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Abstract

We begin by deriving the Einstein equation from the Einstein-Hilbert action integral using
variational methods; Variation with respect to the metric and the Palatini variation. The
vacuum solution (Schwarzschild solution) is then presented and derived. Weak field ap-
proximation is introduced, and the vacuum solution is derived again in this framework.
Higher-order Lagrangians and their effects on the gravitational potential is investigated,
but found to not be of particular significance to the quantization procedure that follows.
The quantization of the theory is accomplished through the use of the background field
method, and therefore applies for any background space-time.
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Chapter

Introduction

The formulation of general relativity greatly reshaped our view of the physical world. Prior
to special relativity we believed in absolute space and time, as an axiom upon which all
other physics was understood. The discovery that light moves at the same speed in all
inertial frames propelled forward a new understanding. We came to understand that si-
multaneity is relative, and as well, that the Newtonian laws of physics are approximations.
General relativity showed us how space and time are influenced by energy. It is the idea
that time and space are dynamical fields that is the central theme in this master thesis. We
will build upon the central ideas proposed by Einstein, and attempt to linearize the the-
ory in order to make it more manageable. When the theory has been linearized, we may
proceed with a quantization procedure.

In the same way that Newtonian physics is an approximation which works well on our
scale (the scale we observe in daily life), there is reason to assume that general relativity
is an approximation, confined to a scale of relevance. As we see in the beginning of this
thesis, it is possible to derive Einstein’s equations from a Lagrangian formulation, where
we only assume Lorentz invariance for the metric field. However, aware that Lorentz in-
variance is the central assumption of the theory, it is clear that there are other forms of
the action potential that can produce the same results, leaving Einstein’s equation behind
as an approximation of a bigger picture. These other forms are called the higher-order
Einstein-Hilbert actions. Einstein’s equation arises from solving the simplest such La-
grangian system, but is merely a first-order approximation. These concerns are further
discussed in Chapter 5.

In the second chapter, we see how the Schwarzschild solution arises naturally from
Einsteins’ equation. It is one of the most famous solutions in general relativity, and pro-
vides us with a useful framework for introducing a linearization procedure, called the weak
field approximation. This involves investigating the metric field under small perturbations,
so that new predictions can be made of the dynamics of such systems.

Once the theory has been linearized (and thereby specifying the domain of the problem
to be in the low-energy limit), as well as ruling out the need for higher order terms of the
action integral, we are ready to quantize the theory. The quantization of the theory is




treated in Chapter 6.




Chapter

Derivation of Einstein’s field
equation

The famous Einstein field equation has been immensely important for the development of
modern physics. It is an ever-present concept throughout this thesis, and lays the founda-
tion for the work presented.

However, there is an even deeper layer of concepts and ideas that seem to be funda-
mental for all concepts put forward in this thesis, and that is the Lagrangian formalism
with the variational principle; The motion of a system leaves the action integral of the
system stationary (See Appendix C).

This thesis does in other words presuppose that the variational principle is more gen-
eral, in a sense, than the Einstein field equation. This leads us to believe that the Einstein
field equation should be possible to derive from the more general framework, if the correct
axioms are chosen.

Of course, in a historical sense, the Einstein field equation was discovered before the
Einstein-Hilbert action integral. However, using the Lagrangian formalism as a starting
position provides us a foundational perspective on the subject. It also ensures that we
maintain the same formalism from start to finish.

The Lagrangian that describes the system should be Lorentz invariant. It should also
involve the metric tensor, whose dynamics we want to derive. The simplest Lagrangian
that fulfills those criteria is the Einstein-Hilbert Lagrangian, which we will use in this
chapter. More complicated Lagrangians which fulfill the criteria are possible, and are
investigated in Chapter 5.

In this chapter we will derive the Einstein field equation from the Einstein-Hilbert ac-
tion. Initially, by a variation of the metric tensor alone, while assuming that the Christoffel
symbols are of the form given by B.2. In the subsequent section, we derive the Einstein
equation without assuming the form of the Christoffel symbols, in other words, we will be
performing a Palatini variation.




2.1 Variation with respect to the metric tensor

In this section, Einstein’s field equation is derived from the Einstein-Hilbert action. The
Einstein-Hilbert action is given by

S = /d4:c {;KRJF,%M} V=9, .1

where k = 87, and G is the gravitational constant. R is the Ricci curvature scalar,
R = g" R,,. guv is the metric tensor, and R,,,, is the Ricci tensor. g is in this notation
shorthand for the determinant of the metric tensor. Lastly, .-Z), is the matter component of
the Lagrangian.

According to section C.1, the equations of motion arise from extremizing the action.
Let Sgnu — Sgy = S + 0SEn. Where §Sgy is the variation. To extremize the action,
we require that §Sgy is equal to zero,

0Sgn = 0. 2.2)
The variation of the action is
1
(SSEH = /d4{L‘5 |:2H\/—QR+ Vv _g$A1:|

_ / Az | 5 (V/gR) +6 (ﬁxM)}

2K

_ 4 _i(s(\/ _gR) 5(\/ _gozplw) nv

= /d T % ogh + Sgi dg

:/d41~ i 5V—gR+ (SR\/TQ +5(7v—g.,g]\4) 5gl“’
|2k \ dgHv dghv Sghv

S LV B L A L L 0W=9Lu) | s
_/ @ 2 \ V=g ogm " ogw) T =g age 909"
2.3)

The part of the integrand which is inside the square brackets must be equal to zero, since
the variation of the metric tensor, §g"”, is completely arbitrary. Thus we obtain the equa-

tion of motion
R 6/—g O0R  2r 6(/—9Lm) 2.4)

+ — _
V=g og gt /=g Og
Now, Jacobi’s formula in differential form for a matrix, A(t), is [8, pp.169-171]
d(detA(t)) = tr (adj (A(t)) dA(t)) . 2.5)

This relation for a differential of a determinant can be extended to the variation of the
determinant of the metric tensor. Doing that, we obtain

69 =6 (det(g))
= tr[adj (g) dg]
=tr [det (9) gfldg]
= 99" 09 - (2.6)




From (D.23) we know that
gﬂuégul/ = _guuéglwa (2.7

which we can use to obtain
09 = —99,09"" . (2.8)

By using what we have learned about the variation of the determinant of the metric, (2.6),
we obtain the following relation

5(v=9) 1
= —=V=909u, 2.9
Sgh 5V =99u 2.9
and hence we insert (2.9) into (2.4) to obtain

0R 0Ly

1
_ §Rg“” + —_— = K f]\/jgu,/ —2W

S , (2.10)

where, by definition, the part within the square brackets is the energy stress tensor, 7},,,.
Now the equation of motion can be written as

R 1
oghv 2

Ry = kT . (2.11)

The only remaining task in order to obtain the equation of motion is to compute the func-
tional derivative of the Ricci scalar with respect to the metric tensor. The Ricci scalar,
(B.4), is defined by

R=g""R,, . (2.12)

Since variation obeys the product rule, the variation of the Ricci scalar can be written as

SR = Ru,09" + g" 0R . 2.13)

A
pv

One can always choose a coordinate system in which I'?, = 0 at a specific point! [11,

p- 278]. Then the Ricci tensor, (B.3), at that point is
Ry =17, ,—T0,..,- (2.14)
Since space is locally flat at the point of examination, we should expect that the derivatives

of the metric tensor remain equal to zero at the point (There is no curvature). Indeed, by
examining the definition of the Christoffel symbols (B.2)

1
]‘—‘f\LV = §g>\a (gau,u + Gav,u — g;u/,oz) . (2.15)
The Christoffel symbols are equal to zero whenever A # « by definition since we are
examining a locally flat spacetime. However, when A = «, the terms within the parenthesis
have to add up to zero. Since all off-diagonal terms of the metric tensor are equal to zero,
then so are their derivatives. After having established that off-diagonal terms and their

Translated from mathematical notation to a more physical perspective, we can always choose a coordinate
system which is locally flat.




derivatives of the metric tensor are equal to zero, we look at the diagonal terms. Let
i = v, while A = o, and observe that the only term within the parenthesis left is —g,,, o
which has to be equal to zero. Thus we obtain the relation

Juv,a = 0. (2.16)
Notice that this relation holds for all y, v, and «. It is thus also implied that
9ga=0, 2.17)

where g without indices is symbolic notation for the trace of the metric tensor, g*”g,,,, =
9 =9

Moving on, we establish that the term involving the variation of the Ricci tensor can
be written as

g"oR,, = g"" (5Fﬁ#,p — 5I‘§W,) . (2.18)
If we define a variational four-vector as
Swh = g oTy, — g"" Thy (2.19)
we observe that (2.18) may be rewritten as
0 1 0
MWOR,, = — 0w = — v/ —gow”® 2.20
g 12 8ZCF” w \/Tgam" ( g w ) ( )

where in the last step (2.16) was used.

Now, remember that g** 0 R,,, is part of the four-dimensional integral in (2.1). Since
it is a four-divergence, this integral can be rewritten as a surface integral using Gauss’
theorem. Since we do not vary the vector Jw" at infinity, this term does not contribute
to the overall variation of the action. Thus, we disregard g*”dR,,,,, and obtain Einstein’s

field equation,

1
Ry = 59uR = KT 2.21)

2.2 Palatini variation

In the Palatini variation method, the Einstein-Hilbert action, (2.1), is independently varied
with respect to both the metric tensor and the Christoffel symbol (also called the connec-
tion in this context). In other words, the connection and metric tensor are assumed to be
independent field variables.

The Palatini variational method offers a way to derive Einstein’s field equation from
the Lagrangian of gravity, with fewer assumptions than the normal variation with respect
to the metric tensor. Following the Palatini variation method, one does not assume any
specific form or relation between the metric and the connection. One will therefore get
two sets of field equations, instead of one. One of these sets of field equations will be
the usual Einstein field equation. The other set of equations that one obtains will define
the connection, and confirm its form that was assumed, (B.2), in the previous derivation
(variation with respect to the metric tensor).
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Without assuming any relation between the connection and the metric tensor, the
Einstein-Hilbert action, (2.1), becomes

1
Sen = [ a's [zmwr) + %u| VS @2)

Varying (2.22) with respect to the metric tensor yields the same result as in the last section,
(2.21), because
R, (T)

s = (2.23)

with the assumptions we started with. When varying (2.22) with respect to the connection,
we get

0SEH = /d4(E(S|: MVRW,( )—l—f]y[ V=g

K
Now, since
R, = F sz L+ ngFZV Fﬁyl“zp (2.25)

it directly follows that

0R,, =60 FW 00, Fﬁp + I‘" 51“" +1I7 5Ffw szzSFgV — FchSI‘Zp. (2.26)
Since the partial derivatives and the variation commute, (C.4), we can rearrange the first
two terms of 0 R, into

59,10, — 69,10 = 8,60, — 8,017, (2.27)

Performing a partial integration, we obtain

s = [ dta [ 0, (/ =59 )30, + —8,(/~gg")oT%,,

F
+ gt (quéng + 17,017, — 7,000, — rgy5r;p) } v —g.

