that 

an animal could search for browse while it chews bites it has taken (Spalinger and Thompson 

Hobbs, 1992; Illius et al., 2002). However, some animal species like impala feed in a group (Fritz 

and de Garine-Wichatitsky, 1996) hence suitable sites might be occupied by other individuals. In 

this study we did not consider animal group size, which is vital in selection of patches by animals 

in a group (Fritz and de Garine-Wichatitsky, 1996). Fritz and de Garine-Wichatitsky (1996) 

reported that an impala in a group appears to adapt its ‘prey’ choice to minimize intraspecific 

competition. 
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It is not evident why impala browse less than expected in 1.2 m – 1.6 m height section of C. 

tomentosa whereas they browse at the same height slightly more than expected on other species. 

Even for those species browsed as expected in 1.2 - 1.6 m height sections the residual was less 

than in the 0.8 m - 1.2 m height section possibly because impala have difficulties reaching heights 

above 1.5 m. For C. tomentosa, the numerous sharp hooked spines it possesses possibly inhibit 

impala from leaning against the tree in order to reach the browse at high levels. The same 

tendency is observed for kudu in heights between 1.6 and 2 m of C. tomentosa.  Flueggea virosa 

does not have spines while C. mossambicense has spines (Coates Palgrave, 2002) but they are not 

hooked or as sharp and dense as those of C. tomentosa.   

Impala and kudu mostly preferred plant individuals with accumulated elephant impact to 

those without, supporting our fourth hypothesis. Preference for trees with accumulated elephant 

impacts by impala and kudu suggest that browsing by these species is facilitated by elephant. The 

browsing facilitation for impala and kudu by the impact of elephants appear to be by conversion 

of tall trees to short trees and a change in tree growth form. This leads to that in some species 

more shoots are produced in heights reachable by impala and kudu. Other studies have shown 

that browsed trees of some species produce shoots with increased biomass per shoot (Bergström 

and Danell, 1987; Molvar et al., 1993), increased nitrogen concentration and decreased 

concentration of secondary compounds like tannins (du Toit et al., 1990) compared with 

unbrowsed individuals. If the tree species we studied respond to browsing in the same way, then 

it is likely that increased bite-size and nutrient advantages, besides availability of shoots, 

contributed to the observed preference for elephant impacted trees. However, large shoots might 

not benefit browsers if they are not branched, because their diameters may be larger than the 

maximum bite diameters of the twig biting ungulates (Makhabu et al., in press). More branching 

on regrowth shoots of trees previously browsed than on shoots of unbrowsed trees, as found in 
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some species (Bergström and Danell, 1987), is likely to result in more shoot ends within the bite 

diameters of impala and kudu. The high density of shoots with preferred diameters (< 6 mm) 

recorded on elephant impacted trees is likely to contribute to the preference by impala and kudu 

for these trees. Rutina et al. (2005) reported that impala prefer elephant impacted habitats and we 

suggested that it might be due to the facilitation effect we report.  

Facilitation for impala and kudu by the modification of tall trees through the browsing 

activity by elephants to ‘browsing lawns’ probably is beneficial to them, but only if the 

rebrowsing of the elephants are not so intense as to deplete available shoots on those trees. 

Although elephant do not share many preferred woody food species with other browsing 

herbivores in the study area, the overlaps in resource use between elephants and other browsers 

do not significant differ between seasons (Makhabu, 2005). This suggests that although elephants 

rebrowse trees, other browsing herbivores continue to browse tree species they share with 

elephants. However, the amount of browse taken by herbivores from trees elephant browse may 

differ between seasons, but was not recorded by Makhabu (2005). Browsers are not the only 

species facilitated by elephant in our study ecosystem. The African buffalo (Syncerus caffer) has 

been shown to prefer to graze on patches grazed more heavily than average by elephants 3 – 10 

days before (Halley et al., 2003; Taolo, 2003). Gallinaceous birds prefer areas with high elephant 

impact (Motsumi, 2002).  

This study has implications for management of coexisting megaherbivores and 

mesoherbivores. It highlights the need for a careful balanced assessment of the ecological role of 

major species in the ecosystem before decisions to manipulate population and distribution of any 

of them can be done. Elephant impact on vegetation has been indicated to be either detrimental 

(Cumming et al., 1997; Fritz et al., 2002) or beneficial (Owen-Smith, 1987, 1989; Skarpe et al., 

2004) to other animal species. We found evidence that they might be beneficial for other species 
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and thereby this study gives some support to the suggestion of Owen-Smith (1989) that elephant 

is a ‘keystone herbivore’.  
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Between pairs of accumulated elephant impact levels All impact levels 
0 and 1 

 
0 and 2 

 
1 and 2 

 

