

Analyse av spennarmert betong: Evaluering av programsystemet Sofistik for bruer

Siri Tautra

Master i Bygg- og miljøteknikk Innlevert: februar 2017 Hovedveileder: Terje Kanstad, KT

Norges teknisk-naturvitenskapelige universitet Institutt for konstruksjonsteknikk

ÅPEN

MASTEROPPGAVE 2017

FAGOMRÅDE:	DATO:	ANTALL SIDER:
BETONGKONSTRUKSJONER	13.februar 2017	210 + 96 sider vedlegg

TITTEL:

Analyse av spennarmert betong: Evaluering av programsystemet Sofistik for bruer

Analysis of prestressed concrete: Evaluation of the programsystem Sofistik for bridges

UTFØRT AV:

Siri Tautra

SAMMENDRAG:

Denne masteroppgaven omhandler modellering og analyse med elementmetode-programmet Sofistik. Både testbjelken og tre spenns brua er analysert og resultatene er verifisert med håndberegninger. I oppgaven er det lagt vekt på å finne ut hva som skyldes påviste avvik og hvilken betydning disse avvikene har. Det er benyttet gjeldende regelverk for analyse av bruer i Norge.

Testmodellen består av en fritt opplagt etteroppspennt betongbjelke i ett spenn. Bjelken er 10 meter lang med rektangulært tverrsnitt, høyde 0,5 meter og bredde 2 meter. Det er laget en modell med rett spennkabel og en modell med krum spennkabel. For testbjelken er det sett spesielt på virkninger fra betongens kryp og svinn, umiddelbare og tidsavhengige spennkrafttap. Det er påvist at Sofistik overstyrer oppspenningskraften som legges inn manuelt i programmet. Sofistik benytter oppspenningskraft som er lavere enn den som vanligvis benyttes i Norge. Dette kan være kritisk i oppspenningstilstanden, spesielt for bruer med kassetverrsnitt. Det bør derfor tas hensyn til at Sofistik benytter lavere oppspenningskraft enn det kabelen faktisk spennes opp med for slike bruer. Det er også påvist at det er en feil i analysene til Sofistik av spennkrafttap som skyldes relaksasjon. Denne feilen er ubetydelig men Sofistik har bekreftet at de vil rette den opp i neste oppdatering av programsystemet.

Tre spenns brua er ei etteroppspennt bjelke/platebru i betong med spenn på 20,0 + 25,0 + 19,0 meter og total bredde på 7,4 meter. Det er utført analyse av egenvekt, superegenvekt og trafikklaster. Resultatene fra Sofistik er verifisert og de stemmer godt overens med det man kan forvente seg.

FAGLÆRER: Terje Kanstad

VEILEDER(E): Terje Kanstad (NTNU) og Håvard Johansen (Statens vegvesen Vegdirektoratet)

UTFØRT VED: Institutt for Konstruksjonsteknikk

Forord

Denne masteroppgaven er skrevet av Siri Tautra. Oppgaven er en del av masterstudiet Byggog miljøteknikk ved Norges teknisk-naturvitenskapelige universitet (NTNU) og tilsvarer 30 studiepoeng. Oppgaven er skrevet ved Institutt for konstruksjonsteknikk og gjennomført høsten/vinteren 2016/2017. Veiledere har vært professor Terje Kanstad ved Institutt for konstruksjonsteknikk og Håvard Johansen fra Statens vegvesen Vegdirektoratet.

Oppgaven går ut på å studere elementmetode-programmet Sofistik. Det er utført modellering og analyse av en testmodell og ei bru med tre spenn i Sofistik. Det er også utført verifikasjon av resultat fra Sofistik med håndberegninger.

Hensikten med oppgaven har vært å tilegne seg kunnskap om Sofistik til bruk i analyse av spennarmerte betongbruer. Oppgaven har også hatt som hensikt å undersøke analysene i Sofistik og finne årsaken til avvik mellom Sofistik og håndberegninger.

Det rettes en stor takk til veilederne professor Terje Kanstad og Håvard Johansen. Takk for gode faglige diskusjoner, interesse og støtte underveis. Videre rettes en takk til Arianna Minoretti fra Statens vegvesen Vegdirektoratet og flere andre i Statens vegvesen for hjelp med Sofistik. Takk til support-avdelingen i Sofistik for svar på spørsmål angående programsystemet. Til slutt rettes en takk til seksjon for bru-utvikling i Statens vegvesen Vegdirektoratet for kontorplass samt trivelig arbeidsmiljø og nye bekjentskaper.

Trondheim, 13.februar 2017

Sin Tautra

Siri Tautra

Sammendrag

Denne masteroppgaven omhandler modellering og analyse med elementmetodeprogrammet Sofistik. Både testbjelken og tre spenns brua er analysert og resultatene er verifisert med håndberegninger. I oppgaven er det lagt vekt på å finne ut hva som skyldes påviste avvik og hvilken betydning disse avvikene har. Det er benyttet gjeldende regelverk for analyse av bruer i Norge.

Testmodellen består av en fritt opplagt etteroppspennt betongbjelke i ett spenn. Bjelken er 10 meter lang med rektangulært tverrsnitt, høyde 0,5 meter og bredde 2 meter. Det er laget en modell med rett spennkabel og en modell med krum spennkabel. For testbjelken er det sett spesielt på virkninger fra betongens kryp og svinn, umiddelbare og tidsavhengige spennkrafttap. Det er påvist at Sofistik overstyrer oppspenningskraften som legges inn manuelt i programmet. Sofistik benytter oppspenningskraft som er lavere enn den som vanligvis benyttes i Norge. Dette kan være kritisk i oppspenningstilstanden, spesielt for bruer med kassetverrsnitt. Det bør derfor tas hensyn til at Sofistik benytter lavere oppspenningskraft enn det kabelen faktisk spennes opp med for slike bruer. Det er også påvist at det er en feil i analysene til Sofistik av spennkrafttap som skyldes relaksasjon. Denne feilen er ubetydelig men Sofistik har bekreftet at de vil rette den opp i neste oppdatering av programsystemet.

Tre spenns brua er ei etteroppspennt bjelke/platebru i betong med spenn på 20,0 + 25,0 + 19,0 meter og total bredde på 7,4 meter. Det er utført analyse av egenvekt, superegenvekt og trafikklaster. Resultatene fra Sofistik er verifisert og de stemmer godt overens med det man kan forvente seg.

Abstract

This master thesis covers modelling and analysis with the finite element method-program Sofistik. Both a test model and a three span bridge are analysed, and the results are verified with hand calculations. Current rules for analysis and design of bridges in Norway have been used.

The test model is a simply supported post-tensioned concrete beam with 10 meters span and with a rectangular cross section of 0,5 meters height and 2,0 meters width. Both straight and curved longitudinal tendons have been analysed. Effects of concrete creep and shrinkage, as well as immediate and time-dependent prestress losses, have been evaluated. It is found that Sofistik automatically applies a prestress tensioning force that is lower than commonly used in Norway. For the stressing phase this assumption can be nonconservative. It is also found that relaxation losses are incorrectly calculated. The error is of minor significance, but Sofistik has confirmed that this will be fixed in the next program update.

The bridge is as a continuous beam/plate post-tensioned concrete bridge with spans of 20,0 + 25,0 + 19,0 meters and a total width of 9,4 meters. Self weight and traffic loads have been analysed, and the results have been evaluated. Load resultants from vertical traffic loads did not correspond with the expected results, and this discrepancy should be clarified. Due to lack of time, this was not done in this thesis.

It is focused on what causes proven discrepancies between hand calculations and results from Sofistik and what impact these discrepancies has for bridges.

Innholdsfortegnelse

Forord	<u> </u>
Sammendrag	III
ABSTRACT	V
INNHOLDSFORTEGNELSE	VII
FIGURLISTE	XI
TABELLISTE	XIX
INDEKSLISTE	XXIII
DEL 1 GENERELT	1
1 INTRODUKSJON	1
2 Beregningsgrunnlag	3
2.1 Grunnlag	3
2.2 MATERIALEGENSKAPER	4
2.3 Sofistik	7
DEL 2 TESTBJELKE	9
<u>3</u> Bjelken	9
4 ARMERING I BJELKEN	11
4.1 Overdekningskrav	11
4.2 Slakkarmering	11
4.3 Spennarmering	12
4.4 SPENNSYSTEM FOR BJELKEN	13
	VII

<u>5</u> <u>I</u>	LASTER	17
5.1	PERMANENTE LASTER	17
5.2	DEFORMASJONSLASTER	18
5.3	LASTKOMBINERING	19
<u>6</u>	Forenklede beregninger	21
6.1	Primær-effekter	21
6.2	BETONGENS KRYP	22
6.3	BETONGENS SVINN	29
6.4	TOTAL FORSKYVNING PGA KRYP OG SVINN	31
<u>7</u>	Spennkrafttap	33
7.1	Umiddelbare tap	33
7.2	TIDSAVHENGIGE TAP	39
<u>8</u>	FE-ANALYSE MED SOFISTIK	43
8.1	Organisering	43
8.2	Koordinatsystem	44
8.3	MATERIALER	45
8.4	Geometri	46
8.5	LASTMODELLERING	49
8.6	Spennkrafttap	63
<u>9 \</u>	Verifikasjon av modell i Sofistik	71
9.1	Egenvekt	71
9.2	PERMANENT FLATELAST	72
9.3	Kryp og svinn	72
9.4	SPENNKRAFT FØR OPPSPENNING OG LÅSING	78
9.5	Primær-effekter	89

L 3 TRE SPENNS BRU	
<u>10</u> Brua	117
10.1 Geometri	117
10.2 Koordinatsystem	119
10.3 STATISK SYSTEM	120
11 LASTER	121
11.1 PERMANENTE LASTER	121
11.2 Trafikklast	123
12 FEM-ANALYSE MED SOFISTIK	129
12.1 Koordinatsystem	129
12.2 MATERIALER	130
12.3 GEOMETRI	130
12.4 LASTMODELLERING	132
13 VERIFIKASJON AV MODELL I SOFISTIK	155
13.1 Egenvekt	156
13.2 Superegenvekt	160
13.3 Trafikklast	163
DEL 4 AVSLUTNING	171
14 OPPSUMMERING, DISKUSJON OG KONKLUSJON	171
15 VIDERE ARBEID	177
16 Referanser	179

Figurliste

Figur 3–1	Bjelke med rett spennkabel
Figur 3–2	Bjelke med krum spennkabel9
Figur 4–1	Spennarmeringskomponenter13
Figur 4–2	Forshåndsdefinerte spennsystem i Sofistik14
Figur 4-3	Rett spennkabel 15
Figur 4-4	Spennkabel med krumning16
Figur 5–1	Egenvekt 17
Figur 5–2	Flatelast
Figur 5–3	Spennkraft, rett kabel 18
Figur 5–4	Spennkraft, krum kabel18
Figur 5–5	Ekvivalent kraft, rett kabel19
Figur 5-6	Ekvivalent kraft, krum kabel
Figur 6-1	Primær-effekter
Figur 7–1	Friksjonskrefter, rett kabel
Figur 7-2	Friksjonskrefter, krum kabel
Figur 7–3	Låsetap 37
Figur 7–4	Tap i spennkraft på grunn av friksjon og stort låsetap
Figur 8–1	Globalt koordinatsystem
Figur 8–2	Lokalt koordinatsystem
Figur 8–3	Materialegenskaper for betong B45 45
Figur 8–4	Materialegenskaper for slakkarmering B500C46
Figur 8–5	Materialegenskaper for spennarmering Y186046
Figur 8–6	Aksesystem
Figur 8–7	Tverrsnitt
Figur 8-8	Opplager
Figur 8–9	Opplagerbetingelser
Figur 8–10) FEM–elementer

Figur 8–11	Input til laster i Sofiplus-X	49
Figur 8–12	Teddy-fil med SIR	50
Figur 8–13	Nummerering av lasttilfeller i Sofistik	50
Figur 8–14	Spenning i betongen	51
Figur 8–15	Bøyemoment om global y-akse	51
Figur 8–16	Skjærkraft i global z-retning	51
Figur 8–17	Spenning i betongen	52
Figur 8–18	Momentfordeling langs bjelken	52
Figur 8–19	Skjærkraftfordeling langs bjelken	53
Figur 8–20	Forshåndsdefinerte spennsystem i Sofistik	53
Figur 8–21	Egenskaper spennsystem Cona	53
Figur 8–22	Modellering av spennarmering	54
Figur 8–23	Geometri rett kabel	54
Figur 8–24	Geometri krum kabel	54
Figur 8–25	CSM (Construction Stage Manager)	55
Figur 8–26	Lasttilfeller fra CSM	55
Figur 8–27	Rett kabel	56
Figur 8–28	Krum kabel	56
Figur 8–29	Rett kabel	56
Figur 8–30	Krum kabel	56
Figur 8–31	Rett kabel	57
Figur 8–32	Krum kabel	57
Figur 8–33	Rett kabel	57
Figur 8–34	Krum kabel	57
Figur 8–35	Rett kabel	58
Figur 8–36	Krum kabel krumning	58
Figur 8–37	Rett kabel	58
Figur 8–38	Krum kabel	58
Figur 8–39	Rett kabel	58
Figur 8-40	Krum kabel	58

Figur 8–41 CSM	. 60
Figur 8–42 Nodenummerering i akse P1	. 60
Figur 8-43 Nodenummerering i akse P2	. 60
Figur 8-44 Nodenummerering i akse P2	. 60
Figur 8–45 Illustrasjon låsetap	. 64
Figur 8–46 Spennkraft umiddelbart etter oppspenning	. 64
Figur 8–47 Rett kabel	. 65
Figur 8–48 Krum kabel	. 65
Figur 8–49 Rett kabel	. 66
Figur 8–50 Krum kabel	. 66
Figur 8–51 Relaksasjon i Sofistik	. 67
Figur 8–52 Rett kabel	. 68
Figur 8–53 Krum kabel	. 68
Figur 8–54 Rett kabel	. 69
Figur 8-55 Krum kabel	. 69
Figur 9–1 Innstillinger i Prestressing system	. 73
Figur 9-2 Innstillinger i Construction Stage Manager	. 73
Figur 9–3 CSM med Teddy	. 74
Figur 9–4 Opplager midt i tverrsnitt	. 75
Figur 9–5 Beregningsmetoder for kryptøyning	. 76
Figur 9-6 Rett kabel: Spenning i kabel umiddelbart etter oppspenning	. 79
Figur 9-7 Krum kabel: Spenning i kabel umiddelbart etter oppspenning	. 80
Figur 9-8 Umiddelbare tap = 0	. 82
Figur 9-9 Rett kabel: Spennkraft i kabel umiddelbart etter oppspenning	. 82
Figur 9–10 Rett kabel: Spenning i kabel umiddelbart etter oppspenning	. 82
Figur 9-11 Prestressing force P0,max = 4000kN	. 83
Figur 9–12 Rett kabel: Spennkraft i kabel umiddelbart etter oppspenning	. 83
Figur 9–13 Rett kabel: Spenning i kabel umiddelbart etter oppspenning	. 83
Figur 9–14 Rett kabel: Spennkraft i kabel umiddelbart etter oppspenning	. 84
Figur 9–15 Rett kabel: Spenning i kabel umiddelbart etter oppspenning	. 84
	XIII

Figur 9–16 Op	ppspenningstilstand. Forspenning virker alene86
Figur 9–17 Tv	verrsnitt i oppspenningstilstand. Forspenning virker alene
Figur 9–18 Sp	oenning-tøyningsdiagram for spennstål. Figur hentet fra [5] 88
Figur 9–19 Kr	rum kabel: Primærmoment 89
Figur 9–20 Kr	rum kabel: Kraft i spennkabel umiddelbart etter oppspenning og låsing 90
Figur 9–21 Ur	middelbare tap i spennkraft for rett kabel91
Figur 9–22 Ur	middelbare tap i spennkraft for krum kabel91
Figur 9–23 Re	ett kabel 92
Figur 9–24 Kr	rum kabel
Figur 9–25 Re	ett kabel
Figur 9–26 Kr	rum kabel
Figur 9–27 Re	ett kabel
Figur 9–28 Kr	rum kabel
Figur 9–29 Kr	rum kabel: Spenning i kabel uten friksjon95
Figur 9–30 Re	ett kabel: Tap etter 100 døgn 98
Figur 9–31 Kr	rum kabel: Tap etter 100 døgn98
Figur 9–32 Re	ett kabel: Tap etter 100 år 99
Figur 9–33 Kr	rum kabel: Tap etter 100 år 99
Figur 9–34 Re	elaksasjon fjernes i CSM Teddy101
Figur 9–35 Re	ett kabel: Tap etter 100 døgn101
Figur 9–36 Kr	rum kabel: Tap etter 100 døgn101
Figur 9–37 Re	ett kabel: Tap etter 100 år 102
Figur 9–38 Kr	rum kabel: Tap etter 100 år 102
Figur 9–39 Be	etongspenninger i bjelken etter 100 døgn105
Figur 9–40 Be	etongspenninger i bjelken etter 100 år 105
Figur 9–41 Te	estbjelke med bjelkeelement og krum kabel 105
Figur 9–42 Te	estbjelke med bjelkeelement: Kraft i spennkabel umiddelbart etter oppspenning
Figur 9–43 Te	estbjelke med bjelkeelement: Kraft i spennkabel etter 100 døgn 106
Figur 9–44 Te	estbjelke med bjelkeelement: Kraft i spennkabel etter 100 år 106

Figur 9–45 Rett kabel: Relaksasjon etter 100 døgn10	8
Figur 9-46 Krum kabel: Relaksasjon etter 100 døgn10	8
Figur 9–47 Rett kabel: Relaksasjon etter 100 år10	9
Figur 9–48 Krum kabel: Relaksasjon etter 100 år 11	0
Figur 9–49 Relaksasjon i spennkabel11	2
Figur 9–50 Rett kabel: Kraft i kabel etter 100 døgn11	3
Figur 9–51 Rett kabel: Kraft i kabel etter 100 år11	3
Figur 9–52 Krum kabel: kraft i kabel etter 100 døgn11	4
Figur 9–53 Krum kabel: kraft i kabel etter 100 år 11-	4
Figur 10–1 Lengdesnitt av brua11	7
Figur 10–2 Tverrsnitt av brua	8
Figur 10–3 Tverrsnitt Akse 1	8
Figur 10–4 Oppriss bru og vange Akse 1 – Høyre side11	8
Figur 10–5 Tverrsnitt Akse 411	9
Figur 10–6 Lengdesnitt bru og endetverrbjelke Akse 411	9
Figur 10–7 Koordinatsystem for brua11	9
Figur 11-1 Nummerering av lastfelt. Figur hentet fra [4] 12-	4
Figur 11–2 Kontaktflaten til LM1. Figur hentet fra [4]12	5
Figur 11–3 Kontaktflaten til LM2. Figur hentet fra [4]12	5
Figur 12–1 Globalt koordinatsystem	9
Figur 12–2 Lokale koordinatsystem 12	9
Figur 12–3 Utsnitt lokale koordinatsystem 12	9
Figur 12–4 Lager akse 1	0
Figur 12–5 Lager akse 2 13	1
Figur 12–6 Lager akse 3 13	1
Figur 12–7 Lager akse 4 13	1
Figur 12–8 Nodenummerering 13	2
Figur 12–9 Elementnummerering	2
Figur 12–10 Spenning i betongen	3
Figur 12–11 Bøyemoment om global y-akse13	3
Х	V

Figur 12–12 Skjærkrefter i global z-retning	134
Figur 12–13 Fortegn skjærkraft	134
Figur 12–14 Reaksjonskrefter i global z-retning	135
Figur 12–15 Spenning i betongen	136
Figur 12–16 Bøyemoment om global y-akse	136
Figur 12–17 Skjærkrefter i global z-retning	137
Figur 12–18 Reaksjonskrefter i global z-retning	138
Figur 12–19 Lastilfeller for TS på høyre side av bru	139
Figur 12–20 Eksempel på Load stepping med TS på høyre side av bru	139
Figur 12–21 Lasttilfeller og Load stepping for størst UDL til høyre på brua	140
Figur 12-22 Felt 1-2: Plassering av TS for maks moment	141
Figur 12-23 Felt 1-2: Maks bøyemoment fra TS	141
Figur 12-24 Felt 2-3: Plassering av TS for maks moment	141
Figur 12-25 Felt 2-3: Maks bøyemoment fra TS	142
Figur 12-26 Felt 3-4: Plassering av TS for maks moment	142
Figur 12–27 Felt 3–4: Maks bøyemoment fra TS	142
Figur 12–28 Støtte 1: Plassering av TS for maks moment	143
Figur 12–29 Støtte 1: Maks bøyemoment fra TS	143
Figur 12-30 Støtte 2: Plassering av TS for maks moment	143
Figur 12–31 Støtte 2: Maks bøyemoment fra TS	144
Figur 12-32 Støtte 3: Plassering av TS for maks moment	144
Figur 12-33 Støtte 3: Maks bøyemoment fra TS	144
Figur 12-34 Støtte 4: Plassering av TS for maks moment	145
Figur 12-35 Støtte 4: Maks bøyemoment fra TS	145
Figur 12-36 Felt 1-2: Plassering av UDL for maks moment	146
Figur 12-37 Felt 1-2: Maks bøyemoment fra UDL	146
Figur 12-38 Felt 2-3: Plassering av UDL for maks moment	147
Figur 12-39 Felt 2-3: Maks bøyemoment fra UDL	147
Figur 12-40 Felt 3-4: Plassering av UDL for maks moment	148
Figur 12-41 Felt 3-4: Maks bøyemoment fra UDL	148

Figur 12–42 Støtte 1: Plassering av UDL for maks moment	49
Figur 12–43 Støtte 1: Maks bøyemoment fra UDL14	49
Figur 12-44 Støtte 2: Plassering av UDL for maks moment1	50
Figur 12–45 Støtte 2: Maks bøyemoment fra UDL1	50
Figur 12-46 Støtte 3: Plassering av UDL for maks moment1	51
Figur 12–47 Støtte 3: Maks bøyemoment fra UDL1	51
Figur 12–48 Støtte 4: Maks bøyemoment fra UDL1	52
Figur 12–49 Støtte 4: Maks bøyemoment fra UDL1	52
Figur 12–50 Støtte 2: Bøyemoment vinkelrett på snitt fra Cut 1	53
Figur 12–51 Støtte 2: Skivekrefter vinkelrett på snitt fra Cut	53
Figur 12–52 Felt 2–3: Bøyemoment vinkelrett på snitt fra Cut 1!	53
Figur 12–53 Felt 2–3: Skivekrefter vinkelrett på snitt fra Cut1	53
Figur 12–54 Støtte 3: Bøyemoment vinkelrett på snitt fra Cut	54
Figur 12–55 Støtte 3: Skivekrefter vinkelrett på snitt fra Cut	54
Figur 13-1 Moment for bjelke med fast innspenning og fritt opplager	55
Figur 13-2 Moment for bjelke med fast innspenning1	55
Figur 13–3 Moment for bjelke med fritt opplager1	55
Figur 13-4 Moment for bjelke med fritt opplager og fast innspenning 1	55
Figur 13-5 Moment for bjelke med fast innspenning1	55
Figur 13–6 Moment for bjelke med fritt opplager1	55
Figur 13–7 Prinsipielt momentdiagram1	56
Figur 13–8 Prinsipiell deformasjon1	57
Figur 13–9 Stivhet i akse 2 og 310	64
Figur 13-10 Moment ved 100% fast innspenning10	67
Figur 13-11 Moment ved 85% fast innspenning10	67
Figur 13–12 Plassering av UDL som gir størst moment i akse 2	69
Figur 13–13 Plassering av UDL som gir størst moment i akse 3	69

Tabelliste

Tabell 2–1 Materialegenskaper for betong B45 fra Sofistik
Tabell 2–2 Materialegenskaper for betong B455
Tabell 2–3 Materialegenskaper for slakkarmering, B500C i Sofistik
Tabell 2–4 Materialegenskaper for slakkarmering B500C6
Tabell 2–5 Materialegenskaper for spennarmering, Y1860 i Sofistik
Tabell 2–6 Materialegenskaper for spennarmering, Y18607
Tabell 4-1 Overdekningskrav for slakkarmering11
Tabell 4-2 Overdekningskrav for spennarmering11
Tabell 4-3 Oppspenningsdata14
Tabell 4-4 Kabelføringsdata 14
Tabell 4-5 Forankringsdata15
Tabell 7–1 Parametere for friksjonstap i Sofistik
Tabell 7–2 Parametere for låsetap som er lagt inn i Sofistik
Tabell 8–1 Forskyvning i aksens lager: Rett kabel61
Tabell 8–2 Forskyvning i aksens lager: Krum kabel61
Tabell 8–3 Forskyvning i aksens lager: Rett kabel62
Tabell 8–4 Forskyvning i aksens lager: Krum kabel62
Tabell 8–5 Rett kabel
Tabell 8–6 Krum kabel65
Tabell 8–7 Rett kabel
Tabell 8–8 Rett kabel
Tabell 8–9 Rett kabel
Tabell 8–10 krum kabel
Tabell 8–11 Rett kabel
Tabell 8-12 Krum kabel
Tabell 9-1 Sammenligning av bøyemoment og opplagerkrefter som skyldes egenvekt 71
Tabell 9–2 Sammenligning av bøyemoment og opplagerkrefter som skyldes flatelast 72

rasen si sisanniennighning terskyvning i ghuenager sont skylues kryp og svillit	72
Tabell 9–4 Rett kabel: Forskyvning pga kryp og svinn	75
Tabell 9–5 Krum kabel: Forskyvning pga kryp og svinn	75
Tabell 9–6 Beregningsmetoder for kryptøyning	76
Tabell 9–7 Sammenligning forskyvning midt i tverrsnitt som skyldes kryp og svinn	78
Tabell 9–8 Sammenligning av største spennkraft før oppspenning og låsing	81
Tabell 9–9 Sammenligning av primærmoment umiddelbart etter oppspenning	90
Tabell 9–10 Umiddelbare tap i spennkraft etter oppspenning	91
Tabell 9–11 Tap i spennkraft på grunn av friksjon	
Tabell 9–12 Låsetap	
Tabell 9–13 Låsetap	95
Tabell 9–14 Umiddelbare tap i spennkraft etter oppspenning	
Tabell 9–15 Rett kabel: Sammenligning av kraft i kabel etter oppspenning	
Tabell 9–16 Krum kabel: Sammenligning av kraft i kabel etter oppspenning	
Tabell 9–17 Rett kabel: Tap etter 100 døgn	
Tabell 9–18 Krum kabel: Tap etter 100 døgn	
Tabell 9–19 Rett kabel [.] Tap etter 100 år	00
Tuben 5 T5 Nett Ruber. Tup etter T00 al	
Tabell 9–20 Krum kabel: Tap etter 100 år	
Tabell 9–20 Krum kabel: Tap etter 100 år Tabell 9–21 Rett kabel: Sammenligning tap i spennkraft som skyldes kryp og svinr	
Tabell 9–20 Krum kabel: Tap etter 100 år Tabell 9–21 Rett kabel: Sammenligning tap i spennkraft som skyldes kryp og svinr Tabell 9–22 Rett kabel: Tap etter 100 døgn	
Tabell 9–20 Krum kabel: Tap etter 100 år Tabell 9–21 Rett kabel: Sammenligning tap i spennkraft som skyldes kryp og svinr Tabell 9–22 Rett kabel: Tap etter 100 døgn Tabell 9–23 Krum kabel: Tap etter 100 døgn	
Tabell 9–20 Krum kabel: Tap etter 100 år Tabell 9–21 Rett kabel: Sammenligning tap i spennkraft som skyldes kryp og svinr Tabell 9–22 Rett kabel: Tap etter 100 døgn Tabell 9–23 Krum kabel: Tap etter 100 døgn Tabell 9–24 Rett kabel: Tap etter 100 år	
Tabell 9–20 Krum kabel: Tap etter 100 år Tabell 9–21 Rett kabel: Sammenligning tap i spennkraft som skyldes kryp og svinr Tabell 9–22 Rett kabel: Tap etter 100 døgn Tabell 9–23 Krum kabel: Tap etter 100 døgn Tabell 9–24 Rett kabel: Tap etter 100 år Tabell 9–25 Rett kabel: Tap etter 100 år	
Tabell 9–20 Krum kabel: Tap etter 100 år Tabell 9–21 Rett kabel: Sammenligning tap i spennkraft som skyldes kryp og svinr Tabell 9–22 Rett kabel: Tap etter 100 døgn Tabell 9–23 Krum kabel: Tap etter 100 døgn Tabell 9–24 Rett kabel: Tap etter 100 år Tabell 9–25 Rett kabel: Tap etter 100 år Tabell 9–25 Rett kabel: Tap etter 100 år	
Tabell 9–20 Krum kabel: Tap etter 100 år Tabell 9–21 Rett kabel: Sammenligning tap i spennkraft som skyldes kryp og svinr Tabell 9–22 Rett kabel: Tap etter 100 døgn Tabell 9–23 Krum kabel: Tap etter 100 døgn Tabell 9–24 Rett kabel: Tap etter 100 år Tabell 9–25 Rett kabel: Tap etter 100 år Tabell 9–26 Sammenligning tap i spennkraft som skyldes kryp og svinn Tabell 9–27 Krum kabel: Testbjelke med bjelkeelement	
Tabell 9–20 Krum kabel: Tap etter 100 år Tabell 9–21 Rett kabel: Sammenligning tap i spennkraft som skyldes kryp og svinr Tabell 9–22 Rett kabel: Tap etter 100 døgn Tabell 9–23 Krum kabel: Tap etter 100 døgn Tabell 9–24 Rett kabel: Tap etter 100 år Tabell 9–25 Rett kabel: Tap etter 100 år Tabell 9–26 Sammenligning tap i spennkraft som skyldes kryp og svinn Tabell 9–27 Krum kabel: Testbjelke med bjelkeelement Tabell 9–28 Rett kabel: Relaksasjon etter 100 døgn	
Tabell 9–20 Krum kabel: Tap etter 100 år Tabell 9–21 Rett kabel: Sammenligning tap i spennkraft som skyldes kryp og svinr Tabell 9–22 Rett kabel: Tap etter 100 døgn Tabell 9–23 Krum kabel: Tap etter 100 døgn Tabell 9–24 Rett kabel: Tap etter 100 år Tabell 9–25 Rett kabel: Tap etter 100 år Tabell 9–26 Sammenligning tap i spennkraft som skyldes kryp og svinn Tabell 9–27 Krum kabel: Testbjelke med bjelkeelement Tabell 9–28 Rett kabel: Relaksasjon etter 100 døgn	
Tabell 9–20 Krum kabel: Tap etter 100 år Tabell 9–21 Rett kabel: Sammenligning tap i spennkraft som skyldes kryp og svinr Tabell 9–22 Rett kabel: Tap etter 100 døgn Tabell 9–23 Krum kabel: Tap etter 100 døgn Tabell 9–24 Rett kabel: Tap etter 100 år Tabell 9–25 Rett kabel: Tap etter 100 år Tabell 9–25 Rett kabel: Tap etter 100 år Tabell 9–26 Sammenligning tap i spennkraft som skyldes kryp og svinn Tabell 9–27 Krum kabel: Testbjelke med bjelkeelement Tabell 9–28 Rett kabel: Relaksasjon etter 100 døgn	
Tabell 9–20 Krum kabel: Tap etter 100 år Tabell 9–21 Rett kabel: Sammenligning tap i spennkraft som skyldes kryp og svinr Tabell 9–22 Rett kabel: Tap etter 100 døgn Tabell 9–23 Krum kabel: Tap etter 100 døgn Tabell 9–24 Rett kabel: Tap etter 100 år Tabell 9–25 Rett kabel: Tap etter 100 år Tabell 9–26 Sammenligning tap i spennkraft som skyldes kryp og svinn Tabell 9–26 Sammenligning tap i spennkraft som skyldes kryp og svinn Tabell 9–27 Krum kabel: Testbjelke med bjelkeelement Tabell 9–28 Rett kabel: Relaksasjon etter 100 døgn Tabell 9–29 Rett kabel: Relaksasjon etter 100 døgn Tabell 9–30 Rett kabel: Relaksasjon etter 100 år	

Tabell 9–33 Rett kabel: kraft i kabel etter 100 døgn11	14
Tabell 9–34 Rett kabel: Kraft i kabel etter 100 år 1	14
Tabell 9–35 Krum kabel: kraft i kabel etter 100 døgn1	15
Tabell 9–36 Krum kabel: Kraft i kabel etter 100 år1	15
Tabell 9–37 Rett kabel: Sammenligning kraft i spennkabel etter lang tid 1	15
Tabell 9–38 Krum kabel: Sammenligning kraft i spennkabel etter lang tid 1	16
Tabell 9–39 Sammenligning midlere kraft i spennkabel etter lang tid 1	16
Tabell 11–1 Karakteristiske laster for LM 112	24
Tabell 11–2 Karakteristiske verdier av sentrifugallast. Tabell hentet fra [4] 12	26
Tabell 11–3 Karakteristiske verdier av grupper av trafikklast12	27
Tabell 13–1 Egenvekt: Feltmoment	57
Tabell 13–2 Egenvekt: Støttemoment	57
Tabell 13-3 Middelverdi feltmoment akse 1-219	58
Tabell 13-4 Justert støttemoment akse 1 15	59
Tabell 13–5 Justert støttemoment akse 415	59
Tabell 13-6 Reaksjonskrefter	60
Tabell 13–7 Superegenvekt: Feltmoment16	61
Tabell 13-8 Superegenvekt: Støttemoment	61
Tabell 13-9 Reaksjonskrefter	62
Tabell 13–10 Karakteristiske laster for LM 1	63
Tabell 13–11 Bøyemoment tilhørende LM1: TS mellom akse 2 og 3 16	64
Tabell 13–12 Bøyemoment tilhørende LM1: TS16	65
Tabell 13–13 Bøyemoment tilhørende LM1: UDL mellom akse 2 og 3 16	66
Tabell 13–14 Bøyemoment tilhørende LM1: UDL	67
Tabell 13–15 Cut: Addisjon av bøyemoment over tverrsnittet	68
Tabell 13–16 Sammenligning: Bøyemoment tilhørende LM1: TS + UDL	68

Indeksliste

Latinske store bokstaver

A _c	Betongens tverrsnittsareal
A _p	Spennarmeringens areal
E _c	Elastisitetsmodul til betong
E _{cm}	Sekantmodul, elastisitetsmodul for betong etter 28 døgn
Ep	Elastisitetsmodul til spennarmeringen
Es	Elastisitetsmodul til slakkarmeringen
Gi	Karakteristisk verdi for permanent punktlast
L	Testbjelkens lengde
Li	Lengde bruspenn (tre spenns bru)
\mathbf{M}_{Ed}	Dimensjonerende bøyemoment
\mathbf{N}_{Ed}	Dimensjonerende aksialkraft
Po	Initiell kraft i aktiv ende av spennarmering umiddelbart etter oppspenning
P _{max}	Forspenningskraft
\mathbf{Q}_{ak}	Karakteristisk akslingslast for trafikklast LM2
Qik	Karakteristisk akslingslast for trafikklast LM1
Q _{lk}	Karakteristisk bremse- og akselerasjonslast
Qtk	Karakteristisk sentrifugallast
Qtrk	Karakteristisk sidelast
Qv	Sum av vertikale boggilaster
RH	Omgivelsenes relative luftfuktighet (%)
V_{Ed}	Dimensjonerende skjærkraft

<u>Latinske små bokstaver</u>

b	Bredden av testbjelken
Δc_{dev}	Overdekningstoleranse
C _{min}	Minimum overdekning
C min,b	Minste overdekning av hensyn til heft
C min,dur	Minste overdekning av hensyn til bestandighet
C _{nom}	Nominell overdekning
e	Spennkabelen eksentrisitet ifht. tverrsnittets tyngdepunkt (testbjelke)
f _{ck}	Betongens karakteristiske sylindertrykkfasthet etter 28 døgn
\mathbf{f}_{cm}	Betongens midlere sylindertrykkfasthet
f _{pk}	Spennstålets karakteristiske strekkfasthet
f _{p0,1k}	Spennstålets karakteristiske 0,1 % strekkgrense
h ₀	Effektiv tverrsnittstykkelse
h	Høyden av testbjelken
k _h	Koeffisient som avhenger av h_0
q _{ik}	Karakteristisk jevnt fordelt flatelast for trafikklast LM1
t _o	Betongens alder (i døgn) når forspenningen påføres
ts	Betongens alder (i døgn) når uttørkingssvinnet starter
u	Del av omkrets som eksponeres for luft
\mathbf{w}_1	Bredde av lastfelt for trafikklast
w	Føringsbredde for trafikklast
у	Avstanden til tverrsnittets nøytralakse (uopprisset tverrsnitt)

<u>Greske små bokstaver</u>

$\alpha_{1/2/3}$	Faktorer som tar hensyn til betydningen av betongfastheten
α _{Qi}	Korreksjonsfaktor for trafikklast (punktlast)
α_{qi}	Korreksjonsfaktor for trafikklast (jevnt fordelt last)
β_{as}	Faktor som tar hensyn til utvikling av autogent svinn
$\beta_{c}(t,t_{0})$	Faktor som beskriver kryputvikling i betong ved angitt tidspunkt, t
$\beta_{ds}(t,t_s)$	Faktor som beskriver svinnutviklingen i betongen ved angitt tidspunkt, t

β_{fcm}	Faktor som tar hensyn til virkningen av betongfastheten på det normerte
	kryptallet
βн	Faktor som tar hensyn til RH og h $_{\mathrm{0}}$
β_{t0}	Faktor som tar hensyn til påvirkningen av t $_{\scriptscriptstyle 0}$ på normert kryptall
βrh	Faktor som tar hensyn til RH ved beregning av nominell svinntøyning
γ	Partialfaktor
γm	Partialfaktor for materialegenskaper
γp	Partialfaktor for forspenningslaster
$\epsilon_{c/p/s}$	Tøyning i de ulike materialene
8 _{ca}	Autogent svinn
Eca,∞	Endelig autogent svinn etter lang tid
E _{cd,0}	Nominelt uhindret uttørkingssvinn
Ecd	Uttørkingssvinn
ε _{cs}	Total fri svinntøyning
ε _{cu}	Tøyningsgrense for trykk i betong
ε _{p0}	Initiell tøyningsdifferanse
ξ	Reduksjonsfaktor
θ	Vinkel
μ	Friksjonskoeffisient
σ_{c}	Spenning i betongen
σ_{cp}	Spenning i betongen fra forspenning
σ_{p0}	Spenning i betongen ved oppspenningstidspunkt
σ_{p}	Spenning i spennarmeringen
$\mathbf{\Phi}_0$	Nominelt kryptall
ф _{RH}	Faktor som tar hensyn til virkning av RH på nominelt kryptall
φ(t, t ₀)	Kryptall ved alder, t, etter belastning ved, t_{0}
ψ	Koeffisienter som tar hensyn til sementtypen i betongen

DEL 1 GENERELT

1 Introduksjon

I denne oppgaven blir det sett på elementmetode-programmet Sofistik. Det er laget en testmodell for å undersøke og verifisere hvordan Sofistik opererer. Det er også modellert en del av ei bru i tre spenn i Sofistik for å finne ut hvordan programmet fungerer i bruprosjektering.

Kun få masteroppgaver ved NTNU har benyttet Sofistik tidligere og ingen har laget testmodell. Det var derfor et ønske fra NTNU om at det i denne masteroppgaven ble sett på en testmodell i Sofistik. I tillegg ønsket Statens vegvesen Vegdirektoratet at det ble utført analyser av brua fra prosjektoppgaven til etter- og videre-utdanningskurset *KT6003 Prosjektering av bruer 1* ved NTNU i Sofistik. Vegdirektoratet har selv utarbeidet prosjektoppgaven og utført analyser av brua i rammeprogrammet Nova Frame.

For at resultat fra FE-analyse i Sofistik skal kunne verifiseres med håndberegninger etter bjelketeori og eventuelle avvik skal kunne oppdages er testmodellen en fritt opplagt betongbjelke i ett spenn. Bjelken er etteroppspent og har påsatt en permanent flatelast. Resultatene fra Sofistik bør stemme godt overens med håndberegningene og eventuelle avvik bør kunne forklares. Slik kan vi øke forståelsen av hvilke antakelser som gjøres i Sofistik og hvordan programmet beregner.

Det er for testbjelken sett på lastvirkninger fra egenvekt, flatelast, forspenning, kryp og svinn. Oppgaven omhandler også hvordan tap i spennkraft blir beregnet av Sofistik.

Brua er ei bjelke/platebru i tre spenn. Siden arbeidet med testbjelken viste seg å være omstendelig og tidkrevende, ble det lite tid igjen til tre spenns brua. Det er derfor kun sett på lastvirkninger fra egenvekt og trafikklast.

1

Både testbjelken og tre spenns brua er modellert i Sofistik med bruk av skallelement. Når tverrsnittet består av skallelement blir det ikke stivt slik som med bjelkeelement. Effekter fra skjev geometri, plateformede bruer og ujevn lastfordeling i tverretning blir dermed tatt hensyn til i FE-analyser med skalleelement i Sofistik. Både testbjelken og brua er rett med bjelkeformet tverrsnitt og kunne godt ha vært modellert med bjelkeelement. Men siden modellering med skallelement har stort bruksområde og oftest blir benyttet i bruanalyser med Sofistik, er det i oppgaven valgt å modellere testbjelken og brua med skallelement.

Rapporten er delt inn i fire deler. Del 1 er generell for både testbjelken og brua. Den består av kapittel 1 som er introduksjon av oppgaven og kapittel 2 som er beregningsgrunnlag.

Del 2 omhandler testbjelken. Den består av kapittel 3 som er presentasjon av bjelken, kapittel 4 som er armering i bjelken, kapittel 5 som er laster, kapittel 6 som er forenklede beregninger, kapittel 7 som er spennkrafttap, kapittel 8 som er FE-analyse med Sofistik og kapittel 9 som er verifikasjon av Sofistik-modellen.

Del 3 omhandler tre spenns brua. Den består av kapittel 10 som er presentasjon av brua, kapittel 11 som er laster, kapittel 12 som er FE-analyse med Sofistik og kapittel 13 som er verifikasjon av Sofistik-modellen.

Del 4 er avslutning og gjelder både for testbjelken og brua. Den består av kapittel 14 som er oppsummering, diskusjon og konklusjon, kapittel 15 som er videre arbeid, kapittel 16 som er referanser og kapittel 17 som er vedleggsliste.

2 Beregningsgrunnlag

2.1 Grunnlag

Under følger en oversikt over de dokumentene som danner grunnlag for beregningene i denne oppgaven. Se del 4 for fullstendig referanseliste.

Standarder

- NS-EN 1990:2002+A1:2005+NA:2016. Eurokode 0: Grunnlag for prosjektering av konstruksjoner [1]
- NS-EN 1991-1-1:2002+NA:2008. Eurokode 1: Laster på konstruksjoner.
 Del 1-1: Allmenne laster. Tetthet, egenvekt, nyttelaster i bygninger [2]
- NS-EN 1991-1-5:2003+NA:2008. Eurokode 1: Laster på konstruksjoner.
 Del 1-5: Allmenne laster. Termiske påvirkninger [3]
- NS-EN 1991-2:2003+NA:2010. Eurokode 1: Laster på konstruksjoner.
 Del 2: Trafikklast på bruer [4]
- NS-EN 1992-1-1:2004+NA:2008. Eurokode 2: Prosjektering av
 betongkonstruksjoner. Del 1-1: Allmenne regler og regler for bygninger [5]
- NS-EN 1992-2:2005+NA:2010. Eurokode 2: Prosjektering av betongkonstruksjoner.
 Del 2: Bruer [6]

ETA

- European Technical Approval ETA-09/0286: BBR VT CONA CMI BT [10]

Statens Vegvesens håndbøker

- Håndbok N400: Bruprosjektering (2015) [15]

Analyseprogram

- Sofistik versjon 2016. Se kap.2.3 for omtale av Sofistik.

Program for manuelle beregninger

- Mathcad 15
- Excel 2013

2.2 Materialegenskaper

Materialene som benyttes er betong, slakkarmering og spennarmering. Egenskapene til materialene er hentet fra [5] og [10].

2.2.1 Betong

Det er valgt betongkvalitet B45. Oversikt over materialegenskapene som er

forhåndsdefinerte i Sofistik er gitt i tabell 2-1.

Sofistik			Forklaring	
Self weight	γ	25 kN/m ³	Tyngdetetthet armert betong	ρς
Elastic modulus	E	3,628 · 104	Elastisitetsmodul E _{cm}	
		N/mm ²		
Poisson ratio	μ	0,2	Poisson`s tall urisset betong	ν
Shear modulus	G	1,512 · 104	Skjærmodul	G
		N/mm ²		
Material safety		1,5	Materialfaktor (ULS)	γς
factor				
Normal strength	f _{ck}	45 MPa	Karakteristisk sylindertrykkfasthet	f _{ck}
			etter 28 døgn	

Tahell 2–1	Materialegenskaper	for hetona	R45 fra	Sofistik
raben 2-r	масенагеуензкарег	ioi belong	DHJ IIA	SUIISLIK

Effective strength	fc	38,25 MPa	Faktor som tar hensyn til virkninger	$\alpha_{\text{cc}}\cdot \textbf{f}_{\text{ck}} =$
			av langtidslasten · karakteristisk	$0,85 \cdot f_{ck}$
			sylindertrykkfasthet etter 28 døgn	
Tensile strength	f _{ctm}	3,8 MPa	Middelverdi av betongens	f _{ctm}
			aksialstrekkfasthet	
Lower fractile value	f _{ctk,0,05}	2,7 MPa	Karakteristisk aksialstrekkfasthet	f ctk,0,05
of tensile strength			(5%-fraktil)	
Design bond	f _{bd}	3,39 MPa	Dimensjonerende heftfasthet	f _{bd}
strength			kamstenger	
Mean strength	f _{cm}	53 MPa	Middelverdi av betongens	f _{cm}
			sylindertrykkfasthet	
Design tensile	f _{td}	1,5 MPa	Dimensjonerende aksialstrekkfasthet	
strength			(5%-fraktil)	
Normal hardening			Normalsement i klasse N	
cement				

Oversikt over materialegenskapene som ikke er forhåndsdefinerte i Sofistik men burde ha vært med i tillegg er gitt i tabell 2-2.

Tabell 2–2 Materialegenskaper for betong B45
--

Egenskaper betong	B45		
Dimensjonerende sylindertrykkfasthet	\mathbf{f}_{cd}	25,5 MPa	
Karakteristisk terningtrykkfasthet	$f_{ck,cube}$	55 MPa	
Karakteristisk aksialstrekkfasthet	f ctk,0,95	4,9 MPa	
(95%-fraktil)			
Trykktøyning ved maksimalspenning	ε _{c2}	2,0 ‰	
Tøyningsgrensen for trykk	€cu2	3,5 ‰	
Minimum sylindertrykkfasthet ved oppspenning		32 MPa	
Minimum terningtrykkfasthet ved oppspenning		40 MPa	

2.2.2 Slakkarmering

Det er valgt slakkarmering B500NC. Oversikt over materialegenskapene som er forhåndsdefinerte i Sofistik er gitt i tabell 2-3.

Tabell 2–3 Materia	legenskaper fol	r slakkarmering,	B500C i Sofistik

Sofistik			Forklaring	
Self weight	γ	78,5 kN/m³	Tyngdetetthet armeringsstål	ρs
Elastic modulus	E	2,0 · 105	Elastisitetsmodul	Es
		N/mm ²		
Material safety factor		1,15	Materialfaktor (ULS)	γs
Yield strength	fy	500 MPa	Flytegrense	f _{yk}
Tensile strength	ft	575 MPa	Strekkfasthet ved brudd	ft
Ultimate strain		75 ‰	Karakteristisk tøyning ved	ε _{uk}
			maksimalspenning	

Oversikt over materialegenskapene som ikke er forhåndsdefinerte i Sofistik men burde ha vært med i tillegg er gitt i tabell 2-4.

Tabell 2–4 Materialegenskaper for slakkarmering B500C

Egenskaper armeringsstål	B500C		
Dimensjonerende flytegrense	\mathbf{f}_{yd}	434 MPa	

2.2.3 Spennarmering

Spennarmeringen i testbjelken består av 1 kabel og tre spenns brua består av 12 kabler. Det er 12 tau per kabel og hvert tau har areal på 150mm². Spennarmering har stålkvalitet Y1860. Oversikt over materialegenskapene som er forhåndsdefinerte i Sofistik er gitt i tabell 2–5.
Sofistik			Forklaring	
Self weight	γ	78,5 kN/m³	Tyngdetetthet spennstål	ρρ
Elastic modulus	E	1,95 · 105	Elastisitetsmodul	Ep
		N/mm ²		
Material safety factor		1,15	Materialfaktor (ULS)	γp
Yield strength	fy	1640 MPa	Spenning som gir 0,1%	f p0,1k
			permanent forlengelse	
Tensile strength	ft	1860 MPa	Karakteristisk fasthet	f _{pk}
Ultimate strain		60 ‰	Karakteristisk tøyning ved	ε _{uk}
			maksimalspenning	

Tabell 2–5 Materialegenskaper for spennarmering, Y1860 i Sofistik

Oversikt over materialegenskapene som ikke er forhåndsdefinerte i Sofistik men burde ha vært med i tillegg er gitt i tabell 2-6.

Tabell 2–6 Materialegenskaper for spennarmering, Y1860

Egenskaper spennstål	Y1860		
Tøyning ved første spenning	Euk	35,0 %	
Dimensjonerende fasthet	$f_{pd}=f_{p0,1k}/\gamma_s$	1426 MPa	

2.3 Sofistik

I analysene benyttes Sofistik, versjon 2016. Dette er et komplekst elementmetodeprogram for analyse og dimensjonering av konstruksjoner. Sofistik omfatter tema som for eksempel bygninger, bruer, fundamentering, tunneler og dynamikk. Det tyske firmaet Sofistik utviklet for første gang programvaren i 1987. Siden da har det blitt utviklet ulike versjoner tilhørende 25 internasjonale standarder og programvaren blir i dag benyttet av ingeniører i både Europa og ellers i verden. Sofistik består av mange moduler der alle opererer opp mot en felles database, *CDB*. Hver modul har et dataprogram som utfører modellering, analyse eller dimensjonering og lagrer resultatene i *CDB*. Programmene er preprocessing (bearbeider input og lager output som brukes til input i et annet program), processing (bearbeider input fra preprocessing og lager output/løsning) eller post-prossessing (de endelige resultatene).

De mest brukte preprocessing-programmene for prosjektering av brukonstruksjoner er: *Sofiplus-X* (standard program i 3D basert på Autocad) og *Teddy* (basert på skriptprogrammeringsspråk). Modellering av geometri og påføring av egenvekt utføres ofte med *Sofiplus-X*. Påføring av trafikklaster og lastkombinering utføres ofte i *Teddy*. De mest brukte processing-programmene er: *Aqua* (tverrsnitt og materialer), *Sofiload* (laster og lastfaktorer), *Tendon* (spennarmerte bjelker og skall), *CSM* (byggeetapper og tidsavhengige effekter), *ASE* (lineær analyse) og *Maxima* (lastkombinering).

SSD er hovedgrensesnittet som gjør det enkelt for brukeren å manøvrere seg mellom de forskjellige modulene. Informasjon i *SSD* angis som grafisk input eller tekstfiler. Grafisk input gjør det mulig å kunne modellere enkle konstruksjoner effektivt, mens tekstfiler er best egnet for mer avanserte konstruksjoner, for eksempel bruer med trafikklast.

Sofistik kan benyttes med bjelkeelement eller skallelement eller en kombinasjon av disse. Dette gjør at Sofistik har et stort bruksområde som blir i økende grad tatt i bruk hos bruprosjekterende i Norge. I denne oppgaven er det utført analyse av testbjelke og tre spenns bru med skallelement.

DEL 2 TESTBJELKE

3 Bjelken

Testbjelken består av en fritt opplagt betongbjelke i ett spenn. Det er laget en modell med rett spennkabel (figur 3–1) og en modell med krum spennkabel (figur 3–2). Det er antatt at bjelken er en brukonstruksjon. Modellering og analyse av bjelken utføres i Sofistik i henhold til gjeldende regelverk for bruer. Dimensjonerende brukstid er 100 år i henhold til pkt.1.1.6 [15].

Figur 3–1 Bjelke med rett spennkabel

Figur 3–2 Bjelke med krum spennkabel

4 Armering i bjelken

4.1 Overdekningskrav

Overdekningskrav for armering i bruer er avhengig av miljøforhold og eksponeringsklasse. Det er valgt forskjellige eksponeringsklasser for ulike sider av tverrsnittet, XD1 for oversiden og XC3 for den andre siden. Ved bestemmelse av overdekning benyttes pkt.7.4 [15] og pkt.4.4.1 [5]. Se håndberegninger i «Vedlegg B: Overdekning». Det er ikke utført dimensjonering av slakkarmering for bjelken, men spennarmeringen er plassert etter beliggenheten av potensiell slakkarmering. Det er derfor beregnet overdekning for slakkarmering.

Tabell 4–1 Overdekningskrav for slakkarmering

	Cmin,dur	$\Delta \mathbf{C}_{dev}$	$\mathbf{C}_{nom} = \mathbf{C}_{min,dur} + \Delta \mathbf{C}_{dev}$
Overside bjelke, eksponeringsklasse XD1*	60	15	75
Underside bjelke, eksponeringsklasse XC3*	50	15	65

Tabell 4-2 Overdekningskrav for spennarmering

	Cmin,dur	$\Delta \mathbf{C}_{dev}$	$\mathbf{C}_{nom} = \mathbf{C}_{min,dur} + \Delta \mathbf{C}_{dev}$
Overside bjelke, eksponeringsklasse XD1*	70	10	80
Underside bjelke, eksponeringsklasse XC3*	60	15	75

4.2 Slakkarmering

Det er ikke utført dimensjonering av slakkarmering for bjelken.

4.3 Spennarmering

Spennbetong er betong der hele eller deler av armeringen påføres en forspenning. Strekkraften i spennarmeringen gir trykkspenninger i betongen som fører til at virkningen av ytre laster blir redusert [20].

Siden man ønsker å motvirke strekk i underkant av bjelken, vil det være effektivt å flytte spennarmeringen fra tyngepunktsaksen ned mot underkant bjelke. Spennarmeringens profil bør ha samme form som momentforløpet til de ytre lastene for å gi optimal virkning. For jevnt fordelte laster blir momentforløpet en 2.grads parabel.

Forspenning av armeringen utføres på to hovedmåter, enten føroppspenning eller etteroppspenning. Forskjellen er om spennstålet påføres strekk før eller etter at betongen er støpt og herdnet.

Plasstøpte brukonstruksjoner blir vanligvis etteroppspennt. Konstruksjonen forskales, armeres og støpes med gjennomgående utsparinger i form av rør for spennarmeringen. Spennarmeringen tres enten gjennom røret før eller etter støping. Etter herding spennes armeringen opp med jekk i aktiv ende av spennarmeringen. Konstruksjonen selv samt innstøpte forankringsplater fungerer som mothold. Deretter blir som oftest utsparingsrørene injisert med sementbasert mørtel. På denne måten blir det heftforbindelse mellom spennarmeringen og betongkonstruksjonen.

Figur 4-1 viser spennarmeringskomponenter [11].

Figur 4–1 Spennarmeringskomponenter

4.4 Spennsystem for bjelken

For bjelken med skallelement er det valgt spennsystem *Cona CMI BT*. Bjelken har en spennkabel med betegnelsen *CONA CMI BT 1206–150 1860* i henhold til [10]. Den består av 12 tau med areal pr. tau 150mm², totalt tverrsnittsareal for alle tau lik 1800mm². Spennkabelen spennes opp 7 døgn etter at betongen er støpt.

Egenskaper for spennsystemet Cona er ikke forhåndsdefinerte i Sofistik. Figur 4-2 viser hvilke spennsystem som er forhåndsdefinerte i Sofistik.

mber	Company
1	User Defined
Analysis	BBV Vorspanntechnik GmbH DYWIDAG
iteel:	FREYSSINET Prestressing Syst. Hochtief AG
roung's modu	SUSPA
rield strength	VSL International Ltd. Vorspann-Technik GmbH & Co.KG
ensile streng	User Defined

Figur 4–2 Forshåndsdefinerte spennsystem i Sofistik

4.4.1 Egenskaper

Egenskapene for spennsystemet Cona er ikke forhåndsdefinerte i Sofistik og er dermed lagt inn manuelt. Egenskapene er hentet fra [10] og gitt i tabell 4-3, 4-4 og 4-5.

Egenskaper spennkabel i Sofistik	CONA CMI BT 1206-150 1860	
Største spennkraft	P _{max}	2657 KN
Største overspenningskraft	P _{max0,05}	2804 kN
Initiell forspenningskraft	P _{m0}	2448 KN

Tabell 4-4	4 Kabelføring.	sdata
------------	----------------	-------

Egenskaper kabelrør	
Indre diameter kabelrør	80 mm*
* for $p_{R,max}=140$ kN/m, der $p_{R,max}$ er maksimal tillatt vertikal ekvivalent last	
på betongen	
* for f≈0,35, der f er fyllingsgrad	
$f = \frac{tverrsnittsareal av spennarmeringen}{tverrsnittsareal av indre diameter kabelrør} = \frac{A_p}{\frac{\pi \cdot d_i^2}{4}} = \frac{1800}{5027} = 0,36$	
Ytre diameter kabelrør	90 mm

Minste radius kurvatur	7 m**
**p _{R,max} =140kN/m, f≈0,35	
Største eksentrisitet i kabelrør: $e = d/4 = 80 mm/4$	20 mm

Tabell 4–5 Forankringsdata

Egenskaper forankringer	
Rett lengde på aktivt anker	1 m
Rett lengde på skjøtekobling	0 m***
***ikke aktuell når det ikke er skjøtekoblinger, settes til 100cm for 3	
spenns bru	
Rett lengde på passivt anker	1 m

4.4.2 Plassering av spennarmering i tverrsnitt

Rett spennkabel

Avstand fra tyngdepunktsaksen til senter spennkabel midt på bjelken:

e = 0mm

Eksentrisiteten midt på bjelken er vist i figur 4-3. Se også figur 3-1.

Figur 4–3 Rett spennkabel

Spennkabel med krumning

Avstand fra tyngdepunktsaksen til senter spennkabel midt på bjelken:

 $e_{spennarm,uk} = NA - c_{nom,slakkarm,uk} - \emptyset_{tverrarm} - \emptyset_{lengdearm} - \frac{\emptyset_{kabelrør}}{2}$ $e_{spennarm,uk} = 250 - 65 - 12 - 16 - \frac{90}{2} = 112mm$

Eksentrisiteten midt på bjelken er vist i figur 4-4. Se også figur 3-2.

Figur 4-4 Spennkabel med krumning

5 Laster

Laster klassifiseres i henhold til pkt.5 [15] etter deres variasjon over tid. Laster kan deles inn i følgende lastgrupper:

- Permanente laster
- Trafikklaster
- Naturlaster
- Andre variable laster
- Deformasjonslaster
- Ulykkeslaster

Det er sett på permanente laster og deformasjonslaster for testbjelken.

5.1 Permanente laster

Permanente laster er tilnærmet konstante innenfor konstruksjonens levetid.

Testbjelken har påsatt permanent last i form av egenvekt og flatelast.

5.1.1 Egenvekt

Tyngdetetthet på armert normalvektsbetong skal i henhold til pkt.7.3.2 [15] settes lik 25

 kN/m^3 . Tverrsnittsarealet til testbjelken er $1m^2$, egenvekten per lengdementer blir dermed g₁

= 25 kN/m.

Figur 5–1 Egenvekt

5.1.2 Permanent flatelast

Den permanente flatelasten settes lik $5kN/m^2$. Omregnet til linjelast blir den $g_2 = 10kN/m$ per lengdemeter.

Figur 5–2 Flatelast

5.2 Deformasjonslaster

Deformasjonslaster er knyttet til påførte deformasjoner eller konstruksjonsmaterialets egenskaper og endrer seg over tid i henhold til pkt.5.5 [15]. Det skal tas hensyn til virkningen av deformasjonslaster i dimensjoneringen i henhold til pkt.7.2.3 [15].

Testbjelken som består av skallelement har påsatt deformasjonslastene spennkrefter (forspenning av konstruksjonen), svinn, kryp og relaksasjon.

5.2.1 Spennkraft

Spennkraft påføres spennarmeringen, se figur 5-3 og 5-4.

Figur 5–3 Spennkraft, rett kabel

Figur 5–4 Spennkraft, krum kabel

Dette fører til ekvivalente krefter på bjelken, se figur 5-5 og 5-6.

Figur 5–5 Ekvivalent kraft, rett kabel

Figur 5–6 Ekvivalent kraft, krum kabel

5.2.2 Betongens kryp

Betong som påkjennes trykk over lang tid vil fortsette å trykkes sammen også etter at lasten er påført. Dette kalles kryp og omtales nærmere i kap.6.2.

5.2.3 Betongens svinn

Uttørking av betong fører til at den krymper. Dette kalles svinn og omtales nærmere i kap.6.3.

5.2.4 Spennstålets relaksasjon

Spennarmeringens egenskaper gjør at spenningene avtar når stålet utsettes for en konstant tøyning over lang tid. Dette vil føre til tap av spennkraft og betegnes som relaksasjon. Se kap. 7.2.2 for tap i spennkraft på grunn av relaksasjon.

5.3 Lastkombinering

Det er ikke utført lastkombinering for testbjelken.

6 Forenklede beregninger

6.1 Primær-effekter

Det skal tas hensyn til direkte og indirekte lastvirkninger på grunn av oppspenningen i henhold til pkt.7.2.3 [15]. Direkte lastvirkninger fra spennarmering, også kalt primæreffekter er:

Bøyemoment:

 $M = P \cdot cos\alpha \cdot e$

Aksialkraft:

 $N = P \cdot cos\alpha$

Skjærkraft:

 $V = P \cdot sin\alpha$

der P =spennkraft på gitt tidspunkt

 α = kabelens vertikalvinkel med bjelkeaksen, 0 for horisontal kabel

e = eksentrisiteten, det vil si kabelens avstand fra tverrsnittets tyngdepunkts-akse

Figur 6-1 Primær-effekter

Det forventes at krum kabel får større bøyemoment fra spennarmeringen enn rett kabel. Se håndberegninger i «Vedlegg E: Testbjelke Primær-effekter».

