
Growing a Forest:
Genetic Decision tree Induction

Anders Nikolai Fuglseth

Master of Science in Computer Science

Supervisor: Agnar Aamodt, IDI
Co-supervisor: Ketil Bø, Trollhetta AS

Department of Computer and Information Science

Submission date: June 2016

Norwegian University of Science and Technology

Abstract

In decision tree learning, the traditional top-down divide and conquer approach
searches a limited part of the hypothesis space, often leading to sub-optimal
solutions. By doing decision tree induction with the use of an evolutionary
algorithm the hypothesis space can be searched globally, leading to stronger
solutions, while maintaining the inherent comprehensibility that decision trees
offers. We have developed EMTI, the Evolutionary Multi-class Tree Inductor, a
genetic programming method for inducing parallel axis, poly-ary decision trees
for multiclass classification problems. It focuses on creating accurate decision
trees with a high degree of human readability. EMTI uses a genetic program-
ming encoding-scheme representing individuals directly as decision trees, and
implements tree-specific crossover and mutation operators. Initial population
is generated in the form of minimal, one decision node trees, which grow rapidly
in size as the evolution cycle count increases. The multi-objective fitness func-
tion rewards classification accuracy while favoring smaller trees over larger
ones. Traditional decision tree pruning methods and early stopping methods
are shown to be viable ways of avoiding overfitting in the algorithm. EMTI
scores favorably in terms of classification accuracy compared to C4.5 and shows
a strong ability to ignore data noise and irrelevant attributes.

i

Sammendrag

I beslutningstrelæring søker de tradisjonelle topp-til-bunn-, splitt-og-hersk-
tilnærmingene et begrenset del av hypoteserommet, noe som ofte fører til sub-
optimale løsninger. Ved bruk av beslutningstre-induksjon styrt av en evo-
lusjonær algoritme kan man gjøre globalt søk av hypoteserommet, noe som
leder til bedre løsninger, samtidig som man beholder den iboende forst̊aeligheten
som beslutningstrær tilbyr. Vi har utviklet EMTI, the Evolutionary Multi-class
Tree Inductor: Evolusjonær Multiklasse Tre-induktør, en metode som bruker
genetisk programmering for å indusere polyære, parallellaksede beslutningstrær
for mange-klassede klassifiseringsproblem. Den fokuserer p̊a å skape nøyaktige
beslutnings-trær med en høy grad av menneskelig forst̊aelighet. EMTI bruker
genetisk programmering for å representere individer ved å framstille dem di-
rekte som beslutningstrær, og implementerer tre-spesifikke kryssing- og mu-
tasjonsoperatorer. Den initielle populasjonen blir generert som minimale beslut-
ningstrær som vokser hurtig i størrelse etterhvert som evolusjonsprosessen utvikler
seg. Den todelte evalueringsfunksjonen som avgjør kvaliteten p̊a trærne i pop-
ulasjonen gir belønning til nøyaktige trær mens den foretrekker sm̊a trær over
store trær. Det blir demonstrert at tradisjonelle beslutningstrebeskjæringsme-
toder og tidlig stopp-metoder er hensiktsmessige m̊ater å unng̊a overtilpass-
ing (overfitting) i algoritmen. EMTI sk̊arer gunstig i forhold til klassifiser-
ingsnøyaktighet i sammenligning med C4.5 og viser en sterk evne til å ignorere
data-støy og irrelevante attributter.

iii

Preface

This thesis is submitted to the Norwegian University of Science and Technology in
partial fulfillment of the requirements for a Master of Science degree in Computer
Science.

The work was conducted in 2016 at the Department of Computer and Information
Science NTNU and at Trollhetta AS with supervisors Agnar Aamodt (NTNU) and
Kjetil Bø (Trollhetta).

I would like to thank my supervisors Agnar Aamodt and Kjetil Bø for their support
and guidance.

v

Table of Contents

Abstract i

Sammendrag iii

Preface v

Table of Contents vii

List of figures ix

List of tables xi

List of abbrevations xiii

1 Introduction 1
1.1 Goal and research questions . 2
1.2 Research Method . 3
1.3 Thesis structure . 3

2 Background theory and Related work 5
2.1 Background theory . 5

2.1.1 Learning and Decision Trees 5
2.1.2 Decision tree induction . 6
2.1.3 Specific learning algorithms 7
2.1.4 Evolutionary Algorithms . 9

2.2 Literature Review Protocol . 10
2.3 Related work . 12

2.3.1 Choices in evolutionary decision tree induction 13
2.3.2 The problem of overfitting . 14

3 Model 17
3.1 Evolutionary Multi-Class Tree Inductor 17

3.1.1 Representation and Operators 17
3.1.2 Initial population . 19

vii

TABLE OF CONTENTS

3.1.3 Fitness function . 19
3.1.4 Adult and Parent selection 20
3.1.5 Diagonal problem . 21
3.1.6 Algorithm properties . 21
3.1.7 Majority vote end node setting 22

3.2 Implementation details . 24
3.2.1 TrollBrain integration . 26

3.3 Explanation tool . 27
3.4 Generating initial population using ID3 27
3.5 Reinforcement learning . 30
3.6 Avoiding overfitting and other improvements 31

3.6.1 EMTI weaknesses . 31
3.6.2 Early stopping . 33
3.6.3 Decision tree pruning . 35

4 Results 37
4.1 Experimental plan . 37
4.2 Description of the datasets used . 38
4.3 E1 Method components effectiveness study 41

4.3.1 E1.1 Majority end node setting effectiveness 41
4.3.2 E1.2 Crossover and mutation components effectiveness 41

4.4 E2 Early stopping and tree pruning methods comparisons 43
4.4.1 E2.1 Diagonal domain 0% noise 44
4.4.2 E2.2 Diagonal domain 20% noise 45
4.4.3 E2.3 Wisconsin Breast Cancer 45
4.4.4 E2.4 House Votes ’84 . 46
4.4.5 E2.5 German Credit Data . 46
4.4.6 E2.6 Car Evaluation . 47
4.4.7 E2 Summary . 47

4.5 E3 Comparisons with other learning methods 48

5 Evaluation and Conclusion 51
5.1 Evaluation . 51

5.1.1 E1 evaluation . 51
5.1.2 E2 evaluation . 52
5.1.3 E3 evaluation . 53

5.2 Discussion . 53
5.2.1 RQ1 discussion . 53
5.2.2 RQ2 discussion . 54
5.2.3 RQ3 discussion . 54
5.2.4 RQ4 discussion . 55
5.2.5 RQ5 discussion . 56

5.3 Conclusion and Future Work . 56

References 59

viii

List of Figures

2.1 A decision tree for deciding whether a person should wake up or not. 7
2.2 Flow diagram of an evolutionary algorithm. 11

3.1 Genetic operators: crossover (top) and 4 different types of muta-
tions: Flip, Cut, Implode and Deplode (Bottom). 19

3.2 Some instances of the Diagonal problem and their class. 21
3.3 A real example of 10 EMTI evolution cycles, where each tree corre-

sponds to an individual in a total population of 10. 22
3.4 Plot of 200 generations of EMTI on the Diagonal problem. 23
3.5 Random end node setting versus majority vote end node setting,

using kNN for unvisited nodes. 24
3.6 UML class diagram for the EMTI implementation. 25
3.7 Mac OS X GUI front end screenshot 26
3.8 Decision tree for the car evaluation training set with maximum 40

nodes. 28
3.9 Minimal decision tree for the Diagonal problem. 29
3.10 Visualization of the robot world, the blue and white square indicates

the position and direction of the robot, grey indicates empty squares,
green indicates squares containing food and red indicates squares
containing poison. 30

3.11 Decision tree for a robot brain. Square boxes are the inputs with
branches for each different types of input, while diamond boxes are
the resulting actions. 31

3.12 Example of overfitting when running on the Wisconsin Breast Can-
cer data set. The top frame shows training set accuracy of the best
individual in the population (green), relative to the validation set
accuracy (red). The bottom frame shows the relation between the
tree size of the best individual (green) and the average tree size of
the population (orange). 34

4.1 E1.1: Random end node setting vs. majority vote end node setting. 42

ix

List of Tables

2.1 Quality and Inclusion criteria . 11

3.1 EMTI standard parameters . 33

4.1 Dataset characteristics. 38
4.2 E1.1 settings . 41
4.3 E1.2: EMTI crossover and mutation components effectiveness 43
4.4 Overview of E2 settings. 44
4.5 E2.1 Diagonal domain 0% noise results. Classification accuracies,

standard deviations and training accuracy shown as percentage, run
time shown as seconds. 44

4.6 E2.2 Diagonal domain 20% noise results. Classification accuracies,
standard deviations and training accuracy shown as percentage, run
time shown as seconds. 45

4.7 E2.3 Wisconsin Breast Cancer results. Classification accuracies,
standard deviations and training accuracy shown as percentage, run
time shown as seconds. 45

4.8 E2.4 House Votes ’84 results. Classification accuracies, standard de-
viations and training accuracy shown as percentage, run time shown
as seconds. 46

4.9 E2.5 German Credit Data results. Classification accuracies, stan-
dard deviations and training accuracy shown as percentage, run time
shown as seconds. 46

4.10 E2.6 Car Evaluation results. Classification accuracies, standard de-
viations and training accuracy shown as percentage, run time shown
as seconds. 47

4.11 E2 size summary in terms of node count. 47
4.12 E2 accuracy summary (%). 48
4.13 Overview of E3 settings. 49
4.14 E3 tree sizes in terms of node count. 50
4.15 E3 classification accuracies with standard deviations (%). 50

xi

List of abbreviations

AI Artificial intelligence
AS Aksjeselskap
AQ Algorithm Quasi-optimal
dll dynamic linked library
EA Evolutionary algorithm
EMTI Evolutionary Multi-class Tree Inductor
GA Genetic algorithm
GP Genetic programming
GUI Graphical user interface
ID3 Iterative Dichotomiser 3
kNN k-nearest neighbor
MLP Multilayer Perceptron
NTNU The Norwegian University of Technology and Science
NP Nondeterministic polynomial time
OS Operative system
RQ Research question
SD Standard deviation
UCI University of California
UML Unified modeling language
U.S. United States (of America)

xiii

CHAPTER 1

Introduction

This master thesis project started with the task of constructing and implementing
an AI method based on evolutionary algorithms. The groundwork and conception
of the project was done in a pre-master specialization project in 2015 (Fuglseth
[10]). It is done in collaboration with Trollhetta AS [34], and the implementa-
tion is intended to be added to Trollbrain, a module based AI method ensemble
currently under development, featuring among others case-based reasoning and
artificial neural network problem solving. An algorithm capable of decision tree
learning was seen as an attractive addition to the ensemble.