 
Species 

df1 df2 F     
         

P df1 df2 F P df1 df2 F P df1 df2 F P
Capparis tomentosa  1 147 10.29 0.001       

Combretum apiculatum  2               

               

               

               

              

102 1.01 0.432

Combretum mossambicense  1 185 0.90 0.423

Erythroxylum zambesiacum  2 37 4.02 0.007 1 15 3.19 0.110 1 28 15.74 0.006 1 32 2.57 0.255

Flueggea virosa 1 53 4.09 0.004

Markhamia zanzibarica  2 57 5.71 0.001 1 44 0.95 0.822 1 36 7.52 0.003 1 35 6.33 0.012 

Non-parametric MANOVA results of number of shoots within 20 cm height sections on trees with no accumulated elephant impact (0), 

low accumulated elephant impact (1) and high accumulated elephant impact (2). P-values are calculated by Monte Carlo randomisation, 

and for pairs they have been adjusted using sequential Bonferroni procedure (Holm, 1979). 
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Table 2 

Observed and expected frequencies of browsing in height sections 0-0.4 m, 0.41- 0.8 m, 0.81-1.2 

m, 1.21-1.6 m and 1.61-2.0 m by (a) impala (Aepyceros melampus Lichtenstein) and (b) greater 

kudu (Tragelaphus strepsiceros Pallas). 

Browsing frequency  χ2 p Species Height 
section, m Observed Expected Residual   

(a) Impala       
0.41-0.8 13 37.9 -24.9 
0.81-1.2 88 51.3  36.7 

Capparis 
tomentosa  
 1.21-1.6 54 65.8 -11.8 

44.656 <0.001 
 

       
     0-0.4 1 6.1 -5.1 
0.41-0.8 4 18.9 -14.9 
0.81-1.2 39 26.9 12.1 

Combretum 
mossambicense  

1.21-1.6 41 33.1 7.9 

23.383 <0.001 

       
0.41-0.8 5 15.2 -10.2 Flueggea virosa  
0.81-1.2 25 17.4 7.6 

10.502 0.005 

 1.21-1.6 19 16.4 2.6   
(b) Kudu       

0.81-1.2 4 11.9 -7.9 
1.21-1.6 24 17.0 7.0 

Capparis 
tomentosa  

1.61-2.0 17 16.1  0.9 

8.233 0.016 

       
0.41-0.8 1 8.8 -7.8 
0.81-1.2 3 13.1 -10.1 
1.21-1.6 31 21.9 9.1 

Combretum 
mossambicense 

1.61-2.0 34 25.2 8.8 

21.569 <0.001 
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Table 3  

Preference of trees of different accumulated elephant impact levels by impala (Aepyceros 

melampus Lichtenstein) and greater kudu (Tragelaphus strepsiceros Pallas). Bold faced indices 

indicate the most preferred impact level within a plant species  

Animal species Browsed plant species Preference index 

  no impact low impact high impact 

Capparis tomentosa  1.216 0.263 

Combretum mossambicense 0.546 2.307  

Flueggea virosa  0.263 2.042 

Impala 

 

 Markhamia zanzibarica 0.158 1.678 1.732 

     

Capparis tomentosa  1.253 0.154  

Combretum elaeagnoides  0.210 1.287 

Combretum mossambicense 0.856 1.499  

Erythroxylum zambesiacum 0.469 1.340 0.603 

Flueggea virosa  0.447 1.837 

Kudu 

 

 

 

 Markhamia zanzibarica 0.130 1.997 1.070 
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Legends of figures 

 

Fig. 1. Percentage of tree/shrub individuals divided in three accumulated elephant impact levels 

as assessed in Chobe National Park, Botswana excluding trees sampled in a nearby village. 

Abbreviations are Capparis tomentosa (Cto), Combretum apiculatum (Cap), Combretum 

elaeagnoides (Cel), Combretum mossambicense (Cmo), Erythroxylum zambesiacum (Eza), 

Flueggea virosa (Fvi) and Markhamia zanzibarica (Mza).  

 

Fig. 2. Mean (± SD) heights of trees divided in three different accumulated elephant impact 

levels. Within each species, different letters show significant differences (p<0.05). The 

abbreviations of the plant species are as in Fig.1. 