Indirekte lastvirkninger er tvangskrefter i statisk ubestemte konstruksjoner, dette er ikke relevant for testbjelken.

6.2 Betongens kryp

Betongens alder er satt til 7 døgn når spennkrafta påføres, se «Vedlegg C: Alder på betong ved oppspenningstidspunkt». Den ferdige konstruksjonen kontrolleres ved to tidspunkt i henhold til pkt.7.2.3 [15]; like etter at brua er åpnet for trafikk og ved dimensjonerende brukstid. Kryp er derfor beregnet for tidspunkt 100 døgn og 100 år etter støping. Kryptall beregnes i henhold til pkt.3.1.4(3) [5]:

 $\varphi(t,t_0)=\varphi_0\cdot\beta_c(t,t_0)$

der $\varphi_0 = \text{normert kryptall}$

 $\beta_c(t,t_0) =$ faktor som som skal beskrive kryputviklingen i forhold til tid etter belastning

I håndberegningene er langtids E-moduler for langtids lastvirkninger ved ulike tidspunkt beregnet som:

$$E_{cL} = \frac{E_{cm}}{1 + \varphi(t, t_0)}$$

E-modul forhold:

$$\eta = \frac{E_p}{E_{cL}}$$

E-modul forholdet som inngår i uttrykkene for At, yt og It vil være forskjellig for de ulike tidspunktene som kontrolleres for kryp. Finner aksialkraft og moment som virker i det armerte tverrsnittets tyngdepunktsakse og beregner spenninger i betongen. Beregner videre tøyning i underkant av bjelken som er grunnlaget for forskyvning i lengderetning. Kryptøyning for betong ved tidspunkt t forutsatt konstant spenning over tid er definert som [25]:

$$\varepsilon_{cc}(t,t_0) = \varphi(t,t_0) \cdot \varepsilon_{c0} = \varphi(t,t_0) \cdot \frac{\sigma_c}{E_c}$$

t = betongens alder i døgn $t_0 =$ betongens alder når spenningen påføres $\varphi(t, t_0) =$ kryptall

- ε_{c0} = middeltøyning
- $\sigma_c = middelspenning$
- E_c = betongens tangent E-modul

Håndberegninger for testbjelke med rett kabel er utført i henhold til [5], [10], [15], [20] og [25] og er gitt under. Tilsvarende håndberegninger for testbjelke med krum kabel er vist i «Vedlegg F: Testbjelke Spenningsberegninger ved oppspenning Krum kabel» og «Vedlegg H: Testbjelke Kryp svinn relaksasjon Krum kabel». Håndberegningene benytter lik oppspenningskraft som Sofistik der $P_{max} = 2530,8$ kN for rett kabel og $P_{max} = 2553,2$ kN for krum kabel, se kap.9.4.

Input

Geometri Tverrsnittsbredde: b := 2000mm Tverrsnittshøyde: h := 500mm Tverrsnittsareal: $A_c := b \cdot h = 1 \times 10^6 \cdot mm^2$

Betong

Midlere trykkfasthet etter 28 døgn:	f _{cm} := 53MPa	(Tabell 3.1 [5])
Elastisitetsmodul etter 28 døgn:	E _{cm} := 36000MPa	(Tabell 3.1 [5])
Betongens alder (døgn) ved oppspe	nning: t ₀ := 7	
Midlere trykkfasthet ved 7 døgn:	f _{cm0} := 41.28MPa	(Vedlegg C)
Elastisitetsmodul ved 7 døgn:	$\mathbf{E}_{c0} := \left(\frac{\mathbf{f}_{cm0}}{\mathbf{f}_{cm}}\right)^{0.3} \cdot \mathbf{E}_{cm} = 33400 \mathrm{MPa}$	(3.3.(3) [5])

Spennarmering

Elastisitetsmodul:	Е _р := 195000МРа	(1.5 [20])
Karakteristisk strekkfasthet:	$f_{pk} := 1860 \frac{N}{mm^2}$	(1.5 [20])
0,1 %-strekkgrense:	$f_{p0.1k} := 1640 \frac{N}{mn^2}$	(1.5 [20])

Areal av kabel: $A_p := 1800 \text{mm}^2$	(Annex 8 [10])			
Lengde spennkabel: L _p := 10m				
Antall kabler: n := 1				
Kabelgruppens eksentrisitet i.f.h.t. tverrsnittets tyngdepunkt: e := 0mm	(Rapport figur 4.3)			
Regner oppspenningskraft etter Sofistik:				
$P_{\text{max}} \coloneqq 2530.8 \text{kN}$	(Rapport kap.9.4)			
Spenningsberegninger ved oppspenning				
Antar ingen opprissing under oppspenning.				
Areal av kabler oppspent før kabel som kabelen som skal beregnes spenningsendring for: $A_{p0} := 0 \text{mm}^2$				
Ekvivalent betongtverrsnitt:				
$\eta_{t0} := \frac{E_p}{E_{c0}} = 5.838$	(Del 2 lign.6.6 [25])			
$A_{t0} := A_c + (\eta_{t0} - 1) \cdot A_{p0} = 1000000 \cdot mm^2$				
y_{t0} · $A_{t0} = (\eta_{t0} - 1) \cdot A_{p0}$ ·e	(Del 2 lign.6.7 [25])			
$y_{t0} := \frac{\left[\left(\eta_{t0} - 1 \right) \cdot A_{p0} \cdot e \right]}{A_{t0}} = 0 \cdot mm$				
Det armerte tverrsnittets treghetsmoment om tverrsnittets tyngdepunktsakse:				
$I_{t0} := \frac{b \cdot h^{3}}{12} + b \cdot h \cdot y_{t0}^{2} + (\eta_{t0} - 1) \cdot A_{p0} \cdot (e - y_{t0})^{2} = 2.083 \times 10^{10} \cdot mm^{4}$	(Del 2 lign.6.8 [25])			
Aksialkraft og moment i tpb:				
$N := -P_{max} = -2531 \cdot kN \qquad M := -P_{max} \cdot e = 0 \cdot kN \cdot m$	(Del 2 lign.6.9 [25])			
Aksialkraft og moment som virker i det armerte tverrsnittets tyngdepunktsakse, tp:				
$N = -2531 \cdot kN$	(Del 2 lign.6.10a, 6.10b [25])			
$M_{t0} := M - N \cdot y_{t0} = 0 \cdot k N \cdot m$				

Spenning i betongen i overkant:

$$\sigma_{c.ok.t0} := \frac{N}{A_{t0}} + \frac{M_{t0}}{\frac{I_{t0}}{y_{ok} - y_{t0}}} = -2.53 \cdot MPa$$

Spenning i betongen ved spennarmeringen:

 $y_p := 0 mm$

$$\sigma_{c.p.t0} \coloneqq \frac{N}{A_{t0}} + \frac{\frac{M_{t0}}{I_{t0}}}{\frac{I_{t0}}{y_p - y_{t0}}} \text{ if } y_p > 0 \text{mm} = -2.53 \cdot \text{MPa}$$

Spenning i betongen i underkant:

$$y_{uk} \coloneqq 250 \text{mm}$$

$$\sigma_{c.uk.t0} \coloneqq \frac{N}{A_{t0}} + \frac{M_{t0}}{\frac{I_{t0}}{y_{uk} - y_{t0}}} = -2.53 \cdot \text{MPa}$$

Middelspenning i betongen:

$$\sigma_{c.ok.t0} = \sigma_{c.p.t0} = \sigma_{c.uk.t0}$$

Korttidstøyning i betongen:

$$\varepsilon_{c0} \coloneqq \frac{\sigma_{c.p.t0}}{E_{c0}} = -0.000076$$

(Del 2 lign.6.11 [25])

Kryptall

ihht. NS-EN 1992-1-1, Tillegg B.1

Del av konstruksjonsdelens omkrets som eksponeres for luft:

 $\mathbf{u} := 2 \cdot \mathbf{b} + 2 \cdot \mathbf{h} = 5 \times 10^3 \cdot \mathbf{mm}$

Effektiv tverrsnittstykkelse:

$$h_{0} := \frac{2 \cdot A_{c}}{u} = 400 \cdot \text{nm}$$

$$t_{0} := 7$$
Betongens alder (dogn) ved belastning. (B.6 [5])
Konstruksjonsdel :=
Vertbygging
Soyler og Landkar
RH = 70% på overbygning
RH = 80% på søyler
(7.2.3 [15])
RH :=
70 if Konstruksjonsdel = 1
RH = 70
80 otherwise
 $\psi :=$
Sementklasse N
S

$$\beta_{\rm H} := \min \left[1.5 \left[1 + (0.012 \cdot \text{RH})^{18} \right] \cdot \frac{h_0}{\text{mm}} + 250, 1500 \right] \text{ if } f_{\rm cm} \le 35 \text{MPa} = 829 \qquad (B.8a [5]) \\ \min \left[1.5 \left[1 + (0.012 \cdot \text{RH})^{18} \right] \cdot \frac{h_0}{\text{mm}} + 250 \cdot \alpha_3, 1500\alpha_3 \right] \text{ otherwise} \qquad (B.8b [5])$$

Faktor som tar hensyn til virkningen av det normerte kryptallet av betongens alder ved pålasting:

$$\beta_{t0} := \frac{1}{0.1 + t_0^{0.20}} = 0.63 \tag{B.5 [5]}$$

Normert kryptall:

$$\varphi_0 := \varphi_{RH'} \beta_{fcm'} \beta_{t0} = 1.76$$
 (B.2 [5])

Betongens alder (døgn) på det betraktede tidspunktet:

etter 100 døgn etter 100 år 100 35600

Faktor som som skal beskrive kryputviklingen i forhold til tid etter belastning:

$$\beta_{c} := \left(\frac{t - t_{0}}{\beta_{H} + t - t_{0}}\right)^{0.3} = \begin{pmatrix}0.5\\0.99\end{pmatrix}$$
(B.7 [5])

Kryptall:

t :=

$$\varphi := \varphi_0 \cdot \beta_c = \begin{pmatrix} 0.883\\ 1.746 \end{pmatrix} \tag{B.1 [5]}$$

Kryptøyning for en konstant trykkspenning

ihht. NS-EN 1992-1-1 pkt.3.1.4(3)

Aksialkraft og moment i tpb:

 $N := -P_{max} = -2531 \cdot kN$ $M := -P_{max} \cdot e = 0 \cdot kN \cdot m$

Langtids E-modul:

$$E_{cL} := \frac{E_{cm}}{1 + \varphi} = \begin{pmatrix} 1.91 \times 10^4 \\ 1.31 \times 10^4 \end{pmatrix} \cdot \frac{N}{mm^2}$$
(7.4.3(5) [5])

Ekvivalent betongtverrsnitt:

$$\eta := \frac{E_{p}}{E_{cL}} = \begin{pmatrix} 10.2 \\ 14.88 \end{pmatrix}$$
$$A_{t} := A_{c} + (\eta - 1) \cdot A_{p} = \begin{pmatrix} 1.01656 \times 10^{6} \\ 1.02498 \times 10^{6} \end{pmatrix} \cdot mm^{2}$$

(Del 2 lign.6.6 [25])

Beliggenhet av det armerte tverrsnittets tyngdepunktsakse:

$$y_{t} \cdot A_{t} = (\eta - 1) \cdot A_{p} \cdot e$$
$$y_{t} := \frac{\left[(\eta - 1) \cdot A_{p} \cdot e\right]}{A_{t}} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \cdot mm$$
(Del 2 lign.6.7 [25])

Det armerte tverrsnittets treghetsmoment om tverrsnittets tyngdepunktsakse:

$$I_{t} := \frac{b \cdot h^{3}}{12} + b \cdot h \cdot y_{t}^{2} + (\eta - 1) \cdot A_{p} \cdot (e - y_{t})^{2} = \begin{pmatrix} 2.08 \times 10^{10} \\ 2.08 \times 10^{10} \end{pmatrix} \cdot mm^{4}$$
(Del 2 lign.6.8 [25])

$$N = -2531 \cdot kN$$
 (Del 2 lign.6.9 [25]) $M = 0 \cdot kN \cdot m$

Aksialkraft og moment som virker i det armerte tverrsnittets tyngdepunktsakse, tp:

$$N = -2531 \cdot kN$$

$$M_{t} := M - N \cdot y_{t} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \cdot kN \cdot m$$
(Del 2 lign.6.10a, 6.10b [25])

Spenning i betongen i overkant:

$$y_{ok} := -250 \text{mm}$$

$$\sigma_{c.ok} := \frac{N}{A_t} + \frac{M_t}{\frac{I_t}{y_{ok} - y_t}} = \begin{pmatrix} -2.49 \\ -2.47 \end{pmatrix} \cdot \text{MPa}$$

Spenning i betongen ved spennarmeringen:

$$y_p := 0mm$$

$$\sigma_{c.p} := \frac{N}{A_t} + \begin{vmatrix} \frac{M_t}{I_t} & \text{if } y_p > 0mm & = \begin{pmatrix} -2.49 \\ -2.47 \end{pmatrix} \cdot MPa \\ \hline y_p - y_t \\ 0 & \text{if } y_p \le 0mm \end{vmatrix}$$

Spenning i betongen i underkant:

$$y_{uk} := 250 \text{mm}$$

$$\sigma_{c.uk} := \frac{N}{A_t} + \frac{M_t}{\frac{I_t}{y_{uk} - y_t}} = \begin{pmatrix} -2.49 \\ -2.47 \end{pmatrix} \cdot \text{MPa}$$

(Del 2 lign.6.11 [25])

Spenning i betongen:

$$\begin{split} \sigma_{\text{c.ok}} &= \sigma_{\text{c.p}} = \sigma_{\text{c.uk}} \\ \sigma_{\text{c}} &:= \sigma_{\text{c.p}} = \begin{pmatrix} -2.49 \\ -2.47 \end{pmatrix} \text{MPa} \end{split}$$

Tøyning i betongen etter lang tid:

 $\varepsilon_{c} := \frac{\sigma_{c}}{E_{cL}} = \begin{pmatrix} -0.00013 \\ -0.000188 \end{pmatrix} \quad \begin{array}{l} \text{etter 100 døgn} \\ \text{etter 100 år} \\ \end{array}$

Kryptøyning i betongen:

 $\varepsilon_{cc} := \varepsilon_{c} - \varepsilon_{c0} = \begin{pmatrix} -0.000054 \\ -0.000112 \end{pmatrix} \quad \text{etter 100 døgn} \\ \text{etter 100 år}$

6.3 Betongens svinn

Betongens alder er satt til 0 døgn når uttørking starter. Svinn er beregnet for tidspunkt 100 døgn og 100 år etter støping. Total svinntøyning beregnes i henhold til EK2 pkt.3.1.4(6):

 $\varepsilon_{cs} = \varepsilon_{cd} + \varepsilon_{ca}$

- der ε_{cd} = uttørkingssvinn, funksjon av fukttransport gjennom herdet betong og utvikles langsomt
 - ε_{ca} = autogent svinn, utvikles sammen med betongens fasthetsutvikling, mesteparten på et tidlig stadium etter utstøping

Håndberegninger for testbjelken er utført i henhold til [5] og er gitt under.

Svinntøyning

ihht. NS-EN 1992-1-1 pkt.3.1.4 og Tillegg B.2

$$k_h := \begin{bmatrix} 1.0 & \text{if } h_0 \le 100 \text{mm} \end{bmatrix}$$
 (Tab. 3.3 [5])

$$\begin{array}{l} 0.85 - \left\lfloor \frac{0.85 - 1}{200 - 100} \cdot \left(200 - \frac{h_0}{mm} \right) \right\rfloor & \text{if } h_0 \leq 200 \text{mm} \\ 0.75 - \left\lfloor \frac{0.75 - 0.85}{300 - 200} \cdot \left(300 - \frac{h_0}{mm} \right) \right\rfloor & \text{if } h_0 \leq 300 \text{mm} \\ 0.7 - \left\lfloor \frac{0.7 - 0.75}{500 - 300} \cdot \left(500 - \frac{h_0}{mm} \right) \right\rfloor & \text{if } h_0 < 500 \text{mm} \\ 0.7 & \text{otherwise} \end{array}$$

 $k_{h} = 0.73$

$$\varepsilon_{cd0} := -0.85 \cdot \left[(220 + 110 \cdot \alpha_{ds1}) \cdot e^{\left(-\alpha_{ds2} \cdot \frac{\mathbf{f}_{cm}}{\mathbf{f}_{cmo}} \right)} \right] \cdot 10^{-6} \cdot \beta_{RH}$$
(B.11 [5])

 $\varepsilon_{\rm cd0} = -0$

$$\varepsilon_{ca}(\infty) := -2.5 \cdot \left(\frac{f_{ck} \cdot mm^2}{N} - 10 \right) \cdot 10^{-6} \qquad \varepsilon_{ca}(\infty) = -0.00009$$
 (3.12 [5])

$$\beta_{\text{ds}} \coloneqq \frac{\left(t - t_{\text{s}}\right)}{\left(t - t_{\text{s}}\right) + 0.04 \sqrt{\left(\frac{h_0}{\text{mm}}\right)^3}} = \begin{pmatrix} 0.24\\ 0.99 \end{pmatrix}$$
(3.10 [5])

Svinntøyning ved uttørking:

$$\begin{aligned} \varepsilon_{cd} &:= \beta_{ds} \cdot k_{h} \cdot \varepsilon_{cd0} = \begin{pmatrix} -0.000052 \\ -0.000217 \end{pmatrix} \\ \beta_{as} &:= \left(1 - \exp(-0.2t^{0.5})\right) = \begin{pmatrix} 0.865 \\ 1 \end{pmatrix} \end{aligned}$$
(3.13 [5])

Autogen svinntøyning:

$$\varepsilon_{.ca} := \beta_{as} \cdot \varepsilon_{ca}(\infty) = \begin{pmatrix} -0.000076\\ -0.000088 \end{pmatrix}$$
 (3.11 [5])

Total svinntøyning etter lang tid:

$$\varepsilon_{cs} := \varepsilon_{cd} + \varepsilon_{.ca} = \begin{pmatrix} -0.000128 \\ -0.000305 \end{pmatrix} \quad \text{etter 100 døgn} \\ \text{etter 100 år}$$
(3.8 [5])

6.4 Total forskyvning pga kryp og svinn

Total tøyning og forskyvning i underkant av bjelken pga kryp og svinn

Total tøyning i betongen pga kryp og svinn:

$$\Delta \varepsilon_{c.kryp.svinn} := \varepsilon_{cc} + \varepsilon_{cs} = \begin{pmatrix} -0.000182 \\ -0.000417 \end{pmatrix} \text{ etter 100 døgn}$$

Total forskyvning av bjelken pga kryp og svinn:

$$\Delta \varepsilon_{c.kryp.svinn} = \frac{\Delta}{L_b}$$

$$\Delta := \Delta \varepsilon_{c.kryp.svinn} \cdot L_b = \begin{pmatrix} -1.82 \\ -4.17 \end{pmatrix} \cdot mm$$
 etter 100 døgn
etter 100 år

7 Spennkrafttap

Spennkrafta langs en kabel vil bli mindre etter oppspenning. Dette skyldes tap i spennkraft umiddelbart etter oppspenning og tap som utvikles over tid.

7.1 Umiddelbare tap

7.1.1 Elastisk deformasjon av betongen

Når en spennkabel spennes opp, stukes betongen og allerede oppspente kabler vil få et tap i spennkraft. Tapet blir betegnet som tap på grunn av elastisk deformasjon av betongen. Når det er flere spennkabler, vil kabelen som spennes opp først få størst tap og kabelen som spennes opp sist får null tap.

I henhold til pkt.5.10.5.1 [5] skal tap i spennkraft som følge av betongens deformasjon tas i betraktning. Midlere tap i spennkraft i hver kabel:

$$\Delta P_{el} = -A_p \cdot E_p \cdot \sum \frac{j \cdot \Delta \sigma_c(t)}{E_{cm}(t)}$$

der A_p = tverrsnittsareal av spennarmeringen

 E_p = spennarmeringens dimensjonerende E-modul

$$j = \frac{n-1}{2 \cdot n}$$

n =antall spennkabler

 $\Delta \sigma_c$ = endring i betongspenning ved tyngdepunktet for spennkabelen pga spennkraft E_{cm} = betongens sekantmodul

I dette tilfellet er det kun èn kabel og den vil derfor ikke få tap på grunn av elastisk deformasjon av betongen.

For spenningsberegninger ved oppspenning se kap.6.2. Håndberegninger for testbjelke med rett spennkabel er utført i henhold til [5] og er gitt under.

Elastisk deformasjon av betongen

$$j := \frac{n-1}{2n} = 0$$
(5.10.5.1(2) [5])

Spenning i betongen i tyngdepunktet for spennkabelen ved oppspenning:

$$\sigma_{c.p.t0} \coloneqq -2.51 \text{MPa}$$
(Rapport kap.6.2)

Tap i spennkraft på grunn av elastisk deformasjon:

$$\Delta P_{e1} := A_{p} \cdot E_{p} \cdot \frac{j \cdot \sigma_{c.p.t0}}{E_{cm}} = 0$$
(5.10.5.1(2) [5])

7.1.2 Friksjon

Når en spennkabel spennes opp oppstår det friksjonskrefter mellom kabelen og kabelrøret. Disse virker mot bevegelsen til spennkabelen gjennom oppspenningen og medfører et friksjonstap i spennkraften.

I henhold til pkt.5.10.5.2 [5] skal det tas hensyn til friksjon ved analyse og dimensjonering av etteroppspente kabler. Tap i spennkraft på grunn av friksjon er:

$$\Delta P_{\mu}(x) = -P_{max} \cdot (1 - e^{-\mu(\theta + k \cdot x)})$$

Der x = avstand langs kabelen

 $P_{max} = oppspenningskraft til jekken$

 μ = friksjonskoeffisienten mellom spennkabel og kabelrør, her er μ =0,18rad⁻¹ [10]

 θ = summert tilsiktet vinkelendring i betraktet snitt

k = faktor for effekt av utilsiktede vinkelendringer, her er k=0,005rad/m [10]

I henhold til tabell 3 [10] kommer et tillegg i friksjonstap fra aktivt anker på 0,9% av oppspenningskraft:

 $\Delta P_{friksjon.anker} = -0.9\% \cdot P_{max}$

Figur 7-1 og 7-2 viser hvordan friksjonskreftene virker i testbjelken.

Figur 7–1 Friksjonskrefter, rett kabel

Figur 7-2 Friksjonskrefter, krum kabel

Parametre for friksjonstap er lagt inn manuelt i Sofistik og fremgår av tabell 7-1.

Egenskaper friksjonstap i Sofistik	CONA CMI BT 1206-150 1860
Friksjonstap fra aktiv forankring	0,9 %
Friksjonstap fra skjøtekobling	0 %
Friksjonstap fra passiv forankring	0 %
Faktor for effekt av utilsiktede vinkelendringer, k	0,005 rad/m
	0,286 °/m
Friksjonskoeffisient mellom spennkabel og kabelrør, µ	0,18 rad-1

Tabell 7–1 Parametere for friksjonstap i Sofistik

I Sofistik angis faktor for effekt av utilsiktede vinkelendringer i °/C og må derfor omregnes: $k = 0.005 rad/m = 0.005 \cdot \frac{360}{2 \cdot \pi} = 0.286^{\circ}/m$

Beregninger for testbjelke med rett spennkabel er utført i henhold til [5], [10] og er vist under. Tilsvarende håndberegninger for testbjelke med krum kabel er vist i «Vedlegg G: Testbjelke Elastisk deformasjon friksjon låsetap Krum kabel». Håndberegningene benytter lik oppspenningskraft som Sofistik der $P_{max} = 2530,8$ kN for rett kabel og $P_{max} = 2553,2$ kN for krum kabel, se kap.9.4.

(Tabell 3 [10])

Friksjonstap

Friksjonstap i aktivt anker

Friksjonstap = 0,9%

Spennkrafttapet pga friksjon i anker:

 $\Delta P_{\text{friksjon.anker}} := -0.9\% P_{\text{max}} = -22.8 \cdot \text{kN}$

Friksjonstap i kabelrør

Friksjonskoeffisient:	$\mu := 0.18 \text{rad}^{-1}$	(5.10.5.2 [5])
Faktor for effekt av utilsiktet vinkelendring:	$\mathbf{k} \coloneqq 0.005 \frac{\mathrm{rad}}{\mathrm{m}}$	
Kabel spennes opp i aktiv ende		
Spennkabelens 2.gradsligning:	$y = a \cdot x^2 + b \cdot x + c$	
Vinkel:	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2 \cdot \mathbf{a} \cdot \mathbf{x} + \mathbf{b}$	
Vinkel i endene av bjelken:	$ \theta_{aktiv} := \frac{4 \cdot e}{L_p} = 0 \qquad \theta_{passiv} := \theta_{aktiv} $	
Vinkel midt på bjelken:	$ \theta_{\text{midt}} \coloneqq 0 $	
Vinkelendring i aktiv ende:	$\Delta \theta_{aktiv} \coloneqq 0$	
Vinkelendring i midtspenn:	$\Delta \theta_{\text{midt}} \coloneqq \theta_{\text{aktiv}} = 0$	
Vinkelendring i passiv ende:	$\Delta \theta_{\text{passiv}} := \theta_{\text{aktiv}} + \theta_{\text{passiv}} = 0$	
Avstand fra jekk:	x := 10m	

Friksjonstap pga friksjon mellom spennkabel og kabelrør:

$\Delta P_{\text{friksjon.kabelrør}} := -P_{\text{max}} \left[1 - e^{-\mu \left(\Delta \theta_{\text{pas}} \right)} \right]$
--

Totalt friksjonstap

$$\Delta P_{\text{friksjon.aktiv}} \coloneqq \Delta P_{\text{friksjon.anker}} + 2 \cdot \Delta P_{\text{friksjon.kabelrør}} = -68.1 \cdot \text{kN}$$
$$\Delta P_{\text{friksjon.passiv}} \coloneqq \Delta P_{\text{friksjon.anker}} + \Delta P_{\text{friksjon.kabelrør}} = -45.5 \cdot \text{kN}$$

7.1.3 Låsetap

Når en kabel er spent opp til maksimal kraft angitt i [10], må krafta overføres fra jekken til betongbjelken. I forbindelse med denne låsingen vil kileforankringen og kabelen trekkes litt tilbake inn i kabelrøret og dette kalles låsetap.

I henhold til pkt.5.10.5.3 [5] skal det tas hensyn til låsetap ved analyse og dimensjonering med spennarmering. Verdier for låsetapet finnes i ETA, låsetapet er i dette tilfellet 6mm.

Låsetapet (mm) i aktiv ende er det samme uavhengig av kabelens lengde og geometri. For en kort kabel blir spennkrafttapet (prosent) på grunn av låsing større enn for en lang kabel.

Tap i spennkraft på grunn av låsing:

 $\Delta P_{las} = \Delta \varepsilon_{las} \cdot E_p \cdot A_p$

der $\Delta \varepsilon_{las} = \frac{\Delta L_{las}}{L} = t$ øyningsendring av spennkabler på grunn av låsetap $A_p = t$ verrsnittsareal av spennarmeringen $E_p =$ spennarmeringens dimensjonerende E-modul

Figur 7-3 viser låsetap i aktiv ende.

Figur 7–3 Låsetap

Tabell 7–2 Parametere for låsetap som er lagt inn i Sofistik

Egenskaper låsetap i Sofistik	CONA CMI BT 1206-150 1860
Låsetap ved aktiv forankring	6 mm
Låsetap ved kobling	0 mm*
*gjelder for 1 spenns testbjelke, må legge inn med verdi	
for 3 spenns bru)	
Låsetap ved passiv forankring**	0 mm

Figur 7–4 Tap i spennkraft på grunn av friksjon og stort låsetap

Beregninger for testbjelke med rett spennkabel er utført i henhold til [10] og er vist under. Tilsvarende håndberegninger for testbjelke med krum kabel er vist i «Vedlegg G: Testbjelke Elastisk deformasjon friksjon låsetap Krum kabel».

Låsetap

Låsetap ved aktiv forankring:

$$\Delta L_{lås} := -6mm$$
(2.7 [10])

$$\Delta L_{lås} = \int_{0}^{L} \Delta \varepsilon \, dx = \int_{0}^{L} \frac{\Delta P(x)}{E_{p} \cdot A_{p}} \, dx$$
(Rapport figur 7-4)

$$\Delta L_{lås} \cdot E_{p} \cdot A_{p} = \int_{0}^{L} \Delta P(x) \, dx = \Delta P_{friksjon.kabelrør} \cdot L_{p} + \Delta P_{lås} \cdot L_{p}$$
Spennkrafttapet pga låsing:

$$\Delta P_{las} := \frac{\Delta L_{las} \cdot E_p \cdot A_p - \Delta P_{friksjon.kabelrør} \cdot L_p}{L_p} = -187.9 \cdot kN$$

7.1.4 Totale umiddelbare tap

Friksjon og låsetap

Umiddelbare tap i spennkraft:

 $\Delta P_{\text{kort.aktiv}} \coloneqq \Delta P_{\text{friksjon.anker}} + 2\Delta P_{\text{friksjon.kabelrør}} + \Delta P_{\text{lås}} = -256.1 \text{ kN}$

 $\Delta P_{kort, passiv} \coloneqq \Delta P_{friksjon, anker} + \Delta P_{friksjon, kabelrør} + \Delta P_{lås} = -233.4 \cdot kN$

Spennkraft etter umiddelbare tap:

 $P_{kort.aktiv} := P_{max} + \Delta P_{kort.aktiv} = 2274.7 \cdot kN$

 $P_{kort.passiv} := P_{max} + \Delta P_{kort.passiv} = 2297.4 \cdot kN$

7.2 Tidsavhengige tap

7.2.1 Kryp og svinn

Betongens kryp og svinn vil føre til tap av spennkraft. Tøyningsendringen i spennarmeringen er omtrent like stor som tøyningsendringen i betongen. Man kan derfor gjøre en forenklet kontroll av spennkrafttapet ved å beregne tøyningsendringen i betongen for bjelken. Deretter regne ut spennkrafttap ved å sette tøyningsendringen for spennarmeringen lik som for betongen:

 $\Delta \varepsilon_p = \varepsilon_{cc} + \varepsilon_{cs}$

der $\varepsilon_{cc} = \text{kryptøyning}$ $\varepsilon_{cs} = \text{svinntøyning}$

Tap i spennkraft på grunn av kryp og svinn er beregnet for tidspunkt 100 døgn og 100 år etter støping og er gitt som:

 $\Delta P = \Delta \varepsilon_p \cdot E_p \cdot A_p$

Der $\Delta \varepsilon_p = t$ øyningsendringen for spennarmeringen

 E_p = Elastisitetsmodul for spennarmeringen

 A_p = tverrsnittsarealet av spennarmeringen

For beregninger av kryp- og svinntøyning se kapittel 5.2.2 og 5.2.3. Beregninger for tap i spennkraft på grunn av kryp og svinn for testbjelken er utført i henhold til [5], [20] og er vist under. Håndberegningene benytter lik oppspenningskraft som Sofistik der $P_{max} = 2530,8$ kN for rett kabel og $P_{max} = 2553,2$ kN for krum kabel, se kap.9.4.

Spennkrafttap pga kryp og svinn

Tøyning i spennarmeringen blir omtrent det samme som tøyning i betongen ved spennarmering.

Total tøyning i spennarmeringen fra kryp og svinn:

 $\Delta \varepsilon_{p.kryp.svinn} := \Delta \varepsilon_{c.kryp.svinn} = \begin{pmatrix} -0.000182 \\ -0.000417 \end{pmatrix}$ etter 100 døgn etter 100 år

Spenningsendring i spennarmering pga kryp og svinn:

$$\Delta \sigma_{p.kryp.svinn} := \Delta \varepsilon_{p.kryp.svinn} \cdot E_p = \begin{pmatrix} -35.51 \\ -81.35 \end{pmatrix} \cdot MPa$$
 etter 100 døgn etter 100 år

Tap av spennkraft pga kryp og svinn:

 $\Delta P_{kryp.svinn} := \Delta \sigma_{p.kryp.svinn} \cdot A_p = \begin{pmatrix} -63.9 \\ -146.4 \end{pmatrix} \cdot kN \qquad \text{etter 100 døgn} \\ \text{etter 100 år}$

7.2.2 Relaksasjon

Se kap.5.2.4 for beskrivelse av spennstålets relaksasjon. I [5] er relaksasjon omtalt i pkt.3.3.2(4–9) og tillegg D. Spennstålet som benyttes i dette tilfellet er lav-relaksasjonsstål i klasse 2 og har verdi på relaksasjonstapet lik 2,5%. Absoluttverdi av relaksasjonstapet i klasse 2:

$$\Delta \sigma_{pr} = -0.66 \cdot \rho_{1000} \cdot e^{9.1 \cdot \mu} \cdot (\frac{t}{1000})^{0.75 \cdot (1-\mu)} \cdot 10^{-5} \cdot \sigma_{pi}$$

der ρ_{1000} = relaksasjonstapet i prosent 1000 timer etter oppspenning med middeltemperatur på 20°C σ_{pi} = absoluttverdien av den initielle forspenningen $\mu = \frac{\sigma_{pi}}{f_{pk}}$

t = tid etter oppspenning i timer

Langtidsverdi av relaksasjonstapet kan beregnes for t = 500000 timer (ca 57 år) i henhold til [5].

Tap i spennkraft på grunn av relaksasjon er gitt som:

$$\Delta P_{pr} = \Delta \sigma_{pr} \cdot A_p$$

der $\Delta \sigma_{pr}$ = tap av spenning på grunn av relaksasjon

 A_p = tverrsnittsareal av spennarmeringen

Beregninger for testbjelke med rett spennkabel er utført i henhold til [5] og er vist under.

Tilsvarende håndberegninger for testbjelke med krum kabel er vist i «Vedlegg H: Testbjelke kryp svinn relaksasjon Krum kabel». Håndberegningene benytter lik oppspenningskraft som

Sofistik der $P_{max} = 2530,8$ kN for rett kabel og $P_{max} = 2553,2$ kN for krum kabel, se kap.9.4.

Relaksasjonstap

Beregninger for lav-relaksasjonsstål i klasse 2.	(3.3.2.(4) [5])
Relaksajonstapet i prosent 1000 timer etter oppspenning og med middeltemperatur på 20 grader celsius:	(3.3.2.(6) [5])

 $\rho_{1000} := 2.5$

Oppspenningskraft: $P_{pi} := P_{max} = 2531 \cdot kN$

Absoluttverdi av den initielle forspenningen:

$$\sigma_{pi} := \frac{P_{pi}}{A_p} = 1406 \cdot MPa$$

For langtidsberegning etter 100 år benytter verdi for t=500000 timer (tilnærmet 57 år) ihht. EK2 pkt.3.3.2(8).

Tid etter oppspenning:

t := $\begin{pmatrix} 2400 \\ 500000 \end{pmatrix}$ timer etter 100døgn timer etter 100 år

Karakteristisk verdi av strekkfasthet for spennstålet: $\mu := \frac{\sigma_{pi}}{f_{pk}} = 0.76$

Absoluttverdi av relaksasjonstapet:

$$\Delta \sigma_{pr} := -0.66 \cdot \rho_{1000} \cdot e^{9.1 \cdot \mu} \cdot \left(\frac{t}{1000}\right)^{0.75 \cdot (1-\mu)} \cdot 10^{-5} \cdot \sigma_{pi} = \begin{pmatrix} -26.45 \\ -70.31 \end{pmatrix} \cdot \text{MPa}$$
(3.29 [5])

Relaksasjonen i stålet påvirkes av kryp og svinn i betongen og kan reduseres med faktor lik 0,8:

$$\alpha \coloneqq 0.8 \tag{5.10.6(1b) [5]}$$

$$\Delta \sigma_{\text{pr.}} \coloneqq \Delta \sigma_{\text{pr}} \cdot \alpha = \begin{pmatrix} -21.16 \\ -56.24 \end{pmatrix} \cdot \text{MPa}$$

Tap i spennkraft:

$$\Delta P_{pr} := \Delta \sigma_{pr.} \cdot A_p = \begin{pmatrix} -38.1 \\ -101.2 \end{pmatrix} \cdot kN \text{ etter 100døgn}$$
 etter 100 år

7.2.3 Totale umiddelbare og tidsavhengige tap

Friksjon, låsetap, kryp, svinn og relaksasjon

Umiddelbare tap i spennkraft:

 $\Delta P_{kort.aktiv.rett} := -256.1 kN$

 $\Delta P_{kort.passiv.rett} := -233.4$ kN

Tidsavhengige tap i spennkraft:

$$\Delta P_{\text{lang}} := \Delta P_{\text{kryp.svinn}} + \Delta P_{\text{pr}} = \begin{pmatrix} -102 \\ -247.7 \end{pmatrix} \cdot \text{kN} \quad \text{etter 100døgn} \\ \text{etter 100 år}$$

Spennkraft etter lang tid:

$$P_{\text{lang.aktiv}} \coloneqq P_{\text{max}} + \Delta P_{\text{kort.aktiv.rett}} + \Delta P_{\text{lang}} = \begin{pmatrix} 2173 \\ 2027 \end{pmatrix} \cdot \text{kN} \qquad \text{etter 100 døgn} \\ \text{etter 100 år} \\ P_{\text{lang.passiv}} \coloneqq P_{\text{max}} + \Delta P_{\text{kort.passiv.rett}} + \Delta P_{\text{lang}} = \begin{pmatrix} 2195 \\ 2050 \end{pmatrix} \cdot \text{kN} \qquad \text{etter 100 døgn} \\ \text{etter 100 år} \\ \text{etter 100 år}$$

(Rapport kap.7.1.4)
8 FE-analyse med Sofistik

8.1 Organisering

Følgende organisering av grafisk input og tekstfiler er utført i SSD:

- > System
 - ⇒ System information (Task)
 - ⇒ Materials (Task)
 - ⇒ Cross sections (Task)
 - ⇒ Prestressing systems (Task)
 - ⇒ Sofiplus-(X)
- > Selfweight and Area load
 - ⇒ Linear Analysis (Task)
 - ⇒ Selfweight (Wingraf)
 - ⇒ Area load (Wingraf)
- Prestressing
 - ⇒ CSM (Task)
 - ⇒ Tendonforce after pretensioning (Wingraf)
 - ⇒ Tendonforce until bridge opening (Wingraf)
 - ⇒ Tendonforce after long time (Wingraf)
 - ⇒ Prestressing causes moment in beam (Wingraf)
 - ⇒ Node numbering supports (Wingraf)
 - ⇒ Creep until bridge opening_P1 (Result viewer)
 - ⇒ Creep until bridge opening_P2 (Result viewer)
 - ⇒ Creep after long time_P1 (Result viewer)
 - ⇒ Creep after long time_P2 (Result viewer)
 - ⇒ Losses from creep until bridge opening (Wingraf)
 - ⇒ Losses from creep after long time (Wingraf)
 - ⇒ Losses from relaxation until bridge opening (Wingraf)
 - ⇒ Losses from relaxation after long time (Wingraf)

> SIR

- ⇒ SIR-cut (Teddy)
- ⇒ SIR-cut (Wingraf)

Forklaring:

Task = oppgavebasert input *Teddy* = tekstbasert input *Wingraf* = resultater framstilt grafisk *Result viewer* = resultater framstilling i tabell

8.2 Koordinatsystem

Sofistik opererer med et globalt koordinatsystem for testbjelken samt lokale koordinatsystemer for de ulike elementene. Det globale koordinatsystemet benyttes til modellering av bjelken samt avlesning av forskyvninger. De lokale koordinatsystemene brukes til avlesning av krefter og moment. Begge systemene refererer til x-, y- og z-akser. I globalt koordinatsystem er retningen på egenvekten definert langs positiv z-akse. Dette velges under *System information* ved oppstart av nytt prosjekt i Sofistik. Se figur 8-1 for globalt koordinatsystem og figur 8-2 for lokalt koordinatsystem i bjelken. I både globale og lokale system er x-aksen rød, y-aksen grønn og z-aksen blå.

Figur 8–1 Globalt koordinatsystem

Figur 8–2 Lokalt koordinatsystem

Siden testbjelken har konstant tverrsnitt vil det ikke være forskjell på globale og lokale krefter. Dersom man skulle gjort dimensjonering av for eksempel en fritt frambygd bru med varierende tverrsnitt ville omregning av krefter fra lokalt til globalt koordinatsystem være nødvendig.

8.3 Materialer

Valg av materialer gjøres under *Materials* i *SSD* før modellering. For testbjelken er det valgt betongkvalitet lik B45, slakkarmeringskvalitet lik B500C og spennarmeringskvalitet lik Y1860. Materialegenskaper er forhåndsdefinerte i Sofistik og er gitt i figur 8-3, 8-4 og 8-5. Disse brukes ved beregninger og analyse i Sofistik. Se kap.2.2 for nærmere beskrivelse av materialegenskaper.

umber: 1 Title:	C 45/55 N (E	IN 1992)							
vpe: (EN 1992) Standard Co	ncrete	Classification:	45 • Kind of Cement: normal h	ardening	•]			
Properties Strength	Bedding		Properties Strength Bedding			-			
General properties			Etheral and the former						
Self weight:	γ	25.0 [ktv/m³]	Material safety factor:	1.500	1				
Density:	P	2400 [kg/m³]	Strength				Tensile Stresses in Stress-Strain Cu	rves	
Temperature coeff.:	a	1.000e-05 [1/K]	Nominal strength:	fck	45.00	[MPa]	Design tensile strength:	ftd	1.51
Elastic modulus:	E	3.628e+04 [N/mm ²]	Effective strength:	fc	38.25	[MPa]	Tensile strength after cracking:	feqr	0.0 D
Poisson ratio:	u [0.200 [-]	Tensie strength:	fctm	3.80	[MPa]	Ultimate tensile strength:	feqt	0.0
Shear modulus:	G	1.512e+04 [N/mm ²]	Dower fractile value of tensile strength:	fctk,0.5	2,66	[MPa]			
Compression modulus:	ĸ	2.015e+04 [N/mm ²]	Fatigue strength:	fcd,fat	20.91	[MPa]	Friction in cradis:	0.200	
			Design bond strength:	fbd	3.39	[MPa]			
			Mean strength:	fcm	53.00	[MPa]			
			Modulus of elasticity for service:	E	3.810e+04	[N/mm ²]			
			Fracture energy:		149.7	[N/m]			

Figur 8–3 Materialegenskaper for betong B45

Valg av sementtype gjøres manuelt og er viktig med tanke på kryp- og svinnanalysene. For testbjelken velges sement med normal herdehastighet.

8 FE-analyse med Sofistik

5 EuroNorm EN 1992-1-1:200	4 (NA:2008) B	etongkonstruksjon	er (NO)							
mber: 2 Title:	B 500 C (EN	1992)								
ne: (FN 1992) Standard re	inforcing Steel	• Class	ification:	500C • Max thickness: 32 • [mml					
Properties Strength	Bedding			Properties Strength Badding	-					_
General properties				Properties Strength Decoung						
Self weight:	۷	78.5	[kN/m ³]	Material safety factor:	1.150 [-]					
Density:	p	7850	[kg/m ³]	General				Reinforcing and prestressing steel		
Temperature coeff.:	a	1.200e-05	[1/K]	Vield strength:	fy	1640.00	[MPa]	Allowed stress range: a-dyn	160.87	MP
Elastic modulus:	E	2.000e+05	IN/mm ²	Tensile strength:	ft	1860.00	[MPa]	Relative bond strength:	0.750	[-]
	-	0.000	11	Compressive strength:	ftc	1860.00	[MPa]	Bond coefficient for crack width EN 1992:	1.600	[-]
Delegan ratio	P	0.300	19	Compressive yield strength:	fyc	1640.00	[MPa]	Coefficient of relaxation (0.55 ft):	992 2 low relaxation eq. 3. 29 =	[%]
Poisson ratio:	0			Fight P. C. M. C. M. Market Strength and M.						-
Poisson ratio:	G	7.692e+04	[N/mm*]	Ultimate strain:		60.00	[0/00]	Coefficient of relaxation (0.7 ft):	2.500	[70]

IS EuroNorm EN 1992-1-1:200 Jumber: 3 Title:	4 (NA:2008) B Y 1860 (EN 1	etongkonstruksjoner (NO) 1992)						
pe: (EN 1992) Prestressing	Steel	Classification:	1860 • Max thickness: 18	• [mm]				
Properties Strength	Redding		Properties Strength Bedding		_			
General properties	beoung							
General properves	-	1	Material safety factor:	1.150				
Self weight:	Y	78.5 [ktV/m³]	General				Reinforcing and prestressing steel	
Temperature coeff.:	٥	1.200e-05 [1/K]	Vield strength:	fy	1640.00	[MPa]	Allowed stress range: o-dyn	150.87 MPa
Elastic modulus:	E	1.950e+05 [N/mm ²]	Tensle strength:	ft	1860.00	[MPa]	Relative bond strength:	0.750 [-]
Poisson ratio:	H	0.300 [-]	Compressive strength:	ftc	1860.00	[MPa]	Bond coefficient for crack width EN 1992:	1.600 [·]
Char modulus	6	7 500+ 10.4 Di/mmil	Compressive yield strength:	fyc	1640.00	[MPa]	Coefficient of relaxation (0.55 ft):	elaxation eq.3.29 - [%]
Sriedi moodius.		1.2006.404 [Minu]	Ultimate strain:		60.00	[0/00]	Coefficient of relaxation (0.7 ft):	2.500 [%]
Compression modulus:	к	1.625e+05 [N/mm ²]	Elastic Imit:		1600.00	[MPa]		and the second second

Figur 8-5 Materialegenskaper for spennarmering Y1860

8.4 Geometri

8.4.1 Akser

Aksesystemet modelleres under *Geometric Axes* i *Sofiplus-X*. Horisontalakse defineres fra 0 til 30. Testbjelken plasseres mellom akse 10 (P1) og akse 20 (P2). Horisontalaksen er lengere enn testbjelken for at utvidelse av bjelken skal være mulig. Testbjelken har ingen variasjoner i vertikalretning. Det modelleres 2 sekundære akser parallelt med horisontalaksen for å definere bjelkens ytre begrensinger. Se figur 8-6 for modellering av aksesystem i Sofistik.

8.4.2 Tverrsnitt

Tverrsnitt defineres i *Sofiplus-X* under *Structural Elements*. Siden testbjelken består av skallelement velges *Structural Area*. Tykkelse på elementer samt hvilke materialer som skal benyttes angis før bjelken modelleres ved hjelp av primær og sekundærakser. *Structural Area* blir nummerert etter når de skal bygges. Siden det antas at bjelken utføres i èn støp, får alle *Structural Area* nummerering lik 1. Se figur 8–7 for modellering av tverrsnitt i Sofistik.

8.4.3 Randbetingelser

Randbetingelsene for testbjelken defineres under *Structural Elements* i *Sofiplus-X*. For å kunne kontrollere resultatene fra analysen med manuelle beregninger, modelleres testbjelken med fastlager i akse P1 og glidelager i akse P2. Testbjelken har ikke stivt tverrsnitt og det er derfor nødvendig med kontinuerlige opplager i hver ende. Se figur 8-8 for modellering av opplager i Sofistik.

Figur 8-8 Opplager

Det modelleres *Structural Line* i topp og bunn av bjelken i hver ende. Den øverste har ingen opplagerbetingelser mens den nederste er fastholdt i global x-, y- og z-retning i akse P1 og fastholdt i global y- og z-retning i akse P2. Øverste og nederste linje blir bundet sammen av *Line Constraint*. Dette er en master-slave kobling og vil beskrive den stive forbindelsen mellom topp og bunn ved opplager. 1 over opplager definerer master, 2 ved opplager definerer slave. Master overfører1 krefter til slave og slave tar opp krefter fra master. Se figur 8-9 for modellering av opplagerbetingelser

i Sofistik.

Figur 8–9 Opplagerbetingelser

Structural Line ved opplager får nummerering lik 0. Line Constraint får nummerering lik 1.

8.4.4 Elementinndeling

Under eksport fra *Sofiplus-X* til database vil Sofistik lage *Structural Elements* på bakgrunn av *Structural Area og Structural Line Point*. Dette er FEM-element og automatisk inndeling velges under *system information* ved oppstart av nytt prosjekt. Se figur 8–10 for FEM-element for testbjelken.

NHA		
TYT		
		VYTTTT

Figur 8-10 FEM-elementer

8.5 Lastmodellering

Modellering

Laster på konstruksjonen angis ved grafisk input i *Sofiplus-X* eller som tekstfiler i*Teddy*. For testbjelken er det valgt å bruke grafisk input og i *Loadcase Manager* defineres laster og lastfaktorer. Det er ikke sett på lastkombinering for testbjelken, lastfaktorer blir i dette tilfellet derfor ikke relevante. Se figur 8-11 for modellering av laster i Sofistik.

ctions	Loadcases									vaue(s) P= 5.000 [kt/m1]
Action	Description	Partition	Superposition	y-u	y-f 1	⊷a ψ	-0 ψ-1	ψ-2	ψ1,infq	Name Area load P2= [5:000 [691/m ³]
C	creep + shrinkage	G (Permanent)	PERM always	1.00	1.00	1.00	1.00	1.00	1.00 1.00	P3= 5.000 [i04/m ²]
G_1	dead load gl	G (Permanent)	PERM always	1.35	1.00	1.00	1.00	1.00	1.00 1.00	Load Case 2 - Area load 🔻 Distribution
G_2	dead load g2	G (Permanent)	PERM always	1.35	1.00	1.00	1.00	1.00	1.00 1.00	Class Load
P	Prestressing	P (Prestress)	PERM always	1.10	0.90	1.00	1.00	1.00	1.00 1.00	Type PZZ - load dobal Z Non-Uniform
			Actions Loadcases	Action			Factor o	of dead wei	iht	😹 🕃 💰 🕺 I selected 🗆 Add Elements 🛛 OK 🔹 Apply Cancer
			1 Selfweight	G_1 dead los	d g1				1.00	
				C 2 4 44	d all				0.00	
			2 Area load	G_2 dead los	u gz					

Figur 8–11 Input til laster i Sofiplus-X

Lasttilfeller i Sofistik nummereres ut i fra hva de inneholder, se figur 8–12. Lasttilfellene som blir benyttet for testbjelken er LC 1–999 som er enslige lasttilfeller, LC 4000–4999 som er totale krefter og forskyvninger etter kryp og svinn og LC 5000–5999 som er krefter og forskyvninger for enkelte krypintervall, se kap.8.5.3 og 8.5.4.

Resultat

Bruker programmet *SIR* i Sofistik for å integrere skallkrefter og –moment på tvers av bjelkens lengderetning. *SIR* etableres som en *Teddy–fil* der det angis hvilke lasttilfeller som skal være med, hvor mange bjelkesnitt og hvilke koordinater snittene skal ha. *SIR* fungerer kun for enkelt lasttilfeller og ikke for kombinerte lasttilfeller. For testbjelken er det benyttet *SIR* til å se på resultat for moment og skjær fra egenvekt og flatelast. Se illustrasjon av Teddy-fil med

SIR for testbjelken i figur 8–12.

+PROG \$ SIR HEAD I PAGE 1 CTRL J ! #ino \$ PROG \$ SIR GRP ! #ino ! #ino \$ PROG \$ SIR \$ PROG \$ SIR	SIR ur input Externa MII 0 QBS 2 clude \$ SIR group cend \$ (cclude SIR cut de	s:70.1 (WinGraf vers 1 Beam Sectic \$ default uni \$ writing of (NAME)_sirgru NO ETYP C 1 QUAD NAME)_sirgru \$ (NAME)_sirsc finition (Win	tion 18.06-33 ms t set internal for up.dat \$ Gro of version 18 pT=FULL \$ o.dat \$ Grou chn.dat \$ Sec Graf version) from 20.10 ces and mome up definitio .06-33) from p definition ctions 18.06-33) f	.16 , 15:4 nts 21.10.16	3:07	29						
LC 1,3	2					,							
SECT ! #in END END	NO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	XS 0.0000 1.0000 2.0000 3.0000 5.0000 7.0000 7.0000 9.0000 10.0000 (NAME)_sirsch	XM 10.0000 11.0000 12.0000 13.0000 14.0000 15.0000 16.0000 17.0000 19.0000 20.0000 19.0000	YM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	2M 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	NX 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	NY 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	N2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	SX SY 0.0000 -1.0000 0.0000 -1.0000 0.0000 -1.0000 0.0000 -1.0000 0.0000 -1.0000 0.0000 -1.0000 0.0000 -1.0000 0.0000 -1.0000 0.0000 -1.0000	SZ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	XMIN -0.0010 -0.0010 -0.0010 -0.0010 -0.0010 -0.0010 -0.0010 -0.0010 -0.0010 -0.0010	XMAX 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010	YMIN -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00

Figur 8-12 Teddy-fil med SIR

Load Case -	- Numbering
99999 LC number	s available
 LC 1 - 999 	single load cases
 LC 1000 - 1999 	load combinations (2 nd Order Theory, Nonlinear LC,)
• LC 1100 - 1999	result LC for SLS Design
 LC 1900 - 1999 	result LC characteristic combination
 LC 2100 - 2499 	result LC for ULS Design
 LC 3970 - 3999 	CSM: Comparison load cases - cast in one (CTRL cast)
 LC 4000 - 4999 	CSM: Total CS displacements and forces
 LC 5000 - 5999 	CSM: Difference displacements and forces
 LC 6000 - 6999 	CSM: AQB inner stresses from creep and shrinkage
 LC 7000 - 7999 	CSM: Stress results of the AQB-LCST-evaluation
 LC 9000 - 9999 	Eigenvalues

Figur 8–13 Nummerering av lasttilfeller i Sofistik

8.5.1 Egenvekt

Egenvekt påføres testbjelken i *Loadcase Manager* i *Sofiplus-X*. Egenvekten beregnes ut fra tyngdetetthet for armert betong lik 25 kN/m³ som ble angitt under *Materials* i *SSD*. For at Sofistik automatisk skal påføre egenvekten på konstruksjonen settes *Factor of deadweight* settes lik 1 for egenvekt. Resultater fra analysen presenteres under.

Spenning i betongen

Figur 8–14 Spenning i betongen

Presentasjon av spenninger i betongen i Animator i figur 8–14: Rød farge indikerer trykk og viser at bjelken har trykk i toppen. Blå farge indikerer strekk og viser at bjelken har strekk i bunn. Ser at deformasjonen til bjelken ser riktig ut.

Presentasjon av karakteristiske bøyemoment fra LC 5001 i *Wingraf* med *SIR* i figur 8–15.

Figur 8–15 Bøyemoment om global y-akse

Maks bøyemoment i felt: $M_y = 310,5kNm$

Skjærkraft

Figur 8–16 Skjærkraft i global z-retning

Maks skjærkraft ved opplager: $V_z = 121,5kN$

Presentasjon av karakteristiske skjærkrefter fra LC 5001 i *Wingraf* med *SIR* i figur 8–16.

8.5.2 Permanent flatelast

Den permamente flatelasten med verdi 5kN/m2 påføres testbjelken i *Sofiplus-X* ved hjelp av *Element Loads*.

Spenning i betongen

Presentasjon av spenninger i betongen fra LC 5003 i *Animator* i figur 8–17: Rød farge indikerer trykk og viser at bjelken har trykk i toppen. Blå farge indikerer strekk og viser at bjelken har strekk i bunn. Ser at deformasjonen til bjelken ser riktig ut.

Figur 8–17 Spenning i betongen

Bøyemoment

Figur 8–18 Momentfordeling langs bjelken

Maks bøyemoment i felt: $M_y = 125 kNm$

Presentasjon av karakteristiske bøyemoment fra LC 5003 i *Wingraf* med *SIR* i figur 8-18.

Skjærkraft

Presentasjon av karakteristiske skjærkrefter fra LC 5003 i *Wingraf* med *SIR* i figur 8-19.

Figur 8–19 Skjærkraftfordeling langs bjelken

Maks skjærkraft ved opplager: $V_z = 48,9kN$

8.5.3 Spennarmering

Egenskapene til spennsystemet angis i *Prestressing Systems* i *SSD*. Figur 8–20 viser hvilke spennsystem som er forhåndsdefinert i Sofistik.

Figur 8–20 Forshåndsdefinerte spennsystem i Sofistik

Egenskaper for spennsystemet Cona er ikke forhåndsdefinert i Sofistik og må dermed legges

inn manuelt. Se figur 8-21.

umber	Com	pany		Code		Ten	ndon					
1	Use	r Defined	•	ETA	•		CONA CMI BT 1206-150 1860					
Analysis	Cont	truction										
Steel:		3 Y 1860 (EN 1992) 💌	0 0		Prestressing force P0,max:		2657	[kN]	E.			
Young's more	dulus:		195000	[N/mm ²]	Area:		1800	mm	-J			
Yield streng	th:		1640	[N/mm ²]	Number of strands:		12					
Tensile stre	ngth:		1860	[N/mm ²]	Analysis Constructio	n						-
					Sip at active anchor:		6.000	0	[mm]	Inner diameter of duct:	80.00	[mm]
					Slp at coupler:		0.0	0	mm]	Outer dameter of duct:	90.00	[mm]
					Slip at passive anchor:		0.0	0	mm]	Minimum radius of curvature:	7.000	[m]
					Loss at active anchor:		0.900	1	%]	Wobble coefficient:	0.286	[*/m
					Loss at coupler:		0.0	0	%]	Wobble coefficient (external prestress):	0.0	[*/m
				_	Loss at passive anchor:		0.0	0	%]	Friction coefficient (stressing):	0.180	[•]
					Straight length at active	ancho	or: 100.0	1	[cm]	Friction coefficient (release):	0.180	[-]
					Straight length at coupler	f 1	0.0	6	[cm]	Maximum eccentricity in the duct:	20.00	[mm]
					Straight length at passive	e and	hor: 100.0	i r	cml			

Figur 8-21 Egenskaper spennsystem Cona

Spennarmeringen modelleres i *Sofiplus-X* ved hjelp av *Prestressing Editor*. Spennarmeringen spennes opp fra ventre (akse P1). Dette angis i Sofistik ved at forspenningsretning går fra venstre mot høyre. Legger først spennkabel midt i bjelketverrsnittet, utfører analyser og ser på resultater. Flytter deretter spennkabel slik at den ligger med krumning, utfører analyse og ser på resultater. Se figur 8-22 for modellering av spennarmering i Sofistik. Figur 8-23 og 8-24 viser geometri for rett kabel og krum kabel.

Figur 8–24 Geometri krum kabel

Byggetrinn må angis før *Sofistik* kan gjøre lineære analyser av spennarmeringen. Dette for at programmet utfører kryp- og svinnanalyser samtidig med spennarmeringsberegninger og må ta hensyn til tverrsnittsegenskaper basert på åpne og fylte kabelrør. Byggetrinn angis i modulen *CSM* i *SSD*. Egenvekten angis først, men siden egenvekt og spennarmering blir påført samtidig i den lineære analysen har det ingen betydning hva som angis først. Permanente tilleggslaster som har innvirkning på kryp og svinn foruten egenvekt og spennarmering legges under fanen *Loads*. I dette tilfellet legges permanent areallast inn her.

Se figur 8-25 for modellering i CSM.

ages Groups	Loads Control Para	ameters Text Out	put							
Group Number Firs 0,1	t activation Activ till 1 infinite	Concrete Age [d] 7	Hinges fixed at never	Bedding activated at never	Situ concrete lo default	ad from Dead load fr	om PHI springs	FAC1	QUEA	QEMX
SOFiSTiK: Constr	ruction Stage Man	ager	Stages G	roups Loads	Control Parame	ters Text Output				
Stages Groups	Loads Cor	trol Parameters	The share of				Einst active			
Ci C			2: Area load	d	iype - P	ermanent - creep act	V	13	infinite	Facto
Stage Number	Title	Туре	2: Area load	Duration [d]	Humidity [%]	ermanent - creep act Temperature [°]	Creep steps	13	infinite	Facto
Stage Number	Title Selfweight	Type G_1 - Sel	fweight	Duration [d]	Humidity [%]	emanent - creep act Temperature [°]	Creep steps	13	Activ bil	Facto
Stage Number	Title Selfweight Prestressing	Type G_1 - Sel P - Pres	fweight tress	Duration [d]	Humidity [%]	ermanent – creep act Temperature [°]	Creep steps	13	Infinite	Pacto
Stage Number	Title Selfweight Prestressing Injection	Type G_1 - Sel P - Pres B - Cons	fweight tress struction Stage	Duration [d]	Humidity [%]	ermanent – creep act Temperature [*]	Creep steps	13	ACOV DI	Pacto
Stage Number	Title Selfweight Prestressing Injection Area load	Type G_1 - Sel P - Pres B - Cons G_2 - Ad	fweight tress struction Stage	Duration [d]	Humidity [%]	ermanent - creep act Temperature [*]	Creep steps	13	infinite	Facto
Stage Number 1 11 12 13 25	Title Selfweight Prestressing Injection Area load Creep until bridge	Type G_1 - Sel P - Pres B - Cons G_2 - Ad opening C_1 - Cre	fivelight tress struction Stage ditional Dead Loar eep until opening	Duration [d]	Humidity [%]	ermanent - creep act Temperature [*] 20.00	Creep steps	13	Activ bi	Facto

Figur 8-25 CSM (Construction Stage Manager)

CSM genererer lasttilfeller, se figur 8-26.

