
Path-based Graph Indexing for Keyword
Search on RDF data
Discovering Concepts Through Community

Detection

Audun Arnessønn Sæther

Master of Science in Informatics

Supervisor: Trond Aalberg, IDI

Department of Computer Science

Submission date: March 2017

Norwegian University of Science and Technology

Abstract

RDF graphs are structured data that is designed to be used by computers for reasoning.
However, such data may be of interest to people as well. Therefore has keyword search
on RDF graphs been introduced. The current approaches to keyword search, on both RDF
graphs and other graphs, typically finds solutions that connects keyword matching nodes
with minimal cost. Minimal costs could, for instance, be the shortest paths between the
nodes. Minimal solutions, however, may not always be the most informative answers
to a query. Returning parts of the graph that constitute concepts corresponding to how
humans conceptualize the world, could give answers that better satisfies the information
need. This thesis has explored if such concepts can be discovered automatically in an RDF
graph. To this end, we have employed algorithms for finding closely connected groups of
nodes in a graph. These groups of nodes are called communities, and finding them is called
community detection.

A state of the art review examining approaches to keyword search on graphs in general,
and RDF graphs in particular, was carried out. Additionally, we performed a review on
current algorithms for finding overlapping communities in a graph. Based on this review,
we did a preliminary study where the most relevant of these algorithms were applied to
some RDF graphs. Through the study, we found some weaknesses in the direct applica-
tion on RDF graphs, with regard to our stated objective of finding concepts. This was
related to the special nature of RDF graphs, compared to other graphs. In particular, we
found inconsistencies in the discovered communities with regard to class information, and
the meaning that is found in predicate edges. These inconsistencies prevented us from
describing the found communities as logical concepts.

To eliminate these weaknesses, we developed a novel community detection algorithm for
finding concepts in an RDF graph. This new algorithm defines communities in RDF graphs
as a set of paths, not as a collection of nodes. We run our community detection algorithm
on a sample of the nodes in the graph to find the paths included in communities, and then
aggregate the results. The paths that are most frequently included in a community are kept,
and used to build concepts. Our algorithm ensures that the concepts are both consistent
internally in a community, and consistent across the dataset.

The feasibility of our approach were shown through experiments. Furthermore, the use-
fulness of the approach is argued through a proof-of-concept search solution that uses the
concepts found by the community detection algorithm. We find that the concepts discov-
ered by our algorithm can enhance the answers to queries, when compared to correspond-
ing minimal solutions.

Sammendrag

RDF-grafer er strukturert data som er designet for datamaskiner slik at disse kan trekke
slutninger ut fra dataene. Denne typen data er likevel interessant for mennesker. Derfor
har fritekstsøk i RDF-grafer blitt introdusert. Nåværende tilnærminger til fritekstsøk, både
i RDF-grafer og andre grafer, finner typisk løsninger som kobler sammen de nodene som
inneholder søkeord med mål om at svaret skal ha minimal kostnad. Minimal kostnad kan
for eksempel være kortest mulig lengde på stiene mellom nodene. Minimale løsninger er
ikke nødvendigvis alltid de mest informative svarene på en spørring. I stedet kan deler
av grafen som svarer til konsepter slik mennesker konseptualiserer verden, gi svar som
bedre tilfredsstiller informasjonsbehovet. Denne masteroppgaven har derfor undersøkt
om slike konsepter kan oppdages automatisk i en RDF-graf. For å oppnå dette har vi
anvendt algoritmer for å finne tett sammenkoblede grupper av noder (communities) i grafer.
Prosessen med å finne communities kalles for community detection.

En gjennomgang av ulike tilnærminger til fritekstsøk i grafer generelt og RDF-grafer spe-
sielt har blitt utført. I tillegg har vi sett på algoritmer for å finne overlappende communities
i grafer. Basert på denne gjennomgangen gjorde vi en forstudie der noen av algoritmene
ble testet ut på RDF-grafer. Forstudien avdekket svakheter ved å bruke slike algorit-
mer direkte på RDF-grafer, med hensyn til målet vårt om å finne konsepter. Dette var
knyttet til RDF-grafers særegenheter sammenlignet med andre grafer. Vi fant uregelmes-
sigheter i de oppdagede communities som særlig gjaldt klasseinformasjon og informasjon
i predikatkantene. Uregelmessighetene gjaldt både innad i et community, og på tvers av
ulike communities. Dette gjorde at vi ikke kunne beskrive de communities vi fant som
logiske konsepter.

For å bøte på disse svakhetene utviklet vi vår egen algoritme for å finne communities i
en RDF-graf. Denne nye algoritmen definerer communities i RDF-grafer som et sett av
stier, og ikke som en samling noder. For å finne disse stiene kjøres algoritmen på et utvalg
av nodene i grafen før resultatene summeres opp. De stiene som oftest blir inkludert i et
community beholdes, og brukes til å bygge konsepter. Algoritmen sørger for at konseptene
er konsistente både internt i et community og over hele datasettet.

Gjennomførbarheten til tilnærmingen har vi vist gjennom eksperimenter. I tillegg har vi
laget en proof-of-concept søkeløsning som benytter konseptene funnet av vår algoritme,
og som viser nytteverdien av tilnærmingen. Vi finner at konseptene oppdaget av vår algo-
ritme kan føre til bedre svar på fritekstspørringer sammenlignet med tilsvarende minimale
løsninger.

Preface

This master thesis was written in the fall of 2016 and the spring of 2017 at the Norwe-
gian University of Science and Technology (NTNU). It is the culmination of my degree in
Master of Science in Informatics, with databases and search as field of study. The supervi-
sor of this thesis has been Trond Aalberg at the Department of Computer and Information
Science.

I would like to thank my supervisor for input and feedback throughout the process. Addi-
tionally, I would like to thank my family for continuous support. A special thanks go to
my sister for proofreading the thesis.

Audun A. Sæther

Trondheim, March 2017

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Questions . 2
1.3 Research Approach . 3
1.4 Thesis Structure . 4

2 Background 5
2.1 Graph Theory . 5

2.1.1 Definitions . 5
2.1.2 Graph Traversal . 7

2.2 RDF . 8
2.2.1 RDF Schema . 10

2.3 General Approaches to Keyword Search on Graphs 10
2.4 Keyword Search on RDF Graphs . 15

2.4.1 Characteristics of RDF Graphs 15
2.4.2 Approaches to Keyword Search on RDF Graphs 15

2.5 Keyword Search in Triple Stores . 18
2.6 Summary . 20

3 Preliminary Study 21
3.1 Community Detection . 22

3.1.1 Overlapping Community Detection 22
3.2 Node Centrality . 25
3.3 Discovering Concepts through Community Detection 26

3.3.1 Experimental Setup . 26
3.3.2 Choice of Community Detection Algorithm 27
3.3.3 Community Detection in RDF Class Graphs 29
3.3.4 Community Detection in RDF Instance Graphs 32

3.4 Summary . 35

4 Path-based Graph Indexing 37
4.1 Path-based Community Detection in Instance Graphs 37

4.1.1 Approach . 37

vii

4.1.2 Seed Node Selection . 41
4.1.3 Path Community Detection . 44
4.1.4 Fitness Function . 47
4.1.5 Max Path Length . 49
4.1.6 Example . 50
4.1.7 Creating Path Communities from Path Statistics 55

4.2 Experiments . 56
4.2.1 Evaluation Metrics . 57
4.2.2 Parameters and Performance Tests 58
4.2.3 Sampling Tests . 59

4.3 Complexity Analysis . 67
4.4 Summary . 68

5 Proof-of-Concept Solution 69
5.1 Creating Queryable Objects . 69
5.2 Query Examples . 71
5.3 Discussion on the Quality of the Results 73

6 Conclusion 77
6.1 Summary . 77
6.2 Discussion . 78
6.3 Conclusion . 79
6.4 Future Work . 80

Bibliography 83

Appendix A Musicbrainz Class Graph 87

Appendix B Linkedmdb Classes 89

Appendix C Linkedmdb Frequent Paths 91

viii

List of Tables

2.1 Example collection of RDF triples . 9

3.1 Datasets . 27
3.2 Test on class-based summation graph for Musicbrainz 31

4.1 Example of path statistics . 39
4.2 Max path length for datasets . 56
4.3 Number of class paths per path length for datasets 57
4.4 Test of Linkedmdb using classSampling approach 61
4.5 Test of Musicbrainz using classSampling approach 63
4.6 Test of Musicbrainz and Linkedmdb using proportionalClassSampling

approach . 64
4.7 Test of Linkedmdb dataset using the pathsNotCovered approach 65
4.8 Test of Musicbrainz using pathsNotCovered approach 66

ix

x

List of Figures

1.1 Google Knowledge Graph search result for query "Tim Berners-Lee" . . . 2

2.1 Example of Steiner tree . 6
2.2 BFS and DFS example . 7
2.3 SPARQL query for finding movies directed by James Cameron released in

1984 . 8
2.4 Graph representation of example RDF collection 9
2.5 Bidirectional search example for query "Bowie Queen 1982" 13

3.1 Example of class-based summation graphs 29
3.2 Example community from murder.rdf dataset 34

4.1 Color codes for nodes . 39
4.2 Example showing the overall approach of the algorithm 40
4.3 SPARQL query for randomly selecting seed nodes from a class 41
4.4 SPARQL query for finding nodes at the end of an edge for a startNode . 46
4.5 Example of inclusion of nodes at depth 1 from a seed node 48
4.6 Dense class graph . 50
4.7 Sparse class graph . 50
4.8-4.15 Finding path community example . 51
4.16 Run time for different path lengths . 59

5.1 Excerpt of XML document representing film object Days of Thunder . . . 70
5.2 Excerpt of top two results for query Q1: "the dark knight" 72
5.3 Top result for query Q2: "the dark knight freeman" 73
5.4 Top result for query "lucius fox" . 74

xi

xii

List of Algorithms

1 General greedy local optimization algorithm 28
2 Path-based community detection algorithm 38
3 Algorithm for finding a path community 45
4 Algorithm for updating depth snapshot 47
5 Algorithm for calculating fitness change 49

xiii

xiv

1 | Introduction

1.1 Motivation

The Semantic Web is a term coined by Tim Berners-Lee that encompasses a vision of a
web where computers can understand the meaning of web content and use this to carry out
advanced tasks [2]. Berners-Lee noted that the current web mainly consists of documents
meant to be understood by people, and not information that machines can process. To
provide machines with the power to reason about data, a number of components of the
Semantic Web have been introduced. For this thesis, the Resource Description Framework
(RDF)1 is the most relevant. RDF data is sets of triples that makes assertions about things.
For instance, a triple could be <Tim Berners-Lee isAuthorOf "The Semantic Web">. Tim
Berners-Lee and "The Semantic Web" are things that have the relationship isAuthorOf.
RDF data is often presented as graphs. A more thorough description of RDF follows in
Section 2.2.

While RDF is designed with machines in mind, such structured data is also of interest to
people. However, as is often the case with structured data, exploring it requires knowledge
of not just the data, but also how it is stored and how to query it. Additionally, structured
data requires the user to be exact to get the desired information. In order to remedy this,
keyword search on RDF graphs has been introduced [6, 9, 11, 19, 24, 31, 46]. Keyword
search on RDF graphs aims to increase the usability of RDF data by returning ranked
results. Results are typically substructures (either subtree or subgraph) of the graph. The
goal is usually to find a minimal substructure that covers the input keywords. Current
approaches often build solutions to queries at runtime, which requires indexing approaches
that avoids performance bottlenecks. In this thesis, we claim that the quality of answers
could be improved by finding structures in the graph that corresponds to logical concepts,
rather than minimal solutions.

Google noted, when introducing their Knowledge Graph, that the keywords in a query
are not only strings, they are also things [44]. The goal of search then becomes to return
information about the thing(s) represented in the keywords, not a ranked list of resources
that best matches the strings (words). Therefore, a good answer to the keyword query
"Tim Berners-Lee" is not a list of resources that may or may not have some interesting

1https://www.w3.org/RDF/

1

https://www.w3.org/RDF/

information about him, or the minimum substructure that contains all terms in the query,
but instead information about Tim Berners-Lee; how old he is, what he is famous for,
etc. Google’s Knowledge Graph provides this information directly, and gives a summary
of the most relevant information about him (see Figure 1.1). The Knowledge Graph also
provides links to other objects in the graph, and in that sense it is a realization of a web of
data.

Figure 1.1: Google Knowledge Graph search result for query "Tim Berners-Lee"

Google has the luxury of having a large number of users, and an even larger number of
searches. Through this, they can decide what the most relevant information for a query is
(for instance through user clicks). Lacking a search solution, the most relevant information
must be inferred from the data itself. This can be a hard task. The goal, however, should
be the same: to move the heavy lifting of search from the user to the search system.

1.2 Research Questions

Following the motivation given above, the aim of this thesis is to explore new ways to
improve keyword search on Semantic Web data, that is, RDF graphs. The main research
question that guide the work is:

• How can indexing of RDF graphs be implemented to better support keyword
search and retrieval that corresponds to how human conceptualize the world?

The goal is to develop new methods, or algorithms, that take into account that the infor-

2

mation need in a query can be greater than what a couple of keywords suggest. The idea is
that a query may refer to things, or concepts, where the user has a notion of which pieces
of information constitutes the concept. For instance, the query "Avatar" should return a
result that includes information on who directed the movie, as the concept movie includes
the director as an important attribute. However, in RDF, we may have one node repre-
senting the movie, and another representing the director. The challenge is that the query
"Avatar" match the movie node, but not the director node. Approaches that seeks minimal
solutions will only return the movie node. If we are to present the user with who directed
this movie, we must decide which nodes around the Avatar node should be included in the
answer to the query. This is not trivial to deduce automatically from data. For instance, the
movie may be a realization of a book. Even though both the director and the book could
be just one step away from the movie in the graph, it may be argued that the concept of a
movie is more strongly connected to director than book. This is because all movies have
a director, but not all movies are realizations of a book. In addition, to be a director you
have to direct one or more movies, while books can exists independently of movies. The
fact that humans probably not agree on which building blocks constitute different concepts
only increases the difficulty of the task.

In order to answer the main research question, the following subquestions are addressed:

• RQ1: What is the state of the art for keyword search on RDF graphs?

• RQ2: How can graph theory be used to automatically find concepts in RDF
graphs?

• RQ3: How can automatically found concepts best be indexed to support key-
word search on RDF data?

The review of the state of the art look at both general approaches to keyword search
on graphs and approaches directed specifically towards RDF graphs. Included in the re-
view is a look at current RDF triple stores, and the possibilities for keyword search found
there.

The main goal of this thesis, then, is to explore if it is possible to automatically discover
concepts in RDF graphs. Relevant graph theory is explored to this end. Given the concepts
found by the use of graph theory, we look at how these can be indexed so that keyword
search is best supported.

1.3 Research Approach

The goal of the research is to design new methods, which is consistent with the research
strategy of design and creation. As Briony J. Oates has described, design and creation
is about developing new IT artifacts, including methods and instantiations [35]. In this
thesis, both new methods and an instantiation demonstrating the methods are developed.
Oates describes five stages of the design and creation process: awareness, suggestion,
development, evaluation and conclusion. Our research process follows these stages in
what resembles an iterative cycle.

3

Based on a state of the art review, existing solutions, and ideas emerging from discussions
with the supervisor in the awareness stage, suggestions on new methods are made. Then,
the methods are developed and evaluated, corresponding to the development and evalua-
tion stages. The development includes both a new method and an instantiation of it. The
evaluation is done against existing approaches, and against each other. In the early itera-
tions, the evaluations are carried out in less rigorous fashion than in later iterations. The
goal is to quickly judge if the method in question is worth further development, or if a new
path of development should be explored. Each iteration does not necessarily start with a
fresh approach. It can be a slight adjustment of a previous method. The conclusion stage
of each iteration decides the course of action in the next iteration. Hopefully, the quality
of the methods improves in the course of the iterations. In the end, the most promising
method(s) are reviewed and tested more thoroughly on different datasets. From these tests,
a conclusion on the usefulness of the method(s) is reached.

As the goal of the research is to improve answers to keyword queries that contains human
conceptualizations, the data analysis is partly qualitative. Whether or not director belongs
to the concept movie does not have a clear-cut answer. Studying the datasets and judging if
the returned result is satisfactory can be an interpretative task for the researcher. Informa-
tion retrieval metrics, a quantitative approach, is also employed. In addition, the methods
is evaluated on performance, which is a quantitative analysis.

1.4 Thesis Structure

Chapter 2 provides the necessary theoretical background with regard to graph theory and
RDF. Additionally, a state of the art review for keyword search on graphs, both RDF
graphs and others, is performed. Keyword search capabilities of existing triple stores are
also reviewed.

Chapter 3 describes a preliminary study where existing community detection algorithms
are tested on RDF graphs.

Chapter 4 presents our new community detection algorithm for indexing RDF graphs.

Chapter 5 presents a proof-of-concept search solution utilizing the new algorithm.

Chapter 6 summarizes and discusses the results of our work. A conclusion on the research
questions is reached.

4

2 | Background

2.1 Graph Theory

In this section, relevant concepts and definitions related to graphs are presented. We follow
the definitions and notation from [15].

2.1.1 Definitions

A graphG = (V,E) consists of two sets V andE, where V are vertices (or nodes) andE
are edges. An edge is associated with a set of one or two nodes. Two nodes are adjacent
if they are joined by an edge. If an edge connects a node to itself, we call it a loop. A
multi-edge is a collection of two or more edges with identical node sets. A simple graph
is a graph with no loops or multi-edges. The degree of a node in a simple graph is the
number of neighbors, while it in the general case is the number of edges incident on the
node plus twice the number of loops.

A directed graph is a graph where each of the edges has direction. A directed edge
is directed from one node u (the tail) to another node v (the head). Such an edge is an
ordered pair of nodes, often denoted (u, v). In a directed graph, we may have sources
and sinks. A source is a node with zero indegree, which means that no edges are directed
to it. If a node has no edges directed from it, and thus outdegree zero, it is a sink. In
addition to direction, an edge could also be assigned a weight, creating a weighted graph.
The weight can, for instance, be used to indicate the length of the edge, or the cost of
traversing it.

A walk in a graph is an alternating sequence of nodes and edges,

W = v0, e1, v1, e2, ..., en−1, vn−1, en, vn

such that for j = 1, ..., n, the nodes vj−1 and vj are endpoints of the edge ej . The length
of a walk is the number of edges from the start node (v0) to the end node (vn). The distance
between two nodes is the length of the shortest walk between them. If the initial node is
also the final node in a walk, we have a closed walk. If no edge occurs more than once in

5

a walk and no internal node (all nodes except v0 and vn) is repeated, we have a path. A
closed path with length of at least 1 is called a cycle.

A graph is connected if for every pair of nodes there exists a walk between the nodes.
If we have a graph G and a graph H such that VH ⊂ VG and EH ⊂ EG, then H is a
subgraph of G. An induced subgraph is a graph where VH ⊂ VG, and which contains
all edges in G whose endpoints are in VH . A simple graph is complete, if there for every
pair of nodes exists an edge that joins them. If a subgraph is complete, we call it a clique.
For some purposes, cliques are required to be maximal, that is, no nodes can be added to
it and still keep it a clique.

A graph is dense when the number of edges is close to |V |2 and sparse when the number
of edges is much less than |V |2. The density D(G) of a simple undirected graph G is
given by

D(G) =
2|E|

|V |(|V | − 1)
(2.1)

A tree is a connected graph with no cycles. If a tree, produced from a graph, connects
all nodes in the graph with minimum total edge weight, we call it a minimum spanning
tree. A Steiner tree is a tree of minimum weight which connects a set of nodes. This
set of nodes, called terminals, is a subset of V . If the subset consist of two terminals, the
problem of finding a Steiner tree is equivalent to finding the shortest path between the two.
If the subset is equal to V , the problem is equivalent to finding the minimum spanning tree.
The requirement for a Steiner tree is that it contains all the terminals, but it can contain
additional nodes from the graph not in the terminals set. It is also allowed to construct
connections points that reduce the cost. Non-terminals that are constructed or added are
called Steiner points. Figure 2.1 shows an example of a Steiner tree for the terminals set
{u, x, z} which includes the Steiner points {v, w}. The minimal Steiner tree problem is
NP-complete [22].

(a) Example graph (b) Steiner tree

Figure 2.1: A weighted graph and a Steiner tree for the terminals set {u, x, z}

6

2.1.2 Graph Traversal

Breadth-first search

Breadth-first search (BFS) traverses the graph from a start node by visiting all nodes at
depth d before visiting the nodes at depth d + 1. Depth is the number of edges from the
start node. Implementations of the algorithm often uses a queue, initialized with the start
node, to hold unexplored nodes. As long as the queue is not empty, the first node of the
queue is removed from the queue and explored for neighboring nodes. The neighboring
nodes that are not already explored are added to the queue, so that all nodes at depth d+1
are behind the nodes at depth d in the queue. BFS has time complexity O(|V | + |E|) for
a graph G = (V,E). Another way of describing the run time of BFS is O(bd), where b is
the branching factor (the number of neighboring nodes of each node). Figure 2.2a shows
an example of BFS.

BFS is the basis of other algorithms, one of which is Dijkstra’s single-source shortest-
paths algorithm. This algorithm finds the shortest path from a source to all other nodes
in a graph [10]. It may be seen as a generalization of BFS, since BFS find the shortest
paths if all edges have weight 1, while Dijkstra’s algorithm works for all nonnegative edge
weights. The time complexity is O(|E| + |V | log |V |), which is worse than BFS because
a priority queue is needed instead of a regular queue, so that unvisited nodes can be sorted
in ascending order of total edge weight.

Depth-first search

Depth-first search (DFS) repeatedly explores an edge incident to the most recently visited
node that still has unexplored edges. Thus, instead of newly discovered edges finding their
place at the end of the queue like in BFS, they are pushed to the top of the stack. Again,
the time complexity for traversing the graph isO(|V |+ |E|). An example of DFS is shown
in Figure 2.2b, and can be compared to the BFS approach.

(a) Breadth-first search (b) Depth-first search

Figure 2.2: Example of BFS and DFS from start node v. Numbers indicate order of discovery.
Nodes are visited alphabetically if otherwise equal.

7

2.2 RDF

RDF is a data model used to represent subject-predicate-object triples, where a predicate
describes a relationship between the subject and object [11]. Table 2.1 shows an example
collection of RDF triples, also called statements. A triple collection forms a directed,
labeled graph, with subjects and objects as nodes, and predicates as edges. The graph
representation of the data in Table 2.1 is shown in Figure 2.4. An RDF graph can contain
both loops and multi-edges, and is therefore not a simple graph.

RDF graphs have some special characteristics that need to be taken into account. As can
be seen from the graph in figure 2.4 and the table of RDF data, there are different kinds
of nodes in RDF. The W3C1 notes that are three kinds of nodes: IRIs2, literals and blank
nodes [47]. IRIs and literals are resources, that is, something that exists in the world.
While IRIs are referents (typically an URL), literals contain data with a data type (such
as string or date) and a defined range. Blank nodes do not refer to resources, and are
used to state that a relationship exists without having to name it. An important feature of
RDF graphs are the labeled edges. An edge carry information that can be used to interpret
the nodes which it joins. In the example dataset we have the literal node 2009, which is
connected to the IRI node for the movie Avatar. Without knowing that the label on the
edge is "year_of_release", the value of 2009 can be interpreted differently. It could, for
instance, have been the length of the movie measured in seconds, or it could have been the
income the movie made in million dollars.

Querying an RDF graph is usually done by matching triple patterns using the standard
RDF query language SPARQL3. For instance, to find the names of movies directed by
James Cameron released in 1984, the SPARQL query would be:

SELECT ? movie
WHERE {

? movie y e a r _ o f _ r e l e a s e 1984 .
? movie d i r e c t o r ? d i r e c t o r .
? d i r e c t o r name " James Cameron "

}

Figure 2.3: SPARQL query for finding movies directed by James Cameron released in 1984

The "?" indicates variables that can take on any value that match the given triples. In this
case, the "?movie"-variable needs to have a year_of_release literal with value 1984 and
a director relationship. The object of the director relationship is denoted by the variable
"?director" and needs to have a name literal with value "James Cameron".

