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Abstract

We begin by deriving the Einstein equation from the Einstein-Hilbert action integral using
variational methods; Variation with respect to the metric and the Palatini variation. The
vacuum solution (Schwarzschild solution) is then presented and derived. Weak field ap-
proximation is introduced, and the vacuum solution is derived again in this framework.
Higher-order Lagrangians and their effects on the gravitational potential is investigated,
but found to not be of particular significance to the quantization procedure that follows.
The quantization of the theory is accomplished through the use of the background field
method, and therefore applies for any background space-time.
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Chapter 1
Introduction

The formulation of general relativity greatly reshaped our view of the physical world. Prior
to special relativity we believed in absolute space and time, as an axiom upon which all
other physics was understood. The discovery that light moves at the same speed in all
inertial frames propelled forward a new understanding. We came to understand that si-
multaneity is relative, and as well, that the Newtonian laws of physics are approximations.
General relativity showed us how space and time are influenced by energy. It is the idea
that time and space are dynamical fields that is the central theme in this master thesis. We
will build upon the central ideas proposed by Einstein, and attempt to linearize the the-
ory in order to make it more manageable. When the theory has been linearized, we may
proceed with a quantization procedure.

In the same way that Newtonian physics is an approximation which works well on our
scale (the scale we observe in daily life), there is reason to assume that general relativity
is an approximation, confined to a scale of relevance. As we see in the beginning of this
thesis, it is possible to derive Einstein’s equations from a Lagrangian formulation, where
we only assume Lorentz invariance for the metric field. However, aware that Lorentz in-
variance is the central assumption of the theory, it is clear that there are other forms of
the action potential that can produce the same results, leaving Einstein’s equation behind
as an approximation of a bigger picture. These other forms are called the higher-order
Einstein-Hilbert actions. Einstein’s equation arises from solving the simplest such La-
grangian system, but is merely a first-order approximation. These concerns are further
discussed in Chapter 5.

In the second chapter, we see how the Schwarzschild solution arises naturally from
Einsteins’ equation. It is one of the most famous solutions in general relativity, and pro-
vides us with a useful framework for introducing a linearization procedure, called the weak
field approximation. This involves investigating the metric field under small perturbations,
so that new predictions can be made of the dynamics of such systems.

Once the theory has been linearized (and thereby specifying the domain of the problem
to be in the low-energy limit), as well as ruling out the need for higher order terms of the
action integral, we are ready to quantize the theory. The quantization of the theory is
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treated in Chapter 6.
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Chapter 2
Derivation of Einstein’s field
equation

The famous Einstein field equation has been immensely important for the development of
modern physics. It is an ever-present concept throughout this thesis, and lays the founda-
tion for the work presented.

However, there is an even deeper layer of concepts and ideas that seem to be funda-
mental for all concepts put forward in this thesis, and that is the Lagrangian formalism
with the variational principle; The motion of a system leaves the action integral of the
system stationary (See Appendix C).

This thesis does in other words presuppose that the variational principle is more gen-
eral, in a sense, than the Einstein field equation. This leads us to believe that the Einstein
field equation should be possible to derive from the more general framework, if the correct
axioms are chosen.

Of course, in a historical sense, the Einstein field equation was discovered before the
Einstein-Hilbert action integral. However, using the Lagrangian formalism as a starting
position provides us a foundational perspective on the subject. It also ensures that we
maintain the same formalism from start to finish.

The Lagrangian that describes the system should be Lorentz invariant. It should also
involve the metric tensor, whose dynamics we want to derive. The simplest Lagrangian
that fulfills those criteria is the Einstein-Hilbert Lagrangian, which we will use in this
chapter. More complicated Lagrangians which fulfill the criteria are possible, and are
investigated in Chapter 5.

In this chapter we will derive the Einstein field equation from the Einstein-Hilbert ac-
tion. Initially, by a variation of the metric tensor alone, while assuming that the Christoffel
symbols are of the form given by B.2. In the subsequent section, we derive the Einstein
equation without assuming the form of the Christoffel symbols, in other words, we will be
performing a Palatini variation.
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2.1 Variation with respect to the metric tensor
In this section, Einstein’s field equation is derived from the Einstein-Hilbert action. The
Einstein-Hilbert action is given by

SEH =

∫
d4x

[
1

2κ
R+ LM

]√
−g , (2.1)

where κ = 8πG, and G is the gravitational constant. R is the Ricci curvature scalar,
R = gµνRµν . gµν is the metric tensor, and Rµν is the Ricci tensor. g is in this notation
shorthand for the determinant of the metric tensor. Lastly, LM is the matter component of
the Lagrangian.

According to section C.1, the equations of motion arise from extremizing the action.
Let SEH → S′EH = SEH + δSEH, where δSEH is the variation. To extremize the action,
we require that δSEH is equal to zero,

δSEH = 0 . (2.2)

The variation of the action is

δSEH =

∫
d4x δ

[
1

2κ

√
−gR+

√
−gLM

]
=

∫
d4x

[
1

2κ
δ
(√
−gR

)
+ δ

(√
−gLM

)]
=

∫
d4x

[
1

2κ

δ (
√
−gR)

δgµν
+
δ (
√
−gLM )

δgµν

]
δgµν

=

∫
d4x

[
1

2κ

(
δ
√
−g

δgµν
R+

δR

δgµν
√
−g
)

+
δ (
√
−gLM )

δgµν

]
δgµν

=

∫
d4x

[
1

2κ

(
R√
−g

δ
√
−g

δgµν
+

δR

δgµν

)
+

1√
−g

δ (
√
−gLM )

δgµν

]√
−gδgµν .

(2.3)

The part of the integrand which is inside the square brackets must be equal to zero, since
the variation of the metric tensor, δgµν , is completely arbitrary. Thus we obtain the equa-
tion of motion

R√
−g

δ
√
−g

δgµν
+

δR

δgµν
= − 2κ√

−g
δ(
√
−gLM )

δgµν
. (2.4)

Now, Jacobi’s formula in differential form for a matrix, A(t), is [8, pp.169-171]

d (detA(t)) = tr (adj (A(t)) dA(t)) . (2.5)

This relation for a differential of a determinant can be extended to the variation of the
determinant of the metric tensor. Doing that, we obtain

δg = δ (det (g))

= tr [adj (g) δg]

= tr
[
det (g) g−1δg

]
= ggµνδgµν . (2.6)
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From (D.23) we know that
gµνδgµν = −gµνδgµν , (2.7)

which we can use to obtain
δg = −ggµνδgµν . (2.8)

By using what we have learned about the variation of the determinant of the metric, (2.6),
we obtain the following relation

δ(
√
−g)

δgµν
= −1

2

√
−ggµν , (2.9)

and hence we insert (2.9) into (2.4) to obtain

− 1

2
Rgµν +

δR

δgµν
= κ

[
LMgµν − 2

δLM

δgµν

]
, (2.10)

where, by definition, the part within the square brackets is the energy stress tensor, Tµν .
Now the equation of motion can be written as

δR

δgµν
− 1

2
Rgµν = κTµν . (2.11)

The only remaining task in order to obtain the equation of motion is to compute the func-
tional derivative of the Ricci scalar with respect to the metric tensor. The Ricci scalar,
(B.4), is defined by

R = gµνRµν . (2.12)

Since variation obeys the product rule, the variation of the Ricci scalar can be written as

δR = Rµνδg
µν + gµνδRµν . (2.13)

One can always choose a coordinate system in which Γλµν = 0 at a specific point1 [11,
p. 278]. Then the Ricci tensor, (B.3), at that point is

Rµν = Γρνµ,ρ − Γρρµ,ν . (2.14)

Since space is locally flat at the point of examination, we should expect that the derivatives
of the metric tensor remain equal to zero at the point (There is no curvature). Indeed, by
examining the definition of the Christoffel symbols (B.2)

Γλµν =
1

2
gλα (gαµ,ν + gαν,µ − gµν,α) . (2.15)

The Christoffel symbols are equal to zero whenever λ 6= α by definition since we are
examining a locally flat spacetime. However, when λ = α, the terms within the parenthesis
have to add up to zero. Since all off-diagonal terms of the metric tensor are equal to zero,
then so are their derivatives. After having established that off-diagonal terms and their

1Translated from mathematical notation to a more physical perspective, we can always choose a coordinate
system which is locally flat.
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derivatives of the metric tensor are equal to zero, we look at the diagonal terms. Let
µ = ν, while λ = α, and observe that the only term within the parenthesis left is −gµν,α
which has to be equal to zero. Thus we obtain the relation

gµν,α = 0 . (2.16)

Notice that this relation holds for all µ, ν, and α. It is thus also implied that

g,α = 0 , (2.17)

where g without indices is symbolic notation for the trace of the metric tensor, gµνgµν =
gµµ = g.

Moving on, we establish that the term involving the variation of the Ricci tensor can
be written as

gµνδRµν = gµν
(
δΓρνµ,ρ − δΓρρµ,ν

)
. (2.18)

If we define a variational four-vector as

δωk = gµνδΓkµν − gµκΓλµλ , (2.19)

we observe that (2.18) may be rewritten as

gµνδRµν =
∂

∂xκ
δωκ =

1√
−g

∂

∂xκ
(√
−gδωκ

)
(2.20)

where in the last step (2.16) was used.
Now, remember that gµνδRµν is part of the four-dimensional integral in (2.1). Since

it is a four-divergence, this integral can be rewritten as a surface integral using Gauss’
theorem. Since we do not vary the vector δωκ at infinity, this term does not contribute
to the overall variation of the action. Thus, we disregard gµνδRµν , and obtain Einstein’s
field equation,

Rµν −
1

2
gµνR = κTµν . (2.21)

2.2 Palatini variation
In the Palatini variation method, the Einstein-Hilbert action, (2.1), is independently varied
with respect to both the metric tensor and the Christoffel symbol (also called the connec-
tion in this context). In other words, the connection and metric tensor are assumed to be
independent field variables.

The Palatini variational method offers a way to derive Einstein’s field equation from
the Lagrangian of gravity, with fewer assumptions than the normal variation with respect
to the metric tensor. Following the Palatini variation method, one does not assume any
specific form or relation between the metric and the connection. One will therefore get
two sets of field equations, instead of one. One of these sets of field equations will be
the usual Einstein field equation. The other set of equations that one obtains will define
the connection, and confirm its form that was assumed, (B.2), in the previous derivation
(variation with respect to the metric tensor).
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Without assuming any relation between the connection and the metric tensor, the
Einstein-Hilbert action, (2.1), becomes

SEH =

∫
d4x

[
1

2κ
gµνRµν(Γ) + LM

]√
−g. (2.22)

Varying (2.22) with respect to the metric tensor yields the same result as in the last section,
(2.21), because

δRµν(Γ)

δgµν
= 0 (2.23)

with the assumptions we started with. When varying (2.22) with respect to the connection,
we get

δSEH =

∫
d4x δ

[
1

2κ
gµνRµν(Γ) + LM

]√
−g

=

∫
d4x

1

2κ

√
−ggµνδRµν . (2.24)

Now, since
Rµν = Γρµν,ρ − Γρµρ,ν + ΓρσρΓ

σ
µν − ΓρσνΓσµρ (2.25)

it directly follows that

δRµν = δ∂ρΓ
ρ
µν − δ∂νΓρµρ + ΓσµνδΓ

ρ
σρ + ΓρσρδΓ

σ
µν − ΓσµρδΓ

ρ
σν − ΓρσνδΓ

σ
µρ. (2.26)

Since the partial derivatives and the variation commute, (C.4), we can rearrange the first
two terms of δRµν into

δ∂ρΓ
ρ
µν − δ∂νΓρµρ = ∂ρδΓ

ρ
µν − ∂νδΓρµρ . (2.27)

Performing a partial integration, we obtain

δSEH =

∫
d4x

[
− 1√
−g

∂ρ(
√
−ggµν)δΓρµν +

1√
−g

∂ν(
√
−ggµν)δΓρµρ

+ gµν
(
ΓσµνδΓ

ρ
σρ + ΓρσρδΓ

σ
µν − ΓσµρδΓ

ρ
σν − ΓρσνδΓ

σ
µρ

) ]√
−g.