LC	1: Selfweight
LC	2: Area load
LC	4001: Selfweight
LC	4011: Prestressing
LC	4012: Injection
LC	4013: Area load
LC	4025: Creep until bridge opening
LC	4028: Creep in construction after long
LC	5001: Selfweight
LC	5011: Prestressing
LC	5012: Injection
LC	5013: Area load
LC	5025: Creep until bridge opening
LC	5028: Creep in construction after long

Figur 8–26 Lasttilfeller fra CSM

Forklaring:

Lasttilfeller 4000 – 4999 gir forskyvninger og krefter for summerte lasttilfeller. For eksempel lasttilfelle 4011 gir totale forskyvninger og krefter fra egenvekt og spennarmering umiddelbart etter oppspenning. Lasttilfelle 4025 gir totale forskyvninger og krefter fra egenvekt, spennarmering, injeksjon, flatelast, kryp og svinn i bjelken etter 100 døgn.

Lasttilfeller 5000 – 5999 gir forskyvninger og krefter for enkelte lasttilfeller. For eksempel lasttilfelle 5011 gir krefter fra spennarmering umiddelbart etter oppspenning.

Spenning i bjelke

Figur 8-27 og 8-28 viser spenning i bjelken på grunn av spennarmering fra lasttilfelle 5011.

Figur 8–27 Rett kabel

Kommentar: Ser at betongen trykker seg sammen i midten på grunn av spennkabelen, og at det er størst trykkspenninger i betongen i området ved innspenningen, dette er fornuftige resultater.

Kraft i spennkabel uten tap

Figur 8-29 og 8-30 viser kraft i spennkabel uten tap for lasttilfelle 5011.

Figur 8–29 Rett kabel

Figur 8–30 Krum kabel

Rett kabel: $P_{m0} = 2509kN$

Krum kabel: $P_{mo} = 2509kN$

Spenning i kabel etter oppspenning og låsing

Figur 8-31 og 8-32 viser spenning i kabel etter umiddelbare tap for lasttilfelle 5011.

Figur 8–31 Rett kabel

Figur 8–32 Krum kabel

Forklaring: Kontinuerlig rød strek viser spenning langs kabelen etter umiddelbare tap.

Rett kabel								
σ _{max aktiv} [MPa]	σ _{max passiv} [MPa]							
$0,865 \cdot 147 = 1277$	0,873 · 1476 = 1289							

Krum kabel								
$\sigma_{maxaktiv}[MPa]$	$\sigma_{max \ passiv} \ [MPa]$							
0,865 · 1476 = 1277	0,881 · 1476 = 1300							

Kraft i spennkabel umiddelbart etter oppspenning og låsing

Figur 8-33 og 8-34 viser kraft i spennkabel etter umiddelbare tap for lasttilfelle 5011.

Figur 8–33 Rett kabel

Rett kabel				
$P_{max \ aktiv}[kN]$	$P_{max \ passiv}[kN]$			
2300	2319			

Figur 8-34 Krum kabel

Krum	kabel
$P_{max \ aktiv}[kN]$	$P_{max passiv}[kN]$
2299	2340

Kraft i spennkabel etter 100 døgn

Figur 8-35 og 8-36 viser kraft i spennkabel etter 100 døgn for lasttilfelle 4025.

Figur 8-35 Rett kabel

Rett kabel				
$P_{100 døgn aktiv}[kN]$	$P_{100 d \emptyset gn passiv}[kN]$			
2090	2065			

Krum	kabel
$P_{100 døgn aktiv}[kN]$	$P_{100 døgn passiv}[kN]$
2091	2082

Kraft i spennkabel etter 100 år

Figur 8-37 og 8-38 viser kraft i spennkabel etter 100 år for lasttilfelle 4028.

Fiaur 8–37 Rett kabel

Fiaur 8–38 Krum kabel

Rett kabel			
$P_{100\text{cup}raktiv}[kN]$	P _{100 år passiv} [kN]		
1889	1836		

Krum	kabel
$P_{100araktiv}[kN]$	P _{100 år passiv} [kN]
1889	1850

Karakteristisk primærmoment fra spennarmeringen

Figur 8-39 og 8-40 viser karakteristisk primærmoment fra spennarmeringen for lasttilfelle

5011.

9 9 9	0.898	-106.5	(Heleis)
	0.858	-107.9	PHILIP
9 9 9	0.898	-106.6	tetet

Figur 8-39 Rett kabel

Figur 8–40 Krum kabel

Gjennomsnittsverdi på bøyemoment i felt:

Rett kabel	Krum kabel
M _{xx,max} [kNm]	$M_{xx,max}[kNm]$
$\frac{0,9+0,9+0,9}{3} \cdot 2 = 1,8$	$\frac{106,5+107,9+106,6}{3} \cdot 2 = 214$

8.5.4 Betongens kryp og svinn

Betongens kryp og svinn angis som laster i *Loadcase Manager* i *Sofiplus-X.* Videre legges parametrene varighet, luftfuktighet, temperatur og krypintervall inn i *CSM* i *SSD*. Krypintervall deler total varighet av kryp og svinn i intervaller. Dette for å kunne gjøre vurderinger av utviklingen av kryp og svinn over tid.

Den ferdige konstruksjonen skal kontrolleres ved to tidspunkt; like etter at brua er åpnet for trafikk og ved dimensjonerende brukstid i henhold til pkt. 7.2.3 [15]. Det antas at bjelken åpnes for trafikk 100 døgn etter støping. Dimensjonerende brukstid er 100 år. Oppspenning er satt til 7 døgn etter støping, se figur 8–25 i kap.8.5.3. Det benyttes krypintervall i Sofistik for å kunne lese av kryp og svinn 100 døgn og 100 år etter støping. Det første krypintervallet starter umiddelbart etter oppspenning og har varighet 93 døgn. Det andre krypintervallet starter 93 døgn etter oppspenning og har varighet 35500 døgn. Det er valgt kun to krypintervall for at kryp- og svinnanalysene i Sofistik skal bli så like håndberegningene som mulig.

Det er vanlig praksis at bruprosjekt der analysen utføres i Sofistik, benytter enda flere krypintervall enn testbjelken. Dette for at kryp- og svinnanalysene skal bli så realistiske som mulig.

Håndberegninger av kryp og svinn tar kun hensyn til forskyvninger på grunn av spennarmering, kryp og svinn i betongen. For å kunne sammenligne resultater fra Sofistik med håndberegninger, er det nødvendig å utføre analyser uten egenvekt. Det er derfor laget en kopi av Sofistik-modellen for kryp- og svinnanalyse der egenvekten er satt lik null og flatelasten er fjernet. Se figur 8-41 for parametere i *CSM* for kryp- og svinnanalysene.

Stages	Groups	Loads Control Par	ameters Text Output				
Stage	Number	Title	Туре	Duration [d]	Humidity [%]	Temperature [°]	Creep steps
	1 Selfweight		G_1 - Selfweight				
	11	Prestressing	P - Prestress		2		
	12	Injection	B - Construction Stage				
	25	Creep until bridge opening	C_1 - Creep until opening	93.0	70.00	20.00	

Figur 8–41 CSM

CSM generer lasttilfeller for kryp og svinn, se figur 8–26 under kap.8.5.3. Lasttilfellene 4025 og 4028 gir totale forskyvninger fra egenvekt, spennarmering, kryp og svinn etter 100 døgn og 100 år. Lasttilfellene 5025 og 5028 viser kun forskyvning pga kryp og svinn for krypintervallene 25 og 28. Forskyvninger på grunn av kryp og svinn leses av i noder tilhørende aksens lager for lasttilfelle 4025 og 4028, se figur 8–42 og 8–43.

Figur 8-42 Nodenummerering i akse P1

Figur 8–44 Nodenummerering i akse P2

Kryp og svinn etter 100 døgn

Forskyvninger på grunn av kryp og svinn etter 100 døgn leses av for lasttilfellet 4025 med

Resultviewer, se tabell 8-1 og 8-2.

				-	14.08)				
estbjell	ke med skallelement_Kabel midt i tv	errsnitt		Testbj	Testbjelke med skallelement_Kabel midt i tverrsnitt				
PI: Nodal displacement in global X					P2: Nodal displacement in global X				
C	LC-title	Number	[mm]	LC	LC-title	Number	u-X [mm]		
025	Creep until bridge opening	1011	0,00	4025	Creep until bridge opening	1009	-1,68		
		1012	0,00			1010	-1,68		
		1014	0,00			1013	-2,12		
		1035	0,00			1025	-1,67		
		1036	0,00			1026	-1,68		
		1037	0,00			1027	-1,70		
		1038	0,00			1028	-1,75		
		1039	0,00			1029	-1,80		
		1040	0,00			1030	-1,80		
		1041	0,00			1031	-1,75		
		1042	0,00	1		1032	-1,70		
		1043	0,00			1033	-1,68		
		1044	0,00	1		1034	-1,67		
	Average value		Average value		-1,74				

Tabell 8–1 Forskyvning i aksens lager: Rett kabel

Testbjel	ke med skallelement_Krum kabel		
LC	LC-title	Number	u–X [mm]
4025	Creep until bridge opening	1011	0,00
		1012	0,00
		1014	0,00
		1035	0,00
		1036	0,00
		1037	0,00
		1038	0,00
		1039	0,00
		1040	0,00
		1041	0,00
		1042	0,00
		1043	0,00
		1044	0,00
	Average value		0,00

SO	FISTIK 2016 RESULTS - OUTPUT 14.08)	FOR FINITE E	LEMENTS (V
Testbj P2: N	jelke med skallelement_Krum ka lodal displacement in global)	abel (
LC	LC-title	Number	u-X [mm]
4025	Creep until bridge opening	1009	-2,41
		1010	-2,41
		1013	-2,86
		1025	-2,40
		1026	-2,41
		1027	-2,43
		1028	-2.48
		1029	-2.53
		1030	-2.53
		1031	-2.48
		1032	-2,43
		1033	-2,41
		1034	-2,40
	Average value		-2,47

Rett	kabel	Krum kabel		
δ_{kryp} svinn 100 døgn $[mm]$ fastlager	$\delta_{krypsvinn100døgn}[mm]$ glidelager	$\delta_{kryp\ svinn\ 100\ døgn}[mm]$ fastlager	$\delta_{krypsvinn100døgn}[mm]$ glidelager	
0mm	-1,74 <i>mm</i>	0mm	-2,47 <i>mm</i>	

Kryp og svinn etter 100 år

Forskyvninger på grunn av kryp og svinn etter 100 år leses av for lasttilfellet 4028 med

Resultviewer, se tabell 8-3 og 8-4.

P1: Nodal displacement in global X						
LC	LC-title	Number	u-X [mm]			
4028	Creep after long time	1011	0,00			
		1012	0,00			
		1014	0,00			
		1035	0,00			
		1036	0,00			
		1037	0,00			
		1038	0,00			
		1039	0,00			
		1040	0,00			
		1041	0,00			
		1042	0,00			
		1043	0,00			
		1044	0,00			
	Average value		0,00			

Tabell 8–3 Forskyvning i aksens lager: Rett k	abel
---	------

SOFis	Tik 2016 RESULTS - OU (V 14.	TPUT FOR FIN 08)	ITE ELEMENTS
Testbje	elke med skallelement_Ka	bel midt i tve	errsnitt
P2: No	dal displacement in glo	obal X	
LC	LC-title	Number	u–X [mm]
4028	Creep after long time	1009	-4,16
	a table in the field of the	1010	-4,16
		1013	-4,64
		1025	-4,09
		1026	-4,07
		1027	-4,09
		1028	-4,14
		1029	-4,21
		1030	-4,21
		1031	-4,14
		1032	-4,09
		1033	-4,07
		1034	-4,08
	Average value	1	-4,17

Tabell 8–4	Forskvvnina	i aksens	lager:	Krum	kabel
ruben o r		ransens	iuger.	, (<i>i</i> a	nuber

estbjel 1: Noo	ke med skallelement_Krum Ial displacement in global	kabel X	
С	LC-title	Number	u-X [mm]
028	Creep after long time	1011	0,00
		1012	0,00
		1014	0,00
		1035	0,00
		1036	0,00
		1037	0,00
		1038	0,00
		1039	0,00
		1040	0,00
		1041	0,00
		1042	0,00
		1043	0,00
		1044	0,00
	Average value		0,00

Testbj P2: No	elke med skallelement_K odal displacement in gl	rum kabel obal X	
LC	LC-title	Number	u-X [mm]
4028	Creep after long time	1009	-5,18
		1010	-5,18
		1013	-5,67
		1025	-5,11
		1026	-5,09
		1027	-5,11
		1028	-5,16
		1029	-5,23
		1030	-5,23
		1031	-5,16
		1032	-5,11
		1033	-5,09
		1034	-5,10
	Average value		-5,19

Rett	kabel	Krum kabel		
δ _{kryp svinn 100 år} [mm] fastlager	δ _{kryp svinn 100 år} [mm] glidelager	δ _{kryp svinn 100 år} [mm] fastlager	$\delta_{krypsvinn100avet r}[mm]$ glidelager	
0mm	-4,17 <i>mm</i>	0 <i>mm</i>	-5,19 <i>mm</i>	

8.6 Spennkrafttap

Korttidstap i spennkraft på grunn av elastisk deformasjon, friksjon og låsing samt langtidstap i spennkraft på grunn av kryp, svinn og relaksasjon blir beregnet av Sofistik. Parametere for låsetap og friksjon angis i *Prestressing Systems* i SSD, se kap.8.5.3. Parametere for kryp og svinn angis i *CSM*, se kap.8.6.3.

8.6.1 Elastisk deformasjon av betongen

Sofistik regner tap i spennkraft på grunn av elastisk deformasjon av betongen for flere etteroppspente injiserte kabler. Injisering av kabler angis i *CSM*. Testbjelken får null tap i spennkraft på grunn av elastisk deformasjon av betongen siden den kun har èn spennkabel.

8.6.2 Friksjon og låsetap

Eksporterer modell fra *Sofiplus-X* til *SSD* og får melding om at låsetap vil nå motsatt ende. Låsetapet i aktiv ende vil være det samme uavhengig av kabelens lengde og geometri. For en kort kabel blir spennkrafttapet (i prosent) på grunn av låsing større enn for en lang kabel. Testbjelken er 10m lang og en del av låsetapet vil gå over til passiv ende. Illustrasjon av dette i figur 8-45.

Se kap.8.5.3 for kraft i spennkabel umiddelbart etter oppspenning.

Rett kabel		Krum kabel	
$P_{max \ aktiv}[kN]$	$P_{max \ passiv}[kN]$	$P_{max \ aktiv}[kN]$	$P_{max \ passiv}[kN]$
2300	2319	2299	2340

Umiddelbare spennkrafttap

Rett	kabel	Krum kabel		
$\Delta P_{kort \; aktiv}[kN]$	$\Delta P_{kort \ passiv}[kN]$	$\Delta P_{kort \ aktiv}[kN]$	$\Delta P_{kort \ passiv}[kN]$	
(2300 – 2530,8)	(2319 – 2530,8)	(2299 – 2553,2)	(2340 – 2553,2)	
= -230,8	= -211,8	= -254,2	= -213,2	

8.6.3 Kryp og svinn

Kryp- og svinnanalyser i Sofistik er utført uten egenvekt og flatelast, se kap.8.5.4.

Lasttilfellene 4025 og 4028 gir totale krefter i kabel fra egenvekt, friksjon og låsetap, spennarmering, kryp, svinn og relaksasjon etter 100 døgn og 100 år. Lasttilfellene 5025 og 5028 viser kun spennkrafttapet pga kryp og svinn for krypintervallene 25 og 28.

Spennkrafttap som skyldes kryp og svinn etter 100 døgn

Tap i spennkraft som skyldes kryp og svinn etter 100 døgn leses av for lasttilfellet 5025 med *Wingraf* og *Result viewer*, se figur 8-47 og 8-48 samt tabell 8-5 og 8-6.

Figur 8–47 Rett kabel

Figur 8–48 Krum kabel

Tabell 8–5 Rett kabel

esth	jelke med skallelement							
LC: 5025, Tendon force								
LC	LC-title	NR	NRS	ZZG1 [kN]				
5025	Creep until bridge	10001	1	-102,4				
	opening	10004	1	-102,2				
		10005	1	-102,6				
		10006	1	-103,3				
		10011	1	-101,6				
		10012	1	-101,7				
		10014	1	-101,9				
		10015	1	-102,1				
		10019	1	-101,2				
		10020	1	-101,4				
		10021	1	-104,7				
		10022	1	-107,3				
		10029	1	-201,3				
		10030	1	-127,2				
		10033	1	-247,7				
		10036	1	-142,2				
		10041	1	-112,4				
		10042	1	-106,2				
		10049	1	-100,8				
		10050	1	-101,0				
		10053	1	-100,7				
		10056	1	-100,9				
		10057	1	-102,9				
		10058	1	-101,4				
		10080	1	-122,3				
		10082	1	-111,7				
	Average value			-115,8				

ELEM	ENTS (V 14.08)								
Testbjelke med skallelement									
LC: 50	025, Tendon force	ND	hine	7761 [141]					
	LC-title	INR	INKS	ZZOI [KN]					
5025	Creep until bridge	10001	1	-111,0					
	opening	10002	1	-111.9					
		10005	1	-110,2					
		10008	1	-110,1					
		10011	1	-112,2					
	1	10012	1	-112,9					
		10013	1	-113,0					
		10014	1	-112,6					
		10017	1	-109,3					
		10018	1	-110,9					
		10021	1	-110,8					
		10022	1	-113,0					
		10027	1	-202,1					
		10028	1	-127,2					
		10029	1	-253,9					
		10030	1	-147,2					
		10033	1	-112,6					
		10036	1	-106,9					
		10045	1	-105,7					
	1	10046	1	-107,5					
		10049	1	-104,3					
	1	10050	1	-103,6					
	1	10061	1	-104,1					
	1	10062	1	-103,3					
	1	10074	1	-127,3					
		10076	1	-117,0					
	Average value			-121.6					

Spennkrafttap som skyldes kryp og svinn etter 100 døgn:

Rett kabel							
$\Delta P_{krypsvinn100døgnaktiv}[kN]$	ΔP_{kryp} svinn 100 døgn passiv $[kN]$	$\Delta P_{kryp \ svinn \ 100 \ døgn \ gj.snitt}[kN]$					
-201,3	-247,1	-115,8					

Krum kabel							
$\Delta P_{krypsvinn100døgnaktiv}[kN]$	$\Delta P_{kryp \ svinn \ 100 \ døgn \ passiv}[kN]$	$\Delta P_{kryp \ svinn \ 100 \ døgn \ gj.snitt}[kN]$					
-202,1	-253,9	-121,6					

Spennkrafttap som skyldes kryp og svinn etter 100 år

Lasttilfellet 5028 gir spennkrafttap for krypintervallet som går fra 100 døgn til 100 år. For å finne totalt tap i spennkraft som skyldes kryp og svinn etter 100 år må tap fra krypintervallene for lasttilfellene 5025 og 5028 summeres. For spennkrafttap fra lasttilfelle 5028 se figur 8-49 og 8-50 samt tabell 8-7 og 8-8.

Figur 8–49 Rett kabel

Figur 8–50 Krum kabel

Tabell 8–7 Rett kabel

Tabell 8–8 Rett kabel

Sofis Eleme	TIK 2016 RESULTS - OUTP ENTS (V 14.08)	UT FOR	FINITE	E				
Testb	jelke med skallelement							
LC: 5028, Tendon force								
LC	LC-title	NR	NRS	ZZG1 [kN]				
5028	Creep after long time	10001	1	-149,5				
	CONSIGNATION OF A REAL PROPERTY OF A	10004	1	-149,4				
		10005	1	-149,5				
		10006	1	-149,4				
		10011	1	-148,6				
		10012	1	-148,8				
		10014	1	-149,0				
		10015	1	-149,2				
		10019	1	-148,2				
		10020	1	-148,4				
		10021	1	-149,5				
		10022	1	-150,4				
		10029	1	-234,1				
		10030	1	-174,1				
		10033	1	-265,6				
		10036	1	-183,7				
		10041	1	-157,9				
		10042	1	-150,7				
		10049	1	-147,7				
		10050	1	-148,0				
		10053	1	-147,3				
		10056	1	-146,9				
		10057	1	-147,5				
		10058	1	-146,9				
		10080	1	-164,1				
		10082	1	-154,6				
	Average value			-160.0				

SOFIET	K 2016 PESULTS OUTP	UT FOR					
FLEME	NTS (V 14.08)	UTTORI		-			
LLLIVIL	113 (14.00)						
lestbj	eike med skallelement						
LC: 5028, Tendon force							
LC	LC-title	NR	NRS	ZZG1 [kN]			
5028	Creep after long time	10001	1	-157,9			
	a data di aktor da bara a data da "bod 2535". Kanada da	10002	1	-158,6			
		10005	1	-157,2			
		10008	1	-156,5			
		10011	1	-158,2			
		10012	1	-159,0			
		10013	1	-159,3			
		10014	1	-159,1			
		10017	1	-155,5			
		10018	1	-157,0			
		10021	1	-156,1			
		10022	1	-156,6			
		10027	1	-234,7			
		10028	1	-174,2			
		10029	1	-271,1			
		10030	1	-188,9			
	1	10033	1	-158,1			
		10036	1	-151,4			
		10045	1	-152,1			
		10046	1	-153,8			
		10049	1	-150,5			
		10050	1	-149,3			
		10061	1	-148,6			
		10062	1	-148,5			
		10074	1	-169,4			
		10076	1	-160,3			
	Auguage velue			165 5			

Totalt spennkrafttap som skyldes kryp og svinn etter 100 år:

	Rett kabel	
$\Delta P_{kryp \ svinn \ 100 \ ar \ aktiv} [kN]$	$\Delta P_{kryp \ svinn \ 100 \ ar \ passiv}[kN]$	$\Delta P_{kryp \ svinn \ 100 \ ar \ gj.snitt}[kN]$
-201,3 + (-234,1) = -435,4	-247,1 + (-265,6) = -503,7	-115,8 + (-160,0) = -275,8

Krum kabel						
$\Delta P_{kryp\ svinn\ 100\ ar\ aktiv}\ [kN]$	$\Delta P_{kryp \ svinn \ 100 \ ar \ passiv}[kN]$	$\Delta P_{krypsvinn100angle rgj.snitt}[kN]$				
-202,1 + (-234,7) = -436,8	-253,9 + (-271,2) = -525,1	-121,6 + (-165,5) = -287,1				

8.6.4 Relaksasjon

Lavrelaksasjonsstål i klasse 2 i henhold til pkt.3.3.2(4) [5] blir automatisk aktivert i Sofistik når material for spennarmeringen velges. Sofistik utfører analyser av tap i spennkraft på grunn av relaksasjon med modulen CSM. Se figur 8–51 for parametere for relaksasjon i Sofistik. Siden relaksasjon påvirkes av kryp og svinn, er resultater lest av fra samme modell som for kryp og svinn. I modellen er ikke egenvekt og flatelast med.

					Stages Groups Loads Control Parame	ters Text Output	
					Name	Value	Change defau
					Dead load activation	Automatic activation	[[[]]]
					Module for creep & shrinkage	AQB (only for beam elements)	100
Reinforcing and prestressing steel					Creep & shrinkage for beam elements	standard creeping	E
Allowed stress range:	a-dyn		160.87	[MPa]	Use creep & shrinkage according	Project design code	100
					Tendon relaxation	Automatic activation	100 C
Relative bond strength:			0.750	[•]	Formwork placement	Tangential cantilever erection	0
Bond coefficient for crack width EN 1992			1.600	[F.1	Calculate cast-in-one loadcases for comparison	No	1
	-		1.000		Stress results for all stages	No	
Coefficient of relaxation (0.55 ft):		EN-1992 2	low relaxation eq.3.29 💌	[%]	Type of analysis	Linear	100
Confident of colour tion (0.2.0).				Ter/1	Material nonlinearities	Inactive	(T)
Coempent of relaxabon (0.7 ft):			2,500	[70]	Stiffness evolution of young concrete	Automatic activation	1000

Figur 8–51 Relaksasjon i Sofistik

Spennkrafttap på grunn av relaksasjon etter 100 døgn

Tap i spennkraft på grunn av relaksasjon etter 100 døgn leses av for lasttilfellet 5025 med *Wingraf* og *Result viewer*, se figur 8-52 og 8-53 samt tabell 8-9 og 8-11.

Figur 8–52 Rett kabel

Tabell 8–9 Rett kabel

SOFIS	TIK 2016 RESULTS - OUT	PUT FOR	FINITE	1				
ELEIM	EN15 (V 14.08)							
Testb	jelke med skallelement							
LC: 5025, Accumulated relaxation of tendons								
LC	LC-title	NR	NRS	RELZ				
5025	Creep until bridge	10001	1	0,028				
	opening	10002	1	0,028				
	,	10005	1	0,029				
		10008	1	0,028				
		10011	1	0,028				
		10012	1	0,028				
		10013	1	0,028				
		10014	1	0,028				
		10017	1	0,028				
		10018	1	0,028				
		10021	1	0,028				
		10022	1	0,028				
		10027	1	0,028				
		10028	1	0,028				
		10029	1	0,028				
		10030	1	0,028				
		10033	1	0,029				
		10036	1	0,029				
		10045	1	0,028				
		10046	1	0,028				
		10049	1	0,028				
		10050	1	0,028				
		10061	1	0,028				
		10062	1	0,028				
		10074	1	0,029				
		10076	1	0,029				
	Average value			0.028				

Fiaur 8–53 Krum kabel

Tabell 8–10 krum kabel

				-
SUFIST	IK 2016 RESULTS - OUTPU	JI FOR I	INITE	
ELEME	N15 (V 14.08)			
Testbj	elke med skallelement			
LC: 50	25, Accumulated relaxati	on of t	endor	IS
LC	LC-title	NR	NRS	RELZ
5025	Creep until bridge	10001	1	0,029
	opening	10004	1	0,029
		10005	1	0,030
		10006	1	0,030
		10011	1	0,029
		10012	1	0,029
		10014	1	0,029
		10015	1	0,029
		10019	1	0,028
		10020	1	0,028
		10021	1	0,030
		10022	1	0,030
		10029	1	0,028
		10030	1	0,028
		10033	1	0,030
		10036	1	0,030
		10041	1	0,028
		10042	1	0,028
		10049	1	0,028
		10050	1	0,028
		10053	1	0,028
		10056	1	0,028
		10057	1	0,028
		10058	1	0,028
		10080	1	0,030
		10082	1	0,030
	Average value			0,029

	Rett kabel	
$\Delta P_{relaksasjon \ 100 \ døgn \ aktiv} \ [kN]$	$\Delta P_{relaksasjon \ 100 \ d ilde{g}n \ passiv}[kN]$	$\Delta P_{relaksasjon \ 100 \ døgn \ gj.snitt}[kN]$
$-2,75\% \cdot 2509 = -69,0$	$-2,86\% \cdot 2509 = -71,8$	$-2,8\% \cdot 2509 = -70,3$

	Krum kabel	
$\Delta P_{relaksasjon \ 100 \ d ilde{g}n \ aktiv} [kN]$	$\Delta P_{relaksasjon \ 100 \ d ilde{g}n \ passiv}[kN]$	$\Delta P_{relaksasjon \ 100 \ døgn \ gj.snitt}[kN]$
$-2,75\% \cdot 2509 = -69,0$	$-3,02\% \cdot 2509 = -75,8$	$-2,9\% \cdot 2509 = -72,8$

Spennkrafttap på grunn av relaksasjon etter 100 år

Lasttilfellet 5028 gir spennkrafttap for krypintervallet som går fra 100 døgn til 100 år. For å finne totalt tap etter 100 år i spennkraft som skyldes relaksasjon må tap fra krypintervallene for lasttilfellene 5025 og 5028 summeres. For spennkrafttap fra lasttilfelle 5028 se figur 8-54 og 8-55 samt tabell 8-11 og 8-12.

Figur 8–54 Rett kabel

Figur 8–55 Krum kabel

Tabell 8–11 Rett kabel

SOFIST ELEME	TIK 2016 RESULTS - OUTP ENTS (V 14.08)	UT FOR	FINITE	E	
Testbj	elke med skallelement				
LC: 5028, Accumulated relaxation of tendons					
LC	LC-title	NR	NRS	RELZ	
5028	Creep after long time	10001	1	0,029	
		10002	1	0,029	
		10005	1	0,029	
	1	10008	1	0,029	
		10011	1	0,029	
	1	10012	1	0,029	
	1	10013	1	0,028	
		10014	1	0,028	
	1	10017	1	0,029	
		10018	1	0,029	
		10021	1	0,028	
		10022	1	0,028	
		10027	1	0,028	
		10028	1	0,028	
		10029	1	0,028	
		10030	1	0,028	
	1	10033	1	0,018	
	1	10036	1	0,026	
	1	10045	1	0,020	
	1	10046	1	0,026	
	1	10049	1	0,027	
	1	10050	1	0,027	
	1	10061	1	0,028	
	1	10062	1	0,028	
	1	10074	1	0,028	
		10076	1	0,028	
	Average value	552	00	0.027	

SOFIST ELEME	NTS (V 14.08)	UT FOR	FINITE	Ξ
Testbj	elke med skallelement			
LC: 50	28, Accumulated relaxat:	ion of t	endor	is
LC	LC-title	NR	NRS	RELZ
5028	Creep after long time	10001	1	0,030
		10004	1	0,030
		10005	1	0,030
		10006	1	0,030
		10011	1	0,029
		10012	1	0,029
		10014	1	0,029
		10015	1	0,029
		10019	1	0,028
		10020	1	0,028
		10021	1	0,020
		10022	1	0,029
		10029	1	0,028
		10030	1	0,028
		10033	1	0,028
		10036	1	0,028
		10041	1	0,019
		10042	1	0,028
		10049	1	0,020
		10050	1	0,026
		10053	1	0,027
		10056	1	0,027
		10057	1	0,028
		10058	1	0,028
		10080	1	0,029
_		10082	1	0,030
	Average value			0,028

Totalt spennkrafttap på grunn av relaksasjon etter 100 år:

	Rett kabel	
$\Delta P_{relaksasjon \ 100 \ ar \ aktiv} [kN]$	$\Delta P_{relaksasjon \ 100 \ ar \ passiv}[kN]$	$\Delta P_{relaksasjon \ 100 \ ar \ gj.snitt}[kN]$
$-69,0 + (-1,99\%) \cdot 2509$	-71,8 + (-1,77%) · 2509	-70,3 + (-2,7% · 2509)
= -118,9	= -116,2	= -138,0

	Krum kabel	
$\Delta P_{relaksasjon \ 100 \ ar \ aktiv} [kN]$	$\Delta P_{relaksasjon \ 100 \ { m ar} \ passiv}[kN]$	$\Delta P_{relaksasjon \ 100 \ ar \ gj.snitt}[kN]$
$-69,0 + (-1,98\%) \cdot 2509$	-75,8 + (-1,90%) · 2509	-72,8 + (-2,8% · 2509)
= -118,7	= -123,5	= -143,1

Tabell 8–12 Krum kabel

9 Verifikasjon av modell i Sofistik

Det er utført håndberegninger for egenvekt og flatelast. Det er også utført håndberegninger av kryp, svinn, umiddelbare spennkrafttap og spennkrafttap som skyldes tidsavhengige effekter for tidspunktene 100 døgn og 100 år.

9.1 Egenvekt

Se håndberegninger «Vedlegg I: Testbjelke Lastvirkninger egenvekt og flatelast» og resultat fra Sofistik under kap.8.5.1.

	Bøyemoment	Opplagerkraft
	M _{max} [kNm]	P1z [kN]
Håndberegning	312,5	125
Sofistik	310,5	121,5
Avvik	2	3,5
Avvik i %	0,6%	2,8%

Tabell 9-1 Sammenligning av bøyemoment og opplagerkrefter som skyldes egenvekt

Kommentar: Håndberegninger stemmer godt overens med resultater fra Sofistik.

9.2 Permanent flatelast

Se håndberegninger «Vedlegg I: Testbjelke Lastvirkninger egenvekt og flatelast» og resultater fra Sofistik under kap.8.5.2.

	Bøyemoment	Opplagerkraft
	M _{max} [kNm]	P1z [kN]
Håndberegning	125	50
Sofistik	125	48,9
Avvik	0	0,1
Avvik i %	0	0,2%

Tabell 9-2 Sammenligning av bøyemoment og opplagerkrefter som skyldes flatelast

Kommentar: Håndberegninger stemmer godt overens med resultater fra Sofistik.

9.3 Kryp og svinn

Se håndberegninger i kap.6.2 og 6.3 samt i «Vedlegg H: Testbjelke Kryp svinn relaksasjon Krum kabel» og resultat fra Sofistik under kap.8.5.4. Tabell 9–3 viser aksiell forskyvning i underkant av bjelken på grunn av kryp og svinn i betongen.

	Rett kabel		Krum kabel		
	100 døgn	100 år	100 døgn	100 år	
	u _x [mm]	u _x [mm]	u _x [mm]	u _x [mm]	
Håndberegning	-1,82	-4,17	-2,24	-5,08	
Sofistik	-1,74	-4,17	-2,47	-5,19	
Avvik	-0,08	0	0,23	0,11	
Avvik i %	4,4%	0%	-10,3%	-2,2%	

Tabell 9–3 Sammenligning forskyvning i glidelager som skyldes kryp og svinn

Kommentar: Håndberegninger stemmer godt overens med resultater fra Sofistik. Det største avviket er for krum kabel etter 100 døgn (10%)

Diskusjon av resultatene pga kryp og svinn

Ser nærmere på Sofistik-modellene for å finne ut hvilke parametere og beregningsmetoder som ligger til grunn for kryp- og svinnanalysene i Sofistik. Lager kopier av modellen og endrer oppsett og parametere for kryp- og svinnanalyser som følger.

Det ser ut som om kabeleksentrisiteten for krum kabel som benyttes i Sofistik er mindre enn den som benyttes i håndberegningene, se figur 8–23 i kap.8.5.3. Ser at største eksentrisitet i kabelrøret ligger inne med standardverdi på 20 mm i *Prestressing System*. Endrer denne til 0 mm for at den skal samsvare med eksentrisiteten som er benyttet i håndberegningene, se figur 9–1.

mber Company	Code			Tendon	
1 User Defined	+ ETA		•	CONA CMI BT 1206-150 1860	
Analysis Construction					
ilp at active anchor:	6.000	[mm]	Inner diameter of duct:	80.00) [mn
lip at coupler:	0.0	[mm]	Outer diameter of duct:	90.00	[mn
lip at passive anchor:	0.0	[mm]	Minimum radius of curvature:	7.000	[m]
oss at active anchor:	0.900	[%]	Wobble coefficient:	0.286	[°/r
oss at coupler:	0.0	[%]	Wobble coefficient (external prestress):	0.0) [°/r
oss at passive anchor:	0.0	[%]	Friction coefficient (stressing):	0.130	[-]
traight length at active anchor:	100.0	[cm]	Friction coefficient (release):	0.130	[-]
traight length at coupler:	0.0	[cm]	Maximum eccentricity in the duct:	0.0	[mn
straight length at passive anchor:	100.0	[cm]			

Figur 9–1 Innstillinger i Prestressing system

Ser i *Construction stage manager (CSM)* at kryp- og svinnanalysene ligger inne med *standard creeping*, se figur 9-2.

tages Groups Loads Control Param	eters	Text Output	
Name	Value	2	Change default
Dead load activation		Automatic activation	
Module for creep & shrinkage	ASE	(for beam and guad elements)	
Creep & shrinkage for beam elements		standard creeping	
Use creep & shrinkage according		Project design code	
Tendon relaxation		Automatic activation	
Formwork placement	1	angential cantilever erection	
Calculate cast-in-one loadcases for comparison	n	No	
Stress results for all stages		No	
Type of analysis		Linear	
Material nonlinearities		Inactive	
Stiffness evolution of young concrete		Automatic activation	

Figur 9–2 Innstillinger i Construction Stage Manager

I følge manualen tilhørende *CSM* finnes det to hovedmodeller for kryp og svinn i Sofistik; *standard creeping* og *realistic creeping*. *Realistic creeping* tar hensyn til at kryp- og svinneffekter fra laster som endrer seg over tid. *Standard creeping* tar ikke hensyn til dette og benytter like kryptall for alle krypintervallene. Genererer *Teddy-fil* fra *CSM* og endrer til *realistic creeping* i *Teddy-fila*, se figur 9-3.

Standardverdi av effektiv tverrsnittstykkelse i *CSM* er $1,4 \cdot h$ som blir 700 mm for testbjelken. I håndberegningene benyttes effektiv høyde på 400 mm. Dette endres i *Teddy*, se figur 9-3.

I følge manualen tilhørende *CSM* beregner ikke Sofistik svinntøyning i betongen før oppspenning dersom det ikke defineres et krypintervall for dette. I håndberegningene beregnes svinntøyning fra tidspunktet da betongen støpes. Oppretter derfor ett krypintervall før oppspenning med varighet 6,9 døgn, se figur 9–3.

Figur 9-3 CSM med Teddy

Følgende innstillinger i figur 9-3 er markert:

RCRE = realistisk krypmodell

DEFQ = effektiv tverrsnittstykkelse

CS = byggetrinn i CSM, angir hvilket nummer som inngår i lasttilfellet for det gjeldende

krypintervallet

NCRE = antall krypintervall

For å få kryp- og svinnanalysene i Sofistik så like håndberegningene som mulig, flyttes

opplagrene fra underkant bjelke til midt i tverrsnittet, se figur 9-4.

Figur 9–4 Opplager midt i tverrsnitt

Kjører kryp- og svinnanalyser i Sofistik for de nye modellene, resultater er gitt i tabell 9-4

Tabell 9-4 Rett kabel: Forskyvning pga kryp og svinn

og 9-5.

ELEMENTS (V 14.08) Testbjelke med skallelement LC: 4025, Nodal displacement				ELEMENTS (V Testbjelke med LC: 4028, Noda	
				4028	Creep
4025	Creep and shrinkage	2	-2,78		after
	until bridge opening	4	-2,26		
		6	-2,26		
		1000	-2,30		
		1001	-2,35		
		1002	-2,43		
		1003	-2,43		
		1004	-2,35		
		1005	-2,30		
	Average value		-2,38		Avera

Testbj LC: 40	elke med skallelement 28, Nodal displacement		
LC	LC-title	Number	u-x [mm]
4028	Creep and shrinkage	2	-5,10
	after long time	4	-4,41
		6	-4,41
		1000	-4,46
		1001	-4,54
		1002	-4,64
		1003	-4,64
		1004	-4,54
		1005	-4,47
	Average value	•	-4,58

Tabell 9–5 Krum kabel: Forskyvning pga kryp og svinn

SOFIST ELEME	TIK 2016 RESULTS - OUTPL ENTS (V 14.08)	IT FOR FINI	TE	
Testbjelke med skallelement LC: 4025, Nodal displacement				
LC	LC-title	Number	u-x [mm]	
4025	Creep and shrinkage until bridge opening	2	-2,79	
		4	-2,26	
		6	-2,26	
		1000	-2,30	
		1001	-2,36	
		1002	-2,44	
		1003	-2,43	
		1004	-2,36	
		1005	-2,30	
	Average value		-2,39	

SOFIST ELEME	TIK 2016 RESULTS - OUTPU ENTS (V 14.08)	JT FOR FINI	TE
Testbj LC: 40	elke med skallelement 28, Nodal displacement		
LC	LC-title	Number	u-x [mm]
4028	Creep and shrinkage	2	-5,11
	after long time	4	-4,42
		6	-4,41
		1000	-4,47
		1001	-4,54
		1002	-4,65
		1003	-4,64
		1004	-4,54
		1005	-4,47
	Average value		-4,58

Beregning av kryptøyning i Sofistik utføres ved å multiplisere kryptallet med korttidstøyningen. Denne metoden er gitt i eksempel i *Vertification Manual* i Sofistik. Dette er en av flere metoder som blir benyttet for krypberegning. I håndberegningene trekkes korttidstøyningen fra langtidstøyningen for å finne kryptøyning. Denne metoden er gitt i [25]. Sammenligning av de to metodene er vist i figur 9–5 og tabell 9–6.

Figur 9-5 Beregningsmetoder for kryptøyning

Forklaring til figur 9–5: Håndberegninger trekker korttidstøyning (håndberegninger 1) fra langtidstøyning (håndberegninger 2). Sofistik finner først korttidstøyning (sofistik 1), multipliserer deretter kryptallet med korttidstøyningen (sofistik 2).

Eksempelet viser også at Sofistik benytter en annen E-modul enn håndberegningene. Korttids E-modulen i Sofistik er 28 døgns E-modul for betongen korrigert for spennarmeringens bidrag til tverrsnittets stivhet, se E_{cs} i tabell 9–6. Dette tilsvarer den vanlige metoden med transformert betongtverrsnitt som er benyttet i håndberegningene.

	ε _{cc}
Håndberegninger	$\varepsilon_{cL} - \varepsilon_{c0} = \frac{\sigma_{cL}}{E_{cL}} - \frac{\sigma_{c0}}{E_{c0}}$
Sofistik	$\varphi \cdot \varepsilon_{c0} = \varphi \cdot \frac{\sigma_c}{E_{cs}}$

Tabell 9–6 Beregningsmetoder for kryptøyning

Der $\varepsilon_{cL} =$ langtidstøyning benyttet i håndberegninger

 $\varepsilon_{c0} =$ korttidstøyning benyttet i håndberegninger og Sofistik

 $\sigma_{cL} =$ langtidsspenning benyttet i håndberegninger

 $\sigma_{c0} = korttidsspenning benyttet i håndberegninger$

 E_{cL} = langtids E-modul benyttet i håndberegninger

 $E_{c0} =$ korttids E-modul benyttet i håndberegninger

 $\varphi = kryptall benyttet i Sofistik$

 $\sigma_c =$ korttidsspenning benyttet i Sofistik

 $E_{cs} = E_{cm} + \frac{A_s}{A_c} \cdot E_s =$ korttids E-modul benyttet i Sofistik

I følge CSM –manualen utfører Sofistik integrasjon av betongspenninger fra hele tverrsnittet over lengden av bjelken i krypanalysene. Når kabelen er rett og ligger midt i tverrsnittet blir momentet som virker om det armerte tverrsnittets tyngdepunktsakse lik null. Spenningene i bjelken er konstante over tverrsnittet og kun gitt av aksialkraften. Hvor i tverrsnittet man velger å benytte spenninger til beregninger av kryptøyning har ikke noe å si for bjelke med rett kabel.

For bjelke med krum kabel har det derimot betydning hvilke spenninger man benytter for beregning av kryptøyning i betongen. Endrer håndberegningene for krum kabel til å beregne spenninger tilnærmet slik Sofistik gjør det. Finner middelspenninger i overkant, ved spennarmeringen og i underkant langs bjelken. Beregner deretter ut tøyninger i betongen i overkant, ved spennarmeringen og i underkant og midler disse. Kryptøyning i opplager midt i tverrsnittet finnes ved å trekke midlere korttidstøyning fra midlere langtidstøyning.

Det viser seg at Sofistik benytter oppspenningskraft som er fratrukket umiddelbare tap i analysen av kryptøyning og relaksasjon. Dette blir bekreftet av brukerstøtteavdelingen til Sofistik, se «Vedlegg R: Svar fra Sofistik angående spennkraft i analyse av langtidseffekter». Spennkraften i håndberegningene justeres derfor etter umiddelbare tap i spennkraft, se «Vedlegg J: TEST Testbjelke Kryp svinn Rett kabel Modell med real creep» og «Vedlegg K: TEST Testbjelke Kryp svinn Krum kabel Modell med real creep».

	Rett kabel		Krum kabel		
	100 døgn	100 år	100 døgn	100 år	
	u _x [mm]	u _x [mm]	u _x [mm]	u _x [mm]	
Håndberegning	-1,77	-4,07	-1,81	-4,15	
Sofistik	-2,38	-4,58	-2,39	-4,58	
Avvik	0,61	0,51	0,58	0,43	
Avvik i %	-34,5%	-12,5%	-32,0%	-10,4%	

Tabell 9–7 Sammenligning forskyvning midt i tverrsnitt som skyldes kryp og svinn

Kommentar: Avvikene blir større når spennkraften i håndberegningene justeres for umiddelbare tap og det benyttes middelverdi av betongspenninger som integreres over lengden av bjelken for krum kabel. Sammenligningen er utført med Sofistik-modeller der opplagrene er flyttet til midten av tverrsnittet, kabel ligger sentrisk i kabelrøret, verdi av effektiv tverrsnittstykkelse er lik håndberegningene, svinntøyning i betongen før oppspenning er med og analyser utføres med *realistic creeping*.

Selv om avvikene i tabell 9–7 er større enn avvikene i tabell 9–3, er de basert på en Sofistikmodell som er mer lik håndberegningene og håndberegninger som regner spenninger på tilsvarende måte som Sofistik. Avvikene i tabell 9–7 er små, men på grunn av at forskyvningen er liten etter 100 døgn blir avvik i prosent betydelig.

9.4 Spennkraft før oppspenning og låsing

Se håndberegninger i «Vedlegg D: Spennkraft». Under er det sett nærmere på spenning i kabelen umiddelbart etter oppspenning fra kap.8.5.3.

Figur 9-6 Rett kabel: Spenning i kabel umiddelbart etter oppspenning

Forklaring til figur 9–6	$\sigma [N/mm^2]$	$P_0[kN]$
Eurokode 2 pkt.5.10.2.1(1): Største oppspenningskraft	1476	2656,8
Sofistik: Største oppspenningskraft	0,953 · 1476 = 1406	2530,8
Eurokode 2 pkt.5.10.3(2): Største forspenningskraft etter	0,944 · 1476 = 1393	2507,4
oppspenning og låsing		
Sofistik: Forspenningskraft etter oppspenning og låsing i	$0,865 \cdot 1476 = 1277$	2298,6
aktiv ende		
Sofistik: Forspenningskraft etter oppspenning og låsing i	$0,873 \cdot 1476 = 1289$	2319,4
passiv ende		

Figur 9–7 Krum kabel: Spenning i kabel umiddelbart etter oppspenning

Forklaring til figur 9–7	$\sigma [N/mm^2]$	$P_0[kN]$
Eurokode 2 pkt.5.10.2.1(1): Største oppspenningskraft P_{max}	1476	2656,8
Sofistik: Største oppspenningskraft P _{max}	$0,961 \cdot 1476$ = 1418	2553,2
Eurokode 2 pkt.5.10.3(2): Største forspenningskraft etter oppspenning og låsing <i>P</i> _{m0}	0,944 · 1476 = 1393	2507,4
Sofistik: Forspenningskraft etter oppspenning og låsing i aktiv ende	0,865 · 1476 = 1277	2298,6
Sofistik: Forspenningskraft etter oppspenning og låsing i passiv ende	$0,881 \cdot 1476$ = 1300	2340,6

Ser av figur 9–6 og 9–7 at Sofistik regner umiddelbare tap i spennkraft fra oppspenningskraft på 2530,8kN for rett kabel og 2553,2kN for krum kabel. Sammenligning med håndberegninger av spennkraft før oppspenning og låsing er utført i tabell 9–8.

	P _{max} [kN]				
	Rett kabel	Krum kabel			
Håndberegning	2657	2657			
Sofistik	2530,8	2553,2			
Avvik	126,2	103,8			
Avvik i %	4,7%	3,9%			

Tabell 9–8 Sammenligning av største spennkraft før oppspenning og låsing

Kommentar: Det er avvik mellom håndberegninger og resultater fra Sofistik. Dette tyder på at Sofistik benytter lavere oppspenningskraft enn håndberegningene. Utfører testing for å finne ut hvilken oppspenningskraft Sofistik legger til grunn for sine analyser.

I henhold til [10] og pkt.5.10.2.1 [5] er største oppspenningskraft:

 $P_{max} = A_p \cdot \sigma_{max}$

der $\sigma_{max} = \min(0.8 \cdot f_{pk}, 0.9 \cdot f_{p0,1k})$

 $f_{pk} = 1860 \text{MPa}$

 $f_{p0,1k} = 1640$ MPa

Dette gir:

$$P_{max} = A_p \cdot 0.9 \cdot f_{p0,1k}$$

I dette tilfellet gir det en oppspenningskraft på 2657kN. Denne krafta ble lagt inn i Sofistik som «prestressing force P0,max» ved definering av spennsystem.

Endrer umiddelbare tap

Lager en kopi av modellen med rett kabel og endrer umiddelbare tap til 0.

	Analysis Construction				
	Slp at active anchor:	0 [mm]	Inner diameter of duct:	80.00	[mn
	Slip at coupler:	[mm] 0	Outer diameter of duct:	90.00	[m
	Slp at passive anchor:	0 [mm]	Minimum radius of curvature:	7.000	[m]
	Loss at coupler: 0 [%		Wobble coefficient:	0	[°/m]
9–8 Umiddelbare tap = 0			Wobble coefficient (external prestress):	0	
	Loss at passive anchor:	0 [%]	Friction coefficient (stressing):	0	[.]
Analysis Construction			Friction coefficient (release):	0	[-]
			the second second second second second		In
Steel: 3 Y 1860 (EN 1992) 🔻 🖽 🗋	Prestressing force P0,max:	2657 [kW]	Maximum eccentricity in the duct:	20.00	
Steel: 3 Y 1860 (EN 1992) Image: The state of the st	Prestressing force P0,max: Area:	2657 [kV] 1800 [mm ²]	Maximum eccentricity in the duct:	20.00	- Da
Steel: 3.Y 1860 (BN 1992) Image: Comparison of the strength: 195000 [N]mm7] Yield strength: 1640 [N]mm7]	Area: Number of strands:	2657 [i41] 1800 [mm ⁻⁷] 12	Maximum eccentritoty in the duct:	20.00	

Kjører analyser og får følgende resultat:

Figur 9–9 Rett kabel: Spennkraft i kabel umiddelbart etter oppspenning

Figur 9–10 Rett kabel: Spenning i kabel umiddelbart etter oppspenning

oppspenning:

Kommentar: Uten tap umiddelbart etter oppspenning blir spennkraft lik 2509kN og spenning i kabelen lik 1393N/mm².

Endre oppspenningskraft

Endrer *prestressing force P0,max* til 4000kN. Beholder umiddelbare tap lik 0.

Steel:	3 Y 1860 (EN 1992) 🔹 🛄		Prestressing force P0,max:	4000	[kN]
Young's modulus:	195000	[N/mm²]	Area:	1800	[mm²]
Yield strength:	1640	[N/mm²]	Number of strands:	12	
Tensile strength:	1860	[N/mm ²]			

Figur 9–11 Prestressing force P0,max = 4000kN

Kjører analyser og får følgende resultat for spennkraft i kabel umiddelbart etter

The second secon								
10	 	_	_	_	_	 		_
ø								
(B)		22			N.3	 100		
- Color 10	0			10			10	- 12

Figur 9–12 Rett kabel: Spennkraft i kabel umiddelbart etter oppspenning

Figur 9–13 Rett kabel: Spenning i kabel umiddelbart etter oppspenning

Kommentar: Uten tap umiddelbart etter oppspenning blir spennkraft lik 2509kN og spenning i kabelen lik 1393N/mm². Kraften og spenningen er den samme som før *prestressing force* ble endret til 4000kN.

Oppspenningskraft lik 4000kN med tap

Beholder *prestressing force PO,max* lik 4000kN. Innfører umiddelbare igjen. Kjører analyser og får følgende resultat:

Figur 9–14 Rett kabel: Spennkraft i kabel umiddelbart etter oppspenning

Figur 9–15 Rett kabel: Spenning i kabel umiddelbart etter oppspenning

Kommentar: Med tap umiddelbart etter oppspenning blir spennkraft i aktiv ende lik 2299kN og passiv ende lik 2319kN. Spenning i aktiv ende før tap blir lik 1406N/mm² og i passiv ende lik 1289N/mm². Dette er det samme som for den opprinnelige testbjelken med rett kabel og oppspenningskraft 2657kN.

Konklusjon

Resultat fra forsøkene viser at Sofistik overstyrer oppspenningskraften som blir lagt inn manuelt i programmet. Sofistik benytter oppspenningskraft som er lavere enn den som vanligvis benyttes i Norge etter [10] og [5]. Oppspenningskraften i Sofistik er nærmere P_{m0} i pkt.5.10.3(2) [5], der P_{m0} betegnes som største forspenningskraft etter oppspenning og låsing:

 $P_{m0} = A_p \cdot \sigma_{pm0}$

der $\sigma_{pm0} = \min(0.75 \cdot f_{pk}, 0.85 \cdot f_{p0,1k})$

Dette gir:

$$P_{m0} = A_p \cdot 0.85 \cdot f_{p0,1k} = 1800mm^2 \cdot 0.85 \cdot 1640 \frac{N}{mm^2} = 2509.2kN$$

Velger å bruke lik oppspenningskraft som Sofistik i håndberegninger spennkrafttap og kryp der $P_{max} = 2530,8$ kN for rett kabel og $P_{max} = 2553,2$ kN for krum kabel. Hvilken betydning det har at Sofistik benytter lavere spennkraft enn kabelen i praksis spennes opp med gjennomgås i kap.9.6.3.

Oppspenningstilstand

I oppspenningstilstanden vil kun deler av egenvekten være påført siden brua blir holdt oppe av forskalingen. Hvor mye av egenvekten som påføres er avhengig av stillasstype [20]. Når forspenningen virker alene og ligger i betongtrykksonen er dette ugunstig [25]. Se illustrasjon i figur 9–16.

Figur 9-16 Oppspenningstilstand. Forspenning virker alene

I Sofistik betraktes forspenningen som en ytre last. Siden forspenningen virker ugunstig i oppspenningstilstand vil den i beregninger av dimensjonerende lastvirkninger få lastfaktor 1,1 iht. NA.2.4.2.2(1) [5]. Når Sofistik regner med lavere spennkraft i Sofistik enn det kabelen spennes opp med i virkeligheten vil dimensjonerende lastvirkninger bli mindre.

Kapasiteten til tverrsnittet kontrolleres i ULS. Spennarmeringen og slakkarmeringen i underkant ligger i betongtrykksonen og slakkarmeringen i overkant ligger i betongstrekksonen. Se figur 9–17.

Figur 9–17 Tverrsnitt i oppspenningstilstand. Forspenning virker alene.

Figur hentet fra [25]

Man antar at armeringen på trykksiden har en gitt tøyning og at armeringen på strekksiden flyter. De indre kreftene i tverrsnittet er avhengig av tøyningstilstanden. De ytre kreftene er dimensjonerende aksialkraft og moment. Det kontrolleres om tøyningstilstanden gir likevekt i tverrsnittet. Prosessen itereres inntil det er likevekt mellom indre og ytre krefter. Når likevekt er oppnådd er kapasiteten til tverrsnittet gitt av de indre kreftene.

Siden betongen ikke har oppnådd full trykkfasthet under oppspenningen og forspenningen ikke bidrar til å øke kapasiteten, er det større sannsynlighet for at kapasiteten til tverrsnittet overskrides og betongen går til brudd dersom Sofistik benytter lavere spennkraft enn det kabelen spennes opp med i virkeligheten.

For testbjelken og andre bjelke-platebruer med massive tverrsnitt vil kapasiteten til tverrsnittet mest sannsynlig være tilstrekkelig under oppspenning. Men for en kassebru vil aksialkreftene som påføres være store i forhold til tverrsnittsarealet. Dette gjør at brua får høye betongtrykkspenninger og det er større fare for at kapasiteten overskrides i oppspenningstilstand.

Det kan kompenseres for at Sofistik regner med lavere oppspenningskraft ved å skalere opp ugunstig lastfaktor for forspenningen med en faktor:

 $\frac{k_2}{k_8} = \frac{0.9}{0.85} = 1,059$, der k_2 og k_8 er verdier iht. NA.5.10.2.1 [5] og 5.10.3(2) [5].

Slik vil forspenningen virke ugunstigere i oppspenningstilstand, dimensjonerende lastvirkninger i brua blir større og mer lik virkeligheten.

Ved kontroll av betongens trykkapasitet og bestemmelse av spaltestrekk- og randstrekkarmering i området bak kabelforankring iht. kap.6.7 og 6.5.3 [5] benyttes reell oppspenningskraft $1,1 \cdot P_{max}$. Kontrollen utføres ved hjelp av håndberegninger. Med skallelementprogram som Sofistik kan man se hvor det er strekkspenninger i betongen og det bør legges spaltestrekk- og randstrekkarmering.

Ferdigtilstand

Når forskalingen rives virker forspenningen sammen med egenvekt. Etter hvert blir også trafikklast og andre laster påført brua. Når lastene virker sammen vil forspenningen ligge i betongstrekksonen og virke gunstig.

Ved beregning av dimensjonerende lastvirkninger i Sofistik vil spennarmeringen få lastfaktor 0,9 iht. NA.2.4.2.2(1) [5] for ULS og SLS. På grunn av at Sofistik benytter lavere oppspenningskraft vil forspenningen virke mindre gunstig og lastvirkningene bli større enn i virkeligheten. Ved kapasitetskontroll i ULS tøyes spennarmeringen til den flyter (stadium 3). Dimensjonerende kapasitet for spennarmeringen er $f_{pd} = f_{p0,1k}/\gamma_s = f_{p0,1k}/1,15$. Siden spennarmeringen flyter er den ikke avhengig av oppspenningskraften, se figur 9–13.

Figur 9–18 Spenning-tøyningsdiagram for spennstål. Figur hentet fra [5]

Når forspenningen virker gunstig skal det ikke kompenseres for at Sofistik regner med lavere oppspenningskraft ved å skalere opp lastfaktoren til forspenningen. Lastvirkningene er større i Sofistik enn i virkeligheten for ferdigtilstand. Kapasitetsberegninger vil derfor bli konservative og til sikker side ved bruk av lastvirkninger fra Sofistik.

Ved kontroll av betongens trykkapasitet og bestemmelse av spaltestrekk- og randstrekkarmering i ULS i området bak kabelforankring iht. kap.6.7 og 6.5.3 [5] benyttes reell oppspenningskraft $0.9 \cdot P_{max}$.

Betongens trykkspenning i SLS karakteristisk skal ikke være større enn $0.6 \cdot f_{ck}$ der f_{ck} er karakteristisk trykkfasthet for betongen iht. 7.2(2) [5]. Dette gjelder primært for overflater med eksponeringsklasse XD eller XS [20]. Slakkarmeringens spenning i SLS karakteristisk skal ikke være større enn $0.8 \cdot f_{yk}$ der f_{yk} er karakteristisk flytegrense for slakkarmeringen iht. 7.2(5) [5]. Spennarmeringens midlere spenning skal ikke være større enn $0.75 \cdot f_{pk}$ der f_{pk} er karakteristisk strekkfasthet for spennstålet iht. 7.2(5) [5].

Dimensjonerende lastvirkninger inngår i rissviddeberegninger i SLS. Når Sofistik benytter lavere spennkraft enn det som faktisk påføres spennarmeringen i virkeligheten vil dette føre til større rissvidder. Rissviddekontroller utføres ved håndberegning og vil derfor være konservative og til sikker side.

Nedbøyningsberegninger i SLS bør være så realistiske som mulig slik at eventuell overhøyde som beregnes og legges inn i forskalingen fører til at brua får den overhøyden den skal ha over tid. Det er derfor ikke lurt å benytte lastfaktor 0,9 for forspenningen som vil gi høyere lastvirkninger enn det er i virkeligheten. Når Sofistik benytter lavere spennkraft enn det som faktisk påføres spennarmeringen i virkeligheten vil dette føre til større nedbøyning. Kontroll av nedbøyning vil derfor være konservativ og til sikker side.

9.5 Primær-effekter

Se teori under kap.6.1 og håndberegninger i «Vedlegg E: Testbjelke Primær effekter» og resultat fra Sofistik for rett kabel i kap.8.5.3.

Siden det i kap.9.3 ble avdekket at den krumme spennkabelen ikke lå sentrisk i kabelrøret i analysen i Sofistik, er dette rettet opp og nye primærmoment fra spennarmeringen i Sofistik er gitt i figur 9–19.

Figur 9–19 Krum kabel: Primærmoment

Gjennomsnittsverdi på bøyemoment i felt for krum kabel:

 $M_{xx,max} = \frac{\frac{130,0 + 131,4 + 130,1}{3kNm}}{m} \cdot 2m = 261kNm$

	Rett kabel	Krum kabel
	M _{max} [kNm]	M _{max} [kNm]
Håndberegning	0	260
Sofistik	1,8	261
Avvik	1,8	1
Avvik i %	_	0%

Tabell 9–9 Sammenligning av primærmoment umiddelbart etter oppspenning

Kommentar: Håndberegninger stemmer godt overens med resultater fra Sofistik.

9.6 Spennkrafttap

9.6.1 Umiddelbare spennkrafttap

Se håndberegninger i kap.7.1 og «Vedlegg G: Testbjelke Elastisk deformasjon friksjon låsetap Krum kabel». Resultat fra Sofistik for rett kabel under kap.8.6.2.

Siden det i kap.9.3 ble avdekket at den krumme spennkabelen ikke lå sentrisk i kabelrøret i analysen i Sofistik, er dette rettet opp og nye krefter i spennkabel umiddelbart etter oppspenning og låsing er gitt i figur 9-20.

Figur 9–20 Krum kabel: Kraft i spennkabel umiddelbart etter oppspenning og låsing

Umiddelbare spennkrafttap for krum kabel:

 $\Delta P_{kort \ aktiv} = (2300 - 2553, 2) = -253, 2kN \qquad \Delta P_{kort \ passiv} = (2348 - 2553, 2) = -205, 2kN$

	Rett	kabel	Krum kabel			
	$\Delta P_{kort \ aktiv}$ [kN]	$\Delta P_{kort \ passiv}$ [kN]	$\Delta P_{kort \ aktiv}$ [kN]	$\Delta P_{kort \ passiv}$ [kN]		
Håndberegning	-256,1	-233,4	-269,9	-233,5		
Sofistik	-230,4	-211,8	-253,2	-205,2		
Avvik	-25,7	-21,6	-16,7	-28,3		
Avvik i %	10,0%	9,3%	6,2%	12,1%		
Avvik i % av	-1,0%	-0,9%	-0,7%	-1,1%		
spennkraft						

Tahell 9–10 lln	niddelhare tan	i snennkraft	etter	onnsnennina
	nuucibarc tap	i spennkian	ciici	oppsperining

Kommentar: Det er noe avvik mellom håndberegninger resultat fra Sofistik. For å finne ut hvordan Sofistik beregner umiddelbare tap i spennkraft, er det utført testing.