Compared to the greedy local search algorithms traditionally used by decision
tree learners, evolutionary algorithms searches the solution space globally. By
broadening the search space, the hope is to be able find better, more accurate
solutions.

Many learning methods such as ensemble methods and artificial neural networks
provides result of high accuracy, but offers very little in terms of explaining how
the methods arrive at their decisions.

EMTI: The Evolutionary Multi-class Tree Inductor was proposed, a method using
evolutionary algorithms to generate decision trees, focusing on providing results
with a high degree of interpretability and comprehensibility by creating single,
poly-ary, parallel-axis decision trees. In analogy to growing a forest in the real
world, EMTI starts out by planting a series of saplings across a field. As they
grow up, the trees’ quality is measured using a certain criterion (For example, if
the field was growing christmas trees, they could be measured by symmetry and
color.) and low quality trees are cut away. New trees are planted in their stead,
made by cross-breeding the higher quality trees with each other. In such a way, as
time passes, the field will gradually contain higher and higher quality trees. At the
end of the process, the very best tree is chosen as the solution.

1

CHAPTER 1. INTRODUCTION

1.1 Goal and research questions

The goal of this master thesis project is to study for, and develop a working classi-
fication method capable of inducing decision tree by the use of evolutionary algo-
rithms. The performance of the method should be analyzed, both the performance
of its whole and the performance of its parts, and key weaknesses should be iden-
tified and tried to be improved upon.
Goal: Develop a robust decision tree learning algorithm using evolu-
tionary algorithms, that can be integrated into Trollbrain.

To go along with this goal, 5 research questions will be tried answered:

The proposed version of EMTI uses a range of experimental methods to make
the evolution process possible, the most important being the 4 types of mutation
operators, the crossover operator and the majority vote end node setting method.
All though the choice of adding each of the methods is well motivated, the individual
contribution of each method remains unmeasured.
RQ1: What method components are essential for the proposed version
of EMTI?

Overfitting is a prevalent problem among many classification methods. It occurs
when a classifier starts modeling the random error or noise of a given training
set instead of the target function it wants to describe. This leads to unnecessary
complex models and degrades the classification accuracy. All though EMTI is
showing some resilience to overfitting by the use of a multi-objective fitness function
that tries to maximize classification accuracy and minimize tree size, overfitting still
occurs on certain data sets, as shown in chapter 3.6. Implementing methods for
avoiding overfitting should improve the general performance of EMTI.
RQ2: In which way can methods for avoiding overfitting be added to
EMTI to improve its performance?

Overfitting in a decision tree is generally linked to an increase in the size and
complexity of the tree. EMTI has the ability to limit the sizes of the trees that it
creates at any given point of its duration.
RQ3: Can EMTI’s ability of setting the maximum tree size be used in
methods for avoiding overfitting?

Any learning algorithm will have strengths and weaknesses depending on the do-
main’s data landscape, scope and size of data. For a user to choose the correct
algorithm for the domain, it is important that these strengths and weaknesses are
identified.
RQ4: What are the characteristics of the domains that EMTI functions
well on?

2

1.2. RESEARCH METHOD

To measure its performance, EMTI could be compared against other well estab-
lished classifier algorithms, tree learning algorithms such as C4.5, ensemble meth-
ods such as Random Forest and other algorithms for example artificial neural net-
works or näıve bayes methods.
RQ5: How does ETMI perform compared to other well know classifier
methods?

1.2 Research Method

Typical for research done in machine learning, this project is well suited for a
research method based on quantitative experiments. The experiments are done
by testing the learning algorithms on several different domains, represented by
structured datasets. In these tests, several performance measures are observed;
classification accuracies, training accuracies, run times and tree sizes, which allows
comparisons between different algorithms or different sub-methods to be made.
The experiments make the use of k-fold cross-validation were applicable and are
repeated a number of times to minimize variance in the results.

1.3 Thesis structure

The thesis is structured in 5 chapters:

Chapter 1: Introduction introduces the project, explains the purpose and
scope of the project and defines the research questions.

Chapter 2: Background theory and Related work provides the relevant
background theory of the project and presents a literature review covering the
research field of the project, explaining the motivations behind it.

Chapter 3: Model explains the main EMTI algorithm as it is implemented at
the time of writing, describes some specific implementation details and explains a
few auxiliary capabilities and functions. Some of the main weaknesses of EMTI are
identified and ways to improve them are suggested, including specific implementa-
tions directed at answering the research questions.

Chapter 4: Results describes the execution and presents the results of 3 ex-
periments, E1, E2 and E3, set out in order to answer the research questions Q1,
Q2, Q3, Q4 and Q5.

3

CHAPTER 1. INTRODUCTION

Chapter 5: Evaluation and Conclusion evaluates the results from the exper-
iments in chapter 4 and these evaluations are put in relation and used for discussing
and answering the research questions that were posed in chapter 1. Finally, the
project’s potential and possibilities for future work is discussed.

4

CHAPTER 2

Background theory and Related
work

This chapter provides the relevant background theory of the project and presents
a literature review covering the research field of the project, explaining the moti-
vations behind it.

2.1 Background theory

This section covers relevant topics within artificial intelligence and machine learning
which are necessary to understand the function and purpose of the project, the
main topics being decision trees, which are EMTI’s main objective to create, and
Evolutionary Algorithms, the tool that EMTI uses to create them.

2.1.1 Learning and Decision Trees

Russel and Norvig [29] defines learning as an agent’s ability to improve its per-
formance on future tasks after making observation about the world. Learning is
useful because it allows the agent to adjust its behavior when met with changing or
unforeseen situations. This also makes the job easier for the designer of the agent,
as he does not need to anticipate all possible situations and changes within the
agent’s domain. Machine learning means making machines, typically computers,
be able to learn. The ability to learn is a hallmark of intelligent behavior and
machine learning is a central research subject within artificial intelligence (Quinlan
[26]). This project deals with supervised inductive learning, where the agent has
to model a general function or rule, based on a set of example data (input-output
pairs), where there is explicit feedback given for each instance about its output
function value. Below we can see an example of how this data could look, dealing
with observations on whether a person decided to wake up or not:

5

CHAPTER 2. BACKGROUND THEORY AND RELATED WORK

ID Slept for Employed Weekend Time Feel like it Woke up
1 5 hours yes no 7:30 no yes
2 10 hours no no 3:30 yes yes
3 9 hours yes no 5:30 no no
4 8 hours yes yes 9:30 no no
5 13 hours no yes 13:30 no yes
6 8 hours yes no 7:15 no yes
7 3 hours no yes 14:50 no no

Classification is a learning problem where the output of the function is one of a
finite set of values. When there are only two possible values (e.g. yes or no) it is
called a binary classification, while when there are multiple (such as sunny, cloudy
or rainy) it is called a multiclass classification. When the output of the function
is continuous it is called regression. Many tasks can be recast as classification
problems, even activities like robot planning [26].

A decision tree is a function in the form of an acyclic graph that can be used to
model classification problems. An example decision tree is shown in figure 2.1,
based on the data above, the object is to classify whether it is worth to wake up or
not, using the 5 input attributes. In this tree each attribute forms a decision node
that contains a question with two or more possible answers. Starting from the top
node, “Employed?”, you make your way down the tree to new nodes depending
on what you answer until you reach an end node. Each terminal node contains
an answer for what you should do, your decision. One of the main advantages of
decision trees is their comprehensibility, “decision trees are a natural representation
for humans, indeed, many “How To” manuals (e.g. for car repair) are written
entirely as a single decision tree stretching over hundred pages” [29].

An important part of the machine learning process that will not be focused on in
this project is the data preprocessing stage. Data samples from the real world is
often not usable for machine learning because it is in an unusable format, contains
excessive noise or simply contains too much data than the machine can handle.
Data preprocessing concerns the formatting, cleaning and sampling of such data.
It also includes a number of other potentially useful things to do with a dataset
before turning it over to the classification algorithms, such as data scaling, feature
selection, feature decomposition and feature aggregation, which can considerably
improve the final classification results.

2.1.2 Decision tree induction

Inducing a decision tree is a way to solve classification problems where an agent
generates a decision tree structure based on previous observations of labeled ex-
amples (the training set). The optimal decision tree for a given training set is a
tree that correctly classifies all the examples using the minimum possible number

6

2.1. BACKGROUND THEORY

Figure 2.1: A decision tree for deciding whether a person should wake up or not.

of nodes. Finding a optimal tree is shown to be a NP-complete problem (Hyafil
and Rivest [14]), so this option is only realistic for very simple problems (e.g. few
attributes and labels). The traditional and most common approach for generating
decision trees is using a greedy top-down recursive partitioning strategy. You start
by making the root of the tree and make your way down without looking at the
tree globally. Choosing which attributes to put first in a tree has a big impact on
the tree’s complexity and accuracy, greedy approaches typically use an heuristic to
find the most “pure” attributes; the attributes that can split the training set in the
most absolute way.