(2.28)
To obtain the equations of motion for this variation, it is necessary to rearrange some
labels. This rearranging needs to be done in such a way that every term inside the square
brackets of (2.28) has the same variation as a common factor. In the following equations,
(2.29) to (2.34), it is shown how to do this for each term,

− 1√
−g

∂ρ(
√
−ggµν)δΓρµν =

[
− 1√
−g

∂ρ(
√
−ggµν)

]
δΓρµν , (2.29)

1√
−g

∂ν(
√
−ggµν)δΓρµρ =

[
1√
−g

∂γ(
√
−ggµγ)δνρ

]
δΓρµν , (2.30)
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gµνΓσµνδΓ
ρ
σρ = gαβΓµαβδΓ

ρ
µρ =

[
gαβΓµαβδ

ν
ρ

]
δΓρµν , (2.31)

gµνΓρσρδΓ
σ
µν = gµνΓσρσδΓ

ρ
µν =

[
gµνΓσρσ

]
δΓρµν , (2.32)

−gµνΓσµρδΓ
ρ
σν = −gανΓµαρδΓ

ρ
µν =

[
−gανΓµαρ

]
δΓρµν , (2.33)

−gµνΓρσνδΓ
σ
µρ = −gµαΓνραδΓ

ρ
µν =

[
−gµαΓνρα

]
δΓρµν . (2.34)

Combining all the terms in the brackets of the previous block of equations, we construct a
tensor

Aµνρ =− 1√
−g

∂ρ(
√
−ggµν) +

1√
−g

∂γ(
√
−ggµγ)δνρ

+ gαβΓµαβδ
ν
ρ + gµνΓσρσ − gανΓµαρ − gµαΓνρα . (2.35)

The variation of the action can then be rewritten in a more compact form as

δSEH =

∫
d4x
√
−gAµνρ δΓρµν . (2.36)

Since the variation, δΓρµν is arbitrary, the variational principle implies that

Aµνρ = 0 . (2.37)

If we divideAµνρ into two parts, we can more easily use some symmetry arguments to ease
our further calculations. Let

Bµνρ =

[
1√
−g

∂γ(
√
−ggµγ) + gαβΓµαβ

]
δνρ , (2.38)

Cµνρ = − 1√
−g

∂ρ(
√
−ggµν) + gµνΓσρσ − gανΓµαρ − gµαΓνρα , (2.39)

Aµνρ = Bµνρ + Cµνρ . (2.40)

Since Γρµν is symmetric in the lower indices, Aµνρ must also be symmetric in the upper
indices. It is obvious thatCµνρ is symmetric in the lower indices, soBµνρ must by extension
also be symmetric in its lower indices. All of this adds together to the conclusion that

Bµνρ = 0 , ∀µ, ν, ρ (2.41)

and we obtain that
Aµνρ = Cµνρ = 0. (2.42)

If we contract the indices, µ, ν, on Cµνρ , as such

gµνC
µν
ρ = gµνg

µνΓσρσ − gµνgανΓµαρ − gµνgµαΓναρ −
1√
−g

gµν∂ρ(
√
−ggµν)

= 4Γσρσ − δαµΓµαρ − δαν Γναρ −
1√
−g

gµν∂ρ(
√
−ggµν)

= 4Γσρσ − Γσρσ − Γσρσ −
1√
−g

gµν∂ρ(
√
−ggµν)

= 0 (2.43)
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we obtain
2Γσρσ =

1√
−g

gµν∂ρ(
√
−ggµν). (2.44)

Now, as is already known from (2.6),

1√
−g

∂ρ
√
−g = −1

2
gµν∂ρg

µν . (2.45)

By inserting (2.45) into (2.44) we obtain

2Γσρσ =
1√
−g

gµνg
µν∂ρ
√
−g + gµν∂ρg

µν

=
4√
−g

∂
√
−g − 2√

−g
∂ρ
√
−g

=
2√
−g

∂ρ
√
−g . (2.46)

Hence,

Γσρσ =
1√
−g

∂ρ
√
−g , (2.47)

which we insert back into the equation of motion, Cµνρ = 0, to obtain

gµν,ρ + gανΓµαρ + gµαΓναρ = 0 (2.48)

which is the requirement that the connection is the Christoffel symbol [9, pp.61-62],

Γλµν =
1

2
gλα (gαµ,ν + gαν,µ − gµν,α) . (2.49)

Hence, we obtain the same result as in the previous section; The Einstein field equations.
However, this time we have also derived the form of the Christoffel symbols (the con-
nection), and as mentioned in the introduction of this section, derived the Einstein field
equations with fewer assumptions than what could be done with a variation of the metric
alone.

9



10



Chapter 3
The Schwarzschild solution

A classic solution to the Einstein equation is the Schwarzschild solution which describes
a Schwarzschild black hole. It is also a quite simple example that is useful for develop-
ing an intuition for the mathematics of general relativity, and the methods that are used.
The Schwarzschild is a vacuum solution for a spherically symmetric, static metric to the
Einstein field equation. The solution will describe the metric in the vacuum around some
point mass M . The solution was first published by Schwarzschild in 1916.

The following derivation was greatly aided by Gary Oas’s derivation of the Scwarzschild
solution [10], but has expanded on some points that were not covered in his notes.

3.1 The form of the metric
Einstein’s field equation, which was derived in Chapter 2, is given by

Rµν −
1

2
gµνR = κTµν . (3.1)

We are looking for the vacuum solution. Therefore, the equation simplifies to

Rµν −
1

2
gµνR = 0 . (3.2)

Due to the fact that we are looking for a static solution, the coordinate transformation
t → −t should leave the metric unchanged. This argument also applies to the transfor-
mations θ → −θ and φ → −φ, when working in spherical coordinates, because of the
requirement that the solution is spherically symmetric (invariant under rotations). The off-
diagonal metric components change signs under these coordinate transformations. Since
they change signs, and should remain unchanged, the only solution is that off-diagonal
elements of the metric are equal to zero. Since the metric is diagonal, we immediately
recognize that the Ricci tensor is also diagonal. In other words,

Rµν = 0, µ 6= ν . (3.3)

11



The definitions for the Christoffel symbols, Riemann tensor, Ricci tensor, and Ricci scalar
can be found in Appendix B. We may freely assume that the metric should become the
metric for flat spacetime when at large r. The line element for a flat space-time is given by

ds2 = −dt2 + dr2 + r2dθ2 + r2 sin2 θdφ2 , (3.4)

where

g00 = −1 g11 = 1 g22 = r2 g33 = r2 sin2 θ . (3.5)

Generalizing the flat space-time line element to represent the problem in question yields

ds2 = −Udt2 + V dr2 +Wr2dθ2 +Xr2 sin2 θdφ2 . (3.6)

Now, since we require spherical symmetry and that the metric is static, we have to require
that all of the functions, U , V , W , and X , are functions of r only. Additionally, spherical
symmetry dictates that W = X . It turns out that we may even set W = X = 1, without
any loss of generality. To see why, one can perform a rescaling, R =

√
Wr, in (3.6). Cal-

culating the new differential yields dR = dr/(W−1/2−RW−3/2/2). By direct insertion
and some light algebra, one obtains the rescaled line element,

ds2 = −U(R)dt2 + V(R)dR2 +R2dθ2 +R2 sin2 θdφ2 , (3.7)

hence, it is shown that W = X = 1 is a valid choice.

3.2 Solving the problem

Henceforth, we will continue with the general line element,

ds2 = −U(r)dt2 + V (r)dr2 + r2dΩ2 , (3.8)

where dΩ2 = dθ2 + sin2 θdφ2. The non-zero metric components are

g00 = −U(r) g11 = V (r) g22 = r2 g33 = r2 sin2 θ . (3.9)

Due to gµνgµν = δµν , where δµν is the identity matrix, it is obvious that

g00 = − 1

U(r)
g11 =

1

V (r)
g22 =

1

r2
g33 =

1

r2 sin2 θ
. (3.10)
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From the metric, we can calculate the Christoffel symbols using (B.2). By direct insertion
and some light algebra, the non-zero Christoffel symbols are obtained,

Γ0
01 = Γ0

10 =
U ′

2U
,

Γ1
00 =

U ′

2V
,

Γ1
11 =

V ′

2V
,

Γ1
22 = − r

V
,

Γ1
33 = − r

V
sin2 θ ,

Γ2
12 = Γ2

21 =
1

r
,

Γ2
33 = − cos θ sin θ ,

Γ3
13 = Γ3

31 =
1

r
,

Γ3
23 = Γ3

32 = cot θ ,

(3.11)

where the prime symbol indicates a differentiation with respect to r, e.g. U ′ = ∂rU . As
mentioned earlier, we infer from the Einstein vacuum equations that only the diagonal
components of the Ricci tensor can be non-zero. These are given by

R00 = −U
′′

2V
+
U ′V ′

4V 2
+

(U ′)2

4UV
− 1

r

U ′

V
,

R11 =
U ′′

2U
− (U ′)2

4U2
− U ′V ′

4UV
− V ′

rV
,

R22 =
rU ′

2UV
+

1

V
− rV ′

2V 2
− 1 ,

R33 = sin2 θR22 .

(3.12)

Using (B.4) and (3.12), the Ricci scalar is obtained

R =
U ′′

UV
− U ′V ′

2UV 2
− (U ′)2

2U2V
+

2U ′

rUV
− 2V ′

rV 2
− 2

r2
+

2

r2V
. (3.13)

By inserting the Ricci scalar and the Ricci tensor into the Einstein equation, we can find
the four nontrivial equations in terms of r, U , and V ;

R00 −
1

2
g00R =

V ′

rV 2
+

1

r2
− 1

r2V
= 0 , (3.14)

R11 −
1

2
g11R = − U ′

rUV
+

1

r2
− 1

r2V
= 0 , (3.15)

R22 −
1

2
g22R = −U

′

U
+
V ′

V
− rU ′′

U
+
rU ′V ′

2UV
+
r(U ′)2

2U
= 0 , (3.16)
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R33 −
1

2
g33R = R22 +

r2

2
R = 0 (3.17)

We want to find V and U . The first Einstein equation, (3.14), can be rewritten as

V ′ =
V

r
− V 2

r
. (3.18)

Solving this differential equation by separation of variables yields

ln
V − 1

V
+ C = − ln r = ln

1

r
, (3.19)

where C is some integration constant. By solving for V, we obtain

V =
1

1− C/r
. (3.20)

To find the form of U , insert (3.20) into (3.15), and rearrange to find

U ′

U
=

1

r − C
− 1

r
. (3.21)

Again, solving the differential equation by separation of variables yields

lnU = ln(1− C/r) +K , (3.22)

where K is another integration constant. Solving for U, we obtain

U = k(1− C/r) , (3.23)

where k = eK . Hence, our line element, (3.8) is

ds2 = −k(1− C/r)dt2 + (1− C/r)−1dr2 + r2dθ2 + r2 sin2 θdφ2 . (3.24)

Since the line element has to reduce to the line element in flat space in the r → ∞ limit,
k has to be equal to one. Also, we expect that in the absence of any mass, M → 0, the
same flat line element should be recovered. We see that C → 0 achieves that, and identify
C ∝Mn (where n > 0), as it is the only free parameter left which we are free to choose.

3.3 Comparison to Kepler’s orbits
To get the correct form of C, we write down the line element in SI units,

ds2 = −(1− C/r)c2dt2 +
1

1− C/r
dr2 + r2dθ2 + r2 sin2 θdφ2 , (3.25)

and compare the geodesics resulting from this metric to already known physics. To do
that, we rewrite the metric in terms of mean time, τ ,(

ds

dτ

)2

= −c2

= −
(

1− C

r

)
c2
(

dt

dτ

)2

+
1

1− C
r

(
dr

dτ

)2

+ r2

(
dθ

dτ

)2

+ r2 sin2 θ

(
dφ

dτ

)2

,

(3.26)
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which we use to construct an arc-length integral of the path,

I =

τ2∫
τ1

√
−
(

ds

dτ

)2

dτ

=

τ2∫
τ1

√
c2
(

1− C

r

)(
dt

dτ

)2

+
1

1− C
r

(
dr

dτ

)2

− r2

(
dθ

dτ

)2

− r2 sin2 θ

(
dφ

dτ

)2

dτ .

(3.27)

Next, we make the choice to orient our coordinate system in such a way that a test particle
lies in the plane defined by θ = π/2. Hence, our integral reduces to

I =

τ2∫
τ1

√
c2
(

1− C

r

)(
dt

dτ

)2

− 1

1− C
r

(
dr

dτ

)2

− r2

(
dφ

dτ

)2

dτ . (3.28)

Now, the goal of this is to acquire the equation of motion of a test particle through the
Euler-Lagrange equations1. Since the Euler-Lagrange equations are unchanged when the
integrand is multiplied by a constant, we can write the integrand simply as (ds/dτ)2 (Re-
member that (ds/dτ)2 = −c2). Now, (3.28) appears as

I =

τ2∫
τ1

[
−c2

(
1− C

r

)(
dt

dτ

)2

+
1

1− C
r

(
dr

dτ

)2

+ r2

(
dφ

dτ

)2
]

dτ . (3.29)

When we apply the Euler-Langrange equations on (3.29), we obtain the following equa-
tions of motion

− c2 C
r2

(
dt

dτ

)2

− C

(C − r)2

(
dr

dτ

)2

+ 2r

(
dφ

dτ

)2

=
2C

(C − r)2

(
dr

dτ

)2

+
2

1− C
r

d2r

dτ2
,

(3.30)

0 = 2r
dr

dτ

dφ

dτ
+ 2r2 d2φ

dτ2
, (3.31)

0 = −2c2
C

r2

dt

dτ
− 2c2

(
1− C

r

)
d2t

dτ2
. (3.32)

Let us focus on a case of circular motion. In such a case, dr/dτ = d2r/dτ2 = 0. Hence,
(3.30) is then

− c2 C
r2

(
dt

dτ

)2

+ 2r

(
dφ

dτ

)2

= 0 , (3.33)

which can be solved for C as

C =
2r3

c2

(
dφ

dt

)2

. (3.34)

1Read more about the Euler-Lagrange equations in Appendix C.1.2
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Now, Kepler’s third law of motion is

T 2

a3
=

4π2

G(M +m)
, (3.35)

where T is the period of the orbit, a is the length of the semi-major axis of the orbit, G is
the gravitational constant, M is the mass of the object which we derived our metric about,
and m is the mass of the test particle. For a circular orbit of a test particle with negligible
mass, Kepler’s third law of motion becomes

T 2

r3
=

4π2

GM
. (3.36)

The period of a circular orbit is

T =
2π

dφ/dt
, (3.37)

which we plug into (3.36) to obtain (
dφ

dt

)2

=
GM

r3
. (3.38)

Now, we use (3.38) in (3.34) to obtain

C =
2r3

c2
GM

r3
=

2GM

c2
. (3.39)

Thus, we have solved for C, and can write down the Schwarzschild solution in SI units,

ds2 = −
(

1− 2GM

c2r

)
c2dt2 +

1

1− 2GM
c2r

dr2 + r2dθ2 + r2 sin2 θdφ2 . (3.40)
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Chapter 4
Weak field approximation

The Einstein equation can be hard to work with, due to it not being necessarily linear.
However, in many applications, some details of a system may be negligible. In such
systems, some simplifications may be made. The weak field approximation is such a
method. By assuming that the perturbations from a ground systems, around some point,
are sufficiently small, we may omit terms of a high enough order. In turn, linearization
of the theory may be achieved. In succeeding to linearize the Einstein equation, one may
find the value of the constant of the Schwarzschild metric, as we will do later in this
chapter. One may also develop theories of gravity in specific regimes by this linearized
approach. Since the weak field approximation assumes small approximations, the regime
that theories that utilize this method is a low energy regime. Now, let us delve into the
method of weak field approximation.