1The World Wide Web Consortium. A community that develops open standards on the web.
2Internationalized Resource Identifiers : https://tools.ietf.org/html/rfc3987
3https://www.w3.org/TR/sparql11-overview/

8

https://tools.ietf.org/html/rfc3987
https://www.w3.org/TR/sparql11-overview/

Table 2.1: Example collection of RDF triples

Subject Predicate Object

film/terminator name "The Terminator"
film/terminator year_of_release 1984
film/terminator rdf:type Movie
director/cameron director film/terminator
director/cameron director film/avatar
director/cameron name "James Cameron"
director/cameron rdf:type Director
Director rdfs:subClassOf Person
film/avatar name "Avatar"
film/avatar year_of_release 2009
film/avatar rdf:type Movie

Figure 2.4: Graph representation of example RDF collection

9

2.2.1 RDF Schema

RDF Schema (RDFS)4 is an extension of RDF that provides a vocabulary for data mod-
eling the RDF data. RDFS is a somewhat lightweight version of an ontology language.
An ontology language defines concepts and relationships in some area, and can be quite
formal. The language facilitates inferring for machines, and is thus an important part of
the vision of the Semantic Web. In the Semantic Web, OWL 25 is the standard ontol-
ogy language. RDFS is less formal than OWL 2, but provides the possibility to describe
classes and properties, and their domain and range. A class is stated using the rdf:type
property6. Resources of a particular class are instances of that class. In Figure 2.4, Ter-
minator and Avatar are instances of the class Movie, while James Cameron is an instance
of Director. Classes can have subclasses. The property rdfs:subClassOf is used to state
that all instances of one class are also instances of another. In the example, we see that
Director is a subclass of Person, which implies that James Cameron is an instance of the
class Person.

2.3 General Approaches to Keyword Search on Graphs

The problem of keyword search on RDF graphs can be generalized to the problem of
keyword search on any graph: based on input query keywords, one or more substructures
(subgraphs or subtrees) containing some or all of the keywords are returned [21]. Different
proposed solutions often follow the same idea: to match query keywords to elements in
the graph and create substructures based on connections between these elements [46]. A
scoring function is then used to find the top-k answers to the query. Typically, smaller
results are preferred, for instance minimal Steiner trees. As we saw in Section 2.1, a
Steiner tree is a minimum spanning tree for a set of terminals, which may include non-
terminals. For the keyword search problem, terminals can be nodes matching the query
keywords, and the non-terminals can be roots or other nodes in the answer trees used to
connect the keyword matching nodes. Since finding minimal Steiner trees is NP-complete,
using polynomial approximation algorithms is often suggested. However, some of these
algorithms require an examination of the whole graph, which may be both unnecessary
and expensive [20]. Thus, approaches to keyword search on graphs often seek to explore
as small a part of the graph as possible.

Many different kinds of data can be modeled as graphs. Relational data can be modeled as
graphs, with tuples as nodes and edges corresponding to foreign key relationships. XML
data is often represented as a tree with a root, but since XML documents can be linked
together by IDREF/ID links they can also form graphs.

An approach to keyword search over XML documents was presented by Guo et al. [16].
In their system, XRANK, is a result of a query an XML element, not the entire document.
The result XML element is the most specific result that contains all the query keywords.

4https://www.w3.org/TR/rdf-schema/
5The Web Ontology Language: https://www.w3.org/TR/owl2-overview/
6The prefix rdf refers to the namespace http://www.w3.org/1999/02/22-rdf-syntax-ns#

10

https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/owl2-overview/
http://www.w3.org/1999/02/22-rdf-syntax-ns#

Specific refers to the requirement that the XML element does not contain any subelement
that also contains all the query keywords. Since the result of a query could be very specific
and lacking context, XRANK supports user navigation to ancestors of the element and also
the possibility for predefined answer nodes. Predefined answer nodes could ensure that a
XML element such as <title> is always returned with its parent to provide context. The
authors note that the creation of such answer nodes may require domain experts.

XML documents have a hierarchical structure that make them different from keyword
search over HTML documents. In HTML documents, the distance between keywords is
essential, while in XML it is also important to view the ancestor distance, that is, the
height of the XML tree. Two keywords may be inside a common XML element, but one
of them may be a direct child of the element, while the other may be far down in the
hierarchy. While the keyword distance between them could be small, the ancestor distance
could be large. Due to this, XRANK ranks more specific results higher than less specific
results.

Liu and Chen [27] addressed the problem of returning meaningful results for keyword
search on XML documents. They argued that the most specific match to a query is not
always the most informative. By analyzing the XML data structure and the keyword match
patterns, they seek to identify return nodes. Their approach starts by finding what they
call VLCA (variant of lowest common ancestor) nodes. These are nodes whose subtree
contains at least one match to every keyword. In their system, XSeek, they distinguish
between nodes representing entities, and nodes representing attributes. To infer which
nodes belongs to which category, they use heuristics. Specifically, they state that if a node
has a one-to-many relationship with other nodes of name n, then n is most likely entity
nodes. If a node has only one child, this child is most likely an attribute. Nodes that have
neither of these characteristics, are connection nodes.

In addition to analyzing the XML data structure, XSeek also looks at keyword match
patterns. In particular, they are interested in classifying keywords as search predicates or
return nodes. Search predicates are keywords that restrict the search (similar to the where
clause in SQL), while return nodes are keywords that state the desired output of the search
(similar to the select clause in SQL). An input keyword k1 is classified as a return node
if the keyword matches a node name u, and if there do not exists an input keyword k2
matching a node v such that u is an ancestor of v. If this requirement does not hold, the
input keyword indicates a predicate.

Based on the analysis of the XML data structure and the keyword match patterns, search
results are outputted. Both matches to return nodes and search predicates are outputted.
The search predicates output the paths from a VLCA node to its descendant predicate
matches. The return nodes are displayed on the basis of category; entity, attribute or con-
nection node. For entity or connections nodes, all attribute children are outputted together
with links to child entities. This is done to limit the search results and increase the user
friendliness. Attribute nodes are outputted as name and value.

Qin et al. [40] propose a technique for keyword search on relational databases. Given a
set of keywords, they find induced subgraphs that contain all keywords within a given dis-

11

tance. They call the induced subgraphs for communities7. The authors observe that finding
minimal connecting trees can result in many answers, and answers that miss important in-
formation. Three types of nodes are described: (1) keyword nodes, which are nodes that
matches a keyword; (2) center nodes, which are nodes that connect to every keyword node
within a given radius (shortest path distance); (3) path nodes, which are additional nodes
that appear on a path from a center node to a keyword node. A community is a directed
graph with multiple center nodes. The authors argue that communities can give fewer and
more informative answers to queries.

Another solution for keyword search on relational databases was proposed by Hristidis
and Papakonstantinou [18]. Their DISCOVER system defines a solution to a query as
minimal joining sequences of tuples. The joining of tuples happens from foreign keys in
one table to primary keys in another table. Shorter sequences (that is, fewer number of
joins) are considered better. If more than two keywords are present, the sequence may be
representing as a network or tree of tuple joins. A maximum number of allowed joins is
supplied by the user. The result of a query is a set of joining networks that are total (each
keyword is contained in the network) and minimal (no tuple can be removed so that the
network is still total).

Bhalotia et al. [3] presented an algorithm for graphs in general that searches backwards
from a set of node sets, S, containing keyword matching nodes. S contains as many node
sets as there are keywords, where Si contains nodes relevant for the keyword term i. The
backward search algorithm starts from each node in S and runs Dijkstra’s shortest path
algorithm concurrently from all. The graph in question is directed, and the algorithm
traverses edges backwards from each start node. A result of a search is a rooted directed
tree, where the root is a common node that has a path to at least one node in each node set
in S. Each run of Dijkstra’s algorithm has an iterator. At each iteration of the algorithm,
one of these iterators is picked to expand one step further backwards. This selection is
done based on the iterator whose next node has the shortest path to its source node. After
this node is explored, the intersection of node lists for all the iterators is found. If there
exists some common node(s) that reach all keywords, a result is found.

The backward search approach may explore an unnecessary large part of the graph if the
keywords match many nodes, or if an iterator reaches a node with many links to other
nodes. Kacholia et al. [20] therefore proposed a bidirectional search algorithm. This ap-
proach uses only one iterator, called an incoming iterator, for the backward search. When
deciding which node to visit next, the incoming iterator prioritizes the node with highest
spreading activation. Spreading activation is based on edge weights and the number of
links to other nodes, and not shortest path as in the backward search algorithm. The fewer
links, the higher activation is spread from a node to its neighbors. Each node spreads a
fraction of its received activation to its neighbors, and divides it in inverse proportion to the
weight of the edge. This gives lower activation scores to nodes far away from a keyword
node, and to nodes with many neighbors. The activation for a node is initialized based on
the number of nodes in Si, so that node in a node set with few other nodes gets higher
initial activation than nodes in larger node sets.

7Note that this is not the same as the community concept we describe in Section 3.1. For this thesis, commu-
nity/communities will always refer to the graph theory concept presented later, except in this paragraph.

12

As the name indicates, the bidirectional algorithm searches in both directions. Thus, in
addition to having an incoming iterator for backward search, an outgoing iterator is also
employed. The outgoing iterator starts forward search from potential roots. Potential roots
are the nodes reached by the incoming iterator. The outgoing iterator also uses spreading
activation to decide which node to visit next. Nodes close to the potential root get higher
activation, again by dividing it with inverse proportion to the edge weights. The distance
from an explored node to each keyword node is kept and updated. When a node has paths
to all keyword nodes, an answer tree can be built.

To illustrate the difference between backward and bidirectional search, we show an exam-
ple in Figure 2.5 which is developed from an similar example in [20]. Let the query be
"Bowie Queen 1982". We see that the answer tree will be rooted at the "Under pressure"-
node. The dotted arrows indicate the steps in the search. The red node set match the query
word "1982", while "Bowie" (green node) and "Queen" (blue node) match a single node
each. The backward search would start an iterator from each of the colored nodes. If we
assume the distance between each node to be 1, all the albums of David Bowie would
have to be visited before we can start exploring the tracks and find the "Under pressure"-
node. For the bidirectional search we would start considering nodes "Queen" and "David
Bowie" because the "1982"-nodes are in a larger node set and therefore have lower acti-
vation. Spreading the activation will cause "Hot space" to have higher activation than the
other album nodes, because the activation from "David Bowie" will be spread across all his
albums, while the activation from "Queen" solely goes to "Hot space". Step 1 in the search
is therefore from "Queen" to "Hot space". From "Hot space", we iterate backwards to find
"Under pressure" (Step 2) and forwards to find the "David Bowie"-node (Step 3). From
"Under pressure" we can iterate forward to find a "1982" node (Step 4). Then all node
sets are covered, and we have a result tree with root "Under pressure". With bidirectional
search we only have to explore one album, while with backward search we must explore
all albums because we have no concept of different importance of nodes.

Figure 2.5: Bidirectional search example for query "Bowie Queen 1982"

The approach of He et al. [17] is to partition the graph into subgraphs, or blocks, and have
an index that stores a summary of the information found in the block. In order to avoid

13

some of the performance drawbacks of other approaches to keyword search on graphs, the
authors argue that indexing the content of nodes is not sufficient. They propose to index
information on the structure of the graph, in particular the shortest paths between nodes.
Their system, BLINKS, provides efficiency by having summary information at each block
so that navigation between blocks is faster, and by having more detailed information inside
each block. This use of an index makes it possible to make jumps during search, instead
of having to step-by-step expand an answer tree like the backward and bidirectional search
approaches. The index at block-level also narrows the starting point for expansion as only
the relevant blocks are considered (that is, those that contain the keywords in question).
An answer to a query is a subtree, where the root reaches all the input keywords. To avoid
similar answers, they follow the distinct-root assumption. This assumption ensures that the
top-k answers have distinct roots. When ranking the answer subtrees, the shortest paths
from the root to the nodes containing the keywords are used, in addition to information
retrieval (IR)-style scores for matching nodes.

Instead of finding trees, Kargar and An [21] propose a general method for finding top r-
cliques in a graph. An r-clique is a set of content nodes that cover all of the input keywords,
and where the distance between two nodes is equal to or smaller than r. Content nodes are
nodes that contain one or more input keywords. By only considering the content nodes, the
graph to explore is significantly reduced. The concept of r-cliques ensures that the content
nodes are close to each other, which should give more informative answers than other
approaches. When searching for r-cliques, the graph is divided into subgraphs (search
spaces), and the best answer from each subgraph compete with each other to find the best
answer. The best answer is the set of content nodes for which the sum of distances between
them is the least, and where all distances are less than or equal to r. To find the second best
answer in the next step, the subgraph where the current best answer was found is searched
using the same procedure of dividing the graph. The answers found in these subgraphs
compete with each other and the leftover answers from the previous step. A priority queue
is used, where the answers are ranked in ascending order according to their weights. The
top answer is removed from the queue and outputted as answer, and its corresponding
subgraph divided and searched for new best answers. When the queue is empty (which
would happen because not all subgraphs contain a best answer), the procedure of finding
answers is done. The answers are presented as Steiner trees to the user. From the r-cliques
found, a Steiner tree from the input graph is found that connects all the content nodes in
the r-clique.

Sozio and Gionis [45] define the community-search problem. This problem concerns find-
ing communities in a graph given a set of query nodes. The goal is to discover subgraphs
in the graph on the basis of which nodes a query match. The subgraphs should be densely
connected. In contrast to community detection algorithms (which we review in the next
chapter), this approach does not find communities only from an input graph, but also uses a
set of query nodes. Their algorithm is a greedy algorithm that starts with the whole graph,
and then, in each iteration, removes the node with minimum degree. The termination con-
dition is fulfilled when the node with minimum degree is in the set of query nodes, or when
the removal of a node results in the query nodes no longer being connected.

14

2.4 Keyword Search on RDF Graphs

2.4.1 Characteristics of RDF Graphs

RDF graphs have some characteristics that make the general approaches described above
less suitable. This particularly concerns the edges. While edges in the general graph
case are treated as unlabeled and weighted, RDF edges (or predicates) are labeled and
not weighted [24]. In RDF, the edges denote relationships between nodes and carry in-
formation that can be important to take into account when doing keyword search over the
graph. As two nodes may be connected by multiple edges, distinguishing between the
edges by inspecting the labels gives valuable information about the relationship between
the nodes.

Edges are not weighted, as two individual nodes either have a relationship (represented by
a edge), or not at all. In RDF, it does not make sense that two nodes should be connected
twice (or more) by the same relationship, since this would just be redundant information
(two persons connected by one isSiblings-relationship are not less siblings than two per-
sons connected by two isSiblings-relationships). Two nodes may have a number of edges
connecting them, but this represents different relationships, and cannot necessarily be in-
terpreted as a measure of how tightly connected the two nodes are. The nature of the
relationship (that is, the information found in the edge labels) is also important to take into
account.

While RDF graphs often are described, correctly, as directed, the direction of edges do
not carry that much meaning, as they usually are invertible [19]. That is, a isStudentAt-
relationship might as well be expressed as a hasStudent-relationship (with switched object
and subject) without changing the nature of the relationship between a student and a uni-
versity. The matching triple pattern of SPARQL also makes the direction less meaningful,
as one can match a variable just as easily to a subject as an object.

In addition to this, it should be mentioned that RDF graphs may be very large. Indeed, the
vision of the Semantic Web is to create a web of linked data8, and the bigger, the better.
Even subsets of RDF data can be very large, and this should be taken into account when
creating index and search algorithms.

2.4.2 Approaches to Keyword Search on RDF Graphs

To avoid the problem of dealing with too large RDF graphs when searching, a number of
proposed solutions creates a summary of the graph in the indexing phase. The approach
of He et al. [17] described above is an example of this. However, the special nature of the
labeled, unweighted edges in RDF graphs is not taken into account there, as they focus on
node-labeled graphs. In addition, their indexing scheme requires a lot of data to be stored,
which is a problem when dealing with large graphs [8, 24] .

8https://www.w3.org/standards/semanticweb/

15

https://www.w3.org/standards/semanticweb/

A specific RDF approach by Le et al. [24] makes use of the structure of RDF data, where
an entity typically has a class and a number of connections to literals. Based on this, a
condensed graph is created, where a node consists of the entity value (an URI), the class,
and the associated keywords found in the literals. In line with [17], the condensed graph
is partitioned so that it is possible to quickly prune parts of the graph that are uninteresting
for the search. Then, backward search is employed on the most promising subgraphs.
Each of the partitions have a minimal set of class-based structures that summarizes the
partition, which are used in the pruning process. The summary allows for computing
upper and lower bounds on distance traversed by a backward search, which can be used
to find the most promising partitions (those with least probable distance to traverse). The
search is performed on two levels: first, the summary-level is backward searched for the
most promising connected partitions that contains all keywords, and then those partitions
are searched with backward expansion.

Tran et al. [46] propose an approach that produces top-k query candidates based on the
input keywords, and then presents the candidates to the user. A keyword index is held in
the graph, and permits mapping from the keywords to elements in the graph. Based on
this mapping, subgraphs are found, and queries to obtain these subgraphs are produced by
mapping nodes to objects and subjects, and edges to predicates. This means that the results
can be graphs, and not only trees as in other approaches. Traditional tree-exploration algo-
rithms such as breadth-first search, backward search, or bidirectional search are therefore
not sufficient. The input keywords are mapped to elements in the RDF graph, before a
connecting element is found. This connecting element is an element that is connected to
all keyword elements either directly or through some path. The subgraph is constructed
using the connecting element and paths to the keyword elements. The keyword index
utilizes IR-techniques (for instance stemming and stop word removal) to find keyword
from elements in the graph, and additionally uses WordNet9 to fetch semantically similar
words. In order to find query candidates fast, an augmented summary graph is created
with information on the elements and structure of the graph. In the augmented summary
graph, every node is an aggregation of all nodes having a specific class, and the edges are
connections between instances of the classes. At query time, the summary graph is aug-
mented with keyword matching elements (which are edges between entity and data nodes,
or data nodes themselves). The augmented summary graph contains sufficient information
to build query candidates. When building query candidates, the objective is to find mini-
mal subgraphs that include at least one occurrence of each query keyword. The candidate
query is a conjunction of all predicates in a given subgraph.

The approach of Elbassuoni and Blanco [11] returns a ranked list of answer subgraphs.
Each triple in the graph is indexed in an virtual document. This document contains a set
of keywords extracted from the subject, object and predicate. The index is used to find
matching triples, which are then joined with other triples to form subgraphs which are
unique and maximal. That is, no retrieved subgraph is a subset of any other retrieved
subgraph. The subgraphs are ranked using a statistical language model, which tries to
interpret the information need in the query. Their model find the most likely triple-pattern
query by examining the data and finding which triple patterns the keywords often appear

9A lexical database for English: https://wordnet.princeton.edu/

16

https://wordnet.princeton.edu/

in. The subgraphs returned as answers in this approach does not necessarily contain all
keywords in the query.

Cappellari et al. [6] index the RDF graph by paths. In particular, they are interested in
edges and sinks in the graph, as the keywords entered by users most likely will refer to
the information found there, and not in the URIs. The paths they are examining are full
paths, meaning that they start from sources and ends in sinks. After discovering the paths,
they are grouped together in clusters if they share the same template. A template is a
sequence of edge labels. As an example, a template could be #-author-#-type-#, where
author and type are edge labels. Nodes are stored with reference to the path template they
match, and their position in the template. In the example, there are three possible positions
(denoted by #). The solution subgraphs are built by intersecting promising paths (those
with highest score) from the clusters [9]. This is based on matches to nodes, and in turn
which templates these nodes match. The scoring function takes into account the length of
the path(s) in a subgraph (either the candidate paths or the solution subgraphs), and the
relevance of the information in nodes and edges with regard to the query. For relevance, a
variant of TF/IDF10 is used.

The SemSearch system of Lei et al. [26] transforms input keywords to formal queries. In
order to do this, the system interprets the semantic meaning of the keywords. A keyword
can match a concept (classes), semantic relations between concepts, or entities. Predom-
inantly, the labels of entities are searched for keyword matches. Based on what the key-
words match, different formal query templates are employed. For instance, if there are two
keywords that match classes, we can expect the results to be instances of one class con-
nected to instances of the other class. The predefined templates are used and ran against a
semantic data repository. Finally, the system ranks the results.

Ning et al. [34] developed a keyword searching model that finds minimal connected sub-
graphs in an RDF graph, so that all input keywords are covered. This is similar to some of
the approaches to keyword search on general graphs, but here particular concern is given
to the problem that there are many potential answers on a large data graph, which RDF
graphs often are. To limit the answers, only the top-k results are returned. These are ranked
based on cost: smaller cost is better. The cost is calculated based on edge weights. The
top-k results are built by first creating groups of nodes for each keyword. Starting from
a node in a group, nodes are added to the answer trees based on shortest path to nodes
who belong to groups not already represented in the tree. When all groups (and thus all
keywords) are represented in the tree, it is added to a result queue which is ordered by
cost. This process is repeated for all nodes in the chosen start group. The top-k results are
outputted.

Cheng and Qu [7] propose to create virtual documents for each linked data object. A
virtual document includes textual descriptions of objects linked to the given object, and
the name of the links. An inverted index is built from the terms in each object’s virtual
document. Snippets from the RDF descriptions which highlights matched input keywords
are provided in the search interface, so that the user quickly can decide if the results are
relevant. The ranking is performed based on how well the object matches the keywords,

10term frequency/inverse document frequency. A measure of the importance of a word in a collection.

17

and also how popular the object is.

An approach to offering full-text search capabilities to RDF data is using existing informa-
tion retrieval techniques. Minack et al. [31] propose to introduce full-text search in RDF
storage systems by utilizing Lucene11, a text search library, combined with Sesame12, a
framework for storage, inference and querying of RDF data. Their approach is to maintain
and use the existing query language parser of Sesame by combining the full-text query with
the structured query. The authors identify two indexing strategies for mapping RDF data
to Lucene documents: one where a Lucene document represents a resource and another
where a Lucene document represents a triple. They chose the resource-based approach.
The Lucene document have the fields: URI, all (all literals of a resource), and one for each
predicate where the object is a literal. Using Lucene, score and snippets can be returned
as results along with triples.

2.5 Keyword Search in Triple Stores

The approach of Minack et al. described in the previous section introduced full-text search
into SPARQL queries. A number of triple stores also supports keyword search. In the
following section, we describe some of the most well-known triple stores and their capa-
bilities in this regard. Apache Lucene or Solr13, or in some cases both, are used to index
the text.

Apache Jena

Apache Jena supports keyword search through Lucene or Solr14. The indexed data could
be either literals from the RDF data or external content. Most commonly, a property is
mapped to a text index field, but multiple properties per URI is possible. Lucene can
be configured with different analyzers and tokenizers. Results are a list of resources. The
index do not support combining triples to larger index entities. If one want a more informa-
tive answer, SPARQL triple matching can be used together with the keyword query.

Blazegraph

Blazegraph offers keyword search by tokenizing literals to create an index15. An analyzer
from Lucene is used to do this. The created index is a B+-tree, which makes retrieval fast.
The results are ranked according to relevance.

11http://lucene.apache.org/core/
12Now called rdf4j: http://rdf4j.org/
13Search platform built on Lucene. http://lucene.apache.org/solr/
14https://jena.apache.org/documentation/query/text-query.html
15https://wiki.blazegraph.com/wiki/index.php/FullTextSearch

18

http://lucene.apache.org/core/
http://rdf4j.org/
http://lucene.apache.org/solr/
https://jena.apache.org/documentation/query/text-query.html
https://wiki.blazegraph.com/wiki/index.php/FullTextSearch

The external keyword search option is more sophisticated, allowing a search to be directed
to an Apache Solr index running externally. Results returned from Solr are either set to
be URI or literal. The Solr index could for instance consists of JSON documents which
correspond to literals in some RDF data (not necessarily data stored in Blazegraph).

Virtuoso

Virtuoso supports keyword search through indexing of object values16. The search capabil-
ity is added to the SPARQL query through the bif:contains predicate. This predicate enable
free text search on variables in a query. Which triples should be indexed is configurable
through indexing rules. These rules are manually decided by the user. The object value
needs to be a string to be indexed. An example of an indexing rule is a rule that indexed
all triples that match a specific predicate (for instance, https://www.w3.org/2000/01/rdf-
schema#label).

AllegroGraph

AllegroGraph supports indexing either natively or through Solr17. The native indexer could
be built to include none, some or all literals, and none, some or all parts of URIs, or a
combination of different parts of a triple. Some filters are provided: stemming for English,
removal of accented characters, and the opportunity to index words by how they sound
rather than how they are spelled. Fuzzy matching using the Levenshtein distance18 is
supported in the search, as are wildcards.