2.1.3 Specific learning algorithms

This section contains information about some other well-known algorithms, the
k-Nearest Neighbor algorithm, that is used internally in the EMTI algorithm and
ID3, C4.5, Random Forest and Multilayer Perceptron, that were used for making
comparisons with EMTI.

k-Nearest Neighbor algorithm

k-Nearest Neighbor (kNN) is a classification method based on comparing a given
instance to classify with the most similar instances in the training set, the nearest
neighbors. It does this by iterating over the entire training data set, finding the
instances that have the most similar attributes, the similarity score. How many
neighbors to find depends on the k parameter, k = 1 for 1 neighbor, k = 2 for

7

CHAPTER 2. BACKGROUND THEORY AND RELATED WORK

2 neighbors, etc. When dealing with continuous values, it can also look at the
distance between numbers as a similarity measure; k-Nearest Neighbor is also well
suited for regression problems. Though it is a simple, well performing algorithm, it
has some major drawbacks. The entire algorithm has to be re-run for each query,
and the run times can increase significantly depending on the problem size. The
basic implementation does also not take in consideration the weight that different
attributes can carry. Finally, another problem can be that finding which k-value
to set can be hard before running the algorithm.

ID3 algorithm

A well-known algorithm using the greedy strategy mentioned above is the ID3
algorithm by Ross Quinlan [26], which has been implemented in the project to use
for making comparisons to EMTI. It is a recursive algorithm that uses the concepts
of entropy and information gain to find the most appropriate attribute to split the
data set on. The entropy function measure the amount of uncertainty in a data set
and is given as

H(S) = −
∑
x∈X

p(x) log2 p(x) (2.1)

Where H is the entropy, S is the data set, x is a class, X is all possible classes
and p(x) is how many instances in the set is labeled with x, divided by the data
set size. Information gain is a measure on the change in entropy after a data set is
split on an attribute, given as

IG(A,S) = H(S)−
∑
t∈T

p(t) H(t) (2.2)

Where IG is the information gain, A is the attribute to split on, S is the data set,
H(S) is the entropy of the data set, T is the subsets created by splitting S on each
possible value of A, p(t) is how many instances in the set is labeled with the class
associated with t, and H(t) is the entropy of subset t.

These metrics are used for choosing which attribute to split on, the one who gives
the best information gain. This is then repeated recursively, moving down the tree
by splitting it on the best attributes, until all the data set has been split into pure
class subsets.

C4.5 algorithm

C4.5 [27] is an extensively improved version of ID3 by Quinlan. It is able to
handle continuous values, attributes with differing costs, and training data with
missing values. It uses postpruning to simplify the tree, removing unnecessary and
statistical insignificant nodes.

8

2.1. BACKGROUND THEORY

Random Forests

Random Forests [4] is an ensemble learning method by Leo Breiman and Adele
Cutler. It works by creating multiple decision trees based on distinct random
samples of the training data, and classifies instances based on the majority vote
of the different trees. By doing this, Random Forests have high resistance to
overfitting.

Multilayer Perceptron

A multilayer perceptron (MLP) is a feedforward artificial neural network model,
using the backpropagation learning technique.

2.1.4 Evolutionary Algorithms

Evolutionary algorithms (EA) are optimization problem solving tools that imitate
the processes of real world evolution. It does this by establishing a population
of candidate solutions which are incrementally improved upon by combining solu-
tions (crossover) and randomly changing the solutions (mutation). Each individual
is evaluated according to how well they solve the problem - their fitness score. This
score determines their chance of being selected as parents in the crossover oper-
ations and their chance of surviving into a new generation. A well functioning
EA must maintain a balance between the pace of the solution improvement and
the diversity of solutions within the population, as low diversity will increase the
chance of getting stuck in a local optimum. Figure 2.2 shows the flow diagram of
an evolutionary algorithm, which is explained in detail below:

Make initial child population: At the start of the algorithm, a population
is established, which are typically randomly generated. This population is
put into the child population pool (the new generation), while the adult
population pool (the old generation) remains empty.

Determine fitness of children: At the beginning of each evolution cycle, a
fitness function is applied to each individual to give them their fitness score.

Perform generation shift: The new children typically have to compete with
the old pre-existing generation for survival, where the fitness score determines
the chance of surviving. The surviving children are then put in the adult pool
together with the surviving adults, emptying the children pool. Sometimes
it can be better (in order to increase diversity) to have no competition and
simply replace all the individuals in the old generation with the new one. In
the first cycle of the algorithm, the adult pool is empty, so all children are
transferred directly.

Select parents: Parents are individuals who’s genes will be used for creating
children in the next step, the crossover operations. There are many methods

9

CHAPTER 2. BACKGROUND THEORY AND RELATED WORK

for selecting parents, but the main idea is to give individuals with a high
fitness score a bigger chance, while still leaving some chances for low fitness
score individuals to be selected.

Perform crossover to create children: The selected parent solutions are merged
together (typically two and two) creating a child solutions that take a mix of
characteristics from each of its parent solutions.

Perform mutations on children: Each child will has a given chance of having
a mutation, randomly changing a part of the solution. The algorithm then
returns to the Determine fitness of children step, starting a new evolution
cycle.

The algorithm will keep running until an end criterion is reached, which is typically
reaching a certain fitness score for the best individual, or performing a fixed amount
of cycles.

Within EA we separate between two main methods when dealing with the problem
of how to encode individuals, Genetic Algorithms (GA) and Genetic Programming
(GP) (Streichert [31]). GA’s are perhaps the most similar to how real genes are
encoded, giving an individual a genotype, a binary string of fixed length, which is
then mapped unto a phenotype, the actual solution that the individual represents.
All genetic operators (mutation and crossover) are performed on the genotype and
are problem independent, while the fitness score is calculated on the phenotype.
GP is used when the solutions are in the form of programs or functions that are
not well suited for being mapped unto a binary string. Here the genetic operators
are performed directly on the solution encoding, which requires problem dependent
genetic operators.

2.2 Literature Review Protocol

A formal literature review was done at the start of the project in order to place it
within the framework of current knowledge and research. The literature search was
done on the internet using Google Scholar [11], a free web search engine for scholarly
literature. Searches were done for three main subjects, evolutionary decision tree
induction, early stopping and decision tree pruning. The search for evolutionary
decision tree induction was by far the most extensive, attempting to cover the
majority of the research conducted. Due to the wast amount of research available,
a set quality and inclusion criteria where used to filter the search, described in
table 2.1. The search included the following key word combinations:

10

2.2. LITERATURE REVIEW PROTOCOL

Figure 2.2: Flow diagram of an evolutionary algorithm.

Table 2.1: Quality and Inclusion criteria

Type Criteria

Q1 Quality The article should have a clear and concise abstract explaining
what it is about.

I1 Inclusion The article should contain details and explanations of an
evolutionary algorithm for tree induction.

I2 Inclusion The article should not be be about constructing an algorithm
towards specific domains.

I3 Inclusion The article should not be about using existing algorithms for
specific tasks or specific domains.

11

CHAPTER 2. BACKGROUND THEORY AND RELATED WORK

1. “genetic” & “decision tree”

2. “evolutionary” & “decision tree”

3. “genetic programming” & “decision tree”

For early stopping and decision tree pruning, the goal was not to cover the topic ex-
tensively, but finding good examples of methods that EMTI could use or be inspired
by The following search words were used for the early stopping search:

1. “early stopping”

2. “early stopping” & “evolutionary algorithm”

3. “early stopping” & “genetic programming”

4. “stopping criteria” & “evolutionary algorithm”

5. “stopping criteria” & “genetic programming”

For decision tree pruning, the following key words were used:

1. “decision tree pruning”

2. “decision tree pruning” & “evolutionary”

3. “decision tree pruning” & “genetic”

For both early stopping and tree pruning, combining the search with evolutionary
or genetic provided very few directly relevant searches.

2.3 Related work

The greedy, top-down recursive algorithms traditionally used in decision tree in-
duction, have the disadvantages that they search locally which often leads to sub-
optimal solutions and that they split the deepest part of the tree based on very
small datasets, often leading to overfitting. Fayyad [7] discusses how the impurity
measures (information gain, gain ratio, gini-index etc.) commonly used in these
methods have several deficiencies, in that they are insensitive to inter-class sepa-
ration and intra-class fragmentation, as well as insensitive to permutations of the
class probability distribution (Papagelis and Kalles [24]). Ensemble tree induction
have been a popular way to combat many of the weaknesses of recursive tree induc-
tion algorithms. However, ensemble algorithms have the disadvantage in that they
produce a multitude of trees, lowering the comprehensibility of the solutions.

Evolutionary algorithms searches the solution space globally and can therefore
find solutions that recursive tree induction algorithms are not able to find. EA’s
tend to cope better with attribute interactions than greedy methods (Freitas [8]).
Compared to ensemble methods, evolutionary tree induction has the advantage of
being able to produce a single, comprehensive decision tree.

12

2.3. RELATED WORK

2.3.1 Choices in evolutionary decision tree induction

Creating decision tree classifiers using genetic algorithms and genetic programming
has been tried various times. “A Survey of Evolutionary Algorithms for Decision
Tree Induction” (Barros et al. 2012 [3]), provides a taxonomy and definitions
of concepts based on the previous work done in the field, dividing it into two
main categories: evolutionary induction of decision trees and evolutionary design
of decision tree components. In the first category each individual in the population
is a decision tree, while in the latter category individuals are components of decision
tree classifiers. They further divide evolutionary induction of decision trees into
axis-parallel trees, when there is a single attribute that splits the data set per node,
and oblique, where nodes can be combinations of attributes. Using oblique trees
have the potential of producing smaller and more accurate decision trees, while
axis-parallel have the advantage of being generally much easier to interpret. This
project uses evolutionary induction of axis-parallel decision trees because of its
higher comprehensibility, which has been the most common strategy [3].