4.1 The weak field approximation method
Consider almost flat space-time. A metric of an almost flat space-time can be descirbed
as some weak perturbation term, κhµν , where κhµν � ηµν , added to the metric of flat
space-time, ηµν . Explicitly, that is written as

gµν = ηµν + 4κhµν , (4.1)

where κ = 8πGc−4 is a constant. The number 4 is there only for convenience and synergy
with the other chapters of this work. The approximation requires that we revisit the Ricci
tensor and the Ricci scalar. It is necessary to express these entites to first order in hµν
(since the hµν term is considered weak). Since we omit second-order terms from the
calculation, and due to the fact that gµνgµν = δµν , it follows that

gµν = ηµν − 4κhµν . (4.2)

The Ricci tensor is given in (B.3). The last two terms will automatically be of order O(h2),
and will therefore be omitted from the calculations. Additionally, any differential of the
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flat space metric at any point is always equal to zero. Hence, the Christoffel symbols, (B.2)
in the weak field approximation is

Γλµν = 2κ
(
ηλα − 4κhλα

)
(hαµ,ν + hαν,µ − hµν,α) . (4.3)

As before, we are only looking at the first order perturbations of the field, and the hλα

term is therefore not going to be included. Hence, the christoffel symbols become

Γλµν = 2κηλα (hαµ,ν + hαν,µ − hµν,α) . (4.4)

In the weak field approximation, raising and lowering of indices of the perturbation term,
hµν , can be done by using the flat space metric. The raising and lowering of indices is
done by the metric tensor. However, in the weak field approximation, due to only doing
calculations to first order, the raising and lowering of indices can be done by the flat space
metric alone. This is easily shown by considering

gαγhγβ = (ηαγ − 4κhαγ)hγβ

= ηαγhγβ − 4κhαγhγβ . (4.5)

Since we are only looking at first order terms, the second term in (4.5) vanishes, and we
obtain

gαγhγβ = ηαγhγβ . (4.6)

By applying what we now know about the raising and lowering of indices in the weak-field
approximation, (4.6), to (4.4), we obtain

Γλµν = 2κ
(
hλµ,ν + hλν,µ − h λ

µν,

)
. (4.7)

By inserting (4.7) into (B.3), we calculate the Ricci tensor

Rµν = 2κ
(
hρν,µρ + hρµ,νρ −�hνµ − h,µν

)
, (4.8)

where � = ∂ρ∂ρ, and h = hρρ. By insertion, the Ricci scalar, R = gµνRµν , is

R = (ηµν − 4κhµν)Rµν . (4.9)

Since we are only looking at the first order approximation, the term containing hµν will
only lead to second order terms, and will thus be omitted from our calculations. Hence,
the Ricci scalar in the weak field approximation is

R = ηµνRµν . (4.10)

By directly inserting (4.8) into (4.10), we obtain the Ricci scalar,

R = 4κ
[
hµν,µν −�h

]
. (4.11)

We have thus found the Ricci tensor and the Ricci scalar in the weak field approximation.
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4.2 Weak field approximation of the Einstein equation
The Einstein equation, (2.21), can now be computed in terms of the new Ricci tensor
and Ricci scalar. By direct insertion of (4.7), (4.8), and (4.11), into (2.21), we obtain the
Einstein equation in the weak field approximation

hρν,µρ + hρµ,νρ −�hνµ − h,µν − gµν
(
hαβ,αβ −�h

)
=

1

2
Tµν . (4.12)

Again, the metric of the last term of the left hand side of (4.12) can be replaced with the
flat space metric to avoid any second order terms. We thus obtain

hρν,µρ + hρµ,νρ −�hνµ − h,µν − ηµν
(
hαβ,αβ −�h

)
=

1

2
Tµν . (4.13)

The trace of Tµν can be determined from (4.13). We find that

1

4
Tµµ = −hαβ,αβ + �h , (4.14)

By inserting (4.14) into (4.13) we obtain

hρν,µρ + hρµ,νρ −�hµν − h,µν =
1

2

(
Tµν −

1

2
ηµνT

α
α

)
. (4.15)

4.2.1 An attempt at inverting the Einstein equation for the weak field
In order to illustrate the need for some gauge choice to be made at this point, we will see
what attempting to solve the system as-is would yield. Therefore, we are attempting to find
the Green’s function to the current equation of motion. However, as we will see, equation
(4.15) does not have any Green’s function associated with it. To show this, we rearrange
(4.15) as

Hαβµνh
αβ = fµν , (4.16)

where fµν is the right-hand side of (4.15), and Hαβµν is

Hαβµν = −�ηαµηβν − ∂µ∂nuηαβ + ∂α∂µηβν + ∂β∂νηαµ . (4.17)

By definition, if a Green’s function for this operator exists, it will have to obey

HαβµνG
µνγδ = δγαδ

δ
βδ(x− x′) , (4.18)

where δγα and δδβ are Kronecker deltas, and δ(x − x′) is the Dirac delta function. We
Fourier transform the equation, ∂σ → −ikσ , and we get

Hαβµν = k2ηαµηβν + kµknuηαβ − kαkµηβν − kβkνηαµ , (4.19)

and our condition for the possible inverse function becomes

HαβµνG
µνγδ = δγαδ

δ
β . (4.20)
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The most general possible inverse function has the form

Gµνγδ =A1η
µνηγδ +A2η

µγηδν +A3η
µδηγν

+B1k
µkνηγδ +B2k

µkγηνδ +B3k
µkδηγν

+B4k
γkδηµν +B5k

νkδηµγ +B6k
νkγηµδ

+ Ckµkνkγkδ , (4.21)

where Ai, Bi and C are undetermined functions depending on k2. By inserting (4.21) and
(4.19) into (4.20), we obtain

HαβµνG
µνγδ =A1

[
2k2ηαβη

γδ − 2kαkβη
γδ
]

+A2

[
k2δγαδ

δ
β + kγkδηαβ − kαkγδδβ − kβkαηγδ

]
+A3

[
k2δδαδ

γ
β + kγkδηαβ − kαkδδγβ − kβk

γδδα

]
+B1

[
k4ηαβη

γδ − k2kαkβη
γδ
]

+D
[
k2kγkδηαβ − kαkβkγkδ

]
, (4.22)

whereD = B2 +B3 +B4/2+B5 +B6. We immediately recognize that the second block
containing A2 does contain a term with the correct solution. But upon closer inspection,
we also notice that this block does also contain a unique term not contained in any other
block. It is the third term in the A2 block, −kαkγδδβ . Since this term is unique, there is no
possible way to get the right result, by any choice of the undetermined functions. It is thus
shown that there is no Gµνγδ which obeys our condition, (4.20). In other words, we have
shown that (4.15) is not invertible.

4.2.2 The Lorentz gauge
To solve equation (4.15), we must choose a coordinate gauge. As it stands, (4.15) is
completely general, and therefore does not impose any coordinate system. To find the
form of hµν , we must first choose a coordinate gauge. This coordinate gauge will impose
four conditions on hµν . From [7, pp.461-463], we observe that it is possible to choose
coordinates where the form of the background spacetime, ηµν , is conserved, but the (still
undetermined) perturbative field is changed. If one considers a coordinate transformation

x′α = xα + ξα(x) , (4.23)

then that leaves the background spacetime untouched, but transforms the perturbative field
as

h′αβ = hαβ − ξβ,α − ξα,β . (4.24)

Choosing four coordinate conditions, Vα(x) = V ′α(x) = 0, can now be done using the
arbitrary, but small, functions, ξα(x). Since the background spacetime is unperturbed, we
know that the change in hµν → h′µν is the same change as the one in gµν → g′µν . We may
choose what Hartle calls the Lorentz gauge,

∂λhαλ =
1

2
∂αh , (4.25)
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provided that �ξα = 0.
As we have seen in this section, a coordinate change will change the metric, but keep

the physics unchanged. It is by that reason close to what one calls a gauge choice in
electrodynamics. One can easily see the similarity between the Lorentz gauge choice
in electrodynamics, and the Lorentz gauge presented here, as a natural four-dimensional
generalization of the former.

Choosing to work in the Lorentz gauge, the field equation, (4.15), simplifies to

�hµν = −1

2

(
Tµν −

1

2
ηµνT

α
α

)
. (4.26)

4.3 Weak field approximation for a point mass
It is now useful to look at how we might approximate the space-time around some point
mass. When the metric for the point mass is found, we will compare it to the metric that
was found for the similar system that was considered in Chapter 3. The point mass we
will consider is a static, spherically symmetrical point mass. Due to the symmetries of the
system, it is convenient to work in spherical coordinates. The stress-energy tensor for a
point mass centered in the origin of the spherical coordinate system we choose to work in,
is given by

Tµν =

{
Mc2δ3(r), if µ, ν = 0

0, otherwise .
(4.27)

Therefore, we end up with four equations given by

�h00 = −1

4
Mc2δ3(r) , (4.28)

�hii = −1

4
Mc2δ3(r) . (4.29)

Since we are considering a static point mass, the metric perturbation that describes it, hµν ,
is constant through time. Therefore, the time-derivative part of the equation vanishes,
hµν,0 = 0. As a result, the equations of motion simplify to

∇2h00 = −1

4
Mc2δ3(r) , (4.30)

∇2hii = −1

4
Mc2δ3(r) . (4.31)

The current form of the equations of motion are convenient, since we know that the dirac
delta function can be written as the Laplacian of inverted radius. From (D.5) we know that

∇2

(
1

r

)
= −4πδ3(r) . (4.32)

Thus, we see that the solutions of the perturbations for this point mass are given by

h00 =
Mc2

16πr
, (4.33)
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hii =
Mc2

16πr
. (4.34)

The complete metric with the perturbation caused by the point mass is thus given by

gµν = ηµν + 4κhµν

= diag

(
−1 +

2GM

c2r
, 1 +

2GM

c2r
, 1 +

2GM

c2r
, 1 +

2GM

c2r

)
. (4.35)

Hence, we can write down the line element,

ds2 = −
(

1− 2GM

c2r

)
c2dt2 +

(
1 +

2GM

c2r

)
dσ2 , (4.36)

where dσ2 = dx2 +dy2 +dz2 = dr2 +r2dθ2 +r2 sin2 θdφ2, depending on which sets of
coordinates one wishes to use. The solution is a metric displayed in isotropic coordinates,
meaning that all the spatial parts of the metric are the same, g11 = g22 = g33.

This metric is indeed the same as the Schwarzschild metric in isotropic form, if one
expands the Schwarzschild metric to first order as shown in [1, pp. 174-177]. The detailed
calculations are shown in Appendix F.1. By expanding (F.16) into first order of m/ρ (by
assuming that m � ρ), and writing it out in the same units that we have used throughout
this chapter (G 6= 1, c 6= 1, and using r instead of ρ), we find that

ds2 ≈ −
(

1− 2GM

c2r

)
c2dt2 +

(
1 +

2GM

c2r

)
dσ2 . (4.37)

We clearly see that in this approximation, the Schwarzschild line element and the weak
field approximation of a point mass, M , yield equivalent results.

The weak field approximation lends us a useful tool in the linearization of the Ein-
stein equation. It also provides more insight into specific systems which was shown in
this chapter. We were able to use the weak field approximation to determine the constants
of the Schwarzschild line element, instead of resorting to a comparison to Kepler’s laws.
Furthermore, the linearization is immensely helpful when developing a more detailed the-
ory, which is explored in the following chapters of this work. The exercise of finding the
metric for a point mass serves as a good introduction to the linearized approach to general
relativity.
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Chapter 5
Higher-order terms of the action

Our treatment of general relativity has up until this point revolved around the standard
Einstein-Hilbert action, (2.1). This action was chosen because it maintains Lorentz invari-
ance, and also, it is a scalar quantity (A necessary condition for an action integral). The
only term was thus

√
−gR. It also succeeded in providing a starting point from which

to derive Einstein’s equation. However, there are other ways to maintain the Lorentz in-
variance of the action integral constructed from Riemann tensors, and still obtain a scalar
quantity. This does require the addition of higher-order terms of the action, such as R2,
RµνRµν , and so on. In fact, under the arguments so far considered, higher order terms
should be included in a more precise action. There is no good argument for why only the
first order term should be included, since the first order term and also the higher order
terms satisfy the original argument; That the scalar action remains Lorentz invariant. It
is therefore necessary to perform an inquiry of what effects the inclusion of higher-order
terms in the action integral will have.

5.1 Finding the equation of motion
In light of the introductory discussion, a more complete action integral should be written
as

SEH =

∫
d4x

[c0
κ
R+ c1R

2 + c2RµνR
µν + c3RµνρσR

µνρσ + · · ·+ LM

]√
−g .

(5.1)
where the ci are constants.1

Before we go further, it is beneficial to make use of the Gauss-Bonnet theorem. One
can learn about this theorem from [2, Ch. 12]. The derivation of the theorem is beyond the
scope of this thesis. The importance to us, is that by the Gauss-Bonnet theorem, the term
that consists of Riemann tensors can be written in terms of Ricci tensors and Ricci scalars,

1Obviously, the constants may have dimensions, and should maintain the terms’ dimensions in such a way
that they are the same dimension as the overall Lagrangian.
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i.e. ∫
d4x c′3RµνρσR

µνρσ =

∫
d4x

[
c′1R

2 + c′2RµνR
µν
]
. (5.2)

Hence, we can write equation (5.1) as

SEH =

∫
d4x

[c0
κ
R+ c1R

2 + c2RµνR
µν + · · ·+ LM

]√
−g . (5.3)

In order to find the effects of including higher order terms in the Lagrangian, we have
to find the equations of motion for the system and look at the differences that arise with
respect to the Einstein equation (Which should be seen as a first-order approximation).