Ser av resultatene fra Sofistik at umiddelbare spennkrafttap i passiv ende for rett spennkabel er større enn i passiv ende for krum kabel. En rett kabel vil få mindre friksjonstap enn en krum kabel. Siden bjelken er kort og låsetap vil nå passiv ende, vil det totale tapet for låsing og friksjon ved passiv ende bli størst for den rette kabelen. Se figur 9-21 og 9-22.

Figur 9-22 Umiddelbare tap i spennkraft for krum kabel

Låsetap lik null

Endrer låsetap i Sofistik til 0. Kjører analyser og får følgende resultat for spennkraft i kabel umiddelbart etter oppspenning og friksjonstap:

Figur 9–23 Rett kabel

Figur 9–24 Krum kabel

Siden låsetapet fjernes, endres korttidstapet i både aktiv og passiv ende. Se håndberegninger i «Vedlegg L: TEST Testbjelke Friksjon Rett Krum Modell uten låsetap».

	Rett	kabel	Krum kabel			
	$\Delta P_{friksjon \ aktiv}$	$\Delta P_{friksjon\ passiv}$	$\Delta P_{friksjon\ aktiv}$	$\Delta P_{friksjon\ passiv}$		
	[kN]	[kN]	[kN]	[kN]		
Håndberegning	-22,8	-45,5	-23,0	-86,3		
Sofistik	(2509–2530,8)	(2487–2530,8)	(2509-2553,2)	(2457–2553,2)		
	=-21,8	=-43,8	=-44,2	=-96,2		
Avvik	-1	-1,7	21,2	9,9		
Avvik i %	4,4%	3,7%	92,2%	-11,5%		

Tabell 9–11	Tan	i spennkraft	nå o	arunn av	/ friksion
ruben b i i	rup	, spennkiune	pu g	n ann a	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Kommentar: Håndberegningene stemmer ganske bra bortsett fra aktiv side i krum kabel der det er litt høyere.

Spennkraften etter friksjonstap i aktiv ende i Sofistik er 2509kN. Denne er lik største forspenningskraft etter oppspenning og låsing P_{m0} etter pkt.5.10.3(2) [5].

Låsetap lik null, friksjonstap i anker lik null

I tillegg til å fjerne låsetapet, fjernes friksjonstap fra aktivt anker. Kjører analyser og får følgende resultat for spennkraft i kabel umiddelbart etter oppspenning og friksjonstap:

Figur 9–25 Rett kabel

Figur 9–26 Krum kabel

Kommentar: Ser at krefter i kabel ikke endres etter at friksjonstapet fra aktivt anker blir fjernet. Dette tyder på at tap for friksjon i aktivt anker ikke er med i analysen til Sofistik.

Resultater fra forsøkene i kap.9.4 viste at Sofistik benytter oppspenningskraft som er lavere enn det som vanligvis benyttes i Norge i henhold til [5]. Friksjonstapet fra aktivt anker i Sofistik er sannsynligvis inkludert i avviket mellom oppspenningskreftene.

Friksjontap lik null

Setter friksjontap i Sofistik lik 0. Kjører analyser med kun låsetap og får følgende resultat for spennkraft i kabel umiddelbart etter oppspenning og låsing:

Figur 9–27 Rett kabel

Figur 9–28 Krum kabel

Siden friksjonstapet fjernes, endres også korttidstapet i aktiv ende. Se håndberegninger i «Vedlegg M: TEST Testbjelke Låsetap Rett krum kabel Modell uten friksjon».

	Rett kabel	Krum kabel
	$\Delta P_{l\hat{a}s}$ [kN]	$\Delta P_{l\hat{a}s}$ [kN]
Håndberegning	-210,6	-210,5
Sofistik	2299-2530,8=-231,8	2299-2553,2=-254,2
Avvik	21,2	43,7
Avvik i %	-10,1%	-20,7%

Tabell 9–12 Låsetap

Kommentar: Det er avvik mellom håndberegninger og resultat fra Sofistik. Størst avvik er det for krum kabel. Ser på spenninger i kabelen umiddelbart etter oppspenning for krum kabel uten friksjonstap for å finne ut hvilken oppspenningskraft Sofistik benytter for modellen uten friksjon.

Figur 9–29 Krum kabel: Spenning i kabel uten friksjon

Oppspenningskraft: $P_0 = 1393 \frac{N}{mm^2} \cdot 1800mm^2 = 2507,4kN$

Spenningene viser at for krum kabel uten friksjonstap benytter Sofistik oppspenningskraft på 2507kN. Det forklarer avvikene i tabell 9–12. Endrer oppspenningskraft til 2507 i tabell 9–12, se tabell 9–13.

	Rett kabel	Krum kabel
	ΔP_{las} [kN]	$\Delta P_{l\hat{a}s}$ [kN]
Håndberegning	-210,6	-210,5
Sofistik	-2507-(-2299)=-208	-2507-(-2299)=-208
Avvik	-2,6	-2,5
Avvik i %	1,2%	1,2%

Tabell 9–13 Låsetap

Låsetap stemmer godt overens i håndberegninger og Sofistik når det gjøres beregninger uten friksjonstap.

Justerer håndberegninger for friksjonstap fra aktivt anker

Fjerner friksjonstap fra aktivt anker på 22,8kN for rett kabel og 23,0kN for krum kabel i håndberegningene og lager en ny tabell basert på tabell 9–10.

	Rett	kabel	Krum kabel	
	$\Delta P_{kort \ aktiv}$ [kN]	$\Delta P_{kortpassiv}$ [kN]	$\Delta P_{kort \ aktiv}$ [kN]	$\Delta P_{kort \ passiv}$ [kN]
Håndberegning	-255,7-(-22,8)	-233,2-(-22,8)	-295,4-(-23,0)	-233,1-(-23,0)
	=-232,9	=-210,4	=-272,4	=-210,1
Sofistik	-230,4	-211,8	-253,2	-205,2
Avvik	-2,5	1,4	-19,2	-4,9
Avvik i %	1,1%	-0,7%	7,0%	2,3%
Avvik i % av	0,1%	0,1%	-0,8%	-0,2%
spennkraft				

Tabell 9–14 Umiddelbare tap i spennkraft etter oppspenning

Kommentar: Når friksjonstap i aktivt anker fjernes fra håndberegningene stemmer de godt overens med resultat fra Sofistik. Dette viser at Sofistik beregner tap for friksjon i kabel og låsetap likt som håndberegningene.

9.6.2 Kraft i kabel etter oppspenning

Sofistik benytter oppspenningskraft som er lavere enn det som benyttes i Norge etter [5]. Friksjonstap i aktivt anker er ikke med i beregningene av umiddelbare tap i Sofistik. For å finne ut hvor mye dette utgjør endres oppspenningskraften etter [5] i håndberegningene, se «Vedlegg N: TEST Testbjelke Friksjon låsetap Rett kabel Oppspenningskraft 2657kN» og «Vedlegg O: TEST Testbjelke Friksjon låsetap Krum kabel Oppspenningskraft 2657kN». Hvor mye forskjellene utgjør av kraft i kabel etter oppspenning sammenfattes i tabell 9–15 og 9– 16.

	P _{max} [kN]	$\Delta P_{kort.aktiv}$ [kN]	$\Delta P_{kort.passiv}$ [kN]	$P_{kort.aktiv}$ [kN]	P _{kort.passiv} [kN]
Norge etter [5]	2657	-258,3	-234,5	2398,7	2422,5
Sofistik	2530,8	-230,4	-211,8	2300,4	2319
Avvik		<u> </u>		98,3	103,5
Avvik i % av				3,7%	3,9%
spennkraft					
etter [5]					

Tabell 9–15 Rett kabel: Sammenligning av kraft i kabel etter oppspenning

Tabell 9–16 Krum kabel: Sammenligning av kraft i kabel etter oppspenning

	$P_{max}[kN]$	$\Delta P_{kort.aktiv}$ [kN]	$\Delta P_{kort.passiv}$ [kN]	P _{kort.aktiv} [kN]	P _{kort.passiv} [kN]
Norge etter [5]	2657	-300,4	-234,4	2356,6	2422,0
Sofistik	2553,2	-253,2	-205,2	2300	2348
Avvik				56,6	74
Avvik i % av				2,1%	2,8%
spennkraft					
etter [5]					

Forskjellene som er funnet i oppspenningskraft og utregning av umiddelbare tap utgjør til sammen lite.

9.6.3 Tidsavhengige spennkrafttap

Spennkrafttap som skyldes kryp og svinn

Siden det viste seg i kap.9.3 at Sofistik benytter oppspenningskraft som er fratrukket umiddelbare tap i analysen av kryptøyning, benyttes håndberegninger som er justert for dette til sammenligning av spennkrafttap som skyldes kryp og svinn. Se «Vedlegg J: TEST Testbjelke Kryp svinn relaksasjon Rett kabel Modell med real creep» og «Vedlegg K: TEST Testbjelke Kryp svinn relaksasjon Krum kabel Modell med real creep». Resultater fra Sofistik er hentet fra nye modeller av testbjelken der opplagrene er flyttet fra underkant til midten av tverrsnittet, spennkabelen ligger sentrisk i kabelrøret og krypanalyser i Sofistik er utført med *realistic creeping* i henhold til det som ble påvist i kap.9.3. Egenvekt og flatelast er ikke med i modellene. Resultater er lest av for lasttilfelle 5025 som gir spennkrafttap som skyldes kryp og svinn i kabel etter 100 døgn og 5028 som gir spennkrafttap som skyldes kryp og svinn i kabel etter 100 år. Resultater fra Sofistik er gitt i figur 9–30 til 9–33 og tabell 9–17 til 9–20.

Figur 9–30 Rett kabel: Tap etter 100 døgn

Tabell 9–17 Rett kabel: Tap etter 100 døgn

ELEMENTS (V 14.08)				
Testb	jelke med skallelement			
LC: 5	025, Tendon force			
LC	LC-title	NR	NRS	ZZG1 [kN]
5025	Creep and shrinkage	10002	1	-113,9
	until bridge opening	10003	1	-115,4
		10011	1	-111,5
		10012	1	-111,8
		10013	1	-112,0
		10014	1	-112,2
		10017	1	-112,7
		10018	1	-112,9
		10023	1	-112,4
		10024	1	-112,5
		10030	1	-119,9
		10031	1	-116,0
		10037	1	-167,3
		10038	1	-244,4
		10043	1	-127,8
		10044	1	-138,7
		10049	1	-110,4
		10052	1	-112,5
		10065	1	-117,5
		10066	1	-121,5
		10070	1	-109,4
		10071	1	-109,7
		10085	1	-111,1
		10087	1	-110,3
		10094	1	-113,3
		10096	1	-113,0
	Average value			-121,9

Figur 9–31 Krum kabel: Tap etter 100 døgn

Tabell 9–18 Krum kabel: Tap etter 100 døgn

SOFIS ELEM	TiK 2016 RESULTS - OUTF ENTS (V 14.08)	PUT FOR	FINITE	E
Testb	ielke med skallelement			
LC: 5	025, Tendon force			
LC	LC-title	NR	NRS	ZZG1 [kN]
5025	Creep and shrinkage	10002	1	-122,0
	until bridge opening	10003	1	-122,5
		10011	1	-117,1
		10012	1	-119,2
		10013	1	-121,2
		10014	1	-123,0
		10017	1	-125,2
		10018	1	-124,6
		10023	1	-124,4
		10024	1	-125,2
		10030	1	-120,1
		10031	1	-116,2
		10037	1	-172,7
		10038	1	-250,6
		10043	1	-133,2
		10044	1	-144,0
		10049	1	-111,1
		10052	1	-112,9
		10065	1	-123,9
		10066	1	-127,3
		10070	1	-110,6
		10071	1	-111,6
		10085	1	-115,1
		10087	1	-113,1
		10094	1	-122,5
		10096	1	-123,6
	Average value			-128.2

Spennkrafttap som skyldes kryp og svinn etter 100 døgn:

Rett kabel					
$\Delta P_{krypsvinn100døgnaktiv}[kN]$	$\Delta P_{kryp \ svinn \ 100 \ døgn \ passiv}[kN]$	$\Delta P_{kryp \ svinn \ 100 \ døgn \ gj.snitt}[kN]$			
-119,9	-244,4	-121,9			

Krum kabel					
$\Delta P_{kryp \ svinn \ 100 \ døgn \ aktiv} [kN]$	$\Delta P_{kryp \ svinn \ 100 \ døgn \ passiv}[kN]$	$\Delta P_{kryp \ svinn \ 100 \ døgn \ gj.snitt}[kN]$			
-120,1	-250,8	-128,2			

Figur 9–32 Rett kabel: Tap etter 100 år

C: 5	jelke med skallelement 028, Tendon force			
LC	LC-title	NR	NRS	ZZG1 [kN]
5028	Creep and shrinkage	10002	1	-140,6
	after long time	10003	1	-141,7
		10011	1	-138,1
		10012	1	-138,5
		10013	1	-138,8
		10014	1	-139,0
		10017	1	-139,6
		10018	1	-139,7
		10023	1	-139,2
		10024	1	-139,4
		10030	1	-155,3
		10031	1	-147,5
		10037	1	-175,2
		10038	1	-219,9
		10043	1	-150,0
		10044	1	-157,3
		10049	1	-136,4
		10052	1	-140,6
		10065	1	-143,2
		10066	1	-145,9
		10070	1	-134,4
		10071	1	-134,9
		10085	1	-137,4
		10087	1	-136,0
		10094	1	-140,2
		10096	1	-139,9
	Average value			-145,7

Tabell 9–19 Rett kabel: Tap etter 100 år

Figur 9–33 Krum kabel: Tap etter 100 år

Tabell 9–20 Krum kabel: Tap etter 100 år

Testby	jelke med skallelement			
LC	LC-title	NR	NRS	ZZG1 [kN]
5028	Creep and shrinkage	10002	1	-147,9
	after long time	10003	1	-148,3
		10011	1	-142.0
		10012	1	-143,7
		10013	1	-145,3
		10014	1	-146,7
		10017	1	-149,0
		10018	1	-148,9
		10023	1	-147,9
		10024	1	-148,7
		10030	1	-155,4
		10031	1	-147,7
		10037	1	-180,5
		10038	1	-225,2
		10043	1	-155,6
		10044	1	-162,7
		10049	1	-137,0
		10052	1	-141,0
		10065	1	-149,4
		10066	1	-151,7
		10070	1	-135,3
		10071	1	-136,3
		10085	1	-140,2
		10087	1	-138,0
		10094	1	-148,0
		10096	1	-148,5
	Average value	10	22	-150.8

99

Totalt spennkrafttap som skyldes kryp og svinn etter 100 år:

Rett kabel					
$\Delta P_{kryp \ svinn \ 100 \ ar \ aktiv} [kN]$	$\Delta P_{kryp\ svinn\ 100\ ar\ passiv}[kN]$	$\Delta P_{krypsvinn100angle rgj.snitt}[kN]$			
-119,9 + (-155,3) = -275,2	-244,4 + (-219,9) = -464,3	-121,9 + (-145,7) = -267,6			

Krum kabel					
$\Delta P_{kryp \ svinn \ 100 \ ar \ aktiv} \ [kN]$	$\Delta P_{kryp \ svinn \ 100 \ ar \ passiv}[kN]$	$\Delta P_{krypsvinn100angle rgj.snitt}[kN]$			
-120,1 + (-155,5) = -275,6	-250,8 + (-225,4) = -476,2	-128,2 + (-150,8) = -279,0			

I håndberegningene benyttes en midlere kryptøyning langs spennkabelen i tillegg til den konstante svinntøyningen for å beregne spennkrafttap som skyldes kryp og svinn. I virkeligheten varierer spenningene og derav tøyningene langs kabelen slik at tap som skyldes kryp og svinn vil variere langs kabelen. Det er derfor benyttet gjennomsnittsverdi fra Sofistik i sammenligning med håndberegninger, se tabell 9–21.

Tabell 9–21 Rett kabel: Sammenligning tap i	spennkraft som skyldes kryp og	ı svinn
---	--------------------------------	---------

	Rett k	abel	Krum kabel			
	100 døgn	100 år	100 døgn	100 år		
	ΔP kryp svinn [kN] 100 døgn gj.snitt	ΔP kryp svinn [kN] 100 år gj.snitt	ΔP kryp svinn [kN] 100 døgn gj.snitt	ΔP kryp svinn [kN] 100 år gj.snitt		
Håndberegning	-62,3	-143,0	-66,4	-151,5		
Sofistik	-121,9	-267,6	-128,2	-279,0		
Avvik	59,6	154,6	61,8	127,5		
Avvik i %	-95,7%	-	93,1%	-84,2%		
Avvik i % av	2,3%	6,1%	2,4%	5,0%		
spennkraft						

Kommentar: Det er store avvik mellom håndberegninger og resultat fra Sofistik. Utfører testing for å finne ut hvorfor avvikene er så store.

Fjerner relaksasjon

Lager en kopi av testbjelken der relaksasjon fjernes, se figur 9-34.

Figur 9–34 Relaksasjon fjernes i CSM Teddy

Resultat fra den nye Sofistik-modellen er lest av for lasttilfellene 5025 og 5028 og gitt i figur

9-35 til 9-38 og tabell 9-22 til 9-25.

Figur 9–35 Rett kabel: Tap etter 100 døgn

Figur 9–36 Krum kabel: Tap etter 100 døgn

Tabell 9–23 Krum kabel: Tap etter 100 døgn

SOFIS ELEM	TIK 2016 RESULTS - OUTF ENTS (V 14.08)	PUT FOR F	INITE		SOFIS	TIK 2016 RESULTS - OUTF ENTS (V 14.08)	PUT FOR	FINITE	
Testb	jelke med skallelement				Testb	ielke med skallelement			
LC: 5	025, Tendon force				LC: 50	225. Tendon force			
LC	LC-title	NR	NRS	ZZG1 [kN]	LC	LC-title	NR	NRS	ZZG1 [kN]
5025	Creep and shrinkage	10001	1	-48,2	5025	Creep and shrinkage	10001	1	-55.4
	until bridge opening	10002	1	-48,3		until bridge opening	10002	1	-53.9
		10006	1	-48,2		until bridge opening	10006	1	-58.1
		10007	1	-48,2			10007	1	-56.9
		10011	1	-48,2			10011	1	-58.6
		10012	1	-48,2			10012	1	-58,8
		10013	1	-47,2			10013	1	-49.8
		10014	1	-47,8			10014	1	-51.5
		10019	1	-48,0			10019	1	-53,1
		10020	1	-48,2			10020	1	-54,9
		10021	1	-48,7			10021	1	-53,0
		10022	1	-50,1			10022	1	-53,1
		10027	1	-52,5			10027	1	-54,6
		10028	1	-56,7			10028	1	-58,3
		10029	1	-48,2			10029	1	-56,5
		10030	1	-48,2			10030	1	-57,8
		10035	1	-103,1			10035	1	-104,1
		10036	1	-181,7			10036	1	-183,6
		10042	1	-57,3			10042	1	-57,3
		10043	1	-53,2			10043	1	-53,3
		10053	1	-49,6			10053	1	-49,9
		10054	1	-47,4			10054	1	-48,0
		10057	1	-46,5			10057	1	-47,6
		10058	1	-46,8			10058	1	-48,5
		10068	1	-76,1			10068	1	-77,0
		10070	1	-62,3			10070	1	-63,4
	Average value			-58,0		Average value	<u>.</u>		-62,2

Tabell 9–22 Rett kabel:	Tap etter	100 døgn
-------------------------	-----------	----------

Spennkrafttap som skyldes kryp og svinn etter 100 døgn:

Rett kabel					
$\Delta P_{krypsvinn100døgnaktiv}[kN]$	$\Delta P_{krypsvinn100døgnpassiv}[kN]$	$\Delta P_{kryp \ svinn \ 100 \ døgn \ gj.snitt}[kN]$			
-57,3	-181,7	-58,0			

Krum kabel					
$\Delta P_{krypsvinn100døgnaktiv}[kN]$	$\Delta P_{krypsvinn100døgnpassiv}[kN]$	$\Delta P_{kryp \ svinn \ 100 \ døgn \ gj.snitt}[kN]$			
-57,3	-183,6	-62,2			

Figur 9–37 Rett kabel: Tap etter 100 år

Figur 9–38 Krum kabel: Tap etter 100 år

Tabell 9–24 Rett kabel: Tap etter 100 år

Tabell 9–25 Rett kabel: Tap etter 100 år

-					1.1	_				
SOFIS	TIK 2016 RESULTS - OUT	PUT FOR F	INITE			SOFIS	TIK 2016 RESULTS - OUT	PUT FOR I	INITE	1
ELEME	INTS (V 14.08)					ELEME	ENTS (V 14.08)			
Testbj	elke med skallelement					Testbj	jelke med skallelement			
LC: 50	28, Tendon force					LC: 50	228, Tendon force			
LC	LC-title	NR	NRS	ZZG1		LC	LC-title	NR	NRS	ZZG1 [kN]
				[kN]						
5028	Creep and shrinkage	10001	1	-78,0		5028	Creep and shrinkage	10001	1	-84,5
	after long time	10002	1	-78,1			after long time	10002	1	-83,2
		10006	1	-78,1			A CONTRACTOR OF A CONTRACTOR	10006	1	-86,9
		10007	1	-78,1				10007	1	-85,8
		10011	1	-78,1				10011	1	-87,3
		10012	1	-78,1				10012	1	-87,4
		10013	1	-75,8				10013	1	-78,2
		10014	1	-77,2				10014	1	-80,5
		10019	1	-77,7				10019	1	-82,2
		10020	1	-78,0				10020	1	-83,9
		10021	1	-78,6				10021	1	-82,3
		10022	1	-79,8				10022	1	-82,5
		10027	1	-81,9				10027	1	-83,9
		10028	1	-85,7				10028	1	-87,1
		10029	1	-78,1				10029	1	-85,4
		10030	1	-78,1				10030	1	-86,6
		10035	1	-125,8				10035	1	-126,8
		10036	1	-186,7				10036	1	-188,3
		10042	1	-97,6				10042	1	-97,6
		10043	1	-88,9				10043	1	-89,0
		10053	1	-81,1				10053	1	-81,4
		10054	1	-76.4				10054	1	-76,9
		10057	1	-74,5				10057	1	-75,5
		10058	1	-74.9				10058	1	-76,5
		10068	1	-103,1				10068	1	-103,9
		10070	1	-90.9				10070	1	-91,9
	Average value			-86.9			Average value			-90.6

Totalt spennkrafttap som skyldes kryp og svinn etter 100 år:

	Rett kabel	
$\Delta P_{kryp \ svinn \ 100 \ ar \ aktiv} \ [kN]$	$\Delta P_{kryp \ svinn \ 100 \ ar \ passiv}[kN]$	$\Delta P_{krypsvinn100angle rgj.snitt}[kN]$
-57,3 + (-97,6) = -154,9	-181,7 + (-186,7) = -368,4	-58,0 + (-86,9) = -144,9

Krum kabel					
$\Delta P_{kryp \ svinn \ 100 \ ar \ aktiv} [kN]$	$\Delta P_{kryp \ svinn \ 100 \ ar \ passiv}[kN]$	$\Delta P_{kryp \ svinn \ 100 \ ar \ gj.snitt}[kN]$			
-57,3 + (-97,6) = -154,9	-183,6 + (-188,3) = -371,9	-62,2 + (-90,6) = -153,2			

	Rett k	abel	Krum kabel			
	100 døgn	100 år	100 døgn	100 år		
	ΔP kryp svinn [kN] 100 døgn gj.snitt	ΔP kryp svinn [kN] 100 år gj.snitt	ΔP kryp svinn [kN] 100 døgn gj.snitt	ΔP kryp svinn [kN] 100 år gj.snitt		
Håndberegning	-62,3	-143,0	-66,4	-151,5		
Sofistik	-58,0	-144,9	-62,2	-153,2		
Avvik	-4,3	1,9	-4,2	1,7		
Avvik i %	6,9%	-1,3%	6,3%	-1,1%		
Avvik i % av	-0,2%	0,1%	-0,2%	0,1%		
spennkraft						

Tabell 9–26 Sammenligning tap i spennkraft som skyldes kryp og svinn

Kommentar: Når relaksasjon fjernes fra Sofistik-modellen stemmer resultatene godt overens med håndberegningene. Forsøket har verifisert at relaksasjon er med i lasttilfellene 5025 og 5028. Det viser også betydningen av å ta ut riktige resultater fra Sofistik.

I figur 9–35 til 9–38 ser man at tapet som skyldes kryp og svinn er jevnt fordelt langs kabelen unntatt i passiv ende der tapet er veldig høyt. Siden bjelken består av skallelement er den ikke stiv i tverretning. Dette kan gjøre at de høye betongspenningene ikke sprer seg over tverrsnittet men konsentreres rundt det passive ankeret. Slik blir det store betongspenninger der kabelen er forankret som gir høye spennkrafttap som skyldes kryp og svinn.

Fastlageret strekker seg langs hele den aktive enden av bjelken. Dette gjør at betongspenningene spres og ikke blir spesielt høye rundt kabelforankringen.

For å verifisere om teorien stemmer, sees det nærmere på betongspenningene i Sofistikmodellen med krum kabel. Resultater for lasttilfelle 4025 og 4028 er gitt i figur 9-39 og 9-40.

\$5.41	3.75	4.83	5.30	4.89	3.37	90.419
<u>4</u> .96	3.66	4.78	5.23	1 96	4.15	1.8.1
5.49	3.77	4.83	5.30	4.00	3.94 (856

Figur 9–39 Betongspenninger i bjelken etter 100 døgn

 10.1
 3.82
 4.64
 5.09
 4.71
 3.24
 0.400

 8.67
 3.44
 4.60
 5.03
 4.01
 16.3

 10.3
 3.83
 4.64
 5.09
 3.79
 0816

Figur 9–40 Betongspenninger i bjelken etter 100 år

Resultatene viser at betongspenningene er store ved passivt anker. Det er heller ikke høye betongspenninger ved aktivt anker. Dette er trolig forklaringen på hvorfor spennkrafttapet er så høyt i passiv ende av kabelen.

En bjelke med bjelkeelement har stivt tverrsnitt og betongspenninger skal være jevnt fordelt over tverrsnittet. Tap i spennkraft som skyldes kryp og svinn bør derfor ikke være mye høyere i passiv ende enn ellers i kabelen. Lager en testmodell med bjelkeelement for å verifisere om teorien stemmer.

Testbjelke med bjelkeelement uten relaksasjon

Den nye testmodellen består av en bjelke med bjelkeelement, krum spennkabel, egenvekten er satt til null og parametere for spennkraft, oppspenning, kryp og svinn er de samme som for modellen med skallelement og *realistic creeping*.

Figur 9-41 Testbjelke med bjelkeelement og krum kabel

Sofistik genererer nummerering av lasttilfeller annerledes for bjelkeelement enn for skallelement. Siden det for bjelkeelement kun er mulig å hente ut resultat for spennkrafttap ved å se på total kraft i kabel etter lang tid, fjernes relaksasjon fra analysen. Slik vil kun spennkrafttap som skyldes kryp og svinn være med i spennkrafttap etter lang tid. Tar ut krefter for lasttilfellene 4011, 7025 og 7028. Lasttilfelle 4011 gir normalkrefter umiddelbart etter oppspenning, 7025 gir totale normalkrefter etter 100 døgn og 7028 gir totale normalkrefter etter 100 år. Siden egenvekten er satt lik null blir normalkreftene lik kreftene i spennkabelen. Resultat fra Sofistik er gitt i figur 9-42, 9-43 og 9-44.

Figur 9–42 Testbjelke med bjelkeelement: Kraft i spennkabel umiddelbart etter oppspenning

Middelverdi for kraft i spennkabel umiddelbart etter oppspenning:

 $P_0 = \frac{-2298 + (-2302) + (-2307) + (-2315) + (-2324) + (-2332) + (-2339) + (-2344) + (-2347)}{9}$

Figur 9–43 Testbjelke med bjelkeelement: Kraft i spennkabel etter 100 døgn

Middelverdi for kraft i spennkabel etter 100 døgn:

Figur 9-44 Testbjelke med bjelkeelement: Kraft i spennkabel etter 100 år

Middelverdi for kraft i spennkabel etter 100 år:

P_{100 år gj.snitt}

 $=\frac{-2170 + (-2171) + (-2169) + (-2169) + (-2174) + (-2186) + (-2220) + (-2212) + (-2218)}{9}$

= -2188kN

Tabell 9–27 Krum kabel: Testbjelke med bjelkeelement

Sammenligning tap i spennkraft fra kryp og svinn

	100 døgn	100 år
	ΔP kryp svinn [kN] 100 døgn gj.snitt	ΔP kryp svinn [kN] 100 år gj.snitt
Håndberegning	-66,4	-151,5
Sofistik	-2298-(-2269)=-29	-2298-(-2188)=-110
Avvik	-37,4	-41,6
Avvik i %	56,3%	27,5%
Avvik i % av	-1,4%	-1,6%
spennkraft		

Kommentar: Figur 9-42 til 9-44 viser at spennkrafttapet i passiv ende ikke er mye høyere enn i resten av kabelen. Dette stemmer godt overens med teorien for bjelkeelement som ble beskrevet ovenfor.

Sofistik-modellen med bjelkeelement gir tap som avviker noe fra håndberegningene. Siden tapene er små blir prosentvise avvik betydelige, men av total spennkraft blir avvikene ubetydelige.

Spennkrafttap som skyldes relaksasjon

Siden det viste seg i kap.9.3 at Sofistik benytter oppspenningskraft som er fratrukket umiddelbare tap i analysen av relaksasjon, benyttes håndberegninger som er justert for dette til sammenligning av spennkrafttap som relaksasjon. Se «Vedlegg J: TEST Testbjelke Kryp svinn relaksasjon Rett kabel Modell med real creep» og «Vedlegg K: TEST Testbjelke Kryp svinn relaksasjon Krum kabel Modell med real creep». Relaksasjon påvirkes av kryp og svinn i betongen, derfor er resultat fra Sofistik tatt fra de nye modellene som ble benyttet for verifikasjon av kryp og svinn. I modellene er opplagrene flyttet fra underkant til midten av tverrsnittet, spennkabelen ligger sentrisk i kabelrøret og krypanalyser i Sofistik er utført med *realistic creeping* etter kap.9.3. Egenvekt og flatelast er ikke med. Resultater er lest av fra lasttilfelle 5025 som gir spennkrafttap i kabel etter 100 døgn og 5028 som gir spennkrafttap i kabel etter 100 år. Resultater fra Sofistik er gitt i figur 9-45 til 9-48 og tabell 9-28 til 9-31.

Figur 9–45 Rett kabel: Relaksasjon etter 100 døgn

Figur 9-46 Krum kabel: Relaksasjon etter 100 døgn

Tabell 9–28 Rett kabel: Relaksasjon

etter 100 døgn

LC: 5025, Accumulated relaxation of tendons							
	LC-title	NR	NRS	RELZ			
5	Creep and shrinkage	10002	1	0,028			
	until bridge opening	10003	1	0,028			
		10011	1	0,028			
		10012	1	0,028			
		10013	1	0,028			
		10014	1	0,028			
		10017	1	0,028			
		10018	1	0,028			
		10023	1	0,028			
		10024	1	0,028			
		10030	1	0,028			
		10031	1	0,028			
		10037	1	0,029			
		10038	1	0,029			
		10043	1	0,029			
		10044	1	0,029			
		10049	1	0,028			
		10052	1	0,028			
		10065	1	0,028			
		10066	1	0,029			
		10070	1	0,028			
		10071	1	0,028			
		10085	1	0,028			
		10087	1	0,028			
		10094	1	0,028			
		10096	1	0,028			
	Average value			0.028			

Tabell 9–29 Rett kabel: Relaksasjon

etter 100 døgn

SOFIS	TIK 2016 RESULTS - OUTF ENTS (V 14.08)	PUT FOR	FINITE	Ξ
Testb	jelke med skallelement			
LC: 50	025, Accumulated relaxat	ion of t	endor	IS
LC	LC-title	NR	NRS	RELZ
5025	Creep and shrinkage	10002	1	0,030
	until bridge opening	10003	1	0.030
	and a second second	10011	1	0.028
		10012	1	0,028
		10013	1	0,028
		10014	1	0,029
		10017	1	0,029
		10018	1	0,029
		10023	1	0,029
		10024	1	0,029
		10030	1	0,028
		10031	1	0,028
		10037	1	0,030
		10038	1	0,031
		10043	1	0,030
		10044	1	0,030
		10049	1	0,028
		10052	1	0,028
		10065	1	0,030
		10066	1	0,030
		10070	1	0,028
		10071	1	0,028
		10085	1	0,028
		10087	1	0,028
		10094	1	0,030
		10096	1	0,030
	Average value			0,029

	Rett kabel	
$\Delta P_{relaksasjon \ 100 \ døgn \ aktiv} [kN]$	$\Delta P_{relaksasjon \ 100 \ d arge gn \ passiv}[kN]$	$\Delta P_{relaksasjon \ 100 \ døgn \ gj.snitt}[kN]$
$-2,75\% \cdot 2509 = -69,0$	$-2,93\% \cdot 2509 = -73,5$	$-2,8\% \cdot 2509 = -70,3$

Krum kabel				
$\Delta P_{relaksasjon \ 100 \ døgn \ aktiv} [kN]$	$\Delta P_{relaksasjon \ 100 \ d ilde{g}n \ passiv}[kN]$	$\Delta P_{relaksasjon \ 100 \ døgn \ gj.snitt}[kN]$		
$-2,76\% \cdot 2509 = -69,2$	$-3,09\% \cdot 2509 = -77,5$	$-2,9\% \cdot 2509 = -72,8$		

Figur 9–47 Rett kabel: Relaksasjon etter 100 år

Figur 9–48 Krum kabel: Relaksasjon etter 100 år

Tabell 9–30 Rett kabel: Relaksasjon

Tabell 9–31 Krum kabel: Relaksasjon

etter 100 år

etter 100 år

SOFIS	TIK 2016 RESULTS - OUTF ENTS (V 14.08)	PUT FOR	FINITE		1	SOFIS (V 14.0	TIK 2016 RESULTS - OUT 08)	PUT FOR F	INITE E	LEMENT
Testb	ielke med skallelement				1	Testb	jelke med skallelement			
LC: 5	028, Accumulated relaxat	tion of t	endor	IS		LC: 50	28, Accumulated relaxa	tion of te	ndons	
LC	LC-title	NR	NRS	RELZ		LC	LC-title	NR	NRS	RELZ
028	Creep and shrinkage	10002	1	0.028		5028	Creep and shrinkage	10002	1	0,030
	after long time	10003	1	0.028	1		after long time	10003	1	0,030
	arter ing time	10011	1	0.027	1			10011	1	0,028
		10012	1	0,027	1			10012	1	0,028
		10013	1	0.027	1			10013	1	0,028
		10014	1	0,027	1			10014	1	0,029
		10017	1	0,028	1			10017	1	0,029
		10018	1	0,028	1			10018	1	0,029
		10023	1	0,028	1			10023	1	0,029
		10024	1	0,028	1			10024	1	0,029
		10030	1	0,026				10030	1	0,026
		10031	1	0,027	1			10031	1	0,027
		10037	1	0,024	1			10037	1	0,026
		10038	1	0,019				10038	1	0,021
		10043	1	0,027				10043	1	0,029
		10044	1	0,026				10044	1	0,028
		10049	1	0,027				10049	1	0,027
		10052	1	0,027				10052	1	0,027
		10065	1	0,028				10065	1	0,030
		10066	1	0,027				10066	1	0,029
		10070	1	0,027				10070	1	0,027
		10071	1	0,027				10071	1	0,027
		10085	1	0,027				10085	1	0,028
		10087	1	0,027				10087	1	0,028
		10094	1	0,028				10094	1	0,030
		10096	1	0,028				10096	1	0,030
	Average value			0,027			Average value			0,028

Totalt spennkrafttap på grunn av relaksasjon etter 100 år:

	Rett kabel	
$\Delta P_{relaksasjon \ 100 \ { m ar} \ aktiv} \ [kN]$	$\Delta P_{relaksasjon100\text{tegar}rpassiv}[kN]$	$\Delta P_{relaksasjon 100 \text{ar} gj.snitt}[kN]$
$-69,0 + (-2,62\%) \cdot 2509$	$-73,5 + (-1,9\%) \cdot 2509$	$-70,3 + (-2,7\% \cdot 2509)$
= -134,7	= -121,2	= -138,0

	Krum kabel	
$\Delta P_{relaksasjon\ 100\ ar\ aktiv}\ [kN]$	$\Delta P_{relaksasjon \ 100 \ ar \ passiv}[kN]$	$\Delta P_{relaksasjon \ 100 \ ar \ gj.snitt}[kN]$
$-69,0 + (-2,62\%) \cdot 2509$	-75,8 + (-2,07%) · 2509	-72,8 + (-2,8% · 2509)
= -134,7	= -127,7	= -143,1

I håndberegningene benyttes konstant spennkraft langs kabelen for å beregne spennkrafttap som skyldes relaksasjon. I virkeligheten varierer spennkraften langs kabelen slik at tap som skyldes relaksasjon vil variere langs kabelen. Det er derfor benyttet gjennomsnittsverdi fra Sofistik i sammenligning med håndberegninger, se tabell 9–32.

	Rett kabel		Krum kabel		
	100 døgn	100 år	100 døgn	100 år	
	ΔP relaksasjon [kN] 100 døgn gj.snitt	ΔP relaksasjon [kN] 100 år gj.snitt	ΔP relaksasjon [kN] 100 døgn gj.snitt	ΔP relaksasjon [kN] 100 år gj.snitt	
Håndberegning	-19,3	-67,8	-19,3	-67,6	
Sofistik	-70,3	-138,0	-72,8	-143,1	
Avvik	51	70,2	53,5	75,5	
Avvik i %	_	-	_	-	
Avvik i % av	2,0%	2,8%	2,1%	3,0%	
spennkraft					

Tabell 9–32 Sammenligning tap i spennkraft som skyldes relaksasjon

Kommentar: Det er store avvik mellom håndberegninger og resultat fra Sofistik. Det største avviket er for tap etter 100 døgn siden avviket etter 100 år inkluderer avviket etter 100 døgn.

I håndberegningene av relaksasjonstapet antas det at spenningene i kabelen er konstant. I virkeligheten varierer spenningene og relaksasjonen langs kabelen, se illustrasjon i figur 9-49. Men dette utgjør lite for relaksasjonstapet til testbjelken.

Figur 9–49 Relaksasjon i spennkabel

Sofistik har bekreftet at det er en feil i programmet ved analyse av relaksasjonstap og at dette vil bli rettet opp i neste programoppdatering. Se «Vedlegg S: Svar fra Sofistik angående påvist feil i programmet». Avvikene er små sett i forhold til total spennkraft og har ikke særlig betydning for konstruksjonen.

Ser i figur 9–47 og 9–48 at relaksasjonstapet er jevnt fordelt langs kabelen unntatt i passiv ende der relaksasjonstapet er betydelig lavere. Relaksasjonen er avhengig av spenningene i kabelen. Årsaken til at relaksasjonstapet er lavere i passiv ende er at der er det store tap i spenninger på grunn av kryp og svinn. Ser også at kabelen får størst relaksasjonstap i felt. Dette skyldes at kabelen ligger i betongstrekksonen i felt og får dermed høyere spenninger med tilhørende relaksasjonstap.

9.6.4 Kraft i kabel etter lang tid

Sofistik benytter oppspenningskraft som er lavere enn det som benyttes i Norge etter [5]. Friksjonstap i aktivt anker er ikke med i beregningene av umiddelbare tap i Sofistik. Det er også en feil i programmet som gjør at relaksasjonstap blir for store. For å finne ut hvor mye disse avvikene utgjør benyttes oppspenningskraft etter [5] for håndberegninger av umiddelbare tap og total kraft i kabel etter lang tid baseres på dette. Se «Vedlegg P: TEST Testbjelke Kryp svinn relaksasjon Rett kabel Oppspenningskraft 2657kN» og «Vedlegg Q: TEST Testbjelke Kryp svinn relaksasjon Krum kabel Oppspenningskraft 2657kN».

Resultat fra Sofistik for sammenligning av kraft i kabel etter lang tid er tatt fra nye modeller av testbjelken. I disse modellene er opplagrene flyttet fra underkant til midten av tverrsnittet, spennkabelen ligger sentrisk i kabelrøret, egenvekt og flatelast er med og det er utført krypanalyser i Sofistik med *realistic creeping* i henhold til det som ble påvist i kap.9.3. Resultater er lest av fra lasttilfelle 4025 og 4028 som gir totale krefter i kabel etter 100 døgn og 100 år. Alle laster i modellen er med i disse lasttilfellene. Resultatene er gitt i figur 9–50 til 9–53 og tabell 9–33 til 9–36.

Figur 9–50 Rett kabel: Kraft i kabel etter 100 døgn

Figur 9–51 Rett kabel: Kraft i kabel etter 100 år

Tabell 9–33 Rett kabel: kraft i k	kabel etter 100 døg	п
-----------------------------------	---------------------	---

LC: 4025, Tendon force					
c	LC-title	NR	NRS	ZZG1 [kN]	
25	Creep and shrinkage	10002	1	2201,0	
	until bridge opening	10003	1	2200,3	
		10011	1	2192,4	
		10012	1	2193,1	
		10013	1	2194,0	
		10014	1	2194,9	
		10017	1	2197,9	
		10018	1	2198,9	
		10023	1	2195,9	
		10024	1	2196,9	
		10030	1	2179,0	
		10031	1	2183,4	
		10037	1	2153,2	
		10038	1	2087,3	
		10043	1	2190,0	
		10044	1	2179,6	
		10049	1	2190,0	
		10052	1	2187,4	
		10065	1	2198,9	
		10066	1	2195,6	
		10070	1	2191,5	
		10071	1	2191,9	
		10085	1	2191,9	
		10087	1	2191,9	
		10094	1	2200,7	
		10096	1	2199,9	

Tabell 9-34	Rett kabel:	Kraft i kabel	etter	100 år
-------------	-------------	---------------	-------	--------

ELEME	ENTS (V 14.08)			
Testbj	jelke med skallelement			
LC: 40	28, Tendon force			
LC	LC-title	NR	NRS	ZZG1
				[kN]
4028	Creep and shrinkage	10002	1	2060,4
	after long time	10003	1	2058,6
		10011	1	2054,3
		10012	1	2054,6
		10013	1	2055,2
		10014	1	2056,0
		10017	1	2058,3
		10018	1	2059,1
		10023	1	2056,8
		10024	1	2057,5
		10030	1	2023,7
		10031	1	2035,9
		10037	1	1978,0
		10038	1	1867,4
		10043	1	2040,0
		10044	1	2022,4
		10049	1	2053,5
		10052	1	2046,7
		10065	1	2055,7
		10066	1	2049,7
	1	10070	1	2057,1
		10071	1	2057,0
	1	10085	1	2054,5
	1	10087	1	2055,8
	1	10094	1	2060,5
		10096	1	2059,9
	Average value			2041.9

Figur 9–52 Krum kabel: kraft i kabel etter 100 døgn

Figur 9–53 Krum kabel: kraft i kabel etter 100 år
Tabell 9–35 Krum kabel: kraft i kabel etter 100 døgn
--

Tabell 9–36 Krum kabel: Kraft i kabel etter 100 år

SOFIS'	TiK 2016 RESULTS - OUTF ENTS (V 14.08)	UT FOR F	INITE		SOFIS	TIK 2016 RESULTS - OUT ENTS (V 14.08)	PUT FOR F	INITE		
Testb	ielke med skallelement				Testh	ielke med skallelement				
LC: 40	25. Tendon force					IC: 4028 Tendon force				
LC	LC-title	NR	NRS	ZZG1 [kN]	LC	LC-title	NR	NRS	ZZG1 [kN]	
1025	Creep and shrinkage	10002	1	2225,3	4028	Creep and shrinkage	10002	1	2082,3	
	until bridge opening	10003	1	2224,7		after long time	10003	1	2079,9	
	· · · ·	10011	1	2198,9		······	10011	1	2062,9	
	10012	1	2201,6			10012	1	2065,5		
	10013	1	2204,6			10013	1	2068,5		
	10014	1	2208,0			10014	1	2071,7		
	10017	1	2218,1			10017	1	2079,8		
	10018	1	2220,8			10018	1	2081,5		
	10023	1	2211,4			10023	1	2074,7		
		10024	1	2214,9			10024	1	2077,4	
		10030	1	2179,5			10030	1	2024,2	
		10031	1	2184,1			10031	1	2036,6	
		10037	1	2176,9			10037	1	1996,6	
		10038	1	2110,2			10038	1	1885,1	
		10043	1	2214,2			10043	1	2059,5	
		10044	1	2203,6			10044	1	2041,5	
		10049	1	2191,3			10049	1	2055,1	
		10052	1	2188,3	III		10052	1	2047,8	
		10065	1	2223,3			10065	1	2076,3	
		10066	1	2219,9			10066	1	2069,8	
		10070	1	2193,4			10070	1	2059,5	
		10071	1	2194,5			10071	1	2060,4	
		10085	1	2196,8			10085	1	2061,0	
		10087	1	2195,5			10087	1	2060,6	
		10094	1	2224,7			10094	1	2082,9	
		10096	1	2223,0			10096	1	2082,5	
	Average value			2201,8		Average value	102. 		2055,5	

Tabell 9–37 Rett kabel: Sammenligning kraft i spennkabel etter lang tid

	100	døgn	100 år		
	P _{100 døgn aktiv} [kN]	P _{100 døgn passiv} [kN]	P _{100 år aktiv} [kN]	P _{100 år passiv} [kN]	
Håndberegning	2310	2334	2174	2197	
Sofistik	2179	2087	2024	1867	
Avvik	131	247	150	330	
Avvik i %	5,7%	10,5%	6,9%	15,0%	

	100	døgn	100 år		
	P _{100 døgn aktiv} [kN] P _{100 døgn passiv} [P _{100 år aktiv} [kN]	<i>P</i> _{100 år passiv} [kN]	
Håndberegning	2267	2333	2129	2195	
Sofistik	2180	2110	2037	1885	
Avvik	117	223	92	310	
Avvik i %	5,2%	9,6%	4,3%	14,1%	

Tabell 9–38 Krum kabel: Sammenligning kraft i spennkabel etter lang tid

Kommentar: Det er betydelige avvik mellom håndberegninger og resultat fra Sofistik for passiv ende. Dette skyldes hovedsakelig at Sofistik benytter lavere oppspenningskraft enn håndberegningene. Betydningen av dette ble gjennomgått i kap.9.4. Avvik i passiv ende skyldes hovedsakelig store tap fra kryp og svinn i Sofistik og forklares i kap.9.6.2.

Tabell 9–39 Sammenligning midlere kraft i spennkabel etter lang tid

	Rett	kabel	Krum kabel		
	$P_{100 døgn} [kN] \qquad P_{100 ar} [kN]$		P _{100 døgn} [kN]	P _{100 år} [kN]	
Håndberegning	2322	2186	2300	2162	
Sofistik	2187,6	2041,9	2201,8	2055,5	
Avvik	134,4	144,1	98,4	106,5	
Avvik i %	5,8%	6,6%	4,3%	4,9%	

Ved sammenligning av midlere kraft i kabel er det fortsatt avvik mellom håndberegninger og Sofistik men de er mindre. Avvikene skyldes hovedsakelig at Sofistik benytter lavere oppspenningskraft enn håndberegningene. For testbjelken har avvikene liten betydning og omtales nærmere i kap.9.4.

DEL 3 TRE SPENNS BRU

10 Brua

Del 3 av denne oppgaven tar for seg ei plasstøpt og etteroppspent bjelke/platebru som bygges i Trondheim kommune i Sør-Trøndelag. En oppgavetekst som beskriver utgangspunktet ligger vedlagt som «Vedlegg A: Oppgavetekst Trespenns bru». Det er utført noen endringer i brugeometrien i oppgaveteksten etter ønske fra veileder Håvard Johansen.

10.1 Geometri

Brubjelken/plata har total lengde på 71,4 meter. Den består av 3 spenn på 20 meter, 25 meter og 19 meter. Brubjelken/plata stikker ut 1 meter forbi akse 1 og akse 4. Se figur 10-1.

Figur 10-1 Lengdesnitt av brua

Tverrsnittet til brubjelken/plata er konstant med føringsbredde 8,5 meter. Bjelkedelen har bredde 4,5 meter og tverrsnittshøyde 1,0 meter. Bruplata har vingetykkelse på 0,3 meter og langsgående kantbjelker med dimensjoner som vist i figur 10–2. Kantbjelkene har rekkverk, se kap.11.1.2 for dimensjonerende rekkverkslast. Brudekket har slitelag, se kap.4.1.3 for dimensjonerende vekt av slitelag.

Figur 10-2 Tverrsnitt av brua

Akse 1 har påhengt endetverrbjelke, endeskjørt og vanger på brua. Se figur 10-3 og 10-4.

Figur 10-4 Oppriss bru og vange Akse 1 – Høyre side

Akse 4 har kun påhengt endetverrbjelke på brua. Se figur 10-5 og 10-6.

Figur 10–5 Tverrsnitt Akse 4

Figur 10-6 Lengdesnitt bru og endetverrbjelke Akse 4

10.2 Koordinatsystem

Koordinatsystemet for brua defineres med x-aksen langs bruas lengderetning, y-aksen på tvers av lengderetning og z-aksen vertikalt nedover. Se figur 10-7.

Figur 10-7 Koordinatsystem for brua

10.3 Statisk system

Brua har følgende statiske system:

11 Laster

11.1 Permanente laster

11.1.1 Egenvekt

I oppgaven antas det at kantdrageren støpes samtidig som brubjelken/plata. I praksis forskales og støpes kantdrageren oftest etter at brubjelken/plata er ferdig bygd. Kantdrageren bør derfor være med i superegenvekten og ikke regnes som en bærende konstruksjonsdel. Dersom kantdrageren betraktes som egenvekt vil det påvirke stivheten til tverrsnittet og hvordan tverrsnittet tar opp lastvirkninger.

Brubjelken/plata

Tverrsnittsarealet til brubjelken/plata er 6,307m² inkludert kantbjelker. Tyngdetetthet på armert normalvektsbetong er lik 25 kN/m³ iht. pkt.7.3.2 [15]. Egenvekt per lengdementer blir dermed:

 $g_{bru} = 6{,}307m^2 \cdot 25kN/m^3 = 157{,}7kN/m$

Skivesøyler

Tverrsnittsarealet til skivesøylene er 2,7m². Egenvekt per lengdementer blir dermed:

 $g_{søyle}=2{,}7m^2\cdot25kN/m^3=67{,}5kN/m$

Endetverrbærer ved akse 1 og akse 4

Tverrsnittsarealet til endetverrbærer utenfor brubjelke/ plate er 0,56m² og lengden er 2x1,45m. Egenvekt per endetverrbærer blir dermed:

 $G_{tverrb} = 2 \cdot 0.56m^2 \cdot 1.45m \cdot 25kN/m^3 = 40.6kN$

Endeskjørt ved akse 1

Tverrsnittsarealet til endeskjørtet er 1,25m² og lengden er 7,4m. Egenvekt for endeskjørt blir dermed:

 $G_{skjørt} = 1,25m^2 \cdot 7,4m \cdot 25kN/m^3 = 231,3kN$

Vanger ved akse 1

Arealet av vangen er 14,09m². Tykkelsen på vangene er 0,4m. Egenvekt per vange blir dermed:

 $G_{vange} = 14,09m^2 \cdot 0,4m \cdot 25kN/m^3 = 140,9kN$

Kantbjelker på venstre side av akse 1

Tverrsnittsarealet til kantbjelken er 0,32m² og lengden er 6,4m. Egenvekt per kantbjelke blir dermed:

 $G_{kant.1} = 0,32m^2 \cdot 6,4m \cdot 25kN/m^3 = 51,2kN$

Overgang mellom vanger og kantbjelker på venstre side av akse 1

Tverrsnittsarealet av overgangen er 0,09m² og lengden er 5,4m. Punktlast per overgang blir dermed:

 $G_{overgang}=0,09m^2\cdot 6,4m\cdot 25kN/m^3=14,4kN$

Kantbjelker på høyre side av akse 4

Tverrsnittsarealet til kantbjelken er 0,32m² og lengden er 1m. Punktlast per kantbjelke blir dermed:

 $G_{kant.4} = 0.32m^2 \cdot 1m \cdot 25kN/m^3 = 8.0kN$

11.1.2 Superegenvekt

Rekkverk

Superegenvekt fra rekkverk:

 $g_{rekkverk} = 2kN/m$

Slitelag

Superegenvekt fra slitelag er 3,5kN/m², superegenvekt per lengdementer blir dermed:

 $g_{slitelag} = 3,5kN/m^2 \cdot 8,4m = 29,4kN/m$

11.2 Trafikklast

Variable laster er laster som varierer i tid, ref. kap.5.3.1 [15]. Det er for brua sett på den variable lasten trafikklast. Trafikklast er last på brubanen fra kjøretøy og fotgjengere. Trafikklaster plasseres i ugunstigste stilling innenfor føringsbredden. Føringsbredden er iht. pkt.4.2.3 [4] den minste horisontale avstanden av fortauskanter og rekkverkskinner.

11.2.1 Lastfelt

Lastfelt omtales i pkt.4.2.3 og 4.2.4 [4]. Føringsbredden deles inn i lastfelt og tabell 4.1 [4] angir bredde per lastfelt. Føringsbredde 8,5 meter gir 2 lastfelt på 3 meter og en rest på 2,5 meter, se utregning av antall lastfelt under:

$$n = \frac{w}{3} = \frac{8,5m}{3} = 2 \mod \text{rest på } 8,5m - 2 \cdot 3m = 2,5m$$

Lastfelt plasseres alltid slik at lastene blir så lite gunstige som mulig i forhold til de lastvirkningene som skal kontrolleres. Lastfelt som gir minst gunstige virkning skal nummereres med 1, lastfelt som gir nest minst gunstige virkning skal nummereres med 2 og så videre, se figur 11–1.

Figur 11–1 Nummerering av lastfelt. Figur hentet fra [4]

11.2.2 Vertikal trafikklast

Vertikale trafikklaster som virker på brua blir omtalt som lastmodeller.

Lastmodell 1

Lastmodell 1 betegnes som LM1 i pkt.4.3.2 [4] og utgjør mesteparten av effekten fra lastebiler og biler. Den består av en konsentrert boggilast (TS) og jevnt fordelt last (UDL) Boggilasten består av to akslinger med avstand 1,2 meter, der hver aksling har lasten Q_{ik}. Se illustrasjon i figur 11–2. Den jevnt fordelte lasten består av en flatelast q_{ik}. Korreksjonsfaktorer α_{Qi} og α_{qi} benyttes iht. NA.4.3.2 [4]. Karakteristiske laster for LM 1 er gitt

i tabell 11-1.

		TS	UDL
Lastfelt	Bredde [m]	$Q_{ik} \cdot \alpha_{Qi} [kN]$	$q_{ik} \cdot \alpha_{qi} [kN/m^2]$
1	3	$300 \cdot 1,0 = 300$	$9 \cdot 0,6 = 5,4$
2	3	$200 \cdot 1,0 = 200$	$2,5 \cdot 1,0 = 2,5$
Rest	2,5	—	$2,5 \cdot 1,0 = 2,5$

Tabell 11–1	Karakteristiske	laster	for LM	1

Figur 11–2 Kontaktflaten til LM1. Figur hentet fra [4]

Lastmodell 2

Lastmodell 2 betegnes som LM2 i pkt.4.3.3 [4] og utgjør dynamiske effekter fra normal trafikk. Den består av en enkelt akslingslast Q_{ak} . Når det er aktuelt påføres kun et hjul. Se illustrasjon i figur 11–3. Korreksjonsfaktor β_Q benyttes iht. NA.4.3.3 [4]. Karakteristisk last for LM 2 blir:

 $Q_{ak}\cdot\beta_Q=400kN\cdot 1, 0=400kN$

Figur 11–3 Kontaktflaten til LM2. Figur hentet fra [4]

11.2.3 Horisontal trafikklast

Horisontale trafikklaster virker i bruas lengderetning som bremse- og akselerasjonslast og i bruas tverretning som sentrifugal- og sidelast.

Bremse- og akselerasjonslast

Bremselasten Q_{lk} virker i lengderetning av kjørebanen og bestemmes iht. pkt.4.4.1(2) [4] og. Lasten påføres slik at lasten virker mest mulig ugunstig. Karakteristisk last beregnes ut fra LM1 og blir:

$$Q_{lk} = 0.6 \cdot \alpha_{Q1}(2 \cdot Q_{1k}) + 0.1 \cdot \alpha_{q1} \cdot q_{1k} \cdot w_1 \cdot L = 0.6 \cdot 1.0(2 \cdot 300kN) + 0.1 \cdot 0.6 \cdot \frac{9kN}{m^2} \cdot 3m \cdot 66m$$

= 466,9kN

der
$$180 \cdot \alpha_{Q1}(kN) \le Q_{1k} \le 900(kN) = 180 \cdot 1,0(kN) \le Q_{1k} \le 900(kN) = 180kN \le 900kN$$

 $w_1 = 3m$ (lastfeltets bredde)

L = 66m (total lengde av bru)

Akselerasjonslasten virker også i bruas lengderetning og bestemmes iht. pkt.4.4.1(5) [4]. Den har samme størrelse som bremselasten men er motsatt rettet.

 $Q_{lk} = -466,9kN$

Sentrifugal – og sidelast

Karakteristiske verdier av sentrifugallasten Qtk bestemmes iht. tabell 4.3 [4] og er gitt som:

 $Q_{tk} = 0.2Q_v$ (kN)
 if r < 200 m

 $Q_{tk} = 40Q_v / r$ (kN)
 if $200 \le r \le 1500 \text{ m}$
 $Q_{tk} = 0$ if r > 1500 m

Tabell 11–2 Karakteristiske verdier av sentrifugallast. Tabell hentet fra [4]

Forklaring: $Q_v =$ summen av vertikale boggilaster for alle kjørebanene

r = horisontal radius av bruas senterlinje

Siden brua er rett uten horisontalkurvatur, får den ingen sentrifugallast.

Sidelast fra bremsing Q_{trk} bestemmes iht. pkt.4.4.2(4) [4] og karakteristisk verdi er gitt som:

$$Q_{trk} = 0.25 \cdot Q_{lk}(kN) = 0.25 \cdot 400.5kN = 100.1kN$$

Sidelasten skal opptre samtidig med bremselasten, Qık.

11.2.4 Grupper av trafikklast

Trafikklaster som virker samtidig kombineres i grupper etter tabell NA.4.4.a [4]. Fotnote a følges og lastgruppe 2 blir da ikke relevant iht. pkt.1.7.6 [20]. Brua får følgende grupper av trafikklast, se tabell 11-3.

Tabell 11–3 Karakteristiske verdier av grupper av trafikklast

		Vertikal	e laster	Horisontale laster		
		LM1	LM2	Bremse/	Sentrifugal-	Sidelast
				akselerasjonslast	last	
Lastgrupper	la	$Q_{ik} + q_{ik}$		Qık		\mathbf{Q}_{trk}
Lastgrupper	1b		Qak			

..

12 FEM-analyse med Sofistik

12.1 Koordinatsystem

Sofistik benytter globalt koordinatsystem og lokale koordinatsystem. For nærmere

beskrivelse se kap.8.2.

Figur 12-1 Globalt koordinatsystem

Figur 12–2 Lokale koordinatsystem

Figur 12-3 Utsnitt lokale koordinatsystem

12.2 Materialer

For materialer i Sofistik se kap.8.3.

12.3 Geometri

12.3.1 Aksesystem

Den horisontale bruaksen i bruas lengderetning går fra x = 0 meter til x = 84 meter. Brua strekker seg fra x = 3,6 meter til x = 75 meter. Akse 1 ligger i x = 10 meter, akse 2 i x = 30meter, akse 3 i x = 55 meter og akse 4 i x = 74 meter. Brua har ingen variasjoner i vertikalretning. Det modelleres 6 sekundære akser parallelt med horisontalaksen for å definere bruas ytre begrensinger. For nærmere beskrivelse av aksesystem i Sofistik se kap.8.4.1.

12.3.2 Tverrsnitt

For beskrivelse av hvordan tverrsnitt modelleres i Sofistik se kap.8.4.2. *Structural Area* blir nummerert etter når de skal bygges. Siden brua utføres i tre byggefaser, nummereres *Structural Area* fra 1–3 etter hvilken byggefase de tilhører.

12.3.3 Randbetingelser

Brua er modellert med følgende randbetingelser:

Akse 1: To lager. Det ene lageret har fastholding i bruas lengderetning samt sidestyring. Det andre lageret har kun fastholding i bruas lengderetning.

Figur 12-4 Lager akse 1

Akse 2: Fast innspenning. Skivesøylen har monolittiske forbindelser til brubjelken og fundamentet.

Figur 12-5 Lager akse 2

Akse 3: Fast innspenning. Skivesøylen har monolittiske forbindelser til brubjelken og fundamentet.

Figur 12-6 Lager akse 3

Figur 12-7 Lager akse 4

Akse 4: To lager. Begge lagrene er bevegelig i bruas lengderetning. Det ene lageret har sidestyring. Det andre lageret har ikke sidestyring.

12.3.4 Elementinndeling

Det er valgt å modellere tre spenns brua med skallelement i Sofistik. Når *Sofiplus-X*modellen eksporteres til *SSD*, deler Sofistik automatisk inn brua i skallelement med tilhørende nummerering av noder og element. Nummering er vist i figur 12-8 og 12-9.

Figur 12-8 Nodenummerering

Figur 12–9 Elementnummerering

12.4 Lastmodellering

Modellering

Modellering av lastene på brua er beskrevet under pkt.12.4.1, 12.4.2 og 12.4.3.