An important choice to make is whether to encode individuals using the classical
GA genotype-phenotype scheme with trees represented as fixed-length binary or
integer strings or the GP approach of using tree-based encoding. The GA approach
seems to have been popular in many of the earlier attempts of evolutionary induc-
tion of decision trees, as seen in Kennedy et al. [16] and Bandar and McLean [2],
but also in more recent papers (Smith [30]). This approach allows the use of the
standard methods of mutations of crossover operations using flipping digits and
combining strings. It is possible that this was done because this would being easier
to implement when using less powerful computers and less expressive languages.
The main drawback is that when applying mutation and crossover you get a high
amount of corrupt genes (a string that doesn’t map correctly to a tree), which have
to be either avoided or discarded using some extra methods. The GP, tree-based
approach, as seen in Aitkenhead [1], Fu et al. [9], Kretowski and Grzes [17], Papage-
lis and Kalles [24] and Zhao and Ciesielski [37] dissolves the genotype-phenotype
scheme into a single data structure, the decision tree itself. Here it is necessary to
develop new tree-specific operators for mutation and crossover, but all problems
regarding corrupt genes can be avoided.

When using a tree-based encoding of individuals the standard crossover and muta-
tion operators in the genetic algorithm needs to be rewritten. However, crossover
is virtually the same operation, you select two parents, choose a random subtree
from each parent and swap these subtrees, creating two distinct children. The vast
majority of the evolutionary decision tree inductors uses this method [3]. For mu-
tation it can be useful to mutate both the value of the nodes (and the test values
associated the node for binary trees) ([1, 24]) and the tree structure itself ([9, 37])
(typically replacing a subtree with a random subtree).

I’ve found that most papers restrict their attention to binary trees (some papers
are unclear which types of trees they are using), including [1, 24, 9], which when
dealing with multiclass classification problems requires the same attribute to ap-

13

CHAPTER 2. BACKGROUND THEORY AND RELATED WORK

pear in many levels of the tree, and will generate incomplete trees unless special
care is taken. As shown in Fu [9], binary trees can be transformed into poly-ary
trees in linear time and will contain maximum twice as many nodes as a poly-ary
tree. Binary trees makes it easier to split numerical and real values into separate
categories (Loveard and Ciesielski [18]).

Another important decision is how one should generate the initial population. One
strategy is to use an existing algorithm such as C4.5 on random subsets of the train-
ing set to generate a set of trees for the initial population ([9]). In another common
strategy, called the full method, initialization is randomly choosing attributes and
split values from a predefined list and halting the decision tree growth when the
tree reaches a depth that is randomly selected within a pre-set interval ([37]) [3].
A more basic strategy is simply generating minimal trees that are split on a single
attribute, i.e. “saplings”, often referred to as caltrops ([1, 16, 24]).

The genetic algorithm’s parent selection types and parameter settings are also of
importance. For parent selection Barros’ survey shows that tournament selection
or roulette wheel selection is most commonly used, while rank-based selection being
used on a few occasions. The parameter values such as populations size, number of
generations and mutation rate are of critical value for making a genetic algorithm
move towards a good solution. Barros writes that “most authors prefer to present
a set of default parameter values followed by a sentence like parameter values were
empirically defined.” There has however been made considerable effort into devel-
oping good heuristic for finding good parameters programmatically (Michalewicz
and Schmidt [19]). In Papagelis [24] they added a second layer evolutionary algo-
rithm for finding good parameter values.

The heart of an evolutionary algorithm’s effectiveness lies in its fitness function.
The obvious and most common measure for the fitness function for decision tree
induction is the classification accuracy (or the complement, the classification er-
ror) on the training set. Another important measure is the size of the tree, where
smaller, more general trees are preferred. Some papers have focused on the sin-
gle classification accuracy objective (or various similar versions of it) [1, 9], using
pruning techniques to keep the trees small in size. Others use a multi-objective
weighted fitness measure, taking in account both the accuracy and the size of the
trees [24, 17]. Zhao [37] implements a Pareto dominance approach that, instead of
providing a single optimal solution based on the weighted combination of objectives,
provides an optimal set of non-dominated solutions [3].

2.3.2 The problem of overfitting

Overfitting occurs when a classifier starts modeling the random error or noise of
a given training set instead of the target function it wants to describe causing the
training error to become higher than the test error. This leads to unnecessary
complex models and degrades the classification accuracy. A common way to avoid
overfitting in evolutionary tree induction has been by using a multi-objective fitness
function, that tries to maximize classification accuracy and minimize tree size using

14

2.3. RELATED WORK

the tree size weight parameter as balance point [3]. However making this work
often requires a fine tuned tree size weight parameter, which is hard to do without
resolving to a trial and error approach.

There are several other methods for combating overfitting that could also be applied
for EMTI. Early stopping (pre-pruning) is an often used technique in machine
learning, especially within the field of evolutionary algorithms and the field of
artificial neural network, but does not seem to have been tried for evolutionary tree
induction. Two main methods have most often been used in top-down recursive
algorithms, ensemble methods such as Random Forests (Breiman [4]) and decision
tree pruning (post-pruning) methods. Using ensemble methods in evolutionary tree
decision will require many different evolution runs, making the time cost of such a
method prohibitively expensive. Tree pruning is a much more applicable approach,
that only needs to be done on the best tree at the end of the evolution cycle.

15

CHAPTER 3

Model

This chapter explains the main EMTI algorithm as it is implemented at the time of
writing, describes some specific implementation details and explains a few auxiliary
capabilities and functions. Some of the main weaknesses of EMTI are identified and
ways to improve them are suggested, including specific implementations directed
at answering the research questions.

3.1 Evolutionary Multi-Class Tree Inductor

EMTI is an evolutionary algorithm for inducing parallel axis, poly-ary decision
trees for multiclass classification problems. It’s focus and motivation for many
of its implementation choices is to create accurate decision trees without losing
comprehensibility. Parallel axis, poly-ary decision trees are in general easier to
comprehend than e.g. oblique, binary trees when dealing with multiclass domains.
The fact that EMTI creates poly-ary trees is perhaps the biggest factor of what
sets it apart from the related work done in the field. In general EMTI does not
handle continuous values, but they can be discretized during preprocessing. The
use of evolutionary algorithms makes the method also applicable for reinforcement
learning (See section 3.5).

3.1.1 Representation and Operators

The algorithm falls under genetic programming, an approach used by many previ-
ous methods for evolutionary decision tree induction [1, 9, 17, 24, 37]; each individ-
ual is encoded directly as a decision tree. Because of the irregular structures of the
trees generated, using a GA approach would create a high number of corrupt tree
solutions, the GP approach avoids this problem. This requires developing special
genetic operators to be applied to the tree data structure. Figure 3.1 illustrates
the different operators used in EMTI, showing only decision nodes - end nodes are

17

CHAPTER 3. MODEL

never changed by genetic operators. Crossover is done intuitively for the GP ap-
proach in the way described in section 2.3.1, replacing a random subtree from one
parent with a random subtree from the other parent. The crossover operator allows
for combining solutions into one, with the hope and the statistical inevitability of
combining the best parts of two different solutions. To promote tree size growth in
early generations, the root nodes can not be replaced during crossover. Mutations
are in the form of small local changes to the tree structure and tree values and are
added to the algorithm in order to stimulate the genetic diversity of the popula-
tion. We have chosen to combine both mutation types that mutate the value of
the nodes ([1, 24]) and the tree structure itself ([9, 37]) in order to ensure genetic
diversity and to make it easier for trees to increase and decrease in size. EMTI
uses 4 different types of mutation operators:

1. Cut: While the crossover operation promotes growth of tree sizes, this op-
erator promotes decreasing tree sizes by cutting away a randomly chosen
subtree.

2. Implode: A decision node is removed and replaced by a randomly chosen
decision node child. The idea behind this operator is to promote the removal
of redundant nodes deep in a tree that don’t affect the classification accuracy
negatively. These nodes have a small impact on the fitness of the tree, so
they are less likely to disappear.

3. Deplode: If implode is called on a node that has no decision node children,
deplode is called in stead. This operation replaces an end node child of the
node with a randomly generated minimal decision node sub tree.

4. Flip: Randomly flip which attribute a decision node is tested on to another,
legal attribute, similar to the traditional way of doing mutation in EA’s. If the
new attribute has less categories than the previous one, we remove children
from a random location until the node has the same amount of children as the
attribute has categories. If it has more categories, we add end node children
to the node in the same fashion.

Though the motivation for each mutation operator is clear, it is not clear if they
function the way they should and contribute positively to the algorithm. This is
addressed in section 4.3, were an experiment is done to measure the individual
contribution of each part.

The chance of a mutation occurring is governed by the mutation rate parameter. A
mutation rate of 1.0 means that 1 mutation will occur on average on each individual
in the population - for a tree with 10 decision nodes, the chance of 1

10 for a mutation
to occur is rolled on each node. When a mutation occurs, the mutation type
is randomly chosen. The mutation rate strikes the balance between local and
random searching and needs to be set quite low, not more than 1.0 has shown to be
beneficial because as the mutation rate increases the algorithm’s search increases in
randomness, making it more and more inefficient. If the mutation rate is set too low,
the search risks becoming too narrow and getting stuck in a local optimum.