(2.28)

To obtain the equations of motion for this variation, it is necessary to rearrange some

labels. This rearranging needs to be done in such a way that every term inside the square

brackets of (2.28) has the same variation as a common factor. In the following equations,
(2.29) to (2.34), it is shown how to do this for each term,

A e a0 L VA CED

r V=9
\/7 (\/79‘“’)51“" = [\/jg&,(\/?gg‘”)é;] ore, (2.30)




9T, 018, = g Th0Th, = (g™ T4 504 ] oT%, 2.31)
gy 0Ty, = g"' T, 010, = [¢"'T9, ] oTh,,, (2.32)
— g™ 8T8, = —g®¥ TV 5T%, = [—g™*T% ] oT%, | (2.33)
—g" T, 0T = —ghoT" o0, = [—g"°T%,] 6T, (2.34)

Combining all the terms in the brackets of the previous block of equations, we construct a
tensor

1 1
ALY = — ——=0,(vV/—99"") + —=0,(v/—99""7)0;
g V= = i
+ 9Tl 508 + g TG, — g™ T, — g"°T%, . (2.35)

The variation of the action can then be rewritten in a more compact form as

5SEH = / d*z /=g ALY oTY,, . (2.36)
Since the variation, 6I'f},, is arbitrary, the variational principle implies that
AV =0. (2.37)

If we divide AL into two parts, we can more easily use some symmetry arguments to ease
our further calculations. Let

v 1 A 17
B = ﬁaw(\/—gg”) +g*°Th | 6y, (2.38)
v 1 v vmTo av (e} v
O =~ =0 (V=0g") + ¢ T7, — 9Tl —g" T}, (2.39
AW = BI  C1V | (2.40)

Since I'},, is symmetric in the lower indices, A% must also be symmetric in the upper
indices. Itis obvious that C'/”” is symmetric in the lower indices, so B4 must by extension
also be symmetric in its lower indices. All of this adds together to the conclusion that

By =0, Vu,v,p (2.41)

and we obtain that
A;,“’ = O;”’ =0. (2.42)

If we contract the indices, u, v, on C’/O“’, as such

av amv 1 v
g/wc = Jug" F — 9w ng = G g" F(xp \/—guu (V 99"")
= 4Fg —6oTH —§or™

1 a v
pwop vt oap \/79#1/ ( g“)

ag g a 1 v
= 4Fpo' - 1—‘pa’ - Fpo’ - ﬁguuap( \% _gg” )

=0 (2.43)




we obtain

1
% = —g,,0,(vV—99""). (2.44)
p \/jg H p( )
Now, as is already known from (2.6),
——=0pV— g,w Dpg"” (2.45)

F

By inserting (2.45) into (2.44) we obtain

1
2Fgﬂ = 7g,uuglwapv —g+ g,uuapgm/

e
= 0V~ =0
_ %apm. (2.46)
Hence, )
re, = ﬁapﬁ , (2.47)

which we insert back into the equation of motion, Cﬁ” = 0, to obtain

g + g™ Tl + g"°TY, =0 (2.48)

ap

which is the requirement that the connection is the Christoffel symbol [9, pp.61-62],

1
A A
]'—‘p,y = ig @ (ga,u,,z/ + gau,p - g,ul/,oz) . (249)
Hence, we obtain the same result as in the previous section; The Einstein field equations.
However, this time we have also derived the form of the Christoffel symbols (the con-
nection), and as mentioned in the introduction of this section, derived the Einstein field
equations with fewer assumptions than what could be done with a variation of the metric
alone.
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Chapter

The Schwarzschild solution

A classic solution to the Einstein equation is the Schwarzschild solution which describes
a Schwarzschild black hole. It is also a quite simple example that is useful for develop-
ing an intuition for the mathematics of general relativity, and the methods that are used.
The Schwarzschild is a vacuum solution for a spherically symmetric, static metric to the
Einstein field equation. The solution will describe the metric in the vacuum around some
point mass M. The solution was first published by Schwarzschild in 1916.
The following derivation was greatly aided by Gary Oas’s derivation of the Scwarzschild

solution [10], but has expanded on some points that were not covered in his notes.

3.1 The form of the metric

Einstein’s field equation, which was derived in Chapter 2, is given by

1
R, — §9WR = KT, . 3.1

We are looking for the vacuum solution. Therefore, the equation simplifies to

1
Ry = 59mwR=0. (3.2)

Due to the fact that we are looking for a static solution, the coordinate transformation
t — —t should leave the metric unchanged. This argument also applies to the transfor-
mations # — —6 and ¢ — —¢, when working in spherical coordinates, because of the
requirement that the solution is spherically symmetric (invariant under rotations). The off-
diagonal metric components change signs under these coordinate transformations. Since
they change signs, and should remain unchanged, the only solution is that off-diagonal
elements of the metric are equal to zero. Since the metric is diagonal, we immediately
recognize that the Ricci tensor is also diagonal. In other words,

R, =0, wFEv. (3.3)

11



The definitions for the Christoffel symbols, Riemann tensor, Ricci tensor, and Ricci scalar
can be found in Appendix B. We may freely assume that the metric should become the
metric for flat spacetime when at large r. The line element for a flat space-time is given by

ds? = —dt® + dr? + r2d6? + r? sin? 6d¢? , (3.4)

where

go=-1 gu=1 guo=r"  g=r’sin®0. (3.5)
Generalizing the flat space-time line element to represent the problem in question yields
ds® = —Udt* + Vdr? + Wr?d6? + Xr?sin® 0dg* . (3.6)

Now, since we require spherical symmetry and that the metric is static, we have to require
that all of the functions, U, V', W, and X, are functions of r only. Additionally, spherical
symmetry dictates that W = X. It turns out that we may even set W = X = 1, without
any loss of generality. To see why, one can perform a rescaling, R = vWr, in (3.6). Cal-
culating the new differential yields dR = dr /(W ~1/2 — RW —3/2/2). By direct insertion
and some light algebra, one obtains the rescaled line element,

ds? = ~U(R)dt* + V(R)dR? + R*d6? + R?sin® 0d¢? (3.7)

hence, it is shown that W = X = 1 is a valid choice.

3.2 Solving the problem
Henceforth, we will continue with the general line element,
ds® = —U(r)dt* + V (r)dr? + r2dQ?, (3.8)
where dQ? = d#? + sin? #d¢?. The non-zero metric components are
goo = —U(r) g11 =V (r) Gao =12 gs3 = r2sin? 6. (3.9)
Due to g"” g,,, = 6%, where 6% is the identity matrix, it is obvious that

00 — 1 11 — 1 22 33 — 1 (3]0)

12



From the metric, we can calculate the Christoffel symbols using (B.2). By direct insertion
and some light algebra, the non-zero Christoffel symbols are obtained,

Ul
g, =% =-—
01 10 ZU’
U/
T = 7o
00 oy
V/
I =—
11 2V7
T
F%Q = _V’
r (3.11)
I3 = ——sin®0,
33 Vbln
1
I3, =03 =-
12 21 7“’
['3; = —cosfsinf,
1
I, =T% =~
13 31 7,7

IS, =T35, =cotf,

where the prime symbol indicates a differentiation with respect to r, e.g. U’ = 9, U. As
mentioned earlier, we infer from the Einstein vacuum equations that only the diagonal
components of the Ricci tensor can be non-zero. These are given by

U// U/V/ (U/)2 1 U/

RBo=—spt gz Yoy v
U// (U/)2 U/V/ V/

Bu=s5 "z ~wv (3.12)
rU’ 1 rv’

Roy = — =

v TV T avz o
R33 = sin2 (9R22 .

Using (B.4) and (3.12), the Ricci scalar is obtained

Ut UV U 2u 2V 22

SOV wvE 2RV v Ve 2y

(3.13)

By inserting the Ricci scalar and the Ricci tensor into the Einstein equation, we can find
the four nontrivial equations in terms of r, U, and V;

1 V! 1 1
_ T 3.14
Roo 2gooR 2t ey 0, (3.14)

1 U’ 1 1
- SguR=——— 4~ =0, 3.15
B 2911R rUv * r2  r2v (3.15)

1 vV o u” UV r(U)?

_ = -~ 4+ _ = 3.16
Rz = gomlBt= =+ = T 5 o =0 (3.16)

13



1 2
R33 — 5933R = Ros + %R =0 (3.17)

We want to find V and U. The first Einstein equation, (3.14), can be rewritten as

2
LA (3.18)
T T

Solving this differential equation by separation of variables yields

—1 1
1nV +C=—Inr=In-, (3.19)
v r
where C'is some integration constant. By solving for V, we obtain
1
V=r——1ouru. 3.20
1-C/r (3:20)
To find the form of U, insert (3.20) into (3.15), and rearrange to find
U’ 1 1
— = - —. 3.21
u r—-C r (3-21)
Again, solving the differential equation by separation of variables yields
InU=m(1-C/r)+ K, (3.22)

where K is another integration constant. Solving for U, we obtain
U=k(1-C/r), (3.23)
where k = eX. Hence, our line element, (3.8) is
ds? = —k(1 — C/r)dt* + (1 — C/r) " dr? + r2d6? + r? sin? 0d¢? . (3.24)

Since the line element has to reduce to the line element in flat space in the r — oo limit,
k has to be equal to one. Also, we expect that in the absence of any mass, M — 0, the
same flat line element should be recovered. We see that C' — 0 achieves that, and identify
C o M™ (where n > 0), as it is the only free parameter left which we are free to choose.

3.3 Comparison to Kepler’s orbits
To get the correct form of C, we write down the line element in ST units,

ds? = —(1 = C/r)c?dt® + dr? + r2d6? + r* sin® 0dp? (3.25)

1
1-C/r
and compare the geodesics resulting from this metric to already known physics. To do
that, we rewrite the metric in terms of mean time, 7,

ds\*_
dr
C at\? 1 [dr\® dg\? de\ 2
— (1) (& I 2 [ 4Y 2 . 2 ae
( 7“)6 (df) +1€(d7> o <d7> s 9(@“) ’

(3.26)

14



which we use to construct an arc-length integral of the path,

T

7 c\ /dt\2 1 [dr\’ 46\ 2 Ao\ >
— 2 _ = - - _p2 22 _ r2gin2 -
Nc (-9) (&) +1_§(d7) > (29) - e (4 o

(3.27)

Next, we make the choice to orient our coordinate system in such a way that a test particle
lies in the plane defined by # = 7/2. Hence, our integral reduces to

dt 2 1 dr\? do\ 2
I [l T

Now, the goal of this is to acquire the equation of motion of a test particle through the
Euler-Lagrange equations'. Since the Euler-Lagrange equations are unchanged when the
integrand is multiplied by a constant, we can write the integrand simply as (ds/d7)? (Re-

member that (ds/d7)? = —c?). Now, (3.28) appears as
(jd)) ] dr. (3.29)

(IO o)

When we apply the Euler-Langrange equations on (3.29), we obtain the following equa-
tions of motion

2C c ? C dr do 20 [(dr\® 2 d%
__C (), = (=) S
dT (C—r)2 \dr dr (C’ —7r)2 \dr 1— % dr2’

(3.30)
drd ,d?
0=2r dld—¢+2 d;f, (3.31)
C dt C\ d%t
2

Let us focus on a case of circular motion. In such a case, dr/dr = d%r/d72 = 0. Hence,
(3.30) is then
C [dt do
2

—c= = 2r 3.33
“ <d7’> + (d7> =0, (3.33)

which can be solved for C as

do

= . 3.34
c2 ( dt ) (3.34)

IRead more about the Euler-Lagrange equations in Appendix C.1.2
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Now, Kepler’s third law of motion is

T? 472

— == 3.35

a> GM+m)’ (3.35)
where T’ is the period of the orbit, a is the length of the semi-major axis of the orbit, G is
the gravitational constant, M is the mass of the object which we derived our metric about,
and m is the mass of the test particle. For a circular orbit of a test particle with negligible
mass, Kepler’s third law of motion becomes

T2 472
—_ = 3.36
™ GM (3.36)
The period of a circular orbit is
27
= — 3.37
To/dt (3.37)
which we plug into (3.36) to obtain
do\> GM
— ) =—. 3.38
< dt ) r3 (3.38)
Now, we use (3.38) in (3.34) to obtain
23 GM  2GM
c=ZT2 22 (3.39)

2 3 2

Thus, we have solved for C, and can write down the Schwarzschild solution in SI units,

ds? = — (1 — QGM) Ade? +

2 @drz +7r2d6% +r?sin® 0dg? . (3.40)

c2r
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Chapter

Weak field approximation

The Einstein equation can be hard to work with, due to it not being necessarily linear.
However, in many applications, some details of a system may be negligible. In such
systems, some simplifications may be made. The weak field approximation is such a
method. By assuming that the perturbations from a ground systems, around some point,
are sufficiently small, we may omit terms of a high enough order. In turn, linearization
of the theory may be achieved. In succeeding to linearize the Einstein equation, one may
find the value of the constant of the Schwarzschild metric, as we will do later in this
chapter. One may also develop theories of gravity in specific regimes by this linearized
approach. Since the weak field approximation assumes small approximations, the regime
that theories that utilize this method is a low energy regime. Now, let us delve into the
method of weak field approximation.