 

Fig. 3. Relationships between tree height and number of shoots (log10) available on tree 

individuals with no (●, dash curve), low (■, thin continuous curve) and high (▲, thick continuous 

curve) accumulated elephant impact on (a) Capparis tomentosa (b) Combretum apiculatum, (c) 

Combretum mossambicense, (d) Erythroxylum zambesiacum, (e) Flueggea virosa and (f) 

Markhamia zanzibarica. Quadratic regression models have been fitted to the data and the R2 

presented is the adjusted value. 
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Abstract 

 Utilisation of five tree species by the African elephant (Loxodonta africana Blumenbach) was 

assessed on trees used 3 years earlier in a simulated browsing experiment. The experiment 

included two levels of treatment, twig cutting and stem cutting, and untreated controls. The 

experiment was done in northern Botswana in a  fenced area, and there was no natural browsing 

by large herbivores. After 3 years, elephants broke into the area and their browsing of the 

experimental trees was assessed one month later. Four of the 5 species were browsed by the 

elephants, and for 3 of the species, percentage utilisation was higher on individuals subjected to 

simulated browsing 3 years before than on control trees.  Treatment effects were strongest on the 

species intermediately preferred by the elephants. There was no difference in percentage 

utilisation between trees with cut twigs and with cut stems. The results show that some aspect of 

the tree’s response to a single browsing event is still discernible for the elephants after 3 years 

with protection from browsing.  

 

Key words: Chobe, percentage utilisation, simulated browsing.
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Introduction 

Trees that have been subjected to real or simulated browsing often suffer higher probability to be 

browsed than do previously unbrowsed individuals (Danell et al. 1985; du Toit et al. 1990; 

Bergström et al. 2000; Bergqvist et al. 2001). This is a result of plant responses to the pruning, 

and involves both morphological and chemical changes in the plant. Twig biting by large 

herbivores reduces the number of meristems often resulting in fewer and larger shoots, 

sometimes with higher concentration of nutrients and lower concentration of carbon based 

defence compounds (Bergström & Danell 1987; Edenius 1993). Price (1991) argued that many 

herbivores prefer to feed on such large vigorously growing shoots. The reasons may include 

larger bite size (Vivås et al. 1991) and improved nutritive quality (Danell & Bergström 1989; du 

Toit et al. 1990; Edenius 1993). If leading shoots are consumed or the stem is broken, the apical 

dominance is reduced, leading to reduced plant height and more shoots available at lower level in 

the canopy, within browsing height for ground based mammalian herbivores (Stokke & du Toit 

2000; Makhabu 2005). Rebrowsing is a common phenomenon, implying that a smaller 

proportion of trees are browsed than would be expected from random attack (Bergqvist et al. 

2003), and repeated browsing of certain individual trees may lead to the development of a 

feeding loop (du Toit et al. 1990) and possible to a ‘browsing lawn’ when the tree or tree stand is 

kept short and coppicing, producing high quality browse (Owen-Smith 2003). Jachmann and Bell 

(1985) described elephants in the Kasungu National Park, Malawi, pushing over and repeatedly 

browse selected trees, maintaining highly productive coppicing ‘browsing lawns’. Elephants 

seemed to select trees with high concentration of protein and sodium and low concentration of 

fibre.  

Our aim was to assess whether treatment effects on trees were discernable by elephants 

after 3 years, and, if so, which species should give the strongest responses. We expected the 
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effect of previous (simulated) browsing on rebrowsing patterns by the elephants to be most 

pronounced for intermediately preferred tree species, presuming those most preferred to be 

heavily browsed independent of previous treatment, and those most avoided hardly to be 

accepted even after treatment.   

Materials and Methods 

Study area 

The study was done in Kasane in northern Botswana. Annual average rainfall is about 640 mm 

with the wet season in summer mainly between November and April (Botswana Meteorological 

Service Department unpublished records). The specific location in Kasane was  a fenced camp of 

19 hectares belonging to the Department of Wildlife and National Parks. It was fenced in 1996 

and since then has been protected from large herbivores. The vegetation is a mixed woodland 

with Baikiaea plurijuga and many smaller tree and shrub species (Skarpe et al. 2004). Plant 

nomenclature follows Coates Palgrave (2002). 

 

Data collection 

Twenty six experimental sites spread over the fenced camp were chosen and marked in 

November 1999. At each of these sites, three individual plants each of Baphia massaiensis, 

Baikiaea plurijuga, Bauhinia petersiana, Combretum apiculatum and Markhamia zanzibarica 

were selected. None of these species possess spines or thorns and they are all deciduous. The 

selected individuals were from 2.15 m (B. petersiana) to 3.5 m (B. plurijuga) and as similar, 

within species, as possible. Each individual of a species at a site was randomly assigned to a 

different treatment. One had all stems cut at 50 cm height implying the removal of all the leaf 

area (‘stumping’), the second had all twigs cut at the 8 mm diameter implying the removal of 
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between 50 and 75 % of the leaf area (‘cutting’), and the third plant was left intact as a control. 