Resultat

Resultat fra enkelt lasttilfeller tas ut fra Sofistik med programmet *SIR*. For beskrivelse av *SIR* se kap.8.5. Det er ikke mulig å benytte *SIR* for kombinerte lasttilfeller. Resultat for kombinerte trafikklaster er beskrevet i kap.12.4.3.

12.4.1 Egenvekt

Modellering av egenvekt i Sofistik utføres på samme måte som for testbjelken, se kap.8.5.

Spenning i betongen

Figur 12–10 Spenning i betongen

Presentasjon av spenninger i betongen i figur 12–10: Oransje og gul farge indikerer trykk og viser at overside av brubjelke/plate er i trykk i felt. Blå og grønn farge indikerer strekk og viser at overside av brubjelke/plate er i strekk over støtter. Deformasjonen til brua på grunn av egenvekt ser riktig ut.

Bøyemoment i bruplata

Bøyemoment om global y-akse fra egenvekt med *SIR* er gitt i figur 12-11.

Figur 12-11 Bøyemoment om global y-akse

Maks feltmoment					
$M_{felt \ akse \ 1-2}[kNm]$	M _{felt akse 2-3} [kNm]	$M_{felt\ akse\ 3-4}[kNm]$			
-3662	-4321	-3765			

Maks støttemoment					
$M_{støtte\ akse\ 1}[kNm] M_{støtte\ akse\ 2}[kNm] M_{støtte\ akse\ 3}[kNm] M_{støtte}$					
1233	7841	8018	45,9		

Kommentar: Benytter like fortegn som *SIR* i Sofistik, det vil si negativt moment gir strekk i underkant, positivt moment gir strekk i overkant.

Skjærkrefter i bruplata

Skjærkrefter i global z-retning fra egenvekt med *SIR* er gitt i figur 12–12.

Figur 12–12 Skjærkrefter i global z-retning

Maks skjærkrefter					
$V_{akse 1}[kN]$	$V_{akse 2}[kN]$	$V_{akse 3}[kN]$	$V_{akse 4}[kN]$		
-1149	1883	1940	1010		

Kommentar: Benytter like fortegn som *SIR* i Sofistik, det vil si negativ skjærkraft gir skjærkraft med klokka, positiv skjærkraft gir sjærkraft mot klokka. Se figur 12–13. Dette er motsatt fortegnsdefinisjon av det som vanligvis benyttes ved NTNU. Skjærkraftdiagrammet i *SIR* tegnes allikevel i samsvar med praksis ved NTNU.

Figur 12–13 Fortegn skjærkraft

Reaksjonskrefter

Utfører en midlertidig endring fra linjelager til punktlager i søylene. Dette for enkelt å kunne lese av reaksjonskrefter og senere utføre kontroll av reaksjonskrefter. Reaksjonskrefter i global z-retning fra egenvekt er gitt i figur 12-14.

Figur 12–14 Reaksjonskrefter i global z-retning

Reaksjonskrefter						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					$R_{akse\ 4.2}[kN]$	
982,5	984,1	4297	4418	663	665,9	

Kommentar: Benytter like fortegn som Sofistik, det vil si positiv reaksjonskraft er i negativ global z-retning.

12.4.2 Superegenvekt

Rekkverk modelleres som permanent linjelast på begge bruvingene. Slitelag modelleres som permanent flatelast mellom kantbjelkene på bruplata.

Spenning i betongen

Figur 12–15 Spenning i betongen

Presentasjon av spenninger i betongen i Animator i figur 12–15: Oransje og gul farge indikerer trykk og viser at overside av brubjelke/plate er i trykk i felt. Blå og grønn farge indikerer strekk og viser at overside av brubjelke/plate er i strekk over støtter. Deformasjonen til brua på grunn av superegenvekt ser riktig ut.

Bøyemoment i bruplata

Bøyemoment om global y-akse fra superegenvekt med *SIR* er gitt i figur 12-16.

Figur 12–16 Bøyemoment om global y-akse

Maks feltmoment					
$M_{felt \ akse \ 1-2}[kNm]$	M _{felt akse 3-4} [kNm]				
-844,0	-895,4	-797,6			

Maks støttemoment						
$M_{støtte\ akse\ 1}[kNm] M_{støtte\ akse\ 2}[kNm] M_{støtte\ akse\ 3}[kNm] M_{støtte\ akse\ 4}[kNm]$						
96,2	1724	1699	4,6			

Kommentar: Benytter like fortegn som *SIR* i Sofistik, det vil si negativt moment gir strekk i underkant, positivt moment gir strekk i overkant

Skjærkrefter i bruplata

Skjærkrefter i global z-retning fra superegenvekt med *SIR* er gitt i figur 12-17.

Figur 12–17 Skjærkrefter i global z-retning

Maks skjærkrefter						
$V_{akse 1}[kN]$	$V_{akse 2}[kN]$	$V_{akse 3}[kN]$	$V_{akse 4}[kN]$			
-232,6	408,3	407,6	215,0			

Kommentar: Benytter like fortegn som *SIR* i Sofistik, det vil si negativ skjærkraft gir skjærkraft med klokka, positiv skjærkraft gir sjærkraft mot klokka. Se figur 12-13.

Reaksjonskrefter

Utfører en midlertidig endring fra linjelager til punktlager i søylene. Dette for enkelt å kunne lese av reaksjonskrefter og senere utføre kontroll av reaksjonskrefter. Reaksjonskrefter i global z-retning fra superegenvekt er gitt i figur 12-18.

Figur 12–18 Reaksjonskrefter i global z-retning

Reaksjonskrefter							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
153,2	153,3	833,1	817,1	133,4	133,7		

Kommentar: Benytter like fortegn som Sofistik, det vil si positiv reaksjonskraft er i negativ global z-retning.

12.4.3 Trafikklast

Modellering

Det er kun utført modellering i Sofistik av vertikale trafikklaster i LM1 i denne oppgaven. For modellering benyttes *Load stepping method*. Metoden går ut på at det etableres *Teddy-filer* med følgende betegnelser og parametere:

Lanes = definerer føringsbredde og lengde på bruspenn der trafikklasten skal settes på Load models = angir hvilke lastmodeller som skal være med Trai = angir hvilke akslingslaster som skal være med (for eksempel LM1 300, LM1 200) Load stepping = automatisk generering av enkelt lasttilfeller Loop = angir antall lasttilfeller som skal genereres per lastfelt for de ulike lastmodellene Load stepping av TS utføres som følgende:

- 1. Største boggilast settes på til høyre i bruas tverretning, lasttoget kjøres over brua og genererer antall lasttilfeller som angitt i *Loop*
- 2. Gjentar prosedyren over men med største boggilast til venstre i bruas tverretning
- 3. Gjentar prosedyren over men med største boggilast i midten av bruas tverretning

Figur 12–19 viser lasttilfeller som genereres for TS til høyre på brua. Loop for TS er satt til 50, dette gir 50 lasttilfeller for TS plassert til høyre på brua. Figur 12–20 viser eksempler på *Load stepping* med TS til høyre på brua.

<mark>LC</mark> ,	201:LM1:TS Lane 10/11 pos1	LC	218:LM1:TS Lane 10/11 pos18	1.0	
LC	202:LM1:TS Lane 10/11 pos2	LC	219:LM1:TS Lane 10/11 pos19	-10	235:LM1:15 Lane 10/11 pos35
10	203:1 M1:TS Lane 10/11 pos3	10	220:LM1:TS Lane 10/11 pos20	LC	236:LM1:TS Lane 10/11 pos36
IC	204:1 M1:TS ane 10/11 post	IC	221.1 M1.TS ane 10/11 pos21	LC	237:LM1:TS Lane 10/11 pos37
10	205-LM1-TS Lane 10/11 p054	IC	222.LM1.TS Lane 10/11 pos21	LC	238:LM1:TS Lane 10/11 pos38
LU	205:LMI:15 Lane 10/11 pos5	-10	222:LIMI: 15 Lane 10/11 pos22	LC	239:LM1:TS Lane 10/11 pos39
LC	206:LM1:TS Lane 10/11 pos6	LU	223:LM1:15 Lane 10/11 pos23	10	240-1 M1-TS Lane 10/11 pos40
LC	207:LM1:TS Lane 10/11 pos7	LC	224:LM1:TS Lane 10/11 pos24	IC	241:1 M1:TS Lane 10/11 post
LC	208:LM1:TS Lane 10/11 pos8	LC	225:LM1:TS Lane 10/11 pos25	10	241:LIVII:15 Lane 10/11 p0541
LC	209:LM1:TS Lane 10/11 pos9	LC	226:LM1:TS Lane 10/11 pos26		242:LMI:15 Lane 10/11 pos42
LC	210:LM1:TS Lane 10/11 pos10	LC	227:LM1:TS Lane 10/11 pos27	LC	243:LM1:TS Lane 10/11 pos43
10	211-1 M1-TS ane 10/11 pos11	10	228:1 M1:TS Lane 10/11 pos28	LC	244:LM1:TS Lane 10/11 pos44
10	212.1 M1.TS Lane 10/11 post1	IC	220:1 M1:TS Lane 10/11 pos20	-LC	245:LM1:TS Lane 10/11 pos45
	212:LWI: 13 Lane 10/11 posi2	IC	220.1 M1.TS Lane 10/11 pos29	LC	246:LM1:TS Lane 10/11 pos46
	213:LMI:15 Lane 10/11 pos13	LC	250:LIMI: 15 Lane 10/11 posso	10	247:1 M1:TS Lane 10/11 pos47
LC	214:LM1:TS Lane 10/11 pos14	LC	231:LM1:TS Lane 10/11 pos31	IC	2/8-1 M1-TS Lane 10/11 pos/8
LC	215:LM1:TS Lane 10/11 pos15	LC	232:LM1:TS Lane 10/11 pos32		240.1141 TC 1
LC	216:LM1:TS Lane 10/11 pos16	LC	233:LM1:TS Lane 10/11 pos33		249:LIVII:15 Lane 10/11 pos49
LC	217:LM1:TS Lane 10/11 pos17	LC	234:LM1:TS Lane 10/11 pos34	LC	250:LM1:TS Lane 10/11 pos50

Figur 12–19 Lastilfeller for TS på høyre side av bru

Figur 12–20 Eksempel på Load stepping med TS på høyre side av bru

Load stepping av UDL utføres som følgende:

- 1. UDL settes på i ett spenn av gangen. Den største UDL settes på til høyre i bruas tverretning, lasten kjøres over brua og genererer antall lasttilfeller som angitt i *Loop*
- 2. Gjentar prosedyren over men med største UDL til venstre i bruas tverretning
- 3. Gjentar prosedyren over men med største UDL i midten av bruas tverretning

Figur 12–21 viser lasttilfeller som genereres for størst UDL til høyre på brua og *Load stepping* med størst UDL til høyre på brua. Loop er lik antall spenn som er 3, dette gir 3 lasttilfeller for største UDL plassert til høyre på brua.

Resultat

Resultat fra enkelt lasttilfeller av trafikklast tas ut fra Sofistik med programmet *SIR*. Siden det ikke er mulig å benytte *SIR* for kombinerte trafikklaster benyttes funksjonen *Cut* til dette. Med *Cut* lager man snitt som gir momentfordeling i kNm/m på tvers av bruas lengderetning. Siden det er vanskelig å verifisere resultat fra *Cut* med håndberegninger, er det kun tatt ut resultat fra kombinerte trafikklaster for utvalgte snitt.

LM 1: TS

Felt 1-2

Lasttilfelle 308 er det enkelt lasttilfellet fra TS som gir største bøyemoment i felt 1-2.

Plassering av laster i lasttilfelle 308 er gitt i figur 12–22. Bøyemoment om global y-akse fra lasttilfelle 308 med *SIR* er gitt i figur 12–23.

Figur 12–22 Felt 1–2: Plassering av TS for maks moment

Figur 12–23 Felt 1–2: Maks bøyemoment fra TS

Felt 2-3

Lasttilfelle 327 er det enkelt lasttilfellet fra TS som gir største bøyemoment i felt 2–3. Plassering av laster i lasttilfelle 327 er gitt i figur 12–24. Bøyemoment om global y-akse fra lasttilfelle 327 med *SIR* er gitt i figur 12–25.

Figur 12–24 Felt 2–3: Plassering av TS for maks moment

Figur 12-25 Felt 2-3: Maks bøyemoment fra TS

Felt 3-4

Lasttilfelle 345 er det enkelt lasttilfellet fra TS som gir største bøyemoment i felt 3-4. Plassering av laster i lasttilfelle 345 er gitt i figur 12-26. Bøyemoment om global y-akse fra lasttilfelle 345 med *SIR* er gitt i figur 12-27.

Figur 12–26 Felt 3–4: Plassering av TS for maks moment

Figur 12–27 Felt 3–4: Maks bøyemoment fra TS

Lasttilfelle 201 er det enkelt lasttilfellet fra TS som gir største bøyemoment over støtte i akse

1. Plassering av laster i lasttilfelle 201 er gitt i figur 12–28. Bøyemoment om global y-akse

fra lasttilfelle 201 med *SIR* er gitt i figur 12-29.

Figur 12–28 Støtte 1: Plassering av TS for maks moment

Figur 12–29 Støtte 1: Maks bøyemoment fra TS

Støtte 2

Lasttilfelle 224 er det enkelt lasttilfellet fra TS som gir største bøyemoment over støtte i akse 2. Plassering av laster i lasttilfelle 224 er gitt i figur 12–30. Bøyemoment om global y–akse fra lasttilfelle 224 med *SIR* er gitt i figur 12–31.

Figur 12-30 Støtte 2: Plassering av TS for maks moment

Figur 12–31 Støtte 2: Maks bøyemoment fra TS

Lasttilfelle 229 er det enkelt lasttilfellet fra TS som gir største bøyemoment over støtte i akse 3. Plassering av laster i lasttilfelle 229 er gitt i figur 12–32. Bøyemoment om global y-akse fra lasttilfelle 229 med *SIR* er gitt i figur 12–33.

Figur 12–32 Støtte 3: Plassering av TS for maks moment

Figur 12–33 Støtte 3: Maks bøyemoment fra TS

Lasttilfelle 328 er det enkelt lasttilfellet fra TS som gir største bøyemoment over støtte i akse

4. Plassering av laster i lasttilfelle 328 er gitt i figur 12-34. Bøyemoment om global y-akse

fra lasttilfelle 328 med *SIR* er gitt i figur 12-35.

Figur 12–34 Støtte 4: Plassering av TS for maks moment

Figur 12-35 Støtte 4: Maks bøyemoment fra TS

TS: Maks moment [kNm]						
M _{felt akse 1-2}	M _{felt akse 2-3}	M _{felt akse 3-4}	M _{støtte akse 1}	M _{støtte} akse 2	M _{støtte} akse 3	M _{støtte akse 4}
-3409	-3515	-3518	195	2517	2564	4

Kommentar: Benytter like fortegn som *SIR* i Sofistik, det vil si negativt moment gir strekk i underkant, positivt moment gir strekk i overkant.

Største moment i tabellen over er fra enkelt lasttilfeller av TS. Det vil si at TS kun er plassert i ett spenn.

LM 1: UDL

Felt 1-2

Lasttilfelle 541 er det enkelt lasttilfellet fra UDL som gir største bøyemoment i felt 1–2.

Plassering av laster i lasttilfelle 541 er gitt i figur 12-36. Bøyemoment om global y-akse fra lasttilfelle 541 med *SIR* er gitt i figur 12-37.

Figur 12–36 Felt 1–2: Plassering av UDL for maks moment

Figur 12–37 Felt 1–2: Maks bøyemoment fra UDL

Felt 2-3

Lasttilfelle 542 er det enkelt lasttilfellet fra UDL som gir største bøyemoment i felt 2-3. Plassering av laster i lasttilfelle 542 er gitt i figur 12-38. Bøyemoment om global y-akse fra lasttilfelle 542 med *SIR* er gitt i figur 12-39.

Figur 12–38 Felt 2–3: Plassering av UDL for maks moment

Figur 12–39 Felt 2–3: Maks bøyemoment fra UDL

Felt 3-4

Lasttilfelle 543 er det enkelt lasttilfellet fra UDL som gir største bøyemoment i felt 3-4. Plassering av laster i lasttilfelle 543 er gitt i figur 12-40. Bøyemoment om global y-akse fra lasttilfelle 543 med *SIR* er gitt i figur 12-41.

Figur 12–40 Felt 3–4: Plassering av UDL for maks moment

Figur 12-41 Felt 3-4: Maks bøyemoment fra UDL

Lasttilfelle 501 er det enkelt lasttilfellet fra UDL som gir største bøyemoment over støtte i akse 1. Plassering av laster i lasttilfelle 501 er gitt i figur 12–42. Bøyemoment om global yakse fra lasttilfelle 501 med *SIR* er gitt i figur 12–43.

Figur 12-42 Støtte 1: Plassering av UDL for maks moment

Figur 12-43 Støtte 1: Maks bøyemoment fra UDL

Lasttilfelle 522 er det enkelt lasttilfellet fra UDL som gir største bøyemoment over støtte i akse 2. Plassering av laster i lasttilfelle 522 er gitt i figur 12–44. Bøyemoment om global yakse fra lasttilfelle 522 med *SIR* er gitt i figur 12–45.

Figur 12-44 Støtte 2: Plassering av UDL for maks moment

Figur 12-45 Støtte 2: Maks bøyemoment fra UDL
Støtte 3

Lasttilfelle 502 er det enkelt lasttilfellet fra UDL som gir største bøyemoment over støtte i akse 3. Plassering av laster i lasttilfelle 502 er gitt i figur 12–46. Bøyemoment om global yakse fra lasttilfelle 502 med *SIR* er gitt i figur 12–47.

Figur 12-46 Støtte 3: Plassering av UDL for maks moment

Figur 12–47 Støtte 3: Maks bøyemoment fra UDL

Støtte 4

Lasttilfelle 522 er det enkelt lasttilfellet fra UDL som gir største bøyemoment over støtte i akse 4. Plassering av laster i lasttilfelle 522 er gitt i figur 12–44. Bøyemoment om global yakse fra lasttilfelle 522 med *SIR* er gitt i figur 12–48.

Figur 12-48 Støtte 4: Maks bøyemoment fra UDL

UDL: Maks moment [kNm]							
M _{felt akse 1-2}	M _{felt akse 2-3}	M _{felt akse 3-4}	M _{støtte akse 1}	M _{støtte} akse 2	M _{støtte} akse 3	M _{støtte akse 4}	
-973	-1124	-981	14	1150	1173	2	

Kommentar: Benytter like fortegn som *SIR* i Sofistik, det vil si negativt moment gir strekk i underkant, positivt moment gir strekk i overkant.

Største moment i tabellen over er fra enkelt lasttilfeller av UDL. Det vil si at UDL kun er plassert i ett spenn.

LM 1: TS + UDL

Det er tatt ut resultat fra kombinerte trafikklaster for snitt i akse 2, i felt mellom akse 2 og 3 og i akse 3. Det er ikke mulig å se hvor lastene er plassert for kombinerte lasttilfeller.

Støtte 2

Lasttilfelle 922 gir største bøyemoment over støtte i akse 2 fra både TS og UDL. Bøyemoment vinkelrett på snittet fra lasttilfelle 922 med *Cut* er gitt i figur 12–50. Tilhørende skrivekrefter vinkelrett på snittet er gitt i figur 12–51.

Figur 12–50 Støtte 2: Bøyemoment vinkelrett på snitt fra Cut

Figur 12–51 Støtte 2: Skivekrefter vinkelrett på snitt fra Cut

Felt 2-3

Lasttilfelle 921 gir største bøyemoment i felt mellom akse 2 og 3 fra både TS og UDL. Bøyemoment vinkelrett på snittet fra lasttilfelle 921 med *Cut* er gitt i figur 12–52. Tilhørende skrivekrefter vinkelrett på snittet er gitt i figur 12–53.

Figur 12–52 Felt 2–3: Bøyemoment vinkelrett på snitt fra Cut

Figur 12–53 Felt 2–3: Skivekrefter vinkelrett på snitt fra Cut

Støtte 3

Lasttilfelle 922 gir største bøyemoment over støtte i akse 3 fra både TS og UDL. Bøyemoment vinkelrett på snittet fra lasttilfelle 922 med *Cut* er gitt i figur 12–54. Tilhørende skrivekrefter vinkelrett på snittet er gitt i figur 12–55.

Figur 12–54 Støtte 3: Bøyemoment vinkelrett på snitt fra Cut

13 Verifikasjon av modell i Sofistik

Det er flere måter å verifisere enkeltlastene i Sofistik på. Man kan benytte håndberegninger eller analyseverktøy som for eksempel *Focus* og *G-prog*. Det finnes tabeller for tre spenns bru som for eksempel [37]. Disse gir moment, skjær- og opplagerkrefter fra punktlaster og jevnt fordelte laster. Tabellene er gitt for ytterspenn som er symmetriske. Dette blir ikke helt riktig for tre spenns brua i denne oppgaven siden ytterspennene har ulik lengde. Benytter formler for fritt opplagte og fast innspente ett spenns bjelker, se formler i figur se figur 13– 1 til 13–5.

Figur 13–1 Moment for bjelke med fast innspenning og fritt opplager

Figur 13-2 Moment for bjelke med fast innspenning

Figur 13-4 Moment for bjelke med fritt opplager og fast innspenning

Figur 13–5 Moment for bjelke med fast innspenning

Figur 13-3 Moment for bjelke med fritt opplager

Figur 13–6 Moment for bjelke med fritt opplager

Resultat fra enkelt lasttilfeller er tatt ut med bruk av programmet *SIR* i Sofistik. Det er utført testing for å finne ut om *SIR*-programmet i Sofistik integrerer moment over tverrsnittet riktig. Konklusjonen er at *SIR* er pålitelig. Se «Vedlegg W: TEST av SIR i Sofistik».

13.1 Egenvekt

Det er utført kontroll av karakteristiske lastvirkninger fra egenvekt. Se resultat fra Sofistik i kap.12.4.1 samt vedlagte håndberegninger «Vedlegg T: Tre spenns bru Lastvirkninger egenvekt superegenvekt». I håndberegningene er det benyttet formler for ett spenns bjelke, se figur 13–1 og 13–2. Følgende beregningssett er utført med håndberegninger:

- 1. Fritt opplagt i akse 1, fast innspenning i akse 2 og 3, glidelager i akse 4. Uten momentbidrag fra vanger, endeskjørt, endetverrbærer og kantbjelker.
- 2. Faste innspenninger i alle akser. Uten momentbidrag fra vanger, endeskjørt, endetverrbærer og kantbjelker.

Totale bøyemoment

Feltet mellom akse 2 og 3 er for langt til å balansere støttemomentene i akse 2 og 3. Dette vil føre til rotasjon i akse 2 og 3 samt oppbøyning av felt mellom akse 1–2 og 3–4. Se illustrasjon i figur 13–7 og 13–8.

Figur 13-7 Prinsipielt momentdiagram

Figur 13-8 Prinsipiell deformasjon

Maks bøyemoment om global y-akse er gitt i tabell 13-1 og 13-2. Benytter like fortegn som *SIR*, det vil si negativt moment gir strekk i underkant og positivt moment gir strekk i overkant.

	$M_{felt \ akse \ 1-2}[kNm]$	$M_{felt \ akse \ 2-3}[kNm]$	$M_{felt\ akse\ 3-4}[kNm]$
Håndberegning ¹	-4435,3	-4106,8	-4002,9
Håndberegning ²	-2628,3	-4106,8	-2372,1
Sofistik	-3662	-4321	-3765
Avvik ¹	-1073,3	214,2	-237,9

Tabell 13–1 Egenvekt: Feltmoment

Tabell 13–2 Egenvekt: Støttemoment

	M _{støtte akse 1} [kNm]	M _{støtte akse 2} [kNm]	M _{støtte akse 3} [kNm]	M _{støtte akse 4} [kNm]
Håndberegning ¹	0	8213,5	8213,5	0
Håndberegning ²	5626,7	8213,5	8213,5	4744,1
Sofistik	1233	7841	8018	45,9
Avvik ¹	-1233	-372,5	195,5	-45,9

Kommentar

<u>Feltmoment akse 1–2:</u> Feltmomentet vil bli mindre i virkeligheten enn for en bjelke med fastlager i akse 1 og fast innspenning i akse 2. Dette på grunn av momentvirkning fra påhengt endetverrbærer, endeskjørt, vanger og kantbjelker i akse 1 samt rotasjon av akse 2. Feltmoment i Sofistik ligger midt mellom håndberegninger for moment med fritt opplager og fast innspenning i akse 1. Dette er logisk. Se tabell 13-3.

Tabell 13-3 Middelverdi feltmoment akse 1-2

	$M_{felt \ akse \ 1-2}[kNm]$
Middelverdi håndberegning 1 og 2	$\frac{-4435,3 + (-2628,3)}{2} = -3531,8kNm$
Sofistik	-3662
Avvik ¹	169,8

<u>Feltmoment akse 2–3</u>: Feltmomentet vil bli større i virkeligheten enn for en bjelke med fast innspenning i akse 2 og 3 på grunn av at akse 2 og 3 roterer. Dette stemmer godt overens med resultat fra Sofistik.

<u>Feltmoment akse 3-4</u>: Feltmomentet vil bli mindre i virkeligheten enn for ei bru med fastinnspenning i akse 3 og glidelager i akse 4. Dette skyldes hovedsakelig at brubjelken i akse 3 roterer siden den ikke er helt fast innspent. Dette stemmer godt overens med resultat fra Sofistik.

Ser også at feltmomentet i spenn 3–4 er omtrent like stort som feltmomentet i spenn 1–2. Feltmomentet i spenn 1–2 reduseres på grunn av rotasjon i akse 1 som skyldes momentbidrag fra venstre side av akse 1. Feltmomentet i spenn 3–4 reduseres ikke slik som feltmomentet i spenn 1–2 på grunn av at det nesten ikke er momentbidrag fra høyre siden av akse 4. Selv om feltet i spenn 1–2 er 1 meter lengre enn feltet i spenn 3–4, vil feltmomentene bli nesten like. Dette stemmer godt med resultatene fra Sofistik.

<u>Støttemoment akse 1:</u> Fastlageret i akse 1 vil i virkeligheten få støttemoment på grunn av momentvirkning fra påhengt endetverrbærer, endeskjørt, vanger og kantbjelker samt rotasjon av akse 1. Håndberegninger er gitt i «Vedlegg U: Tre spenns bru Momentvirkninger Vanger, endeskjørt, endetverrbærer, kantbjelker». Når disse momentvirkningene legges til støttemomentet i akse 1, stemmer det godt overens med resultat fra Sofistik. Se tabell 13-4. Tabell 13-4 Justert støttemoment akse 1

	M _{støtte akse 1} [kNm]
Justert håndberegning ¹	0+1251,0=1251,0
Sofistik	1233
Avvik	18

<u>Støttemoment akse 2</u>: Støttemomentet vil bli mindre i virkeligheten enn for ei bru med fastinnspenning i akse 2 på grunn av rotasjon av akse 2. Dette stemmer godt overens med resultat fra Sofistik.

<u>Støttemoment akse 3:</u> Støttemomentet vil bli mindre i virkeligheten enn for ei bru med fastinnspenning i akse 3 på grunn av rotasjon av akse 2. Dette stemmer godt overens med resultat fra Sofistik.

<u>Støttemoment akse 4:</u> Støttemomentet vil bli større i virkeligheten enn for ei bru med glidelager i akse 4. Dette på grunn av momentvirkninger fra påhengt endetverrbærer og kantbjelker samt rotasjon av akse 4. Håndberegninger er gitt i «Vedlegg U: Tre spenns bru egenvekt Vanger, endeskjørt, endetverrbærer, kantbjelker». Når disse momentvirkningene legges til støttemomentet i akse 4, stemmer det bedre med resultat fra Sofistik. Se tabell 13– 5.

	M _{støtte akse 4} [kNm]
Justert håndberegning ¹	0+12,1=12,1
Sofistik	45,9
Avvik	-33,8

Tabell 13–5 Justert støttemoment akse 4

Reaksjonskrefter

Reaksjonskrefter i global z-retning er gitt i tabell 13-6.

Tabell 13-6 Reaksjonskrefter

	Reaksjonskrefter						
	$R_{akse\ 1.1}[kN]$	$R_{akse\ 1.2}[kN]$	$R_{akse 2}[kN]$	$R_{akse 3}[kN]$	$R_{akse \ 4.1}[kN]$	$R_{akse\ 4.2}[kN]$	$\sum R [kN]$
Hånd-							12094,7
beregning							
Sofistik	982,5	984,1	4297	4418	663	665,9	12010
Avvik							84,7

Kommentar: Positiv reaksjonskraft i tabell 13-6 er i samme retning som negativ global z-akse i Sofistik. +

Summen av reaksjonskrefter fra håndberegninger stemmer godt overens med resultat fra Sofistik.

13.2 Superegenvekt

Det er utført kontroll av karakteristiske lastvirkninger på grunn av superegenvekt. Se resultat fra Sofistik i kap.12.4.2 samt vedlagte håndberegninger «Vedlegg T: Tre spenns bru Lastvirkninger egenvekt superegenvekt». I håndberegningene er det benyttet formler for ett spenns bjelke, se figur 13–1 og 13–2. Følgende beregningssett er utført med håndberegninger:

1. Fritt opplagt i akse 1, fast innspenning i akse 2 og 3, glidelager i akse 4 og uten momentbidrag fra rekkverk og slitelag på venstre og høyre side av akse 1 og 4.

Maks bøyemoment om global y-akse er gitt i tabell 13-7 og 13-8. Det er benyttet like fortegn som *SIR*, det vil si at negativt moment gir strekk i underkant og positivt moment gir strekk i overkant.

	$M_{felt \ akse \ 1-2}[kNm]$	M _{felt akse 2–3} [kNm]	M _{felt akse 3–4} [kNm]
Håndberegning	-939,4	-869,8	-847,8
Sofistik	-844,0	-895,4	-797,6
Avvik	-95,4	25,6	-50,2

Tabell 13–7 Superegenvekt: Feltmoment

Tabell 13-8 Superegenvekt: Støttemoment

	M _{støtte akse 1} [kNm]	M _{støtte akse 2} [kNm]	M _{støtte akse 3} [kNm]	$M_{støtte\ akse\ 4}[kNm]$
Håndberegning	0	1739,6	1739,6	0
Sofistik	96,2	1724	1699	4,6
Avvik	-96,2	-15,6	40,6	-4,6

Kommentar

<u>Feltmoment akse 1–2</u>: Feltmomentet vil bli mindre i virkeligheten enn for ei bru med fritt opplager i akse 1 og fast innspenning i akse 2 på grunn av at akse 2 roterer. Se illustrasjon i figur 13–8. Dette stemmer godt overens med resultat fra Sofistik.

Feltmoment akse 2-3: Håndberegningene stemmer godt overens med resultat fra Sofistik.

<u>Feltmoment akse 3-4:</u> Feltmomentet vil bli litt mindre i virkeligheten enn for ei bru med fastinnspenning i akse 3 og glidelager i akse 4 på grunn av at akse 3 roterer. Se illustrasjon i figur 13-8. Dette stemmer godt overens med resultat fra Sofistik.

<u>Støttemoment akse 1</u>: Fastlageret i akse 1 vil i virkeligheten få støttemoment på grunn av momentvirkning fra påhengt rekkverk og slitelag på venstre side av akse 1. Dette stemmer godt overens med resultat fra Sofistik.

Støttemoment akse 2: Håndberegningene stemmer godt overens med resultat fra Sofistik.

<u>Støttemoment akse 3:</u> Håndberegningene stemmer godt overens med resultat fra Sofistik.

<u>Støttemoment akse 4:</u> Støttemomentet vil bli større i virkeligheten enn for en bjelke med glidelager i akse 4. Dette på grunn av momentvirkning fra påhengt rekkverk og slitelag på høyre side av akse 4. Dette stemmer godt overens med resultat fra Sofistik. Siden det påhengte rekkverket på høyre side av akse 4 er betydelig kortere enn rekkverket på venstre side av akse 1 skal støttemomentet i akse 4 være mindre enn støttemomentet i akse 1. Dette stemmer godt overens med resultat fra Sofistik.

Reaksjonskrefter

Reaksjonskrefter i global z-retning er gitt i tabell 13-9.

	Reaksjonskrefter						
	$R_{akse\ 1.1}[kN]$	$R_{akse\ 1.2}[kN]$	$R_{akse2}[kN]$	$R_{akse 3}[kN]$	$R_{akse \ 4.1}[kN]$	$R_{akse\ 4.2}[kN]$	$\sum R [kN]$
Hånd-							2226
beregning							
Sofistik	153,2	153,3	833,1	817,1	133,4	133,7	2223,8
Avvik							2,2

Tabell 13–9 Reaksjonskrefter

Kommentar: Positiv reaksjonskraft i tabell 13-9 er i samme retning som negativ global zakse i Sofistik. +

Summen av reaksjonskrefter fra håndberegninger stemmer godt overens med resultat fra Sofistik.

13.3 Trafikklast

Det er utført verifikasjon av karakteristiske lastvirkninger for vertikale trafikklaster i lastmodell 1. Siden det ikke er mulig å benytte programmet *SIR* i Sofistik for kombinerte lasttilfeller, er verifikasjonen av trafikklaster hovedsakelig basert på enkelt lasttilfeller av TS og UDL. Til slutt er det utført en grov vurdering av resultat fra kombinerte lasttilfeller av UDL og TS. Se resultat fra Sofistik i kap.12.4.3 og vedlagte håndberegninger «Vedlegg V: Tre spenns bru Lastvirkninger trafikklast». Oversikt over karakteristiske laster som er med i håndberegningene er gitt i tabell 13–10.

Lastfelt	Bredde [m]	$Q_{ik} \cdot \alpha_{Qi} [kN]$	$q_{ik} \cdot \alpha_{qi} [kN/m^2]$	$\sum 2 \cdot Q_{ik} \cdot \alpha_{Qi} [kN]$	$\sum q_{ik} \cdot \alpha_{qi} \cdot b \ [kN/m]$
1	3	$300 \cdot 1,0$ $= 300$	9 · 0,6 = 5,4	$2 \cdot 300 = 600$	5,4 · 3 = 16,2
2	3	$200 \cdot 1,0$ $= 200$	$2,5 \cdot 1,0$ = 2,5	$2 \cdot 200 = 400$	$2,5 \cdot 3 = 7,5$
Rest	2,5	_	$2,5 \cdot 1,0$ $= 2,5$		$2,5 \cdot 2,5 = 6,3$
Total	8,5			1000	30

Tabell 13–10 Karakteristiske laster for LM 1

For å kunne sammenligne resultat må lasten settes på likt i både håndberegninger og Sofistik. Det er valgt å se på spennet mellom akse 2 og 3 som har de største lastvirkningene i verifikasjonen av trafikklaster. Følgende beregningssett er utført med håndberegninger:

- 1. Fast innspenning i akse 2 og akse 3
- 2. Fritt opplagt i akse 2 og glidelager i akse 3

13.3.1 LM 1: TS

For håndberegninger av boggilasten TS er det benyttet formler for ett spenns bjelke, se figur 13-4, 13-5 og 13-6. I sammenligning mellom håndberegninger og resultat fra Sofistik i tabell 13-11 er lasten satt på i samme spenn. Maks bøyemoment om global y-akse er gitt i tabell 13–11 og 13–12. Det er benyttet like fortegn som *SIR*, det vil si at negativt moment gir strekk i underkant og positivt moment gir strekk i overkant.

	M _{støtte akse 2} [kNm]	M _{felt akse 2–3} [kNm]	M _{støtte akse 3} [kNm]		
Håndberegning ¹	3125	-3125	3125		
Håndberegning ²	0	-6250	0		
Sofistik	2517	-3515	2564		
Avvik ¹	608	390	561		
%-vis fast	$100 - \frac{2517 - 3125}{0 - 3125}$	$100 - \frac{-3515 - (-3125)}{-6250 - (-3125)}$	$100 - \frac{2564 - 3125}{0 - 3125}$		
innspenning	$\cdot 100 = 80,5\%$	$\cdot 100 = 87,5\%$	$\cdot 100 = 82,0\%$		

Tabell 13–11 Bøyemoment tilhørende LM1: TS mellom akse 2 og 3

Kommentar

<u>Generelt:</u> Resultat fra Sofistik ligger mellom håndberegninger for fast innspenning og fritt opplager i akse 2 og 3. Sammenligningen viser at brubjelken i akse 2 og 3 er omtrent 85% fast innspent for lastvirkninger fra TS. Det betyr at akse 2 og 3 har stivhet et sted mellom fast innspenning og fritt opplager, dette stemmer bra. Se illustrasjon i figur 13–12.

Figur 13–9 Stivhet i akse 2 og 3

	$M_{felt \ 1-2}[kNm]$	M _{støtte 2} [kNm]	$M_{felt 2-3}[kNm]$	M _{støtte 3} [kNm]	M _{felt 3-4} [kNm]
Sofistik	-3409	2517	-3515	2564	-3518

	M _{støtte 1} [kNm]	M _{støtte 4} [kNm]
Sofistik	195	4

<u>Generelt:</u> Når alle bøyemoment om global y-akse fra Sofistik sammenlignes, ser man at feltmomentene er ganske like og støttemomentene i akse 2 og 3 er ganske like. Støttemomentene i akse 1 og 4 er ubetydelige og brubjelken i akse 1 og 4 kan derfor ansees som fritt opplagt for lastvirkninger fra TS.

<u>Feltmoment spenn 2–3:</u> Midtspennet er betydelig lengre enn ytterspennene. Siden brubjelken mellom akse 2 og 3 er omtrent 85% fast innspent, stemmer det bra at feltmomentet i spenn 2–3 er tilnærmet likt feltmomentene i spenn 1–2 og 3–4.

<u>Feltmoment spenn 1–2 og 3–4:</u> Innspenningsgraden for ytterfeltene styres hovedsakelig av lengden på midtfeltet. Siden midtfeltet er like langt for begge ytterfeltene vil effektene av at spenn 1–2 er 1 meter lengre enn spenn 3–4 og søyla i akse 2 er 2 meter kortere enn søyla i akse 3 oppveie hverandre og føre til at feltmomentene i ytterfeltene vil bli omtrent like store. Dette stemmer bra med resultat fra Sofistik.

<u>Støttemoment akse 2 og 3:</u> Innspenningsgraden for midtfeltet styres hovedsakelig av lengden på ytterfeltene. Lengden på spenn 3–4 er kortere enn spenn 1–2. Selv om søyla i akse 2 er kortere enn søyla i akse 3, vil brubjelken i akse 3 være mer fast innspent enn akse 2 for spenn 2–3. Dette skyldes at bjelkestivheten er mye større enn søylestivheten. Det forventes derfor at støttemomentet i akse 3 vil være litt større enn støttemomentet i akse 2. Dette stemmer bra med resultat fra Sofistik.

13.3.2 LM 1: UDL

For håndberegning av den jevnt fordelte UDL-lasten er det benyttet formler for ett spenns bjelke, se figur 13–1, 13–2 og 13–3. I sammenligningen mellom håndberegninger og resultat fra Sofistik i tabell 13–13 er lasten satt på i samme spenn. Maks bøyemoment om global y-akse er gitt i tabell 13–13 og 13–14. Det er benyttet like fortegn som *SIR*, det vil si at negativt moment gir strekk i underkant og positivt moment gir strekk i overkant.

	M _{støtte akse 2} [kNm]	M _{felt akse 2–3} [kNm]	M _{støtte akse 3} [kNm]
Håndberegning ¹	1563	-781	1563
Håndberegning ²	0	-2344	0
Sofistik	1150	-1124	1173
Avvik ¹	413	343	390
%–vis fast	$100 - \frac{1150 - 1563}{0 - 1563}$	$100 - \frac{-1124 - (-781)}{-2344 - (-781)}$	$100 - \frac{1173 - 1563}{0 - 1563}$
innspenning	$\cdot 100 = 73,6\%$	$\cdot 100 = 78,1\%$	· 100 = 75,0%

Tabell 13–13 Bøyemoment tilhørende LM1: UDL mellom akse 2 og 3

Kommentar

<u>Generelt:</u> Resultat fra Sofistik ligger mellom håndberegninger for fast innspenning og fritt opplager i akse 2 og 3. Tabell 13–13 viser at brubjelken i akse 2 og 3 er omtrent 75% fast innspent for lastvirkninger fra UDL. Det betyr at akse 2 og 3 har stivhet et sted mellom fast innspenning og fritt opplager, dette stemmer bra.

<u>Spenn 2–3:</u> Siden akse 2 og 3 er omtrent 75% fast innspent for lastvirkninger fra UDL, skal støttemomentet i figur 13–2 reduseres med 25%. Dette tilsvarer $0,5 \cdot$ støttemoment. Får å oppnå likevekt i spenn 2–3 må feltmomentet økes med $0,5 \cdot$ støttemoment. Det forventes derfor at støttemoment i akse 2 og 3 og feltmoment i spenn 2–3 er omtrent like. Dette stemmer godt overens med resultat fra Sofistik og er illustrert i figur 13–10 og 13–11.

Figur 13–10 Moment ved 100% fast innspenning

Figur 13–11 Moment ved 85% fast innspenning

Tabell 13–14 Bøyemoment tilhørende LM1: UDL

	$M_{felt \ 1-2}[kNm]$	$M_{støtte 2}[kNm]$	$M_{felt 2-3}[kNm]$	M _{støtte 3} [kNm]	$M_{felt 3-4}[kNm]$
Sofistik	-973	1150	-1124	1173	-981

	$M_{støtte 1}[kNm]$	$M_{støtte \ 4}[kNm]$
Sofistik	14	2

<u>Feltmoment spenn 2–3:</u> Når alle bøyemoment om global y–akse fra Sofistik sammenlignes, ser man at feltmomentet i midtspennet er større enn feltmomentene i ytterspennene. Midtspennet er betydelig lengre enn ytterspennene og siden akse 2 og 3 er omtrent 75% fast innspent stemmer det bra at feltmomentet i midtspennet er størst.

<u>Feltmoment spenn 1–2 og 3–4:</u> Samme begrunnelse som for verifikasjon av TS. Feltmomentene i ytterfeltene skal være omtrent like store, dette stemmer bra med resultat fra Sofistik.

<u>Støttemoment akse 2 og 3:</u> Samme begrunnelse som for verifikasjon av TS. Støttemomentet i akse 3 skal være litt større enn støttemomentet i akse 2. Dette stemmer bra med resultat fra Sofistik.

13.3.3 LM 1: TS + UDL

For sammenligning mellom håndberegninger og resultat fra Sofistik for kombinerte trafikklaster (TS + UDL) er det sett på støttemoment i akse 2, feltmoment mellom akse 2 og 3 og støttemoment i akse 3. Maks bøyemoment om global y-akse er gitt i tabell 13-15 og 13-16. Det er benyttet like fortegn som i *Cut*, det vil si at positivt moment gir strekk i overkant og negativt moment gir strekk i underkant.

Tabell 13–15 Cut: Addisjon av	bøyemoment over tverrsnitter
-------------------------------	------------------------------

M _{støtte akse 2} [kNm]	$-\frac{180kNm}{m} \cdot 1m + \left(-\frac{760kNm}{m} \cdot 4,5m\right) = -3600kNm$
M _{felt akse 2–3} [kNm]	$\frac{350kNm}{m} \cdot 1m + \frac{750kNm}{m} \cdot 4,5m = 3725kNm$
M _{støtte akse 3} [kNm]	$-\frac{177kNm}{m} \cdot 1m + \left(-\frac{750kNm}{m} \cdot 4,5m\right) = -3552kNm$

Tahell i	1 7_1	16	Sammen	lianina	Ravemoment	tilhørende	1 111 .	τs	+ 1	וחו
Tabell I	1-1	0.	Sammen	nynnig.	bøyennonnenn	uniorenue	LIVII.	15	$+ \iota$	JDL

	M _{støtte akse 2} [kNm]	$M_{felt \ akse \ 2-3}[kNm]$	M _{støtte akse 3} [kNm]
Håndberegning ¹	-3125 + (-1563) = -4688	3125 + 781 = 3906	-3125 + (-1563) = -4688
Håndberegning ²	0	6250 + 2344 = 8594	0
Sofistik	-3600	3725	-3552
Differanse ¹	-1088	181	-1136

Kommentar

<u>Generelt:</u> Det blir ikke riktig å integrere moment over tverrsnittet ved å addere momentene fra *Cut*, se forklaring på dette i «Vedlegg W: TEST av SIR i Sofistik». Integrerte moment over tverrsnittet fra Sofistik blir større enn i tabell 13–16 på grunn av bidrag fra aksialtøyninger i vinger og kantbjelker. Håndberegningene er utført med last i kun ett spenn. I resultat for største moment fra kombinerte trafikklaster i Sofistik er UDL plassert over to spenn. Se illustrasjon i figur 13–11 og 13–12. Dette er også med på at resultatene ikke er helt sammenlignbare. Tabell 13–16 er derfor kun en grov sammenligning.

Figur 13–12 Plassering av UDL som gir størst moment i akse 2

Figur 13–13 Plassering av UDL som gir størst moment i akse 3

Med bidrag fra aksialtøyninger i vinger og kantbjelker vil resultat fra Sofistik i tabell 13-16 ligge mellom håndberegninger for fast innspenning og fritt opplager i akse 2 og 3. Siden verifikasjon av TS og UDL viste at akse 2 og 3 var mellom 75% og 85% fast innspent, stemmer dette godt overens med resultatene i tabell 13-16.

DEL 4 AVSLUTNING

14 Oppsummering, diskusjon og konklusjon

Masteroppgaven har gått ut på å gjennomføre modellering og analyse av en testbjelke og ei bru med tre spenn i Sofistik. Resultatene har blitt verifisert med håndberegninger. Fordypningstemaet i oppgaven er analyse av spennarmert betong og evaluering av programsystemet Sofistik for bruer. Hovedfokuset i oppgaven har vært å studere Sofistik ved å sette seg inn i hva som skjer i analysene og hvorfor det skjer. Oppgaven har gitt innsikt i modellering og analyse med Sofistik.

Arbeidet med testbjelken og verifisering av avvik i Sofistik viste seg å være omstendelig og tidkrevende. Det ble lite tid igjen til tre spenns brua og testbjelkedelen har derfor blitt dominerende i denne oppgaven. For tre spenns brua er det utført modellering og analyse av egenvekt og trafikklast i Sofistik samt verifisering av resultat.

Testbjelken

For testbjelken er det lagt vekt på å finne ut hva som skyldes påviste avvik og hvilken betydning disse avvikene har. Det er tilstrebet å gjøre Sofistik-modellen så lik forutsetningene i håndberegningene som mulig. Dette for at avvik skal være representative og for at man på bakgrunn av dette skal kunne trekke konklusjoner om hvorvidt analysene i Sofistik er pålitelige. Oppgaven har funnet ut en del om hvilke antakelser og beregningsmetoder som benyttes i Sofistik for egenvekt, flatelast, spennarmering, kryp og svinn.

Ved å sammenligne håndberegninger med resultat fra Sofistik er det avdekket antakelser og feil i programmet som man mest sannsynligvis ikke hadde funnet ved prosjektering av ei større bru med komplisert geometri og mange spennkabler.

Del 4 Avslutning

<u>Spennkraft</u>

Det er påvist at Sofistik overstyrer oppspenningskraften som legges inn manuelt i programmet. Sofistik benytter oppspenningskraft som er lavere enn den som vanligvis benyttes i Norge etter [10] og [5]. Oppspenningskraften i Sofistik er nærmere P_{m0} i pkt.5.10.3(2) [5], der P_{m0} betegnes som største forspenningskraft etter oppspenning og låsing. For testbjelken utgjør avvik i oppspenningskraft 4,7% for bjelke med rett kabel og 3,9% for bjelke med krum kabel. Avvikene er ikke store og har liten betydning for testbjelken. Men dette kan være kritisk i oppspenningstilstanden for bruer med kassetverrsnitt. For å være på den sikre siden, bør det tas hensyn til at Sofistik benytter lavere oppspenningskraft enn det kabelen faktisk spennes opp med for slike bruer. Dette kan gjøres ved å skalere opp lastfaktoren til forspenningen i oppspenningstilstand med 1,059. Slik vil spennarmeringen virke ugunstigere og mer lik virkeligheten. Avvik i oppspenningskraft er det største avviket som er avdekt for testbjelken.

I verifikasjon av spennkrafttap og forskyvninger som skyldes kryp og svinn er det benyttet lik oppspenningskraft i håndberegningene som i Sofistik. Det vil si oppspenningskraft $P_{max} =$ 2530,8kN for testbjelke med rett kabel og $P_{max} =$ 2553,2kN for testbjelke med krum kabel.

Kryp og svinn

I oppgaven er det oppdaget at dersom kryp- og svinnanalysene til Sofistik skal være så realistiske som mulig må man benytte *realistic creeping* istedenfor *standard creeping*. *Standard creeping* er standard innstilling for krypanalyser i Sofistik og tar ikke hensyn til at laster varierer over tid. Analyse av kryp og svinn i betongen med bruk av *realistic creeping* eller *standard creeping* utgjorde ingen stor forskjell for testbjelken. For en større bru bør det tilstrebes å lage Sofistik-modellen så realistisk som mulig ved blant annet å benytte *realistic creeping.* Det har også vist seg at Sofistik integrerer betongspenninger fra hele tverrsnittet over lengden av bjelken for å beregne kryptøyning i underkant av bjelken. Horisontale forskyvninger i Sofistik vil bli mindre enn om kun spenninger i underkant hadde vært med for bjelke med krum kabel. Dette skyldes at spenninger i tverrsnittet er størst i underkant for bjelke med krum kabel. I bjelke der kabelen er rett og ligger midt i tverrsnittet er spenningene de samme over hele bjelken. For bjelke med krum kabel har det derfor betydning hvilke spenninger man benytter i håndberegningene for verifisering av resultat fra Sofistik. I sammenligning mellom Sofistik-modell med *realistic creeping* og håndberegninger med tilnærmet lik spenningsberegning som Sofistik, stemmer de horisontale forskyvningene som skyldes kryp og svinn godt overens.

<u>Tap i spennkraft</u>

Utregning av umiddelbare tap i spennkraft utføres ganske likt i Sofistik og i håndberegninger. Den eneste forskjellen er at Sofistik ikke regner med bidrag fra friksjon i aktivt anker for umiddelbare tap. Siden Sofistik benytter oppspenningskraft som er lavere enn det som benyttes i Norge i henhold til [5] er friksjonstapet fra aktivt anker i Sofistik sannsynligvis inkludert i avviket mellom oppspenningskreftene. Med ulike oppspenningskrefter og litt ulik utregning av umiddelbare tap, utgjør dette til sammen lite for testbjelken.

Middelverdier for spennkrafttap som skyldes betongens kryp og svinn er tilnærmet like i Sofistik og i håndberegninger. Når man ser på tapet langs kabelen i Sofistik er det derimot store avvik i passiv ende. Dette skyldes at Sofistik-modellen består av skallelement mens håndberegningene er basert på bjelketeori. Tverrsnittet som består av skallelement er ikke stivt og derfor vil høye betongspenninger ved passivt anker heller ikke spres utover. Dette vil gi store langtidstap i spennkraft. I virkeligheten har testbjelken bjelketverrsnitt og vil derfor ikke ha konsentrasjon av høye betongspenninger med tilhørende høye tap i spennkraft ved passivt anker.

For spennkrafttap som skyldes relaksasjon har det vist seg å være store avvik mellom håndberegninger og resultat fra Sofistik. Sofistik ble gjort oppmerksom på disse avvikene og har innrømmet at det er en feil i programmet som de vil rette opp i neste programoppdatering. Inntil videre anbefalte de å benytte en alternativ metode for relaksasjonsanalyser i Sofistik. Allikevel er avvikene små sett i forhold til total spennkraft og har derfor liten betydning.

173

Tre spenns brua

På grunn av tidsmangel måtte det gjøres prioritering på hva som var viktigst å ha for tre spenns brua i oppgaven. Egenvekt, forspenning og trafikklast er de lastene som oftest har størst virkning på spennarmerte bjelke/platebruer. Det ble derfor valgt å gjennomføre modellering, analyse og verifisering av egenvekt og trafikklast. Brua ble modellert med påhengte vanger, endeskjørt, endetverrbærer, kantbjelker, rekkverk og slitelag.

Resultat fra enkelt lasttilfeller er tatt ut med et program i Sofistik som integrerer skallkrefter eller –moment på tvers av bruas lengderetning. Programmet heter *SIR* og fungerer for enkelt lasttilfeller men ikke for kombinerte lasttilfeller. Det ble utført testing for å finne ut om *SIR*– programmet i Sofistik integrerer moment over tverrsnittet riktig. Konklusjonen var at *SIR* er pålitelig.

Siden det ikke er mulig å benytte programmet *SIR* i Sofistik for kombinerte lasttilfeller, ble verifikasjonen av trafikklaster hovedsakelig utført for enkelt lasttilfeller av TS og UDL. For vurdering av resultat fra kombinerte lasttilfeller av UDL og TS ble funksjonen *Cut* i Sofistik benyttet. Med *Cut* lages snitt på tvers av bruas lengderetning som gir momentfordeling i kNm/m. Integrasjon av moment over tverrsnittet vil gi større moment enn addisjon av moment fra *Cut*. Dette på grunn av bidrag fra aksialtøyninger i vinger og kantbjelker. Det blir ikke helt riktig å sammenligne adderte moment fra *Cut* med håndberegninger. Allikevel kan resultat fra *Cut* gi en indikasjon på om lastkombinering i Sofistik er riktig eller ikke.

Alle resultat fra Sofistik for tre spenns brua som ble verifisert, stemte godt overens med håndberegninger.

Konklusjon

Studering av et program som Sofistik er en omfattende og tidkrevende prosess. Sofistik er et stort og komplekst beregningsprogram og det er et hav av ting man kan studere. Oppgaven har vist at mange parametere og valgmuligheter i programmet er godt gjemt og er lett å overse. For å kunne bruke programmet riktig, kreves det at hva man er bevisst på hvilke input man gir og hvilke resultat man benytter. Resultat bør verifiseres underveis i modelleringen. Dersom man venter med verifiseringen til slutt, kan det være vanskelig å finne årsaken til eventuelle avvik.

Det tar tid å sette seg inn i Sofistik og programmet kan sies å ha høy brukerterskel. Manualene til de ulike beregningsmodulene i Sofistik benytter stort sett tekst for å forklare hvordan analysene utføres og er jevnt over vanskelige å forstå. For å ha best mulig kontroll på parametere og beregningsmetoder i Sofistik, bør *Teddy* (basert på skriptprogrammeringsspråk) benyttes i størst mulig grad. Det ligger noen eksempler på hjemmesidene til Sofistik men disse er lite detaljerte og viser ikke modellering med bruk av *Teddy*. Dette har medført at arbeidet med å finne ut hva som skyldes avvik mellom Sofistik og håndberegninger har vært krevende.

Det er i oppgaven funnet avvik mellom Sofistik og håndberegninger, noen større og andre mindre. Alle avvik for testbjelken er mindre enn 10% av total spennkraft eller totale lastvirkninger. Dette er innenfor hva som er akseptabelt for analyser med beregningsprogram. I verifikasjon av egenvekt, superegenvekt og trafikklast for tre spenns brua stemte resultatene fra Sofistik godt overens med det man kunne forvente seg.

Det viktigste er ikke størrelsen på avviket eller tapet i prosent men hva det faktisk skal brukes til. Lastfaktorer, materialfaktorer og andre sikkerhetsfaktorer er med på å sikre at avvikene som er funnet ikke vil medføre at kapasiteter i ULS eller kontroller i SLS overskrides. Men jo flere avvik i en konstruksjon, desto større blir faren for at det kan gå galt.

Konklusjonen er at Sofistik samsvarer godt nok med håndberegninger til at det kan sies å være et pålitelig beregningsprogram for verifikasjonene som er utført i denne oppgaven.

Gjennom arbeidet med denne oppgaven har studenten fått innsikt i programsystemet Sofistik og oppnådd bredere forståelse av spennarmert betong. Studenten skal arbeide med prosjektering av betongbruer og benytte Sofistik etter endt studie. Denne masteroppgaven er derfor veldig relevant for studentens videre arbeid. Studenten ser på dette som en lærerik og flott avslutning på masterstudiet.

175

15 Videre arbeid

Det er potensiale for flere masteroppgaver basert på denne oppgaven. Det kunne vært interessant å gått videre både med både testbjelken og tre spenns brua. Følgende kunne vært modellert og analysert i Sofistik og verifisert med håndberegninger:

<u>Testbjelke</u>

- Temperaturlast
- Lastkombinering
- Kapasitetskontroll i bruddgrensetilstand (ULS)
- Kontroll av bruksgrensetilstand (SLS)

<u>Tre spenns bru</u>

- Spennarmering
- Kryp og svinn
- Temperaturlast
- Vindlast
- Lastkombinering
- Kapasitetskontroll i bruddgrensetilstand (ULS)
 - Kapasitetskontroll i byggefaser
 - Kapasitetskontroll for ferdig bru
- Kontroll av bruksgrensetilstand (SLS)

Når påvist feil i Sofistik blir rettet opp i neste oppdatering av programvaren kan det utføres ytterligere uttesting av spennkrafttap.

Det kunne også vært interessant og modellert testbjelke og tre spenns bru ved bruk av bjelkeelement i Sofistik.

16 Referanser

Standarder

 [1] Standard Norge (2016) NS-EN 1990:2002+A1:2005+NA:2016: Eurokode 0: Grunnlag for prosjektering av konstruksjoner. Brussel: Den europeiske standardiseringsorganisasjonen, CEN (2002)

 [2] Standard Norge (2008) NS-EN 1991-1-1:2002+NA:2008: Eurokode 1: Laster på konstruksjoner, Del 1-1: Allmenne laster, Tetthet, egenvekt, nyttelaster i bygninger. Brussel:
Den europeiske standardiseringsorganisasjonen, CEN (2002)

[3] Standard Norge (2008) NS-EN 1991-1-5:2003+NA:2008: Eurokode 1: Laster på konstruksjoner, Del 1-5: Allmenne laster, Termisk påvirkning. Brussel: Den europeiske standardiseringsorganisasjonen, CEN (2003)

 [4] Standard Norge (2010) NS-EN 1991-2:2003+NA:2010: Eurokode 1: Laster på konstruksjoner, Del 2: Trafikklast på bruer. Brussel: Den europeiske standardiseringsorganisasjonen, CEN (2003)

[5] Standard Norge (2008) *NS-EN 1992-1-1:2004+NA:2008: Eurokode 2: Prosjektering av betongkonstruksjoner, Del 1-1: Allmenne regler og regler for bygninger.* Brussel: Den europeiske standardiseringsorganisasjonen, CEN (2004)

 [6] Standard Norge (2010) NS-EN 1992-2:2005+NA:2010: Eurokode 2: Prosjektering av betongkonstruksjoner, Del 2: Bruer. Brussel: Den europeiske standardiseringsorganisasjonen, CEN (2005)

European Technical Approval (ETA)

[10] BBR VT International Ltd (2013) *European Technical Approval ETA-09/0286: BBR VT CONA CMI BT: Internal Post-tensioning System with 02 to 61 Strands*. Den europeiske organisasjonen for teknisk godkjenning, EOTA [11] BBR VT International Ltd (2013) *The Ultimate Design Guide: BBR VT CONA CMXa: Strand Post-tensioning Systems*

Statens Vegvesens håndbøker

[15] Vegdirektoratet (2015) *Håndbok N400: Bruprosjektering – Prosjektering av bruer, ferjekaier og andre bærende konstruksjoner.* Oslo: Statens vegvesen

Statens Vegvesens rapporter

[20] Johansen H. (2017) *Rapport nr.668: Beregningsveiledning for etteroppspente betongbruer.* Trondheim: Vegdirektoratet

Bøker

[25] Sørensen S.I (2013) Betongkonstruksjoner. Utgave 2. Bergen: Fagbokforlaget

Publikasjoner

[30] Norsk Betongforening (2016). Publikasjon nr.14 Spennarmeringsarbeider. Oslo: Norsk

Betongforening

Annen litteratur

[35] *Formelsamling TKT4220 Betongkonstruksjoner 2*. Institutt for Konstruksjonsteknikk; NTNU: 2010

[36] Formelsamling TKT4175 Betongkonstruksjoner 1. Institutt for Konstruksjonsteknikk; NTNU: 2012

[37] Zellerer. Durchlaufträger Einflusslinien Momentlinien Schnittgrössen. 2.opplag. Berlin:Verlag von Wilhelm Ernst & Sohn

17 Vedleggsliste

- Vedlegg A Oppgavetekst Trespenns bru
- Vedlegg B Overdekning
- Vedlegg C Alder på betong ved oppspenningstidspunkt
- Vedlegg D Spennkraft
- Vedlegg E Testbjelke Primær-effekter
- Vedlegg F Testbjelke Spenningsberegninger ved oppspenning Krum kabel
- Vedlegg G Testbjelke Elastisk deformasjon friksjon låsetap Krum kabel
- Vedlegg H Testbjelke Kryp svinn relaksasjon Krum kabel
- Vedlegg I Testbjelke Lastvirkninger egenvekt og flatelast
- Vedlegg J TEST Testbjelke Kryp svinn relaksasjon Rett kabel Modell med real creep
- Vedlegg K TEST Testbjelke Kryp svinn relaksasjon Krum kabel Modell med real creep
- Vedlegg L TEST Testbjelke Friksjon Rett Krum kabel Modell uten låsetap
- Vedlegg M TEST Testbjelke Låsetap Rett Krum kabel Modell uten friksjon
- Vedlegg N TEST Testbjelke Elastisk deformasjon friksjon låsetap Rett kabel Oppspenningskraft 2657kN
- Vedlegg O TEST Testbjelke Elastisk deformasjon friksjon låsetap Krum kabel Oppspenningskraft 2657kN
- Vedlegg P TEST Testbjelke Kryp svinn relaksasjon Rett kabel Oppspenningskraft 2657kN
- Vedlegg Q TEST Testbjelke Kryp svinn relaksasjon Krum kabel Oppspenningskraft 2657kN

Vedlegg R	Svar fra Sofistik angående spennkraft i analyse av langtidseffekter
-----------	---

- Vedlegg S Svar fra Sofistik angående påvist feil i programmet
- Vedlegg T Trespenns bru Lastvirkninger egenvekt superegenvekt
- Vedlegg U Trespenns bru Momentvirkninger Vanger endeskjørt endetverrbærer kantbjelker
- Vedlegg V Trespenns bru Lastvirkninger trafikklast
- Vedlegg W TEST av SIR i Sofistik

Prosjektoppgave

Innledning

Ei planlagt plasstøpt og etteroppspent bjelke/platebru skal analyseres og dimensjoneres i henhold til gjeldende regelverk. Brulengden er 1,0 + 20,0 + 25,0 + 19,0 + 1,0 = 66,0 meter (1,0 meter utstikk forbi landkaraksene på begge ender). Tverrsnittet er konstant, med føringsbredde 8,5 meter, bjelkedel bredde 4,5 meter, tverrsnittshøyde i bjelkedelen 1,0 meter og vingetykkelse 0,3 meter. Spennarmeringen er satt sammen av to kabelgrupper med 6 kabler i hver gruppe. Lengdesnitt og tverrsnitt med spennkabler i endefelt og ved opplegg er vist i vedlagte figur. Antatt/foreslått kabelføring er også vist.