4.1 The weak field approximation method

Consider almost flat space-time. A metric of an almost flat space-time can be descirbed
as some weak perturbation term, xh,,,, where kh,, < 1., added to the metric of flat
space-time, 7),,,,. Explicitly, that is written as

uv = Nuv + 4"€huz/ s 4.1)

where k = 87Gec~* is a constant. The number 4 is there only for convenience and synergy
with the other chapters of this work. The approximation requires that we revisit the Ricci
tensor and the Ricci scalar. It is necessary to express these entites to first order in h,,
(since the hy,, term is considered weak). Since we omit second-order terms from the
calculation, and due to the fact that " g,,, = 0¥, it follows that

gt =" — 4dkhMv . 4.2)

The Ricci tensor is given in (B.3). The last two terms will automatically be of order &'(h?),
and will therefore be omitted from the calculations. Additionally, any differential of the
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flat space metric at any point is always equal to zero. Hence, the Christoffel symbols, (B.2)
in the weak field approximation is

L), =26 (1 = 46h7) (hapw + Pavy — Puv.a) - 4.3)

As before, we are only looking at the first order perturbations of the field, and the h*®
term is therefore not going to be included. Hence, the christoffel symbols become

T, = 260 (hapw + hoap — hya) (4.4)

In the weak field approximation, raising and lowering of indices of the perturbation term,
hyuw, can be done by using the flat space metric. The raising and lowering of indices is
done by the metric tensor. However, in the weak field approximation, due to only doing
calculations to first order, the raising and lowering of indices can be done by the flat space
metric alone. This is easily shown by considering

9“7 hys = (N7 — 4Kh7) b
= naryh.yg — 4I<Lha7h,yg . (4.5)

Since we are only looking at first order terms, the second term in (4.5) vanishes, and we
obtain

9" hyg =n""hyps . (4.6)

By applying what we now know about the raising and lowering of indices in the weak-field
approximation, (4.6), to (4.4), we obtain

A A A A
b, =2k (h P N (P ) . “@.7
By inserting (4.7) into (B.3), we calculate the Ricci tensor
R,LLI/ = 2;‘§3 (h’pz/,;,ap + hp,u,l,p - Dhljﬂ - h,uu) ’ (48)
where (0 = 090, and h = h* ,- By insertion, the Ricci scalar, R = g"" R, is
R= (0" —4kh") Ry, . 4.9)

Since we are only looking at the first order approximation, the term containing A*" will
only lead to second order terms, and will thus be omitted from our calculations. Hence,
the Ricci scalar in the weak field approximation is

R=n""R,, . (4.10)
By directly inserting (4.8) into (4.10), we obtain the Ricci scalar,

R =4k [0, —Oh] . 4.11)

We have thus found the Ricci tensor and the Ricci scalar in the weak field approximation.
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4.2 Weak field approximation of the Einstein equation

The Einstein equation, (2.21), can now be computed in terms of the new Ricci tensor
and Ricci scalar. By direct insertion of (4.7), (4.8), and (4.11), into (2.21), we obtain the
Einstein equation in the weak field approximation

1

Wi By = Ol = B = Gy (B = OR) = ST (4.12)

Again, the metric of the last term of the left hand side of (4.12) can be replaced with the
flat space metric to avoid any second order terms. We thus obtain

1
aBf _
10y 12y = Ol = By — T (h - Dh) = 5T (4.13)
The trace of T},,, can be determined from (4.13). We find that
Lpn . _pes Oh 4.14
Z 7 ,aB =+ ) ( . )
By inserting (4.14) into (4.13) we obtain
o o 1 1 o
R o T e = B = Ty = 5 T — 5mwT o | - (4.15)

4.2.1 An attempt at inverting the Einstein equation for the weak field

In order to illustrate the need for some gauge choice to be made at this point, we will see
what attempting to solve the system as-is would yield. Therefore, we are attempting to find
the Green’s function to the current equation of motion. However, as we will see, equation
(4.15) does not have any Green’s function associated with it. To show this, we rearrange
(4.15) as

Hopph™ = fun, (4.16)

where f,,,, is the right-hand side of (4.15), and H,g,.. is
Hoppw = —napngy — 0,0nunag + 0a0uMsy + 030, Moy - 4.17)
By definition, if a Green’s function for this operator exists, it will have to obey
HoppwG* = 61656(x — 2') (4.18)

where 7 and 5;53 are Kronecker deltas, and 6(x — z') is the Dirac delta function. We
Fourier transform the equation, 0, — —ik,, and we get

Haﬂm/ = k277au7]/31/ + kuknunaﬂ — kjakunﬁu - kﬁkunau , (4.19)
and our condition for the possible inverse function becomes

Hou GM° = 6765 . (4.20)
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The most general possible inverse function has the form

GHO = A+ A T’ + Ay
+ Bl k/zkun'yé + BQk/,,u,kfynyé + B?’kukénfyv
+ Bk kO + BskVkOntY + BgkV kYnH?
+ CEMEVETE? (4.21)

where A;, B; and C are undetermined functions depending on k2. By inserting (4.21) and
(4.19) into (4.20), we obtain

HopGM 0 = Ay [2K% 105070 — 2kokgn’]
+ As [K2006% + k7K nap — kokV8% — kgkan™]
+ Ag [K2036% + K K o — kak?8) — kigh?03 ]
+ By [k*nasn™® — K?kaksn™]
+ D [ Kk nap — kaksk K] (4.22)

where D = By + Bs + By /2+ Bs + Bg. We immediately recognize that the second block
containing A, does contain a term with the correct solution. But upon closer inspection,
we also notice that this block does also contain a unique term not contained in any other
block. It is the third term in the A5 block, —k, k" 62. Since this term is unique, there is no
possible way to get the right result, by any choice of the undetermined functions. It is thus
shown that there is no G**7% which obeys our condition, (4.20). In other words, we have
shown that (4.15) is not invertible.

4.2.2 The Lorentz gauge

To solve equation (4.15), we must choose a coordinate gauge. As it stands, (4.15) is
completely general, and therefore does not impose any coordinate system. To find the
form of h,,,,, we must first choose a coordinate gauge. This coordinate gauge will impose
four conditions on h,,,. From [7, pp.461-463], we observe that it is possible to choose
coordinates where the form of the background spacetime, 7),,,,, is conserved, but the (still
undetermined) perturbative field is changed. If one considers a coordinate transformation

' =%+ £%(x), (4.23)

then that leaves the background spacetime untouched, but transforms the perturbative field
as

wp = hap — &0 —Ea- (4.24)

Choosing four coordinate conditions, V,,(z) = V/(x) = 0, can now be done using the
arbitrary, but small, functions, £%(z). Since the background spacetime is unperturbed, we
know that the change in b, — h’W is the same change as the one in g,,, — g,’w. We may
choose what Hartle calls the Lorentz gauge,

M hoy = %aah, (4.25)
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provided that [1€* = 0.

As we have seen in this section, a coordinate change will change the metric, but keep
the physics unchanged. It is by that reason close to what one calls a gauge choice in
electrodynamics. One can easily see the similarity between the Lorentz gauge choice
in electrodynamics, and the Lorentz gauge presented here, as a natural four-dimensional
generalization of the former.

Choosing to work in the Lorentz gauge, the field equation, (4.15), simplifies to

1 1
Ohyy = —3 (T;w — 217W,Taa) . (4.26)

4.3 Weak field approximation for a point mass

It is now useful to look at how we might approximate the space-time around some point
mass. When the metric for the point mass is found, we will compare it to the metric that
was found for the similar system that was considered in Chapter 3. The point mass we
will consider is a static, spherically symmetrical point mass. Due to the symmetries of the
system, it is convenient to work in spherical coordinates. The stress-energy tensor for a
point mass centered in the origin of the spherical coordinate system we choose to work in,
is given by

Mc263 if =
T,, = {METm, ifmr=0 (4.27)
0, otherwise .
Therefore, we end up with four equations given by
1
Ohoo = —1M02(53(7'), (4.28)
1
Ohy; = —ZMc253(r). (4.29)

Since we are considering a static point mass, the metric perturbation that describes it, h,,,,
is constant through time. Therefore, the time-derivative part of the equation vanishes,
huv,0 = 0. As a result, the equations of motion simplify to

V2hoo = —iMczé?’(r) , (4.30)
V2hi = —iMc%S(r) : 4.31)

The current form of the equations of motion are convenient, since we know that the dirac
delta function can be written as the Laplacian of inverted radius. From (D.5) we know that

1
\Y& () = —4m83(r). (4.32)
r
Thus, we see that the solutions of the perturbations for this point mass are given by
Mc?
hop = —— 4.33
00 = 60> (4.33)
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M c?
-~ 167r
The complete metric with the perturbation caused by the point mass is thus given by

hii

(4.34)

uv = Nuv + 4/4/]7’;“/

2GM 2GM 2GM 2GM
diag(1+ G; , 1+ G; 1+ G; ,1 G; ) (4.35)
c’r c?r c?r c?r
Hence, we can write down the line element,
2G M 2GM
ds? — — (1 2GMN gz g (14 2C do? (4.36)
c3r c3r

where do? = dz? +dy? +dz? = dr?2 +r2d62 472 sin? 0d$?, depending on which sets of
coordinates one wishes to use. The solution is a metric displayed in isotropic coordinates,
meaning that all the spatial parts of the metric are the same, g11 = g22 = g33.

This metric is indeed the same as the Schwarzschild metric in isotropic form, if one
expands the Schwarzschild metric to first order as shown in [1, pp. 174-177]. The detailed
calculations are shown in Appendix F.1. By expanding (F.16) into first order of m/p (by
assuming that m < p), and writing it out in the same units that we have used throughout
this chapter (G # 1, ¢ # 1, and using r instead of p), we find that

ds? ~ — (1 - 26’;M> Adt? + <1 + QGM) do?. (4.37)
c°r

c2r

We clearly see that in this approximation, the Schwarzschild line element and the weak
field approximation of a point mass, M, yield equivalent results.

The weak field approximation lends us a useful tool in the linearization of the Ein-
stein equation. It also provides more insight into specific systems which was shown in
this chapter. We were able to use the weak field approximation to determine the constants
of the Schwarzschild line element, instead of resorting to a comparison to Kepler’s laws.
Furthermore, the linearization is immensely helpful when developing a more detailed the-
ory, which is explored in the following chapters of this work. The exercise of finding the
metric for a point mass serves as a good introduction to the linearized approach to general
relativity.
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Chapter

Higher-order terms of the action

Our treatment of general relativity has up until this point revolved around the standard
Einstein-Hilbert action, (2.1). This action was chosen because it maintains Lorentz invari-
ance, and also, it is a scalar quantity (A necessary condition for an action integral). The
only term was thus \/—gR. It also succeeded in providing a starting point from which
to derive Einstein’s equation. However, there are other ways to maintain the Lorentz in-
variance of the action integral constructed from Riemann tensors, and still obtain a scalar
quantity. This does require the addition of higher-order terms of the action, such as R2,
R*R,,,, and so on. In fact, under the arguments so far considered, higher order terms
should be included in a more precise action. There is no good argument for why only the
first order term should be included, since the first order term and also the higher order
terms satisfy the original argument; That the scalar action remains Lorentz invariant. It
is therefore necessary to perform an inquiry of what effects the inclusion of higher-order
terms in the action integral will have.

5.1 Finding the equation of motion

In light of the introductory discussion, a more complete action integral should be written
as

Sen = /d4x {%R + 1R + coRy R + c3Ryupo 1P 4 - f]ﬂ} V=Y.

5.1
where the ¢; are constants.!