The selected individuals were marked and their positions recorded. There was no difference in 

initial height between treatment groups in any species. The experiment was evaluated in May 

2000, but is not published. However, in all species treated trees had heavier and/or longer shoots 

than control trees.   

Three years after the experiment was setup, in October 2002 elephants broke into the fenced 

camp and browsed trees in the area. That gave us an opportunity to investigate how the elephants 

utilised trees of each species with different treatments. In November 2002 we revisited the 

marked trees. Of the initial 26 replicate areas twelve had been cleared by man and some of the 

remaining plants had lost their tags in the meantime. The average number of replicates remaining 

for species and treatments in November 2002 was 10, and the smallest number 5. On each tree 

the number of twigs < 10 mm in diameter, browsed and unbrowsed, were counted.  

 

Statistical analyses 

The percentage of shoots browsed by elephant was calculated for each tree. The data was arcsine 

transformed and a two-way ANOVA applied to test for over-all effects of treatments across 

species, of species across treatments and for interactions. Both species and treatment were treated 

as fixed factors in the two-way ANOVA. To test for differences in utilisation by elephants of 

trees with different treatments within species, a one-way ANOVA was used, and for those that 

were different, multiple comparison using a Tukey’s test was applied. Equality of variances was 

tested using the Levene's test of equality of group variances to make sure that the data met 

assumptions of one-way ANOVA. All tests were considered statistically significant at the P < 

0.05. All statistical analyses were performed in SPSS for Windows (version 12.0.1) statistical 

package. 
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Results and discussion 

Elephant heavily browsed (in decreasing order) Baphia massaiensis, Bauhinia petersiana and 

Combretum  apiculatum. They utilised Markhamia zanzibarica a little and Baikiaea plurijuga 

hardly at all (Fig.1). The percentage utilisation of trees by elephant was different between species 

(F4,129 = 130; P < 0.001) and between treatments (F2,129 = 14.43; P < 0.001). There was a 

significant interaction between species and treatment (F8,129 = 5.21; P < 0.001). The rank order of 

browsing by elephants differed from that found by Omphile (1997) and Stokke and du Toit 

(2000), who ranked the three most used species (in decreasing order) Combretum apiculatum, 

Baphia massaiensis and Bauhinia petersiana. Combretum apiculatum and Baphia massaiensis 

had lowest concentration of fibre, and Baphia massaiensis, Baikiaea plurijuga and Bauhinia 

petersiana had the highest and Combretum apiculatum the lowest concentration of nitrogen 

(Makhabu et al. in press). The data suggest that it was more important for elephants to avoid 

intake of fibre than to maximise intake of nitrogen. Elephant food selection against fibre is also 

recorded by Jachmann and Bell (1985).   

Analysing the species separately showed that for the 3 heavily browsed species, Combretum 

apiculatum, Baphia massaiensis and Bauhinia petersiana, the percentage utilisation differed 

between treatments (Table 1). The multiple comparisons showed that elephant browsed more on 

trees that had been subject to simulated browsing than on controls (Table 1). There was no 

difference in browsing between the cut and stump treatments, and no difference between 

treatments in Markhamia zanzibarica or Baikiaea plurijuga. We expected intermediately 

preferred species to show the strongest effect of previous treatment on rebrowsing by elephant. 

Following our own preference ranking, this was true, with the strongest treatment effect in 

Combretum apiculatum and Bauhinia petersiana, intermediate effect in the most preferred 
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species, Baphia massaiensis, of which most shoots had been browsed both on treated trees and on 

controls, and no effect in the little browsed Markhamia zanzibarica and Baikiaea plurijuga. 

However, with the ranking by Omphile (1997) and Stokke and du Toit (2000) the most preferred 

species, Combretum apiculatum, showed the strongest treatment effect.   

 Most studies of rebrowsing following real or simulated browsing treatments have been 

evaluated within a year of the treatment [Bergström and Danell 1987 (12 months); Bowyer and 

Bowyer 1997 (about 12 months); Bergström et al. 2000 (8 months); Cooper et al. 2003 (12 

months); Rooke 2003 (3 months)]. We found treatment effects to remain after 3 years in the 

species browsed by elephant.  It is, however, likely that the dynamics and pattern of decline in the 

induced response traits differ between plant species, and the ranking of the three species 

according to elephant response to treatment might have been different one or two years earlier, 

and might have differed in the future. 
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Table 1. Comparison of percentage utilisation means for species and treatments. 0 = control, 1= 

‘cut’, 2 = ‘stump’  Species ranked from most (top) to least (bottom) browsed by elephants in our 

study. 