18

3.1. EVOLUTIONARY MULTI-CLASS TREE INDUCTOR

Figure 3.1: Genetic operators: crossover (top) and 4 different types of mutations: Flip,
Cut, Implode and Deplode (Bottom).

3.1.2 Initial population

Inspired by the work of Papagelis and Kalles [24], the initial population consist
of a series of “saplings”, randomly generated minimal trees consisting of a single
decision node and children end nodes for each of the corresponding attribute’s
possible categories. The first frame of figure 3.3 shows how the first population
typically looks like for the diagonal problem.

3.1.3 Fitness function

After the initial population has been generated, it is time to evaluate the individuals
using the fitness function. EMTI uses a multi-objective fitness function ([24, 17],
with the objectives being maximizing classification accuracy and minimizing tree
size:

F = 1
|X|

(
∑
x∈X

C(x) − s

w
) (3.1)

Where F is the fitness score, s is the size of the tree, w is a weight parameter that
controls how much impact the tree size makes on the overall fitness score, x is an
instance of the training set X and C(x) is 1 if an instance was classified correctly
by the tree and 0 if it was classified incorrectly. To normalize the fitness between 0
and 1, the fitness is divided by the size of the training set |X|. Potentially, a tree
with zero accuracy will have a negative fitness score, if so, it gets adjusted to zero.

19

CHAPTER 3. MODEL

The main objective should be classification accuracy, which is achieved by setting
w higher than 1. But we also want the algorithm to produce as small trees as
possible, not just to avoid overfitting the training data, but also to encourage the
removal of redundant nodes in the tree and to increase the tree’s comprehensibility.
Currently EMTI uses a static weight parameter that can be set by the user. Which
weight to set depends on the characteristics of the classification problem, and does
not necessarily correlate with the amount of attributes and categories a problem
has, but rather the size of the optimal minimal decision tree of the problem. A
correctly set weight parameter can strike a perfect balance between underfitting and
overfitting, but this is difficult to do without resolving to trial and error approaches.
Because of this, other ways of avoiding overfitting are explored in section 3.6.

3.1.4 Adult and Parent selection

Continuing with the algorithm according to the flow diagram shown in figure 2.2,
it is now time to perform the generation shift, turning children into adults. For the
primordial generation of children there are no adults to compete with, so they are
all immediately transferred to the adult population. But later child generations
could have to compete with the existing adult pool for survival. EMTI offers tree
different types of generations shifts that are typically used in EA’s, that the user
can chose:

1. Full generational replacement: All adults die and are replaced by their chil-
dren.

2. Generational mixing: The strongest half the children and the strongest half
of the adults survive.

3. Overproduction: Full generation replacement where we produce the double
amount of children which have to compete against each other for a place in
the adult pool.

In addition there are two more parameters dealing with the generation shift, re-
ject worse generation, which gives the possibility of totally rejecting a new child
generation if the best fitness is lower than in the old generation, and spice popula-
tion, which gives the possibility of making a percentage of each new generation be
randomly generated minimal trees as in the initial population.

Another three different methods often used in EA’s are available for the parent
selection:

1. Tournament selection: n individuals are randomly chosen from the popula-
tion and the one with highest fitness is selected as a parent. There is also the
added possibility of setting the parameter ε between 0 and 1 which gives the
chance of the selection being completely random.

2. Fitness proportionate: Also called roulette wheel selection, each individual is
given a chance of being selected as their own fitness divided by the sum of
the fitness of all the individuals.

20

3.1. EVOLUTIONARY MULTI-CLASS TREE INDUCTOR

3. Sigma scaling: Like fitness proportionate selection, but uses the standard
deviation of the population fitness score to regulate the selection pressure.
When the standard deviation is low, small differences in fitness score have a
bigger (positive) impact on the chance of being selected.

3.1.5 Diagonal problem

To use for testing during the implementation and to explain the methodology used
in EMTI, a simple artificial classification task was created called the Diagonal prob-
lem. As show in figure 3.2, the Diagonal problem consists of a 4 square grid where
each square has three possible colors: red, green or blue. Instances are classified by
how many undisturbed same color diagonals they have, the possible values being 0,
1 or 2 diagonals. Using an artificial problem allows for adjusting the size and the
characteristics of the data set, adding noise and irrelevant attributes, useful when
testing the algorithm, in particular testing its resilience to overfitting.

Figure 3.2: Some instances of the Diagonal problem and their class.

3.1.6 Algorithm properties

As an illustrative example, figure 3.3 shows 10 evolution cycles when running EMTI
on the diagonal problem, with a population size of 10. The selection types used
here are full generational replacement and fitness proportionate selection, with a
mutation rate set to 2.0. These settings causes very high diversity in the solu-
tions, which are good for illustration purposes, but slows the improvement pace
significantly down and is not necessary for achieving good results. The typical
parameters we have found to work well are much more greedy (less diversity but
improves faster) and are to use sigma scaling and generational mixing as selection
types, and a mutation rate set to 1.0. Figure 3.4 shows a plotting of the training
set accuracy, tree sizes and the total fitness score of 100 generation cycles using

21

CHAPTER 3. MODEL

these settings. Notice the typically occurring saw tooth pattern in figure 3.4b of
the best individual’s tree size. Each sharp increase in tree size is caused by a break
through in tree accuracy, normally caused by a particularly successful crossover
operation. This sometimes leads to a “hypothesis explosion,” with a series of accu-
racy improvements in a short period of time, which soon reaches a limit and then
is slowly improved upon by finding smaller trees with the same accuracies. For this
example, the tree weight, w, is set to its typically used value of 1000, which makes
the positive reward of a smaller tree very small, resulting in the fitness curve and
the accuracy curve appearing identical.

Figure 3.3: A real example of 10 EMTI evolution cycles, where each tree corresponds to
an individual in a total population of 10.

3.1.7 Majority vote end node setting

Initially during EMTI development, the end nodes values were set randomly and
were a part of the evolution in the same way as the decision nodes. It was soon
discovered that this was unnecessary, what we are really searching for is three
structure, not which values to put in the tree. end nodes values (and decision
node values, though doing this quickly becomes computationally expensive, the
workload grows exponentially the further up you go in the tree) can be set when
testing the tree on the training data by majority vote. This can be done in the

22

3.1. EVOLUTIONARY MULTI-CLASS TREE INDUCTOR

(a) Training set accuracy (b) Tree size growth

(c) Total fitness

Figure 3.4: Plot of 200 generations of EMTI on the Diagonal problem.

fitness function, which already tests the tree on the training data. The way EMTI
is implemented ensures that each data instance in the training set will arrive in
an end node. This makes it possible to register the “traffic” of data instances that
each end nodes receives, storing the instance’s class label. When we finish to run
through the training set, we look at each end nodes traffic information, and set the
end node value as the category label that the majority of the instances ending in
the node had (see figure 3.5). But what about end nodes that receive no traffic
from the training set? The solution found was to keep these random and reset
them after the evolution is over using k-Nearest Neighbor. But it is unclear if
this is really necessary, as after many evolution cycles these end node values are
not really random: they are set, through the various genetic operators, from the
values of end nodes that did experience traffic. The effectiveness of the unvisited

23

CHAPTER 3. MODEL

end node scheme of using kNN on them is measured in experiment E2, section 4.4.
Implementing majority vote end node has shown to dramatically the search space
and run times of EMTI, this was confirmed in experiment E1 4.3.

Figure 3.5: Random end node setting versus majority vote end node setting, using kNN
for unvisited nodes.

3.2 Implementation details

EMTI was written in C++11 with no dependencies other than the C++ standard
library. Figure 3.6 shows a UML class diagram of EMTI. The front end is respon-
sible of supplying a URL of a properly formatted dataset to the Data class. While
algorithms like C4.5 requires a separate .names file containing information about
the attributes, the Data class used in EMTI parses the data into a vector of in-
stances and incrementally stores information about the possible attributes it finds,
though it will still need information about the attribute type names when this is
required. EMTI data files should be in the format of one line for each instance
with space as delimiter between each attribute and the class attribute in the end
of each line. Data also provides several options for processing the data into this
format, handling different delimiters, ignoring attributes and changing the location
of the class attribute.

To initiate the EA, the front end then needs to initiate a Population instance with
the vector, attribute information and the general EA parameters such as mutation
rate, parent selection type etc. as parameters. This is where the Population class
generates the initial population. Population provides a method called doEvolution-
Cycle() to the front end, which performs one evolution cycle. The front end can
then do what it wants with this method, e.g. putting it in a loop with the desired
end criteria.

By default, the Population class generates information about fitness, accuracy and
tree sizes for each generation, storing it in a data file. This can later be used for
analysis and plotting, as seen in figure 3.4, where we have used Gnuplot [12] for
drawing the graphs. After evolution is done, there is the possibility of exporting
the best tree to a .dot file format, which can be visualized using Graphviz [13], as
seen in figure 3.8 and 3.9.

24

Fi
gu

re
3.

6:
U

M
L

cl
as

s
di

ag
ra

m
fo

r
th

e
E

M
T

I
im

pl
em

en
ta

tio
n.

CHAPTER 3. MODEL

Figure 3.7 shows the GUI for the EMTI experiments and testing grounds. It
allows for real time adjustment of parameters, which data sets to train on and
graph visualizations of the development of the algorithm run. In this screenshot,
the top frame shows the accuracy of the current best individual on the training set
(green) and the accuracy on the validation set (red) while the bottom frame shows
the current best individual size (green) vs the average population size (orange).
This is implemented in mac OS X using the Swift programming language, linking
the C++ code via Objective-C.