Before we go further, it is beneficial to make use of the Gauss-Bonnet theorem. One
can learn about this theorem from [2, Ch. 12]. The derivation of the theorem is beyond the
scope of this thesis. The importance to us, is that by the Gauss-Bonnet theorem, the term
that consists of Riemann tensors can be written in terms of Ricci tensors and Ricci scalars,

10Obviously, the constants may have dimensions, and should maintain the terms’ dimensions in such a way
that they are the same dimension as the overall Lagrangian.
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ie.
/ A2 Ry po R*P7 = / d'z [\ R* + 4R, R . (5.2)

Hence, we can write equation (5.1) as
Sen = /d4x [%OR + 1 R? + coRy R™ 4 -+ + .,%M] V=g. (5.3)

In order to find the effects of including higher order terms in the Lagrangian, we have
to find the equations of motion for the system and look at the differences that arise with
respect to the Einstein equation (Which should be seen as a first-order approximation).

As usual, the procedure to find the equation of motion is to perform a variation of the
action integral and require that the variation is equal to zero. In the following, we will
neglect all orders of R higher than two. By applying a variation on the action integral, we
obtain

0SEH = /dw [ <%OR +c R?+ CQRWR“”> (i/i“__gg

+ (%53 +e6(R?) + c25(R,wRW)) + c%\/{—g)} :

where dw = d%z v/—g. To proceed, we have to find the variations of /—g, R, R?, and
R, R*. We already know from (2.9) that

1
5\/ —g9= _5 \% _gguuaguy 3 (5.5)

5.4)

and we easily see that
OR =6(g"" Ru) = 69" Ry + g""0R,,, - (5.6)
Furthermore, we find § R? in the same manner as we found 6 R,
6R? = 2R6R = 2R(6¢"" Ry + 9" 0R,.,) - (5.7
Lastly, we find 6 (R, R""),
(R, R'") =0R,, R" + R, 0R"
= 6Ru R" + Ryud(9"* 9"’ Rag)
= 6RwR"™ + Ry (69" 9" Rap + 9"*69"° Rap + g 9" 6 Rap)
=2 [0R,, R"™ + g*° Ro, R 69" ] (5.8)
By substituting equations (5.5) — (5.8) into (5.4), and identifying the last term with the

stress-energy tensor, we obtain

1
OSn = / dw [_ g9 (SR R+ coRag R

K

n (%RW +2¢1RR,, + 2029"BRWRW> (5.9)
SR, 1
n (C—Og“” 426 Rg™ + QCQRW) Buw _ Lop Nsgmv
K dghv 2
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The terms with variation 6 12,,,, need to be expressed as a variation of Jg"” instead before
we can find the equations of motion. Therefore, we will only focus on that term in the
following argument. Let us call the term ¢ Sgys,

§SEms = / dw (%Og’“' +26,Rg" + 263" ) SRy (5.10)

From our discussion in the last parts of chapter 2.1, we recall that the first term of . Sgms
does not contribute to the variation. That term may thus be omitted, and we obtain

5SEH3 = 2/dw (Cle/w + CQR’W) (SR#V . (511)

The Palatini identity, (E.4), is a useful substitution that may be used in expressing the
variation of the Ricci tensor as a variation of the metric tensor. The Palatini identity is

§Ru, =V, (61%,) =V, (T%,) . (5.12)

The Palatini identity may be recast into a more convenient form for our purposes [16, pp.
290],

1
59 [VaVulgus + VaV,ubgus — VuVidgap — VaVaogu] . (5.13)

We substitute (5.13) into (5.11) and obtain

SRy =

5 Sers — / dw (c1Rg™ + e R™) [VPV,0g,5 + VOV g0 -

— 9PV, V0905 — VPV 559,] -

It is now necessary to perform a number of partial integrations, in order to isolate the
variations of the metric tensor.

A few remarks on partial integrations and the covariant derivative are in order. Since
we know that

1
L — _

I, = ﬁ_gau\/ , (5.15)

V. WH = —\/1_7]8“ (V=gWH") . (5.16)

We can thus see that
V=gV W = /=90, W + /=gt W"
= V=90 W + (8v/—g) WH
=0, (V=gW") . (5.17)

This last expression is clearly a four-divergence. Additionally, we are concerned with a
variation of the metric in the integrals. Using Gauss’ Theorem (as in chapter 2.1), one may
thus eliminate such terms. In other words,

/d4x\/—gVMW“ =0. (5.18)
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Since the covariant derivative obeys the product rule, we can easily verify that partial
integrations are possible. However, note that this only holds as there is a factor \/—¢g
multiplying the partially integrated part. Put somewhat differently, this only holds when
we integrate over dw = d*z \/—g.

Now that we know that partial integrations with respect to the covariant derivatives are
possible when we integrate over dw, we may perform the partial integrations,

5SEns = / dw{ V., V7 (i Rg" + coR*™) 69,5

+ V. VP (c1Rg™ + caR™) 89,5

(5.19)
— VYV, [(e1Rg™ + c2R™) g*P] 6gas
—O(c1 Rg" + o R*™) 69,“}} ,

where [1 = V, V¢ is the d’ Alembertian. From (2.48), we see that
Vag" =0. (5.20)

Using the fact that the covariant derivative of the metric tensor vanishes, we factorize the
third line of (5.19),

0SEH3 = /dw |: Vyvﬂ (CleuV + C2le) 6.9”5

+ V. VP (c1Rg™ + caRM ) 69,5

—g°PV,V, (c1Rg" + caR") 8gap ©21)
—O(c1 Rg™ + coR*™) 59;44 .
By rearranging the dummy indices, we obtain a more manageable form,
0SEn3 = /dw [ 2V VY (c1 RgM™ + co RMY)
— 9" V5V (c1Rg™? + o R*P) (5.22)

—O(c1Rg" + coRM™) } 0Gpw -

Although the variation of the metric has been isolated, we need the variation of the metric
tensor in (5.22) to be in the form with upper indices instead of the lower indices. We can
go from lower to upper indices by

8Gop = —Goagpsdg™’ . (5.23)

Inserting (5.23) into (5.22) and additional rearranging of dummy indices gives us
5SEH3 = /dw |:— 2VQV1, (clRéff + CgRﬁ)
+ 9w V5V (c1Rg™? + 3 R*P) (5.24)

+0(c1Rguw + c2Ruw) | 09" .
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By rewriting into factors of ¢; and cy inside the square brackets, we arrive at

0SgEH3 = /dw |: 281( — VHVVR + gWDR)

(5.25)

+ CQ( — QVQVZ,RE + gWV/gVaR“ﬂ + DRW)] ogh .

We are now able to insert (5.25) into (5.9) to obtain
Co 1
0SEH = dw ; - §gny + Rp,u
1
+¢ ( -2V, V,R+29,,0R — 5gWR‘Z + 2RRW>

(5.26)

+ co ( - 2V(IVI/R/O: + g/u/v,ﬁ’vaRaﬁ + DR[LV
1 af af 1 y13%
- ig;u/R(xﬂR + 29 R(quﬂu - iﬂuj 59 .

There is a further simplification that can be made to the variation of the action. Through
the contracted Bianchi identity, (E.8), we may rewrite

1 1
VsVaRY = VVag” RS = ¢° 1V VRS = V7 (QVVR) =50R. (527)

Note that this cannot be done for the first term of the third line of (5.26) due to the fact that
the covariant derivatives do not commute amongst themselves; [V, V g] # 0. However,
by using (3.2.12) in [15], and (5.27), we obtain

VoV, RS = %vyv#R + RowppRP* + ROR,5 (5.28)
Inserting equations (5.27) and (5.28) into the variation of the action, (5.26), yields
5 Skm = /dw { @ ( —LgwR+ R,w)
K 2
+c ( -2V, V,R+2¢,,0R — %guuRZ + 2RRW)
+ ¢ ( ~V,V,R—2Ru,,3R"®

1 1 1
+ 5g,wDR +0R,, — 3 gH,,RagR‘w> — 2T,w] Sghv .
(5.29)

Since we have to require that the variation is equal to zero, and the variation of the metric
tensor is arbitrary, the term within the square brackets must be equal to zero. We have
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thus found the equation of motion for a Lagrangian to second order in R. The equation of
motion is given by

1 1
% ( - §glu/R + R;w) + 1 < - QVMVVR + 2g/LVDR - igMVRQ + 2RRW’>

1 1 1
+ 02( -V, V, R+ §g,M,DR +U0R,, — QRWWR/M — 2g,u,RaﬁRaﬁ> = iTMV .

(5.30)
Now that we have found the equation of motion, it is useful to find the linearized equation
of motion so that a few predictions can be made.

It is worth noting that this equation of motion is not the same result that Stelle obtained
and published [13]. It differs in a few signs of second-order terms. Due to the fact that
this difference only applies to terms of second order in R, there will be no differences
in the following sections of this chapter. That is because the equation of motion will be
linearized as in the weak field theory approach, and thus terms of second order or higher
will be omitted. However, if one wishes to calculate corrections of an even higher order, it
is important to get this result right.

5.2 Linearized solution in Schwarzschild coordinates

In order to investigate the effects of including the second-order terms in the Lagrangian,
we turn to the familiar case of the Schwarzschild coordinates, (3.8),

ds® = —U(r)dt* + V(r)dr? + r*dQ>. (5.31)

This time, however, we restrict the calculations to first order in xh and its derivatives. We
already know from Chapter 3 which forms the Ricci scalar, (3.13), and the Ricci tensor,
(3.12), take in the Schwarzschild coordinate system. In addition, we also saw in Chapter
4 how an equation of motion may be linearized. This time there is a deviation from the
method used in Chapter 4, since we wish to find the solution in Schwarzschild coordinates
directly. We find that

U:1+K/h00,

(5.32)
V=1+ K',h,n .

An additional detail we have to be wary about when using these old results, is that for the
linearized approximation,

=1-—rhoo,

==

(5.33)
— =1-—kh11.
% K11
The reasoning behind the result in (5.33) is available at (4.2). By directly substituting the
linear forms of U and V/, and their inverses, into the old results from chapter 3, we find
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that

Rtt/’% = - ;O 7(20 )
¥ N
Rrr/,{ — 200 _ L’
2 5.34
rhio ' rhly ( )
RQ@/IQ = 9 —h — 9 s

Rgy/k = sin® ORgs .
" 2 h60 2hll 1 2h11

R/k = hgy + T T T

When substituting these results into the equation of motion, note that any higher-
order terms are automatically omitted because they contain higher order terms of the lin-
earized variables, h,,. Additionally, for the reasons already provided in Chapter 4, all
the metric tensors will in this approximation be substituted by the flat space metric tensor,
9uv — Muw- Since we are only working to first order in the perturbation field, the covariant
derivatives are replaced with ordinary partial derivatives. This is due to equation (4.7), and
the fact that the covariant derivatives only act on the perturbation fields in our equation of
motion. In other words, the covariant derivative on any term in the equation of motion will
consist of one first-order term (the normal partial derivative), and some higher-order terms
(involving the Christoffel symbol). We also pay attention to the fact that the perturbation
field, h,,, only depends on the radial coordinate. Combined with the insight that we may
utilize the d’Alembertian for spherical coordinates in our investigation, we can replace
Ohyy — 250y (r*0,hy,,). The reason why we can utilize the d’ Alembertian for spherical
coordinates in our Schwarzschild coordinate system is that all the terms that would differ
from a spherical coordinate system are second-order terms of the perturbation field. In this
investigation, we already limit ourselves to only include the first-order perturbation since
we assume that the perturbations are small. Hence, we obtain four equations of motion
which describe our system in linearized Schwarzschild coordinates for a point mass. For
the time direction we obtain

(5.35)

1
%’ (23 + R00> +¢1 (—20R)
1 1 (5.36)
+62 (QDR + DR()()) = §T00 y
for the radial direction we obtain
1
%0 <2R + R11> +c1 (—202R + 20R)
1 1 5.37)
+c2 (—872R + §|:|R + DR11> = §T11 y
and for the two angular directions we obtain
1
“© (—TQR + R22> +c1 (27’2DR)
K 2
(5.38)

1 1
+cCo (QTQDR + DRQQ) = §T22 s
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and

1
%0 (—7"2 sin? 9§R + R33> +c1 (27“2 sin? QDR)

(5.39)
1,5 .5 1
+co (27“ sin“ 0O0R + DR33) = §T33 .