The Solr indexer runs separately from AllegroGraph, which means that it is slower than
the native indexer and that the user needs to make sure it is kept in sync. Solr provides
more features than the native indexer, such as different languages and relevance rank-
ing19.

GraphDB

GraphDB from Ontotext provides keyword search through Lucene20. Since Lucene pro-
vides search on text documents, the RDF graph must be turned into a number of text
documents. This is done by each node being associated with an RDF molecule and stored
as a text document. The user has to configure how the RDF molecule is built. Differ-
ent parameters can be used to configure an RDF molecule: what types of nodes to index
(URIs, literals, blanks), the size of the molecule associated with a node (that is, how many

16http://docs.openlinksw.com/virtuoso/rdfsparqlrulefulltext/
17http://franz.com/agraph/support/documentation/current/text-index.html
18A measure of difference between two strings
19See http://franz.com/agraph/support/documentation/current/solr-index.

html for a more comprehensive list
20http://graphdb.ontotext.com/documentation/free/full-text-search.html

19

http://docs.openlinksw.com/virtuoso/rdfsparqlrulefulltext/
http://franz.com/agraph/support/documentation/current/text-index.html
http://franz.com/agraph/support/documentation/current/solr-index.html
http://franz.com/agraph/support/documentation/current/solr-index.html
http://graphdb.ontotext.com/documentation/free/full-text-search.html

predicate hops from the node we should go), and what should be included in the molecule.
In addition, alternative Lucene analyzers and scorers can be employed. The search returns
ranked results of URIs, literals and blank nodes, depending on what was chosen to be
indexed.

The GraphDB Lucene connector21 provides another way to do keyword search. Here, a
list of types can be given to state which entities are to be synchronized. The fields to index
are given through property chains, which typically end in literals. It is possible to have
multiple property chains per field. The result of a search is a ranked list of entities, but the
query can be combined with SPARQL triple matching to give more informative results.
Property chains are manually configured by the user.

2.6 Summary

We have presented approaches to keyword search from the research angle, and described
actual implementations in triple stores. With regard to our research questions, we find that
most approaches seek minimal solutions to keyword queries. This goes for the implemen-
tations of keyword search as well, as solutions to a query typically is a list of resources,
not larger graph structures. In some cases, larger structures are supported, but these has to
be defined manually.

We therefore find that our target of automatically finding RDF graph structures that corre-
sponds to human conceptualizations of the world, is something not previously addressed.
In the following chapter, we will explore how we can achieve this target.

21http://graphdb.ontotext.com/documentation/free/lucene-graphdb-connector.
html

20

http://graphdb.ontotext.com/documentation/free/lucene-graphdb-connector.html
http://graphdb.ontotext.com/documentation/free/lucene-graphdb-connector.html

3 | Preliminary Study

The crucial part of the main research question is to automatically find concepts in RDF
graphs that corresponds to how humans conceptualize the world. This goal could be trans-
lated into the more specific task of grouping nodes in an RDF graph that somehow "belong
together". Such groups of nodes have been given different names, of which the most usual
are clusters, communities and modules [12]. The different choice of words is also reflected
in what the algorithms for finding these node groups are called, namely clustering, commu-
nity detection and modularity optimization. In general, data clustering is concerned with
grouping data elements based on a similarity measure, while graph clustering is concerned
with grouping nodes based on the edge structure [43]. When we refer to clustering here,
we are referring to graph clustering, which we understand as equivalent to community de-
tection. Modularity optimization tries to optimize the modularity measure. Modularity is
the number of edges falling within modules minus the expected number in an equivalent
graph where edges are placed at random [33]. An equivalent graph is a graph with the
same structural properties, for instance the same number of edges and/or the same degree
distribution [12]. Modularity optimization seeks to find the division of the graph that is
furthest away from what could be considered random.

The use of different terminology may be rooted in the fact that the study of graphs - some-
times called networks - is spread across a number of disciplines, such as math, computer
science, biology, sociology, physics and more. In this thesis, we mainly stick to the termi-
nology of community and community detection.

A related concept is that of graph partitioning. The goal of graph partitioning is usually to
find a division of a graph such that minimal communication between the partitions occurs
[33]. Minimal communication may for instance be achieved by minimal number of edges
between partitions, or minimal cost of the edges crossing partitions. A difference between
this and community detection algorithms, is that graph partitioning often require a parti-
tion of the graph with a predefined number of partitions [12], while community detection
algorithms only creates a partition if it fulfills some quality measure. One problem that
is often solved by graph partitioning is that of parallel computing, where the number of
computers is known in advance. Graph partitioning algorithms are therefore not relevant
in our case, since we do not know the desired number of partitions for a given graph in
advance.

21

3.1 Community Detection

The definition of the term community is somewhat unclear [48, 50], but it is often in-
formally described as a set of nodes with more internal connections and fewer external
connections [1, 12, 25]. Yang and Leskovec [50] distinguish between structural and func-
tional definitions of communities, where the structural definition is based on connectivity
between nodes, and the functional definition is based on the idea that nodes in an com-
munity share a common function. They argue that the premise underlying community
detection algorithms is that functional communities have structure, and that finding these
communities can be achieved by examining the graph structure.

Some research on community detection identifies only disjoint communities, that is, a node
belong to one, and only one, community. In this thesis, we look at the research concerned
with identifying overlapping communities. This is because we find the Semantic Web best
described as a set of overlapping and connected RDF graphs, where a resource can belong
to multiple communities.

3.1.1 Overlapping Community Detection

A number of algorithms for detecting overlapping communities have been proposed. Xie
et al. [48] provide an overview of the state of the art, identifying five categories based
on different approaches. The categories are: clique percolation, line graph and link par-
titioning, local expansion and optimization, fuzzy detection, and finally, agent-based and
dynamical algorithms.

Clique percolation methods finds communities by identifying adjacent cliques. Palla et
al. [37] define a community as the union of all cliques of size k that can be reached through
adjacent k-cliques. If cliques share k − 1 members, they are adjacent. Algorithms in this
category are suited for dense graphs, as sparse graphs most likely do not contain many
cliques.

Line graph and link partitioning algorithms use links instead of nodes as building blocks
for a community. Ahn et al. [1] state that the link approach can reveal both the overlapping
and hierarchical structure in a graph. Their intuition is not that a community consists of a
group of nodes, but that it consists of interrelated links. By clustering the links based on
link similarity, they build a dendrogram which can be cut at different thresholds to produce
communities. Link similarity for links eik and ejk, which share the node k, is

S(eik, ejk) =
|n+(i) ∩ n+(j)|
|n+(i) ∪ n+(j)|

, (3.1)

where n+(i) is the set of node i and its neighbors, and n+(j) the set of node j and its
neighbors. A node have membership to the communities that its links belong to. Each link
can only belong to one community, but because nodes can have multiple links, they can
belong to multiple communities.

22

Local expansion and optimization algorithms try to grow communities naturally. One
method is to find some seed nodes to expand from. Given a local fitness function, a com-
munity can be grown from the seed node by judging if neighboring nodes improve the
function. When no node can be added to improve the fitness, a community has been found.
Some of the algorithms allow for removing nodes at each step, if the removal would in-
crease the fitness of the community. The fitness function FC , for community C, from [23]
is

FC =
kCin

(kCin + kCout)
α
, (3.2)

where kCin is the internal degree, and kCout is the external degree. kCin is the number of
internal links in C multiplied by 2 (to account for the fact the a link connects two nodes),
while kCout is the number of edges that cross the community boundary. The parameter α
is used to control the size of the community; lower values yields larger communities. The
authors in [25] suggest values between 0.9 and 1.5.

There are different approaches to choosing seeds. Lee et al. [25] use maximal cliques
as seeds. Their argument is that cliques are typical components of communities, and that
they are rare structures. The choice of cliques as starting point for community detection
implies that all found communities includes a clique. Thus, strongly connected parts of the
graph that resembles a community is not found unless they contain a clique. The authors
argue that the clique requirement are not too strong, and points to benchmark testing.
After finding all maximal cliques, the largest unexpanded seed is chosen and greedily
expanded as long as the fitness increase. If a detected community is a near-duplicate
of an already found community, the detected community is discarded. A way to decide
whether a community is a duplicate of another, is to measure the proportion of nodes in the
smaller community that are not in the larger community. This overlap coefficient between
communities C1 and C2 is defined as

f(C1, C2) = 1− |C1 ∩ C2|
min(|C1|, |C2|)

(3.3)

If this value is below a parameter ε, interpreted as the minimum community distance pa-
rameter, the two communities are regarded as near-duplicates. A value of 0.6 for ε was
suggested.

Fuzzy detection algorithms differ from the other categories in that each node has a be-
longing factor to all the communities. This factor denotes the degree of membership in
a community. Nepusz et al. [32] generalize the partition matrix U = [uik] where each
node k either belong to a community i (uik = 1) or not (uik = 0), to allow uik to be
any real value in the interval [0, 1]. A node’s total membership degree is 1, but this can
be distributed among the communities. Nodes are assigned to communities based on node
similarity. The presence of an edge between two nodes indicates similarity. A graph’s ad-
jacency matrix is used as the actual similarity between nodes, and the goal is to optimize
a partition matrix so that the computed similarities between nodes approximate the actual
similarities found in the adjacency matrix. The computed similarity between two nodes i

23

and j is:

sij =

c∑
k=1

ukiukj , (3.4)

where c is the number of communities. The number of communities is predefined, start-
ing with 2. When the optimization has reach a minimum (the best approximation of the
partition matrix to the adjacency matrix), c is increased to see if this yields a better commu-
nity structure. To assess the community structure, a fuzzified modularity function is used.
The modularity function compares the number of edges within communities in the actual
graph, with what we could expect with edges placed at random in a similar graph [33].
Overlapping communities are allowed for by using a fuzzified version of modularity. The
algorithm terminates when adding to c does not improve the community structure.

Psorakis et al. [39] propose a probabilistic approach based on Bayesian non-negative ma-
trix factorization. The approach quantifies how strongly a node belong to a community,
and opens up for overlapping memberships. The idea is to use an adjacency matrix of in-
teractions between nodes to find classes of nodes (communities) that affect the interaction
between two nodes. If two individuals interact a lot, it is likely that they belong to the
same community.

Agent-based and dynamical algorithms. The use of community labels on nodes is a
way to create communities. Nodes with the same label are in the same community. To
find overlapping communities, each node need to be allowed to be associated with more
than one community label. Gregory [14] proposed an algorithm for assigning community
labels to nodes which allows for overlapping communities. Each node is labeled with a
set of pairs (c, b), where c is the community identifier and b indicates the node’s belonging
coefficient to c. The belonging coefficient for a node over all communities sum up to 1.
A node’s label is set on the basis of the labels of its neighbors. For a given community
ci, the label (ci, b) for a node is updated by summing all the neighbors’ (ci, b) labels
belonging coefficient, and normalizing by the number of neighbors. To avoid producing
as many communities as there are nodes, the belonging coefficient needs to be above the
threshold 1/v to be kept for a node. The parameter v expresses the maximum number
of communities a node can belong to. If b < 1/v, then the (c, b) pair is deleted from
the node, unless it is the largest b for this particular node. This means that community
identifiers may be gone at the end of the algorithm. Assigning and updating belonging
coefficients are run for a number of iterations. The termination condition for the algorithm
is a heuristic based on the number of community identifiers in use for a given iteration.
The minimum number of nodes labeled with each community identifier since the number
of community identifiers was last reduced is found. If this is equal in subsequent iterations,
the algorithm is terminated.

Assigning labels to nodes can be done by utilizing interaction rules between pairs of nodes.
A node remembers a label assigned to it in a previous iteration, and the probability of
seeing a label in a node’s memory is the membership strength. One example of such a
algorithm, is Xie and Szymanskis SLPA [49]. In SLPA, each node is instantiated with
a unique label. A node is selected as listener, and ask each of its neighbors to select a
label randomly with probability proportional to the occurrence frequency of the labels in

24

its memory. The selected label is sent to the listener, which adds the most popular label
among its neighbors to its memory. This is repeated for a user defined maximum number
of times. A post-processing step is performed to output the communities based on labels
in the nodes’ memory. The labels represent community identifiers, and each node will at
the end of the algorithm have a strength associated with a number of communities. With
the use of a threshold, labels can be removed so that the node only retain the labels of the
communities it associates most strongly with. When the threshold is above 0.5, SLPA will
produce disjoint communities.

3.2 Node Centrality

As described above, local expansion algorithms may grow communities from seed nodes.
One way to find seed nodes, is to select the most central nodes in the graph. Different cen-
trality metrics have been developed for discovering these nodes. A classic categorization
of centrality metrics was proposed by Freeman, who identified three types of centrality:
one based on degree, another based on closeness, and finally, one based on betweenness
[13].

Degree centrality is the most simple metric. It measures the number of nodes a given node
is directly linked to. The idea is that a node with many links is central in the graph. Degree
centrality was first described for binary graphs, and calculating this metric in that scenario
consists of simply counting the number of links in and out of a node (if a directed graph).
This measure does not take into account the strength of the link between two nodes. If
the graph has edges with weights, the node strength is the sum of the weights of edges
connected to the node [36]. As both the number of connections (the degree) and weight
of those connections (the strength) can be useful when measuring centrality of a node,
Opsahl et al. [36] proposed a metric combining them:

CWα
D = ki ∗

(
si
ki

)α
(3.5)

where ki is the degree and si is the strength. α is a tuning parameter that can be used to
control which of the two measures should be emphasized.

Closeness centrality is a measure of the cost for a node to reach all other nodes in the
graph. By taking the inverse of the sum of the shortest possible distance to all other nodes,
nodes that can reach the other nodes with little cost are considered most central. Closeness
centrality can be computed by applying Dijkstra’s shortest path algorithm. Dijkstra’s al-
gorithm finds the path with least cost, which is not what we are interested in when finding
central nodes. On the contrary, the shortest path in that context is the path with highest
total weight, implying that it is easy to move between those two nodes. Thus, to utilize
Dijkstra’s algorithm, the weights has to be inverted so that the maximum weight becomes
the minimum weight. After computing the shortest path to all other nodes, the weights of
the paths are added together, and then inverted again so that the highest sum indicates the
most central node. Again, Opsahl et al. [36] introduce a tuning parameter on the weights

25

to allow for preference on whether the weights or the number of steps in the path is more
important.

Betweenness centrality also uses the shortest path between nodes, and state that nodes
that most frequently occur in such paths are the most central in the graph. One way of
describing this is that such nodes control the flow in the graph. Betweenness centrality
also utilizes the paths found by Dijkstra’s algorithm. The centrality for a node is calculated
by looking at the paths where the node in question is neither the start nor end point. If the
node occurs as an intermediate node in a path, the weight of the path is counted, otherwise
not. After examining all paths, a sum of weights of paths that includes the given node is
found. This sum is divided by the total sum of path weights for paths that do not have the
node as start or end point. So, if a node occurs as intermediate node in all the paths, the
betweenness centrality is the maximum value of 1.

Another measure of node centrality is eigenvector centrality. This measure uses the largest
eigenvalue of the adjacency matrix for a graph, and the related eigenvector to describe the
centrality of the nodes [5, 42]. Eigenvector centrality take into account the pattern of the
whole graph, and do not treat each link between nodes equally. Instead, nodes connected
to important nodes are seen as more important than nodes connected to less important
nodes.

3.3 Discovering Concepts through Community Detection

At the heart of the main research question is that what we described as concepts corre-
sponding to how human conceptualize the world should in some way be extracted from
the data. Preferably automatically, without the need of field experts. Also, the method for
extracting concepts should work on datasets with different characteristics. Communities
in a graph, as presented in Section 3.1.1, can informally be described as a set of nodes that
"belong" together. Yang and Leskovec [50] noted that the premise underlying community
detection algorithms is that functional communities have a structure that can be extracted
from the graph. Human concepts correspond to functional communities. In this section,
we explore if this underlying premise can be said to hold for RDF graphs. We explore
community detection in both class graphs and instance graphs.

3.3.1 Experimental Setup

For experimentation here and in subsequent chapters, different datasets with different qual-
ities have been used. The different datasets and some facts about them are shown in Table
3.1. The number of class instances refer to unique instances in the dataset. A relationship
between two classes exists if there is a statement where the subject is of one of the classes
and the object is of the other class. Note that the number of class relationships refers to
the existence of a relationship between two classes, it does not sum up different predicates

26

Table 3.1: Datasets

Dataset Statements Class instances Classes Class relationships

Linkedmdb 6 147 975 738 890 53 54
Musicbrainz 186 007 290 34 810 813 13 24
murder.rdf 4 331 425 4 4

that may exists between two classes. The Musicbrainz dataset1 contains data about music
(see [41] for a description of the ontology) and is quite large. This makes it suitable for
testing the performance of different index and search approaches. On the other hand, it
has relatively few classes and class relationships. In Appendix A, a class graph showing
the class relationships in the Musicbrainz dataset can be found. The Linkedmdb dataset2

concerns movie information3. Though it is smaller than the Musicbrainz dataset, it has
more classes and more varied relationships between the classes. See Appendix B for a list
of the classes in the Linkedmdb dataset.

The murder.rdf dataset, provided by the supervisor, is small and mostly used because it was
easy to get an overview of all the data. This made it quicker to judge some of the algorithms
on quality, if not on performance. Because the dataset has edges in both directions (that is,
both Person-authorOf -Work and Work-author-Person statements), it also meant that we
could test the algorithms under such circumstances. The dataset contains bibliographical
data about works that have some relation to "murder", for instance books with the word
"murder" in the title or books with murder as a theme.

Each dataset is stored in its own repository in a GraphDB instance from Ontotext. The
free version 7.14 is employed on a server provided by NTNU running Ubuntu with 30
GB RAM. The experiments in this and subsequent chapters are run on another Ubuntu
machine with 6 GB RAM, which communicates SPARQL queries to the triple store over
HTTP. All algorithms are implemented in Java 8.

3.3.2 Choice of Community Detection Algorithm

In Section 3.1.1 we described five categories of community detection algorithms. Clique
percolation methods do not fit RDF data particularly well, as such data usually is quite
sparse and cliques are hard to come by. The fuzzy detection algorithms require each node
to have belonging factor to all communities. This becomes problematic for larger graphs.
The same goes for the link partitioning approach, where a dendrogram for a very large
number of nodes has to be built. Algorithms that utilize local qualities in the graph - local
expansion algorithms and agent-based algorithms such as SLPA are examples - are thus

1Fetched from ftp://ftp.musicbrainz.org/pub/musicbrainz/rdf/20131125/. Accessed
07.11.2016

2Fetched from http://www.cs.toronto.edu/~oktie/linkedmdb/. Accessed 07.11.2016
3See http://www.linkedmdb.org/
4Documentation at http://graphdb.ontotext.com/documentation/7.1/free/

27

ftp://ftp.musicbrainz.org/pub/musicbrainz/rdf/20131125/
http://www.cs.toronto.edu/~oktie/linkedmdb/
http://www.linkedmdb.org/
http://graphdb.ontotext.com/documentation/7.1/free/

to be preferred. This matches the empirical findings of Xie et al. [48], which note that
these algorithms have both higher performance on larger graphs and are better for graphs
with low overlapping density (where few nodes are part of multiple communities). An
issue with SLPA is that it is non-deterministic, meaning that the resulting communities
may differ for different runs of the algorithm. In order to avoid that a random result
that is suboptimal is chosen, the algorithm could be run multiple times. However, that
would increase the performance cost of indexing. We therefore choose a local expansion
algorithm. Following the general technique of greedy local optimization as described in
[25], the pseudocode for finding communities is shown in Algorithm 1.

Algorithm 1 General algorithm for community detection using greedy local optimization

Input: graph
Output: com

1: seeds← GETSEEDS(graph)
2: com← ∅ . The set of found communities
3: for all S ∈ seeds do
4: C ← S . Create new community with seed
5: NF ← GETFRONTIERNODES(C, graph)
6: FC ← GETCOMMUNITYFITNESS(C)
7: n← GETFITTESTNODE(NF , FC , C)
8: while n.fitness > 0 do
9: C ← C ∪ n

10: NF ← GETFRONTIERNODES(C, graph)
11: FC ← GETCOMMUNITYFITNESS(C)
12: n← GETFITTESTNODE(NF , FC , C)
13: com← CHECKFORNEARDUPLICATES(C, com)
14: return com

At line 1, we fetch the seeds from the graph. This is the nodes from which communities
are grown. How to decide what the seeds should be, varies with the approaches we will
present. As does the fitness function. For each seed, we create a new community C (line
4). Then we keep adding nodes to C as long as they increase the fitness (checked at line 8).
To find which nodes to consider, we fetch the frontier nodes, NF , around the community
(lines 5 and 10). From these nodes, we find the node n that will increase the fitness most.
The increase in fitness is calculated against the fitness of C, which we get at lines 6 and
11. When no more nodes can be added to C, we are done finding the community for this
seed. To make sure that not too similar communities are found, we remove near-duplicates
at line 13 using the overlap coefficient in Equation 3.3. If a community is near-duplicate
to another, we keep the larger community. This means that the community we just found
is not necessarily added, it may also be discarded. The check at line 13 may also result in
previously accepted communities being removed from com.

28

3.3.3 Community Detection in RDF Class Graphs

We have noted that RDF data can be large, and this creates a performance challenge.
The graph is often represented by a smaller graph to avoid this. We have seen that class
information can be used to summarize the graph (for instance in [24, 46]). One way of
doing this is to have each class appear exactly once in a summation graph, and aggregate
the predicates between the nodes found in the data. This will create a weighted graph
from which communities can be detected. A weight between two classes could be as
simple as the number of links between them. We found it more appropriate to use the
average number of weights per instance, since it provides info on the cardinality between
the classes. Using the number of links could for instance hide that a couple of instances
are responsible for most of the links, and therefore that this relationship is more rare than
it seems. Looking at Figure 3.1a, we see that each instance of a Movie on average has 1.07
links to a Person via the director predicate (most movies have 1 director, but some may
have more). The weights of different predicates are then summed up, as showed in Figure
3.1b.

(a) Class-based summation graph with-
out summed up predicate weights

(b) Class-based summation graph with
summed up predicate weights

Figure 3.1: Example of class-based summation graphs

The intuition behind the class-based summation graph approach is that the weights indicate
how closely connected two classes are, and that the fitness function of community detec-
tion indicates how unique the connection is. That is, since the Person class in Figure 3.1
does not have many other connections than to Movie and the weight indicates a strong re-
lationship, we can assume that these two classes belong together. Person has a connection
to Play as well, but the weight indicate a less strong relationship. The weights therefore
allow us to distinguish between links, and not just treat them as binary relations.

When using weights, the fitness function in Equation 3.2 is changed to use internal and
external weights instead of degree. Then kCin is the sum of the internal edge weights, and
kCout is the sum of the weights on edges crossing the community boundary.

We also test with degree as community decider. Instead of weights, the degree of the
nodes in the class-summation graph can be used. Then, the most central classes would
be in different communities and be joined by the less central classes around them. The
fitness function would be the same as in Equation 3.2. Finally, when the communities at

29

class level have been discovered, they can be used on the instance level to create index
entities.

Implementation

Given the approach outlined, Algorithm 1 was implemented with Equations 3.2-3.3 for
fitness and near-duplicate check. Since the class graph most likely will be small, it is fea-
sible to use the more sophisticated node centrality measures of closeness, betweenness and
eigenvector centrality to find seed nodes to expand from. The seeds were chosen using the
eigenvector centrality measure5. Those with a normalized eigenvalue above 1

|V | were cho-
sen as seeds, with the intuition that these nodes are more central in the graph than can be
expected. |V | is the number of classes in the dataset. Note that before the algorithm is run,
some statistics and information are fetched from the dataset. This includes which classes
exists, and the relationships between them. Based on this, the weights of the relationships
are calculated to produce the class-based summation graph.

The experiment was run on multiple datasets, using both weights and degree in the fitness
function, and with different values for α (see Equation 3.2). The near-duplicate limit, ε,
was set to 0.6 as suggested in [25].