Figure 3.7: Mac OS X GUI front end screenshot

3.2.1 TrollBrain integration

A basic functioning version of EMTI was integrated with the TrollBrain interface.
The main challenge was to reformat the data from TrollBrain that uses string,
integer or real value types of its data into the data format supported by EMTI,
were all attribute and class values are abstracted into integer values. A number of
minor syntax issues also had to be resolved when the source code was migrated to
the Microsoft Visual Studio C++ compiler. TrollBrain’s AI-method component are
compiled for Windows as dynamic linked libraries (dll’s) that can be dynamically
added to the TrollBrain interface.

26

3.3. EXPLANATION TOOL

3.3 Explanation tool

Another focus, that comes naturally as it is one of the big advantages of decision
trees, has been for EMTI to produce results that are easily understood by humans.
By producing single parallel axis trees using no ensemble techniques or attribute
mixing, the trees generated are in an easily interpretable form. An example of
a tree generated by EMTI from a car evaluation domain can be seen in figure
3.8a. Here, the ability to set a maximum size of the trees that are generated is
utilized to create a more comprehensive tree model. The tree in figure 3.8a has a
maximum node count of 40 and achieves a 83.8% accuracy on a test set comprised
of 30% of the car evaluation dataset (the other 70% was used for training.). In
comparison, when running for a long time without a maximum tree size, EMTI
generates a ≈ 200 node tree, reaching an accuracy of 93.5% (see table 4.14 and
4.15.). We can see that the decisions made by the tree (unacc = unacceptable,
acc = acceptable, good = good, vgood = very good) seems in large logical and
understandable. The trees shown in figure 3.8b and 3.8c shows the traffic and the
accuracy when running the tree on the training set and the test set, respectively.
Red nodes score less than 50% accuracy, with deeper red being worse, blue nodes
score more than 50% accuracy, with deep blue being better.

Another example is shown in figure 3.9. This tree shows what we believed to be the
minimal possible decision tree for the Diagonal problem, as we have not been able
to find a smaller combination of attributes that satisfies the problem. It has a total
count of 67 nodes, which EMTI is normally able to find, depending on the size of
the data set. Predictive algorithms like ID3 and C4.5 can usually, depending on
the training set data combinations, only find larger sub-optimal solutions of this,
even with all permutations of the problem available.

3.4 Generating initial population using ID3

With the objective of speeding up the algorithm, we tried another way to make
the initial population, generating the initial trees by using the ID3 algorithm on
random subsets of the training data, similar to the method used by Fu [9] where
C4.5 was used. This makes the algorithm start up with much larger trees that
already have high accuracy, jump-starting the evolutionary process. But the speed
gain observed using this method were not very significant, because the normal
method already has a rapid growth of tree size and accuracies in the initial cycles,
quickly reaching the same size levels of the ID3 method. This method could perhaps
be helpful when dealing with very large datasets, however. The main concern of
using this method is that it potentially drives the evolutionary process towards a
local minimum, restricting the search space to a size close to the local search space
of ID3.

27

CHAPTER 3. MODEL

(a) Human readable decision tree

(b) Training data traffic tree (c) Test data traffic tree

Figure 3.8: Decision tree for the car evaluation training set with maximum 40 nodes.

28

Fi
gu

re
3.

9:
M

in
im

al
de

ci
si

on
tr

ee
fo

r
th

e
D

ia
go

na
lp

ro
bl

em
.

CHAPTER 3. MODEL

3.5 Reinforcement learning

EMTI is made for use in supervised learning where the agent models its func-
tion based on labeled example data. But by modifying the way fitness values are
assigned to the decision trees of the population, EMTI could also be used for re-
inforcement learning, where the agent models its function based on the positive or
negative consequences of its actions. This was tried for a simple “robot” world,
visualized in figure 3.10, consisting of a 10 × 10 grid of squares, that are either
empty, contain food or contain poison. The robot has to navigate this world trying
to eat food (positive reward) and avoiding eating poison (negative reward). Three
sensory inputs are provided telling the robot what the squares to the left, front
and right contain and three actions are possible, to go left, front or right. The
objective is to make the robot learn the correct actions for the different possible
inputs.

Figure 3.10: Visualization of the robot world, the blue and white square indicates the
position and direction of the robot, grey indicates empty squares, green indicates squares
containing food and red indicates squares containing poison.

This is possible to do in EMTI by making a decision tree serve as the brain of the
robot. The initial population is set up normally, with trees containing one random
decision node of one of the inputs and three leaf nodes, one for each possible action.
The fitness score of a tree is then calculated by making the robot use the tree to
decide what to do, doing 50 actions in the world. This is done for each tree in
the population resetting the world every time between each tree. Then the normal
evolutionary operations, mutation, crossover, adult selection and parent selection
are performed, constituting a full evolution cycle. In this way evolutionary search is
made possible, resulting in stronger and stronger scoring decision trees as evolution
progresses. Because of the lack of training data, majority vote end node setting
is impossible, making the evolutionary progress significantly slower. Figure 3.11
shows a decision tree learned by EMTI using this method. The decision tree lacks
some expressive powers; if it finds poison to the front and to the right it will always
go left, regardless of what the square left of the robot contains, if all squares around

30

3.6. AVOIDING OVERFITTING AND OTHER IMPROVEMENTS

the robot are empty, it will always go straight. An improvement could be to let
a fourth action be allowed, making the robot go in a random direction, which it
would learn to do when all options are equal.

Figure 3.11: Decision tree for a robot brain. Square boxes are the inputs with branches
for each different types of input, while diamond boxes are the resulting actions.

3.6 Avoiding overfitting and other improvements

This section identifies three main weaknesses of EMTI, and proposes ways to im-
prove upon them. Overfitting is seen as the most important weakness, and five
different methods to avoid overfitting is proposed which are later tested in chapter
4. Three involves early stopping techniques; the single look back method and the
size control method and a method combining the two, while the two other are tree
pruning methods; Error-complexity pruning and Minimum-error pruning.

3.6.1 EMTI weaknesses

At the start of the project, the potential flaws and weaknesses of the algorithm were
tried identified, mainly in comparison to other conventional decision tree learners.
Three main weaknesses were found:

1. Long run times: Compared to typical greedy approach of decision tree learn-
ers, EMTI requires much more calculation and hence is slower.

31

CHAPTER 3. MODEL

2. Many parameters: In its current form, EMTI has many parameters (mutation
rate, population size, cycle count etc.) that the user must set and learn to
use.

3. Overfitting: In its current form, EMTI tries to model the training data per-
fectly, unless the tree size weight parameter is set very high. This will cause
overfitting on many data sets.

It is recognized that evolving decision trees will be fundamentally slower than
greedy approaches, as an EA’s computational complexity is somewhere between
the complexity of a greedy search and a brute force search. As a dataset grows in
size in terms of both instances and attributes, the speed difference grows larger.
EMTI is therefore not well suited for very large data sets. The biggest potential
for decreasing EMTI run times would be to allow parallelization of the many in-
dependent tasks that make up the algorithm, such as the crossover operator, the
mutation operator and the fitness setting. There is also potential for optimizing
the existing code, especially looking into ways to optimize how the tree structures
are handled.

Typically for EA’s, EMTI has a wide range of parameters that can be set: popu-
lation size, cycle count, mutation rate, crossover rate, parent selection type, adult
selection type, reject worse generation and the tree size weight parameter. This
could potentially be a daunting task for an eventual user of the system. The issue
of controlling values of various parameters of an evolutionary algorithm is one of
the most important and promising areas of research in evolutionary computation
(Eiben [6]). However, in qualitative testing of EMTI has shown very little need
for setting different parameters for different domain problems and shows to work
well setting the parameters more towards a greedy search mode, with low mutation
rate (≈ 1.0) and low population sizes (≈ 100), retaining and improving the already
established solutions by using generational mixing adult selection. The chance of
falling into a local optima are small and happens close to the optimal solution.
Just as greedy searching has been shown to work well in traditional tree learners,
it works well in evolutionary tree learning. Therefore EMTI can work well with
a standard set of parameters as proposed in table 3.1, where only the amount of
evolution cycles will differ depending the data set.

Using this preset parameters, a method called autoEMTI was created, that takes a
training set as input, runs the evolutionary algorithm and returns the final decision
tree, without any parameter needed to be set by the user. In stead of using a preset
cycle count value, the method stops when the best fitness of the population has
been the same n = 100 times in a row, indicating that the evolution has converged
to the best solution it can find. Qualitative test has shown that it achieves the same
results as when externally setting the parameters, though it often uses unnecessary
many cycles.

By using a multi-objective fitness function, EMTI show resilience to overfitting
when the tree size weight is correctly adjusted. In table 3.1, the tree size weight
parameter is set high, such that the algorithm will prefer an improvement in clas-

32

3.6. AVOIDING OVERFITTING AND OTHER IMPROVEMENTS

Table 3.1: EMTI standard parameters

Population Mutation
rate

Crossover
rate

Parent
selection

Adult
selection

Reject worse
generation

Tree size
weight

100 1.0 1.0 Sigma scaling Gen. mixing Yes 1000

sification accuracy, even at the cost of a much larger decision tree. This parameter
could be tuned and used as an instrument for avoiding overfitting, but this is very
hard to do without resolving to a trial and error approach, as setting it too low
will cause significant underfitting, i.e. very simple solutions that don’t describe the
domain correctly. Figure 3.12 shows how overfitting will occur on certain data sets.
The graphs on the figure shows EMTI being run on the Wisconsin Breast Cancer
Data set, using 70% of the instances as training set and the 30% remaining as a
test set. The top frame shows training set accuracy of the best individual of the
population (red) relative to the test set accuracy (blue) with the y axis covering
roughly between 90% and 100% classification accuracy. The bottom frame shows
the relation between the tree size of the best individual (red) and the average tree
size of the population (green).