For the remainder of this derivation, we look at the vacuum solution, i.e., T}, = 0. Since
R33 = sin? 0 Rso, the two angular equations turn out to be the same.? However, since the
equations are equal to zero, and the Ricci tensor is only radially dependent, we retrieve an
additional condition,

Ryo0sin?0 =0 = Ros =0. (5.40)

Therefore, keeping one or the other does not provide any new information to the problem.
The different terms of the equation of motion are easily computed;

v "
_hoo 2R

ORgo = , (5.41)
2 T
hiv B B
DRHZ%"‘ﬂ_ia (5.42)
r T
Th/// h Thm 3h/
UORgo = 200 + 2hgo + ﬂ - % —3hY; — 7,11 ) (5.43)
’ 4hH! 2h/” 2hn" 4h 4h
OR=hjp+—20 - =121, =20 U (5.44)
T r r T T
) 2hnM 4hn 4h! 2h!" 2hY 4h" 12h
aER _ h%l(}) 4 00 200 4 gO o 11 + 211 + 311 _ 411 ) (545)
T T r T T T T

By substituting equations (5.41)—(5.45) into the equations of motion, one obtains a new set
of equations represented by hgy and h11. The equations were originally found by Stelle in
the following form [13]

. h/// h/l/ h//
H()(] = — (CQ + QCl)hgl()) — (CQ + 261) 00 (CQ + 401)L + (CQ + 401)%
, (5.46)
f2(02+401)h +2(02+4cl)}:};ﬁ(}21+f$> ,
h/l/ h// h/
H11 = (CQ+461)%+2(02+401) TOO —2(62%—461)%
5.47)

hi; h h h
— (3¢ +861) +2(3c¢o +801)£ 2 ( 7(30 + ;;) ,

I

1 3 h
Hoy = 5(02 + dey)r2hi + 5(02 + 4e))rhily — (o + 4c1)hly + (co + 4@%

1 hiq h11
— 5(362 + 801) /H 1+ (302 + 861)71 (362 + 861)
1
+ 5(2 (=rhio — r°hio +Thiy) |
(5.48)

2What is meant here is that the two equations contain exactly the same information.
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where H,,,, are the left hand sides of the equations of motion, such that H,,,, = %TW. In
solving this set of equations, it is useful to compute the contracted stress-energy tensor,
T}, and the relation given by I*¥T),,, where I**” is the identity matrix. Through solving
this system of equations, one arrives at the homogeneous solutions for hyg and hq1, also
found by Stelle,

02,0 02+ 027 Co+ 007
hoo = C + 4 I emer g T mmar o emor e—mor ’ (5.49)
r r
2,0 2 2— 0 0
hi1 =— ¢ - C—Jrem?’" - 70 e~ M2 4 AC +e7nor + ¢ e—mor
" " " r r (5.50)

1 1 5 _ _ _
+§c2+m26m2'r_§c2 mae mzr_CO+m06mgr+CO mee mor’

where all the C’s are integration constants which are yet to be determined. Furthermore,
ma = +/co/cak, mo = \/—co/2(3c1 + c2)k. We should also notice that this solution
is a Yukawa potential, which is a deviation from the potentials that are found in first-
order gravity theories. The masses in this potential are given by msy and mg. At this
point, one might be surprised by the appearance of growing exponentials in a gravitational
field. However, the rising exponentials are only part of the mathematical solution, and
are eliminated when boundary conditions are invoked. For example, we may assess that
gravity does not grow stronger with increasing distance. In fact, we should consider the
case where 7 — oo and compare it to the Newtonian limit to determine which terms should
survive. It is clear from the example that only the decaying exponentials should be a part
of the physical solution. We can therefore simplify the solutions. The results of invoking
those boundary conditions are thus given by

20 o2 0 )
hoo = — + ——e 2" 4 ——e7 07| (5.51)
r r r
c?*0  C?- Cco- 1
hip =— — I eTmer 4 = emmo" _ 202 e 2" 4 OO0 mge ™o,
r r r 2

(5.52)
We note that we have three unknown integration constants, and three equations to solve
them. Solving for the integration constants is thus possible. In the case of the point particle,
the solution of the gravitational field is found by Stelle, and is given by
M M M
hoo = —— 4 B pmmor B —mor (5.53)

8megr  b6megr 24mcor

where M is the mass of the point particle at the origin of the coordinate system.

5.3 Linearized solution in isotropic coordinates

Stelle has already provided a correction to the gravitational potential in the second-order
approximation of the Einstein-Hilbert Lagrangian. However, that does not mean that the
derivation of the answer was the most intuitive one. An alternate derivation is shown in
this section, by the use of isotropic coordinates. One may find that this derivation is easier
to follow.
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5.3.1 Linearized equation of motion in isotropic coordinates

By building upon the work in Chapter 4, it is possible to derive the second-order correc-
tion of the Einstein-Hilbert action in isotropic coordinates. We will see that working in
isotropic coordinates provides us with a rather natural way of obtaining the desired re-
sults. From Chapter 4, we already know the linearized form of the Ricci tensor and the
Ricci scalar. They are shown in equation (4.8) and equation (4.11), respectively. Also, by
choosing to work in the Lorentz gauge, (4.25), we may rewrite the Ricci tensor and the
Ricci scalar as

R, = —2x00h,, , (5.54)

R = —2x0h, (5.55)

where h = n*"h,, = hﬁ. Again, since we are only including first-order terms in the
perturbation field, we can replace the covariant derivatives with normal partial derivatives.
This is due to equation (4.7), and the fact that the covariant derivatives only act on the
perturbation fields in our equation of motion. We also note that any term with more than
one Ricci tensor or Ricci scalar, or any combination thereof, will lead to higher-order
terms which will be omitted. Additionally, we recall that we can make the replacement
9uv — Muw- The equation of motion, (5.30), thus simplifies to

co (NpuOh — 20h,,,) + 4e1 K (0,0,0h — 1, 00R)

1
+ c2k (20,0,0h — 1,00k — 200h,,) = §TW . (5.56)
If we desire to find the Green’s function, we need to rewrite equation (5.56) into a form
such that the left hand side is a differential operator acting on the perturbation field. Thus,
we obtain

Conuuna,ﬁm - naunﬁum +4cik <8u8u77a,8[] - nuuna,@DD)

1
+ 26 (20001080 — MuNas00 — 20uan,00) heP — §Tw . (5.57)

The Green’s function associated with this equation of motion is derived in Appendix F.2.

5.3.2 The potential for a point mass in isotropic coordinates

Suppose that we want to find the potential for a point mass in the Lagrangian with higher
order terms. The Green’s function from Appendix F.2 seems to be rather uncomfortable to
work with. However, we may circumvent that problem by directly solving the equation of
motion, which is demonstrated in this section. Also, in a coordinated effort with Chapter
4, it is natural to choose isotropic coordinates. In this case, we are also working in the
weak field limit, and as such, the metric will take the form

ds? = —(1 + khoo)dt® + (1 + rhq1) (dr? +r2d6® + r?sin® 0 d¢?) . (5.58)

The point mass is static and spherically symmetric, hence we obtain 0, by =0, o # 7,
which in turn leads to Jgh = 0. The stress-energy tensor for a point mass is given as
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Ty, = M&),696%(F). The equation of motion for this system thus becomes

co (NOh — 20hy,,) + 4e1k (0,0,0h — 1, 00R)

M
+c2k (20,0,0h — 1, 00R — 200h,,,,) = ?535253(77) . (5.59)

Since hoo = hoo(r) and hy11 = h11(r), the d’Alembertian in (5.59) can be replaced with
the Jacobian, V2. The trace of the stress-energy tensor is

1
5T;; = [2¢0V? = 2k(3c1 + ¢2)V*] h. (5.60)

Since T}, = M83696°(F) = —4£V?1, the left hand side of equation (5.60) is T =
—%VQ%. By inserting this result into equation (5.60) and simplifying, we obtain

M
167r

= [co — K(3e1 + 2)V?] h. (5.61)
The trace of the perturbation, hf; = h, is thus given by

M C—e~mor  (Ctemor
Jr

hir) = —
() 16mcor r r

, (5.62)

where, as before, mo = /co/2(3¢1 + ¢2)k, and the big C’s are integration constants that
have to be determined. We can already infer that CT has to be zero for the same reasons
given earlier; We cannot allow for growing exponentials to be present because that would
make the force of gravity increase over distance. We are thus left with

M C—emor
16meor r ’

h(r) = (5.63)

From inspection of the metric we are working with, (5.58), we see that

1 1
h = n“yhuy = —(—h00)+h11+*27“2h11+2_727‘2 sin2 Ohy11 = hoo+3h11, (5.64)
r r2sin“ 6

which in turn leads to
3hi1 = h — hog - (5.65)

The time component of the equation of motion is

= [—300 + /4,(401 — CQ)D] hoo + [—C() + H(401 + CQ)D] 3hi1 . (5.66)

8

By inserting (5.65) into (5.66) and rearranging we obtain

M

— % = —2(00 + CQK)D)}LOO + [—CO + /43(401 + CQ)D} h. (567)

33



Solving this equation for hgy can be complicated. The answer is more easily obtained
through a symbolic computation language, such as Mathematica. The solution for hgg

takes the form?

DM D —maT D —moT
= A L (5.68)
16mcor r r

hoo(r)

where the D’s are integration constants to be determined, and ms = \/—co/cak. The
values for the D’s were found by Stelle, and the final gravitational potential is given by

kM kM kM
h =— ——e M - ——— T MOT, 5.69
00(r) 8meor * 67rcore 247rcore ( )

We immediately note that we should retrieve the standard Newtonian gravitational poten-
tial in the » — oo limit. Because of this, we see that ¢ = 1/2, which is the familiar value
that was used in the Einstein-Hilbert action. We thus obtain

2GM  8GM 2GM

et e MoT 5.70
3r € 3r € ( )

hoo (’I") = —

5.4 A few final remarks

Stelle notes that one may remove one of the terms in the gravitational potential by having
ca = 0, or co = —3cy, respectively forcing mgy or my to be infinite. One may also remark
that if mo or mg are large compared to r, then

e—miT'

— dwm; 283 (7), (5.71)

r

which in turn leads to a potential

2

hor) =~ e - ’Zé” (32 + 1) %) . (5:72)
Stelle has set some experimental lower bounds on the masses, mg, ms, to be around ~
5-10713m~!. [13] These lower limits are set from hypothetical corrections one may
make to the orbit of Mercury. However, short-range laboratory experiments show that the
lower bounds of the masses can be set to mg, ms > 103m~1. [5] This suggests that the
corrections to the gravitational potential which arise in the second-order action integral are
so small that they are irrelevant for our purposes, and only have relevance at very small
scales.

3The given form of the solution is the solution after dismissing terms with growing exponentials. This can be
achieved through setting the integration constant in front of the terms in question equal to zero.
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Chapter

Quantization of gravity

For the quantization of the Einstein-Hilbert Lagrangian, we will use the background field
method introduced by t’Hooft and Veltman [14]. We will assume a smooth background
field (classical field), with a small perturbation field (quantum field),

Guv = Guv + Py 6.1)

where g, is the background field, and h,,, is the perturbation field. Since we want the
trace of the metric to be untouched by this perturbation, we also obtain the relation

g =g — WM 4+ hEROY (6.2)

which is a valid inverse of the metric up to second order in the perturbation. This is easily
verified by computing " g, = 4.

The perturbation field is, as in the previous chapters, assumed to be very small when
compared to the background metric field. As usual, due to the metric tensor being sym-
metric in its indices, then so is the perturbation metric. This fact will be used extensively
throughout the chapter. As in previous chapters on perturbation fields, g will be used for
lowering and raising of indices (as 1 was used earlier). That is an effect of the assumption
that the perturbation is small.