Evaluation

Table 3.2 shows the results for the Musicbrainz dataset. Seven classes were found to be
seeds based on the eigenvector centrality: SoloMusicArtist, MusicArtist, Release, Sig-
nalGroup, MusicGroup, SpatialThing and Composition. Looking at the result for the
Musicbrainz dataset, we see that small values of α are not able to stop the growing of
a community until it contains the entire graph. The expectation of larger communities for
smaller values hold. Also, larger values results in more communities. This is natural, as it
is less likely to find duplicates for smaller communities. For instance, CW1 for α = 1.5
does not include Composition and MusicalWork like it does for α = 1.2 , which opens up
for those classes to be a separate community (CW3). It is not a linear relationship, where
increasing values of α necessarily leads to more communities (for instance, α = 2.5
yields two communities). At some point, though, the value become so large that no seed
can grow, and we are left with seven communities which only contains the seed.

The Musicbrainz dataset has a hidden inheritance relationship (hidden in the sense that
it is not encoded in the dataset). According to the specification of the music ontology6,
MusicArtist is a parent class for MusicGroup and SoloMusicArtist. This provides a tool
to reason about what communities we should expect to see. The expectation is that these
three classes appear together in communities. Looking at the result, we see that they
in most cases are grouped together. The exceptions are community CD2 for α = 1.5
where MusicGroup appears alone, and community CW2 for α = 1.5 where MusicArtist

5The jblas library was used for this: http://jblas.org/
6See http://musicontology.com/specification/ or https://github.com/motools/

musicontology

30

http://jblas.org/
http://musicontology.com/specification/
https://github.com/motools/musicontology
https://github.com/motools/musicontology

Table 3.2: Test results for community detection on class-based summation graph for the Musicbrainz
dataset

Approach α
No. of
communities Communities

Weight

0.9 1 One community with all thirteen classes

1.0 1 One community with all thirteen classes

1.2 2 CW1 = SoloMusicArtist, Track, Record, Musi-
cArtist, Signal, SignalGroup, Release, Composi-
tion, MusicalWork, MusicGroup
CW2 = SignalGroup, Release, ReleaseEvent, Spa-
tialThing, Label

1.5 3 CW1 = SoloMusicArtist, Track, Record, Musi-
cArtist, Signal, MusicGroup
CW2 = MusicArtist, SpatialThing, ReleaseEvent,
Label, Release, SignalGroup
CW3 = Composition, MusicalWork

Degree

0.9 1 One community with all thirteen classes

1.0 1 One community with all thirteen classes

1.2 1 CD1 = Release, SoloMusicArtist, Musi-
cArtist, SignalGroup, SpatialThing, Record,
ReleaseEvent, Label, MusicGroup

1.5 2 CD1 = Release, Record, ReleaseEvent, SpatialTh-
ing, Label
CD2 = Composition, MusicalWork, MusicGroup,
SignalGroup

is alone. Since MusicArtist is the parent class, the latter does not violate expectations.
MusicGroup appearing alone is more problematic. Following the subclass property in
RDFS, all instances of MusicGroup are instances of MusicArtist. Thus, we would expect
MusicArtist to be in the community with MusicGroup.

Of the results in Table 3.2, the one for α = 1.5 using the weight approach is probably
the best. Here, we can identify three aspects of the music making process: the work in
question (CW3), the recording of the work (CW1), and the release of the work (CW2).
Comparing it to the class graph (see Appendix A), no obvious concept is missing.

For the Linkedmdb dataset, similar tendencies as for Musicbrainz was found, even though
small values for α worked slightly better here. The algorithm was able to detect some
smaller communities, at least with the degree approach. With the weight approach, the
number of found communities increased with increasing α-values, while it remained quite
stable with the degree approach. Regardless of approach and α-values, the algorithm
produced one large community in addition to the smaller ones. The large community was
grown from the Film-class, which is the most central class both in terms of how many
classes it has links to, and also how numerous the number of links are for each class

31

relationship. Therefore, it is natural that this community encompasses many of the classes
found in the dataset. The communities returned by the algorithm seemed to be fairly
logical, and can be said to refer to concepts such as: the film itself, film distribution, film
crew, performance in a film, and film company. One concept that exists in the data but
was not found, is that of film festival. There are two classes, film festival and film festival
event, that are connected to each other but no other class. This illustrates a problem with
the seed approach: some parts of the graph may not be explored. RDF graphs may be
sparse or even disconnected, and there is no guarantee that distant or disconnected parts
contain a node that qualify as seed.

A more fundamental problem with the class-based summation graph approach is that a
lot of information is lost, probably too much. In particular, the summation of predicates
hides the different kinds of relationship that can exist between two instances of a class.
Figure 3.1 showed an example of how different relationships can be hidden if predicate
weights are summed up. The weights in Figure 3.1b suggests that Person is more strongly
connected to Movie than Play. However, it may be that instances of Person are frequently
connected to both Movie and Play if the instances are directors. To have all instances of
a class grouped together is problematic when the class can be said to contain subgroups.
In our example, Person probably has three subgroups: actor, director and producer. These
subgroups can be found looking at the predicates. The graphs in Figure 3.1 remove the
opportunity to assess the possible different communities of actors and directors. For the
Musicbrainz dataset this is not problematic, as most classes are connected only through
one predicate. However, the Linkedmdb dataset has this issue, with the Film and Person
classes being linked by four predicates: actor, director, editor and cinematographer.

Another issue is that using weights on RDF data is problematic. Figure 3.1a may suggest
that Movie is more strongly connected to Person through the actor predicate than through
the director predicate. However, this is just a result of the cardinality that is inherit in the
concept of a movie: there are usually more actors than directors in a movie.

3.3.4 Community Detection in RDF Instance Graphs

The class-based approach is coarse, ignoring one of the characteristics of RDF data: the
labeled edges. A way to take different kinds of class relationships into account, is simply
to run Algorithm 1 on the instance graph instead of the class graph. In light of the problem
of using weights, we only consider the degree approach here.

Implementation

Eigenvector centrality is not feasible to use on large graphs. Instead, degree centrality can
be used, as this only depends on local factors in the graph. We use instances with a degree
above a threshold as starting seeds. The intuition is that central nodes are those with more
links than the average. The node centrality threshold is thus:

node centrality threshold =
2|E|
|V |

(3.6)

32

In this approach, we only consider the nodes that are instances of a class, not literals or
class nodes. While we previously stated that literals nodes contained important informa-
tion for search, we do not need this information to find concepts in the graph. The infor-
mation found in the literals nodes may be indexed after communities are found.

Evaluation

Performance wise, this approach is quite obviously slower than the class-based approach,
considering the difference in graph size. In the Musicbrainz graph, for instance, is the
number of nodes 13 versus 34 810 813 (compare the "Classes" and "Class instances"
columns in Table 3.1). Because the number of seeds is larger, the possible fitness increase
of adding a node to a community has to be computed many times. The duplicate check
is also more performance intensive as the number of communities to check grows. In
general, many operations on sets has to be undertaken.

Figure 3.2 shows a community (represented by the darker nodes) that is grown from the
"Murder on the Orient Express" node in the murder.rdf dataset. This example illustrates
some challenges with the approach. First, we note that "And then there were none" is
included in the community because a Russian book includes both works, and is translated
by the same person. As all the other parts of the community is clearly linked to "Murder
on the Orient Express", other novels do not belong. It is not that "Murder on the Orient
Express" and "And then there were none" are inherently unfit to be in the same community:
in a community grown around Agatha Christie, they should probable both be present (in
fact, they are not. That community only contains "And then there were none" of the two).
The reason why "And then there were none" is added to the community, is that there are no
nodes with many links along the way to stop the growing. A way to fix this is to increase
the α-value. Indeed, α = 1.2 cuts off the whole Russian branch of the community along
with the "And then there were none" node. However, then we are left with a community
with the French and Esperanto versions of the novel, and that does not easily correspond
to a human concept.

The second problem is the inconsistency in which relations are added to the community.
We see that "Murder on the Orient Express" is connected to six other nodes through the
expression predicate. If a community should reflect a concept, either all of those nodes
should be in the community or none of them, at least when "Murder on the Orient Ex-
press" is the seed. It could be argued that a concept could be the French expression of
the work, but it is hard to think of a concept that encompasses the French, Russian and
Esperanto version of a novel, and not the Latvian and English. The reason why the En-
glish expressions of text and spoken word are not included is pretty clear: they have too
many further links. Thus, the community fitness would decrease by adding them. Why the
Latvian expression is not added, while the French and Russian expressions are, is harder to
see. When the French node is added, both the Russian and Latvian node have the same fit-
ness gain as the French. Since the French is considered first, it is added. After the "French
text" node was added, its translator and manifestation was also added. The Latvian expres-
sion had lower fitness gain than "Louis Postif" and "Book, 1966" in these iterations of the
algorithm. Finally, when the Latvian expression was the fittest node again, the community

33

Figure 3.2: Example of a community (the darker nodes) detected from the murder.rdf dataset for
seed "Murder on the Orient Express" with α = 1.0. "Manifestation x13" means that there are 13
different links with predicate "Manifestation" from the node.

34

had changed (the whole french and russian part of the graph had been added), and adding
it would decrease the fitness. Thus, the French and Latvian expression got their fitness
evaluated against different communities. To avoid this, a solution could have been to add
all top nodes if several have the same fitness gain. However, that would not have helped in
the case of the English expressions.

3.4 Summary

Our preliminary study has shown the weaknesses of applying existing community detec-
tion algorithms directly to RDF graphs. In particular, the algorithms do not take into
account the special nature of RDF. Most prominently we see this in the way edges and
nodes are treated purely as graph elements, not as elements carrying information. Without
considering the information edges and nodes represents, we point out two inconsistencies
that can arise:

• An identical class relationship may be treated differently in the same community
detection process

• An identical class relationship may be treated differently across community detec-
tion processes

The first point refers to the example described above where different instances of the same
relationship (for instance Work-expression-Expression) may be treated differently for the
same seed node. The second point refers to the issue that we may have consistency for
one seed node, but the same relationship may be judged differently for another seed node.
Consequently, we may have a community around the work "And then there were none"
that includes all Work-expression-Expression relationships, while the community around
the work "Murder on the Orient Express" does not. If either or both of the inconsisten-
cies arise, it can hardly be said that we have discovered a logical concept for the class
Work.

35

36

4 | Path-based Graph Indexing

Because of the issues with applying existing community detection algorithms directly to
RDF graphs, we create a novel community detection algorithm for finding concepts in an
RDF graph. The details of the algorithm are presented, and the feasibility is shown through
experiments and complexity analysis.

4.1 Path-based Community Detection in Instance Graphs

4.1.1 Approach

In order to avoid the inconsistencies described in the previous chapter, we define a com-
munity by a set of paths found from the seed node, not by the nodes themselves. The
inclusion of nodes in a community is governed by which paths are deemed to be in the set
of community paths. Nodes that are reachable through these paths belong to the commu-
nity. We define a path similar to how we did in Section 2.1.1, as an alternating sequence
of nodes and edges. The requirement for a path was that no edge occurs more than once
in the sequence, and that no internal node was repeated. We extend the last requirement to
cover all nodes, not just the internal ones. We now define an RDF path, which is a path in
the context of RDF graphs.

Definition 4.1.1. RDF Path. An RDF path is an alternating sequence of nodes and edges,
where the nodes represents RDF resources that are instances of classes and edges repre-
sents predicates. The nodes in the path are labeled with the name of their class. We require
that no RDF resource is repeated in the path.

What is meant by the definition, is that the RDF path for the relation between "Murder
on the Orient Express" and "French text" in Figure 3.2 is Work-expression-Expression,
because "Murder on the Orient Express" is an instance of the class Work and "French
text" an instance of the class Expression. This definition means that the same class and
predicate may appear multiple times in a path1, but that they represent different instances

1From now on, when referring to a path we mean RDF path as defined in Definition 4.1.1

37

of nodes and edges. For instance, we may have the path Artist-made-Track-madeBy-
Artist-made-Record-contains-Track. This path is acceptable if the second Artist is a dif-
ferent instance to the first Artist instance, and if the first Track is different to the last.
Thus, in contrast to [6], a path is not only defined by edge labels, but also by the class
of the nodes connected by edges. Artist-made-Track is a different path to Artist-made-
Record, even though the edge labels are the same. In our approach, an edge is a triple
{fromClass, edgeName, toClass}, where fromClass and toClass are the class names
of the nodes the edge joins, and edgeName is the predicate.

Algorithm 2 shows the path-based approach. At line 1 we collect information about the
graph: the classes and their relationships, and how many edges and nodes there are. We
also store the nodes, from which we shall select seeds. At line 2 we calculate the node cen-
trality threshold for the graph, a value that is used in our fitness function (this calculation
is the same as Equation 3.6). Given the classes and the different relationships between
them, we obtain at line 3 the set of possible paths in the graph from each class up to a
specified length k (to be discussed below). Note that paths may contain paths that does
not exists in the data. This is because we combine class relationship at the class level, not
the instance level. For instance, we may have a relationship Work-expression-Expression
and another relationship Expression-narrator-Person. This would then be combined to the
path Work-expression-Expression-narrator-Person. However, we have no guarantee that
there exists an Expression instance that joins these two relationships. The reason why we
do it this way is that it would be computationally expensive to find such joining instances.
Because the class graph is much smaller, joining class relationships is cheaper.

Algorithm 2 Path-based Community Detection in Instance Graph

1: graph← GETGRAPHINFORMATION()
2: threshold← (2 ∗ |graph.edges|)/|graph.nodes| . Node centrality threshold
3: paths← GETPATHS(k, graph)
4: stats← ∅
5: for all class ∈ graph.classes do
6: seedNodes← GETSEEDNODES(class, graph)
7: pathsc ← paths[class] . Paths starting from class
8: for all seedNode ∈ seedNodes do
9: pathsr, pathsi ← FINDPATHCOMMUNITY(seedNode, pathsc, threshold)

10: for all path ∈ pathsr do
11: stats[path][possible]← stats[path][possible] + 1
12: for all path ∈ pathsi do
13: stats[path][possible]← stats[path][possible] + 1
14: stats[path][actual]← stats[path][actual] + 1
15: CREATEPATHCOMMUNITIES(stats)

The idea is to run our community detection algorithm for a number of randomly selected
seed nodes for each class in the dataset. The seed nodes are selected at line 6. For each
class we obtain the paths starting with the given class (pathsc), that is, all possible paths
for the seedNodes. Each run of the community detection algorithm at line 9 returns a
set of paths included in the community (pathsi), and a set of paths that could have been

38

included, but was not (pathsr). We have that pathsi ∩ pathsr = ∅ and that pathsi ∪
pathsr is all the paths up to length k from seedNode. Note that this is not necessarily the
same as pathsc since there may be possible paths not present for a particular seedNode,
but we have that pathsi ∪ pathsr ⊆ pathsc. From the two path sets, we create statistics
that state the number of times a path was included (line 14) as a ratio of how many times
it was possible to be included (lines 11 and 13).

Table 4.1 shows an example illustration of what the statistics could look like. For the
path Work-author-Person, 67 of the selected seed nodes of class Work had a relation to
one or more instances of class Person through the author-predicate. Of these 67 cases,
35 runs of the FindPathCommunity algorithm resulted in the Person instances to be
included, while 32 of the runs resulted in the Person instances being rejected. The idea is
that these numbers tell us how closely classes are connected through different predicates.
The statistics are used at Line 15 to build path communities from the most frequent paths.
These can then be used to build query solutions at index or search time.

Table 4.1: Example of path statistics

Path Actual communities Possible communities

Work-expression-Expression 34 56
Work-author-Person 35 67
Person-narrator-Expression 4 4

Figure 4.2 shows an example of lines 9-14 in the algorithm, where community detection is
done for each of the seed nodes with max path length of 2. The colors on the nodes in the
example represents the status of the node. Figure 4.1 shows the colors for the three types
of nodes: (a) those included in the community, (b) those rejected from the community, and
(c) those who are not (yet) tested for inclusion.

The example is in the middle of a run of Algorithm 2. The seed node S1 belongs to the
class S, and the possible paths originating from S is showed in the four path statistics
tables in the figure. This is pathsc. pathsi and pathsr are updated after each path is
checked, depending on which of the two sets the path in consideration belong to. If the
path do not exists for this seed, it will be in neither of the two sets. After testing each of
the paths in pathsc, we update the path statistics on the basis of which of the two sets a
path is in. The procedure in the figure is repeated for all the selected seed nodes of each
class in the dataset. The details of how a path is tested and placed in either of the two sets
is presented in subsequent sections.

(a) Included node (b) Rejected node (c) Not tested node

Figure 4.1: Color codes for nodes

39

Path A P

S-a-A 34 56
S-a-A-d-D 23 42
S-b-B 7 7
S-c-C 45 78
S-c-C-e-E 5 8
S-c-C-f -F 21 29

pathsi : {}
pathsr : {}

(a) Before community detection for S1

Path A P

S-a-A 34 56
S-a-A-d-D 23 42
S-b-B 7 7
S-c-C 45 78
S-c-C-e-E 5 8
S-c-C-f -F 21 29

pathsi :
{S−a−A}

pathsr : {}

(b) After testing first path S-a-A

Path A P

S-a-A 34 56
S-a-A-d-D 23 42
S-b-B 7 7
S-c-C 45 78
S-c-C-e-E 5 8
S-c-C-f -F 21 29

pathsi :
{S−a−A,

S−c−C ,
S−c−C−e−E}

pathsr :
{S−a−A−d−D,

S−c−C−f−F}

(c) After testing last path S-c-C-f -F

Path A P

S-a-A 35 57
S-a-A-d-D 23 43
S-b-B 7 7
S-c-C 46 79
S-c-C-e-E 6 9
S-c-C-f -F 21 30

pathsi :
{S−a−A,

S−c−C ,
S−c−C−e−E}

pathsr :
{S−a−A−d−D,

S−c−C−f−F}

(d) Update path statistics

Figure 4.2: Example of the overall approach for the seed node S1 with path length = 2. Note that the
nodes in the figure represent instances marked with a number subscript, while the different letters
represents the class the instance belong to. Darker nodes indicate nodes included in the community
around S. The path statistics tables are similar to the one showed in Table 4.1, with A="Actual
communities" and P="Possible communities". S-c-C-f -F-g-G is not tested because it is longer than
the set max path length. S-b-B is not updated because that path did not exists for this seed node.

40

4.1.2 Seed Node Selection

The selection of seed nodes is done randomly for a given class. This approach closely re-
sembles the stratified sampling approach, where the sample space is divided into a number
of strata from which a random sample is collected [30]. The stratas are supposed to be
disjoint, a requirement that may seem to be violated here because an instance can belong
to multiple classes. It should be noted, though, that pathsc is disjoint across classes, so
even if the same instance is picked as seed for different classes, pathsc will have no paths
in common. The data we are sampling then, is the set of instance-class tuples, from which
the stratas will be disjoint.

We have to decide on a sample size. A simple approach would be to choose an abso-
lute number to pick from each class. We call this baseline approach classSampling, and
will test different numbers later. Given that classes have great variance in the number
of instances (for instance, in the Linkedmdb dataset we have 10 instances of the class
"film_distribution_medium" and about 190 000 instances of the class "performance"), a
proportional approach may be better. We then need to find a class sample percentage.
Since some classes are small, like "film_distribution_medium", they may not be sampled
at all. We therefore provided a minimum sample size of 50 for each class. We define the
sample size nc for a class c as:

nc = max

(
50,

(
Nc · classSamplePercentage

100

))
, (4.1)

where Nc is the total number of instances of this class. We call this approach proportion-
alClassSampling. Later, in the experiments section, we will test with different values for
classSamplePercentage.

The random selection of seed nodes for a class is done using the SPARQL query in Figure
4.3.

SELECT d i s t i n c t ? s WHERE {
? s a class .

} ORDER BY RAND() LIMIT nc ;

Figure 4.3: SPARQL query for randomly selecting seed nodes for class, with class sample size nc

The goal of the sampling is to represent all possible paths sufficiently. While it may seem
intuitive with higher sample sizes for larger classes, we cannot know that the largest classes
have the greatest variance in paths. As an illustration, we may imagine that there are 50 000
instances of the class film, and 25 000 instances of the class actor. Using the proportional
approach, the film class will have more instances sampled. However, let us assume that
all the instances in the film class has a path Film-director-Person and that one third of
actors has the path Actor-dubbed-Film, another third the path Actor-playedIn-Film, and
the last third Actor-wonOscarFor-Film. For the sake of the example, these three groups
are disjoint. If we have classSamplePercentage = 10%, we would sample 5 000 films
and 2 500 actors. The Film-director-Person path would be sampled 5000 times, and the

41

three actor paths would be sampled on average 833 times. These numbers may seem
reasonable, but the problem is that the actor paths are on average, which means that it does
not provide any guarantee of sufficient sampling. It may happen that one of the paths is
not sampled at all.

Increasing the percentage in the proportionalClassSampling approach, or the number
in the classSampling approach, should increase the likelihood of representing all paths
sufficiently. However, such an approach also results in some paths being tested more
than strictly necessary, which would decrease the performance. A more refined approach
should sample nodes in such a way that we know that all paths are tested. One solution
could be to do a depth-first or breadth-first search from all nodes in the dataset to find
which nodes satisfies which paths. Then we could select nodes and be sure each path
is tested. However, this would affect the performance, and almost defeat the purpose of
sampling.

Instead, we propose an approach we call pathsNotCoveredSampling. In this approach,
we first do community detection on a selected number of instances of the class (based
on either classSampling or proportionalClassSampling). Then, we check if all paths
originating from the class are sufficiently covered (a term we shall define soon). If all
paths are sufficiently covered, we continue to the next class. If not, we select more seed
nodes of this class to do community detection on. In each iteration, we add as many new
seed nodes as we initially selected. That is, if we started with 1 000 seed nodes and found
that these did not sufficiently covered all paths, we add another 1 000 seeds. We continue
to add more seed nodes until either

1. All paths are sufficiently covered or

2. We have no more seed nodes to chose from or

3. We two times in a row get identical sets of not sufficiently covered paths or

4. We reach a limit on the number of seed nodes we sample from each class

For the last point, we would like to avoid that the total sample size becomes too large. We
state this as a percentage, and found 30 % to be a reasonable limit after some initial testing.
Note that for some classes, the selected number of instances we add in the first iteration
will be more than 30 %. We allow this for those classes. The limit is mostly there to avoid
too much of the large classes being sampled.

The reasoning behind the third point is that we shall not keep testing the same paths over
and over again. This can happen if we are dealing with large classes, and the paths need
a lot of testing to be sufficiently covered. In addition, as we noted above, pathsc may
include paths not present in the dataset. We should avoid to repeatedly try to sample paths
that do not exist. When no change occurs between iterations, we take this as a sign that the
paths in the set of not covered paths do not exist in the dataset. With regard to the second
requirement, the sampling is clearly over when there are no more nodes to sample. This
happens for classes with few instances.

For the first point, we need to define what we mean by a sufficiently covered path. First,

42

we define the pathSampleSize for a path p as:

pathSampleSize(p) = max

(
50,

(
npc · pathSamplePercentage

100

))
, (4.2)

where c is the class of the first node in p, and npc the number of unique instances of class
c satisfying p. The pathSamplePercentage is a value we will make subject to testing
later. Ideally, we would like to get the exact value for npc, but that would be expensive to
find out. Instead, we have that npc is the number of instances of c satisfying the first edge
of p, that is, the maximal number of instances of c satisfying p. This number is not too
expensive to find. 50 is the minimum sample size, and serve as a lower bound to avoid a
too small pathSampleSize.

A path p is sufficiently covered if any of the following occurs:

C1 stats[p][possible] ≥ pathSampleSize or

C2 npc ≤ stats[p][possible] or

C3 It is impossible for p to be a frequent path or

C4 p is hopeless

C1 states that p is sufficiently covered if it has been tested enough according to the
pathSampleSize. A path is also sufficiently covered if there are no more nodes to test
(C2). C3 refers to the fact that some paths can be pruned away if they cannot be frequent
paths (we will define what frequent paths are later). For instance, say that we are consid-
ered the path Film-actor-Person, and that there are 500 instances of Film that satisfies this
path (npc = 500). Let us assume that we require for a path to be frequent that at least
80% of the instances includes the path in their community. If we have tested 101 nodes
with this path, and none of them included the path, we already know that this path will
be infrequent (the maximum frequency would be 399/500 = 0.798). Thus, we do not
have to test it anymore. C4 is based on some initial experiments, which showed that some
paths that appeared hopeless was repeatably tested. In particular, for large classes, npc
and pathSampleSize will be large. Thus, we can have that a path have been tested for
instance 4 000 times, of which none have resulted in inclusion for the path. But if the class
contains tens of thousands of instances, we keep testing it. Given that we chose instances
at random, we can be reasonably sure this path will never be frequent. We consider a path
p hopeless if we have:

(stats[p][possible] ≥ 50) and
(
stats[p][actual]

stats[p][possible]
< 0.05

)
(4.3)

This definition ensure that we do not consider infrequently tested paths as not covered. In
Section 4.2 we will test these different sampling approaches, and evaluate which is most
suitable.