As usual, the procedure to find the equation of motion is to perform a variation of the
action integral and require that the variation is equal to zero. In the following, we will
neglect all orders of R higher than two. By applying a variation on the action integral, we
obtain

δSEH =

∫
dω

[(c0
κ
R+ c1R

2 + c2RµνR
µν
) δ√−g√
−g

+
(c0
κ
δR+ c1δ(R

2) + c2δ(RµνR
µν)
)

+
δ(LM

√
−g)√

−g

]
,

(5.4)

where dω = d4x
√
−g. To proceed, we have to find the variations of

√
−g, R, R2, and

RµνR
µν . We already know from (2.9) that

δ
√
−g = −1

2

√
−ggµνδgµν , (5.5)

and we easily see that

δR = δ(gµνRµν) = δgµνRµν + gµνδRµν . (5.6)

Furthermore, we find δR2 in the same manner as we found δR,

δR2 = 2RδR = 2R(δgµνRµν + gµνδRµν) . (5.7)

Lastly, we find δ(RµνRµν),

δ(RµνR
µν) = δRµνR

µν +RµνδR
µν

= δRµνR
µν +Rµνδ(g

µαgνβRαβ)

= δRµνR
µν +Rµν

(
δgµαgνβRαβ + gµαδgνβRαβ + gµαgνβδRαβ

)
= 2

[
δRµνR

µν + gαβRανRβµδg
µν
]
. (5.8)

By substituting equations (5.5) – (5.8) into (5.4), and identifying the last term with the
stress-energy tensor, we obtain

δSEH =

∫
dω

[
− 1

2
gµν

(c0
κ
R+ c1R

2 + c2RαβR
αβ
)

+
(c0
κ
Rµν + 2c1RRµν + 2c2g

αβRανRβµ

)
+
(c0
κ
gµν + 2c1Rg

µν + 2c2R
µν
) δRµν
δgµν

− 1

2
Tµν

]
δgµν ,

(5.9)
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The terms with variation δRµν need to be expressed as a variation of δgµν instead before
we can find the equations of motion. Therefore, we will only focus on that term in the
following argument. Let us call the term δSEH3,

δSEH3 =

∫
dω
(c0
κ
gµν + 2c1Rg

µν + 2c2R
µν
)
δRµν . (5.10)

From our discussion in the last parts of chapter 2.1, we recall that the first term of δSEH3

does not contribute to the variation. That term may thus be omitted, and we obtain

δSEH3 = 2

∫
dω (c1Rg

µν + c2R
µν) δRµν . (5.11)

The Palatini identity, (E.4), is a useful substitution that may be used in expressing the
variation of the Ricci tensor as a variation of the metric tensor. The Palatini identity is

δRµν = ∇ρ
(
δΓρµν

)
−∇ν

(
δΓρρµ

)
. (5.12)

The Palatini identity may be recast into a more convenient form for our purposes [16, pp.
290],

δRµν =
1

2
gαβ [∇α∇νδgµβ +∇α∇µδgνβ −∇µ∇νδgαβ −∇α∇βδgµν ] . (5.13)

We substitute (5.13) into (5.11) and obtain

δSEH3 =

∫
dω (c1Rg

µν + c2R
µν) [∇β∇νδgµβ +∇β∇µδgνβ

− gαβ∇µ∇νδgαβ −∇β∇βδgµν ] .

(5.14)

It is now necessary to perform a number of partial integrations, in order to isolate the
variations of the metric tensor.

A few remarks on partial integrations and the covariant derivative are in order. Since
we know that

Γµµν =
1√
−g

∂ν
√
−g , (5.15)

∇µWµ =
1√
−g

∂µ
(√
−gWµ

)
. (5.16)

We can thus see that
√
−g∇µWµ =

√
−g∂µWµ +

√
−gΓµµνW

ν

=
√
−g∂µWµ +

(
∂µ
√
−g
)
Wµ

= ∂µ
(√
−gWµ

)
. (5.17)

This last expression is clearly a four-divergence. Additionally, we are concerned with a
variation of the metric in the integrals. Using Gauss’ Theorem (as in chapter 2.1), one may
thus eliminate such terms. In other words,∫

d4x
√
−g∇µWµ = 0 . (5.18)
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Since the covariant derivative obeys the product rule, we can easily verify that partial
integrations are possible. However, note that this only holds as there is a factor

√
−g

multiplying the partially integrated part. Put somewhat differently, this only holds when
we integrate over dω = d4x

√
−g.

Now that we know that partial integrations with respect to the covariant derivatives are
possible when we integrate over dω, we may perform the partial integrations,

δSEH3 =

∫
dω

{
∇ν∇β (c1Rg

µν + c2R
µν) δgµβ

+∇µ∇β (c1Rg
µν + c2R

µν) δgνβ

−∇ν∇µ
[
(c1Rg

µν + c2R
µν) gαβ

]
δgαβ

−� (c1Rg
µν + c2R

µν) δgµν

}
,

(5.19)

where � ≡ ∇α∇α is the d’Alembertian. From (2.48), we see that

∇αgµν = 0 . (5.20)

Using the fact that the covariant derivative of the metric tensor vanishes, we factorize the
third line of (5.19),

δSEH3 =

∫
dω

[
∇ν∇β (c1Rg

µν + c2R
µν) δgµβ

+∇µ∇β (c1Rg
µν + c2R

µν) δgνβ

− gαβ∇ν∇µ (c1Rg
µν + c2R

µν) δgαβ

−� (c1Rg
µν + c2R

µν) δgµν

]
.

(5.21)

By rearranging the dummy indices, we obtain a more manageable form,

δSEH3 =

∫
dω

[
2∇α∇ν (c1Rg

µα + c2R
µα)

− gµν∇β∇α
(
c1Rg

αβ + c2R
αβ
)

−� (c1Rg
µν + c2R

µν)

]
δgµν .

(5.22)

Although the variation of the metric has been isolated, we need the variation of the metric
tensor in (5.22) to be in the form with upper indices instead of the lower indices. We can
go from lower to upper indices by

δgσρ = −gσαgρβδgαβ . (5.23)

Inserting (5.23) into (5.22) and additional rearranging of dummy indices gives us

δSEH3 =

∫
dω

[
− 2∇α∇ν

(
c1Rδ

α
µ + c2R

α
µ

)
+ gµν∇β∇α

(
c1Rg

αβ + c2R
αβ
)

+ � (c1Rgµν + c2Rµν)

]
δgµν .

(5.24)
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By rewriting into factors of c1 and c2 inside the square brackets, we arrive at

δSEH3 =

∫
dω

[
2c1
(
−∇µ∇νR+ gµν�R

)
+ c2

(
− 2∇α∇νRαµ + gµν∇β∇αRαβ + �Rµν

)]
δgµν .

(5.25)

We are now able to insert (5.25) into (5.9) to obtain

δSEH =

∫
dω

[
c0
κ

(
− 1

2
gµνR+Rµν

)
+ c1

(
− 2∇µ∇νR+ 2gµν�R−

1

2
gµνR

2 + 2RRµν

)
+ c2

(
− 2∇α∇νRαµ + gµν∇β∇αRαβ + �Rµν

− 1

2
gµνRαβR

αβ + 2gαβRανRβµ

)
− 1

2
Tµν

]
δgµν .

(5.26)

There is a further simplification that can be made to the variation of the action. Through
the contracted Bianchi identity, (E.8), we may rewrite

∇β∇αRαβ = ∇β∇αgβγRαγ = gβγ∇β∇αRαγ = ∇γ
(

1

2
∇γR

)
=

1

2
�R . (5.27)

Note that this cannot be done for the first term of the third line of (5.26) due to the fact that
the covariant derivatives do not commute amongst themselves; [∇α,∇β ] 6= 0. However,
by using (3.2.12) in [15], and (5.27), we obtain

∇α∇νRαµ =
1

2
∇ν∇µR+RανµβR

βα +RβνRµβ (5.28)

Inserting equations (5.27) and (5.28) into the variation of the action, (5.26), yields

δSEH =

∫
dω

[
c0
κ

(
− 1

2
gµνR+Rµν

)
+ c1

(
− 2∇µ∇νR+ 2gµν�R−

1

2
gµνR

2 + 2RRµν

)
+ c2

(
−∇ν∇µR− 2RανµβR

βα

+
1

2
gµν�R+ �Rµν −

1

2
gµνRαβR

αβ

)
− 1

2
Tµν

]
δgµν .

(5.29)

Since we have to require that the variation is equal to zero, and the variation of the metric
tensor is arbitrary, the term within the square brackets must be equal to zero. We have
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thus found the equation of motion for a Lagrangian to second order in R. The equation of
motion is given by

c0
κ

(
− 1

2
gµνR+Rµν

)
+ c1

(
− 2∇µ∇νR+ 2gµν�R−

1

2
gµνR

2 + 2RRµν

)
+ c2

(
−∇ν∇µR+

1

2
gµν�R+ �Rµν − 2RανµβR

βα − 1

2
gµνRαβR

αβ

)
=

1

2
Tµν .

(5.30)
Now that we have found the equation of motion, it is useful to find the linearized equation
of motion so that a few predictions can be made.

It is worth noting that this equation of motion is not the same result that Stelle obtained
and published [13]. It differs in a few signs of second-order terms. Due to the fact that
this difference only applies to terms of second order in R, there will be no differences
in the following sections of this chapter. That is because the equation of motion will be
linearized as in the weak field theory approach, and thus terms of second order or higher
will be omitted. However, if one wishes to calculate corrections of an even higher order, it
is important to get this result right.

5.2 Linearized solution in Schwarzschild coordinates

In order to investigate the effects of including the second-order terms in the Lagrangian,
we turn to the familiar case of the Schwarzschild coordinates, (3.8),

ds2 = −U(r)dt2 + V (r)dr2 + r2dΩ2 . (5.31)

This time, however, we restrict the calculations to first order in κh and its derivatives. We
already know from Chapter 3 which forms the Ricci scalar, (3.13), and the Ricci tensor,
(3.12), take in the Schwarzschild coordinate system. In addition, we also saw in Chapter
4 how an equation of motion may be linearized. This time there is a deviation from the
method used in Chapter 4, since we wish to find the solution in Schwarzschild coordinates
directly. We find that

U = 1 + κh00 ,

V = 1 + κh11 .
(5.32)

An additional detail we have to be wary about when using these old results, is that for the
linearized approximation,

1

U
= 1− κh00 ,

1

V
= 1− κh11 .

(5.33)

The reasoning behind the result in (5.33) is available at (4.2). By directly substituting the
linear forms of U and V , and their inverses, into the old results from chapter 3, we find
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that

Rtt/κ = −h
′′
00

2
− h′00

r
,

Rrr/κ =
h′′00

2
− h′11

r
,

Rθθ/κ =
rh′00

2
− h11 −

rh′11

2
,

Rφφ/κ = sin2 θR22 .

(5.34)

R/κ = h′′00 +
2h′00

r
− 2h′11

r
− 2h11

r2
. (5.35)

When substituting these results into the equation of motion, note that any higher-
order terms are automatically omitted because they contain higher order terms of the lin-
earized variables, hµν . Additionally, for the reasons already provided in Chapter 4, all
the metric tensors will in this approximation be substituted by the flat space metric tensor,
gµν → ηµν . Since we are only working to first order in the perturbation field, the covariant
derivatives are replaced with ordinary partial derivatives. This is due to equation (4.7), and
the fact that the covariant derivatives only act on the perturbation fields in our equation of
motion. In other words, the covariant derivative on any term in the equation of motion will
consist of one first-order term (the normal partial derivative), and some higher-order terms
(involving the Christoffel symbol). We also pay attention to the fact that the perturbation
field, hµν , only depends on the radial coordinate. Combined with the insight that we may
utilize the d’Alembertian for spherical coordinates in our investigation, we can replace
�hµν → 1

r2 ∂r
(
r2∂rhµν

)
. The reason why we can utilize the d’Alembertian for spherical

coordinates in our Schwarzschild coordinate system is that all the terms that would differ
from a spherical coordinate system are second-order terms of the perturbation field. In this
investigation, we already limit ourselves to only include the first-order perturbation since
we assume that the perturbations are small. Hence, we obtain four equations of motion
which describe our system in linearized Schwarzschild coordinates for a point mass. For
the time direction we obtain

c0
κ

(
1

2
R+R00

)
+ c1 (−2�R)

+c2

(
−1

2
�R+ �R00

)
=

1

2
T00 ,

(5.36)

for the radial direction we obtain
c0
κ

(
−1

2
R+R11

)
+ c1

(
−2∂2

rR+ 2�R
)

+c2

(
−∂2

rR+
1

2
�R+ �R11

)
=

1

2
T11 ,

(5.37)

and for the two angular directions we obtain

c0
κ

(
−r2 1

2
R+R22

)
+ c1

(
2r2�R

)
+c2

(
1

2
r2�R+ �R22

)
=

1

2
T22 ,

(5.38)
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and
c0
κ

(
−r2 sin2 θ

1

2
R+R33

)
+ c1

(
2r2 sin2 θ�R

)
+c2

(
1

2
r2 sin2 θ�R+ �R33

)
=

1

2
T33 .

(5.39)

For the remainder of this derivation, we look at the vacuum solution, i.e., Tµν = 0. Since
R33 = sin2 θR22, the two angular equations turn out to be the same.2 However, since the
equations are equal to zero, and the Ricci tensor is only radially dependent, we retrieve an
additional condition,

R22� sin2 θ = 0 =⇒ R22 = 0 . (5.40)

Therefore, keeping one or the other does not provide any new information to the problem.
The different terms of the equation of motion are easily computed;

�R00 = −h
iv
00

2
− 2h′′′00

r
, (5.41)

�R11 =
hiv00

2
+
h′′′00

r
− h′′′11

r
, (5.42)

�R22 =
rh′′′00

2
+ 2h′′00 +

h′00

r
− rh′′′11

2
− 3h′′11 −

3h′11

r
, (5.43)

�R = hiv00 +
4h′′′00

r
− 2h′′′11

r
− 2h′′11

r2
+

4h′11

r3
− 4h11

r4
, (5.44)

∂2
rR = hiv00 +

2h′′′00

r
− 4h′′00

r2
+

4h′00

r3
− 2h′′′11

r
+

2h′′11

r2
+

4h′11

r3
− 12h11

r4
. (5.45)

By substituting equations (5.41)–(5.45) into the equations of motion, one obtains a new set
of equations represented by h00 and h11. The equations were originally found by Stelle in
the following form [13]

H00 =− (c2 + 2c1)hiv00 − 4(c2 + 2c1)
h′′′00

r
+ (c2 + 4c1)

h′′′11

r
+ (c2 + 4c1)

h′′11

r2

− 2(c2 + 4c1)
h′11

r3
+ 2(c2 + 4c1)

h11

r4
− c0
κ

(
h′11

r
+
h11

r2

)
,

(5.46)

H11 = (c2 + 4c1)
h′′′00

r
+ 2(c2 + 4c1)

h′′00

r2
− 2(c2 + 4c1)

h′00

r3

− (3c2 + 8c1)
h′′11

r2
+ 2(3c2 + 8c1)

h11

r4
+
c0
κ

(
−h
′
00

r
+
h11

r2

)
,

(5.47)

H22 =
1

2
(c2 + 4c1)r2hiv00 +

3

2
(c2 + 4c1)rh′′′00 − (c2 + 4c1)h′′00 + (c2 + 4c1)

h′00

r

− 1

2
(3c2 + 8c1)rh′′′11 + (3c2 + 8c1)

h′11

r
− 2(3c2 + 8c1)

h11

r2

+
1

2

c0
κ

(
−rh′00 − r2h′′00 + rh′11

)
,

(5.48)
2What is meant here is that the two equations contain exactly the same information.