As the evolutionary algorithm progresses, we see a steady improvement of the train-
ing set accuracy, together with a steady increase of the tree sizes (and therefore
complexity of the solution) of the population, until the training set reaches a close-
to maximum accuracy. At this point the only way for the algorithm to increase
fitness values is by finding smaller, equivalent accuracy decision trees, as shown in
the decreasing tree sizes at the end of the bottom frame. But looking at the clas-
sification accuracy scores for the test set, we see a very different development. It
increases quickly in correlation with the training set, but soon diverges and starts
decreasing as the training set accuracy increases. A clear sign of overfitting: the
algorithm introduces rules into the decision trees based on noisy and extraordinary
instances of the data set, the generalization error increases. The tendency to over-
fit is a critical weakness in the algorithm, and was therefore chosen as the most
important weakness to improve upon. We look into two commonly used methods
for avoiding overfitting, the more general approach of early stopping, that can be
used by a variety of learning algorithms, and decision tree pruning, commonly used
by tree learning algorithms.

3.6.2 Early stopping

Looking at figure 3.12, we can see that if the algorithm could be stopped at (or
brought back to) the point when the test set accuracy was the highest, it should
yield a better general solution to the problem. This is what is typically done in an
already well established technique within machine learning called Early stopping,
also often referred to as pre-pruning.

The procedure is relatively simple, making a portion (typically 30%) of the train-

33

CHAPTER 3. MODEL

Figure 3.12: Example of overfitting when running on the Wisconsin Breast Cancer data
set. The top frame shows training set accuracy of the best individual in the population
(green), relative to the validation set accuracy (red). The bottom frame shows the relation
between the tree size of the best individual (green) and the average tree size of the
population (orange).

ing dataset into a validation set and stopping at a point when the generalization
error increases, which happens when the classification accuracy of the validation
set starts worsening. The main challenge is knowing when to stop, the stopping
criterion. Prechelt [25] shows how learning rate curves in general are not smooth
and have high variation, so generalization error can still go down after it increased.
Prechelt proposes a function that chooses a stopping criteria with a trade-off be-
tween training time and generalization. For simplicity, minimizing training time
was seen as a low priority for this project, focusing on maximizing validation set
accuracy. Two candidate methods were implemented for testing:

Single look-back method

This simple method does in reality not doing any early stopping at all, but the
principle behind it remains the same. Using a validation set during training, the

34

3.6. AVOIDING OVERFITTING AND OTHER IMPROVEMENTS

best tree of generation with the so far lowest generalization error is retained un-
til the end of the evolution (typically when a certain amount of cycles has been
reached). This tree is then chosen as the final tree.

Size control method

A decision tree retrieved from the middle of an evolution is likely to have room
for optimizations and can contain duplicate attributes in the same branches of the
tree. This method seeks to continue evolution after such a tree is retrieved, without
increasing the generalization error. It does this by setting a limit at how big the
tree can grow. When overfitting happens in decision tree learners, it is in relation to
the tree learner making overly large and complex trees. Utilizing EMTI’s ability of
setting a maximum size of the trees it generates, a stopping criterion is set, saying
that when the generalization error has grown for n cycles, instead of stopping the
algorithm, the maximum size of the tree is set to the size of the best tree of the
generation that had the lowest generalization error, continuing the algorithm until
completion, possibly setting lower limits to the tree size, but never higher.

It is important to be careful when using the validation set multiple times during
training, as you risk that it becomes biased in the same way as the training set.
For example, a multiple look back method was proposed, where after n cycles of
higher generalization errors, the evolution was set back to the lowest point, and the
evolution would continue from there. This method would slowly create trees that fit
the training set and the validation set well, but the actual generalization error could
still be high. But simply limiting the tree size as in the size control method will not
create any bias, because it does not directly influence the classification accuracy.
Finally, a method combining single look-back and the size control method will also
be tested.

3.6.3 Decision tree pruning

Decision tree pruning is a way to simplify decision trees in order to achieve two
main objectives: making the tree easier to understand and improving the accu-
racy of overfitted trees. The process involves finding unnecessary parts of the
tree and removing them, using a certain criterion for deciding what makes the
parts unnecessary. A lot of research has been done in decision tree pruning start-
ing from the 1980’s, often employing more and more complex statistical methods
for deciding which nodes to prune. As the main interest is finding out whether
pruning is applicable for EMTI, some of the earlier, simpler methods have been
implemented. In “An Empirical Comparison of Pruning Methods for Decision
Tree Induction”[21] by John Mingers, 1986, a comparison of five pruning methods
is made, Error-complexity pruning, (Breiman [5]), Critical value pruning (Mingers
[22]), Minimum-error pruning (Niblett and Bratko [23], Reduced error pruning and
Pessimistic error pruning (both by Quinlan [28]). Two of these methods were cho-
sen for testing with EMTI, Error-complexity Pruning because of its strong results

35

CHAPTER 3. MODEL

in Minger’s paper and Minimum-error pruning because of the different approach it
uses and that it is not reliant on a validation set.

Error-complexity pruning (Err-comp)

A two stage method that starts by generating a series of trees, each more and more
pruned until we are left with the root node of the tree. It does this by pruning
one subtree at at time choosing a node that has the subtree with the smallest
error-complexity measure α, given by the equation

α = R(t)−R(Tt

NT − 1 (3.2)

R(t) is the error cost of the node, given as

R(t) = r(t) p(t) (3.3)

where r(t) is the error rate of the node given by the training data and p(t) is
the proportion of training data going through compared to the total training data.
R(Tt) is the error rate of the subtree associated with the node and is the sum of the
error rate of all the leaves of the node. NT is how many leaves the node has.

After the series of trees is generated, the tree with the smallest misclassification
rate using an independent validation set is chosen as the final pruned tree.

Minimum-error pruning (Min-err)

This method uses Laplace probability estimates to find the theoretical minimum
expected error rate when classifying independent data, with the assumption that
that all classes are equally likely. The expected error rate Ek of tree node is given
by the equation

Ek = n− nc + k − 1
n+ k

(3.4)

Using a data set with k classes, were n instances have been observed in the nodes of
which nc where in class c. At each decision node in the tree, the expected error rate
is calculated both for if its subtree is pruned or if it is not pruned, using the error
rates of each of its branches, combined by weighting according to the proportion of
instances along each branch. If pruning the node leads to a smaller expected error
rate, the node is pruned.

36

CHAPTER 4

Results

This chapter describes the execution, including the conditions they were performed
in and the parameter settings that were used, and presents the results of 3 experi-
ments, E1, E2 and E3, set out in order to answer the research question stated in
section 1.1.

4.1 Experimental plan

Three different main experiments were done, labeled E1, E2 and E3.

E1 attempted to measure the performance of the inner components of the EMTI
algorithm, in relation to RQ1.

E2 measured the performance of different methods of avoiding overfitting in EMTI,
mainly in relation to RQ2 and RQ3 and to some extent RQ1.

E3 measured the performance of EMTI against four other known classification
algorithms on a variety of datasets, in relation to RQ4 and RQ5.

Experiments were conducted by running different algorithms on various datasets,
listed in table 4.1, measuring statistics such as training and test classification accu-
racies, tree sizes and run times. An evolutionary algorithm is non-deterministic and
results can have high variance between each run, therefore the algorithms are run
many times on the same dataset to increase the accuracy of the results. Because
the data amount for the datasets are limited, using the same random training and
test set every time can cause particularly skewed results for certain combinations
of the data. Except for on the datasets that have explicit, designed test sets (the
monk, corral and mofn 3-7-10 datasets), k-fold cross-validation is used to combat
this problem. This is done by splitting the datasets into k random parts (folds)
were one part is chosen as the test set and the rest are chosen to make up the
training set. This is repeated so that each part serves as test set one time. For all
experiments where cross-validation was used in this project, 10-fold cross-validation

37

CHAPTER 4. RESULTS

was used. This means that the evolutionary algorithm has to run 10 times for each
datasets, making run times considerably (10 times) longer. For each run, the ran-
dom seed is generated based on the current time of the experiment. Setting a static
seed based on a constant was considered, as this should allow the experiments to
be perfectly recreated, but was discarded since there was uncertainty whether or
not this could put any bias into the results.

4.2 Description of the datasets used

Table 4.1 show the characteristics of the datasets used in the three experiments.
They were all retrieved from the UCI machine learning repository [35], a collection
of benchmark datasets for classification and regression, with the exception of the
Corral and the Mofn 3-7-10 datasets by Ronny Kohavi, found at sgi.com [33].

Table 4.1: Dataset characteristics.

Dataset Type Attributes Categories Instances Artificial Year
Diagonal problem Categorical 4 3 300 yes 2015
Car evaluation Categorical 6 4 1728 yes 1997
W. Breast cancer Integer 10 2 699 no 1992
Zoo Mixed 17 7 101 yes 1990
Balance scale Categorical 4 3 625 yes 1994
House votes ’84 Categorical 16 2 435 no 1987
German Credit Data Categorical 20 2 1000 no 1994
Lymphography Categorical 18 4 148 no 1988
Monk’s problems Categorical 6 2 432 yes 1991
Corral Categorical 6 2 128 yes 1994
Mofn 3-7-10 Categorical 10 2 1024 yes 1994

Diagonal domain

Artificial domain created for the testing of EMTI, see section 3.1.5.

Car evaluation dataset

The Car evaluation dataset evaluates whether a car is a good buy based on buying
price, maintenance price, number of doors, number of people it can carry, size of
luggage boot, and safety, giving the cars rating as either unacceptable, acceptable,
good or very good.