43

4.1.3 Path Community Detection

The most critical step in Algorithm 2 is line 9 and the call to FindPathCommunity. This
method decide which paths should be included in the seed node’s community and which
paths should be rejected. A path is included in the community if all nodes at the end of
the path from the seed node are fit to be in the community. If one or more of these nodes
are unfit, then the path is rejected, and none of the nodes included in the community. The
pseudocode for this method is shown in Algorithm 3.

We loop through the possible path set pathsc in ascending order by length. This breadth-
first like graph traversal is necessary because the fitness of a node at depth l is calculated
against the community of nodes at depth l − 1 away from the seed node. Therefore, all
paths of length l− 1 has to be checked before any path of length l. Having the same point
of reference for all nodes at the same depth avoids the problem of order influencing which
nodes or paths are added to the community. Lines 1-6 initializes some variables. There
are three different kinds of paths for a seed node: paths that are included in the community
(pathsi), paths that are rejected (pathsr), and empty paths (pathse). The empty path set
is used to avoid unnecessary checks and database calls. For instance, if we know that
Work-expression-Expression is an empty path (that is, there are no instances of the class
Expression linked to the seed node of class Work through the expression-predicate), we
also know that Work-expression-Expression-narrator-Person is empty for the seed node.
In addition, we store the instances at the end of a successful path to avoid unnecessary
database calls (line 34). These provides starting points for testing continuations of an
included path (line 18).

For each pathwe loop through, one, and only one, of these four possibilities occurs:

• path is a continuation of an empty path (checked at line 10) or

• path is a continuation of a rejected path (checked at line 14) or

• path is a continuation of an included path or

• path is a path of length 1 (checked at line 15)

To check for continuation, we obtain a path pl at line 9 that is the current path without
the last edge. Given our breadth first traversal, pl is either in one of the three path sets,
or it is empty. For the last two possibilities listed above, pl is neither empty nor rejected.
Consequently, path can possibly be included in the community and therefore we do our
fitness check on lines 15-24. If path is of length 1 and thus pl is empty, the only start
instance is the seed node (line 16). Otherwise, the start instances are the instances at the
end of path pl. These are fetched at line 18. We loop through each of the instances at
line 19 and find the objects at the end of the edge at line 20. For each path, the only
new information is the last edge of the path and we find the relations that match this
edge. This is done through the SPARQL query seen in Figure 4.4, which is run for each
startNode. While we treat edges as undirected, the edges may be directed in the dataset,
so we check for connections in both directions. The GetNodes-call at line 20 essentially
return the result of the SPARQL query, but removes the nodes already in the community at
depth−1 by using d, which is passed as an argument. d is a map where the keys are depths

44

Algorithm 3 FindPathCommunity

Input: seedNode, pathsc, threshold
Output: pathsi, pathsr

1: pathsi ← ∅ . Included paths
2: pathsr ← ∅ . Rejected paths
3: pathse ← ∅ . Empty paths
4: i← ∅ . Map with nodes at end of each path
5: d← ∅ . Degrees and nodes at each depth from seed
6: d[0]← UPDATEDEPTHSNAPSHOT(d, 0, seedNode)
7: for all path ∈ pathsc do
8: edge← lastElementOf(path)
9: pl ← path− edge . Obtain path without last edge

10: if pl 6∈ pathse then
11: rejected← false
12: pNodes← ∅ . Nodes at the end of this path
13: depth← sizeOf(path) . Depth from seed node
14: if pl 6∈ pathsr then
15: if pl == ∅ then
16: startNodes← seedNode
17: else
18: startNodes← i[pl]
19: for all startNode ∈ startNodes do
20: pNodes← pNodes ∪ GETNODES(startNode, edge, d, depth)
21: for all node ∈ pNodes do
22: change← GETFITNESSCHANGE(node, d, depth, threshold)
23: if change < 0 then
24: rejected← true
25: else
26: rejected← true
27: pNodes← GETNODESIFEXISTS(seedNode, path)
28: if pNodes 6= ∅ then
29: if rejected then . The path has some unfit nodes
30: pathsr ← pathsr ∪ path
31: else . The path has only fit nodes
32: pathsi ← pathsi ∪ path
33: d[depth]← UPDATEDEPTHSNAPSHOT(d, depth, pNodes)
34: i[path]← pNodes
35: else . The end of the path is empty
36: pathse ← pathse ∪ path
37: else
38: pathse ← pathse ∪ path
39: return pathsi, pathsr

45

from 0 to k − 1, and where each entry contains the set of nodes in the community for that
depth and below, and the internal and external degree given the set of nodes.

SELECT ? o WHERE {
{ s t a r t N o d e edge . edgeName ? o .
? o a edge . t o C l a s s }
UNION
{? o edge . edgeName s t a r t N o d e .
? o a edge . t o C l a s s }

}

Figure 4.4: SPARQL query for finding nodes at the end of an edge for a startNode

For each of the resulting nodes, pNodes, at the end of path that does not cause circles,
we check the fitness change at line 22 (we will describe this method later). If the fitness
change is negative at line 23, path is rejected and none of the nodes are added to the
community. Note that if we get to line 24, we can break out of the inner for loop, because
there is no point checking the rest of the pNodes if one of them is already rejected. If we
looped through all the startNodes without finding any pNodes, we have an empty path.
The path is added to the empty path set (line 36). A successful path is found if we for all
pNodes never found a node that decreased the community fitness. When this happens, we
store the path in pathsi. We also update d with the nodes we found, and set the external
and internal degree of the community for this depth (lines 32-34).

If pl is in the set of empty paths, path is a continuation of an empty path, and thus empty
itself. It is then added to the empty path set at line 38. Even if path is a continuation of a
rejected path, we are still interested in which paths further down this path are rejected or
empty. If the path Work-expression-Expression is rejected, we would like to know if the
path Work-expression-Expression-narrator-Person is also rejected, or if it is empty. This
provide us with more information to decide which paths are frequently rejected, and thus
improves the data on which communities are built. The GetNodesIfExists-call at Line
27 does this check. This method is a SPARQL query checking if the given path returns
any result for the seedNode. We are only interested if there exists nodes along a continued
rejected path, not to get all nodes that do, so pNodes at line 27 is either empty or contains
one element. Since rejected is true, we are not going to use this element. Checking if a
continuation of a rejected path is empty or not has a performance cost. We will discuss if
this cost is worth it below.

The UpdateDepthSnapshot-call on lines 6 and 33 updates the internal and external de-
gree for a given depth. Algorithm 4 shows this method. If depth is 0, which only happens
at the call at line 6 from Algorithm 3, we must initialize a new snapshot for depth = 0
(line 2). Otherwise, we fetch the existing snapshot for depth (line 4). If there exists no
snapshot for depth and depth > 0, it means we must start from the snapshot at one smaller
depth (line 6). A snapshot at depth l includes all the nodes from the snapshot at depth l−1,
plus the nodes at depth l that are included in the community. The new nodes are added
at line 7, and the internal and external degree calculated at lines 8 and 9. As before, the

46

internal degree is the number of internal edges in the community multiplied by 2, while
the external degree is the number of edges crossing the community boundary. Finally, we
return the updated snapshot.

Algorithm 4 UpdateDepthSnapshot

Input: d, depth, pNodes
Output: depthSnapshot

1: if depth == 0 then
2: depthSnapshot← ∅
3: else
4: depthSnapshot← d[depth]
5: if depthSnapshot == ∅ then
6: depthSnapshot← d[depth− 1]
7: depthSnapshot.nodes← depthSnapshot.nodes ∪ pNodes
8: depthSnapshot.din ← CALCULATEINTERNALDEGREE(depthSnapshot)
9: depthSnapshot.dout ← CALCULATEEXTERNALDEGREE(depthSnapshot)

10: return depthSnapshot

4.1.4 Fitness Function

Because the internal degree at depth 0 is 0, the fitness of the community at this depth is 0
as well. In our approach, this will cause all nodes and their corresponding paths at depth
1 to be added, because the fitness will increase from 0 regardless of how many further
links a node has. Obviously, this is a problem that can disrupt the notion of a community
as representation of a logical concept. One way to solve this is to use a node centrality
threshold similar to what we did in section 3.3.4 for paths of length 1. Only paths where
all nodes have degree centrality below the threshold are added. Another approach could
be to set the internal degree equal to the external degree. For α = 1.0, the fitness of a
seed node would then be 0.5. This could be a workable approximation if we expected the
resulting communities to have a mean at about 0.5. Whether this expectation hold for RDF
datasets in general is hard to tell and test because there is no way to decide what the correct
communities in a dataset are, and hence the correct fitness cannot be known either. On one
hand, RDF datasets are often sparse. That suggests that the fitness of communities will
rarely approach 1. On the other hand, the sparseness suggests that communities found will
have relatively few external links, and we also know that the dataset could be a number of
disconnected graphs. Figure 4.5 provides an example of how nodes at depth 1 are treated
with this scheme for initial fitness. The seed node, S, has three links to other nodes. Let
us assume that these links are of different predicates, each letter a-g representing a unique
predicate. Under this scheme, none of the nodes would be added. Looking at the graph, it
seem reasonable that at least S, W, and X should be grouped together. With this scheme it
will not happen, neither with seed nodes S, W or X. We conclude that an initial fitness of
0.5 does not work.

The node centrality threshold (2|E||V |) for the example graph is 2.33. With the approach that

47

Figure 4.5: Example of inclusion of nodes at depth 1 from seed node S

nodes at depth 1 must be below the node centrality threshold, S-b-V and S-f -X will be in-
cluded. We do not get W in the community through the direct path S-c-W, but the path via
X will make sure W is included. It should be note though, that we are not really interested
in the nodes included in the community, but rather the paths. This example illustrates that
not all possible paths inside the community of nodes are regarded as included, only the
ones actually used to include nodes. Here, the c edge will connect two nodes inside the
community, but the path S-c-W will be in the set of rejected paths. From our perspective,
this is not an error of the algorithm, but rather a feature. We are interested in exploring
some common features of the path S-c-W across the dataset, and it would be wrong to let
the presence of a path S-f -X-e-W for an instance influence this. With this in mind, we
extend our fitness function to require that nodes at depth 1 have degree centrality below
the node centrality threshold.

Algorithm 5 shows how theGetF itnessChange call at line 22 in Algorithm 3 works with
node centrality threshold as fitness function for nodes at depth 1, and Equation 3.2 for the
other nodes. We test the fitness for an individual node based on its neighbors, obtained at
line 1. For nodes one step away from the seed node, we check the fitness change using the
number of neighbors, as can be seen at line 4. If this is below the node centrality threshold,
the change is positive and node is fit for the community.

A node at depth > 1 from the seed node is judged by how adding it changes the commu-
nity fitness with regards to the fitness at depth − 1. α in the fitness function is a global
parameter set before running Algorithm 2. We use the d map at line 6 to get the nodes
included in the community at depth − 1, and the internal and external degree. Then, we
calculate the fitness for this community, fcurrent. To check if the fitness will increase or
decrease by adding node, we simulate such an adding. This is done by calculating the
new internal and external degree at lines 10 and 11 if the node was added (lines 8 and 9
simulate the adding). When calculating the internal degree, we take the current internal
degree and add the number of neighbors of node already in the community times 2. The
reason we are multiplying by 2, is that one connection between node and a neighboring
node inside the community increment the internal degree for both of them. When calculat-
ing the new external degree, we need to add the connections from node to nodes outside
the community, but at the same time remove the connections that was previously external
but become internal by the adding of node. With the new external and internal degrees
we calculate the new fitness, fnew, and the change to see if adding this node will increase
the fitness. Finally, the change is returned and then used to decide if node is fit or not in
Algorithm 3.

48

Algorithm 5 GetFitnessChange

Input: node, d, depth, threshold
Output: change

1: neighbors← GETNEIGHBORSOFNODE(node)
2: change = 0
3: if depth == 1 then
4: change← threshold− neighbors.size
5: else
6: din, dout, nodes← d[depth− 1] . In and out degree, and nodes in community
7: fcurrent ← din/(din + dout)

α . Current fitness
8: ni← nodes ∩ neighbors . Neighbors already in community
9: no← neighbors \ ni . Neighbors outside community

10: ndin ← din + (ni.size ∗ 2) . New internal degree
11: ndout ← dout − ni.size+ no.size . New external degree
12: fnew ← ndin/(ndin + ndout)

α . New fitness
13: change← fnew − fcurrent
14: return change

4.1.5 Max Path Length

To avoid traversing the whole graph for each seed node, a max length k has to be set on
path lengths. Since we run the algorithm for instances of all the classes in the dataset, long
path lengths are most likely not necessary to explore all the different paths. It might seem
enough to check only paths of length 1. For instance, if we check the path Artist-made-
Release, we can refer the check of Release-on-Label to instances of Release. When the
algorithm is finished, we can then combine paths of length 1 to longer paths. However,
since instances are chosen randomly, some possible paths may not be explored. In addi-
tion, finding that Label is fit to a community containing both Artist and Release, gives more
information than if the community just contains Release. We therefore require k ≥ 2, so
that some overlap occurs.

If the class graph is dense, we would expect that a shorter max path length will provide a
good cover of possible paths. This is because the paths can be tested from different angles.
Figure 4.6 shows an example of a dense class graph. For such a graph, the path length does
not have to be long for a path to be checked for community inclusion for many different
classes. For instance, the actor edge between Movie and Person is reachable for all the
classes in the graph with k = 2. This means that a number of instance seeds of different
classes will check this path as a subpath of other paths.

In contrast, Figure 4.7 shows an sparse class graph. If k = 2 here, the path Release-
contain-Track will only be checked for instances of class Release or Record. We might be
interested in exploring if communities grown from seed of class Artist will include Track
or not. As mentioned, we could combine different paths, but the result may be misleading
since the set of instances that was used to check the path from Artist to Release may have
no overlap with the instances used to check the path from Release to Track. Ideally, then,

49

Figure 4.6: Dense class graph

should the maximum path length be equal to the number of different relationships between
classes (7 in Figure 4.6 and 4 in Figure 4.7). However, this number quickly gets large and
creates a performance bottleneck.

Figure 4.7: Sparse class graph

With the intuition that sparser graphs requires higher max path length, we state that the
max path length k for the graph G is

k = 1 +

⌊(
|E|
D(G)

)β⌋
, (4.4)

where |E| is the number of edges in the class graph, D(G) is the graph density in the class
relationship graph found by Equation 2.12, and β is a scaling parameter. The expression
inside the floor will always be larger than 1 (as long as |E| > 0), so k ≥ 2. We found
β = 0.1 to give reasonable path lengths for our datasets. We will test our algorithm with
different path lengths in the experiments section below.

4.1.6 Example

To illustrate how Algorithm 3 works, we walk through an example in Figures 4.8 to 4.15.
The color codes are the same as the ones in Figure 4.1. We set max path length, k, to 2,

2We can use this formula, which is for simple graphs, because we disregard loops in the graph and because
we do not consider multi-edges

50

α = 1.0, and the node centrality threshold to 3.4. The letters in the nodes indicate the class
of the node, while the subscript number indicates different instances. Thus, A1 and A2 are
two node instances (or IRI nodes in the RDF graph) of the class A. Figure 4.8 shows the
initialization, or lines 1-6 in the FindPathCommunity algorithm. pathsc us the different
paths we are going to test for the seed node S1. The dmap is initialized with the seed node
at depth 0, and the corresponding degrees. S1 has five neighbors, so dout = 5.

pathsc : {S−a−A, S−b−B , S−c−C ,
S−d−D, S−a−A−f−F ,
S−b−B−h−H, S−c−C−k−K,
S−d−D−e−E , S−d−D−m−M}

pathsi : {}
pathsr : {}
pathse : {}
i : {}
d : 0={ nodes : {S1 } , din : 0 , dout : 5 }
t h r e s h o l d : 3 . 4

Figure 4.8: Initialization

pathsc is sorted ascending by length, and the first path we test is S-a-A. As we can see
in Figure 4.9, this path is rejected because A1 has 4 neighbors and therefore is above the
node centrality threshold (when finding neighbors, we look at all neighbors, including
those already in the community). A2 is fit to be in the community, but that does not matter
because we want consistency for all instances at the end of a given path. We see that node
A1 and A2 are colored as rejected, and the path S-a-A is added to the rejected path set
pathsr.

pathsc : {S−a−A, S−b−B , S−c−C ,
S−d−D, S−a−A−f−F ,
S−b−B−h−H, S−c−C−k−K,
S−d−D−e−E , S−d−D−m−M}

pathsi : {}
pathsr : {S−a−A}
pathse : {}
i : {}
d : 0={ nodes : {S1 } , din : 0 , dout : 5 }
t h r e s h o l d : 3 . 4

Figure 4.9: Testing, and rejecting, first path S-a-A

51

The next path to test is S-b-B, showed in Figure 4.10. The only instance to consider is B1,
and this is below the node centrality threshold. B1 is colored as included, and S-b-B added
to the included path set pathsi. We also make sure to store B1 in i, so we can use it when
we later test path S-b-B-h-H. d is updated on the current depth, which is 1. There was no
snapshot at this depth present, so we copy from the snapshot at depth−1 and then add the
node to the new snapshot. The degrees are calculated by using the previous degrees and
adding the new internal and external degree for the new node B1. In this case, dout was 5.
We add B1’s links to nodes outside the new community (the link to H1) and subtract the
now internal link between S1 and B1. Then we are still at 5. The internal link makes the
internal degree 2, since both S1 and B1 have internal degree 1.

pathsc : {S−a−A, S−b−B , S−c−C ,
S−d−D, S−a−A−f−F ,
S−b−B−h−H, S−c−C−k−K,
S−d−D−e−E , S−d−D−m−M}

pathsi : {S−b−B}
pathsr : {S−a−A}
pathse : {}
i : {S−b−B = {B1}}
d : 0={ nodes : {S1 } , din : 0 , dout : 5 }

1={ nodes : {S1, B1 } , din : 2 , dout : 5 }
t h r e s h o l d : 3 . 4

Figure 4.10: Testing, and including, path S-b-B

In Figure 4.11 we test the path S-c-C, which turn out to be empty (that is, pNodes is empty
at line 28 in Algorithm 3). The only thing that happens, is that the path is added to the
empty path set pathse (line 36 in the algorithm).

pathsc : {S−a−A, S−b−B , S−c−C ,
S−d−D, S−a−A−f−F ,
S−b−B−h−H, S−c−C−k−K,
S−d−D−e−E , S−d−D−m−M}

pathsi : {S−b−B}
pathsr : {S−a−A}
pathse : {S−c−C}
i : {S−b−B = {B1}}
d : 0={ nodes : {S1 } , din : 0 , dout : 5 }

1={ nodes : {S1, B1 } , din : 2 , dout : 5 }
t h r e s h o l d : 3 . 4

Figure 4.11: Testing the empty path S-c-C

52

The last path of length 1, S-d-D, is tested in Figure 4.12. There are two instances of class
D, D1 and D2. Both are below the threshold, and thus included in the community. The
data structures are updated accordingly. din = 6, because the internal degrees areD1 = 1,
D2 = 1, B1 = 1 and S1 = 3.

pathsc : {S−a−A, S−b−B , S−c−C ,
S−d−D, S−a−A−f−F ,
S−b−B−h−H, S−c−C−k−K,
S−d−D−e−E , S−d−D−m−M}

pathsi : {S−b−B , S−d−D}
pathsr : {S−a−A}
pathse : {S−c−C}
i : {S−b−B = {B1 } , S−d−D = {D1, D2}}
d : 0={ nodes : {S1 } , din : 0 , dout : 5 }

1={ nodes : {S1, B1, D1, D2 } ,
din : 6 , dout : 6 }

t h r e s h o l d : 3 . 4

Figure 4.12: Testing path S-d-D

Figure 4.13 shows the test for path S-a-A-f -F. We already know that S-a-A was rejected, so
this cannot be included (the check at line 14 in Algorithm 3). In this example, we choose to
check for continuations of rejected paths, so we check to see if there exists some instances
of class F at the end of the path. It does, meaning that the path is placed in pathsr. If there
had not been any instances of F, it would have been an empty path.

pathsc : {S−a−A, S−b−B , S−c−C ,
S−d−D, S−a−A−f−F ,
S−b−B−h−H, S−c−C−k−K,
S−d−D−e−E , S−d−D−m−M}

pathsi : {S−b−B , S−d−D}
pathsr : {S−a−A, S−a−A−f−F}
pathse : {S−c−C}
i : {S−b−B = {B1 } , S−d−D = {D1, D2}}
d : 0={ nodes : {S1 } , din : 0 , dout : 5 }

1={ nodes : {S1, B1, D1, D2 } ,
din : 6 , dout : 6 }

t h r e s h o l d : 3 . 4

Figure 4.13: Testing path S-a-A-f -F, a continuation of a rejected path

Path S-b-B-h-H is included, as we can see in Figure 4.14. We use i to get the nodes of
class B satisfying the path S-b-B (the path called pl in Algorithm 3), which in this example
is B1. From B1 we find H1 at depth 2, and check if adding this node increase the fitness
compared to the fitness at depth 1. Since we now have depth > 1, we use the other fitness

53

function. From d we get the fitness at depth 1, which is 6
6+6 = 0.5. Adding node H1,

which have two further external links, gives fitness 8
8+7 = 0.53. In other words, the fitness

increases, and node H1 is fit for the community. This is the only node for the path, so the
path is added to pathsi. Since the max path length, k, is the same as the length of this
path, we do not have to update i and d. d is only used with key depth − 1, so we have
no use of d[k], unless we for some reason should be interested in the fitness of the final
community.

pathsc : {S−a−A, S−b−B , S−c−C ,
S−d−D, S−a−A−f−F ,
S−b−B−h−H, S−c−C−k−K,
S−d−D−e−E , S−d−D−m−M}

pathsi : {S−b−B , S−d−D, S−b−B−h−H}
pathsr : {S−a−A, S−a−A−f−F}
pathse : {S−c−C}
i : {S−b−B = {B1 } , S−d−D = {D1, D2}}
d : 0={ nodes : {S1 } , din : 0 , dout : 5 }

1={ nodes : {S1, B1, D1, D2 } ,
din : 6 , dout : 6 }

t h r e s h o l d : 3 . 4

Figure 4.14: Testing path S-b-B-h-H, a continuation of a included path

Figure 4.15 shows the graph and the data structures after all paths are tested. S-c-C-k-K
is empty because S-c-C was empty (tested at line 10 in Algorithm 3). Since S-d-D was
included, we needed to check the path S-d-D-m-M. From i we got D1 and D2 to test for,
but none of them have any link to a node of class M. This path was therefore empty. The
path S-d-D-e-E was not empty. Both E1 and E2 were fit to be included in the community,
but E3 was not (the fitness of E3 would be 8

8+9 = 0.47).

pathsc : {S−a−A, S−b−B , S−c−C ,
S−d−D, S−a−A−f−F ,
S−b−B−h−H, S−c−C−k−K,
S−d−D−e−E , S−d−D−m−M}

pathsi : {S−b−B , S−d−D, S−b−B−h−H}
pathsr : {S−a−A, S−a−A−f−F , S−d−D−e−E}
pathse : {S−c−C , S−c−C−k−K, S−d−D−m−M}
i : {S−b−B = {B1 } , S−d−D = {D1, D2}}
d : 0={ nodes : {S1 } , din : 0 , dout : 5 }

1={ nodes : {S1, B1, D1, D2 } ,
din : 6 , dout : 6 }

t h r e s h o l d : 3 . 4

Figure 4.15: After testing all paths

54

The nodes of classes G, P and R are not tested because they are at depth 3 from the seed
node, which is longer than the max path length we decided on. Finally, pathsi and pathsr
are returned to Algorithm 2, and used to update the path statistics.