30



where Hµν are the left hand sides of the equations of motion, such that Hµν = 1
2Tµν . In

solving this set of equations, it is useful to compute the contracted stress-energy tensor,
Tµµ , and the relation given by IµνTµν where Iµν is the identity matrix. Through solving
this system of equations, one arrives at the homogeneous solutions for h00 and h11, also
found by Stelle,

h00 = C +
C2,0

r
+
C2+

r
em2r +

C2−

r
e−m2r +

C0+

r
em0r +

C0−

r
e−m0r , (5.49)

h11 =− C2,0

r
− C2+

r
em2r − C2−

r
e−m2r +

C0+

r
em0r +

C0−

r
e−m0r

+
1

2
C2+m2e

m2r − 1

2
C2−m2e

−m2r − C0+m0e
m0r + C0−m0e

−m0r ,

(5.50)

where all the C’s are integration constants which are yet to be determined. Furthermore,
m2 =

√
c0/c2κ, m0 =

√
−c0/2(3c1 + c2)κ. We should also notice that this solution

is a Yukawa potential, which is a deviation from the potentials that are found in first-
order gravity theories. The masses in this potential are given by m2 and m0. At this
point, one might be surprised by the appearance of growing exponentials in a gravitational
field. However, the rising exponentials are only part of the mathematical solution, and
are eliminated when boundary conditions are invoked. For example, we may assess that
gravity does not grow stronger with increasing distance. In fact, we should consider the
case where r →∞ and compare it to the Newtonian limit to determine which terms should
survive. It is clear from the example that only the decaying exponentials should be a part
of the physical solution. We can therefore simplify the solutions. The results of invoking
those boundary conditions are thus given by

h00 =
C2,0

r
+
C2−

r
e−m2r +

C0−

r
e−m0r , (5.51)

h11 =− C2,0

r
− C2−

r
e−m2r +

C0−

r
e−m0r − 1

2
C2−m2e

−m2r + C0−m0e
−m0r .

(5.52)
We note that we have three unknown integration constants, and three equations to solve
them. Solving for the integration constants is thus possible. In the case of the point particle,
the solution of the gravitational field is found by Stelle, and is given by

h00 = − κM

8πc0r
+

κM

6πc0r
e−m2r − κM

24πc0r
e−m0r , (5.53)

where M is the mass of the point particle at the origin of the coordinate system.

5.3 Linearized solution in isotropic coordinates
Stelle has already provided a correction to the gravitational potential in the second-order
approximation of the Einstein-Hilbert Lagrangian. However, that does not mean that the
derivation of the answer was the most intuitive one. An alternate derivation is shown in
this section, by the use of isotropic coordinates. One may find that this derivation is easier
to follow.
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5.3.1 Linearized equation of motion in isotropic coordinates
By building upon the work in Chapter 4, it is possible to derive the second-order correc-
tion of the Einstein-Hilbert action in isotropic coordinates. We will see that working in
isotropic coordinates provides us with a rather natural way of obtaining the desired re-
sults. From Chapter 4, we already know the linearized form of the Ricci tensor and the
Ricci scalar. They are shown in equation (4.8) and equation (4.11), respectively. Also, by
choosing to work in the Lorentz gauge, (4.25), we may rewrite the Ricci tensor and the
Ricci scalar as

Rµν = −2κ�hµν , (5.54)

R = −2κ�h , (5.55)

where h = ηµνhµν = hµµ. Again, since we are only including first-order terms in the
perturbation field, we can replace the covariant derivatives with normal partial derivatives.
This is due to equation (4.7), and the fact that the covariant derivatives only act on the
perturbation fields in our equation of motion. We also note that any term with more than
one Ricci tensor or Ricci scalar, or any combination thereof, will lead to higher-order
terms which will be omitted. Additionally, we recall that we can make the replacement
gµν → ηµν . The equation of motion, (5.30), thus simplifies to

c0 (ηµν�h− 2�hµν) + 4c1κ (∂µ∂ν�h− ηµν��h)

+ c2κ (2∂µ∂ν�h− ηµν��h− 2��hµν) =
1

2
Tµν . (5.56)

If we desire to find the Green’s function, we need to rewrite equation (5.56) into a form
such that the left hand side is a differential operator acting on the perturbation field. Thus,
we obtain[

c0ηµνηαβ�− ηαµηβν� + 4c1κ (∂µ∂νηαβ�− ηµνηαβ��)

+ c2κ (2∂µ∂νηαβ�− ηµνηαβ��− 2ηµαηνβ��)

]
hαβ =

1

2
Tµν . (5.57)

The Green’s function associated with this equation of motion is derived in Appendix F.2.

5.3.2 The potential for a point mass in isotropic coordinates
Suppose that we want to find the potential for a point mass in the Lagrangian with higher
order terms. The Green’s function from Appendix F.2 seems to be rather uncomfortable to
work with. However, we may circumvent that problem by directly solving the equation of
motion, which is demonstrated in this section. Also, in a coordinated effort with Chapter
4, it is natural to choose isotropic coordinates. In this case, we are also working in the
weak field limit, and as such, the metric will take the form

ds2 = −(1 + κh00)dt2 + (1 + κh11)
(
dr2 + r2dθ2 + r2 sin2 θ dφ2

)
. (5.58)

The point mass is static and spherically symmetric, hence we obtain ∂αhµν = 0 , α 6= r,
which in turn leads to ∂0h = 0. The stress-energy tensor for a point mass is given as
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Tµν = Mδ0
µδ

0
νδ

3(~r). The equation of motion for this system thus becomes

c0 (ηµν�h− 2�hµν) + 4c1κ (∂µ∂ν�h− ηµν��h)

+c2κ (2∂µ∂ν�h− ηµν��h− 2��hµν) =
M

2
δ0
µδ

0
νδ

3(~r) . (5.59)

Since h00 = h00(r) and h11 = h11(r), the d’Alembertian in (5.59) can be replaced with
the Jacobian,∇2. The trace of the stress-energy tensor is

1

2
Tµµ =

[
2c0∇2 − 2κ(3c1 + c2)∇4

]
h . (5.60)

Since Tµν = Mδ0
µδ

0
νδ

3(~r) = −M
4π∇

2 1
r , the left hand side of equation (5.60) is 1

2T
µ
µ =

−M
8π∇

2 1
r . By inserting this result into equation (5.60) and simplifying, we obtain

− M

16πr
=
[
c0 − κ(3c1 + c2)∇2

]
h . (5.61)

The trace of the perturbation, hµµ = h, is thus given by

h(r) = − M

16πc0r
+
C−e−m0r

r
+
C+em0r

r
, (5.62)

where, as before, m0 =
√
c0/2(3c1 + c2)κ, and the big C’s are integration constants that

have to be determined. We can already infer that C+ has to be zero for the same reasons
given earlier; We cannot allow for growing exponentials to be present because that would
make the force of gravity increase over distance. We are thus left with

h(r) = − M

16πc0r
+
C−e−m0r

r
. (5.63)

From inspection of the metric we are working with, (5.58), we see that

h = ηµνhµν = −(−h00)+h11 +
1

r2
r2h11 +

1

r2 sin2 θ
r2 sin2 θh11 = h00 +3h11 , (5.64)

which in turn leads to
3h11 = h− h00 . (5.65)

The time component of the equation of motion is

− M

8πr
= [−3c0 + κ(4c1 − c2)�]h00 + [−c0 + κ(4c1 + c2)�] 3h11 . (5.66)

By inserting (5.65) into (5.66) and rearranging we obtain

− M

8πr
= −2(c0 + c2κ�)h00 + [−c0 + κ(4c1 + c2)�]h . (5.67)
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Solving this equation for h00 can be complicated. The answer is more easily obtained
through a symbolic computation language, such as Mathematica. The solution for h00

takes the form3

h00(r) =
DM

16πc0r
+
D2e

−m2r

r
+
D0e

−m0r

r
, (5.68)

where the D’s are integration constants to be determined, and m2 =
√
−c0/c2κ. The

values for the D’s were found by Stelle, and the final gravitational potential is given by

h00(r) = − κM

8πc0r
+

κM

6πc0r
e−m2r − κM

24πc0r
e−m0r . (5.69)

We immediately note that we should retrieve the standard Newtonian gravitational poten-
tial in the r →∞ limit. Because of this, we see that c0 = 1/2, which is the familiar value
that was used in the Einstein-Hilbert action. We thus obtain

h00(r) = −2GM

r
+

8GM

3r
e−m2r − 2GM

3r
e−m0r . (5.70)

5.4 A few final remarks
Stelle notes that one may remove one of the terms in the gravitational potential by having
c2 = 0, or c2 = −3c1, respectively forcing m2 or m0 to be infinite. One may also remark
that if m2 or m0 are large compared to r, then

e−mir

r
→ 4πm−2

i δ3(~r) , (5.71)

which in turn leads to a potential

h00(r) = − κM

8πc0r
− κ2M

4c20r
(3c2 + c1) δ3(~r) . (5.72)

Stelle has set some experimental lower bounds on the masses, m0,m2, to be around ∼
5 · 10−13 m−1. [13] These lower limits are set from hypothetical corrections one may
make to the orbit of Mercury. However, short-range laboratory experiments show that the
lower bounds of the masses can be set to m0,m2 ≥ 103m−1. [5] This suggests that the
corrections to the gravitational potential which arise in the second-order action integral are
so small that they are irrelevant for our purposes, and only have relevance at very small
scales.

3The given form of the solution is the solution after dismissing terms with growing exponentials. This can be
achieved through setting the integration constant in front of the terms in question equal to zero.
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Chapter 6
Quantization of gravity

For the quantization of the Einstein-Hilbert Lagrangian, we will use the background field
method introduced by t’Hooft and Veltman [14]. We will assume a smooth background
field (classical field), with a small perturbation field (quantum field),

gµν = ḡµν + hµν , (6.1)

where ḡµν is the background field, and hµν is the perturbation field. Since we want the
trace of the metric to be untouched by this perturbation, we also obtain the relation

gµν = ḡµν − hµν + hµαh
αν , (6.2)

which is a valid inverse of the metric up to second order in the perturbation. This is easily
verified by computing gµνgµν = 4.

The perturbation field is, as in the previous chapters, assumed to be very small when
compared to the background metric field. As usual, due to the metric tensor being sym-
metric in its indices, then so is the perturbation metric. This fact will be used extensively
throughout the chapter. As in previous chapters on perturbation fields, ḡ will be used for
lowering and raising of indices (as η was used earlier). That is an effect of the assumption
that the perturbation is small.

Due to the results of Chapter 5, we do not concern ourselves with the higher order
Lagrangian densities. We therefore return to the first-order Einstein-Hilbert Lagrangian
that was first introduced in the beginning of this thesis,

L =
1

2κ

√
−gR . (6.3)

6.1 The expanded Lagrangian density
We want to express the Einstein-Hilbert Lagrangian in terms of ḡ and h. This is achieved
by direct insertion and some algebraic manipulations. The square root may be expressed
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in the following manner
√
−g =

√
−det g =

√
−det(ḡ + h)

=
√
−det(ḡ) det(1 + ḡ−1h)

=
√
−det(ḡ)

√
det(1 + ḡ−1h)

=
√
−det(ḡ) exp

[
1

2
ln
(
det
(
1 + ḡ−1h

))]
. (6.4)

Since ln det = Tr ln, we can rewrite the argument of the exponential. Furthermore, we
will utilize the fact that the series expansion of the logarithm is

ln(1 + x) =

∞∑
n=1

(−1)n−1x
n

n
= x− x2

2
+
x3

3
− . . . , x < 1 , (6.5)

and the series expansion of the exponential function is

ex =

∞∑
n=0

xn

n!
= 1 + x+

x2

2
+ . . . . (6.6)

Thus, by discarding terms of O(h3), we obtain

√
−g =

√
−det ḡ exp

[
1

2
Tr ln

(
1 + ḡ−1h

)]
=
√
−det ḡ exp

[
1

2
Tr

(
ḡ−1h− 1

2
(ḡ−1h)2

)]
=
√
−det ḡ

[
1 +

1

2
Tr
(
ḡ−1h

)
− 1

4
Tr
(
ḡ−1h

)2
+

1

8
Tr2(ḡ−1h)

]
=
√
−det ḡ

[
1 +

1

2
hµµ −

1

4
Tr
(
ḡ−1h

)2
+

1

8
(hµµ)2

]
. (6.7)

Remember that matrix multiplications are expressed in component form as

(AB)ij = AijBjk . (6.8)

Therefore we may rewrite Tr
(
ḡ−1h

)2
as

Tr
(
ḡ−1h

)2
= Tr

(
gαβhαβgβγh

βγ
)

= Tr
(
gαβgβγhαβh

βγ
)

= Tr
(
δαγ hαβh

βγ
)

= Tr
(
hαβh

αβ
)
. (6.9)

Since the trace of a scalar is just that scalar itself, we finally obtain

√
−g =

√
−det ḡ

[
1 +

1

2
hµµ −

1

4
hαβh

αβ +
1

8
(hµµ)2

]
(6.10)

For the expansion of the Ricci scalar, we start with the Ricci tensor. The Ricci tensor
is defined by

Rµν = Γρµν,ρ − Γρρµ,ν + ΓρρλΓλµν − ΓρνλΓλρµ . (6.11)
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We find the Chrisoffel symbol by using the definitions of the metric tensor expansion and
discarding terms of O(h3),

Γρµν =
1

2
gρα
(
gαµ,ν + gαν,µ − gµν,α

)
=

1

2

(
ḡρα−hρα+hρλh

λα
)(
ḡαµ,ν+ḡαν,µ−ḡµν,α+hαµ,ν+hαν,µ−hµν,α

)
= Γ̄ρµν + ḡραHαµν − hρα

(
Γ̄αµν +Hαµν

)
+ hρλh

λαΓ̄αµν , (6.12)

where Γ̄ρµν is the Christoffel symbol of the background field, and

Hαµν =
1

2
(hαµ,ν + hαν,µ − hµν,α) =

1

2

(
hαµ;ν + hαν;µ − hµν;α + 2Γ̄λµνhαλ

)
.