Due to the results of Chapter 5, we do not concern ourselves with the higher order
Lagrangian densities. We therefore return to the first-order Einstein-Hilbert Lagrangian
that was first introduced in the beginning of this thesis,

- X /=R, 63)
2K

6.1 The expanded Lagrangian density

We want to express the Einstein-Hilbert Lagrangian in terms of g and h. This is achieved
by direct insertion and some algebraic manipulations. The square root may be expressed
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in the following manner
V=9 =+/—detg=+/—det(g+h)
= /—det(g) det(1 + g—'h)
= /—det(g)\/det(1 + g—1h)

= —det(g)exp[2 In (det (L+g"h))|. (6.4)

Since Indet = Trln, we can rewrite the argument of the exponential. Furthermore, we
will utilize the fact that the series expansion of the logarithm is

2 3

> nlx T T
n(l+ z) Z: e e R . ox<1, (6.5)

and the series expansion of the exponential function is

Thus, by discarding terms of & (h3), we obtain
V—g= w/—detgexp[ Trln(1+glh)]
- 1 1 Lo 1,2
= y/—det gexp §Tr g h—f(g h)
1 1
=/ detg {1 +5Tr(g " h) = § T&r("lh) +3 TrQ(g—lh)}
1 1 1 2
=4/—detg |1+ h“ Tr( h) 5 (hij) . (6.7)

Remember that matrix multiplications are expressed in component form as

" 56'2
—'—1+x+?+.... (6.6)

(AB);; = AYBjj,. (6.8)
Therefore we may rewrite Tr( 1h)

Te(g71)* = Tr(9"hapgsnh™") = Te(g™ g5, hash™)
= Tr(6%hash?") = Tr(hash®’) . (6.9)

Since the trace of a scalar is just that scalar itself, we finally obtain
1 1 1
V=g =/—detg |14 Shii = 2hagh®” + < (h}:)? (6.10)

For the expansion of the Ricci scalar, we start with the Ricci tensor. The Ricci tensor
is defined by

>\ A
Ry, =T%, , —Tf,  +T0TA —T0. T . (6.11)
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We find the Chrisoffel symbol by using the definitions of the metric tensor expansion and
discarding terms of &'(h?),

1
Ffw = ;9" (ga,u,u + Jav,u — g,uz/,oz)

2
L o « Aa) (= — =
= i(gp —h* +h§h )(gozp,u‘i’gow,,u*g,uu,a“kha,u,y+hau”u*h,uu,a)
=T7, + 3" Hopw — 1" (Tapw + Hapw) + BhTapn (6.12)

where f‘ﬁl, is the Christoffel symbol of the background field, and

Hoz,uu = (hozu;u + hau;,u - h,uy;oz + QFﬁyha)\) .
(6.13)

Thus, when using the fact that the covariant derivative of the background metric tensor is

equal to zero, and rewriting all derivatives of the perturbation field into covariant deriva-

tives, we find

1
2

0, =10, + 10, = h"Tau, (6.14)
F‘XMV = (h(X;L,V + h(xu,u - hul/,a) . (615)

Barred symbols are considered to be the corresponding term with respect to the back-
ground field, and hatted symbols are considered the corresponding term with respect to
the perturbation field. One important detail is that f‘ﬁy = g’* f‘(, wv- Also notice that all
the usual rules will therefore apply for the symbols that respect the background fields,
while we may not assume so for the hatted symbols.

The Ricci tensor in terms of the Christoffel symbols is thus

R/u/ :R/u/ + 8{) |:f*p

£ = 00 ] = 0, [£8, — KT
PP T e A e A PP A e A PP A
+ 0T, + 10T, + 10,10, —T0, 10, —T0,Th, - T0,17,

5% [T, Pagur + T Pan = DL = TP (6.16)

where we are excluding terms of &(h3) or higher. Now, we turn our attention to writing
the partial derivatives as covariant derivatives, D,,, with respect to the background field g.
This will be very beneficial since we are working with metric tensors, and the background
metric commutes with the covariant derivatives. We obtain

0,15, = D0, = T0\ 0, +TH. 1%, + TH 1%, (6.17)
. e
0L = Dol = Th Ty (6.18)
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00 [ KT ] =0h s+ 100, o
= D" = Do = 0,12 | o
+ he [Dpfaw, + T2 pal s + T ppl o, + f’\pz/f‘aw}
=D, [h* P | + B [Fh Pas + T Fans
+ T Pax = Dhala = DAL
=D, [hanfmw} 4 e [f;#fw + 1A, Py — fﬁpf%y} . (6.19)
a, [wa] =0, h® Ty + hP0, T
- [Dl,h"‘p N fﬁkhm} Pap
+ hor [Dl,fa,,u + T + T3 Tans + fﬁ“fa,ﬂ}
=D, [hapfaw} + hoP [fﬁafkw + T, Taru
+ fﬁufapk - fﬁaf‘kpu - fﬁpf‘aku}
=Dy [n* ] + R, Fap. (6.20)

Thus, rewriting I, in terms of covariant derivatives (with respect to the background field)
yields
P (o TaA (e A
R, =R, —s—Fﬁ)\FW — FfiAFW 621)
+D, [Fﬁu - haPrW] - D, {rg# — WD

Let Rfﬁj) be the n-th order of the perturbation field in R,,. Then, we have that R, =

thou) + R;(}u) + Rfy) + O(h3). We thus obtain

RO =R, (6.22)
) . .
R() = D%, — D,I%,, (6.23)
2 [ r (o oA Ao T
RE) = D, (n0Ty,) = D, (ho0Fs,) + TOE, —T0F, (624

We are ultimately interested in finding R = g"” R,,,, expressed in terms of h and g. Thus,
for R=R© + RW 4+ R we find

R =g"R, =R. (6.25)
At first order, we have
RO = —p RO + g R, (6.26)
and at second order we have
R® = ptp RO — ' R() + g RG) . (6.27)
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When compiling all this information into finding the form of the Lagrangian, and writing
everything in terms of the gravitational fields g and &, we find that

L=v—g {;RJF.,%“) +$(2>} , (6.28)
K
1 _ _
(1) — " R — 2RM 2
Z 4\/Eh;w(9 R—2R"™), (6.29)

7@ :EDahm,Dah‘“’ _Lp.npon + 1D,lhDﬁh"ﬂ = 1Daiwpﬁhw
8 8 4 4
1, V SN 1 (6.30)
+ éR (h? = huht) + R* (2huhm — 4hhm,> )
We see that actually, the bracketed term of . (1) is the left hand side of the Einstein
equation, (2.21). Therefore, if T#* = 0, then .Z(!) = 0. In the Lagrangian we are working
with in this chapter, this is indeed the case (There is no matter term in the Lagrangian),
so we are left with a quadratic Lagrangian. In fact, the result is even more general, as
it will apply to non-vacuum states as well. The reason is that if we were to include a
matter term into the Lagrangian, it would also have to be expanded around the background
field, and the equation of motion would show up within the brackets again. Therefore, by
assuming that the equation of motion holds for the background field, we may discard .Z(")
altogether.

6.2 Gauge freedom

The Lagrangian we have found, (6.28), is invariant under the infinitesimal gauge transfor-
mation [14]

h;“/ = h;w + (goa/ + hm/)Duea + (guoc + hua)Duﬁa + GaDahuV ) (631)

where € are infinitesimal functions. We can show that this transformation leaves the
Lagrangian unchanged by direct insertion. It is also necessary to use the fact that a total
derivative in the Lagrangian density does not contribute to the physics of the system, as it
disappears when solving the integral by Gauss’ theorem.

The existence a gauge transformation leaves the Lagrangian invariant forces us to fix
the gauge.

6.2.1 Why is it necessary to fix the gauge?

The path integral that results from the Lagrangian will count over all paths that the system
may take, i.e., all possible field configurations[12, Ch. 6]. However, if there is a gauge
symmetry present, that is to say, an unphysical symmetry, then the path integral will count
the results from the gauge symmetry as well (They are different field configurations, but
not physically distinct configurations). Since the path integral should only count over the
physically distinct possibilities, of which the gauge copies are not, it does not work when
a gauge symmetry is present in the Lagrangian. Therefore, in order to avoid counting the
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same physical field configurations more than once, it is necessary to fix the gauge of the
Lagrangian. This can be achieved by a gauge-fixing term which is added to the Lagrangian
containing the original gauge symmetry.

Normally, one chooses a gauge condition and imposes it on the Lagrangian with the
changes that follow. An example of this procedure can be found in Section 4.2.2. However,
we want to change the Lagrangian in such a way that it fixes the gauge, i.e., the gauge is
chosen beforehand. This would ensure that the path integral does not count over physically
equivalent paths.

As an example, one may wish to impose the Lorenz gauge on some general electro-
magnetic Lagrangian, Zgn. The Lorenz gauge is defined by 0, A* = 0, where A* is the
electromagnetic four-potential. The gauge-fixing term one would add to the Lagrangian
would the be Z¢ = 0, A*. Now, the Lagrangian is not gauge-invariant anymore, but it is
also physically unchanged; The gauge has been chosen beforehand.

However, gauge fixing a Lagrangian is not as straight-forward as pictured here. Adding
a gauge-fixing Lagrangian is equivalent to imposing a delta function on the path integral,
only picking out physically distinct paths. There are subtleties involved in this procedure,
from which the Faddeev-Popov ghost Lagrangian associated with the chosen gauge arises.

6.2.2 Gauge-fixing path integrals

Consider the path integral
Z = / DA, e, (6.32)

where S is the action integral over the arbitrary field 4,." The path integral is invariant
under some gauge transformation,

AV =UA U —iU0,UT, (6.33)

where U is the unitary matrix associated with the gauge transformation. We want to avoid
the path integral overcounting physically equivalent configurations. The overcounting can
be avoided by dividing out the equivalent configurations by using a delta function. To see
how this is done, consider the integral

ATYA,) = /DUé(g (A7) . (6.34)

where Ag is the gauge-transformed field, g is a gauge condition, and DU is an integration
measure of the gauge group %/. In other words, this is an integral that integrates over all of
the gauge space, only when the gauge condition is equal to zero. The integration measure
is assumed to be gauge invariant,

DU =DU", U’'=uu'. (6.35)

'The number of indices on the arbitrary field is not important to the discussion, but we use A, as the field for
the example because it is familiar from QED.
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The integral can be shown to be gauge-invariant,

ATHAY) = /DU(S 9 [477")]
:/D(UU’)é(g 447

- fors(ola)]
= AN(4,).

) (6.36)

Equation (6.34) can be rewritten as
1=A(4,) /DU 5(g(AY)). (6.37)

It may thus be inserted into any path integral, without changing it. The term A(A,,) is
called the Faddeev-Popov determinant, as it was first described by them [3]. Insertion into
the path integral yields

Z:/ DA,DU A(A,)5(g(A]]))e™
= /DU/DAH A(A,)6(g(A]]))e™
:/Dufmf{ A(A)5(g(AV))eiS”

— [pU [ DA, AsA0E (638)

where the gauge invariance of the integration measure, the action integral, and the Faddeev-
Popov determinant, was used in the last two steps. However, even though we assume that
the integration measure is invariant under the gauge transformation, it has been pointed out
by Fujikawa that this assumption is not always justified [4]. We will nevertheless make
this assumption in this derivation. Thus, the integral [ DU is independent of the rest of
the path integral, and may be evaluated in isolation from the rest of the path integral. It
is the integral over the gauge group associated with the gauge that the path integral is in-
variant of. The correct procedure of not overcounting is thus to discard the integral of the
gauge group. Then, we can compute the rest of the path integral, without having to worry
about overcounting, since there is a delta function which guarantees that only paths under
the same gauge condition are counted. The path integral has become a gauge-fixed path
integral.

The Faddeev-Popov determinant is found by a change of variables, from U to g, in
equation (6.34). The change of variables in an integral requires the inclusion of the Jaco-
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bian associated with the change of variables, DU = Dg det ‘ % ‘ ‘We thus obtain

A-L(A,) = / DU 5(g(AY))

= /Dg det

oU

dg
which gives us the form of the Faddeev-Popov determinant
o9

oU

oU
@\59

= det

, (6.39)
g=0

A(4,) = det (6.40)

g=0
Everything that has been done this far is completely general, and applies to any path inte-
gral that is invariant under some gauge transformation.