Forutsetninger

Utførelse

Overbygningen forutsettes utført i én støp med forskaling på reis fra bakken.

De som ønsker (frivillig), kan regne med følgende tre byggefaser:

- 1. Første etappe: 1,0 + 20,0 + 4,0 = 25,0 meter fra venstre bruende til 4,0 meter forbi akse 2
- 2. Andre etappe: 25,0 meter fram til 5,0 meter forbi akse 3
- 3. Tredje etappe: 14,0 + 1,0 = 15,0 meter fram til høyre bruende

Geometri og grensebetingelser

Forutsetninger:

- Brua er horisontal (ingen vertikalkurvatur) og rett (ingen horisontalkurvatur)
- Akse 1: Skivesøyle 7,5 m x 0,6 m, lagre med sidestyring og fastholding i bruas lengderetning. Fugefri bruende med skjørt og vanger hengt på brua.
- Akse 2: Skivesøyle 4,5 m x 0,6 m, lengde 6 meter, monolittisk forbindelse
- Akse 3: Skivesøyle 4,5 m x 0,6 m, lengde 8 meter, monolittisk forbindelse
- Akse 4: Skivesøyle 7,5 m x 0,6 m, lagre med sidestyring men uten fastholding i bruas lengderetning. Fuge mellom bruende og tradisjonelt landkar.
- Fundamentering på berg i alle akser

Materialer

Forutsetninger:

- Betongkvalitet B45
- Slakkarmering B 500 NC

Laster

Forutsetninger for egenvekter:

- Super-egenvekt for slitelag er 2,5kN/m²
- Super-egenvekt for rekkverk er 2kN/m

Forvtartgingorforvtersperaterins bru

• Temperatur-virkninger: T_{max} = 34 °C, T_{min} = -28 °C

Forutsetninger for vindlaster:

- Brua ligger i Trondheim kommune i Sør-Trøndelag
- Retningsfaktor, sesongfaktor og nivåfaktor settes lik 1,0 (c_{dir}, c_{season}, c_{alt} = 1,0)
- Returperiode i ferdigtilstand settes lik 50 år (c_{prob} = 1,0)
- Terrengformfaktor, c₀(z) = 1,0
- Overbygningens høyde over terreng, z = 10 m
- Terrengruhetskategori II
- Vindturbulens, $k_1 = 1,0$
- Total bruplatebredde inkl kantdragere, b = 9,5 m
- Vindlast på søyler neglisjeres

Spennarmering

Spennarmering med 12 stk 150 mm² tau pr kabel antas brukt. Aktuelle systemer kan være for eksempel Dywidag (DSI), Cona CMI BT (BBR VT) eller VSL. Data/forutsetninger finnes i relevante ETA'er, for eksempel ETA-09/0286 (BBR).

ETA-ene finnes på leverandørenes nettsider. Google-søk med titlene fører som regel fram.

Kablenes/forankringenes plassering er antydet i vedlagte figur. I analysen kan kabler samles i grupper i CL bru.

Kabelgruppe 1 spennes opp ved akse 1 og har innstøpte passive forankringer i motsatt ende. Kabelgruppe 2 spennes opp ved akse 4 og har innstøpte passive forankringer i motsatt ende.

Låsetapet ved aktiv forankring settes lik 6 mm.

Det forutsettes brukt kabelrør med diameter 90 mm, og minimum trykkfasthet for betongen ved oppspenning settes lik 32 MPa (sylinder) / 40 MPa (terning).

Ved utførelse i tre etapper forutsettes kabelføring tilpasset byggefasene.

Miljø

Eksponeringsklasser: *XD1* for overside, *XC3* for underside.

Oppgaver

Oppgave 1: Prosjekteringsgrunnlag

(a) Lag en summarisk oversikt over nødvendige grunnlagsdokumenter, inkludert standarder, håndbøker, ETA'er osv. Gi en kort presentasjon av analyseprogrammet som benyttes.

(b) Bestem dimensjonerende materialegenskaper for både betong, slakkarmering og spennarmering. Kartlegg viktige forutsetninger vedr kryp og svinn for betongen.

(c) Bestem viktige forutsetninger for valgt spennsystem, inkludert parametere for spennkrafttap, minimum senteravstander og kantavstander for kabelforankringene, oppspenningskraft mm.

(d) Restern monopiga mesing (statkarmering) for tverrsnittet. Velg (innledende) lengdearmering med senteravstand 150 mm slik at kravet til minimumsarmering er tilfredsstilt.

(e) Bestem nødvendig overdekning, og vis plassering av slakkarmering og spennarmering, samt kabelforankringer, i tverrsnittet.

(f) Bestem karakteristiske verdier for alle komponenter/bidrag fra trafikklaster.

(g) Bestem karakteristiske verdier for alle komponenter/bidrag fra temperaturlaster.

(h) Bestem karakteristiske verdier for alle komponenter/bidrag fra vindlaster på bru uten trafikk og på bru med trafikk.

(i) Bestem dimensjonerende lastkombinasjoner.

Oppgave 2: Analyse

(a) Etabler analysemodell for brua. Bestem effektiv flensbredde for alle deler av brua og vurder hvordan eventuelt varierende flensbredder skal modelleres.

(b) Vis hvordan alle forutsetninger vedrørende både geometri, grensebetingelser, materialer, laster, lastkombinasjoner og spennarmering er ivaretatt og implementert i analysen.

(c) Verifiser viktige resultater for alle viktige lasttilfeller, delkombinasjoner og dimensjonerende lastkombinasjoner. Nevn kort hvilke forhold som *ikke* er ivaretatt eller modellert eksakt i analysen, og vurder om unøyaktighetene har vesentlig betydning for resultatene.

(d) Kontroller om SLS-krav om trykkavlastning er tilfredsstilt. Dersom kravet ikke er tilfredsstilt, øk spennarmeringsmengdene (antall tau pr kabel) og kjør analysen på nytt.

(e) Presenter og forklar de viktigste analyseresultatene (krefter/momenter) ved diagrammer og tabeller.

Oppgave 3: Tverrsnittskontroll

(a) Kontroller ved håndregning tverrsnittets momentkapasitet (ULS) i endefelt akse 1-2 (snitt A) og/eller 3-4 (snitt C) og ved opplegg akse 3 (snitt B). Regn med spennarmeringen som bidrag til tverrsnittets kapasitet (indre motstand). Kontroller kapasiteten mot dimensjonerende (opptredende) momenter for ULS uten forspenningens primær-effekter.

(b) Vis at tverrsnittene kontrollert i (a) er underarmerte.

(c) Kontroller ved håndregning tverrsnittets skjærkapasitet (ULS) ved opplegg akse 3. Finn ut om skjærarmering (bøyler) er nødvendig, og bestem eventuelt nødvendig bøylearmering og nødvendig tillegg i lengdearmering.

(d) Kontroller ved håndregning tverrsnittets torsjonskapasitet (ULS) ved opplegg akse 3. Bestem eventuell nødvendig tverrarmering (bøyle rundt bjelkedelen av tverrsnittet) og tillegg i lengdearmering.

- (e) Kontroller betweenstkapesitet for skjær-trykk for kombinert skjær og torsjon.
- (f) Kontroller ved håndregning trykkavlastning (snitt A) og rissvidder (snitt A og B).

Oppgave 4: Diverse kontroller – frivillig

De som ønsker kan dokumentere følgende kontroller:

- a) Skiveskjær i flenser og lastvirkninger i bruas tverretning; dimensjonering av tverrarmering i bruvingenes innspenning
- b) Kontroll av lokale krefter over lagre og ved spennarmeringsforankringer
- c) Dimensjonering av søyler, inkludert vurdering av knekklengder/slankhet og 2. ordens tilleggsmomenter

De som regner med byggefaser kan kontrollere overbygningens kapasitet i oppspenningstilstanden, dvs med spennarmeringen på trykksida.

Praktiske detaljer

Praktiske detaljer for besvarelsen:

- Oppgavene skal besvares fullstendig men mest mulig kortfattet
- Oppgavene skal besvares i samme rekkefølge som oppgaveteksten; oppgave 1 (a) > (b) osv
- Besvarelsen skal leveres digitalt i én samlet fil (pdf) med epost til: <u>havard.johansen@vegvesen.no</u>
- Skannede håndskrevne sider aksepteres hvis teksten er godt lesbar
- Innlevert pdf skal ha fortløpende sidenummerering (kan legges inn helt til slutt)

Oppgave 1 og 2 skal leveres innen **tirsdag 27. september kl 14.30**. Løsningsforslag for analysen vil deretter bli delt ut og gjennomgått.

Oppgave 3 (og eventuelt oppgave 4) skal leveres innen **tirsdag 25. oktober kl 15.30**. Arbeidet med oppgave 3 kan baseres på løsningsforslag for oppgave 1 og 2.

Alle besvarelser må leveres innen fristen for å bli vurdert.

Flere studenter kan samarbeide om arbeidet med prosjektoppgaven, men alle må levere selvstendig og egenprodusert besvarelse.

Vedlegg A: Oppgavetekst Tre spenns bru

Vedlegg A: Oppgavetekst Tre spenns bru

Vedlegg B: Overdekning

iht. [5] og [15]

ø := 12mm

Slakkarmering

Minste overdekning av hensyn til heft:	
$c_{\min.b.slakkarm} := \max(\phi, 10 \text{mm}) = 12 \text{mm}$	(Tab.NA.4.2 [5])
Klasse XD1, overkant bjelke	
Minste overdekning av hensyn til bestandighet:	
c _{min.dur.slakkarm.ok} := 60mm	(Tab.7.2 [15])
Minste overdekning:	(7.4.2 [15])
$c_{\min,slakkarm,ok} := \max(c_{\min,b,slakkarm} c_{\min,dur,slakkarm,ok}) = 60 \text{ mm}$	
Overdekningstoleranse:	(7.4.3 [15])
$\Delta c_{\text{dev.slakkarm.ok}} := \begin{array}{ll} (15\text{mm}) & \text{if } c_{\text{min.slakkarm.ok}} < 70\text{mm} &= 15 \cdot \text{mm} \\ (10\text{mm}) & \text{if } c_{\text{min.slakkarm.ok}} \ge 70\text{mm} \end{array}$	
Nominell overdekning:	(7.4.4 [15])
$c_{nom.slakkarm.ok} := c_{min.slakkarm.ok} + \Delta c_{dev.slakkarm.ok} = 75 \text{ mm}$	
Klasse XC3, underkant bjelke	
Minste overdekning av hensyn til bestandighet:	
c _{min.dur.slakkarm.uk} := 50mm	(Tab.7.2 [15])
Minste overdekning:	(7.4.2 [15])
$c_{\min.slakkarm.uk} := \max(c_{\min.b.slakkarm} c_{\min.dur.slakkarm.uk}) = 50 \text{ mm}$	
Overdekningstoleranse:	(7.4.3 [15])
$\Delta c_{dev.slakkarm.uk} := (15mm)$ if $c_{min.slakkarm.uk} < 70mm = 15 mm$	
(10mm) if $c_{min.slakkarm.uk} \ge 70mm$	
Nominell overdekning:	(7.4.4 [15])

 $c_{nom.slakkarm.uk} := c_{min.slakkarm.uk} + \Delta c_{dev.slakkarm.uk} = 65 \cdot mm$

Spennarmering

Minste overdekning av hensyn til heft:	
$c_{\min.b.spennarm} := \max(\phi, 10mm) = 12 \cdot mm$	(Tab.NA.4.2 [5])
Klasse XD1, overkant bjelke	
Minste overdekning av hensyn til bestandighet:	
For spennarmering skal c _{mindur} økes med 10mm	
$c_{min.dur.spennarm.ok} := (60 + 10)mm = 70 \cdot mm$	(Tab.7.2 [15])

Minste overdekning:	(7.4.2 [15])
$c_{\min.spennarm.ok} := \max(c_{\min.b.spennarm}, c_{\min.dur.spennarm.ok}) = 70 \cdot mm$	

Overdekningstoleranse:(7.4.3 [15]) $\Delta c_{dev.spennarm.ok} :=$ (15mm) if $c_{min.spennarm.ok} < 70mm$ $= 10 \cdot mm$ (10mm) if $c_{min.spennarm.ok} \ge 70mm$

Nominell overdekning: (7.4.4 [15])

 $c_{nom.spennarm.ok} := c_{min.spennarm.ok} + \Delta c_{dev.spennarm.ok} = 80 \cdot mm$

Klasse XC3, underkant bjelke

Minste overdekning av hensyn til bestandighet:	
For spennarmering skal c _{mindur} økes med 10mm	
$c_{\min.dur.spennarm.uk} := (50 + 10)mm = 60 \cdot mm$	(Tab.7.2 [15])
Minste overdekning:	(7.4.2 [15])
$c_{\min.spennarm.uk} := \max(c_{\min.b.spennarm}, c_{\min.dur.spennarm.uk}) = 60 \cdot mm$	
Overdekningstoleranse:	(7.4.3 [15])
$\Delta c_{\text{dev.spennarm.uk}} := (15 \text{ mm}) \text{ if } c_{\text{min.spennarm.uk}} < 70 \text{ mm} = 15 \cdot \text{mm}$	
(10mm) if $c_{min.spennarm.uk} \ge 70mm$	
Nominell overdekning:	(7.4.4 [15])

 $c_{nom.spennarm.uk} := c_{min.spennarm.uk} + \Delta c_{dev.spennarm.uk} = 75 \cdot mm$

Vedlegg C: Alder på betong ved oppspenningstidspunkt

lht. [5]

Minimum trykkfasthet i betongen ved oppspenningstidspunktet skal være 32MPa:

$$f_{ck,t} := 32$$
 MPa

Midlere trykkfasthet etter t døgn, 3 < t < 28 døgn:

$$f_{cm,t} := f_{ck,t} + 8 = 40$$
 MPa

Midlere trykkfasthet etter t døgn, t >= 28 døgn:

(Tabell 3.1 [5])

(3.1.2(5) [5])

$$f_{cm} := 53$$
 MPa

Koeffisient s som avhenger av sementtype:

Betongens alder t₀ når midlere trykkfasthet lik 40MPa er oppnådd:

$$f_{cm.t} = \beta_{cc}(t_0) \cdot f_{cm}$$
 solve $\rightarrow 6.197$

På bakgrunn av dette antas det at forspenning og egenvekt påføres 7 døgn etter støping:

$$t_0 := 7$$

Midlere trykkfasthet etter 7 døgn:

$$\mathbf{f}_{cm.t0} \coloneqq \beta_{cc}(\mathbf{t}_0) \cdot \mathbf{f}_{cm} = 41.28$$

Minimum sylindertrykkfasthet etter 7 døgn:

$$f_{ck.t0} := f_{cm.t0} - 8 = 33.28$$

 $if(f_{ck,t0} \ge 32, OK, IKKE_OK) \rightarrow OK$

Vedlegg C: Alder på betong ved oppspenningstidspunkt

Vedlegg D: Spennkraft

iht. [5] og [10].

Største oppspenningskraft	(5.10.2 [5])
$A_p := 1800 \text{mm}^2$	
$k_1 := 0.8$ $k_2 := 0.9$	(NA.5.10.2.1 [5]
$f_{pk} := 1860MPa$ $f_{p0.1k} := 1640MPa$	([10])
Øvre grense for kabelspenningen før låsetap:	
$\sigma_{\text{pmax}} \coloneqq \min(k_1 \cdot f_{\text{pk}}, k_2 \cdot f_{\text{p0.1k}}) = 1476 \text{ MPa}$	(5.10.2.1(1) [5])
Største oppspenningskraft:	
$P_{max} := A_p \cdot \sigma_{pmax} = 2657 \text{ kN}$	
Øvre grense for kabelspenning (overspenning)	
dersom spennkraften kan måles med nøyaktighet på +/- 5%	
$\sigma_{\text{pmax0.05}} = 0.95 \text{f}_{\text{p0.1k}} = 1558 \text{MPa}$	(5.10.2.1(2) [5])
Øvre grense for spennkraft (overspenning)	
dersom spennkraften kan måles med nøyaktighet på +/- 5%	
$P_{max0.05} = A_p \cdot \sigma_{pmax0.05} = 2804 \text{ kN}$	
Største forspenningskraft etter oppspenning og låsing	(5.10.3 [5])
Initiell forspenning som påføres betongen umiddelbart etter oppspenning og låsing bør ikke overskride:	
$k_7 := 0.75$ $k_8 := 0.85$	(NA.5.10.3(2) [5])
$\sigma_{pm0} := \min(k_7 f_{pk}, k_8 f_{p0.1k}) = 1394 \text{ MPa}$	(5.10.3(2) [5])

Initiell forspenningskraft som påføres betongen umiddelbart etter oppspenning og låsing bør ikke overskride:

 $P_{m0} := A_p \cdot \sigma_{pm0} = 2509 \cdot kN$

Vedlegg D: Spennkraft

Vedlegg E: Testbjelke Primær-effekter

Primær-effekter umiddelbart etter oppspenning

Testbjelken er statisk bestemt. Primærmoment fra spennarmeringen = spennkraft x eksentrisitet. Primærmoment midt på bjelken = spennkraft midt på bjelken umiddelbart etter oppspenning x eksentrisitet. Spennkrefter er hentet fra Sofistik.

Lengde bjelke: $L_h := 10m$

Spennkraft midt på bjelken: $P_{midt} := 2310 kN$ $P_{krumning} := 2320 kN$ Eksentrisitet midt på bjelken: $e_{midt} := 0mm$ $e_{krumning} := 112mm$

Kabelens vertikalvinkel med bjelkeaksen:

 $\alpha_{\text{midt}} \coloneqq 0$ $\alpha_{\text{krumning}} = \tan^{-1} \left(\frac{e_{\text{krumning}}}{\frac{L_b}{2}} \right)$ $\alpha_{\text{krumning}} \coloneqq 1.2832 \text{leg}$

Bøyemoment midt på bjelken:

Kabel midt i tverrsnittet:

 $M_{midt} := P_{midt} \cdot \cos(\alpha_{midt}) \cdot e_{midt} = 0 \cdot kN$

Kabel med krumning:

 $M_{krumning} := P_{krumning} \cdot \cos(\alpha_{krumning}) \cdot e_{krumning} = 260 \text{ kN} \cdot \text{m}$

Vedlegg E: Testbjelke Primær effekter

Vedlegg F: Testbjelke Spenningsberegninger ved oppspenning Krum kabel

iht. [5], [10], [20] og [25].

Input

Geometri

Tverrsnittsbredde: b := 2000mm

Tverrsnittshøyde: h := 500mm

 $\label{eq:constraint} \mbox{Tverrsnittsareal:} \quad \mbox{A}_c \coloneqq b \cdot h = 1 \times 10^6 \cdot mm^2$

Betong

Midlere trykkfasthet etter 28 døgn:	f _{cm} := 53MPa	(Tabell 3.1 [5])
Elastisitetsmodul etter 28 døgn:	E _{cm} := 36000MPa	(Tabell 3.1 [5])
Betongens alder (døgn) ved oppspe	nning: t ₀ := 7	
Midlere trykkfasthet ved 7 døgn:	$f_{cm0} \coloneqq 41.28 MPa$	(Vedlegg C)
Korttids E-modul ved 7 døgn:	$\mathbf{E}_{c0} \coloneqq \left(\frac{\mathbf{f}_{cm0}}{\mathbf{f}_{cm}}\right)^{0.3} \cdot \mathbf{E}_{cm} = 33400 \mathrm{MPa}$	(3.3.(3) [5])
Spennarmering		
Elastisitetsmodul:	E _p := 195000MPa	(1.5 [20])
Karakteristisk strekkfasthet:	$f_{pk} := 1860 \frac{N}{mm^2}$	(1.5 [20])
0,1 %-strekkgrense:	$f_{p0.1k} \coloneqq 1640 \frac{N}{mm^2}$	(1.5 [20])
Areal av kabel: A _p := 1800mm ²		(Annex 8 [10])
Lengde spennkabel: L _p := 10.003m		
Antall kabler: <mark>n := 1</mark>		
Kabelens eksentrisitet ifht. tverrsnit	tets tyngdepunkt: e := 112mm	
Regner oppspenningskraft etter Sof	istik:	

 $P_{max} := 2553.2 \text{kN}$

(Rapport kap.9.4)

Spenningsberegninger ved oppspenning

Antar ingen opprissing ved oppspenning.

Areal av kabler oppspent før kabel som kabelen som skal beregnes spenningsendring for:

 $A_{p0} := 0 \text{mm}^2$

Ekvivalent betongtverrsnitt:

$$\eta_{t0} \coloneqq \frac{E_p}{E_{c0}} = 5.838$$
(Del 2 lign.6.6 [25])
$$A_{t0} \coloneqq A_c + (\eta_{t0} - 1) \cdot A_{p0} = 1000000 \cdot \text{mm}^2$$

$$y_{t0} \cdot A_{t0} = (\eta_{t0} - 1) \cdot A_{p0} \cdot e$$

$$y_{t0} := \frac{\left[(\eta_{t0} - 1) \cdot A_{p0} \cdot e \right]}{A_{t0}} = 0 \cdot mm$$
(Del 2 lign.6.7 [25])

Det armerte tverrsnittets treghetsmoment om tverrsnittets tyngdepunktsakse:

$$I_{t0} := \frac{b \cdot h^3}{12} + b \cdot h \cdot y_{t0}^2 + (\eta_{t0} - 1) \cdot A_{p0} \cdot (e - y_{t0})^2 = 2.083 \times 10^{10} \cdot mm^4$$
 (Del 2 lign.6.8 [25])

Aksialkraft og moment i tpb:

$$N := -P_{max} = -2553 \cdot kN$$
 $M := -P_{max} \cdot e = -286 \cdot kN \cdot m$ (Del 2 lign.6.9 [25])

Aksialkraft og moment som virker i det armerte tverrsnittets tyngdepunktsakse, tp:

$$N = -2553 \cdot kN$$
 (Del 2 lign.6.10a,
6.10b [25])

$$M_{t0} := M - N \cdot y_{t0} = -286 \cdot kN \cdot m$$

Spenning i betongen i overkant:

$$y_{ok} := -250 \text{mm}$$

$$\sigma_{c.ok.t0} := \frac{N}{A_{t0}} + \frac{M_{t0}}{\frac{I_{t0}}{y_{ok} - y_{t0}}} = 0.88 \cdot \text{MPa}$$
(Del 2 lign.6.11 [25])

Spenning i betongen ved spennarmeringen:

$$y_{p} \coloneqq 112mm$$

$$\sigma_{c.p.t0} \coloneqq \frac{N}{A_{t0}} + \begin{vmatrix} \frac{M_{t0}}{I_{t0}} & \text{if } y_{p} > 0mm \\ = -4.09 \cdot MPa$$

$$\frac{I_{t0}}{y_{p} - y_{t0}}$$

$$0 & \text{if } y_{p} \le 0mm$$

Spenning i betongen i underkant:

$$y_{uk} := 250 \text{mm}$$

 $\sigma_{c.uk.t0} := \frac{N}{A_{t0}} + \frac{M_{t0}}{\frac{I_{t0}}{y_{uk} - y_{t0}}} = -5.98 \cdot \text{MPa}$

Korttidstøyning i betongen i overkant bjelke:

$$\varepsilon_{c0.ok} \coloneqq \frac{\sigma_{c.ok.t0}}{E_{c0}} = 0.000026$$

Korttidstøyning i betongen ved spennarmeringen:

$$\varepsilon_{c0.p} := \frac{\sigma_{c.p.t0}}{E_{c0}} = -0.000122$$

Korttidstøyning i betongen i underkant bjelke:

c	$\sigma_{c.uk.t0}$	- 0.000170
^e c0.uk ^{.–}	E _{c0}	0.000179

Vedlegg F: Testbjelke Spenningsberegninger ved oppspenning Krum kabel

Vedlegg G: Testbjelke Elastisk deformasjon av betongen, friksjon og låsetap Krum kabel

lht. [5], [10] og [35].

Input		
Betong		
E _{cm} := 36000MPa		(Tabell 3.1 [5])
Spennarmering		
Elastisitetsmodul:	E _p := 195000MPa	(1.5 [20])
Karakteristisk strekkfasthet:	$f_{pk} := 1860 \frac{N}{mm^2}$	(1.5 [20])
0,1 %-strekkgrense:	$f_{p0.1k} \coloneqq 1640 \frac{N}{mm^2}$	(1.5 [20])
Areal av kabel: A _p := 1800mm ²		(Annex 8 [10])
Lengde spennkabel: Lp := 10.003m		
Antall kabler: n := 1		
Kabelens eksentrisitet ifht. tverrsnit	tets tyngdepunkt: e := 112mm	(Rapport figur 4-4)
Regner oppspenningskraft etter Sof	istik:	
P _{max} := 2553. k N		(Rapport kap.9.4)
Flastisk deformasion av be	tongen	
$\mathbf{j} := \frac{\mathbf{n} - \mathbf{l}}{2\mathbf{n}} = 0$		(5.10.5.1(2) [5])
Spenning i betongen i tyngdepunkte	et for spennkabelen ved tidspunkt p ₀ :	
$\sigma_{c.p.t0} \coloneqq -4.02 MPa$		(Vedlegg F)
Tap i spennkraft på grunn av elastis	sk deformasjon:	
$\Delta P_{el} := A_{p} \cdot E_{p} \cdot \frac{j \cdot \sigma_{c.p.t0}}{E_{cm}} = 0$		(5.10.5.1(2) [5])

Friksjonstap

Friksjonstap i aktivt anker Friksjonstap = 0,9% Spennkrafttapet pga friksjon i anker:

$\Delta P_{\text{friksion.anker}} := \cdot$	$-0.9\% P_{max} =$	-23∙kN
---	--------------------	--------

Friksjonstap i kabelrør

(Tabell 3 [10])

Friksjonskoeffisient:	$\mu := 0.18 \text{rad}^{-1}$	(5.10.5.2 [5])
Faktor for effekt av utilsiktet vinkelendring:	$k := 0.005 \frac{\text{rad}}{\text{m}}$	
Kabel spennes opp i aktiv ende		
Spennkabelens 2.gradsligning:	$y = a \cdot x^2 + b \cdot x + c$	
Vinkel:	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2 \cdot \mathbf{a} \cdot \mathbf{x} + \mathbf{b}$	
Vinkel i endene av bjelken:	$ \theta_{aktiv} \coloneqq \frac{4 \cdot e}{L_p} = 0.045 \theta_{passiv} \coloneqq \theta_{aktiv} $	
Vinkel midt på bjelken:	$\theta_{\text{midt}} \coloneqq 0$	
Vinkelendring i aktiv ende:	$\Delta \theta_{aktiv} \coloneqq 0$	
Vinkelendring i midtspenn:	$\Delta \theta_{\text{midt}} \coloneqq \theta_{\text{aktiv}} = 0.045$	
Vinkelendring i passiv ende:	$\Delta \theta_{\text{passiv}} \coloneqq \theta_{\text{aktiv}} + \theta_{\text{passiv}} = 0.09$	
Avstand fra jekk:	x := 10m	

Friksjonstap pga friksjon mellom spennkabel og kabelrør:

$\Delta P_{\text{friksjon.kabelrør}} := -P_{\text{max}} \cdot \left[1 - e^{-\mu \cdot \left(\Delta \theta_{\text{passiv}} + k \cdot x_{\cdot} \right)} \right] = -63.3 \cdot \text{kN}$	(5.10.5.2(1) [5])
---	-------------------

Totalt friksjonstap

Aktiv ende: $\Delta P_{friksjon.aktiv} := \Delta P_{friksjon.anker} + 2 \cdot \Delta P_{friksjon.kabelrør} = -149.7 \cdot kN$ Passiv ende: $\Delta P_{friksjon.passiv} := \Delta P_{friksjon.anker} + \Delta P_{friksjon.kabelrør} = -86.3 \cdot kN$

Låsetap

Låsetap ved aktiv forankring:

(2.7 [10])

(Rapport figur 7-4)

Se figur 6-8 i rapport.

$$\Delta L_{l \dot{a} s} = \int_{0}^{L} \Delta \varepsilon \, dx = \int_{0}^{L} \frac{\Delta P(x)}{E_{p} \cdot A_{p}} \, dx$$
$$\Delta L_{l \dot{a} s} \cdot E_{p} \cdot A_{p} = \int_{0}^{L} \Delta P(x) \, dx = \Delta P_{friksjon.kabelrør} \cdot L_{p} + \Delta P_{l \dot{a} s} \cdot L_{p}$$

Spennkrafttapet pga låsing:

ΔD . ·	$\Delta L_{l \dot{a} s} \cdot E_{p} \cdot A_{p} - \Delta P_{friksjon.kabelrør} \cdot L_{p}$	-1472 kN
Δr _{lås} .=	Lp	$= -14/.2 \cdot KIN$

Friksjon og låsetap

Umiddelbare tap i spennkraft:

 $\Delta P_{kort.aktiv} := \Delta P_{friksjon.anker} + 2\Delta P_{friksjon.kabelrør} + \Delta P_{lås} = -296.9 \cdot kN$

 $\Delta P_{kort.passiv} := \Delta P_{friksjon.anker} + \Delta P_{friksjon.kabelrør} + \Delta P_{lås} = -233.5 \cdot kN$

Spennkraft etter umiddelbare tap:

 $P_{kort.aktiv} := P_{max} + \Delta P_{kort.aktiv} = 2256 \cdot kN$

 $P_{kort.passiv} \coloneqq P_{max} + \Delta P_{kort.passiv} = 2320 \cdot kN$

Vedlegg G: Testbjelke Elastisk deformasjon friksjon låsetap Krum kabel

Vedlegg H: Testbjelke Kryp, svinn og relaksasjon Krum kabel

Iht. [5], [10], [15] og [25].

Input

Geometri		
Tverrsnittsbredde: b := 2000mm		
Tverrsnittshøyde: <u>h := 500mm</u>		
Tverrsnittsareal: $A_c := b \cdot h = 1 \times$	$10^{6} \cdot mm^{2}$	
Lengde bjelke: L _b := 10m		
Betong		
Karakteristisk trykkfasthet:	f _{ck} := 45MPa	(Tabell 3.1 [5])
Midlere trykkfasthet etter 28 døgn:	f _{cm} := 53MPa	(Tabell 3.1 [5])
Elastisitetsmodul etter 28 døgn:	E _{cm} := 36000MPa	(Tabell 3.1 [5])
Spennarmering		
Elastisitetsmodul:	E _p := 195000MPa	(1.5 [20])
Karakteristisk strekkfasthet:	$f_{pk} := 1860 \frac{N}{mm^2}$	(1.5 [20])
0,1 %-strekkgrense:	$f_{p0.1k} \coloneqq 1640 \frac{N}{mm^2}$	(1.5 [20])
$A_p := 1800 \text{mm}^2$		(Annex 8 [10])
Antall kabler: <u>n := 1</u>		
Kabelens eksentrisitet ifht. tverrsnit	tets tyngdepunkt: e := 112mm	(Rapport figur 8-22)
Regner oppspenningskraft etter Sof	ïstik:	
$P_{max} := 2553.2 kN$		(Rapport kap.9.4)

Korttidstøyning i betongen

Rett kabel

Korttidstøyning i betongen:	$\varepsilon_{\text{c0.rett}} \coloneqq -0.000076$		(Rapport kap.6.2)
Krum kabel			
Korttidstøyning i betongen ved	spennarmeringen:	$\varepsilon_{c0.p} := -0.000122$	(Vedlegg F)
Korttidstøyning i betongen i un	nderkant bjelke: <mark>ε_{cC}</mark>	0.uk := -0.000179	(Vedlegg F)

Ønsker å finne forskyvning pga kryp i underkant, midler derfor mellom korttidstøyninger i rett kabel og i underkant krum kabel):

	1	2
$\varepsilon_{c0.uk.middel} :=$	$\frac{1}{2} \cdot \varepsilon_{c0.rett} +$	$\frac{1}{2} \cdot \varepsilon_{c0.uk} = -0.000145$
	3	3

Ønsker å finne tap i spennkraft i kabel, midler derfor mellom korttidstøyninger i rett kabel og i krum kabel ved spennarmeringen):

	1	2
$\varepsilon_{c0.p.middel} :=$	$\frac{1}{2} \cdot \varepsilon_{c0.rett} +$	$\frac{1}{2} \cdot \varepsilon_{c0,p} = -0.000107$
	3	3 1

Kryptall

Kryptall:

 $\varphi := \begin{pmatrix} 0.883 \\ 1.746 \end{pmatrix}$

(Rapport kap.6.2)

Kryptøyning for en konstant trykkspenning

iht. NS-EN 1992-1-1 pkt.3.1.4(3)

Rett kabel

Tøyning i betongen etter lang tid ved spennarmeringen:

 $\varepsilon_{\text{c.p.rett}} := \begin{pmatrix} -0.000118\\ -0.000171 \end{pmatrix}$ etter 100 døgn etter 100 år

(Rapport kap.6.2)

Tøyning i betongen etter lang tid i underkant:

Krum kabel

Aksialkraft og moment i tyngdepunktsaksen:

$$N := -P_{max} = -2553 \cdot kN$$

 $M := -P_{max} \cdot e = -286 \cdot kN \cdot m$

Langtids E-modul:

 $e = 112 \cdot mm$

$$E_{cL} := \frac{E_{cm}}{1 + \varphi} = \begin{pmatrix} 1.91 \times 10^4 \\ 1.31 \times 10^4 \end{pmatrix} \cdot \frac{N}{mm^2}$$
(7.4.3(5) [5])

Ekvivalent betongtverrsnitt:

$$\eta := \frac{E_p}{E_{cL}} = \begin{pmatrix} 10.2 \\ 14.87 \end{pmatrix}$$
$$A_t := A_c + (\eta - 1) \cdot A_p = \begin{pmatrix} 1.02 \times 10^6 \\ 1.02 \times 10^6 \end{pmatrix} \cdot mm^2$$

Beliggenhet av tyngdepunktsaksen:

$$y_{t} \cdot A_{t} = (\eta - 1) \cdot A_{p} \cdot e$$

$$y_{t} := \frac{\left[(\eta - 1) \cdot A_{p} \cdot e\right]}{A_{t}} = \begin{pmatrix} 1.82\\ 2.73 \end{pmatrix} \cdot mm$$
(Del 2 lign.6.7 [25])
Det armerte tverrsnittets treahetsmoment om tverrsnittets tvnadepunktsakse:

$$I_{t} := \frac{b \cdot h^{3}}{12} + b \cdot h \cdot y_{t}^{2} + (\eta - 1) \cdot A_{p} \cdot (e - y_{t})^{2} = \begin{pmatrix} 2.13 \times 10^{10} \\ 2.13 \times 10^{10} \end{pmatrix} \cdot mm^{4}$$
(Del 2 lign.6.8 [25])

Aksialkraft og moment i tpb:

$$N = -2553 \cdot kN \qquad \qquad M = -286 \cdot kN \cdot m$$

Aksialkraft og moment som virker i det armerte tverrsnittets tyngdepunktsakse, tp:

$$N = -2553 \cdot kN$$
 (Del 2 lign.6.10a,

$$M_{t} := M - N \cdot y_{t} = \begin{pmatrix} -281.3 \\ -278.99 \end{pmatrix} \cdot kN \cdot m$$
(Del 2 lign.6.10b [25])

Spenning i betongen i overkant midt på bjelken:

$$y_{ok} := -250 \text{mm}$$

$$\sigma_{c.ok} := \frac{N}{A_t} + \frac{M_t}{\frac{I_t}{y_{ok} - y_t}} = \begin{pmatrix} 0.81\\ 0.81 \end{pmatrix} \cdot \text{MPa}$$
(Del 2 lign.6.11 [25])

Spenning i betongen ved spennarmeringen midt på bjelken:

$$y_{p} := 112 \text{mm}$$

$$\sigma_{c.p} := \frac{N}{A_{t}} + \begin{vmatrix} \frac{M_{t}}{I_{t}} & \text{if } y_{p} > 0 \text{mm} \\ \frac{I_{t}}{y_{p} - y_{t}} \\ 0 & \text{if } y_{p} \le 0 \text{mm} \end{vmatrix}$$

$$MPa$$

3 av 6

(Del 2 lign.6.6 [25])

(Rapport kap.4.4.2)

(Del 2 lign.6.9 [25])

Spenning i betongen i underkant midt på bjelken:

$$\mathbf{y_{uk}} \coloneqq 250 \text{mm}$$

$$\sigma_{c.uk} \coloneqq \frac{N}{A_t} + \frac{M_t}{\frac{I_t}{y_{uk} - y_t}} = \begin{pmatrix} -5.78 \\ -5.72 \end{pmatrix} \cdot \text{MPa}$$

250

Tøyning i betongen etter lang tid ved spennarmeringen:

$$\varepsilon_{c.p} \coloneqq \frac{\sigma_{c.p}}{E_{cL}} = \begin{pmatrix} -0.000207 \\ -0.000299 \end{pmatrix} \text{ etter 100 døgn}$$
 etter 100 år

Tøyning i betongen etter lang tid i underkant:

$$\varepsilon_{c.uk} := \frac{\sigma_{c.uk}}{E_{cL}} = \begin{pmatrix} -0.000303 \\ -0.000437 \end{pmatrix} \quad \begin{array}{l} \text{etter 100 døgn} \\ \text{etter 100 år} \\ \end{array}$$

Kryptøyning ved spennarmeringen

For å finne kryptøyning av betongen ved spennarmeringen, midler mellom tøyninger for rett kabel ved spennarmeringen og for krum kabel midt på bjelken ved spennarmeringen .

Middeltøyning etter lang tid i betongen ved spennarmeringen:

 $\varepsilon_{\text{c.p.middel}} \coloneqq \frac{1}{3} \cdot \varepsilon_{\text{c.p.rett}} + \frac{2}{3} \cdot \varepsilon_{\text{c.p}} = \begin{pmatrix} -0.000178\\ -0.000256 \end{pmatrix} \quad \begin{array}{l} \text{etter 100 d} \& \text{gn} \\ \text{etter 100 ar} \\ \end{array}$

Kryptøyning i betongen ved spennarmeringen:

$$\varepsilon_{cc.p} \coloneqq \varepsilon_{c.p.middel} - \varepsilon_{c0.p.middel} = \begin{pmatrix} -0.000071 \\ -0.00015 \end{pmatrix}$$
 etter 100 døgn etter 100 år

Kryptøyning i underkant

For å finne kryptøyning av betongen i underkant, midler mellom tøyninger for rett kabel i underkant og for krum kabel midt på bjelken i underkant :

Middeltøyning etter lang tid i betongen i underkant:

 $\varepsilon_{\text{c.uk.middel}} \coloneqq \frac{1}{3} \cdot \varepsilon_{\text{c.uk.rett}} + \frac{2}{3} \cdot \varepsilon_{\text{c.uk}} = \begin{pmatrix} -0.000241 \\ -0.000348 \end{pmatrix} \quad \text{etter 100 døgn}$

Kryptøyning i betongen i underkant:

 $\varepsilon_{\text{cc.uk}} \coloneqq \varepsilon_{\text{c.uk.middel}} - \varepsilon_{\text{c0.uk.middel}} = \begin{pmatrix} -0.000096 \\ -0.000203 \end{pmatrix}$ etter 100 døgn etter 100 år

Svinntøyning

Svinntøyning:

 $\varepsilon_{\rm cs} := \begin{pmatrix} -0.000128\\ -0.000305 \end{pmatrix}$ etter 100 døgn etter 100 år

(Rapport kap.6.3)

Total tøyning og forskyvning pga kryp og svinn i underkant

Ønsker å finne forskyvning i underkant, benytter derfor kryptøyning i betongen i underkant.

Total tøyning i betongen pga kryp og svinn i underkant:

 $\Delta \varepsilon_{c.kryp.svinn} \coloneqq \varepsilon_{cc.uk} + \varepsilon_{cs} = \begin{pmatrix} -0.224 \\ -0.508 \end{pmatrix} \cdot \text{promille} \quad \begin{array}{c} \text{etter 100 d} \texttt{øgn} \\ \text{etter 100 } \texttt{år} \end{array}$

Total forskyvning pga kryp og svinn i underkant:

$$\Delta \varepsilon_{c.kryp.svinn} = \frac{\Delta}{L_b}$$

$$\Delta := \Delta \varepsilon_{c.kryp.svinn} \cdot L_b = \begin{pmatrix} -2.24 \\ -5.08 \end{pmatrix} \cdot mm \quad \text{etter 100 døgn}$$

etter 100 år

Spennkrafttap pga kryp og svinn

Ønsker å finne spennkrafttap i kabel, benytter derfor kryptøyning i betongen ved spennarmeringen.

Kryptøyning ved spennarmering: $\varepsilon_{cc.p} = \begin{pmatrix} -0.000071 \\ -0.00015 \end{pmatrix}$

Svinntøyning i betongen:

$$\varepsilon_{\rm cs} = \begin{pmatrix} -0.000128 \\ -0.000305 \end{pmatrix}$$

Tøyning i betongen ved spennarmeringen pga kryp og svinn:

$$\Delta \varepsilon_{\text{c.kryp.svinn}} \coloneqq \varepsilon_{\text{cc.p}} + \varepsilon_{\text{cs}} = \begin{pmatrix} -0.000199\\ -0.000455 \end{pmatrix}$$

Tøyningen i spennarmeringen blir omtrent det samme som tøyningen i betongen ved spennarmering:

$$\Delta \varepsilon_{\text{p.kryp.svinn}} \coloneqq \Delta \varepsilon_{\text{c.kryp.svinn}} = \begin{pmatrix} -0.000199\\ -0.000455 \end{pmatrix}$$

Spenningsendring i spennarmering pga kryp og svinn:

$$\Delta \sigma_{p.kryp.svinn} := \Delta \varepsilon_{p.kryp.svinn} \cdot E_p = \begin{pmatrix} -38.8 \\ -88.7 \end{pmatrix} \cdot MPa$$

Spennkrafttap pga kryp og svinn:

$$\Delta P_{kryp.svinn} := \Delta \sigma_{p.kryp.svinn} \cdot A_p = \begin{pmatrix} -69.8 \\ -159.6 \end{pmatrix} \cdot kN \quad \text{etter 100 døgn} \\ \text{etter 100 år}$$

Relaksasjonstap

Beregninger for lav-relaksasjonsstål i klasse 2.	(3.3.2.(4) [5])
Relaksajonstapet i prosent 1000 timer etter oppspenning og med middeltemperatur på 20 grader celsius:	(3.3.2.(6) [5])

 $\rho_{1000} := 2.5$

Oppspenningskraft: $P_{pi} := P_{max} = 2553 \cdot kN$

Absoluttverdi av den initielle forspenningen:

$$\sigma_{pi} \coloneqq \frac{P_{pi}}{A_p} = 1418.444 \cdot MPa$$

For langtidsberegning etter 100 år benytter verdi for t=500000 timer (tilnærmet 57 år) ihht. EK2 pkt.3.3.2(8).

Tid etter oppspenning:

 $t := \begin{pmatrix} 2400\\ 500000 \end{pmatrix}$ timer etter 100døgn timer etter 100 år

Karakteristisk verdi av strekkfasthet for spennstålet: $\mu := \frac{\sigma_{pi}}{f_{nk}} = 0.76$

Absoluttverdi av relaksasjonstapet:

$$\Delta \sigma_{\rm pr} := -0.66 \cdot \rho_{1000} \cdot e^{9.1 \cdot \mu} \cdot \left(\frac{t}{1000}\right)^{0.75 \cdot (1-\mu)} \cdot 10^{-5} \cdot \sigma_{\rm pi} = \begin{pmatrix} -28.24 \\ -73.07 \end{pmatrix} \cdot {\rm MPa}$$
(3.29 [5])

Relaksasjonen i stålet påvirkes av kryp og svinn i betongen og kan reduseres med faktor lik 0,8:

$$\alpha := 0.8$$

$$\Delta \sigma_{\text{pr.}} \coloneqq \Delta \sigma_{\text{pr}} \cdot \alpha = \begin{pmatrix} -22.59 \\ -58.45 \end{pmatrix} \cdot \text{MPa}$$

Tap i spennkraft pga relaksasjon:

 $\Delta P_{pr} := \Delta \sigma_{pr} \cdot A_p = \begin{pmatrix} -40.7 \\ -105.2 \end{pmatrix}$ etter 100døgn ∙kN etter 100 år

Friksjon, låsetap, kryp, svinn og relaksasjon

Umiddelbare tap i spennkraft:

$$\Delta P_{\text{kort.aktiv}} := -295.4 \text{kM}$$

 $\Delta P_{\text{kort.passiv}} := -233.1 \text{kN}$

Tidsavhengige tap i spennkraft:

$$\begin{split} \Delta P_{lang} &\coloneqq \Delta P_{kryp.svinn} + \Delta P_{pr} = \begin{pmatrix} -110 \\ -265 \end{pmatrix} \cdot kN & \text{etter 100døgn} \\ \text{etter 100 år} \end{split}$$

$$\begin{aligned} & \text{Spennkraft etter lang tid:} \\ P_{lang.aktiv} &\coloneqq P_{max} + \Delta P_{kort.aktiv} + \Delta P_{lang} = \begin{pmatrix} 2147 \\ 1993 \end{pmatrix} \cdot kN & \text{etter 100døgn} \\ \text{etter 100 år} \end{aligned}$$

$$\begin{aligned} & P_{lang.passiv} &\coloneqq P_{max} + \Delta P_{kort.passiv} + \Delta P_{lang} = \begin{pmatrix} 2210 \\ 2055 \end{pmatrix} \cdot kN & \text{etter 100døgn} \\ \text{etter 100 år} \end{aligned}$$

(5.10.6(1a) [5])

(Vedlegg G)

Vedlegg I: Testbjelke Lastvirkninger egenvekt og flatelast

lht. [15].

Input

Bredde:	b := 2m
Høyde:	h := 0.5m
Lengde:	L _b := 10m

Egenvekt

Karakteristisk egenvekt:	$g_1 := 25 \frac{kN}{m^3} \cdot b \cdot h = 25 \cdot \frac{kN}{m}$	(7.3.2 [15])
Karakteristisk moment:	$M_1 := \frac{g_1 \cdot L_b^2}{8} = 312.5 \text{kN} \cdot \text{m}$	
Karakteristisk skjærkraft:	$V_{Ed1} := \frac{g_1 \cdot L_b}{2} = 125 \text{ kN}$	

Flatelast

Flatelast lik 5kN/m².

Regnes om	til kara	kteristisk	linjelast:
-----------	----------	------------	------------

Karakteristisk moment:

Karakteristisk skjærkraft:

$g_2 \coloneqq 5\frac{kN}{m^2} \cdot b = 10 \cdot \frac{kN}{m}$
$M_{Ed2} := \frac{g_2 \cdot L_b^2}{8} = 125 \text{ kN} \cdot \text{m}$
$V_{Ed2} := \frac{g_2 \cdot L_b}{2} = 50 \text{ kN}$

Vedlegg I: Testbjelke Lastvirkninger egenvekt og flatelast

Vedlegg J: TEST Testbjelke Kryp, svinn og relaksasjon Sofistik-modell med opplager i midten av tverrsnitt, endret parametre i CSM med Teddy, real creep Rett spennkabel

Iht. [5], [10], [15], [20] og [25].

Input

 Geometri

 b := 2000mm
 h := 500mm

$$A_c := b \cdot h = 1 \times 10^6 \cdot mm^2$$
 $L_b := 10m$

 Betong
 $f_{ck} := 45MPa$
 $f_{cm} := 53MPa$
 $E_{cm} := 36000MPa$
 (Tabell 3.1 [5])

 Betongens alder (døgn) ved oppspenning:
 $t_0 := 7$
 (Tabell 3.1 [5])

 Betongens alder (døgn) ved oppspenning:
 $t_0 := 7$
 $f_{cm0} := 41.28MPa$
 (Vedlegg C)
 $E_{c0} := \left(\frac{f_{cm0}}{f_{cm}}\right)^{0.3} \cdot E_{cm} = 3.34 \times 10^4 \cdot MPa$
 (3.3.(3) [5])

 Spennarmering
 $E_p := 195000MPa$
 $f_{pk} := 18600\frac{N}{mm^2}$
 $f_{p0.1k} := 1640\frac{N}{mm^2}$
 (1.5 [20])

 Areal av kabel:
 $A_p := 1800nm^2$
 Antall kabler:
 $n := 1$
 (Annex 8 [10])

 Lengde spennkabel:
 $L_p := 10.003m$
 $L_p := 10.003m$
 $L_p := 10.003m$

Langtidstap i Sofistik beregnes fra spennkraft i kabel etter umiddelbare tap. Verdi for kraft i kabel umiddelbart etter oppspenning ved aktiv side er hentet fra Sofistik.

 $P_0 := 2300 kN$

(Rapport kap.8.5.3)

(Rapport kap.4.4.2)

Spenningsberegninger ved oppspenning

Antar ingen opprissing under oppspenning.

Areal av kabler oppspent før kabel som kabelen som skal beregnes spenningsendring for:

Kabelgruppens eksentrisitet ifht. tverrsnittets tyngdepunkt:

 $A_{p0} := 0 \text{mm}^2$

e := 0m

Ekvivalent betongtverrsnitt:

$$\eta_{t0} \coloneqq \frac{E_p}{E_{c0}} = 5.838$$
$$A_{t0} \coloneqq A_c + (\eta_{t0} - 1) \cdot A_{p0} = 1 \times 10^6 \cdot \text{mm}^2$$

(Del 2 lign.6.6 [25])

$$y_{t0} \cdot A_{t0} = (\eta_{t0} - 1) \cdot A_{p0} \cdot e$$

$$y_{t0} \coloneqq \frac{\left[(\eta_{t0} - 1) \cdot A_{p0} \cdot e\right]}{A_{t0}} = 0 \cdot mm$$
(Del 2 lign.6.7 [25])

Det armerte tverrsnittets treghetsmoment om tverrsnittets tyngdepunktsakse:

$$I_{t0} := \frac{b \cdot h^{3}}{12} + b \cdot h \cdot y_{t0}^{2} + (\eta_{t0} - 1) \cdot A_{p0} \cdot (e - y_{t0})^{2} = 2.083 \times 10^{10} \cdot mm^{4}$$
(Del 2 lign.6.8 [25])

Aksialkraft og moment i tpb:

$$N := -P_0 = -2300 \cdot kN \qquad M := -P_0 \cdot e = 0 \cdot kN \cdot m \qquad (Del 2 \text{ lign.6.9 [25]})$$

Aksialkraft og moment som virker i det armerte tverrsnittets tyngdepunktsakse, tp:

$$N = -2.3 \times 10^{3} \cdot kN$$
 (Del 2 lign.6.10a,
6.10b [25])

$$M_{t0} := M - N \cdot y_{t0} = 0 \cdot kN \cdot m$$

Spenning i betongen i overkant:

$$y_{ok} := -250 \text{mm}$$

$$\sigma_{c.ok.t0} := \frac{N}{A_{t0}} + \frac{M_{t0}}{\frac{I_{t0}}{y_{ok} - y_{t0}}} = -2.3 \cdot \text{MPa}$$
(Del 2 lign.6.11 [25])

Spenning i betongen ved spennarmeringen:

$$y_p := 0mm$$

$$\sigma_{c.p.t0} := \frac{N}{A_{t0}} + \frac{M_{t0}}{\frac{I_{t0}}{y_p - y_{t0}}} \text{ if } y_p > 0 \text{mm} = -2.3 \cdot \text{MPa}$$

Spenning i betongen i underkant:

$$y_{uk} := 250 \text{mm}$$

 $\sigma_{c.uk.t0} := \frac{N}{A_{t0}} + \frac{M_{t0}}{\frac{I_{t0}}{y_{uk} - y_{t0}}} = -2.3 \cdot \text{MPa}$

Middelspenning i betongen:

$$\sigma_{c.ok.t0} = \sigma_{c.p.t0} = \sigma_{c.uk.t0}$$

Korttidstøyning i betongen:

$$\varepsilon_{\rm c0} \coloneqq \frac{\sigma_{\rm c.p.t0}}{E_{\rm c0}} = -0.000069$$

Kryptall

Kryptall:

$$\varphi := \begin{pmatrix} 0.883\\ 1.746 \end{pmatrix}$$

(Rapport kap.6.2)

Kryptøyning for en konstant trykkspenning

iht. NS-EN 1992-1-1 pkt.3.1.4(3)

Aksialkraft og moment i tpb:

$$N = -2300 \cdot kN$$

 $M = 0 \cdot kN \cdot m$

Langtids E-modul:

$$E_{cL} := \frac{E_{cm}}{1 + \varphi} = \begin{pmatrix} 1.91 \times 10^4 \\ 1.31 \times 10^4 \end{pmatrix} \cdot \frac{N}{mm^2}$$
(7.4.3(5) [5])

Ekvivalent betongtverrsnitt:

$$\eta \coloneqq \frac{E_{p}}{E_{cL}} = \begin{pmatrix} 10.2 \\ 14.87 \end{pmatrix}$$
(Del 2 lign.6.6 [25])
$$A_{t} \coloneqq A_{c} + (\eta - 1) \cdot A_{p} = \begin{pmatrix} 1.01656 \times 10^{6} \\ 1.02497 \times 10^{6} \end{pmatrix} \cdot mm^{2}$$

Beliggenhet av det armerte tverrsnittets tyngdepunktsakse:

$$e = 0 \cdot mm$$
 (Rapport kap.4.4.2)

$$y_{t} \cdot A_{t} = (\eta - 1) \cdot A_{p} \cdot e$$
$$y_{t} := \frac{\left[(\eta - 1) \cdot A_{p} \cdot e\right]}{A_{t}} = \begin{pmatrix} 0\\ 0 \end{pmatrix} \cdot mm$$
(Del 2 lign.6.7 [25])

Det armerte tverrsnittets treghetsmoment om tverrsnittets tyngdepunktsakse:

$$I_{t} := \frac{b \cdot h^{3}}{12} + b \cdot h \cdot y_{t}^{2} + (\eta - 1) \cdot A_{p} \cdot (e - y_{t})^{2} = \begin{pmatrix} 2.08 \times 10^{10} \\ 2.08 \times 10^{10} \end{pmatrix} \cdot mm^{4}$$
(Del 2 lign.6.8 [25])

Aksialkraft og moment i tpb:

$$N = -2300 \cdot kN$$
 (Del 2 lign.6.9 [25])

Aksialkraft og moment som virker i det armerte tverrsnittets tyngdepunktsakse, tp:

$$N = -2300 \cdot kN$$

$$M_{t} := M - N \cdot y_{t} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \cdot kN \cdot m$$
(Del 2 lign.6.10a,
6.10b [25])

Spenning i betongen i overkant:

$$y_{ok} = -250 \cdot \text{mm}$$

$$\sigma_{c.ok} \coloneqq \frac{N}{A_t} + \frac{M_t}{\frac{I_t}{y_{ok} - y_t}} = \begin{pmatrix} -2.26 \\ -2.24 \end{pmatrix} \cdot \text{MPa}$$
(Del 2 lign.6.11 [25])

Spenning i betongen ved spennarmeringen:

$$y_p = 0 \cdot mm$$

$$\sigma_{c.p} := \frac{N}{A_t} + \begin{vmatrix} \frac{M_t}{I_t} & \text{if } y_p > 0mm & = \begin{pmatrix} -2.26 \\ -2.24 \end{pmatrix} \cdot MPa \\ \hline 0 & \text{if } y_p \le 0mm \end{vmatrix}$$

Spenning i betongen i underkant:

$$y_{uk} = 250 \cdot \text{mm}$$

$$\sigma_{c.uk} := \frac{N}{A_t} + \frac{M_t}{\frac{I_t}{y_{uk} - y_t}} = \begin{pmatrix} -2.26 \\ -2.24 \end{pmatrix} \cdot \text{MPa}$$

Spenning i betongen:

$$\sigma_{c.ok} = \sigma_{c.p} = \sigma_{c.uk}$$
$$\sigma_{c} := \sigma_{c.p} = \begin{pmatrix} -2.26 \\ -2.24 \end{pmatrix} \cdot MPa$$

Tøyning i betongen etter lang tid:

$$\varepsilon_{c} := \frac{\sigma_{c}}{E_{cL}} = \begin{pmatrix} -0.000118 \\ -0.000171 \end{pmatrix} \quad \begin{array}{l} \text{etter 100 d} \texttt{agn} \\ \text{etter 100 ar} \\ \end{array}$$

Kryptøyning i betongen:

$$\varepsilon_{\rm cc} \coloneqq \varepsilon_{\rm c} - \varepsilon_{\rm c0} = \begin{pmatrix} -0.000049 \\ -0.000102 \end{pmatrix} \quad \begin{array}{l} \text{etter 100 døgn} \\ \text{etter 100 år} \end{array}$$

Svinntøyning

Svinntøyning:

 $\boldsymbol{\varepsilon}_{cs} \coloneqq \begin{pmatrix} -0.000128\\ -0.000305 \end{pmatrix}$ etter 100 døgn etter 100 år

(Rapport kap.6.3)

Total tøyning og forskyvning pga kryp og svinn

Total tøyning i betongen pga kryp og svinn:

$$\Delta \varepsilon_{\text{c.kryp.svinn}} \coloneqq \varepsilon_{\text{cc}} + \varepsilon_{\text{cs}} = \begin{pmatrix} -0.000177 \\ -0.000407 \end{pmatrix}$$

etter 100 døgn etter 100 år

Total forskyvning av bjelken pga kryp og svinn:

$$\Delta \varepsilon_{c.kryp.svinn} = \frac{\Delta}{L_b}$$
$$\Delta := \Delta \varepsilon_{c.kryp.svinn} \cdot L_b = \begin{pmatrix} -1.77 \\ -4.07 \end{pmatrix} \cdot mm \quad \text{etter 100 døgn}$$
$$\text{etter 100 år}$$

Spennkrafttap pga kryp og svinn

Tøyning i spennarmeringen blir omtrent det samme som tøyning i betongen ved spennarmering.

Total tøyning i spennarmeringen fra kryp og svinn:

 $\Delta \varepsilon_{\text{p.kryp.svinn}} \coloneqq \Delta \varepsilon_{\text{c.kryp.svinn}} = \begin{pmatrix} -0.000177 \\ -0.000407 \end{pmatrix} \qquad \text{etter 100 døgn} \\ \text{etter 100 år}$

Spenningsendring i spennarmering pga kryp og svinn:

 $\Delta \sigma_{p.kryp.svinn} := \Delta \varepsilon_{p.kryp.svinn} \cdot E_p = \begin{pmatrix} -34.61 \\ -79.42 \end{pmatrix} \cdot MPa$ etter 100 døgn etter 100 år

Tap av spennkraft pga kryp og svinn:

$$\Delta P_{kryp.svinn} := \Delta \sigma_{p.kryp.svinn} \cdot A_p = \begin{pmatrix} -62.3 \\ -143 \end{pmatrix} \cdot kN \qquad \text{etter 100 døgn} \\ \text{etter 100 år}$$

Relaksasjonstap

Beregninger for lav-relaksasjonsstål i klasse 2. (3.3.2.(4) [5])

 $\rho_{1000} := 2.5$

Oppspenningskraft: $P_{pi} := P_0 = 2300 \cdot kN$

Absoluttverdi av den initielle forspenningen:

$$\sigma_{pi} \coloneqq \frac{P_{pi}}{A_p} = 1277.78 \cdot MPa$$

For langtidsberegning etter 100 år benytter verdi for t=500000 timer (tilnærmet 57 år) ihht. EK2 pkt.3.3.2(8).