(6.13)
Thus, when using the fact that the covariant derivative of the background metric tensor is
equal to zero, and rewriting all derivatives of the perturbation field into covariant deriva-
tives, we find

Γρµν = Γ̄ρµν + Γ̂ρµν − hραΓ̂αµν , (6.14)

Γ̂αµν = (hαµ,ν + hαν,µ − hµν,α) . (6.15)

Barred symbols are considered to be the corresponding term with respect to the back-
ground field, and hatted symbols are considered the corresponding term with respect to
the perturbation field. One important detail is that Γ̂ρµν = ḡραΓ̂αµν . Also notice that all
the usual rules will therefore apply for the symbols that respect the background fields,
while we may not assume so for the hatted symbols.

The Ricci tensor in terms of the Christoffel symbols is thus

Rµν =R̄µν + ∂ρ

[
Γ̂ρµν − hαρΓ̂αµν

]
− ∂ν

[
Γ̂ρρµ − hαρΓ̂αρµ

]
+ Γ̄ρρλΓ̂λµν + Γ̂ρρλΓ̄λµν + Γ̂ρρλΓ̂λµν − Γ̄ρνλΓ̂λµρ − Γ̂ρνλΓ̄λµρ − Γ̂ρνλΓ̂λµρ

+ hαρ
[
Γ̄λνρΓ̂αµλ + Γ̄λµρΓ̂ανλ − Γ̄λλρΓ̂αµν − Γ̄λµν Γ̂αρλ

]
, (6.16)

where we are excluding terms of O(h3) or higher. Now, we turn our attention to writing
the partial derivatives as covariant derivatives, Dα, with respect to the background field ḡ.
This will be very beneficial since we are working with metric tensors, and the background
metric commutes with the covariant derivatives. We obtain

∂ρΓ̂
ρ
µν = DρΓ̂

ρ
µν − Γ̄ρρλΓ̂λµν + Γ̄λρµΓ̂ρλν + Γ̄λρν Γ̂ρλµ , (6.17)

∂ν Γ̂ρρµ = DρΓ̂
ρ
ρµ − Γ̄λµν Γ̂ρρλ , (6.18)
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∂ρ

[
hαρΓ̂αµν

]
=∂ρh

αρΓ̂αµν + hαρ∂ρΓ̂αµν

=
[
Dρh

αρ − Γ̄αρλh
λρ − Γ̄ρρλh

λα
]
Γ̂αµν

+ hαρ
[
DρΓ̂αµν + Γ̄λραΓ̂λµν + Γ̄λρµΓ̂αλν + Γ̄λρνΓ̂αµλ

]
=Dρ

[
hαρΓ̂αµν

]
+ hαρ

[
Γ̄λραΓ̂λµν + Γ̄λρµΓ̂αλν

+ Γ̄λρν Γ̂αµλ − Γ̄λραΓ̂λµν − Γ̄λλρΓ̂αµν

]
=Dρ

[
hαρΓ̂αµν

]
+ hαρ

[
Γ̄λρµΓ̂αλν + Γ̄λρν Γ̂αµλ − Γ̄λλρΓ̂αµν

]
, (6.19)

∂ν

[
hαρΓ̂αρµ

]
=∂νh

αρΓ̂αρµ + hαρ∂ν Γ̂αρµ

=
[
Dνh

αρ − Γ̄ανλh
λρ − Γ̄ρνλh

λα
]
Γ̂αρµ

+ hαρ
[
Dν Γ̂αρµ + Γ̄λναΓ̂λρµ + Γ̄λνρΓ̂αλµ + Γ̄λνµΓ̂αρλ

]
=Dν

[
hαρΓ̂αρµ

]
+ hαρ

[
Γ̄λναΓ̂λρµ + Γ̄λνρΓ̂αλµ

+ Γ̄λνµΓ̂αρλ − Γ̄λναΓ̂λρµ − Γ̄λνρΓ̂αλµ

]
=Dν

[
hαρΓ̂αρµ

]
+ hαρΓ̄λνµΓ̂αρλ . (6.20)

Thus, rewritingRµν in terms of covariant derivatives (with respect to the background field)
yields

Rµν =R̄µν + Γ̂ρρλΓ̂λµν − Γ̂ρνλΓ̂λµρ

+Dρ

[
Γ̂ρµν − hαρΓ̂αµν

]
−Dν

[
Γ̂ρρµ − hαρΓ̂αρµ

]
.

(6.21)

Let R(n)
µν be the n-th order of the perturbation field in Rµν . Then, we have that Rµν =

R
(0)
µν +R

(1)
µν +R

(2)
µν + O(h3). We thus obtain

R(0)
µν = R̄µν , (6.22)

R(1)
µν = DρΓ̂

ρ
µν −Dν Γ̂ρρµ , (6.23)

R(2)
µν = Dρ

(
hαρΓ̂ρµν

)
−Dν

(
hαρΓ̂ρρµ

)
+ Γ̂ρρλΓ̂λµν − Γ̂ρνλΓ̂λµρ, . (6.24)

We are ultimately interested in finding R = gµνRµν expressed in terms of h and ḡ. Thus,
for R = R(0) +R(1) +R(2), we find

R(0) = ḡµνR̄µν = R̄ . (6.25)

At first order, we have
R(1) = −hµνR(0)

µν + ḡµνR(1)
µν , (6.26)

and at second order we have

R(2) = hµαh
ανR(0) − hµνR(1)

µν + ḡµνR(2)
µν . (6.27)
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When compiling all this information into finding the form of the Lagrangian, and writing
everything in terms of the gravitational fields ḡ and h, we find that

L =
√
−ḡ
[

1

2κ
R̄+ L (1) + L (2)

]
, (6.28)

L (1) =
1

4
√
κ
hµν

(
ḡµνR̄− 2R̄µν

)
, (6.29)

L (2) =
1

8
DαhµνD

αhµν − 1

8
DαhD

αh+
1

4
DαhDβh

αβ − 1

4
DαhµβD

βhαµ

+
1

8
R̄
(
h2 − hµνhµν

)
+ R̄µν

(
1

2
hλµhνα −

1

4
hhµν

)
.

(6.30)

We see that actually, the bracketed term of L (1) is the left hand side of the Einstein
equation, (2.21). Therefore, if T̄µν = 0, then L (1) = 0. In the Lagrangian we are working
with in this chapter, this is indeed the case (There is no matter term in the Lagrangian),
so we are left with a quadratic Lagrangian. In fact, the result is even more general, as
it will apply to non-vacuum states as well. The reason is that if we were to include a
matter term into the Lagrangian, it would also have to be expanded around the background
field, and the equation of motion would show up within the brackets again. Therefore, by
assuming that the equation of motion holds for the background field, we may discard L (1)

altogether.

6.2 Gauge freedom
The Lagrangian we have found, (6.28), is invariant under the infinitesimal gauge transfor-
mation [14]

h′µν = hµν + (ḡαν + hαν)Dµε
α + (ḡµα + hµα)Dνε

α + εαDαhµν , (6.31)

where εα are infinitesimal functions. We can show that this transformation leaves the
Lagrangian unchanged by direct insertion. It is also necessary to use the fact that a total
derivative in the Lagrangian density does not contribute to the physics of the system, as it
disappears when solving the integral by Gauss’ theorem.

The existence a gauge transformation leaves the Lagrangian invariant forces us to fix
the gauge.

6.2.1 Why is it necessary to fix the gauge?
The path integral that results from the Lagrangian will count over all paths that the system
may take, i.e., all possible field configurations[12, Ch. 6]. However, if there is a gauge
symmetry present, that is to say, an unphysical symmetry, then the path integral will count
the results from the gauge symmetry as well (They are different field configurations, but
not physically distinct configurations). Since the path integral should only count over the
physically distinct possibilities, of which the gauge copies are not, it does not work when
a gauge symmetry is present in the Lagrangian. Therefore, in order to avoid counting the
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same physical field configurations more than once, it is necessary to fix the gauge of the
Lagrangian. This can be achieved by a gauge-fixing term which is added to the Lagrangian
containing the original gauge symmetry.

Normally, one chooses a gauge condition and imposes it on the Lagrangian with the
changes that follow. An example of this procedure can be found in Section 4.2.2. However,
we want to change the Lagrangian in such a way that it fixes the gauge, i.e., the gauge is
chosen beforehand. This would ensure that the path integral does not count over physically
equivalent paths.

As an example, one may wish to impose the Lorenz gauge on some general electro-
magnetic Lagrangian, LEM. The Lorenz gauge is defined by ∂µAµ = 0, where Aµ is the
electromagnetic four-potential. The gauge-fixing term one would add to the Lagrangian
would the be Lgf = ∂µA

µ. Now, the Lagrangian is not gauge-invariant anymore, but it is
also physically unchanged; The gauge has been chosen beforehand.

However, gauge fixing a Lagrangian is not as straight-forward as pictured here. Adding
a gauge-fixing Lagrangian is equivalent to imposing a delta function on the path integral,
only picking out physically distinct paths. There are subtleties involved in this procedure,
from which the Faddeev-Popov ghost Lagrangian associated with the chosen gauge arises.

6.2.2 Gauge-fixing path integrals

Consider the path integral

Z =

∫
DAµ eiS , (6.32)

where S is the action integral over the arbitrary field Aµ.1 The path integral is invariant
under some gauge transformation,

AUµ = UAµU
† − iU∂µU† , (6.33)

where U is the unitary matrix associated with the gauge transformation. We want to avoid
the path integral overcounting physically equivalent configurations. The overcounting can
be avoided by dividing out the equivalent configurations by using a delta function. To see
how this is done, consider the integral

∆−1(Aµ) =

∫
DU δ

(
g
(
AUµ
))
, (6.34)

where AUµ is the gauge-transformed field, g is a gauge condition, and DU is an integration
measure of the gauge group U . In other words, this is an integral that integrates over all of
the gauge space, only when the gauge condition is equal to zero. The integration measure
is assumed to be gauge invariant,

DU = DU ′′ , U ′′ = UU ′ . (6.35)

1The number of indices on the arbitrary field is not important to the discussion, but we use Aµ as the field for
the example because it is familiar from QED.
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The integral can be shown to be gauge-invariant,

∆−1(AU
′

µ ) =

∫
DU δ

[
g
[
AUU

′

µ

)]
=

∫
D(UU ′) δ

(
g
[
AUU

′

µ

)]
=

∫
DU ′′ δ

(
g
[
AU

′′

µ

)]
= ∆−1(Aµ) . (6.36)

Equation (6.34) can be rewritten as

1 = ∆(Aµ)

∫
DU δ(g(AUµ )) . (6.37)

It may thus be inserted into any path integral, without changing it. The term ∆(Aµ) is
called the Faddeev-Popov determinant, as it was first described by them [3]. Insertion into
the path integral yields

Z =

∫∫
DAµDU ∆(Aµ)δ(g(AUµ ))eiS

=

∫
DU

∫
DAµ ∆(Aµ)δ(g(AUµ ))eiS

=

∫
DU

∫
DAUµ ∆(AUµ )δ(g(AUµ ))eiS

U

=

∫
DU

∫
DAµ ∆(Aµ)δ(g(Aµ))eiS , (6.38)

where the gauge invariance of the integration measure, the action integral, and the Faddeev-
Popov determinant, was used in the last two steps. However, even though we assume that
the integration measure is invariant under the gauge transformation, it has been pointed out
by Fujikawa that this assumption is not always justified [4]. We will nevertheless make
this assumption in this derivation. Thus, the integral

∫
DU is independent of the rest of

the path integral, and may be evaluated in isolation from the rest of the path integral. It
is the integral over the gauge group associated with the gauge that the path integral is in-
variant of. The correct procedure of not overcounting is thus to discard the integral of the
gauge group. Then, we can compute the rest of the path integral, without having to worry
about overcounting, since there is a delta function which guarantees that only paths under
the same gauge condition are counted. The path integral has become a gauge-fixed path
integral.

The Faddeev-Popov determinant is found by a change of variables, from U to g, in
equation (6.34). The change of variables in an integral requires the inclusion of the Jaco-
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bian associated with the change of variables, DU = Dg det
∣∣∣ δUδg ∣∣∣. We thus obtain

∆−1(Aµ) =

∫
DU δ(g(AUµ ))

=

∫
Dg det

∣∣∣∣δUδg
∣∣∣∣ δg

= det

∣∣∣∣δUδg
∣∣∣∣
g=0

, (6.39)

which gives us the form of the Faddeev-Popov determinant

∆(Aµ) = det

∣∣∣∣ δgδU
∣∣∣∣
g=0

. (6.40)

Everything that has been done this far is completely general, and applies to any path inte-
gral that is invariant under some gauge transformation.