6.2.3 Choosing a gauge

The path integral of the system is given by

Z:/mew. (6.41)

We may impose a gauge on this path integral through the introduction of a delta function.
The delta function ensures that only the field configurations that satisfy the gauge condition
are counted. Such a path integral takes the form

og

Z:/Dhuy 5(904) det @

If we assume a more general gauge condition, g% = ¢®, where c* is some arbitrary func-
tion not dependent on the gauge variable, €”. The delta function then takes the form
0(g* — ¢*). The determinant is unchanged by this arbitrary change of gauge condition
since the arbitrary function is not dependent on €”. Since we may choose arbitrary ¢, we
may integrate over a set of possible c®, and average them around c¢® = 0. This is referred
to in the literature as averaging over c® with Gaussian weights. Another way to look at
this is to notice that since c¢* is independent of the path integral, we are free to add any
function depending on it to the path integral. Its effect is the same as adding a constant to
the overall integral. Then, we may integrate over the delta function containing the gauge
condition and obtain the desired form. The function we integrate over is arbitrary. We
therefore choose to integrate over an exponential function in such a form that it fits in
nicely with our quadratic Lagrangian, hence the use of Gaussian weights. To counteract
this procedure, we are required to add a normalization constant, N (), as well, so that no
real change is made. Completing this procedure yields

[

e (6.42)

09a

Zf _ N(f) /DhHV'DCa e—ifd‘lw (ca)2/2§6(ga _ Ca) det 57 eiS
€
. o 00a |
= N(f)/Dhm, efzfd“;p(g )2 /2¢ det ‘5%? eis (6.43)
€
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We recognize the integrand of the new exponential as the gauge-fixing Lagrangian, which
will be added to the gauge invariant Lagrangian. To complete the procedure we also wish
to express the determinant as some exponential so that we may include it in the Lagrangian.
This can be achieved by using (D.17), and thus writing the determinant as a fermionic path
integral over the fermionic fields 7 and 7,

det M = / dndij et/ 4w aMn (6.44)

where M is some matrix, and 7 and 7 are fermionic fields. The Lagrangian associated
with these fermionic fields is called the Faddeev-Popov ghost Lagrangian. Thus, the ghost
Lagrangian is given by

Lghost = 1" Masn” (6.45)

We will use the following gauge condition, extracted directly from t’Hooft and Velt-
man’s treatment of quantum gravity [14],

1
gOL = \4/ —g <Dyh/l“, - QDMh) t'ua 5 (6.46)
where tgt”'@ = g"¥. The gauge-fixing Lagrangian, %y = — (go‘)2 /2¢, is thus

1

ggf = —i

FQK D¥ iy — ;D#h) <Dgh’“’ - ;D“hﬂ 64

The ghost Lagrangian is found through applying the gauge transformation on the gauge-
fixing term, and then taking the derivative of it with respect to the gauge variable, €.
In other words, we need to calculate ¢ — ¢’“. Thus, by replacing the perturbation
field with its gauge-transformed part, b, — h:“, and computing the results, we find the
determinant. Terms which include the perturbation field are omitted, since the ghost field
is non-physical, i.e., it is never external.> Performing the gauge transformation on the
gauge condition yields

1
' = Y=g [D"hgw - 2Duh’}
" {D” (v + 51D + Iy D€ + 53y D€ + by Dy + €D h)

1
~ 5D, (h+ 26,0 D€ + 21, D" + eVD,Yh)} o

N

v/ — |:D.YDME'Y — D, D€’ + Deu} tHe

= Y= {Rw + Dgw} eNtH
(6.48)

2 Another way to look at this is to recognize that in the Feynman diagrams, there will be no vertices of the
ghost field with other, physical, fields.
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where, in the last step, the commutator relation between covariant derivatives, i.e., €5, —

e’ = —RY, €, was used. Thus, we find that
o = V=3 {Rw + Dgw} the (6.49)

The procedure may now be completed, so we find the Faddeev-Popov ghost Lagrangian to
be

gghost =V _gﬁlt [R,ul/ + guum] 77” ) (650)
where /—g and t** have been transformed into the fermionic fields. The full Lagrangian

density, £y = &L + Lot + Lynost, may now be written down. Then, the Feynman rules
for the theory may be derived.
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Chapter

Conclusion and outlook

Throughout this master thesis, we have gained a good understanding of general relativity,
the weak field approximation and linearization procedure, and finally, the quantisation of
gravity. In the investigation, some differences were found with respect to existing litera-
ture, e.g., the disagreement with Stelle’s results in Chapter 5. This disagreement did not
turn out to be of significance to the further discussion that ensued, but it will be important
if one wishes to include perturbation terms of second order or higher.

Some conceptual details in the literature have been filled in; Among others, how to
perform partial integrations of covariant derivatives comes to mind as an example. Also,
in the pursuit to gain a thorough understanding of the procedures, some derivations have
been presented which are not inspired by source material, e.g., the use of isotropic coor-
dinates throughout the thesis. It was conceptually easier to solve problems in isotropic
coordinates, and it should be employed more in teaching as it seems more pedagogical.
The use of Schwarzschild coordinates is not necessary (or most straight-forward) when
deriving the Schwarzschild solution in the weak field limit, nor is it the most suitable set
of coordinates for illustratory purposes where other coordinate systems are often used (for
example the Eddington-Finkelstein coordinates).

By the end of the investigation of Stelle’s solution by including higher order terms
to the Einstein-Hilbert action integral, we found that the difference to the gravitational
potential would be insignificant at the quantum level. The constants in front of the higher-
order terms, c; and cy, were not contributing enough to the gravitational potential. We
therefore proceeded to quantize only the first-order term of the Einstein-Hilbert action
integral.

During the chapter on quantization of gravity, we made the remark that the integra-
tion measure, Dh,,, is invariant under gauge transformations. This is assumed in most
quantum field theories, but as we are aware, it may not always be assumed. This might
be something worth looking into in greater detail. There is also a loose thread, since the
matter Lagrangian should also be quantized in the quantum theory of gravity. This should
be further expanded on. When that is complete, one may continue to make corrections and
predictions of quantum effects of gravity.
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One must remember that the quantization of gravity presented here is a low-energy
approximation; It is an effective field theory, and not by any means a fundamental theory.
This means that the theory has a range of validity, just like the Newtonian mechanics is an
approximation which works well on the day to day energy range.
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Appendix

Notations and conventions

The following notations and conventions are used in this thesis.
Units This thesis makes use of natural units, e.g., c = h = 1, unless specified otherwise.

Differentiation The following notation is applied,

0
@g,uy = aag;,w = Guv,a- (Al)

A special case for a special notation is the dot notation; ¢ = 0;q. The dot notation will
always be a shorthand notation for a differentiation with respect to time. If there is a case
where the some entity is only dependent on one variable, the Newton notation may be

used, 1
v'(r) = @U(T) (A.2)

Tensor notation Traces of tensors can be written either as
05 or n. (A.3)

Whenever a symbol that in the same context has been used as a tensor appears without its
indices, the notation represents a trace. This notational convention is used extensively in
the thesis for readability.

Metric tensor The sign convention for the metric tensor in this thesis is (—, +, 4+, +). The
metric tensor is assumed to be symmetric; g, = gu -
Additionally, det g is assumed to be invariant under coordinate transformations.

The Einstein summation convention When a lower and an upper index is repeated, a
summation over all the values the indices can take is assumed. More precisely,

> aitt =abt,  ieln]. (A.4)
=1

When greek indices are used, the summation is taken from 0 to n = 3. When latin indices
are used, the summation is taken from 1 to n = 3.
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Appendix

Tensor definitions

The Riemann tensor is given by

A A
R.,, =10, , —Th,  +D0 I3 —T/T

ouv Vo, no,v po

The Christoffel symbols are given by

1
F;);y = 5.‘])\& (gau,u + Jav,u — guu,a) .

The Ricci tensor is a special case of the Riemann tensor. It is defined as

_ PP _TP _TP P TA TP TA
R#V - Rupv - wa-,p Fpu,v + FpAF;w FMFP# )

Lastly, the Ricci scalar is defined as

R= gleuV

(B.1)

(B.2)

(B.3)

(B.4)
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Appendix

Variational methods

C.1 Variation of the action

Hamilton’s principle states that

The motion of the system from time t, to time t is such that the line integral
(called the action or the action integral),

to

I:/L&7 .1

t1

where L = T — V, has a stationary value for the actual path of the motion.
[6, Chapter 2, pp. 34-35]

L is called the Lagrangian of the system. T" and V" are the kinetic and the potential energies
of the system, respectively.

In other words, the motion of the system is the path that extremizes the action of the
system. To further explore what this means, something has to be said about variational
calculus.

C.1.1 Variational calculus

A variation in time, ¢ € [a, b], of some coordinate variable, ¢(t), is defined by

5g = Tim 1) = 4(t0) (C.2)
e—0 €
where ¢(t,e) = ¢(t,0) + en(t). In other words, dg = 7(t), where n(t) is completely
arbitrary, except for the fact that the endpoints of the variation are fixed, n(a) = n(b) = 0.
Now, if we find the variation of the time derivative of the position variable, we find
that it is
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Obviously, when differentiating the variation of the position variable with respect to time,
the same result is achieved. Hence,

3(0¢q) = 0¢(dq) . (C4)

By extension of this commutation relation, we observe that integration and variation also
has to commute, i.e.

5 [ / at f(t)} - / As (1)) . C5)

The variation of the action, (C.1), is hence done by
to to
6I=6/dtL=/dt6L, (C.6)
t1 t1

where L can depend on a number of variables. Since our definition of a variation is so sim-
ilar to the normal definition of differentiation, we can utilize the chain rule in variational
calculus as well, yielding

oL oL oL

. . ) oL .
5L(q1ﬂ]27~'~7Qn7q17q27~-~»Qn) = 876115(]1 + 87(]25QQ + -+ 87@15(]1 + 67(125(]2 +...
(C.7

C.1.2 The Euler-Lagrange equations

Consider a variation of some action which is dependent on some Lagrangian, L(qg;, ¢;),
where ¢ ranges from 0O to some integer n. For the variation to yield the equations of

motion, it would need to satisfy
05 =0. (C.8)

Applying the variation to the action yields

= /dtéL(qi,q'iL (C.9)
L oL .
= /dt [8%6%4—%5%] .

Utilizing the fact that the variation and the partial differentiation of ¢; commutes, we can
write ¢; = 0;6¢;. Combining that and performing a partial integration, we obtain the
final form of this integration

58 = /dt [aLéqi + 5’.L@t5qz} ;
0q; i

e}
L L. | L
= [dt 8—6qi+ a—,éqi —/dtata—.éqi, (C.10)
9q; 9q; a 9q;

oL 0 0L
_/dt [8% a 8756%] 04
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Since the variation is arbitrary except for at the endpoint (Hence why the integrated part
of 45 in the second step of (C.10) vanished), the parti inside the square brackets in the last
equation has to be equal to zero. We hence have derived the Euler-Lagrange equations

oL 0 0L
T —aa—q,i_o (C.11)

C.1.3 Extension to four-dimensional integrals

When it comes to field theory, an extension to four dimensional integrals, and Lagrangian
densities, is necessary. The Lagrangian density is defined by

L= / / g Ligi, i), C.12)

where L is the Lagrangian density. The Euler-Lagrange equations for a system described
by a Lagrangian density is given by

oL oL

ok _ 5 9% 1
dgi ' dqs €13

To see this, we generalize the original Euler-Lagrange equations. First, we take a look at

the first term
3 3 14
qu " g // dol= ///d qu €19

and similarly for the second term

3 3
ataql ataqz///dxﬁ ///d qaté’q? (€15

so that the Euler-Lagrange equations for Lagrangian densities are obtained as

oL oL
Gy =5 (C.16)
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Appendix

Integrals and differential identities

D.1 Laplacian and the Dirac delta function

The Laplacian is in spherical coordinates given by

, 10,0 12 19
= -9 el 2 D.1
v r2 or 87“ + 2 sin? ¢ 062 + r2sin ¢ ¢ bm98¢ ©.1)