ANOVA between treatments P of Tukey’s comparisons Species 
df F p 0 vs 1 0 vs 2 1 vs 2 

Baphia massaiensis 2, 29 4.98 0.014 0.037 0.023 0.917 
Bauhinia petersiana 2, 30 7.207 0.003 0.006 0.009 0.983 
Combretum apiculatum 2, 32 15.57 <0.001 0.016 <0.001 0.019 
Markhamia zanzibarica 2, 15 0.923 0.419 - - - 
Baikiaea plurijuga 2, 23 1.683 0.208 - - - 
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 Fig. 1. Mean (± S.E.) browsing pressure by elephant on Baphia massaiensis, Baikiaea plurijuga, 

Bauhinia petersiana, Combretum apiculatum and Markhamia zanzibarica trees with different 

previous intensities of simulated browsing (control, cutting and stumping). 
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Zoology 

Radiocesium turnover in 
freshwater fishes 

 1996 Ingibjørg 
Einarsdottir 

Dr. scient. 
Zoology 

Production of Atlantic salmon 
(Salmo salar) and Arctic charr 
(Salvelinus alpinus): A study of 
some physiological and 
immunological responses to 
rearing routines. 

 1996 Christina M. S. 
Pereira 

Dr. scient. 
Zoology 

Glucose metabolism in 
salmonids: Dietary effects and 
hormonal regulation. 

 1996 Jan Fredrik 
Børseth 

Dr. scient. 
Zoology 

The sodium energy gradients in 
muscle cells of Mytilus edulis 
and the effects of organic 
xenobiotics. 



 1996 Gunnar Henriksen Dr. scient. 
Zoology 

Status of Grey seal Halichoerus 
grypus and Harbour seal Phoca 
vitulina in the Barents sea 
region. 

 1997 Gunvor Øie Dr. scient 
Bothany 

Eevalution of rotifer Brachionus 
plicatilis quality in early first 
feeding of turbot Scophtalmus 
maximus L. larvae. 

 1997 Håkon Holien Dr. scient 
Botany 

Studies of lichens in spurce 
forest of Central Norway. 
Diversity, old growth species 
and the relationship to site and 
stand parameters. 

 1997 Ole Reitan  Dr. scient. 
Zoology 

Responses of birds to habitat 
disturbance due to damming. 

 1997 Jon Arne Grøttum  Dr. scient. 
Zoology 

Physiological effects of reduced 
water quality on fish in 
aquaculture. 

 1997 Per Gustav 
Thingstad  

Dr. scient. 
Zoology 

Birds as indicators for studying 
natural and human-induced 
variations in the environment, 
with special emphasis on the 
suitability of the Pied Flycatcher.

 1997 Torgeir Nygård  Dr. scient. 
Zoology 

Temporal and spatial trends of 
pollutants in birds in Norway: 
Birds of prey and Willow 
Grouse used as 
Biomonitors. 

 1997 Signe Nybø  Dr. scient. 
Zoology 

Impacts of long-range 
transported air pollution on birds 
with particular reference to the 
dipper Cinclus cinclus in 
southern Norway. 

 1997 Atle Wibe  Dr. scient. 
Zoology 

Identification of conifer volatiles 
detected by receptor neurons in 
the pine weevil (Hylobius 
abietis), analysed by gas 
chromatography linked to 
electrophysiology and to mass 
spectrometry. 

 1997 Rolv Lundheim  Dr. scient. 
Zoology 

Adaptive and incidental 
biological ice nucleators.     

 1997 Arild Magne 
Landa 

Dr. scient. 
Zoology 

Wolverines in Scandinavia: 
ecology, sheep depredation and 
conservation. 

 1997 Kåre Magne 
Nielsen 

Dr. scient 
Botany 

An evolution of possible 
horizontal gene transfer from 
plants to sail bacteria by studies 
of natural transformation in 
Acinetobacter calcoacetius. 



 1997 Jarle Tufto  Dr. scient. 
Zoology 

Gene flow and genetic drift in 
geographically structured 
populations: Ecological, 
population genetic, and 
statistical models 

 1997 Trygve Hesthagen  Dr. philos. 
Zoology 

Population responces of Arctic 
charr (Salvelinus alpinus (L.)) 
and brown trout (Salmo trutta 
L.) to acidification in Norwegian 
inland waters 

 1997 Trygve Sigholt  Dr. philos. 
Zoology 

Control of  Parr-smolt 
transformation and seawater 
tolerance in farmed Atlantic 
Salmon (Salmo salar) Effects of 
photoperiod, temperature, 
gradual seawater acclimation, 
NaCl and betaine in the diet 

 1997 Jan Østnes  Dr. scient. 
Zoology 

Cold sensation in adult and 
neonate birds 

 1998 Seethaledsumy 
Visvalingam 

Dr. scient 
Botany 

Influence of environmental 
factors on myrosinases and 
myrosinase-binding proteins. 