6.2.3 Choosing a gauge
The path integral of the system is given by

Z =

∫
Dhµν eiS . (6.41)

We may impose a gauge on this path integral through the introduction of a delta function.
The delta function ensures that only the field configurations that satisfy the gauge condition
are counted. Such a path integral takes the form

Z =

∫
Dhµν δ(gα) det

∣∣∣∣δgαδεβ
∣∣∣∣eiS . (6.42)

If we assume a more general gauge condition, gα = cα, where cα is some arbitrary func-
tion not dependent on the gauge variable, εβ . The delta function then takes the form
δ(gα − cα). The determinant is unchanged by this arbitrary change of gauge condition
since the arbitrary function is not dependent on εb. Since we may choose arbitrary cα, we
may integrate over a set of possible cα, and average them around cα = 0. This is referred
to in the literature as averaging over cα with Gaussian weights. Another way to look at
this is to notice that since cα is independent of the path integral, we are free to add any
function depending on it to the path integral. Its effect is the same as adding a constant to
the overall integral. Then, we may integrate over the delta function containing the gauge
condition and obtain the desired form. The function we integrate over is arbitrary. We
therefore choose to integrate over an exponential function in such a form that it fits in
nicely with our quadratic Lagrangian, hence the use of Gaussian weights. To counteract
this procedure, we are required to add a normalization constant, N(ξ), as well, so that no
real change is made. Completing this procedure yields

Zξ = N(ξ)

∫
DhµνDcα e−i

∫
d4x (cα)2/2ξδ(gα − cα) det

∣∣∣∣δgαδεβ
∣∣∣∣eiS

= N(ξ)

∫
Dhµν e−i

∫
d4x (gα)2/2ξ det

∣∣∣∣δgαδεβ
∣∣∣∣eiS . (6.43)
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We recognize the integrand of the new exponential as the gauge-fixing Lagrangian, which
will be added to the gauge invariant Lagrangian. To complete the procedure we also wish
to express the determinant as some exponential so that we may include it in the Lagrangian.
This can be achieved by using (D.17), and thus writing the determinant as a fermionic path
integral over the fermionic fields η and η̄,

detM =

∫
dηdη̄ ei

∫
d4x η̄Mη , (6.44)

where M is some matrix, and η and η̄ are fermionic fields. The Lagrangian associated
with these fermionic fields is called the Faddeev-Popov ghost Lagrangian. Thus, the ghost
Lagrangian is given by

Lghost = η̄αMαβη
β (6.45)

We will use the following gauge condition, extracted directly from t’Hooft and Velt-
man’s treatment of quantum gravity [14],

gα = 4
√
−ḡ
(
Dνhµν −

1

2
Dµh

)
tµα , (6.46)

where tµβt
νβ = ḡµν . The gauge-fixing Lagrangian, Lgf = − (gα)

2
/2ξ, is thus

Lgf = − 1

2ξ

√
−ḡ

[(
Dνhµν −

1

2
Dµh

)(
Dσh

µσ − 1

2
Dµh

)]
. (6.47)

The ghost Lagrangian is found through applying the gauge transformation on the gauge-
fixing term, and then taking the derivative of it with respect to the gauge variable, εb.
In other words, we need to calculate gα → g′α. Thus, by replacing the perturbation
field with its gauge-transformed part, hµν → h′µν and computing the results, we find the
determinant. Terms which include the perturbation field are omitted, since the ghost field
is non-physical, i.e., it is never external.2 Performing the gauge transformation on the
gauge condition yields

C ′α = 4
√
−ḡ
[
Dνh′µν −

1

2
Dµh

′
]

= 4
√
−ḡ
[
Dν
(
hµν + ḡγνDµε

γ + hγνDµε
γ + ḡγµDνε

γ + hγµDνε
γ + εγDγh

)
− 1

2
Dµ

(
h+ 2ḡγνD

νεγ + 2hγνD
νεγ + εγDγh

)]
tµα

= 4
√
−ḡ
[
DγDµε

γ −DµDγε
γ + �εµ

]
tµα

= 4
√
−ḡ
[
R̄γµ + �ḡγµ

]
εγtµα ,

(6.48)

2Another way to look at this is to recognize that in the Feynman diagrams, there will be no vertices of the
ghost field with other, physical, fields.
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where, in the last step, the commutator relation between covariant derivatives, i.e., εa;bc −
εa;cb = −Radbcεd, was used. Thus, we find that

∂C ′α

∂εγ
= 4
√
−ḡ
[
R̄γµ + �ḡγµ

]
tµα . (6.49)

The procedure may now be completed, so we find the Faddeev-Popov ghost Lagrangian to
be

Lghost =
√
−ḡη̄µ

[
R̄µν + ḡµν�

]
ην , (6.50)

where 4
√
−ḡ and tµα have been transformed into the fermionic fields. The full Lagrangian

density, Lf = L + Lgf + Lghost, may now be written down. Then, the Feynman rules
for the theory may be derived.
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Chapter 7
Conclusion and outlook

Throughout this master thesis, we have gained a good understanding of general relativity,
the weak field approximation and linearization procedure, and finally, the quantisation of
gravity. In the investigation, some differences were found with respect to existing litera-
ture, e.g., the disagreement with Stelle’s results in Chapter 5. This disagreement did not
turn out to be of significance to the further discussion that ensued, but it will be important
if one wishes to include perturbation terms of second order or higher.

Some conceptual details in the literature have been filled in; Among others, how to
perform partial integrations of covariant derivatives comes to mind as an example. Also,
in the pursuit to gain a thorough understanding of the procedures, some derivations have
been presented which are not inspired by source material, e.g., the use of isotropic coor-
dinates throughout the thesis. It was conceptually easier to solve problems in isotropic
coordinates, and it should be employed more in teaching as it seems more pedagogical.
The use of Schwarzschild coordinates is not necessary (or most straight-forward) when
deriving the Schwarzschild solution in the weak field limit, nor is it the most suitable set
of coordinates for illustratory purposes where other coordinate systems are often used (for
example the Eddington-Finkelstein coordinates).

By the end of the investigation of Stelle’s solution by including higher order terms
to the Einstein-Hilbert action integral, we found that the difference to the gravitational
potential would be insignificant at the quantum level. The constants in front of the higher-
order terms, c1 and c2, were not contributing enough to the gravitational potential. We
therefore proceeded to quantize only the first-order term of the Einstein-Hilbert action
integral.

During the chapter on quantization of gravity, we made the remark that the integra-
tion measure, Dhµν is invariant under gauge transformations. This is assumed in most
quantum field theories, but as we are aware, it may not always be assumed. This might
be something worth looking into in greater detail. There is also a loose thread, since the
matter Lagrangian should also be quantized in the quantum theory of gravity. This should
be further expanded on. When that is complete, one may continue to make corrections and
predictions of quantum effects of gravity.
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One must remember that the quantization of gravity presented here is a low-energy
approximation; It is an effective field theory, and not by any means a fundamental theory.
This means that the theory has a range of validity, just like the Newtonian mechanics is an
approximation which works well on the day to day energy range.
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Appendix A
Notations and conventions

The following notations and conventions are used in this thesis.

Units This thesis makes use of natural units, e.g., c = h = 1, unless specified otherwise.

Differentiation The following notation is applied,

∂

∂xα
gµν = ∂αgµν = gµν,α. (A.1)

A special case for a special notation is the dot notation; q̇ = ∂tq. The dot notation will
always be a shorthand notation for a differentiation with respect to time. If there is a case
where the some entity is only dependent on one variable, the Newton notation may be
used,

v′(r) =
d

dr
v(r) (A.2)

Tensor notation Traces of tensors can be written either as

ηαα or η . (A.3)

Whenever a symbol that in the same context has been used as a tensor appears without its
indices, the notation represents a trace. This notational convention is used extensively in
the thesis for readability.

Metric tensor The sign convention for the metric tensor in this thesis is (−,+,+,+). The
metric tensor is assumed to be symmetric; gµν = gνµ.

Additionally, det g is assumed to be invariant under coordinate transformations.

The Einstein summation convention When a lower and an upper index is repeated, a
summation over all the values the indices can take is assumed. More precisely,

n∑
i=1

aib
i = aib

i, i ∈ [1, n] . (A.4)

When greek indices are used, the summation is taken from 0 to n = 3. When latin indices
are used, the summation is taken from 1 to n = 3.
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Appendix B
Tensor definitions

The Riemann tensor is given by

Rρσµν = Γρνσ,µ − Γρµσ,ν + ΓρµλΓλνσ − ΓρνλΓλµσ . (B.1)

The Christoffel symbols are given by

Γλµν =
1

2
gλα (gαµ,ν + gαν,µ − gµν,α) . (B.2)

The Ricci tensor is a special case of the Riemann tensor. It is defined as

Rµν = Rρµρν = Γρµν,ρ − Γρρµ,ν + ΓρρλΓλµν − ΓρνλΓλρµ . (B.3)

Lastly, the Ricci scalar is defined as

R = gµνRµν (B.4)
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Appendix C
Variational methods

C.1 Variation of the action
Hamilton’s principle states that

The motion of the system from time t1 to time t2 is such that the line integral
(called the action or the action integral),

I =

t2∫
t1

Ldt , (C.1)

where L = T − V , has a stationary value for the actual path of the motion.
[6, Chapter 2, pp. 34-35]

L is called the Lagrangian of the system. T and V are the kinetic and the potential energies
of the system, respectively.

In other words, the motion of the system is the path that extremizes the action of the
system. To further explore what this means, something has to be said about variational
calculus.

C.1.1 Variational calculus
A variation in time, t ∈ [a, b], of some coordinate variable, q(t), is defined by

δq = lim
ε→0

q(t, ε)− q(t, 0)

ε
, (C.2)

where q(t, ε) = q(t, 0) + εη(t). In other words, δq = η(t), where η(t) is completely
arbitrary, except for the fact that the endpoints of the variation are fixed, η(a) = η(b) = 0.

Now, if we find the variation of the time derivative of the position variable, we find
that it is

δ∂tq = ∂tη . (C.3)

51



Obviously, when differentiating the variation of the position variable with respect to time,
the same result is achieved. Hence,

δ(∂tq) = ∂t(δq) . (C.4)

By extension of this commutation relation, we observe that integration and variation also
has to commute, i.e.

δ

[∫
dtf(t)

]
=

∫
dtδ [f(t)] . (C.5)

The variation of the action, (C.1), is hence done by

δI = δ

t2∫
t1

dt L =

t2∫
t1

dt δL , (C.6)

where L can depend on a number of variables. Since our definition of a variation is so sim-
ilar to the normal definition of differentiation, we can utilize the chain rule in variational
calculus as well, yielding

δL(q1, q2, . . . , qn, q̇1, q̇2, . . . , q̇n) =
∂L

∂q1
δq1 +

∂L

∂q2
δq2 + · · ·+ ∂L

∂q̇1
δq̇1 +

∂L

∂q̇2
δq̇2 + . . .

(C.7)

C.1.2 The Euler-Lagrange equations
Consider a variation of some action which is dependent on some Lagrangian, L(qi, q̇i),
where i ranges from 0 to some integer n. For the variation to yield the equations of
motion, it would need to satisfy

δS = 0 . (C.8)

Applying the variation to the action yields

δS = δ

∫
dt L(qi, q̇i) ,

=

∫
dt δL(qi, q̇i) ,

=

∫
dt

[
∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i

]
.

(C.9)

Utilizing the fact that the variation and the partial differentiation of qi commutes, we can
write δq̇i = ∂tδqi. Combining that and performing a partial integration, we obtain the
final form of this integration

δS =

∫
dt

[
∂L

∂qi
δqi +

∂L

∂q̇i
∂tδqi

]
,

=

∫
dt
∂L

∂qi
δqi +

∂L

∂q̇i
δqi

∣∣∣∣b
a

−
∫

dt ∂t
∂L

∂q̇i
δqi ,

=

∫
dt

[
∂L

∂qi
− ∂

∂t

∂L

∂q̇i

]
δqi .

(C.10)
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Since the variation is arbitrary except for at the endpoint (Hence why the integrated part
of δS in the second step of (C.10) vanished), the parti inside the square brackets in the last
equation has to be equal to zero. We hence have derived the Euler-Lagrange equations

∂L

∂qi
− ∂

∂t

∂L

∂q̇i
= 0 (C.11)

C.1.3 Extension to four-dimensional integrals
When it comes to field theory, an extension to four dimensional integrals, and Lagrangian
densities, is necessary. The Lagrangian density is defined by

L =

∫∫∫
d3qL(qi, q̇i) , (C.12)

where L is the Lagrangian density. The Euler-Lagrange equations for a system described
by a Lagrangian density is given by

∂L
∂qi

= ∂t
∂L
∂q̇i

. (C.13)

To see this, we generalize the original Euler-Lagrange equations. First, we take a look at
the first term

∂L

∂qi
=

∂

∂qi

∫∫∫
d3xL =

∫∫∫
d3q

∂L
∂qi

, (C.14)

and similarly for the second term

∂t
∂L

∂q̇i
= ∂t

∂

∂q̇i

∫∫∫
d3xL =

∫∫∫
d3q ∂t

∂L
∂q̇i

, (C.15)

so that the Euler-Lagrange equations for Lagrangian densities are obtained as

∂L
∂qi

= ∂t
∂L
∂q̇i

. (C.16)

53



Appendix D
Integrals and differential identities

D.1 Laplacian and the Dirac delta function

The Laplacian is in spherical coordinates given by

∇2 ≡ 1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin2 φ

∂2

∂θ2
+

1

r2 sinφ

∂

∂φ

(
sin θ

∂

∂φ

)
. (D.1)

The Laplacian of 1/r is then easily verified to be zero at every point except for at the
origin. The divergence of 1/r is however given by

∇1

r
= − r

r3
. (D.2)

Integrating the Laplacian of 1/r over an arbitrary sphere, and applying Gauss theorem,
one obtains ∫∫∫

S

∇2 1

r
dV =

∫∫
∆S

− r

r3
· dS , (D.3)

where δS = r̂dA, and dA can be written in normal spherical coordinates as dA =
r2 sin θdθdφ. We can therefore calculate the integral as

∫∫
∆S

− r

r3
· dS = −

π∫
0

2π∫
0

sin θdθdφ = −4π . (D.4)

Hence, since the Laplacian of 1/r is zero everywhere except at the origin, and the integral
for any sphere centered around the origin is equal to −4π, the Laplacian must be given by

∇2 1

r
= −4πδ(r) . (D.5)
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D.2 Grassmann variables
This derivation of the Grassmann variables is taken from Kachelriess’s notes on quantum
field theory. The derivation towards the end is, however, changed from Kachelriess’s notes.
This is due to the derivation found there not being very pedagogical. A more pedagogical
approach is presented here. One defines some algebra G where for the variables a, b ∈ G
one requires the anti-commutation relations

{a, a} = {b, b} = {a, b} = 0 . (D.6)

We can thus determine that a2 = b2 = 0. All higher powers are automatically equal to
zero by the same relations, e.g., a, a2 = 0. We may also determine that ab = −ba. Any
function, f , depending on a and b may thus be expanded into a power series,

f(a, b) = f0 + f1a+ f̃1b+ f2ab

= f0 + f1a+ f̃1b− f2ba . (D.7)

The derivatives of the function are given by

∂f

∂a
= f1 + f2 ,

∂f

∂b
= f̃1 − f2 ,

∂2f

∂a∂b
= − ∂2f

∂b∂a
= −f2 . (D.8)

For integration of the Grassmann variables, we require that also their differentiels, da,db
are also Grassmann variables,

{a,da} = {da,da} = {b,db} = {db,db} = {a,db} = {da, b} = {da,db} = 0 . (D.9)

We may now determine some integrals. Grassman variables require that their integrals are
linear, ∫

da [αf(a) + βg(a)] = α

∫
daf(a) + β

∫
dag(a) , (D.10)

where α and β are normal constants. Their integrals are also defined to satisfy the condi-
tion that ∫

da

[
∂f(a)

∂a

]
= 0 . (D.11)

We find that(∫
da

)2

=

(∫
da

)(∫
db

)
= −

(∫
db

)(∫
da

)
= −

(∫
da

)2

, (D.12)

which implies that
∫

da = 0. The second condition also implies that
∫

da a = 1. Thus,
we may note that differentiation and integration are equivalent for Grassman variables.