Tid etter oppspenning:

 $t := \begin{pmatrix} 2400\\ 500000 \end{pmatrix}$ timer etter 100døgn timer etter 100 år

Karakteristisk verdi av strekkfasthet for spennstålet: μ := $\frac{\sigma_{pi}}{f_{pk}}=0.69$

Absoluttverdi av relaksasjonstapet:

$$\Delta \sigma_{\rm pr} := -0.66 \cdot \rho_{1000} \cdot e^{9.1 \cdot \mu} \cdot \left(\frac{t}{1000}\right)^{0.75 \cdot (1-\mu)} \cdot 10^{-5} \cdot \sigma_{\rm pi} = \begin{pmatrix} -13.43 \\ -47.05 \end{pmatrix} \cdot MPa$$
(3.29 [5])

Relaksasjonen i stålet påvirkes av kryp og svinn i betongen og kan reduseres med faktor lik 0,8:

$$\alpha := 0.8$$

$$\Delta \sigma_{\text{pr.}} \coloneqq \Delta \sigma_{\text{pr}} \cdot \alpha = \begin{pmatrix} -10.75 \\ -37.64 \end{pmatrix} \cdot \text{MPa}$$

Tap i spennkraft:

$$\Delta P_{pr} := \Delta \sigma_{pr} \cdot A_p = \begin{pmatrix} -19.3 \\ -67.8 \end{pmatrix} \cdot kN \quad \text{etter 100døgn} \\ \text{etter 100 år}$$

(5.10.6(1b) [5])

Friksjon, låsetap, kryp, svinn og relaksasjon

Oppspenningskraft:

Benytter oppspenningskraft fra Sofistik for beregning av kraft i kabel etter lang tid:

 $P_{max} := 2530.8 \text{kN}$

Umiddelbare tap i spennkraft:

 $\Delta P_{\text{kort.aktiv}} := -256.1 \text{ kN}$

 $\Delta P_{\text{kort.passiv}} := -233.4 \text{ kN}$

Tidsavhengige tap i spennkraft:

$$\Delta P_{\text{lang}} := \Delta P_{\text{kryp.svinn}} + \Delta P_{\text{pr}} = \begin{pmatrix} -81.6 \\ -210.7 \end{pmatrix} \cdot \mathbf{kN}$$

etter 100døgn etter 100 år

Spennkraft etter lang tid:

$$P_{\text{lang.aktiv}} \coloneqq P_{\text{max}} + \Delta P_{\text{kort.aktiv}} + \Delta P_{\text{lang}} = \begin{pmatrix} 2193\\2064 \end{pmatrix} \cdot \text{kN}$$
etter 100døgn
etter 100 år
$$P_{\text{lang.passiv}} \coloneqq P_{\text{max}} + \Delta P_{\text{kort.passiv}} + \Delta P_{\text{lang}} = \begin{pmatrix} 2216\\2087 \end{pmatrix} \cdot \text{kN}$$
etter 100 år

(Rapport kap.9.4)

(Rapport kap.7.1.4)

Vedlegg K: TEST Testbjelke Kryp, svinn og relaksasjon Sofistik-modell med opplager i midten av tverrsnitt, kabel sentrisk i kabelrør, endret parametre i CSM med Teddy, real creep Krum kabel

Iht. [5], [10], [15] og [25].

Kabelgruppens eksentrisitet iht. tverrsnittets tyngdepunkt midt e := 112m (Rapport kap.4.4.2) på bjelken:

Langtidstap i Sofistik beregnes fra spennkraft i kabel etter umiddelbare tap. Verdi for kraft i kabel umiddelbart etter oppspenning ved aktiv side er hentet fra Sofistik.

 $P_0 := 2300 \text{kN}$

(Rapport kap.8.5.3)

Spenningsberegninger ved oppspenning

Antar ingen opprissing ved oppspenning.

Areal av kabler oppspent før kabel som kabelen som skal beregnes spenningsendring for:

Ekvivalent betongtverrsnitt:

$$\eta_{t0} \coloneqq \frac{E_p}{E_{c0}} = 5.84$$

$$A_{t0} \coloneqq A_c + (\eta_{t0} - 1) \cdot A_{p0} = 1 \times 10^6 \cdot \text{mm}^2$$

(Del 2 lign.6.6 [25])

Spenningsberegninger ved opplager

$$e_1 := 0mm$$

$$y_{t0} \cdot A_{t0} = (\eta_{t0} - 1) \cdot A_{p0} \cdot e$$
$$y_{t0,1} := \frac{\left[(\eta_{t0} - 1) \cdot A_{p0} \cdot e_1 \right]}{A_{t0}} = 0 \cdot \text{mm}$$
(Del 2 lign.6.7 [25])

Det armerte tverrsnittets treghetsmoment om tverrsnittets tyngdepunktsakse:

$$I_{t0.1} := \frac{b \cdot h^3}{12} + b \cdot h \cdot y_{t0.1}^2 + (\eta_{t0} - 1) \cdot A_{p0} \cdot (e_1 - y_{t0.1})^2 = 2.083 \times 10^{10} \cdot mm^4$$
 (Del 2 lign.6.8 [25])

Aksialkraft og moment i tpb:

_

$$N := -P_0 = -2.3 \times 10^3 \cdot kN \qquad M_1 := -P_0 \cdot e_1 = 0 \cdot kN \cdot m \qquad (Del \ 2 \ lign. 6.9 \ [25])$$

Aksialkraft og moment som virker i det armerte tverrsnittets tyngdepunktsakse, tp:

$$N = -2.3 \times 10^{3} \cdot kN$$
 (Del 2 lign.6.10a,
6.10b [25])
$$M_{t0.1} := M_1 - N \cdot y_{t0.1} = 0 \cdot kN \cdot m$$

Spenning i betongen i overkant:

$$\sigma_{c.ok.t0.1} \coloneqq \frac{N}{A_{t0}} + \frac{M_{t0.1}}{\frac{I_{t0.1}}{y_{ok.1} - y_{t0.1}}} = -2.3 \cdot MPa$$
 (Del 2 lign.6.11 [25])

Spenning i betongen ved spennarmeringen:

$$\begin{split} \mathbf{y}_{p.1} &\coloneqq 0 \text{mm} \\ \sigma_{c.p.t0.1} &\coloneqq \frac{N}{A_{t0}} + \left| \begin{array}{c} \frac{M_{t0.1}}{I_{t0.1}} & \text{if } \mathbf{y}_{p.1} > 0 \text{mm} \\ \frac{I_{t0.1}}{y_{p.1} - y_{t0.1}} \\ 0 & \text{if } \mathbf{y}_{p.1} \leq 0 \text{mm} \end{array} \right. \end{split}$$

Spenning i betongen i underkant:

$$y_{uk.1} \coloneqq 250 \text{mm}$$

 $\sigma_{c.uk.t0.1} \coloneqq \frac{N}{A_{t0}} + \frac{M_{t0.1}}{\frac{I_{t0.1}}{y_{uk.1} - y_{t0.1}}} = -2.3 \cdot \text{MPa}$

Spenningsberegninger i avstand L/4 fra opplager

$$e_2 := 84mm$$

$$\mathbf{y}_{t0.2} \coloneqq \frac{\left[\left(\boldsymbol{\eta}_{t0} - 1 \right) \cdot \mathbf{A}_{p0} \cdot \mathbf{e}_2 \right]}{\mathbf{A}_{t0}} = 0 \cdot mm$$

Det armerte tverrsnittets treghetsmoment om tverrsnittets tyngdepunktsakse:

$$I_{t0.2} := \frac{b \cdot h^3}{12} + b \cdot h \cdot y_{t0.2}^2 + (\eta_{t0} - 1) \cdot A_{p0} \cdot (e_2 - y_{t0.2})^2 = 2.083 \times 10^{10} \cdot mm^4$$

Aksialkraft og moment i tpb:

$$N = -2300 \cdot kN \qquad \qquad M_2 := -P_0 \cdot e_2 = -193 \cdot kN \cdot m$$

Aksialkraft og moment som virker i det armerte tverrsnittets tyngdepunktsakse, tp:

 $N = -2300 \cdot kN$

$$M_{t0.2} := M_2 - N \cdot y_{t0.2} = -193 \cdot kN \cdot m$$

Spenning i betongen i overkant:

$$\frac{y_{ok.2} := -250 \text{mm}}{\sigma_{c.ok.t0.2} := \frac{N}{A_{t0}} + \frac{M_{t0.2}}{\frac{I_{t0.2}}{y_{ok.2} - y_{t0.2}}} = 0.02 \cdot \text{MPa}$$

Spenning i betongen ved spennarmeringen:

 $y_{p,2} := 84mm$

$$\sigma_{c.p.t0.2} := \frac{N}{A_{t0}} + \begin{vmatrix} \frac{M_{t0.2}}{I_{t0.2}} & \text{if } y_{p.2} > 0 \text{mm} \\ \frac{I_{t0.2}}{y_{p.2} - y_{t0.2}} \\ 0 & \text{if } y_{p.2} \le 0 \text{mm} \end{vmatrix}$$

Spenning i betongen i underkant:

$$y_{uk.2} := 250 \text{mm}$$

 $\sigma_{c.uk.t0.2} := \frac{N}{A_{t0}} + \frac{M_{t0.2}}{\frac{I_{t0.2}}{y_{uk.2} - y_{t0.2}}} = -4.62 \cdot \text{MPa}$

Spenningsberegninger midt på bjelken

$$e_3 := 112mm$$

$$y_{t0.3} := \frac{\left[\left(\eta_{t0} - 1 \right) \cdot A_{p0} \cdot e_3 \right]}{A_{t0}} = 0 \cdot mm$$

Det armerte tverrsnittets treghetsmoment om tverrsnittets tyngdepunktsakse:

$$I_{t0.3} := \frac{b \cdot h^3}{12} + b \cdot h \cdot y_{t0.3}^2 + (\eta_{t0} - 1) \cdot A_{p0} \cdot (e_3 - y_{t0.3})^2 = 2.083 \times 10^{10} \cdot mm^4$$

Aksialkraft og moment i tpb:

$$N = -2300 \cdot kN$$
 $M_3 := -P_0 \cdot e_3 = -258 \cdot kN \cdot m$

Aksialkraft og moment som virker i det armerte tverrsnittets tyngdepunktsakse, tp:

$$N = -2300 \cdot kN$$
 $M_{t0.3} := M_3 - N \cdot y_{t0.3} = -258 \cdot kN \cdot m$

Spenning i betongen i overkant:

$$y_{ok.3} := -250 \text{mm}$$

 $\sigma_{c.ok.t0.3} := \frac{N}{A_{t0}} + \frac{M_{t0.3}}{\frac{I_{t0.3}}{y_{ok.3} - y_{t0.3}}} = 0.79 \cdot \text{MPa}$

Spenning i betongen ved spennarmeringen:

$$\sigma_{c.p.t0.3} := \frac{N}{A_{t0}} + \begin{vmatrix} \frac{M_{t0.3}}{I_{t0.3}} & \text{if } y_{p.3} > 0 \text{mm} \\ \frac{I_{t0.3}}{y_{p.3} - y_{t0.3}} \\ 0 & \text{if } y_{p.3} \le 0 \text{mm} \end{vmatrix}$$

Spenning i betongen i underkant:

$$y_{uk.3} := 250 \text{mm}$$

 $\sigma_{c.uk.t0.3} := \frac{N}{A_{t0}} + \frac{M_{t0.3}}{\frac{I_{t0.3}}{y_{uk.3} - y_{t0.3}}} = -5.39 \cdot \text{MPa}$
Middelspenning- og tøyning i overkant

Finner gjennomsnittlig korttidsspenning i betongen i overkant bjelke ved å midle mellom korttidsspenninger ved opplager, L/4 fra opplager og midt på bjelken:

Middelspenning i betongen i overkant:

$$\sigma_{\text{c.ok.t0.middel}} \coloneqq \frac{\sigma_{\text{c.ok.t0.1}} + \sigma_{\text{c.ok.t0.2}} + \sigma_{\text{c.ok.t0.3}} + \sigma_{\text{c.ok.t0.2}} + \sigma_{\text{c.ok.t0.1}}}{5} = -0.75 \cdot \text{MPa}$$

Korttidstøyning i betongen i overkant:

$$\varepsilon_{c0.ok} := \frac{\sigma_{c.ok.t0.middel}}{E_{c0}} = -0.0000226$$

Middelspenning- og tøyning ved spennarmeringen

Finner gjennomsnittlig korttidsspenning i betongen ved spennarmeringen ved å midle mellom korttidsspenninger ved opplager, L/4 fra opplager og midt på bjelken:

Middelspenning ved spennarmeringen:

$$\sigma_{\text{c.p.t0.middel}} \coloneqq \frac{\sigma_{\text{c.p.t0.1}} + \sigma_{\text{c.p.t0.2}} + \sigma_{\text{c.p.t0.3}} + \sigma_{\text{c.p.t0.2}} + \sigma_{\text{c.p.t0.1}}}{5} = -2.89 \cdot \text{MPa}$$

Korttidstøyning i betongen ved spennarmeringen:

$$\varepsilon_{c0.p} \coloneqq \frac{\sigma_{c.p.t0.middel}}{E_{c0}} = -0.0000865$$

Middelspenning- og tøyning i underkant

Finner gjennomsnittlig korttidsspenning i underkant ved å midle mellom korttidsspenninger ved opplager, L/4 fra opplager og midt på bjelken:

Middelspenning i underkant:

$$\sigma_{\text{c.uk.t0.middel}} \coloneqq \frac{\sigma_{\text{c.uk.t0.1}} + \sigma_{\text{c.uk.t0.2}} + \sigma_{\text{c.uk.t0.3}} + \sigma_{\text{c.uk.t0.2}} + \sigma_{\text{c.uk.t0.1}}}{5} = -3.85 \cdot \text{MPa}$$

Korttidstøyning i betongen i underkant bjelke:

$$\varepsilon_{c0.uk} \coloneqq \frac{\sigma_{c.uk.t0.middel}}{E_{c0}} = -0.0001151$$

Middelspenning- og tøyning for bjelken

Finner gjennomsnittlig korttidsspenning for bjelken ved å midle mellom korttidsspenninger i underkant, overkant og ved spennarmeringen.

Middelspenning i bjelken:

 $\sigma_{c.t0.middel} \coloneqq \frac{\sigma_{c.ok.t0.middel} + \sigma_{c.p.t0.middel} + \sigma_{c.uk.t0.middel}}{3} = -2.5 \cdot MPa$

Korttidstøyning for bjelken:

 $\varepsilon_{\text{c0.middel}} \coloneqq \frac{\varepsilon_{\text{c0.uk}} + \varepsilon_{\text{c0.ok}} + \varepsilon_{\text{c0.p}}}{3} = -0.000075$

Kryptall

Kryptall:
$$\varphi := \begin{pmatrix} 0.883 \\ 1.746 \end{pmatrix}$$
 etter 100 døgn etter 100 år (Rapport kap.6.2)

Kryptøyning for en konstant trykkspenning

iht. NS-EN 1992-1-1 pkt.3.1.4(3)

Langtids E-modul:

$$E_{cL} \coloneqq \frac{E_{cm}}{1 + \varphi} = \begin{pmatrix} 1.91 \times 10^4 \\ 1.31 \times 10^4 \end{pmatrix} \cdot \frac{N}{mm^2}$$
(7.4.3(5) [5])

Ekvivalent betongtverrspitt:

Ekvivalent betongtverrsnitt:

$$\eta_{t} := \frac{E_{p}}{E_{cL}} = \begin{pmatrix} 10.2 \\ 14.87 \end{pmatrix}$$
$$A_{t} := A_{c} + (\eta_{t} - 1) \cdot A_{p} = \begin{pmatrix} 1.02 \times 10^{6} \\ 1.02 \times 10^{6} \end{pmatrix} \cdot mm^{2}$$

Spenningsberegninger ved opplager

$$\mathbf{e}_{1} = 0$$

$$\mathbf{y}_{t,1} \coloneqq \frac{\left[\left(\eta_{t} - 1 \right) \cdot \mathbf{A}_{p} \cdot \mathbf{e}_{1} \right]}{\mathbf{A}_{t}} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \cdot \mathbf{mm}$$
(Del 2 lign.6.7 [25])

Det armerte tverrsnittets treghetsmoment om tverrsnittets tyngdepunktsakse:

$$I_{t,1} := \frac{b \cdot h^3}{12} + b \cdot h \cdot y_{t,1}^2 + (\eta_t - 1) \cdot A_p \cdot (e_1 - y_{t,1})^2 = \begin{pmatrix} 2.08 \times 10^{10} \\ 2.08 \times 10^{10} \end{pmatrix} \cdot mm^4$$
 (Del 2 lign.6.8 [25])

Aksialkraft og moment i tpb:

$$N = -2300 \cdot kN$$
 (Del 2 lign.6.9 [25])

(Del 2 lign.6.6 [25])

Aksialkraft og moment som virker i det armerte tverrsnittets tyngdepunktsakse, tp:

$$N = -2300 \cdot kN$$
(Del 2 lign.6.10a,

$$M_{t.1} := M_1 - N \cdot y_{t.1} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \cdot kN \cdot m$$
(Del 2 lign.6.10b [25])

Spenning i betongen i overkant:

$$y_{ok.1} = -250 \cdot \text{mm}$$

$$\sigma_{c.ok.t.1} \coloneqq \frac{N}{A_t} + \frac{M_{t.1}}{\frac{I_{t.1}}{y_{ok.1} - y_{t.1}}} = \begin{pmatrix} -2.26 \\ -2.24 \end{pmatrix} \cdot \text{MPa}$$
(Del 2 lign.6.11 [25])

Spenning i betongen ved spennarmeringen:

$$y_{p,1} = 0$$

$$\sigma_{c.p.t.1} := \frac{N}{A_t} + \begin{vmatrix} \frac{M_{t.1}}{I_{t.1}} & \text{if } y_{p.1} > 0 \text{mm} \\ \frac{1}{y_{p.1} - y_{t.1}} \\ 0 & \text{if } y_{p.1} \le 0 \text{mm} \end{vmatrix}$$

Spenning i betongen i underkant:

$$y_{uk.1} = 2.5 \times 10^2 \cdot mm$$

 $\sigma_{c.uk.t.1} := \frac{N}{A_t} + \frac{M_{t.1}}{\frac{I_{t.1}}{y_{uk.1} - y_{t.1}}} = \begin{pmatrix} -2.26 \\ -2.24 \end{pmatrix} \cdot MPa$

Spenningsberegninger i avstand L/4 fra opplager

 $e_2 = 84 \cdot mm$

$$y_{t,2} \coloneqq \frac{\left[\left(\eta_t - 1\right) \cdot A_p \cdot e_2\right]}{A_t} = \begin{pmatrix} 1.4\\2 \end{pmatrix} \cdot mm$$
 (Del 2 lign.6.7 [25])

Det armerte tverrsnittets treahetsmoment om tverrsnittets tvnadepunktsakse:

$$I_{t,2} := \frac{b \cdot h^3}{12} + b \cdot h \cdot y_{t,2}^2 + (\eta_t - 1) \cdot A_p \cdot (e_2 - y_{t,2})^2 = \begin{pmatrix} 2.112 \times 10^{10} \\ 2.112 \times 10^{10} \end{pmatrix} \cdot mm^4$$
 (Del 2 lign.6.8 [25])

Aksialkraft og moment i tpb:

$$N = -2300 \cdot kN$$
 $M_2 = -193 \cdot kN \cdot m$ (Del 2 lign.6.9 [25])

Aksialkraft og moment som virker i det armerte tverrsnittets tyngdepunktsakse, tp:

N =
$$-2300 \cdot kN$$
 (Del 2 lign.6.10a,
6.10b [25])
M_{t.2} := M₂ - N·y_{t.2} = $\begin{pmatrix} -190 \\ -188 \end{pmatrix} \cdot kN \cdot m$

Spenning i betongen i overkant:

$$y_{ok.2} = -250 \cdot mm$$

 $\sigma_{c.ok.t.2} := \frac{N}{A_t} + \frac{M_{t.2}}{\frac{I_{t.2}}{y_{ok.2} - y_{t.2}}} = \begin{pmatrix} -0 \\ 0.01 \end{pmatrix} \cdot MPa$

Spenning i betongen ved spennarmeringen:

$$y_{p,2} = 84 \cdot mm$$

$$\sigma_{c.p.t.2} := \frac{N}{A_t} + \begin{vmatrix} \frac{M_{t.2}}{I_{t.2}} & \text{if } y_{p,2} > 0mm \\ = \begin{pmatrix} -3.01 \\ -2.98 \end{pmatrix} \cdot MPa \\ 0 & \text{if } y_{p,2} \le 0mm \end{vmatrix}$$

Spenning i betongen i underkant:

$$y_{uk,2} = 250 \cdot mm$$

 $\sigma_{c.uk.t.2} := \frac{N}{A_t} + \frac{M_{t.2}}{\frac{I_{t.2}}{y_{uk,2} - y_{t.2}}} = \begin{pmatrix} -4.5 \\ -4.46 \end{pmatrix} \cdot MPa$

Spenningsberegninger midt på bjelken

$$\mathbf{e}_{3} = 112 \cdot \mathrm{mm}$$

$$\mathbf{y}_{t.3} \coloneqq \frac{\left[\left(\eta_{t} - 1\right) \cdot \mathbf{A}_{p} \cdot \mathbf{e}_{3}\right]}{\mathbf{A}_{t}} = \begin{pmatrix} 1.8\\ 2.7 \end{pmatrix} \cdot \mathrm{mm}$$
(Del 2 lign.6.7 [25])

Det armerte tverrsnittets treahetsmoment om tverrsnittets tvnadepunktsakse:

$$I_{t,3} := \frac{b \cdot h^3}{12} + b \cdot h \cdot y_{t,3}^2 + (\eta_t - 1) \cdot A_p \cdot (e_3 - y_{t,3})^2 = \begin{pmatrix} 2.134 \times 10^{10} \\ 2.134 \times 10^{10} \end{pmatrix} \cdot mm^4$$
 (Del 2 lign.6.8 [25])

Aksialkraft og moment i tpb:

$$N = -2300 \cdot kN$$
 (Del 2 lign.6.9 [25])

Aksialkraft og moment som virker i det armerte tverrsnittets tyngdepunktsakse, tp:

N = -2300·kN
$$M_{t.3} := M_3 - N \cdot y_{t.3} = \begin{pmatrix} -253 \\ -251 \end{pmatrix} \cdot kN \cdot m$$
 (Del 2 lign.6.10a, 6.10b [25])

Spenning i betongen i overkant:

 $y_{ok.3} = -250 \cdot \text{mm}$ $\sigma_{c.ok.t.3} \coloneqq \frac{N}{A_t} + \frac{M_{t.3}}{\frac{I_{t.3}}{y_{ok.3} - y_{t.3}}} = \begin{pmatrix} 0.73\\ 0.73 \end{pmatrix} \cdot \text{MPa}$ (Del 2 lign.6.11 [25])

Spenning i betongen ved spennarmeringen:

$$y_{p.3} = 112 \cdot mm$$

$$\sigma_{c.p.t.3} := \frac{N}{A_t} + \begin{vmatrix} \frac{M_{t.3}}{I_{t.3}} & \text{if } y_{p.3} > 0 \text{mm} \\ \frac{I_{t.3}}{y_{p.3} - y_{t.3}} \\ 0 & \text{if } y_{p.3} \le 0 \text{mm} \end{vmatrix}$$

Spenning i betongen i underkant:

$$y_{uk.3} = 250 \cdot mm$$

 $\sigma_{c.uk.t.3} := \frac{N}{A_t} + \frac{M_{t.3}}{\frac{I_{t.3}}{y_{uk.3} - y_{t.3}}} = \begin{pmatrix} -5.21 \\ -5.16 \end{pmatrix} \cdot MPa$

Middelspenning- og tøyning i overkant

Finner gjennomsnittlig langtidsspenning i betongen i overkant bjelke ved å midle mellom langtidsspenninger ved opplager, L/4 fra opplager og midt på bjelken:

Middelspenning i betongen i overkant:

$$\sigma_{\text{c.ok.t.middel}} \coloneqq \frac{\sigma_{\text{c.ok.t.1}} + \sigma_{\text{c.ok.t.2}} + \sigma_{\text{c.ok.t.3}} + \sigma_{\text{c.ok.t.2}} + \sigma_{\text{c.ok.t.1}}}{5} = \begin{pmatrix} -0.76 \\ -0.75 \end{pmatrix} \cdot \text{MPa}$$

Langtidstøyning i betongen i overkant:

$$\varepsilon_{\text{cL.ok}} \coloneqq \frac{\sigma_{\text{c.ok.t.middel}}}{E_{\text{cL}}} = \begin{pmatrix} -0.00004\\ -0.000057 \end{pmatrix}$$

Middelspenning- og tøyning ved spennarmeringen

Finner gjennomsnittlig langtidsspenning i betongen ved spennarmeringen ved å midle mellom langtidsspenninger ved opplager, L/4 fra opplager og midt på bjelken:

Middelspenning ved spennarmeringen:

$$\sigma_{\text{c.p.t.middel}} \coloneqq \frac{\sigma_{\text{c.p.t.1}} + \sigma_{\text{c.p.t.2}} + \sigma_{\text{c.p.t.3}} + \sigma_{\text{c.p.t.2}} + \sigma_{\text{c.p.t.1}}}{5} = \begin{pmatrix} -2.82\\ -2.79 \end{pmatrix} \cdot \text{MPa}$$

Langtidstøyning i betongen ved spennarmeringen:

$$\varepsilon_{cL.p} \coloneqq \frac{\sigma_{c.p.t.middel}}{E_{cL}} = \begin{pmatrix} -0.000148 \\ -0.000213 \end{pmatrix}$$

Middelspenning- og tøyning i underkant

Finner gjennomsnittlig langtidsspenning i betongen i underkant ved å midle mellom langtidsspenninge ved opplager, L/4 fra opplager og midt på bjelken:

Middelspenning i underkant:

$$\sigma_{\text{c.uk.t.middel}} \coloneqq \frac{\sigma_{\text{c.uk.t.1}} + \sigma_{\text{c.uk.t.2}} + \sigma_{\text{c.uk.t.3}} + \sigma_{\text{c.uk.t.2}} + \sigma_{\text{c.uk.t.1}}}{5} = \begin{pmatrix} -3.75 \\ -3.71 \end{pmatrix} \cdot \text{MPa}$$

Langtidstøyning i betongen i underkant bjelke:

$$\varepsilon_{cL.uk} := \frac{\sigma_{c.uk.t.middel}}{E_{cL}} = \begin{pmatrix} -0.000196 \\ -0.000283 \end{pmatrix}$$

Middelspenning- og tøyning for bjelken

Finner gjennomsnittlig langtidsspenning for bjelken ved å midle mellom langtidsspenninger i underkant, overkant og ved spennarmeringen.

Middelspenning i bjelken:

$$\sigma_{\text{c.t.middel}} \coloneqq \frac{\sigma_{\text{c.ok.t.middel}} + \sigma_{\text{c.p.t.middel}} + \sigma_{\text{c.uk.t.middel}}}{3} = \begin{pmatrix} -2.44 \\ -2.42 \end{pmatrix} \cdot \text{MPa} \quad \text{etter 100 døgnetter 100 år}$$

Langtidstøyning for bjelken:

$$\varepsilon_{cL.middel} \coloneqq \frac{\varepsilon_{cL.ok} + \varepsilon_{cL.p} + \varepsilon_{cL.uk}}{3} = \begin{pmatrix} -0.000128 \\ -0.000184 \end{pmatrix} \text{ etter 100 døgn}$$
 etter 100 år

Total kryptøyning

Total kryptøyning for bjelken midt i tverrsnittet:

$$\varepsilon_{cc} \coloneqq \varepsilon_{cL.middel} - \varepsilon_{c0.middel} = \begin{pmatrix} -0.000053 \\ -0.00011 \end{pmatrix}$$
 etter 100 døgn etter 100 år

Svinntøyning

Svinntøyning:

$$c_{\rm S} := \begin{pmatrix} -0.000128 \\ -0.000305 \end{pmatrix}$$

etter 100 døgn etter 100 år

(Rapport kap.6.3)

Total tøyning og forskyvning pga kryp og svinn

Tøyning midt i tverrsnittet pga kryp og svinn:

 $\varepsilon_{\text{kryp.svinn}} \coloneqq \varepsilon_{\text{cc}} + \varepsilon_{\text{cs}} = \begin{pmatrix} -0.000181 \\ -0.000415 \end{pmatrix}$ etter 100 døgn etter 100 år

Forskyvning midt i tverrsnittet pga kryp og svinn:

$$\varepsilon_{\text{kryp.svinn}} = \frac{\Delta}{L_b}$$
$$\Delta := \varepsilon_{\text{kryp.svinn}} \cdot L_b = \begin{pmatrix} -1.81 \\ -4.15 \end{pmatrix} \cdot \text{mm} \quad \text{etter 100 døgn} \\ \text{etter 100 år}$$

Spennkrafttap pga kryp og svinn

Ønsker å finne spennkrafttap i kabel, benytter derfor middelkryptøyning i betongen ved spennarmeringen.

Kryptøyning i betongen ved spennarmeringen:

$$\varepsilon_{\text{kryp.p}} := \varepsilon_{\text{cL.p}} - \varepsilon_{\text{c0.p}} = \begin{pmatrix} -0.000061\\ -0.000127 \end{pmatrix}$$

Tøyning i betongen ved spennarmeringen pga kryp og svinn:

 $\Delta \varepsilon_{\text{c.p.kryp.svinn}} \coloneqq \varepsilon_{\text{kryp.p}} + \varepsilon_{\text{cs}} = \begin{pmatrix} -0.000189 \\ -0.000432 \end{pmatrix}$

Tøyningen i spennarmeringen blir omtrent det samme som tøyningen i betongen ved spennarmering.

$$\Delta \varepsilon_{\text{p.kryp.svinn}} \coloneqq \Delta \varepsilon_{\text{c.p.kryp.svinn}} = \begin{pmatrix} -0.000189 \\ -0.000432 \end{pmatrix}$$

Spenningsendring i spennarmering pga kryp og svinn:

$$\Delta \sigma_{p.kryp.svinn} := \Delta \varepsilon_{p.kryp.svinn} \cdot E_p = \begin{pmatrix} -36.9 \\ -84.2 \end{pmatrix} \cdot MPa$$

Tap i spennkraft pga kryp og svinn:

$$\Delta P_{kryp.svinn} := \Delta \sigma_{p.kryp.svinn} \cdot A_p = \begin{pmatrix} -66.4 \\ -151.5 \end{pmatrix} \cdot kN$$

Relaksasjonstap

Beregninger for lav-relaksasjonsstål i klasse 2.

(3.3.2.(4) [5])

Relaksajonstapet i prosent 1000 timer etter oppspenning og med middeltemperatur på 20 grader celsius: (3.3.2.(6) [5])

 $\rho_{1000} := 2.5$

Oppspenningskraft: $P_{pi} := P_0 = 2300 \cdot kN$

Absoluttverdi av den initielle forspenningen:

$$\sigma_{pi} := \frac{P_{pi}}{A_p} = 1277.778 \cdot MPa$$

For langtidsberegning etter 100 år benytter verdi for t=500000 timer (tilnærmet 57 år) ihht. EK2 pkt.3.3.2(8).

Tid etter oppspenning: $t := \begin{pmatrix} 2400\\ 500000 \end{pmatrix}$ timer etter 100døgn timer etter 100 år

Karakteristisk verdi av strekkfasthet for spennstålet: $\mu := \frac{\sigma_{pi}}{f_{-1}} = 0.69$

Absoluttverdi av relaksasjonstapet:

$$\Delta \sigma_{\rm pr} := -0.66 \cdot \rho_{1000} \cdot e^{9.1 \cdot \mu} \cdot \left(\frac{t}{1000}\right)^{0.75 \cdot (1-\mu)} \cdot 10^{-5} \cdot \sigma_{\rm pi} = \begin{pmatrix} -13.43 \\ -47.05 \end{pmatrix} \cdot MPa$$
(3.29 [5])

Relaksasjonen i stålet påvirkes av kryp og svinn i betongen og kan reduseres med faktor lik 0,8:

$$\alpha := 0.8$$

$$\Delta \sigma_{\text{pr.}} \coloneqq \Delta \sigma_{\text{pr}} \cdot \alpha = \begin{pmatrix} -10.75 \\ -37.64 \end{pmatrix} \cdot \text{MPa}$$
(5.10.6(1a) [5])

Tap i spennkraft pga relaksasjon:

$$\Delta P_{pr} := \Delta \sigma_{pr} \cdot A_{p} = \begin{pmatrix} -19.3 \\ -67.8 \end{pmatrix} \cdot kN \quad \text{etter 100døgn} \\ \text{etter 100 år}$$

Friksjon, låsetap, kryp, svinn og relaksasjon

Oppspenningskraft:

Benytter oppspenningskraft fra Sofistik for beregning av kraft i kabel etter lang tid:

 $P_{max} := 2553.2 \text{kN}$

Umiddelbare tap i spennkraft:

 $\Delta P_{\text{kort.aktiv}} := -296.9 \text{ kN}$

 $\Delta P_{\text{kort.passiv}} \coloneqq -233.5 \text{ kN}$

Tidsavhengige tap i spennkraft:

$$\Delta P_{lang} := \Delta P_{kryp.svinn} + \Delta P_{pr} = \begin{pmatrix} -86 \\ -219 \end{pmatrix} \cdot kN \quad \text{etter 100døgn} \\ \text{etter 100 år}$$

Spennkraft etter lang tid:

2171 etter 100døgn $P_{lang.aktiv} := P_{max} + \Delta P_{kort.aktiv} + \Delta P_{lang} =$ kN etter 100 år 2037 etter 100døgn

etter 100 år

$$P_{\text{lang.passiv}} := P_{\text{max}} + \Delta P_{\text{kort.passiv}} + \Delta P_{\text{lang}} = \begin{pmatrix} 2234\\2100 \end{pmatrix} \cdot kN$$

(Rapport kap.9.4)

(Vedlegg G)

Vedlegg L: TEST Testbjelke Friksjon Sofistik-modell uten låsetap Rett og krum spennkabel

lht. [5] og [10].

Input

Spennarmering

Karakteristisk strek	kfasthet:	$f_{pk} := 1860 \frac{N}{mm^2}$	(1.5 [20])
0,1 %-strekkgrense):	$f_{p0.1k} := 1640 \frac{N}{mm^2}$	(1.5 [20])
Areal av kabel:	$A_{p} := 1800 \text{mm}^{2}$		(Annex 8 [10])
Lengde spennkabel	$L_p := 10m$		
Regner oppspennin	gskraft etter Sof	istik:	(Rapport kap.9.4)
Rett kabel	$P_{max.1} := 2530.8$	< <mark>N</mark>	
Krum kabel	P _{max.2} := 2553.2	CN CN	
Friksjonstap			
Friksjonstap i al	ktivt anker		
Friksjonstap = 0,9%	6		(Tabell 3 [10])
Rett kabel			
Spennkrafttapet pg	a friksjon i anker	$\therefore \Delta P_{\text{friksjon.anker.1}} = -0.9\% P_{\text{max.1}} = -22.8 \text{ kN}$	
Krum kabel			
Spennkrafttapet pg	a friksjon i anker	$\therefore \Delta P_{\text{friksjon.anker.2}} = -0.9\% P_{\text{max.2}} = -23 \text{ kN}$	
Friksjonstap i ka	abelrør		
Friksjonskoeffisient	t:	$\mu := 0.18 \text{rad}^{-1}$	(5.10.5.2 [5])
Faktor for effekt av vinkelendring:	utilsiktet	$k := 0.005 \frac{\text{rad}}{\text{m}}$	· · · ·
Kabel spennes opp	i aktiv ende		
Spennkabelens 2.g	radsligning:	$y = a \cdot x^2 + b \cdot x + c$	

Vinkel:
$$\frac{dy}{dx} = 2 \cdot a \cdot x + b$$

Rett kabel

Kabelgruppens eksentrisitet ifht. tverrsnittets tyngdepunkt: $e_1 := 0$ mm (Rapport figur 4-4)

Vinkel i endene av bjelken:
$$\theta_{aktiv.1} \coloneqq \frac{4 \cdot e_1}{L_p} = 0$$
 $\theta_{passiv.1} \coloneqq \theta_{aktiv.1}$ Vinkelendring i aktiv ende: $\Delta \theta_{aktiv.1} \coloneqq 0$ Vinkelendring i passiv ende: $\Delta \theta_{passiv.1} \coloneqq \theta_{aktiv.1} + \theta_{passiv.1} = 0$ Avstand fra jekk: $x \coloneqq 10m$

Friksjonstap pga friksjon mellom spennkabel og kabelrør:

$$\Delta P_{\text{friksjon.kabelrør.1}} := -P_{\text{max.1}} \left[1 - e^{-\mu \cdot \left(\Delta \theta_{\text{passiv.1}} + k \cdot x_{\cdot} \right)} \right] = -22.7 \cdot \text{kN}$$
(5.10.5.2(1) [5])

Krum kabel

Kabelens eksentrisitet ifht. tverrsnittets tyngdepunkt: e ₂ := 112mm				
Vinkel i endene av bjelken:	$ \theta_{aktiv.2} := \frac{4 \cdot e_2}{L_p} = 0.045 \qquad \theta_{passiv.2} := \theta_{aktiv.2} $			
Vinkelendring i passiv ende:	$\Delta \theta_{\text{passiv.2}} \coloneqq \theta_{\text{aktiv.2}} + \theta_{\text{passiv.2}} = 0.09$			
Avstand fra jekk:	$x_{.} = 10 \mathrm{m}$			

Friksjonstap pga friksjon mellom spennkabel og kabelrør:

$$\Delta P_{\text{friksjon.kabelrør.2}} := -P_{\text{max.2}} \cdot \left[1 - e^{-\mu \cdot \left(\Delta \theta_{\text{passiv.2}} + k \cdot x_{\cdot} \right)} \right] = -63.4 \cdot \text{kN}$$
(5.10.5.2(1) [5])

Totalt friksjonstap

Rett kabel

Vedlegg M: TEST Testbjelke Låsetap Sofistik-modell uten friksjon Rett og krum kabel

Iht. [10] og [35].

Input

Spennarmering

Elastisitetsmodul:		E _p := 195000MPa	(1.5 [20])
Karakteristisk streł	kfasthet:	$f_{pk} := 1860 \frac{N}{mm^2}$	(1.5 [20])
0,1 %-strekkgrense	9:	$f_{p0.1k} := 1640 \frac{N}{mm^2}$	(1.5 [20])
Areal av kabel:	$A_p := 1800 \text{mm}^2$		(Annex 8 [10]

Regner oppspenningskraft etter Sofistik:

Rett kabel	$P_{0.1} := 2530.8$ kN
Krum kabel	$P_{0.2} := 2553.2$ kN

Låsetap

Låsetap ved aktiv forankring: $\Delta L_{lås} := -6mm$ (2.7 [10]) $\Delta L_{las} = \int_{0}^{L} \Delta \varepsilon \, dx = \int_{0}^{L} \frac{\Delta P(x)}{E_{p} \cdot A_{p}} \, dx$ $\Delta L_{las} \cdot E_p \cdot A_p = \int_0^L \Delta P(x) \, dx = \Delta P_{las} \cdot L_p$ Rett kabel

Lengde spennkabel: L_{p.1} := 10m

Spennkrafttapet pga låsing:	$\Delta P_{las.1} := \frac{\Delta L_{las} \cdot E_p \cdot A_p}{L_{p.1}} = -210.6 \text{kN}$
-----------------------------	--

Krum kabel

Lengde spennkabel: L_{p.2} := 10.003m

Spennkrafttapet pga låsing:

$$\Delta P_{l \text{ås.2}} := \frac{\Delta L_{l \text{ås}} \cdot E_{p} \cdot A_{p}}{L_{p.2}} = -210.5 \cdot \text{kN}$$

(Annex 8 [10])

(Rapport kap.9.4)

Vedlegg M: TEST Testbjelke Låsetap Rett Krum kabel Modell uten friksjon

Vedlegg N: TEST Testbjelke Friksjon og låsetap Oppspenningskraft 2657kN Rett spennkabel

lht. [5], [10] og [35].

Input

Betong

Elastisitetsmodul etter 28 døgn:	E _{cm} := 36000MPa		(Tabell 3.1 [5])
Spennarmering			
Elastisitetsmodul:	E _p := 195000MPa		(1.5 [20])
Karakteristisk strekkfasthet:	$f_{pk} := 1860 \frac{N}{mm^2}$		(1.5 [20])
0,1 %-strekkgrense:	$f_{p0.1k} \coloneqq 1640 \frac{N}{mm^2}$		(1.5 [20])
Areal av kabel: A _p := 1800mm ²			(Annex 8 [10])
Lengde spennkabel: L _p := 10m			
Antall kabler: n := 1			
Kabelgruppens eksentrisitet ifht. tv	errsnittets tyngdepunkt:	e := 0mm	(Rapport figur 4-4)
Regner oppspenningskraft etter [5]:			
$k_1 := 0.8$ $k_2 := 0.9$			(NA.5.10.2.1 [5])
$P_{max} := A_p \cdot min(k_1 \cdot f_{pk}, k_2 \cdot f_{p0.1k}) =$	2657 kN		(5.10.2.1(1) [5])
Friksjonstap			
Friksjonstap i aktivt anker			
Friksjonstap = 0,9%			(Tabell 3 [10])
Spennkrafttapet pga friksjon i anke	r:		

 $\Delta P_{\text{friksjon.anker}} := -0.9\% P_{\text{max}} = -23.9 \text{ kN}$

Friksjonstap i kabelrør

Friksjonskoeffisient:	$\mu := 0.18 \text{rad}^{-1}$	(5.10.5.2 [5])
Faktor for effekt av utilsiktet vinkelendring:	$k := 0.005 \frac{\text{rad}}{\text{m}}$	
Kabel spennes opp i aktiv ende		
Spennkabelens 2.gradsligning:	$y = a \cdot x^2 + b \cdot x + c$	
Vinkel:	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2 \cdot a \cdot x + b$	
Vinkel i endene av bjelken:	$ \theta_{aktiv} := \frac{4 \cdot e}{L_p} = 0 \qquad \theta_{passiv} := \theta_{aktiv} $	
Vinkel midt på bjelken:	$\theta_{\text{midt}} \coloneqq 0$	
Vinkelendring i aktiv ende:	$\Delta \theta_{aktiv} \coloneqq 0$	
Vinkelendring i midtspenn:	$\Delta \theta_{\text{midt}} \coloneqq \theta_{\text{aktiv}} = 0$	
Vinkelendring i passiv ende:	$\Delta \theta_{\text{passiv}} \coloneqq \theta_{\text{aktiv}} + \theta_{\text{passiv}} = 0$	
Avstand fra jekk:	x := 10m	

Friksjonstap pga friksjon mellom spennkabel og kabelrør:

$$\Delta P_{\text{friksjon.kabelrør}} := -P_{\text{max}} \cdot \left[1 - e^{-\mu \cdot \left(\Delta \theta_{\text{passiv}} + k \cdot x \right)} \right] = -23.8 \cdot \text{kN}$$
(5.10.5.2(1) [5])

Totalt friksjonstap

$$\Delta P_{\text{friksjon.aktiv}} \coloneqq \Delta P_{\text{friksjon.anker}} + 2 \cdot \Delta P_{\text{friksjon.kabelrør}} = -71.5 \cdot \text{kN}$$
$$\Delta P_{\text{friksjon.passiv}} \coloneqq \Delta P_{\text{friksjon.anker}} + \Delta P_{\text{friksjon.kabelrør}} = -47.7 \cdot \text{kN}$$

Låsetap

Låsetap ved aktiv forankring:

$$\Delta L_{lås} := -6mm \qquad (2.7 [10])$$

$$\Delta L_{lås} = \int_{0}^{L} \Delta \varepsilon \, dx = \int_{0}^{L} \frac{\Delta P(x)}{E_{p} \cdot A_{p}} \, dx \qquad (Rapport figur 7-4)$$

$$\Delta L_{lås} \cdot E_{p} \cdot A_{p} = \int_{0}^{L} \Delta P(x) \, dx = \Delta P_{friksjon.kabelrør} \cdot L_{p} + \Delta P_{lås} \cdot L_{p}$$

Spennkrafttapet pga låsing:

Friksjon og låsetap

Umiddelbare tap i spennkraft:

 $\Delta P_{kort.aktiv} := \Delta P_{friksjon.anker} + 2\Delta P_{friksjon.kabelrør} + \Delta P_{lås} = -258.3 \cdot kN$

 $\Delta P_{kort.passiv} := \Delta P_{friksjon.anker} + \Delta P_{friksjon.kabelrør} + \Delta P_{lås} = -234.5 \cdot kN$

Spennkraft etter umiddelbare tap:

 $P_{kort.aktiv} \coloneqq P_{max} + \Delta P_{kort.aktiv} = 2398.5 \cdot kN$

 $P_{kort.passiv} := P_{max} + \Delta P_{kort.passiv} = 2422.3 \cdot kN$

Vedlegg N: TEST Testbjelke Friksjon låsetap Rett kabel Oppspenningskraft 2657kN

Vedlegg O: TEST Testbjelke Friksjon og låsetap Oppspenningskraft 2657kN Krum kabel

Iht. [5], [10] og [35].

Input				
Betong				
E _{cm} := 36000MPa		(Tabell 3.1 [5])		
Spennarmering				
Elastisitetsmodul:	E _p := 195000MPa	(1.5 [20])		
Karakteristisk strekkfasthet:	$f_{pk} := 1860 \frac{N}{mm^2}$	(1.5 [20])		
0,1 %-strekkgrense:	$f_{p0.1k} \coloneqq 1640 \frac{N}{mm^2}$	(1.5 [20])		
Areal av kabel: Ap := 1800mm ²		(Annex 8 [10])		
Lengde spennkabel: L _p := 10.003m				
Antall kabler: n := 1				
Kabelens eksentrisitet ifht. tverrsnittets tyngdepunkt: <u>e := 112mm</u> (Rapport figur 4-4)				
Regner oppspenningskraft etter [5]:				
$k_1 := 0.8$ $k_2 := 0.9$		(NA.5.10.2.1 [5])		
$P_{\text{max}} := A_p \cdot \min(k_1 \cdot f_{pk}, k_2 \cdot f_{p0.1k}) =$	2657·kN	(5.10.2.1(1) [5])		
Friksionstan				

Friksjonstap

Friksjonstap i aktivt anker	
Friksjonstap = 0,9%	(Tabell 3 [10])
Spennkrafttapet pga friksjon i anker:	
$\Delta P_{\text{friksjon.anker}} := -0.9\% P_{\text{max}} = -23.9 \cdot \text{kN}$	

Friksjonstap i kabelrør		
Friksjonskoeffisient:	$\mu := 0.18 \text{ rad}^{-1}$	(5.10.5.2 [5])
Faktor for effekt av utilsiktet vinkelendring:	$k := 0.005 \frac{rad}{m}$	
Kabel spennes opp i aktiv ende		
Spennkabelens 2.gradsligning:	$y = a \cdot x^2 + b \cdot x + c$	
Vinkel:	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2 \cdot \mathbf{a} \cdot \mathbf{x} + \mathbf{b}$	
Vinkel i endene av bjelken:	$ \theta_{aktiv} := \frac{4 \cdot e}{L_p} = 0.045 \theta_{passiv} := \theta_{aktiv} $	
Vinkel midt på bjelken:	$\theta_{\text{midt}} \coloneqq 0$	
Vinkelendring i aktiv ende:	$\Delta \theta_{\text{aktiv}} \coloneqq 0$	
Vinkelendring i midtspenn:	$\Delta \theta_{\text{midt}} \coloneqq \theta_{\text{aktiv}} = 0.045$	
Vinkelendring i passiv ende:	$\Delta \theta_{\text{passiv}} \coloneqq \theta_{\text{aktiv}} + \theta_{\text{passiv}} = 0.09$	
Avstand fra jekk:	x := 10m	

Friksjonstap pga friksjon mellom spennkabel og kabelrør:

$$\Delta P_{\text{friksjon.kabelrør}} := -P_{\text{max}} \cdot \left[1 - e^{-\mu \cdot \left(\Delta \theta_{\text{passiv}} + k \cdot x \right)} \right] = -65.9 \cdot \text{kN}$$
(5.10.5.2(1) [5])

Totalt friksjonstap

Aktiv ende: $\Delta P_{friksjon.aktiv} := \Delta P_{friksjon.anker} + 2 \cdot \Delta P_{friksjon.kabelrør} = -155.7 \cdot kN$ Passiv ende: $\Delta P_{friksjon.passiv} := \Delta P_{friksjon.anker} + \Delta P_{friksjon.kabelrør} = -89.8 \cdot kN$

Låsetap

Låsetap ved aktiv forankring: $\Delta L_{lås} := -6mm$ (2.7 [10])

Se figur 6-8 i rapport.

$$\Delta L_{las} = \int_{0}^{L} \Delta \varepsilon \, dx = \int_{0}^{L} \frac{\Delta P(x)}{E_{p} \cdot A_{p}} \, dx \qquad (\text{Rapport figur 7-4})$$
$$\Delta L_{las} \cdot E_{p} \cdot A_{p} = \int_{0}^{L} \Delta P(x) \, dx = \Delta P_{\text{friksjon.kabelrør}} \cdot L_{p} + \Delta P_{las} \cdot L_{p}$$

Spennkrafttapet pga låsing:

Friksjon og låsetap

Umiddelbare tap i spennkraft:

 $\Delta P_{kort.aktiv} := \Delta P_{friksjon.anker} + 2\Delta P_{friksjon.kabelrør} + \Delta P_{lås} = -300.4 \cdot kN$

 $\Delta P_{kort.passiv} := \Delta P_{friksjon.anker} + \Delta P_{friksjon.kabelrør} + \Delta P_{lås} = -234.4 \cdot kN$

Spennkraft etter umiddelbare tap:

 $P_{kort.aktiv} := P_{max} + \Delta P_{kort.aktiv} = 2356 \cdot kN$

 $P_{kort.passiv} := P_{max} + \Delta P_{kort.passiv} = 2422 \cdot kN$

Vedlegg O: TEST Testbjelke Friksjon låsetap Krum kabel Oppspenningskraft 2657kN

Vedlegg P: TEST Testbjelke Kryp, svinn og relaksasjon Oppspenningskraft 2657kN Rett spennkabel

Iht. [5], [10], [15], [20] og [25].

Input

Geometri

b := 2000mm h := 500mm $A_c := b \cdot h = 1 \times 10^6 \cdot mm^2$ $L_b := 10m$ Betong $f_{ck} := 45MPa$ $f_{cm} := 53MPa$ $E_{cm} := 36000MPa$ (Tabell 3.1 [5]) Betongens alder (døgn) ved oppspenning: $t_0 := 7$

$$f_{cm0} := 41.28MPa$$
 (Vedlegg C) $E_{c0} := \left(\frac{f_{cm0}}{f_{cm}}\right)^{0.3} \cdot E_{cm} = 3.34 \times 10^4 \cdot MPa$ (3.3.(3) [5])

Spennarmering

$$E_p := 195000MPa$$
 $f_{pk} := 1860 \frac{N}{mm^2}$ $f_{p0.1k} := 1640 \frac{N}{mm^2}$ (1.5 [20])

Areal av kabel: $A_p := 1800 \text{mm}^2$ Antall kabler: n := 1 (Annex 8 [10]) Lengde spennkabel: $L_p := 10.003 \text{m}$

Kabelgruppens eksentrisitet ifht. tverrsnittets tyngdepunkt:

Langtidstap i Sofistik beregnes fra spennkraft i kabel etter umiddelbare tap. Verdi for kraft i kabel umiddelbart etter oppspenning ved aktiv side er hentet fra håndberegninger av kraft i kabel etter umiddelbare tap etter [5].

 $P_0 := 2398.5 \text{kN}$

Spenningsberegninger ved oppspenning

Antar ingen opprissing under oppspenning.

Areal av kabler oppspent før kabel som kabelen som skal beregnes spenningsendring for:

 $A_{p0} := 0 \text{mm}^2$

e := 0m

Ekvivalent betongtverrsnitt:

$$\eta_{t0} := \frac{E_p}{E_{c0}} = 5.838$$
$$A_{t0} := A_c + (\eta_{t0} - 1) \cdot A_{p0} = 1 \times 10^6 \cdot \text{mm}^2$$

(Del 2 lign.6.6 [25])

(Rapport kap.4.4.2)

(Vedlegg N)

$$y_{t0} \cdot A_{t0} = (\eta_{t0} - 1) \cdot A_{p0} \cdot e$$

$$y_{t0} \coloneqq \frac{\left[(\eta_{t0} - 1) \cdot A_{p0} \cdot e\right]}{A_{t0}} = 0 \cdot mm$$
(Del 2 lign.6.7 [25])

Det armerte tverrsnittets treghetsmoment om tverrsnittets tyngdepunktsakse:

$$I_{t0} := \frac{b \cdot h^{3}}{12} + b \cdot h \cdot y_{t0}^{2} + (\eta_{t0} - 1) \cdot A_{p0} \cdot (e - y_{t0})^{2} = 2.083 \times 10^{10} \cdot mm^{4}$$
(Del 2 lign.6.8 [25])

Aksialkraft og moment i tpb:

$$N := -P_0 = -2399 \cdot kN \qquad M := -P_0 \cdot e = 0 \cdot kN \cdot m \qquad (Del 2 \text{ lign.6.9 [25]})$$

Aksialkraft og moment som virker i det armerte tverrsnittets tyngdepunktsakse, tp:

$$N = -2.4 \times 10^{3} \cdot kN$$
 (Del 2 lign.6.10a,
6.10b [25])

$$M_{t0} := M - N \cdot y_{t0} = 0 \cdot kN \cdot m$$

Spenning i betongen i overkant:

$$y_{ok} := -250 \text{mm}$$

$$\sigma_{c.ok.t0} := \frac{N}{A_{t0}} + \frac{M_{t0}}{\frac{I_{t0}}{y_{ok} - y_{t0}}} = -2.4 \text{ MPa}$$
(Del 2 lign.6.11 [25])

Spenning i betongen ved spennarmeringen:

$$y_p := 0mm$$

$$\sigma_{c.p.t0} := \frac{N}{A_{t0}} + \frac{M_{t0}}{\frac{I_{t0}}{y_p - y_{t0}}} \text{ if } y_p > 0 \text{mm} = -2.4 \cdot \text{MPa}$$

Spenning i betongen i underkant:

$$y_{uk} := 250 \text{mm}$$

 $\sigma_{c.uk.t0} := \frac{N}{A_{t0}} + \frac{M_{t0}}{\frac{I_{t0}}{y_{uk} - y_{t0}}} = -2.4 \cdot \text{MPa}$

Middelspenning i betongen:

$$\sigma_{c.ok.t0} = \sigma_{c.p.t0} = \sigma_{c.uk.t0}$$

Korttidstøyning i betongen:

$$\varepsilon_{\rm c0} \coloneqq \frac{\sigma_{\rm c.p.t0}}{E_{\rm c0}} = -0.000072$$

Kryptall

Kryptall:

$$\varphi := \begin{pmatrix} 0.883\\ 1.746 \end{pmatrix}$$

(Rapport kap.6.2)

Kryptøyning for en konstant trykkspenning

iht. NS-EN 1992-1-1 pkt.3.1.4(3)

Aksialkraft og moment i tpb:

$$N = -2399 \cdot kN$$

 $M = 0 \cdot kN \cdot m$

Langtids E-modul:

$$E_{cL} := \frac{E_{cm}}{1 + \varphi} = \left(\frac{1.91 \times 10^4}{1.31 \times 10^4}\right) \cdot \frac{N}{mm^2}$$
(7.4.3(5) [5])

Ekvivalent betongtverrsnitt:

$$\eta := \frac{E_p}{E_{cL}} = \begin{pmatrix} 10.2 \\ 14.87 \end{pmatrix}$$
(Del 2 lign.6.6 [25])
$$A_t := A_c + (\eta - 1) \cdot A_p = \begin{pmatrix} 1.01656 \times 10^6 \\ 1.02497 \times 10^6 \end{pmatrix} \cdot mm^2$$

Beliggenhet av det armerte tverrsnittets tyngdepunktsakse:

$$e = 0 \cdot mm$$
 (Rapport kap.4.4.2)

$$y_{t} \cdot A_{t} = (\eta - 1) \cdot A_{p} \cdot e$$
$$y_{t} := \frac{\left[(\eta - 1) \cdot A_{p} \cdot e\right]}{A_{t}} = \begin{pmatrix} 0\\ 0 \end{pmatrix} \cdot mm$$
(Del 2 lign.6.7 [25])

Det armerte tverrsnittets treghetsmoment om tverrsnittets tyngdepunktsakse:

$$I_{t} := \frac{b \cdot h^{3}}{12} + b \cdot h \cdot y_{t}^{2} + (\eta - 1) \cdot A_{p} \cdot (e - y_{t})^{2} = \begin{pmatrix} 2.08 \times 10^{10} \\ 2.08 \times 10^{10} \end{pmatrix} \cdot mm^{4}$$
(Del 2 lign.6.8 [25])

Aksialkraft og moment i tpb:

$$N = -2399 \cdot kN$$
 (Del 2 lign.6.9 [25])

Aksialkraft og moment som virker i det armerte tverrsnittets tyngdepunktsakse, tp:

$$N = -2399 \cdot kN$$

$$M_{t} := M - N \cdot y_{t} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \cdot kN \cdot m$$
(Del 2 lign.6.10a,
6.10b [25])

Spenning i betongen i overkant:

$$y_{ok} = -250 \cdot \text{mm}$$

$$\sigma_{c.ok} \coloneqq \frac{N}{A_t} + \frac{M_t}{\frac{I_t}{y_{ok} - y_t}} = \begin{pmatrix} -2.36 \\ -2.34 \end{pmatrix} \cdot \text{MPa}$$
(Del 2 lign.6.11 [25])

Spenning i betongen ved spennarmeringen:

$$y_p = 0 \cdot mm$$

$$\sigma_{c.p} := \frac{N}{A_t} + \begin{vmatrix} \frac{M_t}{I_t} & \text{if } y_p > 0mm & = \begin{pmatrix} -2.36 \\ -2.34 \end{pmatrix} \cdot MPa \\ \hline 0 & \text{if } y_p \le 0mm \end{vmatrix}$$

Spenning i betongen i underkant:

$$\frac{y_{uk} = 250 \cdot mm}{\sigma_{c.uk} \coloneqq \frac{N}{A_t} + \frac{M_t}{\frac{I_t}{y_{uk} - y_t}} = \begin{pmatrix} -2.36 \\ -2.34 \end{pmatrix} \cdot MPa$$

Spenning i betongen:

$$\sigma_{c.ok} = \sigma_{c.p} = \sigma_{c.uk}$$
$$\sigma_{c} := \sigma_{c.p} = \begin{pmatrix} -2.36 \\ -2.34 \end{pmatrix} \cdot MPa$$

Tøyning i betongen etter lang tid:

$$\varepsilon_{c} := \frac{\sigma_{c}}{E_{cL}} = \begin{pmatrix} -0.000123 \\ -0.000178 \end{pmatrix} \quad \begin{array}{l} \text{etter 100 d} \text{ d} \text{gn} \\ \text{etter 100 ar} \\ \end{array}$$

Kryptøyning i betongen:

$$\varepsilon_{cc} \coloneqq \varepsilon_{c} - \varepsilon_{c0} = \begin{pmatrix} -0.000052 \\ -0.000107 \end{pmatrix} \quad \text{etter 100 døgn} \\ \text{etter 100 år}$$

Svinntøyning

Svinntøyning:

 $\varepsilon_{cs} := \begin{pmatrix} -0.000128\\ -0.000305 \end{pmatrix}$ etter 100 døgn etter 100 år

(Rapport kap.6.3)

Total tøyning og forskyvning pga kryp og svinn

Total tøyning i betongen pga kryp og svinn:

$$\Delta \varepsilon_{\text{c.kryp.svinn}} \coloneqq \varepsilon_{\text{cc}} + \varepsilon_{\text{cs}} = \begin{pmatrix} -0.00018 \\ -0.000412 \end{pmatrix} \quad \text{etter 100 døgn} \\ \text{etter 100 år}$$

Total forskyvning av bjelken pga kryp og svinn:

$$\Delta \varepsilon_{c.kryp.svinn} = \frac{\Delta}{L_b}$$
$$\Delta := \Delta \varepsilon_{c.kryp.svinn} \cdot L_b = \begin{pmatrix} -1.8 \\ -4.12 \end{pmatrix} \cdot mm \quad \text{etter 100 døgn} \\ \text{etter 100 år}$$

Spennkrafttap pga kryp og svinn

Tøyning i spennarmeringen blir omtrent det samme som tøyning i betongen ved spennarmering.

Total tøyning i spennarmeringen fra kryp og svinn:

 $\Delta \varepsilon_{\text{p.kryp.svinn}} \coloneqq \Delta \varepsilon_{\text{c.kryp.svinn}} = \begin{pmatrix} -0.00018 \\ -0.000412 \end{pmatrix} \qquad \begin{array}{l} \text{etter 100 d} \texttt{@gn} \\ \text{etter 100 ar} \end{array}$

Spenningsendring i spennarmering pga kryp og svinn:

 $\Delta \sigma_{p.kryp.svinn} := \Delta \varepsilon_{p.kryp.svinn} \cdot E_p = \begin{pmatrix} -35.02 \\ -80.28 \end{pmatrix} \cdot MPa$ etter 100 døgn etter 100 år

Tap av spennkraft pga kryp og svinn:

$$\Delta P_{kryp.svinn} := \Delta \sigma_{p.kryp.svinn} \cdot A_p = \begin{pmatrix} -63 \\ -144.5 \end{pmatrix} \cdot kN$$
 etter 100 døgn
etter 100 år

Relaksasjonstap

Beregninger for lav-relaksasjonsstål i klasse 2. (3.3.2.(4)[5])

Relaksajonstapet i prosent 1000 timer etter oppspenning (3.3.2.(6)[5])og med middeltemperatur på 20 grader celsius:

 $\rho_{1000} := 2.5$

Oppspenningskraft: $P_{pi} := P_0 = 2399 \cdot kN$

Absoluttverdi av den initielle forspenningen:

$$\sigma_{\rm pi} \coloneqq \frac{{\rm P_{pi}}}{{\rm A_p}} = 1332.5 \cdot {\rm MPa}$$

For langtidsberegning etter 100 år benytter verdi for t=500000 timer (tilnærmet 57 år) ihht. EK2 pkt.3.3.2(8).