 1998 Thor Harald 
Ringsby 

Dr. scient. 
Zoology 

Variation in space and time: The 
biology of a House sparrow 
metapopulation 

 1998 Erling Johan 
Solberg 

Dr. scient. 
Zoology 

Variation in population 
dynamics and life history in a 
Norwegian moose (Alces alces) 
population: consequences of 
harvesting in a variable 
environment 

 1998 Sigurd Mjøen 
Saastad 

Dr. scient 
Botany 

Species delimitation and 
phylogenetic relationships 
between the Sphagnum 
recurvum complex (Bryophyta): 
genetic variation and phenotypic 
plasticity. 

 1998 Bjarte Mortensen Dr. scient 
Botany 

Metabolism of volatile organic 
chemicals (VOCs) in a head liver 
S9 vial  equilibration system in 
vitro. 

 1998 Gunnar Austrheim Dr. scient 
Botany 

Plant biodiversity and land use in 
subalpine grasslands. – A 
conservtaion biological 
approach. 

 1998 Bente Gunnveig 
Berg 

Dr. scient. 
Zoology 

Encoding of pheromone 
information in two related moth 
species 

 1999 Kristian 
Overskaug 

Dr. scient. 
Zoology 

Behavioural and morphological 
characteristics in Northern 
Tawny Owls Strix aluco: An 
intra- and interspecific 
comparative approach 



 1999 Hans Kristen 
Stenøien 

Dr. scient 
Bothany 

Genetic studies of evolutionary 
processes in various populations 
of nonvascular plants (mosses, 
liverworts and hornworts) 

 1999 Trond Arnesen Dr. scient 
Botany 

Vegetation dynamics following 
trampling and burning in the 
outlying haylands at Sølendet, 
Central Norway. 

 1999 Ingvar Stenberg Dr. scient. 
Zoology 

Habitat selection, reproduction 
and survival in the White-backed 
Woodpecker Dendrocopos 
leucotos 

 1999 Stein Olle 
Johansen 

Dr. scient 
Botany 

A study of driftwood dispersal to 
the Nordic Seas by 
dendrochronology and wood 
anatomical analysis. 

 1999 Trina Falck 
Galloway 

Dr. scient. 
Zoology 

Muscle development and growth 
in early life stages of the Atlantic 
cod (Gadus morhua L.) and 
Halibut (Hippoglossus 
hippoglossus L.) 

 1999 Torbjørn Forseth Dr. scient. 
Zoology 

Bioenergetics in ecological and 
life history studies of fishes. 

 1999 Marianne Giæver Dr. scient. 
Zoology 

Population genetic studies in 
three gadoid species: blue 
whiting (Micromisistius 
poutassou), haddock 
(Melanogrammus aeglefinus) 
and cod (Gradus morhua) in the 
North-East Atlantic 

 1999 Hans Martin 
Hanslin 

Dr. scient 
Botany 

The impact of environmental 
conditions of density dependent 
performance in the boreal forest 
bryophytes Dicranum majus, 
Hylocomium splendens, 
Plagiochila asplenigides, Ptilium 
crista-castrensis and 
Rhytidiadelphus lokeus. 

 1999 Ingrid Bysveen 
Mjølnerød 

Dr. scient. 
Zoology 

Aspects of population genetics, 
behaviour and performance of 
wild and farmed Atlantic salmon 
(Salmo salar) revealed by 
molecular genetic techniques 

 1999 Else Berit Skagen Dr. scient 
Botany 

The early regeneration process in 
protoplasts from Brassica napus 
hypocotyls cultivated under 
various g-forces 

 1999 Stein-Are Sæther Dr. philos. 
Zoology 

Mate choice, competition for 
mates, and conflicts of interest in 
the Lekking Great Snipe 

 1999 Katrine Wangen 
Rustad 

Dr. scient. 
Zoology 

Modulation of glutamatergic 
neurotransmission related to 
cognitive dysfunctions and 
Alzheimer’s disease 



 1999 Per Terje Smiseth Dr. scient. 
Zoology 

Social evolution in monogamous 
families: 
mate choice and conflicts over 
parental care in the Bluethroat 
(Luscinia s. svecica) 

 1999 Gunnbjørn 
Bremset 

Dr. scient. 
Zoology 

Young Atlantic salmon (Salmo 
salar L.) and Brown trout 
(Salmo trutta L.) inhabiting the 
deep pool habitat, with special 
reference to their habitat use, 
habitat preferences and 
competitive interactions 