Consider now a complex matrix, M ∈ C, and complex Grassman variables, η =
(η1, η2, . . . , ηn), and their complex conjugates η∗ = (η∗1 , η

∗
2 , . . . , η

∗
n). We may evaluate

the integral ∫
dnηdnη∗ eη̄Mη =

∫
dnηdnη∗ eη

∗
iMijηj (D.13)
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When expanding the exponential into a sum, the integrand will contain many different
terms. However, as we know from the properties of the Grassman integrals, only one term
will surive; That is the term that contains all Grassman variables we are integrating over.
We may expand our integrand as∫

dnηdnη∗
1

n!

[
η∗i1Mi1j1ηj1

][
η∗i2Mi2j2ηj2

]
· · ·
[
η∗inMinjnηjn

]
. (D.14)

The matrix components are normal, complex numbers, and therefore commutes with both
the Grassman variables and between themselves. We may thus rewrite

1

n!

∫
dnηdnη∗ η∗i1ηj1η

∗
i2ηj2 · · · η

∗
inηjnMi1j1Mi2j2 · · ·Minjn . (D.15)

This integral needs to be permuted in such a way that the Grassman variable that is be-
ing integrated over is next to its differential operator. Performing that permutation and
integrating over the Grassman variables yields

1

n!
εi1...inεj1...inMi1j1 · · ·Minjn = detM , (D.16)

where ε is the Levi-Civita symbol. We have thus derived that the determinant of some
square, complex, matrix may be written as a path integral over Grassman variables (fermionic
path integral),

detM =

∫
dη̄dη eη̄Mη . (D.17)

It is well known from quantum field theory that these types of integrals are fermionic path
integrals.

D.3 Derivative of inverse matrix
The inverse of a matrix A(t) is defined such that

AA−1 = I (D.18)

where I is the identity matrix. In component form, this can be written as

AijA
jk = δki , (D.19)

where δki is the Kroenecker delta symbol. Applying a differentiation on (D.19) yields

dAij
dt

Ajk = −Aij
dAjk

dt
, (D.20)

which in matrix form is
dA

dt
A−1 = −AdA−1

dt
, (D.21)

which leads to the following relation

dA−1

dt
= −A−1 dA

dt
A−1 . (D.22)
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This result can also be written in component form as

dAik

dt
= −Aij dAjl

dt
Alk . (D.23)
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Appendix E
Important identites

E.1 The Palatini Identity
If one varies the Riemann tensor, (B.1), one gets the expression

δRρσµν = ∂µδΓ
ρ
νσ − ∂νδΓρµσ + δΓρµλΓλνσ + ΓρµλδΓ

λ
νσ − δΓ

ρ
νλΓλµσ − ΓρνλδΓ

λ
µσ . (E.1)

We can see from the way in which the variation was defined, (C.2), the variation of a
Christoffel symbol is clearly the difference between two tensors, and hence, a tensor itself.
We can therefore calculate its covariant derivative

∇λ(δΓρµν) = ∂λ(δΓρµν) + ΓρσλδΓ
σ
µν − ΓσνλδΓ

ρ
σµ − ΓσµλδΓ

ρ
νσ . (E.2)

As a result, (E.1), can be written in terms of covariant derivatives,

δRρσµν = ∇µ
(
δΓρµν

)
−∇ν

(
δΓρµσ

)
. (E.3)

If we now set the upper index and the second lower index equal, we find the variation of
the Ricci tensor in terms of covariant derivatives. This variation is often refered to as the
Palatini identity,

δRµν = ∇ρ
(
δΓρµν

)
−∇ν

(
Γρρµ
)
. (E.4)

E.2 The Bianchi Identities
This derivation is taken directly from [16]. The covariant derivative of the Riemann tensor
is given by

Rλµνκ;η =
1

2

∂

∂xη
( ∂2gλν
∂xκ∂xµ

− ∂2gµν
∂xκ∂xλ

− ∂2gλκ
∂xµ∂xν

+
∂2gµκ
∂xν∂xλ

)
. (E.5)

By cyclically permuting ν,κ, and η, one obtains the Bianchi identities

Rλµνκ;η +Rλµην;κ +Rλµκη;ν = 0 . (E.6)
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Contraction of λ and ν yields

Rµκ;η −Rµη;κ +Rνµκη;ν = 0 . (E.7)

Further contraction yields the contracted Bianchi identities

R;η − 2Rµη;µ = 0 . (E.8)
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Appendix F
Detailed derivations and
calculations

F.1 Schwarzschild metric in isotropic coordinates
The derivation presented here is paraphrased from [1]. The Schawrzschild line element in
isotropic form is

ds2 = −(1− 2m

r
)dt2 + λ2(ρ)dσ2 , (F.1)

where λ(ρ) is an undetermined function that we will solve for, and dσ = dρ2 + ρ2dθ2 +
ρ2 sin2 θdφ2. The Schwarzschild line element in its normal representation (3.40) is

ds2 = −
(

1− 2m

r

)
c2dt2 +

1

1− 2m
r

dr2 + r2dθ2 + r2 sin2 θdφ2 . (F.2)

When comparing the two different forms, when comparing the angular part of the line
element, we see that we must require that

r2 = λ2ρ2 . (F.3)

Additionaly, when comparing the radial parts of the line element, it is clear that

dr2

1− 2m/r
= λ2dρ2 . (F.4)

Substituting λ2 from (F.3) into (F.4) yields

dr2

r2 − 2mr
=

dρ2

ρ2
. (F.5)

±dr√
r2 − 2mr

=
dρ

ρ
. (F.6)
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Integration yields
± ln

[
(r2 − 2m)

1
2 + r −m

]
= ln ρ+ C , (F.7)

where C is some integration constant. Consider the limit where r � m. In that limit, we
can approximate our relation between r and ρ as

± ln(2r) = ln ρ+ C . (F.8)

For large r, we want r and ρ to be roughly equal. In other words, we require that as

lim
r,ρ→∞

± ln(2r)

ln ρ+ C
= 1 , (F.9)

so we must choose the plus sign, and choose C = ln 2. We then have√
r2 − 2mr + r −m = 2ρ . (F.10)

Utilizing the fact that[
r −m+

√
r2 − 2mr

] [
r −m−

√
r2 − 2mr

]
= m2 , (F.11)

we are able to find, by multiplying (F.11) into (F.9),

r −m−
√
r2 − 2mr =

m2

2ρ
. (F.12)

By adding (F.12) into (F.9), we find that

r = ρ

(
1 +

m

2ρ

)2

. (F.13)

By applying (F.13) in (F.3), we find that λ(ρ) is

λ(ρ) =

(
1 +

m

2ρ

)2

. (F.14)

Since we now know the form of r(ρ), we can use this to find the form of the coefficient
of the time differential of the Schwarzschild line element in isotropic coordinates, (F.1).
Thus, by applying (F.13), we find that(

1− 2m

r

)
=

(1−m/2ρ)2

(1 +m/2ρ)2
. (F.15)

Now, we can use all that we have found, to find the full form of the Schwarzschild element
in isotropic coordinates. By applying (F.14) and (F.15) to (F.3), we find that

ds2 = − (1−m/2ρ)2

(1 +m/2ρ)2
dt2 +

(
1 +

m

2ρ

)4

dσ2 . (F.16)
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F.2 Finding the Green’s function to the second-order Ein-
stein equation in isotropic coordinates

The equation of motion, (5.30), can be written in the form

Yµναβh
αβ = Tµν , (F.17)

where we have defined

Y =

[
c0
κ

(ηµνηαβ�− 2ηαµηβν�) + c1 (∂µ∂νηαβ�− ηµνηαβ��)

+ c2 (2∂µ∂νηαβ�− ηµνηαβ��− 2ηµαηνβ��)

]
.

(F.18)

As in chapter 4.2.1, if there is a Green’s function, Zµνγδ for this differential equation, then
it has to obey

YµναβZ
µνγδ = δγαδ

δ
βδ(x− x′) . (F.19)

By Fourier-transforming (F.19), we obtain

Yµναβ =− c0
κ

(
ηµνηαβk

2 − 2ηµαηνβk
2
)
− c1ηαβkµkνk2 − c1ηµνηαβk4

+ 2c2kµkνηαβk
2 − c2ηµνηαβk4 − 2c2ηµαηνβk

4 ,
(F.20)

Zµνγδ = A(k2)ηµνηγδ +B(k2)ηµγηνδ + C(k2)ηµδηνγ

+D(k2)kµkνηγδ + E(k2)kµkγηνδ + F (k2)kµkδηνγ

+G(k2)kνkγηµδ +H(k2)kνkδηµγ + I(k2)kγkδηµν ,

(F.21)

YµναβZ
µνγδ = δγαδ

δ
β . (F.22)
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We calculate the left hand side of equation (F.22), and look for unique terms which cannot
be cancelled out in any other way than to set the coefficient in front of it to zero.

Y Z = A
[
−2

c0
κ
ηαβη

γδk2 + c1ηαβη
γδk4 − 5c1ηαβη

γδk4 − 4c2ηαβη
γδk4

]
+B

 − c0
κ
ηαβη

γδk2 + 2
c0
κ
δγαδ

δ
βk

2 − c1ηαβkγkδk2 − c1ηαβηγδk4

+ 2c2k
γkδηαβk

2 − c2ηαβηγδk4 − 2c2δ
γ
αδ
δ
βk

4


+C

 − c0
κ
ηαβη

γδk2 + 2
c0
κ
δδαδ

γ
βk

2 − c1ηαβkδkγk2 − c1ηαβηγδk4

+ 2c2k
γkδηαβk

2 − c2ηαβηγδk4 − 2c2δ
δ
αδ
γ
βk

4


+D

[
−c0
κ
ηαβη

γδk4 + 2
c0
κ
ηγδkαkβk

2 + c2ηαβη
γδk6 − 2c2kαkβη

γδk4
]

+E
[
−c0
κ
ηαβk

γkδk2 + 2
c0
κ
kαk

γδδβk
2 + c2k

γkδηαβk
4 − c22kαk

γδδβk
4
]

+F
[
−c0
κ
ηαβk

γkδk2 + 2
c0
κ
kαk

δδγβk
2 + c2k

γkδηαβk
4 − 2c2kαk

δδγβk
4
]

+G
[
−c0
κ
ηαβk

γkδk2 + 2
c0
κ
kβk

γδδαk
2 + c2k

γkδηαβk
4 − 2c2kβk

γδδα

]
+H

[
−c0
κ
ηαβk

γkδk2 + 2
c0
κ
kβk

δδγαk
2 + c2k

γkδηαβk
4 − 2c2kβk

δδγα

]
+I
[
−2

c0
κ
ηαβk

γkδk2 − 5c1ηαβk
γkδk4 − 4c2k

γkδηαβk
4
]
.

(F.23)
Due to unique terms, we see that C = D = E = F = G = H = 0. We thus obtain

Y Z = A
(
−2

c0
κ
− 5c1k

2 − 4c2k
2
)
ηαβη

γδk2

+B

 − c0
κ
ηαβη

γδk2 + 2
c0
κ
δγαδ

δ
βk

2 − c1ηαβkγkδk2 − c1ηαβηγδk4

+ c22kγkδηαβk
2 − c2ηαβηγδk4 − 2c2δ

γ
αδ
δ
βk

4


+I
(
−2

c0
κ
− 5c1k

2 − 4c2k
2
)
ηαβk

γkδk2 .

(F.24)

For our condition, (F.22), to hold, we need

A = −
c0
κ + (c1 + c2)k2

k2
[
1− 2c2k2

][
1 + (5c1 + 4c2)k2

] , (F.25)

I =
(2c2 − c1)

k2
[
1− 2c2k2

][
1 + (5c1 + 4c2)k2

] , (F.26)

B =
2 c0κ

k2
[
1− 2c2k2

] . (F.27)

It is thus clear, after some algebra, that our propagator is given by

Zµνγδ =[
2 c0κ + (5c1 + 4c2)k2

]
ηµγηνδ −

[
c0
κ + (c1 + c2)k2

]
ηµνηγδ + [−c1 + 2c2] kγkδηµν

k2
[
1− 2c2k2

][
1 + (5c1 + 4c2)k2

] .

(F.28)
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When setting c1 = c2 = 0, we obtain the propagator for the first-order equation of motion,

Zµνγδ =
co
k2

(
2ηµγηνδ − ηµνηγδ

)
, (F.29)

which is easily shown to be the correct propagator when inserting directly into (F.19).
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