4.1.7 Creating Path Communities from Path Statistics

At the end of Algorithm 2 (the createPathCommunities call at line 15) we have to
decide which paths are interesting and which are not. Another parameter is thus the path
threshold pt. A path is considered interesting when the path frequency

pf (path) =
|path[actual]|
|path[possible]|

, (4.5)

is above pt. The set of frequent paths, pathsf , is then:

pathsf = {path ∈ stats : pf (path) > pt} (4.6)

We refer discussions of what pt should be to the experiments section.

A problem with this approach is that we can risk having frequent paths whose starting
subpaths are infrequent. As an example, say that there are 50 possible Person-author-
Work paths, of which 17 are included. For the values of pt we have chosen below (0.5 and
0.8), this path would be an infrequent path. Consider then the path Person-author-Work-
expression-Expression, for which there are 21 possible paths. Now, given the fact that 17
of the tested instances included the first part of the path in their path communities, the
path frequency would be somewhere between 0

21 and 17
21 . Thus, it should be clear that we

can have a situation where Person-author-Work-expression-Expression is frequent, while
the first part of the path is not. The question is how this should be interpreted. We could
interpret it in such a way that we only include Person-author-Work in a community, if we
also have a continuation from Work to Expression. However, this quickly creates situations
where the inconsistencies we are trying to avoid appear again. If a Person has both of the
paths in question, only one of the Works will be added, which cause similar problems as
the ones we illustrated in Figure 3.2. Two basic solutions arise: either add Person-author-
Work to the set of frequent paths, or remove Person-author-Work-expression-Expression.
The first option seems less than ideal, since we have run community detection on this
path and found it to be infrequent. In addition, the community detection for this path is
run on more instances than the longer path, so we should weight that result more. Thus,
we choose the second option of removing a frequent path if not its subpaths originating
from the start is frequent too. By "originating from the start" we mean that if a path
Person-author-Work-expression-Expression is frequent, we are only interested in checking
if Person-author-Work is frequent too, not Work-expression-Expression.

After removing the infrequent paths and the frequent paths with infrequent subpaths,
we are left with paths from which path communities can be built for index and search
purposes. A question that arises is whether we should combine paths to longer paths,
but as we noted above, this may lead to the creation of paths that do not exist in the
data. A related issue is what to include in a community around a class. The following

55

may for instance be frequent paths found from the Person class: Person-author-Work,
Person-author-Work-expression-Expression, Person-actor-Expression, Person-narrator-
Expression-expression-Work. Should all these paths be included in the community around
Person? This seems to be dependent on the query. If the query is "David Suchet", perhaps
we want all available information on the Person. However, if the query is "David Suchet
film", we are probably not interested in the audio books he has narrated.

In light of the discussion above, we refrain from combining paths on basis of the class
information available, and instead pass this task further along the index and search process
to when instance information becomes available.

4.2 Experiments

In this section, we are interested in analyzing the following questions:

E1: Which values for the path threshold pt are reasonable?

E2: How does the path length affect the performance?

E3: How does the check of continuations of rejected paths affect the performance and
the quality of the results?

E4: How does the random seed selection affect the resulting set of frequent paths?

Questions E1 and E2 are discussed in Section 4.2.2, while E4 is discussed in Section 4.2.3.
E3 is discussed in both sections.

When doing the experiments, we run the tests multiple times and report mean values. We
set α = 1.0 in the fitness function for all experiments to reduce the number of variables.
Table 4.2 shows the max path length k for each dataset, calculated using Equation 4.4.
Additionally, we show the node centrality threshold.

Table 4.2: Max path length for datasets

Dataset Max path length (k) Node centrality threshold

Linkedmdb 3 4.6
Musicbrainz 2 3.3
murder.rdf 2 4.9

Table 4.3 shows the number of class paths for different max path lengths for the two
datasets.

56

Table 4.3: Number of class paths per path length for datasets

Dataset Path length Number of class paths

Linkedmdb
2 2 750
3 23 506
4 299 072

Musicbrainz
2 582
3 4 869
4 41 110

4.2.1 Evaluation Metrics

When testing and reporting performance of the algorithm, the exact run times are not
themselves that interesting. More interesting is the relationship between the run times for
test with different parameters or approaches. The exact run times are mostly interesting
when we evaluate if the performance of the algorithm is sufficiently good to be acceptable.
What constitutes acceptable performance will be discussed when actual run times occur
below.

Sampling of seed nodes makes the algorithm non-deterministic. To evaluate the effect
this has, we look at the consistency of frequent paths over multiple runs. This makes it
possible to answer question E4. We find the consistency by looking at how many paths are
common for all tests as a fraction of all frequent paths. Let pi be the paths returned in test
run i = 1, 2, ..., n and pc = p1 ∩ p2 ∩ ∩ pn. That is, pc is the paths that are common
for all runs. Let pa be the union of all paths: pa = p1 ∪ p2 ∪ ... ∪ pn. Then we define the
consistency, c, for a set of test runs as

c =
|pc|
|pa|

(4.7)

If the returned path sets for all runs are the same, then c = 1, and if the runs have no
common paths, c = 0. The seed selection is the only random part of the algorithm, so if
we run the algorithm with all nodes as seed nodes, c would be 1.

In some cases, it is feasible to run the algorithm for all nodes in the dataset. For those cases,
we can treat the returned set of frequent paths as the correct answer. When sampling the
dataset, we wish the set of frequent paths to be as close to the correct answer as possible.
By measuring how correctly the algorithm classifies different paths as either frequent or
not, we can evaluate the quality of our sampling approach. The traditional information
retrieval metrics of precision, recall and F-measure (sometimes called F-score) are used.
Let pathsa be the set of frequent paths that are considered the correct set, and pathsf be
the set of frequent paths returned by a given run of the algorithm, like we defined above.
Adapting the formulas from [28] to concern paths instead of documents, precision for a

57

run of the algorithm is then defined as:

Precision =
|relevant paths retrieved|
|paths retrieved|

=
|pathsa ∩ pathsf |

|pathsf |
(4.8)

Recall is defined as:

Recall =
|relevant paths retrieved|
|relevant paths|

=
|pathsa ∩ pathsf |

|pathsa|
(4.9)

F-measure is defined as:

F =
(β2 + 1)Precision ·Recall
β2 · Precision+Recall

(4.10)

We choose to weight precision and recall evenly by setting β = 1. F-measure with this β
is called F1 and defined as:

F1 =
2 · Precision ·Recall
Precision+Recall

(4.11)

4.2.2 Parameters and Performance Tests

First, we discuss question E1. Which values are reasonable for the path threshold pt is
strongly related to question E3, because the path frequency should be higher if we check
continuations of already rejected path than if we do not check. This is simply because
checking such paths lead to lower values of |path[possible]| in Equation 4.5. When we do
not check paths that are continuations of rejected paths, we count these paths as rejected.
Intuitively, pt should be somewhere between 0.5 and 1. Through some initial experiments
we found 0.5 to be a reasonable value if we do not check these paths, while 0.8 might be
a good value if we do check them. Note that paths of length 1 are not affected by whether
we check rejected paths or not; all these paths will be checked. We therefore set pt = 0.8
for paths of length 1 for both cases.

For question E3, we test with and without line 27 in Algorithm 3. This is the line that
check continuations of rejected paths. Figure 4.16 shows the average run time for the
algorithm with and without checking continuations of rejected paths and for different max
path lengths. The class sample size is 1 000, meaning that we do community detection with
1 000 seed nodes from each class. We did not manage to complete the test for Musicbrainz
with checking of continuations of rejected paths and path length of 4. However, testing
on some of the classes suggested that it took about 15 times as long as for path length 3.
As we can see, when checking for continuations of rejected paths, the run time resembles
a exponential function. This is as expected, since each node that is visited usually has
links to a number of other nodes which in turn has links to other nodes that also has to be
checked out later. It is a bit more surprising that the tests without checking continuations
are almost flat. The flatness suggests that, for these datasets, few paths of length 3 and 4

58

are worth considering. The result of the tests confirm this, as relatively few paths of length
3 and 4 are including in the final set of frequent paths. For E2, then, we find that the path
length affect the performance quite heavily when we check continuations of rejected paths,
and that the effect is much smaller when we do not check continuations. This may be the
case due to characteristics of our datasets, and is perhaps not the general case. However, it
seems reasonable that more paths of short length should be included in a community than
longer paths, since length is one indication of how close instances are conceptually.

Figure 4.16: Average run time for algorithm for different path lengths with sample size of 1000 per
class.

4.2.3 Sampling Tests

To motivate why we need to sample the datasets, we first discuss running the algorithm for
all nodes in the dataset. For the Linkedmdb dataset with max path length k = 3 without
checking continuations of rejected paths, the total time was about 1.5 hours, while with
checking rejected paths if took about 14 hours3. The frequent paths found for Linkedmdb
were the same regardless of whether we checked continuations of rejected paths or not.
The only difference between the two approaches was a slightly smaller number of possible
communities for the test with rejected path check. This is as expected, since checking the
continuations of rejected paths would reveal some of these to be empty, while if we do
not check it we simply treat all as rejected. All frequent paths for Linkedmdb are listed in
Appendix C.

3For this last run time, the test was run only once. Therefore, it is possible that it is an outlier run time not
representative for the actual average run time. However, we have run our algorithm multiple times throughout
the work on this thesis and have yet to see extreme outliers with regard to run time.

59

For the Musicbrainz dataset, the algorithm took too long to finish, or we ran into memory
issues. This might have to do with the implementation of the test or the algorithm itself,
or the hardware of the machine used, or all of the above. Regardless, some initial results
suggested that running Algorithm 3 for a node in the Musicbrainz dataset with k = 2 took
on average about 50 millisecond. Given that there are about 35 000 000 class instances (see
Table 3.1), this would have taken something like 20 days. While this indexing algorithm
is not something that would have to be run that often, 20 days is too long. Thus, the need
for sampling should be clear.

Table 4.4 shows the results of tests for different class sample sizes using the baseline
classSampling approach for the Linkedmdb dataset. The path length is set to 3, following
Table 4.2. One consistency test is calculated by five runs of the algorithm (that is, n = 5
in for the consistency expression in Equation 4.7). For each sample size, we run ten
consistency tests and calculate average consistency4. In other words, to get the value
0.53 for average consistency with class sample size 1 000 with checking continuations
of rejected paths, the algorithm is run 50 times. We also report minimum and maximum
consistency, to get a feel for the span in which the consistency varies. The average run
time in seconds of one run of Algorithm 2 is showed in the table, to illustrate the costs
of increasing the class sample size. The number of seed nodes in the table indicates how
many times Algorithm 3 is run for each run of Algorithm 2. For Linkedmdb, we know the
set of frequent paths for running the algorithm on all instances. We can therefore calculate
recall, precision and F1. The average values are listed in the table.

We see that the number of seed nodes cannot be calculated by multiplying the number of
classes with the class sample size. This means that there are classes in the Linkedmdb
dataset that have fewer instances than the given class sample sizes. In fact, there are only
12 out of 47 classes that have more instances than 10 000 (see Appendix B). In other
words, class sample size 10 000 will lead to 35 of the classes having all its instances run
as seeds for community detection. A consequence of this is that all the frequent paths
starting with any of these classes will be found. We should be therefore be careful to see
the high values of precision and recall as proof that 10 000 instances per class is the right
choice of sampling strategy. However, looking at the actual frequent paths (Appendix C),
we note that most of them come from the classes with higher instance count than 10 000:
only 18 of the 51 frequent paths starts from classes with instance count < 10 000. Thus,
we only know that the recall cannot be lower than 0.35. It should therefore still be possible
to evaluate the sampling quality.

The table expose a weakness in using consistency as a quality measure. We see that the
consistency is high for class sample size of 100. However, recall and F1 are low. Looking
at the frequent paths returned in these experiments, we find that the paths typically start
with a class containing few instances. This is unsurprising, since these classes have a
higher proportion of their instances sampled. While the consistency is high, we would
not see this result as particularly good, since most of the frequent paths are absent. In
general, we find that high values of F1 implies high consistency, but not the other way
around. Therefore, when judging datasets for which we cannot compute F1 scores (like

4For the slower test cases we have restricted ourselves to five consistency test. That is, 25 runs of the algo-
rithm.

60

Table 4.4: Test of Linkedmdb with and without checking continuations of rejected paths with dif-
ferent class sample sizes using the classSampling approach. Max path length (k) is 3.

class sample size
100 1 000 10 000

no. of seed nodes 3 970 26 453 147 149

w/o rejected

avg run time (sec) 80 230 1 041

min consistency 0.78 0.46 0.71
avg consistency 0.85 0.60 0.79
max consistency 1 0.76 0.86

avg recall 0.25 0.51 0.83
avg precision 0.87 0.69 0.90
avg F1 0.39 0.58 0.86

w/ rejected

avg run time (sec) 425 1 023 5 336

min consistency 0.75 0.30 0.80
avg consistency 0.83 0.53 0.85
max consistency 1 0.67 0.93

avg recall 0.25 0.51 0.82
avg precision 1 0.72 0.97
avg F1 0.40 0.59 0.89

the Musicbrainz dataset), we must look at, and compare, the actual paths returned in tests
with different class sample sizes, not just consider the consistency. What the consistency
does indicate, is the level of stability. The goal, of course, is stable results of high quality,
where quality is measured by how close to the correct answer the frequent path set is. In the
absence of a correct answer, we manually scan the frequent paths returned in experiments
to evaluate the quality.

With regard to question E3, we have been unable to detect any significant differences be-
tween checking and not checking continuations of rejected paths. The frequent path sets
we have obtained through the running of the algorithm both for the run time experiment
in Figure 4.16, and the sampling experiment for the classSampling approach, reveal no
difference in consistency. We find that the approach of not checking continuations of re-
jected paths returned slightly more paths of length 2 and 3, but this was often infrequently
tested paths. Additionally, as we can see in Table 4.4, the precision is slightly higher
when checking continuations of rejected paths. This suggests the checking continuations
of rejected paths is a bit better at avoiding false positives. However, the recall is found

61

to be similar, and so are the F1 scores. We conclude that not checking continuations of
rejected paths do not decrease the quality of the result in any significant way. Hence,
the remaining difference between the approaches is the performance gain of not checking
continuations, which is evident in both Figure 4.16 and Table 4.4. In the following, we
refrain from testing paths that are continuations of rejected paths, and simply count these
as rejected.

Table 4.5 shows the results of consistency tests for the Musicbrainz data using the class-
Sampling approach. One expected consequence of increasing the class sample size, is
higher average consistency, since we should expect the likelihood of covering the different
paths to increase. Looking at the numbers, this expectation seems to hold for the Mu-
sicbrainz dataset, while it does not hold for the Linkedmdb dataset. An explanation could
be found in Table 4.3, where we see that Linkedmdb has many more different paths be-
tween classes. It seems that Musicbrainz have more homogeneous data, that is, most of
the instances of a class have the same class relationships. In Linkedmdb, this varies more,
and some paths are quite infrequent. For instance, only 15 of the 85 000 instance of the
class Film have a costume designer (see Appendix B and C). Finding nodes that satisfies
this path by randomly sampling 100 or 1 000 of the instances requires a bit of luck.

Looking at the actual paths returned for different class sample sizes for Musicbrainz, they
are mostly the same for class sample size 100 and 10 000. Higher class sample size result
in more stable results, with a slightly larger core of paths that are constantly found. The
paths that are not consistent over runs (that is, pa \ pc), typically have small values of pos-
sible communities (see Table 4.1). This means that these paths are only tested a few times.
For instance, one of the paths that appear on and off as a frequent path for the Musicbrainz
dataset is the path MusicGroup-composer-Composition. When this path is included, it is
typically with a path statistic like "actual communities=2 and possible communities=2" or
"actual communities=3 and possible communities=3". Of course, this could be interpreted
as if there are only a few connections between MusicGroup and Composition through
the composer-predicate, and that it is a strong connection when it occurs. The actual oc-
currence tell another story, though. There are in fact 1 730 MusicGroups connected to
Composition through this predicate. Using only 2 or 3 instances to decide for all the 1 730
instances, suggests a flaw in the classSampling strategy. A counterargument could point
to the fact the are about 195 000 instances of MusicGroup in the dataset, and that this path
is insignificant anyway. Viewed this way, this sampling strategy does not guarantee that
all paths are found and tested, but the paths that are found could be interpreted as the most
important. If we follow this reasoning, we could introduce a post-processing step that re-
moves paths that are infrequently tested, such as the example path here. Then we would
be left with paths that are frequently included in communities, and that are thoroughly
tested. With regards to our stated goal of finding human concepts, this may be a good way
to make sure that the concepts we find are strong.

However, we argue that the frequency of a connection is not equal to its conceptual
strength. For instance, in the Musicbrainz dataset we also have the paths MusicArtist-
composer-Composition and SoloMusicArtist-composer-Composition. These paths are much
more frequent than the MusicGroup-composer-Composition path. Thus, for a given run
of the algorithm, these paths will most likely be tested more. Conceptually, however, we

62

Table 4.5: Test of Musicbrainz without checking continuations of rejected paths with different class
sample sizes using the classSampling approach. Max path length (k) is 2.

class sample size
100 1 000 10 000

no. of seed nodes 1 300 13 000 130 000
avg run time (sec) 764 1 467 7 449

min consistency 0.32 0.64 0.75
avg consistency 0.48 0.76 0.82
max consistency 0.63 0.82 0.92

would argue that MusicGroup, MusicArtist and SoloMusicArtist have equal strength in
their relationship to Composition.

Table 4.6 shows tests for the proportionalClassSampling approach, where we instead of
sampling an absolute number of each class sample a percentage of the instances. We test
for the percentages 0.1%, 1% and 10%. Again, since we provide a minimum sample size,
the number of seed nodes cannot necessarily be calculated by using the percentage of the
total number of instances. Comparing this table to Table 4.4 and Table 4.5, we find no
improvement in using a proportional approach. The results seem to be roughly the same.
For Musicbrainz with sample percentage of 1% we note that the consistency is the same in
all tests run. When we examine the actual paths returned in these tests, we find that there
are 11 paths that are always found, while 3 paths appear on and off. These three paths are
of length 2 and originating from the MusicGroup class. They connect to the Composition
class via the composer predicate, and from Composition to MusicArtist, SoloMusicArtist,
and MusicGroup, again via the composer predicate. In other words, these paths finds the
compositions of MusicGroups which are also composed by other artists. Unsurprisingly,
this is not the most common relationship in the dataset. When it appears as a frequent
path, it is typically tested 5 to 12 times and with path frequency of around 0.6. This
may suggest that 0.5 is a too low path frequency threshold. However, a couple of times
we found the frequencies to be 0.8, so raising it might not solve the problem entirely.
Additionally, deciding the path threshold on the basis of three paths from one dataset is
not a good strategy. While it is not feasible to do community detection for all nodes in
the Musicbrainz dataset, it is feasible to do community detection with all MusicGroups as
seeds. Doing this, we find that the three mentioned paths are infrequent paths. Thus, the
should not appear in the set of frequent paths.

Our last proposed sampling strategy was called pathsNotCovered, where we keep adding
seed nodes from a class until our proposed heuristics indicate that the paths are sufficiently
covered. Table 4.7 shows the result for tests on this approach for the Linkedmdb dataset.
We have used proportional class sampling to decide how many seed nodes should be added
in each iteration. Two path sample percentages, 20% and 50%, are tested (see Equation

63

Table 4.6: Tests of the proportionalClassSampling approach using different class sam-
ple percentages. Max path length (k) is 2 for Musicbrainz and 3 for Linkedmdb.

class sample percentage
0.1 1 101

Musicbrainz

no. of seed nodes 34 805 348 103 -
avg run time (sec) 1 931 10 127 -

min consistency 0.64 0 79 -
avg consistency 0.70 0.79 -
max consistency 0.79 0.79 -

Linkedmdb

no. of seed nodes 2 409 8 602 74 392
avg run time (sec) 60 100 772

min consistency 0.63 0.31 0.68
avg consistency 0.68 0.44 0.74
max consistency 0.81 0.65 0.68

avg recall 0.23 0.30 0.70
avg precision 0.82 0.58 0.87
avg F1 0.36 0.39 0.77

1 We do not test this class sample percentage for the Musicbrainz dataset because it would yield
too many seed nodes, and therefore take more time than acceptable both for the purpose of sam-
pling and for testing it (one run of the algorithm would most likely take > 1 day. Thus, testing it
properly with 25 runs would take at least a month).

4.2).

We first note that this approach manage to get higher F1 values for significantly lower
number of seed nodes than the two previous approaches. For instance, the proportion-
alClassSampling approach has about the same F1 value for 74 392 seed nodes as the
pathsNotCovered approach has for 6 000 seed nodes. It seems that targeting the classes
which we infer has more paths to test, cause the intended effect of a more representative
sample. Another observation we make is that this approach causes some performance
overhead compared to previous approaches, when we look at the number of seed nodes.
However, getting a F1 value at around 0.75 is faster for this approach than the others.
The different path percentages we test seem to have no impact on the results, whether it
concerns consistency, or precision, recall and F1.

This approach give less control over the run time of a particular run of the algorithm.
For instance, for class sample percentage of 1% and path sample percentage of 20%, the
fastest run time was 355 seconds while the slowest run time was 1 851 seconds. The other

64

Table 4.7: Tests for Linkedmdb dataset using the pathsNotCovered approach

class sample percentage
0.1 1 10

path sample percentage
20 50 20 50 20 50

avg no. of seed nodes 6 002 6 005 28 069 25 615 160 698 155 260
avg run time (sec) 203 207 612 545 1 635 1 583

min consistency 0.54 0.54 0.66 0.67 0.75 0.79
avg consistency 0.66 0.61 0.70 0.70 0.84 0.84
max consistency 0.78 0.71 0.79 0.77 0.98 0.96

avg recall 0.65 0.66 0.74 0.77 0.87 0.89
avg precision 0.88 0.88 0.88 0.89 0.89 0.90
avg F1 0.75 0.75 0.81 0.82 0.88 0.89

sampling approaches has more predictable run times, because the number of seed nodes
is known in advance. In the pathsNotCovered approach there is a limit on the number
of seed nodes (set to 30%), but in most cases will our other heuristics stop the iterations
long before we reach the limit. This particular run time of 1 851 seconds is an outlier (the
second slowest run time was 1 003 seconds), and we have not found similar outliers for
other tests (for instance, for class sample percentage of 10% and path sample percentage
of 20%, the run time varies between 1 581 seconds and 1 705 seconds for the 50 runs of
the algorithm).

While we find this approach to be better than the other ones, we still get false positives
(frequent paths found by the algorithm that are not in the set of correct frequent paths)
and false negatives (frequent paths not found by the algorithm that are in the set of correct
frequent paths). The false positives typically have frequencies of about 0.6. That these
paths yields false positives may suggests that our path threshold pt of 0.5 is too low. From
the set of correct frequent paths, we see that most of them has frequency of 1.0, and those
who do not is still above 0.8. It may be that this is a particular feature of the Linkedmdb
dataset, but it could also be further indication of pt = 0.5 being too low.

The false negatives are, unsurprisingly, the rare paths. The path http://xmlns.com/foaf/0.1/
Agent-linkedmdb:movie/film_company-linkedmdb:movie/film_film_company_relationship,
for instance, exist for only 1 of the 691 instances of the Agent class. Our sampling ap-
proaches are for the most part unable to catch this path. The pathsNotCovered approach
misses it because it terminates if we for two consecutive iterations have the same set of
paths not covered. For this particular path, it may not have the most severe consequences
since it only concerns one instance. A solution may be to run a SPARQL query for the

65

paths who are not sufficiently covered after the termination. The SPARQL queries would
find instances that satisfies the not covered paths. Since this in most cases would be a small
portion of the set of possible paths, it may be feasible to do. For paths of length 1 it is not
that performance intensive to find which instances satisfies a path, but for longer paths and
for large classes we found that such SPARQL queries can be very slow. Therefore, we do
not find it to be a satisfactory solution.

Figure 4.8 shows the results for the pathsNotCovered approach for Musicbrainz. Since
we have not found any effect of different path percentages, we only show result for path
percentage of 20%. We find that this approach is slightly more consistent, but not by
much. The paths that are inconsistently included as frequent paths in this experiment, are
again the paths originating from MusicGroup. MusicGroup is often one of the classes with
most iterations. This means that our approach picks up that this class has paths that need
more testing. However, we struggle to find correlation between the number of iterations
and the result set of frequent paths. Meaning, sometimes the paths from MusicGroup
were included when we did many iterations, and sometimes they were included when we
did few iterations. We find the these paths are more rarely included than for the other
approaches. Since these paths are not frequent, this is a good thing, and suggests that the
pathsNotCovered approach is an improvement.