Tid etter oppspenning:

 $t := \begin{pmatrix} 2400\\ 500000 \end{pmatrix}$ timer etter 100døgn timer etter 100 år

Karakteristisk verdi av strekkfasthet for spennstålet:
$$\mu := \frac{\sigma_{pi}}{f_{pk}} = 0.72$$

Absoluttverdi av relaksasjonstapet:

$$\Delta \sigma_{\rm pr} := -0.66 \cdot \rho_{1000} \cdot e^{9.1 \cdot \mu} \cdot \left(\frac{t}{1000}\right)^{0.75 \cdot (1-\mu)} \cdot 10^{-5} \cdot \sigma_{\rm pi} = \begin{pmatrix} -17.96\\ -55.91 \end{pmatrix} \cdot \text{MPa}$$
(3.29 [5])

Relaksasjonen i stålet påvirkes av kryp og svinn i betongen og kan reduseres med faktor lik 0,8:

$$\alpha := 0.8$$

$$\Delta \sigma_{\text{pr.}} \coloneqq \Delta \sigma_{\text{pr}} \cdot \alpha = \begin{pmatrix} -14.37 \\ -44.73 \end{pmatrix} \cdot \text{MPa}$$

Tap i spennkraft:

$$\Delta P_{pr} := \Delta \sigma_{pr} \cdot A_{p} = \begin{pmatrix} -25.9 \\ -80.5 \end{pmatrix} \cdot kN \quad \text{etter 100døgn} \\ \text{etter 100 år}$$

(5.10.6(1b) [5])

Friksjon, låsetap, kryp, svinn og relaksasjon

Oppspenningskraft:

Benytter oppspenningskraft etter [5]:

 $P_{max} := 2657 kN$

(Vedlegg N)

(Vedlegg N)

Umiddelbare tap i spennkraft:

 $\Delta P_{\text{kort.aktiv}} := -258.3 \text{ kN}$

 $\Delta P_{\text{kort.passiv}} \coloneqq -234.5 \text{ kN}$

Tidsavhengige tap i spennkraft:

 $\Delta P_{lang} := \Delta P_{kryp.svinn} + \Delta P_{pr} = \begin{pmatrix} -88.9 \\ -225 \end{pmatrix} \cdot kN$ etter 100døgn etter 100 år

Spennkraft etter lang tid:

$$P_{\text{lang.aktiv}} \coloneqq P_{\text{max}} + \Delta P_{\text{kort.aktiv}} + \Delta P_{\text{lang}} = \begin{pmatrix} 2310\\2174 \end{pmatrix} \cdot \mathbf{kN} \quad \text{etter 100døgn} \\ \text{etter 100 år} \\ P_{\text{lang.passiv}} \coloneqq P_{\text{max}} + \Delta P_{\text{kort.passiv}} + \Delta P_{\text{lang}} = \begin{pmatrix} 2334\\2197 \end{pmatrix} \cdot \mathbf{kN} \quad \text{etter 100døgn} \\ \text{etter 100 år} \\ \text{etter 100 år$$

Midlere spennkraft etter lang tid:

P _{lang.middel.100.døgn}	$:= \frac{2310kN + 2334kN}{2}$	$\frac{1}{2} = 2322 \cdot kN$
P _{lang.middel.100.år} :=	$\frac{2174\text{kN} + 2197\text{kN}}{2} =$	2186·kN

Vedlegg Q: TEST Testbjelke Kryp, svinn og relaksasjon Oppspenningskraft 2657kN Rett spennkabel

Iht. [5], [10], [15] og [25].

Input				
Geometri				
b := 2000mm	h := 500mm	$A_c := b \cdot h = 1 \times 10^6 \cdot mm^2$	$L_b := 10m$	
Betong				
f _{ck} := 45MPa	f _{cm} := 53MPa	E _{cm} := 36000MPa		(Tabell 3.1 [5])
Betongens alder (o	døgn) ved oppspe	enning: t ₀ := 7		
f _{cm0} := 41.28MPa	(Vedlegg C)	$\mathbf{E}_{c0} \coloneqq \left(\frac{\mathbf{f}_{cm0}}{\mathbf{f}_{cm}}\right)^{0.3} \cdot \mathbf{E}_{cm} = 3.3$	4×10^4 ·MPa	(3.3.(3) [5])
Spennarmering	9			
E _p := 195000MPa	$f_{pk} := 1860 \frac{N}{mm^2}$	$f_{p0.1k} := 1640 \frac{N}{mm^2}$		(1.5 [20])
Areal av kabel:	$A_p := 1800 \text{mm}^2$	Antall kabler: <u>n := 1</u>		(Annex 8 [10])
Lengde spennkabe	el: $L_p := 10.003m$			
Kabelgruppens ek på bjelken:	sentrisitet ifht. tv	errsnittets tyngdepunkt midt	<mark>e := 112m</mark> (R	apport kap.4.4.2)
Langtidstap i Sofis umiddelbart etter o umiddelbare tap et	oppspenning ved tter [5].	spennkraft i kabel etter umid aktiv side er hentet fra håndt	delbare tap. Verdi fo beregninger av kraft i	r kraft i kabel i kabel etter
$P_0 := 2356 kN$				(Vedlegg O)

Spenningsberegninger ved oppspenning

Antar ingen opprissing ved oppspenning.

Areal av kabler oppspent før kabel som kabelen som skal beregnes spenningsendring for:

 $A_{p0} := 0 \text{mm}^2$

Ekvivalent betongtverrsnitt:

$$\eta_{t0} \coloneqq \frac{E_p}{E_{c0}} = 5.84$$
$$A_{t0} \coloneqq A_c + (\eta_{t0} - 1) \cdot A_{p0} = 1 \times 10^6 \cdot \text{mm}^2$$

(Del 2 lign.6.6 [25])

Spenningsberegninger ved opplager

$$e_1 := 0mm$$

$$y_{t0} \cdot A_{t0} = (\eta_{t0} - 1) \cdot A_{p0} \cdot e$$
$$y_{t0,1} \coloneqq \frac{\left[(\eta_{t0} - 1) \cdot A_{p0} \cdot e_1\right]}{A_{t0}} = 0 \cdot mm$$
(Del 2 lign.6.7 [25])

Det armerte tverrsnittets treghetsmoment om tverrsnittets tyngdepunktsakse:

$$I_{t0.1} := \frac{b \cdot h^3}{12} + b \cdot h \cdot y_{t0.1}^2 + (\eta_{t0} - 1) \cdot A_{p0} \cdot (e_1 - y_{t0.1})^2 = 2.083 \times 10^{10} \cdot mm^4$$
 (Del 2 lign.6.8 [25])

Aksialkraft og moment i tpb:

$$N := -P_0 = -2.36 \times 10^3 \cdot kN \qquad M_1 := -P_0 \cdot e_1 = 0 \cdot kN \cdot m \qquad (Del \ 2 \ lign. 6.9 \ [25])$$

Aksialkraft og moment som virker i det armerte tverrsnittets tyngdepunktsakse, tp:

$$N = -2.36 \times 10^{3} \cdot kN$$
 (Del 2 lign.6.10a,
6.10b [25])
$$M_{t0.1} := M_1 - N \cdot y_{t0.1} = 0 \cdot kN \cdot m$$

Spenning i betongen i overkant:

$$\sigma_{c.ok.t0.1} \coloneqq \frac{N}{A_{t0}} + \frac{M_{t0.1}}{\frac{I_{t0.1}}{y_{ok.1} - y_{t0.1}}} = -2.36 \cdot MPa$$
 (Del 2 lign.6.11 [25])

Spenning i betongen ved spennarmeringen:

$$\begin{split} \mathbf{y}_{p.1} &\coloneqq 0 \text{mm} \\ \sigma_{c.p.t0.1} &\coloneqq \frac{N}{A_{t0}} + \left| \begin{array}{c} \frac{M_{t0.1}}{I_{t0.1}} & \text{if } \mathbf{y}_{p.1} > 0 \text{mm} \\ \hline \frac{I_{t0.1}}{y_{p.1} - y_{t0.1}} \\ 0 & \text{if } \mathbf{y}_{p.1} \leq 0 \text{mm} \end{array} \right. \end{split}$$

Spenning i betongen i underkant:

$$y_{uk.1} \coloneqq 250 \text{mm}$$

 $\sigma_{c.uk.t0.1} \coloneqq \frac{N}{A_{t0}} + \frac{M_{t0.1}}{\frac{I_{t0.1}}{y_{uk.1} - y_{t0.1}}} = -2.36 \cdot \text{MPa}$

Spenningsberegninger i avstand L/4 fra opplager

$$e_2 := 84mm$$

$$\mathbf{y}_{t0.2} \coloneqq \frac{\left[\left(\boldsymbol{\eta}_{t0} - 1 \right) \cdot \mathbf{A}_{p0} \cdot \mathbf{e}_2 \right]}{\mathbf{A}_{t0}} = 0 \cdot mm$$

Det armerte tverrsnittets treghetsmoment om tverrsnittets tyngdepunktsakse:

$$I_{t0.2} := \frac{b \cdot h^3}{12} + b \cdot h \cdot y_{t0.2}^2 + (\eta_{t0} - 1) \cdot A_{p0} \cdot (e_2 - y_{t0.2})^2 = 2.083 \times 10^{10} \cdot mm^4$$

Aksialkraft og moment i tpb:

$$N = -2356 \cdot kN \qquad \qquad M_2 := -P_0 \cdot e_2 = -198 \cdot kN \cdot m$$

Aksialkraft og moment som virker i det armerte tverrsnittets tyngdepunktsakse, tp:

 $N = -2356 \cdot kN$

$$M_{t0.2} := M_2 - N \cdot y_{t0.2} = -198 \cdot kN \cdot m$$

Spenning i betongen i overkant:

$$\frac{y_{ok.2} := -250 \text{mm}}{\sigma_{c.ok.t0.2} := \frac{N}{A_{t0}} + \frac{M_{t0.2}}{\frac{I_{t0.2}}{y_{ok.2} - y_{t0.2}}} = 0.02 \cdot \text{MPa}$$

Spenning i betongen ved spennarmeringen:

 $y_{p,2} := 84mm$

$$\sigma_{c.p.t0.2} \coloneqq \frac{N}{A_{t0}} + \begin{bmatrix} \frac{M_{t0.2}}{I_{t0.2}} & \text{if } y_{p.2} > 0 \text{mm} & = -3.15 \cdot \text{MPa} \\ \frac{y_{p.2} - y_{t0.2}}{y_{p.2} - y_{t0.2}} & 0 & \text{if } y_{p.2} \le 0 \text{mm} \end{bmatrix}$$

Spenning i betongen i underkant:

$$y_{uk.2} := 250 \text{mm}$$

 $\sigma_{c.uk.t0.2} := \frac{N}{A_{t0}} + \frac{M_{t0.2}}{\frac{I_{t0.2}}{y_{uk.2} - y_{t0.2}}} = -4.73 \cdot \text{MPa}$

Spenningsberegninger midt på bjelken

$$e_3 := 112mm$$

$$y_{t0.3} := \frac{\left[\left(\eta_{t0} - 1 \right) \cdot A_{p0} \cdot e_3 \right]}{A_{t0}} = 0 \cdot mm$$

Det armerte tverrsnittets treghetsmoment om tverrsnittets tyngdepunktsakse:

$$\mathrm{I}_{t0.3} \coloneqq \frac{b \cdot h^3}{12} + b \cdot h \cdot \mathrm{y}_{t0.3}^2 + \left(\eta_{t0} - 1\right) \cdot \mathrm{A}_{p0} \cdot \left(e_3 - \mathrm{y}_{t0.3}\right)^2 = 2.083 \times \ 10^{10} \cdot \mathrm{mm}^4$$

Aksialkraft og moment i tpb:

$$N = -2356 \cdot kN$$
 $M_3 := -P_0 \cdot e_3 = -264 \cdot kN \cdot m$

Aksialkraft og moment som virker i det armerte tverrsnittets tyngdepunktsakse, tp:

$$N = -2356 \cdot kN$$
 $M_{t0.3} := M_3 - N \cdot y_{t0.3} = -264 \cdot kN \cdot m$

Spenning i betongen i overkant:

$$y_{ok.3} := -250 \text{mm}$$

 $\sigma_{c.ok.t0.3} := \frac{N}{A_{t0}} + \frac{M_{t0.3}}{\frac{I_{t0.3}}{y_{ok.3} - y_{t0.3}}} = 0.81 \cdot \text{MPa}$

Spenning i betongen ved spennarmeringen:

$$\sigma_{c.p.t0.3} := \frac{N}{A_{t0}} + \begin{vmatrix} \frac{M_{t0.3}}{I_{t0.3}} & \text{if } y_{p.3} > 0 \text{mm} \\ \frac{I_{t0.3}}{y_{p.3} - y_{t0.3}} \\ 0 & \text{if } y_{p.3} \le 0 \text{mm} \end{vmatrix}$$

Spenning i betongen i underkant:

$$y_{uk.3} := 250 \text{mm}$$

 $\sigma_{c.uk.t0.3} := \frac{N}{A_{t0}} + \frac{M_{t0.3}}{\frac{I_{t0.3}}{y_{uk.3} - y_{t0.3}}} = -5.52 \cdot \text{MPa}$

Middelspenning- og tøyning i overkant

Finner gjennomsnittlig korttidsspenning i betongen i overkant bjelke ved å midle mellom korttidsspenninger ved opplager, L/4 fra opplager og midt på bjelken:

Middelspenning i betongen i overkant:

$$\sigma_{\text{c.ok.t0.middel}} \coloneqq \frac{\sigma_{\text{c.ok.t0.1}} + \sigma_{\text{c.ok.t0.2}} + \sigma_{\text{c.ok.t0.3}} + \sigma_{\text{c.ok.t0.2}} + \sigma_{\text{c.ok.t0.1}}}{5} = -0.77 \cdot \text{MPa}$$

Korttidstøyning i betongen i overkant:

$$\varepsilon_{c0.ok} \coloneqq \frac{\sigma_{c.ok.t0.middel}}{E_{c0}} = -0.0000231$$

Middelspenning- og tøyning ved spennarmeringen

Finner gjennomsnittlig korttidsspenning i betongen ved spennarmeringen ved å midle mellom korttidsspenninger ved opplager, L/4 fra opplager og midt på bjelken:

Middelspenning ved spennarmeringen:

$$\sigma_{\text{c.p.t0.middel}} \coloneqq \frac{\sigma_{\text{c.p.t0.1}} + \sigma_{\text{c.p.t0.2}} + \sigma_{\text{c.p.t0.3}} + \sigma_{\text{c.p.t0.2}} + \sigma_{\text{c.p.t0.1}}}{5} = -2.96 \cdot \text{MPa}$$

Korttidstøyning i betongen ved spennarmeringen:

$$\varepsilon_{c0.p} := \frac{\sigma_{c.p.t0.middel}}{E_{c0}} = -0.0000886$$

Middelspenning- og tøyning i underkant

Finner gjennomsnittlig korttidsspenning i underkant ved å midle mellom korttidsspenninger ved opplager, L/4 fra opplager og midt på bjelken:

Middelspenning i underkant:

$$\sigma_{\text{c.uk.t0.middel}} \coloneqq \frac{\sigma_{\text{c.uk.t0.1}} + \sigma_{\text{c.uk.t0.2}} + \sigma_{\text{c.uk.t0.3}} + \sigma_{\text{c.uk.t0.2}} + \sigma_{\text{c.uk.t0.1}}}{5} = -3.94 \cdot \text{MPa}$$

Korttidstøyning i betongen i underkant bjelke:

$$\varepsilon_{c0.uk} := \frac{\sigma_{c.uk.t0.middel}}{E_{c0}} = -0.0001179$$

Middelspenning- og tøyning for bjelken

Finner gjennomsnittlig korttidsspenning for bjelken ved å midle mellom korttidsspenninger i underkant, overkant og ved spennarmeringen.

Middelspenning i bjelken:

 $\sigma_{c.t0.middel} := \frac{\sigma_{c.ok.t0.middel} + \sigma_{c.p.t0.middel} + \sigma_{c.uk.t0.middel}}{3} = -2.56 \cdot MPa$

Korttidstøyning for bjelken:

 $\varepsilon_{\text{c0.middel}} \coloneqq \frac{\varepsilon_{\text{c0.uk}} + \varepsilon_{\text{c0.ok}} + \varepsilon_{\text{c0.p}}}{3} = -0.000077$

Kryptall

Kryptall:
$$\varphi := \begin{pmatrix} 0.883 \\ 1.746 \end{pmatrix}$$
 etter 100 døgn etter 100 år (Rapport kap.6.2)

Kryptøyning for en konstant trykkspenning

iht. NS-EN 1992-1-1 pkt.3.1.4(3)

Langtids E-modul:

$$E_{cL} := \frac{E_{cm}}{1 + \varphi} = \begin{pmatrix} 1.91 \times 10^4 \\ 1.31 \times 10^4 \end{pmatrix} \cdot \frac{N}{mm^2}$$
(7.4.3(5) [5])

Ekvivalent betongtverrspitt:

Ekvivalent betongtverrsnitt:

$$\eta_{t} := \frac{E_{p}}{E_{cL}} = \begin{pmatrix} 10.2 \\ 14.87 \end{pmatrix}$$
$$A_{t} := A_{c} + (\eta_{t} - 1) \cdot A_{p} = \begin{pmatrix} 1.02 \times 10^{6} \\ 1.02 \times 10^{6} \end{pmatrix} \cdot mm^{2}$$

Spenningsberegninger ved opplager

$$e_{1} = 0$$

$$y_{t,1} \coloneqq \frac{\left[\left(\eta_{t} - 1\right) \cdot A_{p} \cdot e_{1}\right]}{A_{t}} = \begin{pmatrix} 0\\ 0 \end{pmatrix} \cdot mm$$
(Del 2 lign.6.7 [25])

Det armerte tverrsnittets treghetsmoment om tverrsnittets tyngdepunktsakse:

$$I_{t,1} := \frac{b \cdot h^3}{12} + b \cdot h \cdot y_{t,1}^2 + (\eta_t - 1) \cdot A_p \cdot (e_1 - y_{t,1})^2 = \begin{pmatrix} 2.08 \times 10^{10} \\ 2.08 \times 10^{10} \end{pmatrix} \cdot mm^4$$
 (Del 2 lign.6.8 [25])

Aksialkraft og moment i tpb:

$$N = -2356 \cdot kN$$
 (Del 2 lign.6.9 [25])

(Del 2 lign.6.6 [25])

Aksialkraft og moment som virker i det armerte tverrsnittets tyngdepunktsakse, tp:

$$N = -2356 \cdot kN$$
(Del 2 lign.6.10a,

$$M_{t,1} := M_1 - N \cdot y_{t,1} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \cdot kN \cdot m$$
(Del 2 lign.6.10b [25])

Spenning i betongen i overkant:

$$y_{ok.1} = -250 \cdot \text{mm}$$

$$\sigma_{c.ok.t.1} \coloneqq \frac{N}{A_t} + \frac{M_{t.1}}{\frac{I_{t.1}}{y_{ok.1} - y_{t.1}}} = \begin{pmatrix} -2.32 \\ -2.3 \end{pmatrix} \cdot \text{MPa}$$
(Del 2 lign.6.11 [25])

Spenning i betongen ved spennarmeringen:

$$y_{p,1} = 0$$

$$\sigma_{c,p,t,1} := \frac{N}{A_t} + \begin{vmatrix} \frac{M_{t,1}}{I_{t,1}} & \text{if } y_{p,1} > 0mm \\ \frac{1}{y_{p,1} - y_{t,1}} \\ 0 & \text{if } y_{p,1} \le 0mm \end{vmatrix}$$

Spenning i betongen i underkant:

$$y_{uk.1} = 2.5 \times 10^2 \cdot mm$$

 $\sigma_{c.uk.t.1} := \frac{N}{A_t} + \frac{M_{t.1}}{\frac{I_{t.1}}{y_{uk.1} - y_{t.1}}} = \begin{pmatrix} -2.32 \\ -2.3 \end{pmatrix} \cdot MPa$

Spenningsberegninger i avstand L/4 fra opplager

 $e_2 = 84 \cdot mm$

$$y_{t,2} \coloneqq \frac{\left[\left(\eta_t - 1\right) \cdot A_p \cdot e_2\right]}{A_t} = \begin{pmatrix} 1.4\\2 \end{pmatrix} \cdot mm$$
 (Del 2 lign.6.7 [25])

Det armerte tverrsnittets treahetsmoment om tverrsnittets tvnadepunktsakse:

$$I_{t,2} := \frac{b \cdot h^3}{12} + b \cdot h \cdot y_{t,2}^2 + (\eta_t - 1) \cdot A_p \cdot (e_2 - y_{t,2})^2 = \begin{pmatrix} 2.112 \times 10^{10} \\ 2.112 \times 10^{10} \end{pmatrix} \cdot mm^4$$
 (Del 2 lign.6.8 [25])

Aksialkraft og moment i tpb:

$$N = -2356 \cdot kN$$
 $M_2 = -198 \cdot kN \cdot m$ (Del 2 lign.6.9 [25])

Aksialkraft og moment som virker i det armerte tverrsnittets tyngdepunktsakse, tp:

$$N = -2356 \cdot kN$$
 (Del 2 lign.6.10a,
6.10b [25])
$$M_{t.2} := M_2 - N \cdot y_{t.2} = \begin{pmatrix} -195 \\ -193 \end{pmatrix} \cdot kN \cdot m$$

Spenning i betongen i overkant:

$$y_{ok,2} = -250 \cdot \text{mm}$$

$$\sigma_{c.ok.t.2} \coloneqq \frac{N}{A_t} + \frac{M_{t.2}}{\frac{I_{t.2}}{y_{ok,2} - y_{t.2}}} = \begin{pmatrix} -0 \\ 0.01 \end{pmatrix} \cdot \text{MPa}$$

Spenning i betongen ved spennarmeringen:

$$y_{p,2} = 84 \cdot mm$$

$$\sigma_{c.p.t.2} := \frac{N}{A_t} + \begin{vmatrix} \frac{M_{t.2}}{I_{t.2}} & \text{if } y_{p,2} > 0mm & = \begin{pmatrix} -3.08 \\ -3.05 \end{pmatrix} \cdot MPa \\ \hline y_{p,2} - y_{t.2} \\ 0 & \text{if } y_{p,2} \le 0mm \end{vmatrix}$$

Spenning i betongen i underkant:

$$y_{uk,2} = 250 \cdot mm$$

 $\sigma_{c.uk.t.2} := \frac{N}{A_t} + \frac{M_{t.2}}{\frac{I_{t.2}}{y_{uk,2} - y_{t.2}}} = \begin{pmatrix} -4.61 \\ -4.57 \end{pmatrix} \cdot MPa$

Spenningsberegninger midt på bjelken

$$\mathbf{e}_{3} = 112 \cdot \mathrm{mm}$$

$$\mathbf{y}_{t.3} \coloneqq \frac{\left[\left(\eta_{t} - 1\right) \cdot \mathbf{A}_{p} \cdot \mathbf{e}_{3}\right]}{\mathbf{A}_{t}} = \begin{pmatrix} 1.8\\ 2.7 \end{pmatrix} \cdot \mathrm{mm}$$
(Del 2 lign.6.7 [25])

Det armerte tverrsnittets treahetsmoment om tverrsnittets tvnadepunktsakse:

$$I_{t,3} := \frac{b \cdot h^3}{12} + b \cdot h \cdot y_{t,3}^2 + (\eta_t - 1) \cdot A_p \cdot (e_3 - y_{t,3})^2 = \begin{pmatrix} 2.134 \times 10^{10} \\ 2.134 \times 10^{10} \end{pmatrix} \cdot mm^4$$
 (Del 2 lign.6.8 [25])

Aksialkraft og moment i tpb:

$$N = -2356 \cdot kN$$
 $M_3 = -264 \cdot kN \cdot m$ (Del 2 lign.6.9 [25])

Aksialkraft og moment som virker i det armerte tverrsnittets tyngdepunktsakse, tp:

N =
$$-2356 \cdot kN$$
 M_{t.3} := M₃ - N·y_{t.3} = $\begin{pmatrix} -260 \\ -257 \end{pmatrix} \cdot kN \cdot m$ (Del 2 lign.6.10a, 6.10b [25])

Spenning i betongen i overkant:

 $y_{ok,3} = -250 \cdot \text{mm}$ $\sigma_{c.ok.t.3} \coloneqq \frac{N}{A_t} + \frac{M_{t.3}}{\frac{I_{t.3}}{y_{ok,3} - y_{t.3}}} = \begin{pmatrix} 0.75\\ 0.75 \end{pmatrix} \cdot \text{MPa}$ (Del 2 lign.6.11 [25])

Spenning i betongen ved spennarmeringen:

$$\begin{split} y_{p.3} &= 112 \cdot mm \\ \sigma_{c.p.t.3} &\coloneqq \frac{N}{A_t} + \left| \frac{M_{t.3}}{\frac{I_{t.3}}{y_{p.3} - y_{t.3}}} \text{ if } y_{p.3} > 0mm \right| = \begin{pmatrix} -3.66 \\ -3.62 \end{pmatrix} \cdot MPa \\ 0 \quad \text{if } y_{p.3} \leq 0mm \end{split}$$

Spenning i betongen i underkant:

$$y_{uk.3} = 250 \cdot mm$$

 $\sigma_{c.uk.t.3} := \frac{N}{A_t} + \frac{M_{t.3}}{\frac{I_{t.3}}{y_{uk.3} - y_{t.3}}} = \begin{pmatrix} -5.34 \\ -5.28 \end{pmatrix} \cdot MPa$

Middelspenning- og tøyning i overkant

Finner gjennomsnittlig langtidsspenning i betongen i overkant bjelke ved å midle mellom langtidsspenninger ved opplager, L/4 fra opplager og midt på bjelken:

Middelspenning i betongen i overkant:

$$\sigma_{\text{c.ok.t.middel}} \coloneqq \frac{\sigma_{\text{c.ok.t.1}} + \sigma_{\text{c.ok.t.2}} + \sigma_{\text{c.ok.t.3}} + \sigma_{\text{c.ok.t.2}} + \sigma_{\text{c.ok.t.1}}}{5} = \begin{pmatrix} -0.78 \\ -0.77 \end{pmatrix} \cdot \text{MPa}$$

Langtidstøyning i betongen i overkant:

$$\varepsilon_{\text{cL.ok}} \coloneqq \frac{\sigma_{\text{c.ok.t.middel}}}{E_{\text{cL}}} = \begin{pmatrix} -0.000041\\ -0.000059 \end{pmatrix}$$

Middelspenning- og tøyning ved spennarmeringen

Finner gjennomsnittlig langtidsspenning i betongen ved spennarmeringen ved å midle mellom langtidsspenninger ved opplager, L/4 fra opplager og midt på bjelken:

Middelspenning ved spennarmeringen:

$$\sigma_{\text{c.p.t.middel}} \coloneqq \frac{\sigma_{\text{c.p.t.1}} + \sigma_{\text{c.p.t.2}} + \sigma_{\text{c.p.t.3}} + \sigma_{\text{c.p.t.2}} + \sigma_{\text{c.p.t.1}}}{5} = \begin{pmatrix} -2.89\\ -2.86 \end{pmatrix} \cdot \text{MPa}$$

Langtidstøyning i betongen ved spennarmeringen:

$$\varepsilon_{cL.p} \coloneqq \frac{\sigma_{c.p.t.middel}}{E_{cL}} = \begin{pmatrix} -0.000151 \\ -0.000218 \end{pmatrix}$$

Middelspenning- og tøyning i underkant

Finner gjennomsnittlig langtidsspenning i betongen i underkant ved å midle mellom langtidsspenninge ved opplager, L/4 fra opplager og midt på bjelken:

Middelspenning i underkant:

$$\sigma_{\text{c.uk.t.middel}} \coloneqq \frac{\sigma_{\text{c.uk.t.1}} + \sigma_{\text{c.uk.t.2}} + \sigma_{\text{c.uk.t.3}} + \sigma_{\text{c.uk.t.2}} + \sigma_{\text{c.uk.t.1}}}{5} = \begin{pmatrix} -3.84\\ -3.8 \end{pmatrix} \cdot \text{MPa}$$

Langtidstøyning i betongen i underkant bjelke:

 $\varepsilon_{cL.uk} \coloneqq \frac{\sigma_{c.uk.t.middel}}{E_{cL}} = \begin{pmatrix} -0.000201 \\ -0.00029 \end{pmatrix}$

Middelspenning- og tøyning for bjelken

Finner gjennomsnittlig langtidsspenning for bjelken ved å midle mellom langtidsspenninger i underkant, overkant og ved spennarmeringen.

Middelspenning i bjelken:

$$\sigma_{\text{c.t.middel}} \coloneqq \frac{\sigma_{\text{c.ok.t.middel}} + \sigma_{\text{c.p.t.middel}} + \sigma_{\text{c.uk.t.middel}}}{3} = \begin{pmatrix} -2.5 \\ -2.48 \end{pmatrix} \cdot \text{MPa} \quad \text{etter 100 døgnetter 100 år}$$

Langtidstøyning for bjelken:

$$\varepsilon_{cL.middel} \coloneqq \frac{\varepsilon_{cL.ok} + \varepsilon_{cL.p} + \varepsilon_{cL.uk}}{3} = \begin{pmatrix} -0.000131 \\ -0.000189 \end{pmatrix} \text{ etter 100 døgn}$$

Total kryptøyning

Total kryptøyning for bjelken midt i tverrsnittet:

-0.000054 etter 100 døgn $\varepsilon_{\rm cc} := \varepsilon_{\rm cL.middel} - \varepsilon_{\rm c0.middel} =$ etter 100 år -0.000112

Svinntøyning

Svinntøyning:

 $\varepsilon_{cs} := \begin{pmatrix} -0.000128 \\ -0.000305 \end{pmatrix}$ etter 100 døgn etter 100 år

(Rapport kap.6.3)

Total tøyning og forskyvning pga kryp og svinn

Tøyning midt i tverrsnittet pga kryp og svinn:

 $\varepsilon_{\text{kryp.svinn}} \coloneqq \varepsilon_{\text{cc}} + \varepsilon_{\text{cs}} = \begin{pmatrix} -0.000182 \\ -0.000417 \end{pmatrix}$ etter 100 døgn etter 100 år
Forskyvning midt i tverrsnittet pga kryp og svinn:

$$\varepsilon_{\text{kryp.svinn}} = \frac{\Delta}{L_b}$$
$$\Delta := \varepsilon_{\text{kryp.svinn}} \cdot L_b = \begin{pmatrix} -1.82 \\ -4.17 \end{pmatrix} \cdot \text{mm} \quad \text{etter 100 døgn}$$
$$\text{etter 100 år}$$

Spennkrafttap pga kryp og svinn

Ønsker å finne spennkrafttap i kabel, benytter derfor middelkryptøyning i betongen ved spennarmeringen.

Kryptøyning i betongen ved spennarmeringen:

$$\varepsilon_{\text{kryp.p}} \coloneqq \varepsilon_{\text{cL.p}} - \varepsilon_{\text{c0.p}} = \begin{pmatrix} -0.000063\\ -0.00013 \end{pmatrix}$$

Tøyning i betongen ved spennarmeringen pga kryp og svinn:

 $\Delta \varepsilon_{\text{c.p.kryp.svinn}} \coloneqq \varepsilon_{\text{kryp.p}} + \varepsilon_{\text{cs}} = \begin{pmatrix} -0.000191 \\ -0.000435 \end{pmatrix}$

Tøyningen i spennarmeringen blir omtrent det samme som tøyningen i betongen ved spennarmering.

$$\Delta \varepsilon_{\text{p.kryp.svinn}} \coloneqq \Delta \varepsilon_{\text{c.p.kryp.svinn}} = \begin{pmatrix} -0.000191\\ -0.000435 \end{pmatrix}$$

Spenningsendring i spennarmering pga kryp og svinn:

$$\Delta \sigma_{\text{p.kryp.svinn}} := \Delta \varepsilon_{\text{p.kryp.svinn}} \cdot E_{\text{p}} = \begin{pmatrix} -37.2 \\ -84.8 \end{pmatrix} \cdot \text{MPa}$$

Tap i spennkraft pga kryp og svinn:

$$\Delta P_{kryp.svinn} := \Delta \sigma_{p.kryp.svinn} \cdot A_p = \begin{pmatrix} -66.9\\ -152.6 \end{pmatrix} \cdot kN$$

Relaksasjonstap

Beregninger for lav-relaksasjonsstål i klasse 2.

Relaksajonstapet i prosent 1000 timer etter oppspenning og med middeltemperatur på 20 grader celsius: $\rho_{1000} := 2.5$ (3.3.2.(6) [5])

Oppspenningskraft: $P_{pi} := P_0 = 2356 \cdot kN$

Absoluttverdi av den initielle forspenningen:

$$\sigma_{pi} := \frac{P_{pi}}{A_p} = 1308.889 \cdot MPa$$

For langtidsberegning etter 100 år benytter verdi for t=500000 timer (tilnærmet 57 år) ihht. EK2 pkt.3.3.2(8).

Tid etter oppspenning: $t := \begin{pmatrix} 2400\\ 500000 \end{pmatrix}$ timer etter 100døgn timer etter 100 år

(3.3.2.(4)[5])

Karakteristisk verdi av strekkfasthet for spennstålet: $\mu := \frac{\sigma_{pi}}{f_{pk}} = 0.7$

Absoluttverdi av relaksasjonstapet:

$$\Delta \sigma_{\rm pr} := -0.66 \cdot \rho_{1000} \cdot e^{9.1 \cdot \mu} \cdot \left(\frac{t}{1000}\right)^{0.75 \cdot (1-\mu)} \cdot 10^{-5} \cdot \sigma_{\rm pi} = \begin{pmatrix} -15.85\\ -51.91 \end{pmatrix} \cdot MPa$$
(3.29 [5])

Relaksasjonen i stålet påvirkes av kryp og svinn i betongen og kan reduseres med faktor lik 0,8:

$$\alpha := 0.8$$

$$\Delta \sigma_{\text{pr.}} \coloneqq \Delta \sigma_{\text{pr.}} \approx \left(\begin{array}{c} -12.68 \\ -41.53 \end{array} \right) \cdot \text{MPa}$$
(5.10.6(1a) [5])

Tap i spennkraft pga relaksasjon:

$$\Delta P_{pr} := \Delta \sigma_{pr} \cdot A_{p} = \begin{pmatrix} -22.8 \\ -74.8 \end{pmatrix} \cdot kN \quad \text{etter 100døgn} \\ \text{etter 100 år}$$

Friksjon, låsetap, kryp, svinn og relaksasjon

Oppspenningskraft:

Benytter oppspenningskraft etter [5]:

$$P_{max} := 2657 kN$$

Umiddelbare tap i spennkraft:

$$\Delta P_{kort.aktiv} := -300.4 \text{ kN}$$

 $\Delta P_{\text{kort.passiv}} := -234.4 \text{ kN}$

Tidsavhengige tap i spennkraft:

Midlere spennkraft etter lang tid:

P _{lang.middel.100.døgn}	$:= \frac{2267\text{kN} + 2333\text{kN}}{2}$	$= 2300 \cdot kN$
P _{lang.middel.100.år} ≔	$\frac{2129kN + 2195kN}{2} =$	2162·kN

(Vedlegg O)

(Vedlegg O)

Vedlegg R: Svar fra Sofistik angående spennkraft i analyse av

langtidseffekter

Analyse av kryp, svinn og relaksasjon

Avdeling for brukerstøtte i Sofistik bekrefter i mail at spennkraften som benyttes i analysen

av kryptøyning og relaksasjon er oppspenningskraften fratrukket umiddelbare tap i

spennkraft. Se svar fra Sofistik under.

Lösung / Solution bearbeitet von / processed by ASA; 01.02.2017; 13:52

Dear Ms Tautra,

here are the answers to your questions:

1) In the example it is unclear for me if Sofistik use stresses with or without immediately losses for calculating losses from creep and shrinkage.

 I don't understand if Sofistik use stresses with or without immediately losses for calculating relaxation.

Immediate prestress losses from friction, slip etc are calculated by TENDON and the applied prestress loads contain these effects. Immediate loss from elastic shortening of concrete is calculated by ASE for pretensioned and already grouted cables. For ungrouted ones it is not implemented. For post-tensioning there is no immediate loss due to elastic shortening of concrete.

3) Where is "benchmark 17" showed? This is the DCE-EN17 example in the Verification Manual - Design

4) Can you please explain the stresses Sofistik use for pretensioning and calculation of losses from creep, shrinkage and relaxation?

As it was already written: the actual stresses in concrete and steel will be used in the creep and relaxation calculations. Shrinkage is independent of the stress state.

Hope this helps.

With kind regards SOFiSTiK Customer Services Ákos Sapkás Vedlegg R: Svar fra Sofistik angående spennkraft i analyse av langtidseffekter

Vedlegg S: Svar fra Sofistik angående påvist feil i programmet

Tap i spennkraft som skyldes relaksasjon

Det ble i denne oppgaven oppdaget at det er avvik i spennkrafttap som skyldes relaksasjon mellom Sofistik og håndberegninger. Det ble gjort Sofistik oppmerksom på disse avvikene. Avdeling for brukerstøtte i Sofistik kunne ikke gi noen forklaring på avvikene og sendte de videre til utviklingsavdelingen. Fikk senere en bekreftelse på at det er en feil i programmet og at dette vil bli rettet opp i neste oppdatering av Sofistik. Se bekreftelse under.

Lösung / Solution bearbeitet von / processed by JB; 30.01.2017; 15:06

Dear Ms Tautra,

The analysis of quad tendon relaxation in creep and shrinkage really was a little bit inaccurate in case of original eurocode.

We will fix this in the next ASE servicepack in April.

In the meantime you can manually input the desired relaxation. - Please use your total loss due to relaxation (e.g. 4.5 % for 100 years) - Devide this by 3.0 - this gives 1.5% = the 1000-hour value you can input in AQUA REL1-REL2: PROG AQUA

STEE 11 Y 1770 REL1 1.5 REL2 1.5

or input the same in the SSD material dialog: Material - Festigkeit (strength): - Relaxation value (0.55 ft): 1.5 % - Relaxation value (0.7 ft): 1.5 %

Thanks for sending this problem.

Regards, SOFiSTiK Customer Services Dr. Juergen Bellmann Vedlegg S: Svar fra Sofistik angående påvist feil i programmet

Vedlegg T: Trespenns bru Lastvirkninger egenvekt og superegenvekt

Materialer

Betong: B45 Armering: B500C

Geometri

Lengde bruspenn 1-2:	$L_{1.2} = 20m$
Lengde bruspenn 2-3:	$L_{2.3} := 25m$
Lengde bruspenn 3-4:	$L_{3.4} := 19m$
Lengde søyle i akse 2:	$L_{s.2} \coloneqq 6m$
Lengde søyle i akse 3:	$L_{s.3} := 8m$

Egenvekt

N400 pkt.7.3.2: Tyngdetetthet armert normalvektsbetong settes lik $25 kN/m^3$ ved dimensjonering.

Linjelast bru: $g_{bru} := 157.7 \frac{kN}{m}$ Linjelast søyler i akse 2 og 3: $g_{søyle} := 67.5 \frac{kN}{m}$ Punktlast endetverrbærer ved akse 1 og akse 4: $G_{tverrb} := 40.6 kN$ Punktlast endeskjørt ved akse 1: $G_{skjørt} := 231.3 kN$ Punktlast per vange ved akse 1: $G_{vange} := 140.9 kN$

Punktlast per kantbjelke på venstre side av akse 1: $G_{kantb,1} := 51.2 kN$

Punktlast per overgang mellom vanger og kantbjelker $G_{overgang} := 14.4$ kN på venstre side av akse 1:

Punktlast per kantbjelke på høyre side av akse 4: $G_{kantb.4} := 8kN$

Bøyemoment bruplate fastlager i akse 1, fastinnspenning i akse 2 og 3, glidelager i akse 4

Maksverdier er markert.

Feltmoment akse 1-2:	$M_{\text{felt.1.2}} := \frac{9}{128} \cdot g_{\text{bru}} \cdot L_{1.2}^2 = 4435.3 \cdot \text{kN} \cdot \text{m}$
Støttemoment akse 2-1:	$\mathbf{M}_{\text{støtte.2.1}} \coloneqq \frac{1}{8} \cdot \mathbf{g}_{\text{bru}} \cdot \mathbf{L}_{1.2}^2 = 7885 \cdot \text{kN} \cdot \text{m}$
Støttemoment akse 2-3:	$\mathbf{M}_{\text{støtte.2.3}} \coloneqq \frac{1}{12} \cdot \mathbf{g}_{\text{bru}} \cdot \mathbf{L}_{2.3}^2 = 8213.5 \cdot \text{kN} \cdot \text{m}$
Feltmoment akse 2-3:	$M_{\text{felt.2.3}} := \frac{1}{24} \cdot g_{\text{bru}} \cdot L_{2.3}^2 = 4106.8 \cdot \text{kN} \cdot \text{m}$
Støttemoment akse 3-2:	$\mathbf{M}_{støtte.3.2} \coloneqq \frac{1}{12} \cdot \mathbf{g}_{bru} \cdot \mathbf{L}_{2.3}^2 = 8213.5 \cdot kN \cdot m$
Støttemoment akse 3-4:	$\mathbf{M}_{\text{støtte.3.4}} \coloneqq \frac{1}{8} \cdot \mathbf{g}_{\text{bru}} \cdot \mathbf{L}_{3.4}^2 = 7116.2 \cdot \mathbf{kN} \cdot \mathbf{m}$
Feltmoment akse 3-4:	$M_{\text{felt.3.4}} := \frac{9}{128} \cdot g_{\text{bru}} \cdot L_{3.4}^2 = 4002.9 \cdot \text{kN} \cdot \text{m}$

Skjærkrefter bruplate fastlager i akse 1, fastinnspenning i akse 2 og 3, glidelager i akse 4

 Maksverdier er markert.

 Skjærkraft akse 1:
 $V_1 := \frac{3}{8} \cdot g_{bru} \cdot L_{1,2} = 1182.8 \cdot kN$

 Skjærkraft akse 2-1:
 $V_{2,1} := \frac{5}{8} \cdot g_{bru} \cdot L_{1,2} = 1971.3 \cdot kN$

 Skjærkraft akse 2-3:
 $V_{2,3} := \frac{1}{2} \cdot g_{bru} \cdot L_{2,3} = 1971.3 \cdot kN$

 Skjærkraft akse 3-2:
 $V_{3,2} := \frac{1}{2} \cdot g_{bru} \cdot L_{2,3} = 1971.3 \cdot kN$

 Skjærkraft akse 3-2:
 $V_{3,2} := \frac{1}{2} \cdot g_{bru} \cdot L_{2,3} = 1971.3 \cdot kN$

 Skjærkraft akse 3-4:
 $V_{3,4} := \frac{5}{8} \cdot g_{bru} \cdot L_{3,4} = 1872.7 \cdot kN$

 Skjærkraft akse 4:
 $V_4 := \frac{3}{8} \cdot g_{bru} \cdot L_{3,4} = 1123.6 \cdot kN$

Bøyemoment bruplate faste innspenninger i alle akser

Maksverdier er markert.

Støttemoment akse 1:	$M_{støtte.1.} \coloneqq \frac{1}{12} \cdot g_{bru} \cdot L_{1.2}^2 = 5256.7 \cdot kN \cdot m$
Feltmoment akse 1-2:	$M_{\text{felt.1.2.}} \coloneqq \frac{1}{24} \cdot g_{\text{bru}} \cdot L_{1.2}^2 = 2628.3 \cdot \text{kN} \cdot \text{m}$
Støttemoment akse 2-1:	$M_{støtte.2.1.} := \frac{1}{12} \cdot g_{bru} \cdot L_{1.2}^2 = 5256.7 \cdot kN \cdot m$
Støttemoment akse 2-3:	$M_{støtte.2.3.} := \frac{1}{12} \cdot g_{bru} \cdot L_{2.3}^2 = 8213.5 \cdot kN \cdot m$
Feltmoment akse 2-3:	$M_{\text{felt.2.3.}} \coloneqq \frac{1}{24} \cdot g_{\text{bru}} \cdot L_{2.3}^2 = 4106.8 \cdot \text{kN} \cdot \text{m}$
Støttemoment akse 3-2:	$M_{støtte.3.2.} := \frac{1}{12} \cdot g_{bru} \cdot L_{2.3}^2 = 8213.5 \cdot kN \cdot m$
Støttemoment akse 3-4:	$M_{støtte.3.4.} := \frac{1}{12} \cdot g_{bru} \cdot L_{3.4}^2 = 4744.1 \cdot kN \cdot m$
Feltmoment akse 3-4:	$M_{\text{felt.3.4.}} := \frac{1}{24} \cdot g_{\text{bru}} \cdot L_{3.4}^2 = 2372.1 \cdot \text{kN} \cdot \text{m}$
Støttemoment akse 4:	$M_{støtte.4.} := \frac{1}{12} \cdot g_{bru} \cdot L_{3.4}^2 = 4744.1 \cdot kN \cdot m$

Skjærkrefter bruplate fast innspenning i alle akser

Maksverdier er markert.

Skjærkraft akse 1:	$\mathbf{V}_{1.} \coloneqq \frac{1}{2} \cdot \mathbf{g}_{\mathbf{bru}} \cdot \mathbf{L}_{1.2} = 1577 \cdot \mathbf{kN}$
Skjærkraft akse 2-1:	$V_{2.1.} := \frac{1}{2} \cdot g_{bru} \cdot L_{1.2} = 1577 \cdot kN$
Skjærkraft akse 2-3:	$V_{2.3.} := \frac{1}{2} \cdot g_{bru} \cdot L_{2.3} = 1971.3 \cdot kN$
Skjærkraft akse 3-2:	$V_{3.2.} := \frac{1}{2} \cdot g_{bru} \cdot L_{2.3} = 1971.3 \cdot kN$
Skjærkraft akse 3-4:	$V_{3.4.} := \frac{1}{2} \cdot g_{bru} \cdot L_{3.4} = 1498.2 \cdot kN$

Skjærkraft akse 4:

$$\mathbf{V}_{4.} \coloneqq \frac{1}{2} \cdot \mathbf{g}_{\mathbf{bru}} \cdot \mathbf{L}_{3.4} = 1498.2 \cdot \mathbf{kN}$$

Sum rekasjonskrefter bruplate + søyler + endetverrbærer + endeskjørt + vanger + utkragende kantbjelker

 $\Sigma F_{bru} := g_{bru} \cdot L_{1,2} + g_{bru} \cdot L_{2,3} + g_{bru} \cdot L_{3,4} + 2m \cdot g_{bru} = 10408.2 \cdot kN$

 $\Sigma F_{søyle} := g_{søyle} \cdot L_{s.2} + g_{søyle} \cdot L_{s.3} = 945 \cdot kN$

 $\Sigma F_{u} := 2 \cdot G_{tverrb} + G_{skjørt} + 2 \cdot G_{vange} + 2 \cdot G_{kantb.1} + 2G_{overgang} + 2 \cdot G_{kantb.4} = 741.5 \cdot kN$

 $\Sigma F := \Sigma F_{bru} + \Sigma F_{søyle} + \Sigma F_{u} = 12094.7 \cdot kN$

Superegenvekt

Bredde slitelag:	b _s := 8.4m
Linjelast rekkverk totalt:	$g_{rekkverk} \coloneqq 2 \cdot 2 \frac{kN}{m}$
Linjelast slitelag:	$g_{\text{slitelag}} \coloneqq 3.5 \frac{\text{kN}}{\text{m}^2} \cdot b_{\text{s}} = 29.4 \cdot \frac{\text{kN}}{\text{m}}$
Rekkverk på venstre side av akse 1:	$G_{rekkverk.1} := g_{rekkverk} \cdot 6.4m = 25.6 \cdot kN$
Slitelag på venstre side av akse 1:	$G_{slitelag.1} := g_{slitelag} \cdot 1m = 29.4 \cdot kN$
Rekkverk på høyre side av akse 4:	$G_{rekkverk.4} := g_{rekkverk} \cdot 1m = 4 \cdot kN$
Slitelag på høyre side av akse 4:	$G_{slitelag.4} := g_{slitelag} \cdot 1m = 29.4 \cdot kN$

Bøyemoment superegenvekt på bruplate fastlager i akse 1, fastinnspenning i akse 2 og 3, glidelager i akse 4

Maksverdier er markert.

Feltmoment

Feltmoment akse 1-2:
$$M_{felt.1.2..} \coloneqq \frac{9}{128} (g_{rekkverk} + g_{slitelag}) \cdot L_{1.2}^2 = 939.4 \cdot kN \cdot m$$
Støttemoment akse 2-1: $M_{støtte.2.1..} \coloneqq \frac{1}{8} (g_{rekkverk} + g_{slitelag}) \cdot L_{1.2}^2 = 1670 \cdot kN \cdot m$ Støttemoment akse 2-3: $M_{støtte.2.3..} \coloneqq \frac{1}{12} (g_{rekkverk} + g_{slitelag}) \cdot L_{2.3}^2 = 1739.6 \cdot kN \cdot m$

Feltmoment akse 2-3:
$$M_{felt.2.3..} \coloneqq \frac{1}{24} (g_{rekkverk} + g_{slitelag}) \cdot L_{2.3}^2 = 869.8 \cdot kN \cdot m$$
Støttemoment akse 3-2: $M_{støtte.3.2..} \coloneqq \frac{1}{12} (g_{rekkverk} + g_{slitelag}) \cdot L_{2.3}^2 = 1739.6 \cdot kN \cdot m$ Støttemoment akse 3-4: $M_{støtte.3.4..} \coloneqq \frac{1}{8} (g_{rekkverk} + g_{slitelag}) \cdot L_{3.4}^2 = 1507.2 \cdot kN \cdot m$ Feltmoment akse 3-4: $M_{felt.3.4..} \coloneqq \frac{9}{128} (g_{rekkverk} + g_{slitelag}) \cdot L_{3.4}^2 = 847.8 \cdot kN \cdot m$

Skjærkrefter superegenvekt på bruplate fastlager i akse 1, fastinnspenning i akse 2 og 3, glidelager i akse 4

Maksverdier er markert.

Skjærkraft akse 1:	$V_{1} := \frac{3}{8} \cdot (g_{\text{rekkverk}} + g_{\text{slitelag}}) \cdot L_{1.2} = 250.5 \cdot \text{kN}$
Skjærkraft akse 2-1:	$V_{2.1} \coloneqq \frac{5}{8} \cdot (g_{\text{rekkverk}} + g_{\text{slitelag}}) \cdot L_{1.2} = 417.5 \cdot \text{kN}$
Skjærkraft akse 2-3:	$V_{2.3} \coloneqq \frac{1}{2} \cdot (g_{\text{rekkverk}} + g_{\text{slitelag}}) \cdot L_{2.3} = 417.5 \cdot \text{kN}$
Skjærkraft akse 3-2:	$V_{3.2} \coloneqq \frac{1}{2} \cdot (g_{\text{rekkverk}} + g_{\text{slitelag}}) \cdot L_{2.3} = 417.5 \cdot \text{kN}$
Skjærkraft akse 3-4:	$V_{3.4} \coloneqq \frac{5}{8} \cdot (g_{\text{rekkverk}} + g_{\text{slitelag}}) \cdot L_{3.4} = 396.6 \cdot \text{kN}$
Skjærkraft akse 4:	$V_{4} := \frac{3}{8} \cdot \left(g_{\text{rekkverk}} + g_{\text{slitelag}} \right) \cdot L_{3.4} = 238 \cdot \text{kN}$

Sum rekasjonskrefter rekkverk + slitelag

 $\Sigma F_{rekkverk} := g_{rekkverk} \cdot L_{1.2} + g_{rekkverk} \cdot L_{2.3} + g_{rekkverk} \cdot L_{3.4} + G_{rekkverk.1} + G_{rekkverk.4} = 285.6 \cdot kN$ $\Sigma F_{slitelag} := g_{slitelag} \cdot L_{1.2} + g_{slitelag} \cdot L_{2.3} + g_{slitelag} \cdot L_{3.4} + g_{slitelag} \cdot 2m = 1940.4 \cdot kN$ $\Sigma F_{.} := \Sigma F_{rekkverk} + \Sigma F_{slitelag} = 2226 \cdot kN$ Vedlegg T: Trespenns bru Lastvirkninger egenvekt superegenvekt

Vedlegg U: Tre spenns bru Momentvirkninger Vanger, endeskjørt, endetverrbærer, kantbjelker

Venstre side akse 1

Moment fra endetverrbærer og endeskjørt

Figur 1 Momentarm endeskjørt og endetverrbærer

Moment fra endetverrbærer:

 $M_{tverrb.1} = G_{tverrb} \cdot z = 40,6kN \cdot 0,10m = 4,1kNm$

Moment fra endeskjørt:

 $M_{skjørt} = G_{skjørt} \cdot z = 231,3kN \cdot 0,75m = 173,5kNm$

Moment fra vanger

Figur 2 Tyngdepunkt vange

Tyngdepunkt til vangen:

$$z_{vange} = \frac{A_1 \cdot z_1 + A_2 \cdot z_2 + A_3 \cdot z_3 + A_3 \cdot z_3}{A_1 + A_2 + A_3 + A_4}$$
$$= \frac{4,321m^2 \cdot 3,699m) + 5,602m^2 \cdot 2,799m) + 2,875m^2 \cdot 0,5m) + 1,294m^2 \cdot (-0,225m)}{4,321m^2 + 5,602m^2 + 2,875m^2 + 1,294m^2} = 2,370m$$

Dette gir moment fra vangene på:

 $M_{vanger} = 2 \cdot G_{vange} \cdot z_{vange} = 2 \cdot 140,9kN \cdot 2,370m = 667,9kNm$

Moment fra kantbjelker

Moment fra kantbjelker:

 $M_{kant.1} = 2 \cdot G_{kant.1} \cdot z_{kant} = 2 \cdot 51,2kN \cdot 3,2m = 327,7kNm$

Moment fra overgang mellom vanger og kantbjelker

Moment fra kobling:

 $M_{kobling} = 2 \cdot G_{overgang} \cdot z_{kant} = 2 \cdot 14,4kN \cdot 2,7m = 77,8kNm$

Totale momentvirkninger

 $M_{total.1} = M_{tverrb.1} + M_{skjørt} + M_{vanger} + M_{kant} + M_{kobling} = 4,1 + 173,5 + 667,9 + 327,7 + 77,8$ = 1251,0kNm

Høyre side akse 4

Moment fra endetverrbærer

Moment fra endetverrbæreren:

 $M_{tverrb.4} = G_{tverrb} \cdot z = 40,6kN \cdot 0,10m = 4,1kNm$

Moment fra kantbjelker

 $M_{kant.4} = 2 \cdot G_{kant.4} \cdot z_{kant} = 2 \cdot 8,0kN \cdot 0,5m = 8,0kNm$

Totale momentvirkninger

 $M_{total.4} = M_{tverrb.4} + M_{kant.4} = 4,1 + 8,0 = 12,1kNm$

Vedlegg V: Trespenns bru Lastvirkninger trafikklast

iht. [4]

Geometri

Lengde bruspenn 1-2: $L_{1.2} \coloneqq 20m$ Lengde bruspenn 2-3: $L_{2.3} \coloneqq 25m$ Lengde bruspenn 3-4: $L_{3.4} \coloneqq 19m$

Lastmodell 1 (TS)

Akslingslast: $Q_i := 1000$ kN

Påfører lasten midt i bruspennet.

Bøyemoment i bruplate -

fritt opplagt i akse 1, fast innspenning i akse 2 og 3, glidelager i akse 4

Verdier som er benyttet til verifisering i rapporten er markert.

Feltmoment akse 1-2:	$M_{felt.1.2.TS.1} := \frac{5}{32} \cdot Q_i \cdot L_{1.2} = 3125 \cdot kN \cdot m$
Støttemoment akse 2-1:	$\mathbf{M}_{\text{støtte.2.1.TS.1}} \coloneqq \frac{3}{16} \cdot \mathbf{Q}_{i} \cdot \mathbf{L}_{1.2} = 3750 \cdot \mathbf{kN} \cdot \mathbf{m}$
Støttemoment akse 2-3:	$\mathbf{M}_{\text{støtte.2.3.TS.1}} \coloneqq \frac{1}{8} \cdot \mathbf{Q}_{i} \cdot \mathbf{L}_{2.3} = 3125 \cdot \mathbf{kN} \cdot \mathbf{m}$
Feltmoment akse 2-3:	$M_{\text{felt.2.3.TS.1}} \coloneqq \frac{1}{8} \cdot Q_i \cdot L_{2.3} = 3125 \cdot kN \cdot m$
Støttemoment akse 3-2:	$\mathbf{M}_{\text{støtte.3.2.TS.1}} \coloneqq \frac{1}{8} \cdot \mathbf{Q}_{i} \cdot \mathbf{L}_{2.3} = 3125 \cdot \mathbf{kN} \cdot \mathbf{m}$
Støttemoment akse 3-4:	$M_{støtte.3.4.TS.1} \coloneqq \frac{3}{16} \cdot Q_i \cdot L_{3.4} = 3563 \cdot kN \cdot m$
Feltmoment akse 3-4:	$M_{felt.3.4.TS.1} := \frac{5}{32} \cdot Q_i \cdot L_{3.4} = 2969 \cdot kN \cdot m$

Bøyemoment i bruplate fritt opplagt i akse 1, 2 og 3, glidelager i akse 4

Verdier som er benyttet til verifisering i rapporten er markert.

Feltmoment akse 1-2:	$\mathbf{M}_{\text{felt.1.2.TS.2}} \coloneqq \frac{1}{4} \cdot \mathbf{Q}_{\mathbf{i}} \cdot \mathbf{L}_{1.2} = 5000 \cdot \mathbf{kN} \cdot \mathbf{m}$
Feltmoment akse 2-3:	$M_{\text{felt.2.3.TS.2}} := \frac{1}{4} \cdot Q_i \cdot L_{2.3} = 6250 \cdot kN \cdot m$
Feltmoment akse 3-4:	$M_{felt.3.4.TS.2} := \frac{1}{4} \cdot Q_i \cdot L_{3.4} = 4750 \cdot kN \cdot m$
Lastmodell 1 (UDL) Jevnt fordelt last:	$q_i := 30 \frac{kN}{m}$

Bøyemoment i bruplate fritt opplagt i akse 1, fast innspenning i akse 2 og 3, glidelager i akse 4

Verdier som er benyttet til verifisering i rapporten er markert.

Feltmoment akse 1-2:	$M_{\text{felt.1.2.UDL.1}} := \frac{9}{128} \cdot q_i \cdot L_{1.2}^2 = 844 \cdot kN \cdot m$
Støttemoment akse 2-1:	$M_{støtte.2.1.UDL.1} := \frac{1}{8} \cdot q_i \cdot L_{1.2}^2 = 1500 \cdot kN \cdot m$
Støttemoment akse 2-3:	$M_{støtte.2.3.UDL.1} := \frac{1}{12} \cdot q_i \cdot L_{2.3}^2 = 1563 \cdot kN \cdot m$
Feltmoment akse 2-3:	$M_{\text{felt.2.3.UDL.1}} := \frac{1}{24} \cdot q_i \cdot L_{2.3}^2 = 781 \cdot \text{kN} \cdot \text{m}$
Støttemoment akse 3-2:	$M_{støtte.3.2.UDL.1} := \frac{1}{12} \cdot q_i \cdot L_{2.3}^2 = 1563 \cdot kN \cdot m$
Støttemoment akse 3-4:	$M_{støtte.3.4.UDL.1} := \frac{1}{8} \cdot q_i \cdot L_{3.4}^2 = 1354 \cdot kN \cdot m$
Feltmoment akse 3-4:	$M_{\text{felt.3.4.UDL.1}} := \frac{9}{128} \cdot q_i \cdot L_{3.4}^2 = 761 \cdot kN \cdot m$

Bøyemoment i bruplate -

fritt opplagt i akse 1, 2 og 3, glidelager i akse 4

Verdier som er benyttet til verifisering i rapporten er markert.

Feltmoment akse 1-2:	$M_{\text{felt.1.2.UDL.2}} := \frac{1}{8} \cdot q_i \cdot L_{1.2}^2 = 1500 \cdot \text{kN} \cdot \text{m}$
Feltmoment akse 2-3:	$M_{felt.2.3.UDL.2} := \frac{1}{8} \cdot q_i \cdot L_{2.3}^2 = 2344 \cdot kN \cdot m$
Feltmoment akse 3-4:	$M_{\text{felt.3.4.UDL.2}} := \frac{1}{8} \cdot q_i \cdot L_{3.4}^2 = 1354 \cdot \text{kN} \cdot \text{m}$

Vedlegg W: TEST av SIR i Sofistik

For å verifisere om programmet *SIR* i Sofistik integrerer moment over tverrsnittet riktig lages det en testmodell.

Testbjelke

Testmodellen består av en ett spenns testbjelke og har kun påsatt egenvekt.

Cut

Egenvekt: Maks feltmoment

Resultat for maks feltmoment fra *Cut* er vist til venstre. Når feltmoment integreres over tverrsnittet gir det: $M_{felt} = \frac{156kNm}{m} \cdot 2m = 312kNm$

SIR

Egenvekt: Maks feltmoment

Integrering av moment over tverrsnittet utføres med programmet *SIR* i Sofistik. Resultat for maks feltmoment er vist under.

Sammenligning Cut og SIR

Håndberegninger er gitt i «Vedlegg I: Testbjelke Lastvirkninger egenvekt og flatelast».

	M _{felt} [kNm]
Håndberegning	312,5
Cut	312
SIR	312,5
Differanse Cut – SIR	-0,5

Kommentar: Cut og SIR gir like feltmoment for testbjelken. Feltmomentene stemmer godt overens med håndberegninger. Dette viser at integrering av moment over tverrsnittet med *SIR* er riktig.

Tre spenns bru

SIR

0023

TS: Maks feltmoment mellom akse 2 og 3

0

873.8

-3515

Lasttilfelle 327 gir størst feltmoment fra TS i felt 2–3. Resultat fra *SIR* er vist under:

Kommentar: Verifisering av feltmomentet fra TS mellom akse 2 og 3 i kap.13.3.1 i rapporten viser at feltmomentet fra SIR-cut stemmer godt overens med håndberegninger.

19

Cut

TS: Maks feltmoment mellom akse 2 og 3

Det blir ikke riktig å integrere moment over tverrsnittet for tre spenns brua ved å addere momentene fra *Cut* slik det ble gjort for testbjelken. Trykktøyning i vinger og kantbjelker bidrar til hvordan momentene blir tatt opp. For å sammenligne resultat fra *SIR* med resultat fra *Cut* må det tas hensyn til dette. Dette vil det være vanskelig å gjøre i håndberegninger på grunn av tverrsnittet til tre spenns brua. Konklusjonen er at *SIR* bør benyttes for verifisering av enkelt lasttilfeller på bru med skallelement. Vedlegg W: TEST av SIR i Sofistik