 1999 Frode Ødegaard Dr. scient. 
Zoology 

Host spesificity as parameter in 
estimates of arhrophod species 
richness 

 1999 Sonja Andersen Dr. scient 
Bothany 

Expressional and functional 
analyses of human, secretory 
phospholipase A2 

 2000 Ingrid Salvesen, I Dr. scient 
Botany 

Microbial ecology in early stages 
of marine fish: Development and 
evaluation of methods for 
microbial management in 
intensive larviculture 

 2000 Ingar Jostein Øien Dr. scient. 
Zoology 

The Cuckoo (Cuculus canorus) 
and its host: adaptions and 
counteradaptions in a 
coevolutionary arms race 

 2000 Pavlos Makridis Dr. scient 
Botany 

Methods for the microbial 
econtrol of live food used for the 
rearing of marine fish larvae 

 2000 Sigbjørn Stokke Dr. scient. 
Zoology 

Sexual segregation in the 
African elephant (Loxodonta 
africana) 

 2000 Odd A. Gulseth Dr. philos. 
Zoology 

Seawater tolerance, migratory 
behaviour and growth of Charr, 
(Salvelinus alpinus), with 
emphasis on the high Arctic 
Dieset charr on Spitsbergen, 
Svalbard 

 2000 Pål A. Olsvik Dr. scient. 
Zoology 

Biochemical impacts of Cd, Cu 
and Zn on brown trout (Salmo 
trutta) in two mining-
contaminated rivers in Central 
Norway 

 2000 Sigurd Einum Dr. scient. 
Zoology 

Maternal effects in fish: 
Implications for the evolution of 
breeding time and egg size 

 2001 Jan Ove Evjemo Dr. scient. 
Zoology 

Production and nutritional 
adaptation of the brine shrimp 
Artemia sp. as live food 
organism for larvae of marine 
cold water fish species 



 2001 Olga Hilmo Dr. scient 
Botany 

Lichen response to 
environmental changes in the 
managed boreal forset systems 

 2001 Ingebrigt Uglem Dr. scient. 
Zoology 

Male dimorphism and 
reproductive biology in 
corkwing wrasse (Symphodus 
melops L.) 

 2001 Bård Gunnar 
Stokke 

Dr. scient. 
Zoology 

Coevolutionary adaptations in 
avian brood parasites and their 
hosts 

 2002 Ronny Aanes Dr. scient Spatio-temporal dynamics in 
Svalbard reindeer (Rangifer 
tarandus platyrhynchus) 

 2002 Mariann Sandsund Dr. scient. 
Zoology 

Exercise- and cold-induced 
asthma. Respiratory and 
thermoregulatory responses 

 2002 Dag-Inge Øien Dr. scient 
Botany 

Dynamics of plant communities 
and populations in boreal 
vegetation influenced by 
scything at Sølendet, Central 
Norway 

 2002 Frank Rosell Dr. scient. 
Zoology 

The function of scent marking in 
beaver (Castor fiber) 

 2002 Janne Østvang Dr. scient 
Botany 

The Role and Regulation of 
Phospholipase A2 in Monocytes 
During Atherosclerosis 
Development 

 2002 Terje Thun Dr. philos 
Biology 

Dendrochronical constructions 
of Norwegian conifer 
chronologies providing dating of 
historical material 

 2002 Birgit Hafjeld 
Borgen 

Dr. scient 
Biology 

Functional analysis of plant 
idioblasts (Myrosin cells) and 
their role in defense, 
development and growth 

 2002 Bård Øyvind 
Solberg 

Dr. scient 
Biology 

Effects of climatic change on the 
growth of dominating tree 
species along major 
environmental gradients 

 2002 Per Winge Dr. scient 
Biology 

The evolution of small GTP 
binding proteins in cellular 
organisms.  Studies of RAC 
GTPases in Arabidopsis thaliana 
and 

 2002 Henrik Jensen Dr. scient 
Biology 

Causes and consequenses of 
individual variation in fitness-
related traits in house sparrows 

 2003 Jens Rohloff Dr. philos 
Biology 

Cultivation of herbs and 
medicinal plants in Norway – 
Essential oil production and 
quality control 



 2003 Åsa Maria O. 
Espmark Wibe 

Dr. scient 
Biology 

Behavioural effects of 
environmental pollution in 
threespine stickleback 
Gasterosteus aculeatur L. 