Table 4.8: Test of Musicbrainz without checking continuations of rejected paths with different class
sample sizes using the pathsNotCovered approach. Max path length (k) is 2. Path sample percent-
age is 20%.

class sample size
100 1 000 10 000

avg no. of seed nodes 3 220 26 760 250 400
avg run time (sec) 1 898 3 078 11 206

min consistency 0.64 0.69 0.75
avg consistency 0.70 0.76 0.89
max consistency 0.79 1 0.92

With regard to question E4, we have seen that the random sampling of seed nodes does
affect the results, both in terms of how stable the results are and the quality. Overall, we
find the pathsNotCovered approach to be sufficiently good to be useful. Without knowing
which instances satisfies a given path, we use the already tested instances to infer if more
instances are needed for this class. The tests here suggests that our heuristics for inferring
this has some value. However, because the tests are limited to a couple of datasets and our
quality measure is only used on the Linkedmdb dataset, we cannot say that certain values
of class sample percentages or path sample percentages are the correct ones to use in the
general case.

66

4.3 Complexity Analysis

We now discuss the time complexity of Algorithm 2. Fetching information about the graph
in question (line 1), such as number of edges, classes, class relationship and node instances
(from which we can select seed nodes) requires a traversal of the graph. The typical ways
to do this, BFS and DFS, both have complexity O(n+m), where n = |V | and m = |E|.
Each node and each edge has to be visited one time.

In our setup, we loop through each of the classes in the dataset and fetch seed nodes of
each class. Since RDF have no restrictions on the number of classes a instance can be of,
we might in the theoretical worst-case fetch all the nodes in the graph for each class. If the
number of classes is g, we have at most gn seed nodes. This is highly theoretical though,
datasets where all nodes belong to all possible classes are not likely to occur. Usually an
instance is of at most a couple of classes.

For each seed node we loop through pathsc in Algorithm 3. We have |pathsc| = h. For
each path, we have to do a number of operations. The most important are:

(a) Fetching startNodes to explore the current path from (line 18)

(b) Finding nodes at the end of the current path (lines 19-20)

(c) Doing fitness check for the nodes we found in (b) (lines 21-24)

(d) Updating the depth snapshot (line 33)

For (a), we fetch the nodes from a hash table. A hash table has average constant time
inserting and lookup, but worst-case complexity O(n) for both5. Thus (a) is O(n). For
(b), we have to do a breadth-first search to depth 1 from all startNodes. The number of
start nodes may in the worst-case scenario be all the nodes in the graph, n. We add the start
nodes to a queue, and then explore their neighbors. The neighbors of the start nodes are
added to the queue, and when all the start nodes have been dequeued, the queue contains
the pNodes. Now, we have to remove the nodes in pNodes already in the community.
This is a set difference operation, which is O(n). The BFS at has to visit at most all nodes
and edges, and is thus O(n +m). Because of the start nodes and the set intersection, we
might have to visit all nodes three times, meaning that the complexity for (b) is O(3n +
m) = O(n+m).

For (c), we need to check the fitness change for each of the nodes at the end of path, which
could be n − 1 nodes. Calculating the fitness change (Algorithm 5) requires intersection
and difference operations on sets, both of which have time complexity O(n). (c) thus has
complexity O((n − 1)n) = O(n2). (d) requires us to add the new nodes to the depth
snapshot. This is O(n), because we check if the snapshot already contains the node before
we add it. Additionally, we have to calculate the new internal and external degree for the
snapshot. For this, we need to do the same set intersection and difference as in Algorithm
5, which is O(n). (d) therefore has complexity O(n+ n) = O(n).

5Dependent on the hash function. A good hash function will avoid collisions. Our implementation uses
Strings as keys and Java’s default hash code: http://docs.oracle.com/javase/8/docs/api/
java/lang/String.html#hashCode--.

67

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html#hashCode--
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html#hashCode--

This means that the complexity of Algorithm 3 is O(h(n + (n + m) + n2 + n)) =
O(hn2 + hm)). Since the number of seed nodes is at worst gn, the worst-case time
complexity of Algorithm 2 isO(n+m)+O(gn(hn2+hm)) = O(ghn3+ghnm).

This worst-case time complexity illustrates the need for sampling. Even if we are sam-
pling, our sampling approaches cannot guarantee that the number of seed nodes is not gn.
We can argue, though, that this only will happen when the graph is small. All our sam-
pling approaches only allows all nodes of a class to be sampled if the class contains very
few instances. Thus, for all nodes to be sampled, we must have that all classes have few
instances. The only way this could lead to a large graph, is if we have a very large number
of classes. We do not consider this to be likely. In practice, the number of seed nodes will
be much smaller than gn. This may be seen by comparing the number of seed nodes in the
experiments in the previous sections, to the total number of class instances in Table 3.1. In
addition to this, we find that the number of startNodes from which we do our BFS in (b)
is far from being n. Also, the BFS will not explore the whole graph for each start node,
and pNodes will not be close to n either.

4.4 Summary

In this chapter we have presented an algorithm for finding frequent paths in an RDF graph.
Our algorithm avoids the inconsistencies described in the previous chapter by defining
a community as a set of paths. First, we require that all nodes at the end of a given
path are fit to be included in the community for the path to be included. This avoids the
first inconsistency of having identical class relationship be treated differently in the same
community. Second, we make use of aggregation over multiple communities to avoid
inconsistencies across communities. In this way, a path is treated the same way for every
instance of the same class, even though individual community detection processes has
yielded different results. The frequent paths that are found can be combined based on the
starting class, and in that way form communities.

68

5 | Proof-of-Concept Solution

We now present a proof-of-concept search solution that utilizes our path-based graph in-
dexing algorithm. The purpose of the solution is to illustrate how the path-based graph
indexing algorithm finds concepts from the frequent paths, and how they may look through
a user interface. Our user interface is a basic Google-like interface implemented with the
Play framework1. We chose to index the Linkedmdb dataset, so all queries are related to
movies.

5.1 Creating Queryable Objects

After finding the most frequent paths, there are a number of possibilities for how they may
be used for search purposes. One possibility may be to find the nodes that best match
the input keywords, and from these nodes build queryable objects by utilizing the paths
originating from the classes of the different nodes. Another possibility may be to create
these objects at index time. Then, the solutions could be ranked by how well the keywords
match different objects, not just nodes. For more complex queries, different objects may
have to be combined. This could be done in some of the ways described in Chapter 2:
backward search, bidirectional search, or intersection of paths. This, however, is out of
scope for this thesis, so we instead chose to index objects as a way to show how these
look.

The way we create queryable objects is simple. We loop through all class instances in the
dataset. For each instance, we do the following:

1. Get literals connected to the instance

2. Find the class of the instance

3. Get the frequent paths starting with this class

4. Get the nodes and corresponding literals that can be reach through the frequent paths
from the instance

1https://www.playframework.com/

69

https://www.playframework.com/

Combining the fetched nodes and edges give us a queryable object, which is a subgraph
of the RDF graph. From this, we create an XML document for each node with the node as
root. The string representation of an XML document is stored in a text field in Lucene and
analyzed with the StandardAnalyzer2. Note that the predicates are stored as well, so a term
like actor is indexed by Lucene even if it is not a literal. Type information such as film
and performance is also stored and indexed. Figure 5.1 shows an excerpt from the XML
document created from the instance "http://data.linkedmdb.org/resource/film/39829" (the
movie Days of Thunder) in the Linkedmdb dataset. Tom Cruise’ performance in this movie
is added because "http://data.linkedmdb.org/resource/movie/film-http://data.linkedmdb.org/resource/
movie/performance-http://data.linkedmdb.org/resource/movie/performance" is a frequent
path. All frequent paths are listed in Appendix C.

<?xml version="1.0" encoding="UTF-8"?>
<root URL="http://data.linkedmdb.org/resource/film/39829"

type="http://data.linkedmdb.org/resource/movie/film">
<literal predicate="http://www.w3.org/2000/01/rdf-schema#label">

Days of Thunder</literal>
<literal predicate="http://data.linkedmdb.org/resource/movie/

initial_release_date">1990-06-27</literal>
<literal predicate="http://purl.org/dc/terms/date">1990-06-27
</literal>
<literal predicate="http://data.linkedmdb.org/resource/movie/

filmid">39829</literal>
<literal predicate="http://purl.org/dc/terms/title">

Days of Thunder</literal>
<child URL="http://data.linkedmdb.org/resource/performance/8258"

predicate="http://data.linkedmdb.org/resource/movie/performance"
type="http://data.linkedmdb.org/resource/movie/performance">

<literal predicate="http://data.linkedmdb.org/resource/
movie/performance_performanceid">8258</literal>

<literal predicate="http://data.linkedmdb.org/resource/
movie/performance_actor">Tom Cruise</literal>

<literal predicate="http://www.w3.org/2000/01/rdf-schema#
label">performance #8258</literal>

<literal predicate="http://data.linkedmdb.org/resource/
movie/performance_film">Days of Thunder</literal>

</child>
</root>

Figure 5.1: Excerpt of XML document representing film object Days of Thunder

2https://lucene.apache.org/core/6_3_0/core/org/apache/lucene/analysis/
standard/StandardAnalyzer.html

70

https://lucene.apache.org/core/6_3_0/core/org/apache/lucene/analysis/standard/StandardAnalyzer.html
https://lucene.apache.org/core/6_3_0/core/org/apache/lucene/analysis/standard/StandardAnalyzer.html

5.2 Query Examples

Queries can be classified according to the user’s purpose. One category is simple fact-
finding or lookup, where the purpose is to get an answer to a question and where the
system should present the answer so that the user quickly can find it [29]. Other queries
can be more exploratory, where the correct answer to a query is unknown beforehand (and
possibly afterwards as well), and where learning and discovering are important goals. A
classification specifically related to the Semantic Web includes the category entity search,
which finds resources in the RDF graph that represents entities [4]. This may be seen
as the equivalent to classic document search on the web, but with linked data objects as
results instead.

Pound et al. [38] describe five categories of query types for object retrieval on the Semantic
Web:

• Entity query: Intention is to find a particular entity.

• Type query: Intention is to find entities of a particular class.

• Attribute query: Intention is to find values of a particular attribute of an entity or
class.

• Relation query: Intention is to find how two or more entities or classes are related.

• Other: Those queries that do not fit any of the above categories.

To test our search solution, we formulate queries from the different search paradigms
(fact-finding and exploration), and from the different categories of Semantic Web object
retrieval. We list our queries, state the category, and describe the information need:

Q1: "the dark knight".
This is somewhere between fact-finding and exploration. It is a entity query because
we wish to find the entity representing this movie, but we also want to learn and
discover something about it.

Q2: "the dark knight freeman".
This is more clearly a fact-finding query, and it could be categorized as an attribute
query. We are interested in Morgan Freeman’s role in this particular movie.

Q3: "the dark knight director".
Again, we are interested in a particular fact: who directed this movie? Since director
is a type/class in our dataset, we can categorize it as a type query. It is however also
concerned with the relation between an entity of one class ("the dark knight") and a
class ("director"), so it might also be a relation query (director is also a predicate in
the dataset).

Q4: "morgan freeman".
Through this query, we would like to explore and learn about the entity Morgan
Freeman.

71

Q5: "morgan freeman" AND "christian bale".
This is a relation query, as we would like to see how these two entities are connected.
In particular, we would like to retrieve the movies where both of these actors partic-
ipate. As such, it is fact-finding.

The first results for Q1 are shown in Figure 5.2. The ranking of results is according to
the scoring function of Lucene. We have used the default scoring without any fine-tuning.
The exact ranking is not the most important part here (although we would like the "correct"
answers to appear close to the top of course), what we are interested in is the structure of
the objects. We see that the "correct" answer to Q1 comes up as the second result. This
result presents some general information about the movie: the performances in the movie
(which are more than what is shown in the screenshot) and the characters portrayed, and
the release date in some geographical regions.

Figure 5.2: Excerpt of top two results for query Q1: "the dark knight"

In Q2 we are not interested in all this information, but rather just Morgan Freeman’s role
in the movie. Figure 5.3 shows the first result for this query. Other results for this query
includes the two results in Figure 5.2 and results connected to the name "freeman".

72

Figure 5.3: Top result for query Q2: "the dark knight freeman"

One piece of information that is not included in the The Dark Knight object, is the di-
rector. Q3 explore if we can obtain this information by adding the keyword "director".
This should be possible since there is a director-predicate in the dataset, and since the di-
rector of The Dark Knight, Christopher Nolan, is connected to the movie in the dataset.
However, this query is unable to locate Christopher Nolan, at least in the top 50 results
(which is dominated by directors by the name Knight, and The Dark Knight actor perfor-
mances). Some searching establishes that the Christopher Nolan object is a single object
not connected to any film.

The results of Q4 consists of producer and director objects for Morgan Freeman, and his
actor performances individually. A big actor object containing all his performances is
returned after the individual performances. Q5 returns two results: the The Dark Knight
object we saw in Figure 5.2 and a similar Batman Begins object, which we find to be the
correct answer3.

5.3 Discussion on the Quality of the Results

The Linkedmdb dataset is somewhat limited in scope, and the relationships are not the
most complex. Additionally, we have limited ourselves to five queries, though of different
complexity. Given these limitations, we should be careful to make too strong conclusions
on the merits of our indexing algorithm. However, overall we find the objects in the results
to be relevant. We have not been able to discern any object that contains information that
is clearly superfluous for the query. It may be argued that clearly superfluous information

3The linkedmdb dataset is from 2012, apparently before The Dark Knight Rises was released

73

does not exists in a linked dataset, since the predicates connecting resources have meaning.
By superfluous information, we mean information that is unnecessary in relation to the
query. For instance, if the only result to Q2 was the whole The Dark Knight object, it
would satisfy the information need, but the relevant information would be drowned in less
important information.

We find that our search solution mostly managed to find the information we sought in the
example queries. In the more specific queries, like Q2 and Q5, the system satisfied the
information need, while at the same time provided context to the answers. For instance,
the results of query Q5 was not only two strings "the dark knight" and "batman begins",
but two objects which showed information about the objects. Additionally, the results
provided "proof" that the results were indeed correct, since both actors performance were
listed in the movie objects.

The first two results of Q4, telling us that Morgan Freeman is both a producer and director,
are both relevant from a exploratory search perspective. We might prefer to have the actor
object before the individual performances, because this gives a quicker overview and better
structured information. One issue is that the results have quite some duplicate information.
This could either be handled in the search phase or the indexing phase. If we handle it at
index time, we would have to decide if performance should be a single object, as well as
part of the actor object, or just one of the options. We argue that the big actor object may
be the best answer to a query like Q4, while an individual performance object best answer
more specific queries like Q2. Therefore, we find that duplicate information should be
handled at search time.

In Figure 5.4 we show the top result for query "lucius fox". The second result for this query
is the one in Figure 5.3. If we are to produce a minimal substructure, the first result may
be the best since it is the minimal result for the query. The argument we are making in this
thesis, is that the second result is better both in itself and as a building block of combined
solutions. This is because the added information of who is playing the film character is
always interesting, and add context to the result by linking the character to an actor (which
also contains information of which movie the character appear in).

Figure 5.4: Top result for query "lucius fox"

The exception among our test queries was Q3, which was unable to satisfy our information
need. This is the most complex query because one of the keywords refers to a relation
between two entities, and one of those entities are not mentioned in the query. The query
fails because our indexing algorithm has judged that director and film are not in the same

74

community. This might be seen as a flaw of our indexing algorithm (in fact, we specifically
named movie and director as close concepts in the introduction). Another interpretation is
that film and director are two such important classes in a dataset that exclusively concerns
movies, that they should be kept apart and only combined if specific queries (like this one)
ask for it. In a dataset that contains information from multiple domains, we might expect
most of the movie information to be grouped together. When the dataset is specifically
about movies, more narrow queries may be expected, and it might be reasonable to have
smaller objects that can return more fine-grained answers dependent on the query, and can
be building blocks for larger objects.

Thus, whether or not our objects fit as results to queries seems to be dependent on the
actual query. Sometimes they are too limited to fully answer the information need. In those
cases, some combination of objects may be necessary. For other queries, such as query
Q2, the returned object may provide enough information. In light of this, it is reasonable
that the indexing algorithm creates smaller objects. Big objects may overload the user
with information that are beyond a specific information need. We therefore argue that the
failure of Q3 is related to the implementation of the proof-of-concept search solution, not
the indexing algorithm.

75

76

6 | Conclusion

6.1 Summary

This thesis has explored how we can utilize community detection algorithms to find con-
cepts in an RDF graph that corresponds to how humans would conceptualize the world. We
have created an index scheme for the purpose of better support to keyword search on RDF
graphs. Current approaches to keyword search, both on RDF graphs and other graphs,
typically find solutions that connects keyword matching nodes with minimal cost. This
could for instance be the shortest paths between nodes matching the keywords. We have
claimed, however, that returning concepts the corresponds to how humans conceptualize
the world could make answers to queries more informative.

A state of the art review examining approaches to keyword search on graphs in general, and
RDF graphs in particular, was carried out in Chapter 2. Additionally, we did a review on
current algorithms for finding overlapping communities in a graph in Section 3.1. Based on
this review, we performed a preliminary study where the most relevant of these algorithms
were applied to some RDF graphs in Section 3.3. Through this study, we found some
weaknesses in the direct application on RDF graphs. This was related to the special nature
of RDF graphs, compared to other graphs. In particular, this concerned class information,
and the meaning that is found in predicate edges. To eliminate these weaknesses, we
developed a novel community detection algorithm for finding concepts in an RDF graph
in Chapter 4. This new algorithm defines communities in RDF graphs as a set of paths,
not as a collection of nodes. We run our community detection algorithm on a sample of
the nodes in graph, and then aggregate the results. The paths that are most frequently
included in a community, are kept and used to build concepts. Our algorithm ensures
that the concepts are both consistent internally in a community, and consistent across the
dataset.

The feasibility of our approach were shown through experiments. Furthermore, the use-
fulness of the approach is argued through a proof-of-concept search solution in Chapter 5
that uses the concepts found by the community detection algorithm.

77

6.2 Discussion

Our target was to find groups of nodes that correspond to how humans would conceptualize
the world. Looking at the paths returned for different datasets, we would say we are
halfway there. We would not describe the paths we have found as always corresponding
to complete concepts. Instead, they seem to be relationships that are so strong that they
rarely are more informative shown as its individual parts. Whether or not the paths, or
combination of paths into objects, are directly applicable as answer to keyword search
queries seems to be highly dependent on the query. In some cases, the object is enough to
fulfill a information need, while in other cases we found a need to combine objects.

We may ask, then, what the merits of finding frequent paths actually are, if we still need
algorithms at search time to create answers. As we have seen, most of the algorithms
for keyword search on graphs find minimal substructures connecting nodes that match the
keywords. With the objects produced by our indexing algorithm, the task could be to
find minimal substructures connecting objects that match the keywords. The argument put
forward in this thesis is that objects built by frequent paths can be more informative than
single keyword matching nodes, and consequently that substructures built by objects can
be more informative than substructures built by nodes.

Our experiments have been performed on two real world sized RDF datasets and one small
RDF dataset. These datasets all concern cultural data, related to films, music or books. We
should therefore bear in mind that they could have characteristics that make the results and
conclusions less applicable in the general case.

Of particular concern for our algorithm was the sampling of seed nodes to grow commu-
nities from. Given the size of many RDF graphs, running the algorithm for all nodes is
infeasible. The approach of choosing a number of instances from a class and the approach
of choosing a percentage of each class, were both found to be less than ideal. For these
approaches, the only way to get a sample that cover all the potential paths is to increase the
sample size, which in turn decreases the performance. Our more refined approach of in-
ferring which classes need more seed nodes to cover the paths, showed promising results
on the Linkedmdb dataset. We cannot, however, state that this should be the sampling
method of choice. The reason for this is that it is insufficiently tested. A problem with our
experiments on sampling methods is that our measure of consistency proved to be purely
a measure of stability, and not a measure of quality. For Linkedmdb we could, due to its
size, run the algorithm for all nodes in the dataset. This allowed us to get a correct answer
set of frequent paths which we could use to measure the quality of our sampling methods.
Since this lacked for the Musicbrainz dataset, we must be careful to interpret the results.
This applies both to how well the sampling works for this particular dataset, and whether
we can generalize the results from the Linkedmdb dataset or not.

We do, however, argue that our proof-of-concept search solution demonstrates the potential
of this approach to RDF data indexing. Even though our search solution was implemented
without fine-tuning and without considering search result rankings (we left this solely to
the default implementation in Lucene), we found that our information need for the most
part was satisfied. In particular, the additional information included in an object as a

78

consequence of the frequent paths discovered by our algorithm, provided context to the
answers to queries. We found this to improve the answers. If we are to be certain of
this, though, we would first need to create a more refined search solution. Secondly, this
solution would need to be tested on real users. Since this is out of scope for this thesis, we
are satisfied with demonstrating the feasibility, usefulness, and potential of our path-based
graph indexing algorithm.

6.3 Conclusion

Our main research question was the following:

How can indexing of RDF graphs be implemented to better support keyword
search and retrieval that corresponds to how human conceptualize the world?

In order to answer this question we formulated three subquestions. Before we conclude
on the main research question, we address these subquestions. The first was as fol-
lows:

RQ1: What is the state of the art for keyword search on RDF graphs?

We presented the state of the art in Chapter 2. We found that most of the approaches
to keyword search on (RDF) graphs seek minimal solutions [3, 16, 17, 18, 20, 21, 24,
34, 40, 45, 46], that is, subgraphs or subtrees that connects nodes matching the query
such that some measure is minimal. This measure could for instance be the shortest path
between the keyword matching nodes. Some approaches did not seek minimal solutions,
and proposed to add additional information to provide context to answers [7, 27]. Closest
to our research question was probably [7], where the data objects that are created include
links to neighboring objects. However, this is not the same as finding concepts, since these
can include relationships further away than one link. Additionally, all links one step away
do not have to belong to a concept. We therefore found that our research question explores
a research path not previously explored for RDF graphs.

The second subquestion was:

RQ2: How can graph theory be used to automatically find concepts in RDF
graphs?

Overlapping community detection algorithms were found to be the most relevant topic
from graph theory to answer this question. We tested a local greedy optimization algorithm
on both an RDF class graph and an instance graph. This preliminary study helped us
identify some challenges unique to RDF graphs. In response to these challenges, a greedy
community detection algorithm was developed that made it possible to identify frequent
paths in an RDF graph. Since a concept should be consistent internally in a community,
and consistent across the whole dataset, we aggregated the paths found from different
community detection processes. By using a frequency threshold we could identify the
most frequent paths. Paths that starts from the same class could then be said to describe a
concept in the RDF graph.

79

Our solution utilizes community detection to index RDF graphs. To the best of our knowl-
edge, this is a novel approach. The approach of Sozio and Gionis [45] do employ a com-
munity detection algorithm to answer a keyword query over a graph, but this is done at
search time and not index time. Furthermore, this approach is concerned with the general
graph case, not RDF graphs. It also seeks minimal solutions, contrary to what we do. The
works of Cappellari et al. [6] and Virgilio et al. [9] are related to our proposed solution ([9]
builds on [6]). This solution indexes RDF graphs by paths, which is similar to what we do.
The definition of paths differ, though. A path is defined by a sequence of edge labels in
their approach, while we define a path as an alternating sequence of class names and edge
labels. Additionally, their approach is only concerned with paths that start from sources
and ends in sinks, while we consider all types of paths. The indexing process of paths
also differs significantly. Their approach is concerned with discovering paths and cluster-
ing them in different templates, while we are concerned with testing a path’s relationship
strength through a number of community detection processes.

Finally, our third subquestion was:

RQ3: How can automatically found concepts best be indexed to support key-
word search on RDF data?

This question has been answered by the implementation of a proof-of-concept search so-
lution. Our solution uses the frequent paths to create objects, which are then turned into
Lucene documents that are queryable. While we found that this method does in fact sup-
port keyword search on RDF data, we cannot claim that it is the best way. This is simply
because we have not tested other methods. What we have demonstrated is the feasibility
and usefulness of our approach.