The Laplacian of 1/r is then easily verified to be zero at every point except for at the
origin. The divergence of 1/r is however given by

vio_". (D.2)

Integrating the Laplacian of 1/r over an arbitrary sphere, and applying Gauss theorem,

one obtains
// v2 dv = // _73 ds, (D.3)
aAs T

where 65 = 7dA, and dA can be written in normal spherical coordinates as dA =
r2 sin #dfd¢. We can therefore calculate the integral as

T 27

//AS_?3 as = — //sin9d9d¢=—47r. (D.4)
0 0

Hence, since the Laplacian of 1/r is zero everywhere except at the origin, and the integral
for any sphere centered around the origin is equal to —4, the Laplacian must be given by

v2% = —4ns(r). (D.5)
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D.2 Grassmann variables

This derivation of the Grassmann variables is taken from Kachelriess’s notes on quantum
field theory. The derivation towards the end is, however, changed from Kachelriess’s notes.
This is due to the derivation found there not being very pedagogical. A more pedagogical
approach is presented here. One defines some algebra & where for the variables a,b € ¢
one requires the anti-commutation relations

{av a} = {bﬂ b} = {aﬂ b} =0. (D.6)

We can thus determine that a> = b? = 0. All higher powers are automatically equal to
zero by the same relations, e.g., a,a® = 0. We may also determine that ab = —ba. Any
function, f, depending on a and b may thus be expanded into a power series,

fla,b) = fo+ fra+ fib+ foab
= fo+ ha+ fib— faba. (D.7)
The derivatives of the function are given by

of of = 82f_ 82f_
- = fi+ fa, %—ﬁ—f% a0~ obda

0 —f2. (D.8)

For integration of the Grassmann variables, we require that also their differentiels, da, db
are also Grassmann variables,

{a,da} = {da,da} = {b,db} = {db,db} = {a,db} = {da,b} = {da,db} = 0. (D.9)

We may now determine some integrals. Grassman variables require that their integrals are
linear,

[ dalas(@ + o) = a [ dafa) + 5 [ dagla). (D.10)
where a and 3 are normal constants. Their integrals are also defined to satisfy the condi-
tion that 5

/da[ f(a)}:o. (D.11)
da
We find that

(o) = (o) ()= () (f#) = (fo)". o

which implies that [ da = 0. The second condition also implies that [ daa = 1. Thus,
we may note that differentiation and integration are equivalent for Grassman variables.

Consider now a complex matrix, M € C, and complex Grassman variables, n =
(m,M2,-..,Mn), and their complex conjugates n* = (n},n3,...,n5). We may evaluate
the integral

/dnndnn* eTMn _ /d”nd"n* e Mign; (D.13)
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When expanding the exponential into a sum, the integrand will contain many different
terms. However, as we know from the properties of the Grassman integrals, only one term
will surive; That is the term that contains all Grassman variables we are integrating over.
We may expand our integrand as

1

The matrix components are normal, complex numbers, and therefore commutes with both
the Grassman variables and between themselves. We may thus rewrite

1 * * * *
o / d"nd™ 0" 0 niu i, 0, M Miy gy Miyjy - My, - (D.15)

This integral needs to be permuted in such a way that the Grassman variable that is be-
ing integrated over is next to its differential operator. Performing that permutation and
integrating over the Grassman variables yields

1
gﬁil...in%.uinMiljl oo M, 5, =det M, (D.16)

where € is the Levi-Civita symbol. We have thus derived that the determinant of some
square, complex, matrix may be written as a path integral over Grassman variables (fermionic
path integral),

det M = / didn e™m (D.17)

It is well known from quantum field theory that these types of integrals are fermionic path
integrals.

D.3 Derivative of inverse matrix

The inverse of a matrix A(t) is defined such that

AA Y =T (D.18)
where [ is the identity matrix. In component form, this can be written as
Ay ATk = g (D.19)
where ¥ is the Kroenecker delta symbol. Applying a differentiation on (D.19) yields
dA;; - dATk
— AR = A —— D.20
dt Todr (D-20)
which in matrix form is L
dA dA™
— At =—AT— D.21
dt dat ’ ®21)
which leads to the following relation
dA~! dA
—=—A'=a D.22
dt dt ( )
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This result can also be written in component form as

n N Al (D.23)

57



Appendix

Important identites

E.1 The Palatini Identity

If one varies the Riemann tensor, (B.1), one gets the expression

A A A A
SR?,, = 8,000, — 0,000, + 6%, T3, +T% 6T, — dT%,T5, — 0,60, . (El)

We can see from the way in which the variation was defined, (C.2), the variation of a
Christoffel symbol is clearly the difference between two tensors, and hence, a tensor itself.
We can therefore calculate its covariant derivative

Vx(éFﬁ,,) = 8,\(61“/6”) + I‘gkél“zl, — Fﬁ/\dl“f;“ — FZACSF’;U . (E.2)
As aresult, (E.1), can be written in terms of covariant derivatives,
6RS,, =V, (6%,) =V, (6T7,) . (E.3)

If we now set the upper index and the second lower index equal, we find the variation of
the Ricci tensor in terms of covariant derivatives. This variation is often refered to as the
Palatini identity,
- p p
ORu =V, (5FMV) -Vy (Fpu) : (E-4)

E.2 The Bianchi Identities
This derivation is taken directly from [16]. The covariant derivative of the Riemann tensor
is given by

R = li( 629”/ _ aZQMV _ 329,\n aZQLm
AUVK;M 2 OxM N OxkOxH 5%“3‘%)‘ oxtdzV ax”ax)‘

By cyclically permuting v,x, and 7, one obtains the Bianchi identities

). (ES5)

R)\;u/n;n + R)\;u]u;n + R)\p,nn;u =0. (E6)
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Contraction of A and v yields

Ry — Ry + RYpyp )y = 0. (E.7)

Ry

Further contraction yields the contracted Bianchi identities

R, — 2RI, =0. (E.8)
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Appendix

Detailed derivations and
calculations

F.1 Schwarzschild metric in isotropic coordinates

The derivation presented here is paraphrased from [1]. The Schawrzschild line element in

isotropic form is

1 2m

ds? = —( . )dt? + \2(p)do?, (E.1)

where \(p) is an undetermined function that we will solve for, and do = dp? + p?df? +
p? sin? §d¢2. The Schwarzschild line element in its normal representation (3.40) is

ds® = — <1 - 2m> Ade? +
r 1

2m dr? + r2d6? + r?sin? d¢? . (F2)

When comparing the two different forms, when comparing the angular part of the line
element, we see that we must require that

r? = \2p?. (E3)

Additionaly, when comparing the radial parts of the line element, it is clear that

dr?
— = \2dp?. F4
1—2m/r P EDH
Substituting A? from (F.3) into (F.4) yields

dr? dp?
2 _omr P2 (E5)
+dr _ @ (F6)

V2 =2mr p ’

60



Integration yields
+1n (r2—2m)%+r—m}=lnp—|—0, F.7)

where C is some integration constant. Consider the limit where » < m. In that limit, we
can approximate our relation between r and p as

+In(2r)=lnp+C. (F.8)
For large r, we want r and p to be roughly equal. In other words, we require that as

+1In(2r)
il A F.
r,plinoo Inp+C ’ (F.9)

so we must choose the plus sign, and choose C' = In 2. We then have
r2—2mr4+r—m=2p. (F.10)

Utilizing the fact that

[r—m—|— 7‘2—2mr] [r—m—\/r2—2m7‘}:m2, (F.11)

we are able to find, by multiplying (F.11) into (F.9),

2

r—m—\/r2—2mr = 2. (E12)

2p
By adding (F.12) into (F.9), we find that
m\ 2
T—p(1+> . (F.13)
2p
By applying (F.13) in (E.3), we find that A(p) is
m\ 2
Ap)=(1+—] . F.14
(v) ( T Qp) (F14)

Since we now know the form of r(p), we can use this to find the form of the coefficient
of the time differential of the Schwarzschild line element in isotropic coordinates, (F.1).
Thus, by applying (F.13), we find that

2m\ (1 —m/2p)?
(=) - omaor "

Now, we can use all that we have found, to find the full form of the Schwarzschild element
in isotropic coordinates. By applying (F.14) and (F.15) to (F.3), we find that

4
o (1=m/2p)* , m 2
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F.2 Finding the Green’s function to the second-order Ein-
stein equation in isotropic coordinates

The equation of motion, (5.30), can be written in the form
Yivash™® =Ty, (E.17)

where we have defined

Co

Y = (nul/naﬁm - 277aunﬂu|:|) +c1 (%@ﬁaﬂm - nuunaﬂ[”:’)

& (F.18)
+ c2 (2apau77aﬁ|:’ - nuunaﬁmm - 277Ma77u5|:||:|) .

As in chapter 4.2.1, if there is a Green’s function, Z HvY8 for this differential equation, then
it has to obey

Y,

wap 20 = 61050(x — 2') . (F.19)

By Fourier-transforming (F.19), we obtain

Co
Y,U«Vaﬁ = - ; (nﬂunaﬁkz - 277#0477Vﬁk2) - clnaﬁkukukz - cl'r]wﬂ?aﬁkél (F.20)

+ 202kuk1177a5k2 - C2nuuna6k4 - QCQnuanuﬁk4 )

Z/W'yé — A(k,Q)n;wn’yé + B(k2)np'y,’7y6 + C«(k,Q)n/uSny—y
+ D(E)EPE' ) + E(E)) kM E Y0 + F(k2) Kk kSnvY (F.21)
+ G E K" + H(E2E Ko™ + T(K*)EY ESn

Yiwap 2" = 6165 . (E22)
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We calculate the left hand side of equation (F.22), and look for unique terms which cannot
be cancelled out in any other way than to set the coefficient in front of it to zero.

YZ= A [720—0770‘57]75/42 + cmo‘gn”"sk4 — 5clna57]”’5k4 — 4027]@3777%4
K

B — %namﬂ‘st + 2%@521& — clnagk"’k‘SkQ — 0177ag77"’6k‘1

|+ 262]437]{5677045]{32 — 021)@577“’61@4 — 202525214:4 |

ol %na[m”‘skz + 2%6255]@2 — 1Nk’ KTk — c1napn kK
+ QCQk"Ykénaﬁk2 - cznaﬁnV‘SI# - 2025‘;5;;/#

+D :*C;Onaﬁnwk‘* + 20k kgh® + coman ™ k® — 2eshakn !
+E _—C;Onaakwiﬁ + 2%0kam§gk2 + ok Kk — es2ka k65K

VF [_%naﬂk’ykékQ + 2%kak553k2 + ok KOskt — 202’%’“653’@4}

+G '—%’naﬁmw + 2 gk AR + ok ok — 2e2kigh 763 |
+H [—%naﬁmkw + 22 kak k% + ok koo sk — 202kigk" 5}

i, [fﬁnaﬁkw‘k? — Seragk KOk — 402k”k517a5k4} .
K

Due to unique terms, we see that C' = D = F = F = G = H = 0. We thus obtain 29
YZ= A (—2%0 — 5e k2 — 4czk2) naﬁn"‘st
sl %naﬁnvw + 2%0535%2 — 1k KK — ek 20
+ 22k K nask® — camapnk* — 20287 65k
41 (—2%0 —5ek? — 4ch2) Nagk KK .
For our condition, (F.22), to hold, we need
fo c co) k2
A= s chz;] ([114-+ (520)1 yPRTE (25
2¢co — C

I=ens 202k(2] [i + (15)c1 +dcp)k?] (F26)
B @ (F.27)

TR 20k7]
It is thus clear, after some algebra, that our propagator is given by

Z,ul/'yé —

[2% + (5e1 + 462)k2} 7 — [CO + (1 + Cz)kQ] N0 + [—cp + 2¢] kYK MY

K

k2[1 = 2c2k?] [1+ (Bey + 4ea)k?]

(F.28)
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When setting ¢c; = co = 0, we obtain the propagator for the first-order equation of motion,
v Co v v
Y AC L. w5 (277#777 5 _ " 7775) , (F.29)

which is easily shown to be the correct propagator when inserting directly into (F.19).
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