 2003 Dagmar Hagen Dr. scient 
Biology 

Assisted recovery of disturbed 
arctic and alpine vegetation – an 
integrated approach 

 2003 Bjørn Dahle Dr. scient 
Biology 

Reproductive strategies in 
Scandinavian brown bears 

 2003 Cyril Lebogang 
Taolo 

Dr. scient 
Biology 

Population ecology, seasonal 
movement and habitat use of the 
African buffalo (Syncerus caffer) 
in Chobe National Park, 
Botswana 

 2003 Marit Stranden Dr.scient 
Biology 

Olfactory receptor neurones 
specified for the same odorants 
in three related Heliothine 
species (Helicoverpa armigera, 
Helicoverpa assulta and 
Heliothis virescens) 

 2003 Kristian Hassel Dr.scient 
Biology 

Life history characteristics and 
genetic variation in an expanding 
species, Pogonatum dentatum 

 2003 David Alexander 
Rae 

Dr.scient 
Biology 

Plant- and invertebrate-
community responses to species 
interaction and microclimatic 
gradients in alpine and Artic 
environments 

 2003 Åsa A Borg Dr.scient 
Biology 

Sex roles and reproductive 
behaviour in gobies and guppies: 
a female perspective 

 2003 Eldar Åsgard 
Bendiksen 

Dr.scient 
Biology 

Environmental effects on lipid 
nutrition of farmed Atlantic 
salmon (Salmo Salar L.) parr 
and smolt 

 2004 Torkild Bakken Dr.scient 
Biology 

A revision of Nereidinae 
(Polychaeta, Nereididae) 

 2004 Ingar Pareliussen Dr.scient 
Biology 

Natural and Experimental Tree 
Establishment in a Fragmented 
Forest, Ambohitantely Forest 
Reserve, Madagascar 

 2004 Tore Brembu Dr.scient 
Biology 

Genetic, molecular and 
functional studies of RAC 
GTPases and the WAVE-like 
regulatory protein complex in 
Arabidopsis thaliana 

 2004 Liv S. Nilsen Dr.scient 
Biology 

Coastal heath vegetation on 
central Norway; recent past, 
present state and future 
possibilities 



 2004 Hanne T. Skiri Dr.scient 
Biology 

Olfactory coding and olfactory 
learning of plant odours in 
heliothine moths. An anatomical, 
physiological and behavioural 
study of three related species 
(Heliothis virescens, 
Helicoverpa armigera and 
Helicoverpa assulta). 
 

 2004 Lene Østby Dr.scient 
Biology 

Cytochrome P4501A (CYP1A) 
induction and DNA adducts as 
biomarkers for organic pollution 
in the natural environment 
 

 2004 Emmanuel J. 
Gerreta 

Dr. philos 
Biology 

The Importance of Water 
Quality and Quantity in the 
Tropical Ecosystems, Tanzania 

 2004 Linda Dalen Dr.scient 
Biology 

Dynamics of Mountain Birch 
Treelines in the Scandes 
Mountain Chain, and Effects of 
Climate Warming 

 2004 Lisbeth Mehli Dr.scient 
Biology 

Polygalacturonase-inhibiting 
protein (PGIP) in cultivated 
strawberry (Fragaria x 
ananassa): characterisation and 
induction of the gene following 
fruit infection by Botrytis 
cinerea 

 2004 Børge Moe Dr.scient 
Biology 

Energy-Allocation in Avian 
Nestlings Facing Short-Term 
Food Shortage 

 2005 Matilde Skogen 
Chauton 

Dr.scient 
Biology 

Metabolic profiling and species 
discrimination from High-
Resolution Magic Angle 
Spinning NMR analysis of 
whole-cell samples 

 2005 Sten Karlsson Dr.scient 
Biology 

Dynamics of Genetic 
Polymorphisms 

 2005 Terje Bongard Dr.scient 
Biology 

Life History strategies, mate 
choice, and parental investment 
among Norwegians over a 300-
year period 

 2005 Tonette Røstelien PhD 
Biology 

Functional characterisation of 
olfactory receptor neurone types 
in heliothine moths 

 2005 Erlend Kristiansen Dr.scient 
Biology 

Studies on antifreeze proteins 

 2005 Eugen G. Sørmo Dr.scient 
Biology 

Organochlorine pollutants in 
grey seal (Halichoerus grypus) 
pups and their impact on plasma 
thyrid hormone and vitamin A 
concentrations. 

 2005 Christian Westad Dr.scient 
Biology 

Motor control of the upper 
trapezius 



 2005 Lasse Mork Olsen PhD 
Biology 

Interactions between marine 
osmo- and phagotrophs in 
different physicochemical 
environments 

 2005 Åslaug Viken PhD 
Biology 

Implications of mate choice for 
the management of small 
populations 

 2006 Ariaya Hymete 
Sahle Dingle 

PhD 
Biology 

Investigation of the biological 
activities and chemical 
constituents of selected Echinops 
spp. growing in Ethiopia 

 2006 Ander Gravbrøt 
Finstad 

PhD 
 

Salmonid fishes in a changing 
climate: The winter challenge 

 