When it comes to the main research question, then, we would argue that our algorithm
shows promise with regards to supporting queries that contains terms corresponding to
human concepts. In particular, we find that the concepts found by our algorithm can be
used to give more informative answers to such queries than those approaches that seek
minimal solutions.

6.4 Future Work

Given that we have implemented a proof-of-concept solution, an obvious way forward is
to develop this further. We suggests three different paths forward:

Ranking of search results. Our proof-of-concept solution does ranking solely
based on the default Lucene scoring. As we have seen, this may lead to dupli-
cate information. It should be investigated how this is best solved. Additionally, we
suggest that answers where the keyword match the root may be better results than
when keywords match nodes further away from the root node.

Employ different index and search schemes. As we have noted, the frequent paths
can be used in different index and search schemes. A line of further research could
therefore be to examine different schemes, such as backward search or bidirectional

80

search, and how the concepts found from the frequent paths could fit into these
schemes. In particular, we have found that queryable objects built from frequent
paths may have to combined to fully answer certain queries. Whether this should be
done at index or search time needs to be examined.

Evaluation on real users. Whether or not the search solution gives meaningful
answers needs to be evaluated on real users. Such an evaluation could give important
feedback on how the search solution may be improved, and also what the best ways
to utilize the frequent paths for indexing are.

81

82

Bibliography

[1] Yong-Yeol Ahn, James P Bagrow, and Sune Lehmann. “Link communities reveal
multiscale complexity in networks”. In: Nature 466.7307 (2010), pp. 761–764.

[2] Tim Berners-Lee, James Hendler, and Ora Lassila. “The semantic web”. In: Scien-
tific American 284.5 (2001), pp. 28–37.

[3] Gaurav Bhalotia et al. “Keyword searching and browsing in databases using BANKS”.
In: Data Engineering, 2002. Proceedings. 18th International Conference on. IEEE.
2002, pp. 431–440.

[4] Roi Blanco, Peter Mika, and Sebastiano Vigna. “Effective and efficient entity search
in RDF data”. In: International Semantic Web Conference. Springer. 2011, pp. 83–
97.

[5] Phillip Bonacich. “Some unique properties of eigenvector centrality”. In: Social
networks 29.4 (2007), pp. 555–564.

[6] Paolo Cappellari et al. “A path-oriented rdf index for keyword search query process-
ing”. In: International Conference on Database and Expert Systems Applications.
Springer. 2011, pp. 366–380.

[7] Gong Cheng and Yuzhong Qu. “Searching linked objects with falcons: Approach,
implementation and evaluation”. In: International Journal on Semantic Web and
Information Systems (IJSWIS) 5.3 (2009), pp. 49–70.

[8] Joel Coffman and Alfred C Weaver. “An empirical performance evaluation of rela-
tional keyword search techniques”. In: IEEE Transactions on Knowledge and Data
Engineering 26.1 (2014), pp. 30–42.

[9] Roberto De Virgilio et al. “Path-Oriented Keyword Search Query over RDF”. In:
Semantic Search over the Web. Springer, 2012, pp. 81–107.

[10] Edsger W Dijkstra. “A note on two problems in connexion with graphs”. In: Nu-
merische mathematik 1.1 (1959), pp. 269–271.

[11] Shady Elbassuoni and Roi Blanco. “Keyword search over RDF graphs”. In: Pro-
ceedings of the 20th ACM international conference on Information and knowledge
management. ACM. 2011, pp. 237–242.

[12] Santo Fortunato. “Community detection in graphs”. In: Physics reports 486.3 (2010),
pp. 75–174.

[13] Linton C Freeman. “Centrality in social networks conceptual clarification”. In: So-
cial networks 1.3 (1978), pp. 215–239.

83

[14] Steve Gregory. “Finding overlapping communities in networks by label propaga-
tion”. In: New Journal of Physics 12.10 (2010), p. 103018.

[15] Jonathan L Gross, Jay Yellen, and Ping Zhang. Handbook of graph theory. 2nd ed.
CRC press, 2015. ISBN: 978-1-138-19966-8.

[16] Lin Guo et al. “XRANK: Ranked keyword search over XML documents”. In: Pro-
ceedings of the 2003 ACM SIGMOD international conference on Management of
data. ACM. 2003, pp. 16–27.

[17] Hao He et al. “BLINKS: ranked keyword searches on graphs”. In: Proceedings of
the 2007 ACM SIGMOD international conference on Management of data. ACM.
2007, pp. 305–316.

[18] Vagelis Hristidis and Yannis Papakonstantinou. “Discover: Keyword search in re-
lational databases”. In: Proceedings of the 28th international conference on Very
Large Data Bases. VLDB Endowment. 2002, pp. 670–681.

[19] Mengxia Jiang et al. “Interactive predicate suggestion for keyword search on RDF
graphs”. In: International Conference on Advanced Data Mining and Applications.
Springer. 2011, pp. 96–109.

[20] Varun Kacholia et al. “Bidirectional expansion for keyword search on graph databases”.
In: Proceedings of the 31st international conference on Very large data bases.
VLDB Endowment. 2005, pp. 505–516.

[21] Mehdi Kargar and Aijun An. “Keyword search in graphs: Finding r-cliques”. In:
Proceedings of the VLDB Endowment 4.10 (2011), pp. 681–692.

[22] L Kou, George Markowsky, and Leonard Berman. “A fast algorithm for Steiner
trees”. In: Acta informatica 15.2 (1981), pp. 141–145.

[23] Andrea Lancichinetti, Santo Fortunato, and János Kertész. “Detecting the overlap-
ping and hierarchical community structure in complex networks”. In: New Journal
of Physics 11.3 (2009), p. 033015.

[24] Wangchao Le et al. “Scalable keyword search on large RDF data”. In: IEEE Trans-
actions on knowledge and data engineering 26.11 (2014), pp. 2774–2788.

[25] Conrad Lee et al. “Detecting highly overlapping community structure by greedy
clique expansion”. In: arXiv preprint arXiv:1002.1827 (2010).

[26] Yuangui Lei, Victoria Uren, and Enrico Motta. “Semsearch: A search engine for
the semantic web”. In: International Conference on Knowledge Engineering and
Knowledge Management. Springer. 2006, pp. 238–245.

[27] Ziyang Liu and Yi Chen. “Identifying meaningful return information for XML key-
word search”. In: Proceedings of the 2007 ACM SIGMOD international conference
on Management of data. ACM. 2007, pp. 329–340.

[28] Christopher D Manning, Prabhakar Raghavan, Hinrich Schütze, et al. Introduction
to information retrieval. Vol. 1. 1. Cambridge university press Cambridge, 2008.

[29] Gary Marchionini. “Exploratory search: from finding to understanding”. In: Com-
munications of the ACM 49.4 (2006), pp. 41–46.

[30] Michael D McKay, Richard J Beckman, and William J Conover. “A comparison of
three methods for selecting values of input variables in the analysis of output from
a computer code”. In: Technometrics 42.1 (2000), pp. 55–61.

[31] Enrico Minack et al. “The Sesame LuceneSail: RDF queries with full-text search”.
In: NEPOMUK Consortium, Technical Report 1 (2008).

84

[32] Tamás Nepusz et al. “Fuzzy communities and the concept of bridgeness in complex
networks”. In: Physical Review E 77.1 (2008), p. 016107.

[33] Mark EJ Newman. “Modularity and community structure in networks”. In: Pro-
ceedings of the national academy of sciences 103.23 (2006), pp. 8577–8582.

[34] Xiaomin Ning et al. “Practical and effective IR-style keyword search over semantic
web”. In: Information processing & management 45.2 (2009), pp. 263–271.

[35] Briony J Oates. Researching Information Systems and Computing. Sage, 2006.
[36] Tore Opsahl, Filip Agneessens, and John Skvoretz. “Node centrality in weighted

networks: Generalizing degree and shortest paths”. In: Social networks 32.3 (2010),
pp. 245–251.

[37] Gergely Palla et al. “Uncovering the overlapping community structure of complex
networks in nature and society”. In: Nature 435.7043 (2005), pp. 814–818.

[38] Jeffrey Pound, Peter Mika, and Hugo Zaragoza. “Ad-hoc object retrieval in the web
of data”. In: Proceedings of the 19th international conference on World wide web.
ACM. 2010, pp. 771–780.

[39] Ioannis Psorakis et al. “Overlapping community detection using bayesian non-negative
matrix factorization”. In: Physical Review E 83.6 (2011), p. 066114.

[40] Lu Qin et al. “Querying communities in relational databases”. In: Data Engineering,
2009. ICDE’09. IEEE 25th International Conference on. IEEE. 2009, pp. 724–735.

[41] Yves Raimond et al. “The Music Ontology.” In: ISMIR. Vol. 422. Citeseer. 2007.
[42] Britta Ruhnau. “Eigenvector-centrality - a node-centrality?” In: Social networks

22.4 (2000), pp. 357–365.
[43] Satu Elisa Schaeffer. “Graph clustering”. In: Computer science review 1.1 (2007),

pp. 27–64.
[44] Amit Singhal. Introducing the Knowledge Graph: things, not strings. 2012. URL:

https://googleblog.blogspot.no/2012/05/introducing-
knowledge-graph-things-not.html (visited on 01/11/2016).

[45] Mauro Sozio and Aristides Gionis. “The Community-search Problem and How to
Plan a Successful Cocktail Party”. In: Proceedings of the 16th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining. 2010, pp. 939–
948.

[46] Thanh Tran et al. “Top-k exploration of query candidates for efficient keyword
search on graph-shaped (rdf) data”. In: 2009 IEEE 25th International Conference
on Data Engineering. IEEE. 2009, pp. 405–416.

[47] W3C. RDF 1.1 Concepts and Abstract Syntax. 2014. URL: https://www.w3.
org/TR/rdf11-concepts/.

[48] Jierui Xie, Stephen Kelley, and Boleslaw K Szymanski. “Overlapping community
detection in networks: The state-of-the-art and comparative study”. In: ACM Com-
puting Surveys (csur) 45.4 (2013), p. 43.

[49] Jierui Xie and Boleslaw K Szymanski. “Towards linear time overlapping commu-
nity detection in social networks”. In: Pacific-Asia Conference on Knowledge Dis-
covery and Data Mining. Springer. 2012, pp. 25–36.

[50] Jaewon Yang and Jure Leskovec. “Defining and evaluating network communities
based on ground-truth”. In: Knowledge and Information Systems 42.1 (2015), pp. 181–
213.

85

https://googleblog.blogspot.no/2012/05/introducing-knowledge-graph-things-not.html
https://googleblog.blogspot.no/2012/05/introducing-knowledge-graph-things-not.html
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-concepts/

86

A | Musicbrainz Class Graph

See [41] or http://musicontology.com/specification/ for a description of
the ontology.

87

http://musicontology.com/specification/

88

B | Linkedmdb Classes

We list the classes in the Linkedmdb dataset in descending order by the number of in-
stances of the class1. linkedmdb is short for http://data.linkedmdb.org/resource/. The odd-
linker classes are links to other datasets, for instance DBpedia.

Class Number of instances

linkedmdb:movie/performance 197 271
linkedmdb:oddlinker/interlink 162 199
linkedmdb:movie/film 85 135
http://xmlns.com/foaf/0.1/Person 74 012
linkedmdb:movie/actor 50 278
linkedmdb:movie/film_cut 45 259
linkedmdb:movie/writer 17 335
linkedmdb:movie/film_crew_gig 17 237
linkedmdb:movie/director 17 156
linkedmdb:movie/film_character 15 752
linkedmdb:movie/film_film_distributor_relationship 15 256
linkedmdb:movie/producer 14 882
linkedmdb:movie/music_contributor 4 498
linkedmdb:movie/film_job 4 004
linkedmdb:movie/editor 3 290
linkedmdb:movie/cinematographer 3 263
linkedmdb:movie/production_company 1 926
linkedmdb:movie/film_location 1 315
linkedmdb:movie/film_subject 1 249
linkedmdb:movie/personal_film_appearance 1 120

1The keenly observant reader will note that there are only 47 classes listed here, while we state that there are
53 classes in Table 3.1. The reason for this is that there are 6 classes with no links to other classes in the dataset.
These classes are not considered for community detection.

89

Class Number of instances

linkedmdb:movie/film_story_contributor 740
http://xmlns.com/foaf/0.1/Agent 691
linkedmdb:movie/film_festival_event 685
linkedmdb:movie/film_festival 566
linkedmdb:movie/film_regional_release_date 418
linkedmdb:movie/film_genre 409
linkedmdb:movie/film_art_director 365
linkedmdb:movie/film_costume_designer 353
linkedmdb:movie/film_company 338
linkedmdb:movie/film_production_designer 293
linkedmdb:movie/film_casting_director 273
linkedmdb:movie/country 247
linkedmdb:movie/film_set_designer 206
linkedmdb:movie/film_series 205
linkedmdb:movie/film_distributor 169
linkedmdb:movie/dubbing_performance 118
linkedmdb:movie/content_rating 107
linkedmdb:movie/film_featured_song 72
linkedmdb:movie/film_format 57
linkedmdb:movie/content_rating_system 46
linkedmdb:movie/film_film_company_relationship 36
linkedmdb:movie/film_crewmember 25
linkedmdb:movie/special_film_performance_type 11
linkedmdb:movie/film_distribution_medium 10
linkedmdb:oddlinker/linkage_run 7
linkedmdb:movie/personal_film_appearance_type 5
linkedmdb:movie/film_collection 1

90

C | Linkedmdb Frequent Paths

Here we list the 51 (out of 23 506 possible) frequent paths found for Linkedmdb, with
α = 1 for the fitness function, and max path length = 3. Possible is the number of instances
of the path’s starting class that satisfies the given path, while actual is the number of these
instances who included the path in its community. The same paths were returned regardless
of whether we checked continuations of rejected paths or not. The only difference was
some of the numbers in the Possible column. The numbers listed here are from the test
were we did not check continuations of rejected paths. As before, the italics indicates
predicates. linkedmdb is short for http://data.linkedmdb.org/resource/. The interlinks are
links to other datasets, such as DBpedia.

Path Actual Possible

linkedmdb:movie/film-
linkedmdb:movie/costume_designer-
linkedmdb:movie/film_costume_designer

15 15

linkedmdb:movie/content_rating_system-
linkedmdb:movie/content_rating_system-
linkedmdb:movie/content_rating

17 19

linkedmdb:movie/actor-
linkedmdb:oddlinker/link_source-
linkedmdb:oddlinker/interlink

2220 2220

linkedmdb:movie/film-
linkedmdb:movie/film_regional_release_date-
linkedmdb:movie/film_regional_release_date

224 224

linkedmdb:movie/film_company-
linkedmdb:movie/film_company-
linkedmdb:/movie/film_film_company_relationship

1 1

linkedmdb:movie/film_festival-
linkedmdb:movie/film_festival_event-
linkedmdb:movie/film_festival_event

170 170

91

Path Actual Possible
linkedmdb:movie/actor-
linkedmdb:movie/performance-
linkedmdb:movie/performance

43177 43616

linkedmdb:movie/film_job-
linkedmdb:movie/film_crew_gig_film_job-
linkedmdb:movie/film_crew_gig

3595 3595

http://xmlns.com/foaf/0.1/Person-
linkedmdb:movie/film_crewmember-
linkedmdb:movie/film_crew_gig

24 24

linkedmdb:movie/film-
linkedmdb:movie/film_of_distributor-
linkedmdb:movie/film_film_distributor_relationship

13861 13861

linkedmdb:movie/film_distributor-
linkedmdb:movie/film_distributor-
linkedmdb:movie/film_film_distributor_relationship

166 166

linkedmdb:movie/film_crew_gig-
linkedmdb:movie/film_crewmember-
linkedmdb:movie/film_crewmember

24 24

linkedmdb:movie/film_character-
linkedmdb:movie/film_character-
linkedmdb:movie/performance

15131 15314

linkedmdb:movie/film-
linkedmdb:movie/film_cut-
linkedmdb:movie/film_cut

11628 11628

linkedmdb:movie/film-
linkedmdb:movie/personal_film_appearance-
linkedmdb:movie/personal_film_appearance

328 328

http://xmlns.com/foaf/0.1/Person-
linkedmdb:oddlinker/link_source-
linkedmdb:oddlinker/interlink

2220 2220

linkedmdb:movie/music_contributor-
linkedmdb:oddlinker/link_source-
linkedmdb:oddlinker/interlink

678 678

linkedmdb:movie/film-
linkedmdb:movie/film_film_company_relationship-
linkedmdb:movie/film_film_company_relationship

22 22

92

Path Actual Possible
linkedmdb:movie/film_distribution_medium-
linkedmdb:movie/film_distribution_medium-
linkedmdb:movie/film_film_distributor_relationship

7 7

linkedmdb:movie/country-
linkedmdb:oddlinker/link_source-
linkedmdb:oddlinker/interlink

247 247

linkedmdb:movie/writer-
linkedmdb:oddlinker/link_source-
linkedmdb:oddlinker/interlink

6661 6661

linkedmdb:movie/film_crewmember-
linkedmdb:movie/film_crewmember-
linkedmdb:movie/film_crew_gig

24 24

linkedmdb:movie/film_film_company_relationship-
linkedmdb:movie/film_company-
http://xmlns.com/foaf/0.1/Agent

1 1

linkedmdb:movie/personal_film_appearance_type-
linkedmdb:movie/personal_film_appearance_type-
linkedmdb:movie/personal_film_appearance

5 5

linkedmdb:movie/film-
linkedmdb:movie/costume_designer-
http://xmlns.com/foaf/0.1/Agent

15 15

linkedmdb:movie/film-
linkedmdb:movie/performance-
linkedmdb:movie/performance

54597 54835

linkedmdb:movie/performance-
linkedmdb:movie/film_character-
linkedmdb:movie/film_character

16571 17822

linkedmdb:movie/film_film_company_relationship-
linkedmdb:movie/film_company-
linkedmdb:movie/film_company

1 1

linkedmdb:movie/film-
linkedmdb:movie/film_crew_gig_film-
linkedmdb:movie/film_crew_gig

389 389

linkedmdb:movie/film-
linkedmdb:movie/film_featured_song-
linkedmdb:movie/film_featured_song

66 66

93

Path Actual Possible
linkedmdb:oddlinker/linkage_run-
linkedmdb:oddlinker/linkage_run-
linkedmdb:oddlinker/interlink

7 7

linkedmdb:movie/film-
linkedmdb:oddlinker/link_source-
linkedmdb:oddlinker/interlink

21364 21364

linkedmdb:movie/film-
linkedmdb:movie/dubbing_performance-
linkedmdb:movie/dubbing_performance

60 60

linkedmdb:movie/film_crew_gig-
linkedmdb:movie/film_crewmember-
http://xmlns.com/foaf/0.1/Person

24 24

http://xmlns.com/foaf/0.1/Agent-
linkedmdb:movie/film_company-
linkedmdb:movie/film_film_company_relationship

1 1

linkedmdb:movie/actor-
linkedmdb:movie/performance-
linkedmdb:movie/performance-
linkedmdb:movie/film_character-
linkedmdb:movie/film_character

7865 8951

linkedmdb:movie/film_job-
linkedmdb:movie/film_crew_gig_film_job-
linkedmdb:movie/film_crew_gig-
linkedmdb:movie/film_crewmember-
linkedmdb:movie/film_crewmember

22 22

linkedmdb:movie/film-
linkedmdb:movie/film_film_company_relationship-
linkedmdb:movie/film_film_company_relationship-
linkedmdb:movie/film_company-
linkedmdb:movie/film_company

1 1

linkedmdb:movie/film-
linkedmdb:movie/film_crew_gig_film-
linkedmdb:movie/film_crew_gig-
linkedmdb:movie/film_crewmember-
http://xmlns.com/foaf/0.1/Person

2 2

94

Path Actual Possible
linkedmdb:movie/film-
linkedmdb:movie/film_film_company_relationship-
linkedmdb:movie/film_film_company_relationship-
linkedmdb:movie/film_company-
http://xmlns.com/foaf/0.1/Agent

1 1

linkedmdb:movie/film-
linkedmdb:movie/performance-
linkedmdb:movie/performance-
linkedmdb:movie/film_character-
linkedmdb:movie/film_character

4653 5478

linkedmdb:movie/film_job-
linkedmdb:movie/film_crew_gig_film_job-
linkedmdb:movie/film_crew_gig-
linkedmdb:movie/film_crewmember-
http://xmlns.com/foaf/0.1/Person

22 22

linkedmdb:movie/film-
linkedmdb:movie/film_crew_gig_film-
linkedmdb:movie/film_crew_gig-
linkedmdb:movie/film_crewmember-
linkedmdb:movie/film_crewmember

2 2

linkedmdb:movie/film_job-
linkedmdb:movie/film_crew_gig_film_job-
linkedmdb:movie/film_crew_gig-
linkedmdb:movie/film_crewmember-
http://xmlns.com/foaf/0.1/Person-
linkedmdb:movie/film_crewmember-
linkedmdb:movie/film_crew_gig

22 22

linkedmdb:movie/film-
linkedmdb:movie/film_film_company_relationship-
linkedmdb:movie/film_film_company_relationship-
linkedmdb:movie/film_company-
linkedmdb:movie/film_company-
linkedmdb:movie/film_company-
linkedmdb:movie/film_film_company_relationship

1 1

linkedmdb:movie/film-
linkedmdb:movie/film_crew_gig_film-
linkedmdb:movie/film_crew_gig-
linkedmdb:movie/film_crewmember-
http://xmlns.com/foaf/0.1/Person-
linkedmdb:movie/film_crewmember-
linkedmdb:movie/film_crew_gig

2 2

95

Path Actual Possible
linkedmdb:movie/film-
linkedmdb:movie/performance-
linkedmdb:movie/performance-
linkedmdb:movie/film_character-
linkedmdb:movie/film_character-
linkedmdb:movie/film_character-
linkedmdb:movie/performance

4498 5478

linkedmdb:movie/actor-
linkedmdb:movie/performance-
linkedmdb:movie/performance-
linkedmdb:movie/film_character-
linkedmdb:movie/film_character-
linkedmdb:movie/film_character-
linkedmdb:movie/performance

7433 8951

linkedmdb:movie/film-
linkedmdb:movie/film_crew_gig_film-
linkedmdb:movie/film_crew_gig-
linkedmdb:movie/film_crewmember-
linkedmdb:movie/film_crewmember-
linkedmdb:movie/film_crewmember-
linkedmdb:movie/film_crew_gig

2 2

linkedmdb:movie/film_job-
linkedmdb:movie/film_crew_gig_film_job-
linkedmdb:movie/film_crew_gig-
linkedmdb:movie/film_crewmember-
linkedmdb:movie/film_crewmember-
linkedmdb:movie/film_crewmember-
linkedmdb:movie/film_crew_gig

22 22

linkedmdb:movie/film-
linkedmdb:movie/film_film_company_relationship-
linkedmdb:movie/film_film_company_relationship-
linkedmdb:movie/film_company-
http://xmlns.com/foaf/0.1/Agent-
linkedmdb:movie/film_company-
linkedmdb:movie/film_film_company_relationship

1 1

96

	Introduction
	Motivation
	Research Questions
	Research Approach
	Thesis Structure

	Background
	Graph Theory
	Definitions
	Graph Traversal

	RDF
	RDF Schema

	General Approaches to Keyword Search on Graphs
	Keyword Search on RDF Graphs
	Characteristics of RDF Graphs
	Approaches to Keyword Search on RDF Graphs

	Keyword Search in Triple Stores
	Summary

	Preliminary Study
	Community Detection
	Overlapping Community Detection

	Node Centrality
	Discovering Concepts through Community Detection
	Experimental Setup
	Choice of Community Detection Algorithm
	Community Detection in RDF Class Graphs
	Community Detection in RDF Instance Graphs

	Summary

	Path-based Graph Indexing
	Path-based Community Detection in Instance Graphs
	Approach
	Seed Node Selection
	Path Community Detection
	Fitness Function
	Max Path Length
	Example
	Creating Path Communities from Path Statistics

	Experiments
	Evaluation Metrics
	Parameters and Performance Tests
	Sampling Tests

	Complexity Analysis
	Summary

	Proof-of-Concept Solution
	Creating Queryable Objects
	Query Examples
	Discussion on the Quality of the Results

	Conclusion
	Summary
	Discussion
	Conclusion
	Future Work

	Bibliography
	Appendix Musicbrainz Class Graph
	Appendix Linkedmdb Classes
	Appendix Linkedmdb Frequent Paths