38

4.2. DESCRIPTION OF THE DATASETS USED

Wisconsin Breast cancer dataset

The Wisconsin Breast cancer dataset uses a number of numerical attributes to
determine whether a patient has benign or malignant cancer. Though it is numer-
ical, each attribute value falls between 0 and 10, making it possible to use with
categorical-only classifiers. The dataset include 16 instances with missing values
in this set.

Zoo dataset

A simple dataset for classifying animals containing boolean values for properties
such as feathers, predator, fins etc. and the numerical value legs (0, 2, 4, 6, 8).
Based on this information they are classified into one of 7 numerical types. The
meaning of the different types are unknown.

Balance scale dataset

This dataset was apparently generated to model psychological experimental results.
Each example is classified as having the balance scale tip to the right, tip to the
left, or be balanced. The attributes are the left weight, the left distance, the right
weight, and the right distance.

1984 United States Congressional Voting Records (House votes ’84)

Is the congressman a democrat or a republican? This dataset includes Yes or No
votes for each of the U.S. House of Representatives Congressmen on the 16 key
votes identified by the Congressional Quarterly Almanac, including questions like
immigration, crime, and duty-free-exports etc.

German Credit Data

In the German Credit dataset the objective is to decide if a person represents a
good or bad credit risk based on a number of numerical and categorical attributes
such as credit history, checkin account balance, employment status, age etc. The
classification should be considered a cost matrix, where it more costly to declare a
person good when they are bad than to declare a person bad when they are good,
but this was ignored in the experiments for the sake of simplicity. Since EMTI
normally does not handle numerical and real values, the dataset was discretized
using Weka’s [36] discretizing tool.

39

CHAPTER 4. RESULTS

Lymphography

Dataset within a medical domain obtained from the University Medical Centre,
Institute of Oncology, Ljubljana, Yugoslavia.

Monk’s problems

The Monk’s problems [32] (Thun et al.) datasets are a set of 3 artificial clas-
sification problems generated for the specific use of comparing different learning
algorithms. A robot is described using six attributes with a total of 432 possible
permutations:

x1 : head shape ∈ round, square, octagon
x2 : body shape ∈ round, square, octagon
x3 : is smiling ∈ yes, no
x4 : holding ∈ sword, ballon, flag
x5 : jacket color ∈ red, yellow, green, blue
x6 : has tie ∈ yes, no

While the class is binary and is described by a logical sentence. The first problem
uses a training set of 124 instances randomly chosen from the possible permutations
and is expressed as: (head shape = body shape) or (jacket color = red).
It is in standard conjunctive form, which should be easily solved and expressed by
decision tree learning algorithms. The second problem has a training set of 169
randomly chosen instances and is expressed as: exactly two of the six attributes
have their first value. This problem is complicated to express in standard
conjunctive form and requires very large decision trees to express perfectly. The
third problem has a training set of 122 randomly chosen instances and is expressed
as: (jacket color = green and holding = sword) or (not jacket color =
blue and not body shape = octagon). This is again in standard conjunctive
form, but this time 5% misclassification, i.e. noise was added to the training
set.

Corral dataset

The correlated attribute (Corral) dataset is an artificial dataset by Ronny Kohavi,
first used in “Irrelevant features and the subset selection problem”, John, Kohavi
and Pfleger [15]. It has 6 binary attributes and a binary class. The first four
attributes determine the class by the logical sentence (A0∧A1)∨ (B0∧B1), while
the 5th attribute is irrelevant and the 6th attribute is correlated with the class
value, but with 25% noise. The dataset comes with a distinct training and test
set.

40

4.3. E1 METHOD COMPONENTS EFFECTIVENESS STUDY

Mofn 3-7-10 dataset

This is another artificial dataset by Ronny Kohavi with 10 attributes 3 of which
are irrelevant. The dataset comes with a distinct training and test set.

4.3 E1 Method components effectiveness study

The objective of this experiment was to measure the effectiveness of the different
method components that drives the evolutionary search forwards in EMTI. This
was done by individually deactivating the components and measure the perfor-
mance without them against the performance of EMTI with all components acti-
vated. The three major contributors are the crossover operator, mutation operator
and the majority vote end node setting.

4.3.1 E1.1 Majority end node setting effectiveness

Changing the algorithm from random end node setting to majority vote end node
setting had already been observed to greatly increase the search effectiveness but
had not been quantitatively measured. Two algorithm runs were made on the
diagonal domain dataset using the settings described in table 4.2, one using the
normal version and one where the algorithm had been reverted to using random end
node setting. Figure 4.1 shows fitness (learning curves) and tree size development
over time for the two runs.

Table 4.2: E1.1 settings

Dataset Cycles Population
Mutation

rate
Crossover

rate
Parent

selection
Adult

selection
Diagonal 500 500 2.0 1.0 Sigma scaling Gen. mixing

4.3.2 E1.2 Crossover and mutation components effective-
ness

Similarly to experiment 1.1, the crossover operator and the 4 different types of
mutation operators (cut, implode, deplode and flip) were individually deactivated
and the performance compared was compared with EMTI with all components
activated. In an effort to measure search effectiveness, the experiment measured
how many generation cycles it took to reach a certain training accuracy for two
datasets, the diagonal domain and the Wisconsin breast cancer dataset. For the
diagonal domain, the target accuracy was training set size−2, for the cancer set, the
target accuracy was training set size−9. To ensure accurate results, the experiment

41

CHAPTER 4. RESULTS

(a) Training set fitness, random end node. (b) Tree size growth, random end node.

(c) Training set, fitness majority vote. (d) Tree size growth, majority vote.

Figure 4.1: E1.1: Random end node setting vs. majority vote end node setting.

was repeated 50 times for each disabled method for each dataset. The results can
be seen in table 4.3. Disabling certain methods causes EMTI to strongly slow down
or not reach the desired accuracy at all. For this reason a cut-off point of 1000
cycles was set, this is reflected in the values for no crossover and no deplode in the
table, which would be higher without this cut-off point.

42

4.4. E2 EARLY STOPPING AND TREE PRUNING METHODS
COMPARISONS

Table 4.3: E1.2: EMTI crossover and mutation components effectiveness

Diagonal Domain Breast cancer
Change to EMTI Mean cycle count SD Mean cycle count SD
Normal 118.05 35.59 106.69 25.59
No crossover 1000.00 0.00 1000.00 0.00
No branch cut 120.07 40.23 104.67 24.19
No implode 120.77 41.68 112.46 24.27
No deplode 796.17 373.38 108.62 23.75
No flipping 110.44 26.73 117.87 27.72

4.4 E2 Early stopping and tree pruning methods
comparisons

This experiment measures the differences between three different forms of early
stopping (Single look-back, Size control and Size control with single look-back)
and pruning (Error complexity pruning and Minimum error pruning) for EMTI
as described in section 3.6. For comparison, the normal version of EMTI is in-
cluded and a normal EMTI version using the same reduced size training set as in
the early stopping versions and the complexity pruning version, to measure the
potential drawback of using parts of the training set as a validation set. Finally,
also added is a measure of EMTI’s majority end node optimization method for
unvisited nodes (see section 3.1.7) by showing classification accuracies before and
after optimizations. The methods are labeled in the tables accordingly:

Basic pre opt: The normal EMTI algorithm without any unvisited end node
optimization.

Basic: The normal EMTI algorithm.

Min-err pruning: The normal EMTI algorithm using minimum error pruning
on the best tree after evolution.

Basic small set: The normal EMTI algorithm, using the same size training
set as the methods below that require a validation set.

Err-comp pruning: The normal EMTI algorithm using complexity-error prun-
ing on the best tree after evolution.

Single look-back: EMTI using the single look-back method.

Size control: EMTI using the size control method.

Size control look-back: EMTI using the size control method combined with
the single look back method.

43

CHAPTER 4. RESULTS

Three evolutions were done for each experiment, as combining several of the meth-
ods in the same evolution run is possible, one combining Basic pre opt, Basic and
Min-err pruning, one combining Basic small set, Err-comp pruning and Single-look
back and one combining Size control and Size control look-back. The experiments
were conducted on 6 different datasets with settings as described in table 4.4. For all
the experiments 10-fold cross-validation was used, with mutation rate and crossover
rate always set to 1.0 and using sigma scaling for parent selection and generational
mixing for adult selection. To ensure accurate results, the cross-validation was
repeated 10 times for the four first smaller Datasets, and 5 times for the last two
bigger datasets. For all experiments, the validation sets used were 25% percent
of the training set chosen randomly, and the majority end node optimization used
k = 3.

Table 4.4: Overview of E2 settings.

Folds Times dataset Pop. size Generations
2.1 10 10 Diagonal domain 0% noise 100 300
2.2 10 10 Diagonal domain 20% noise 100 300
2.3 10 10 W. B. Cancer 100 300
2.4 10 10 House Votes ’84 100 300
2.5 10 5 German Credit Data 50 1000
2.6 10 5 Car Evaluation 50 1000

4.4.1 E2.1 Diagonal domain 0% noise

With no noise in the dataset and a clear underlying structure, neither of the meth-
ods for avoiding overfitting should have a positive effect on the classification accu-
racy. The results are shown in table 4.5.

Table 4.5: E2.1 Diagonal domain 0% noise results. Classification accuracies, standard
deviations and training accuracy shown as percentage, run time shown as seconds.

EMTI type
Mean

accuracy
SD Mean size Run time

Training
accuracy

Basic pre opt. 99.23 1.88 67.66 392.00 100.00
Basic 99.53 1.63 ” ” ”
Min-err pruning 96.36 4.39 58.30 ” 98.42
Basic small set 97.60 3.68 66.58 438.64 99.99
Err-comp pruning 96.33 5.26 64.60 ” 99.56
Single look-back 97.76 3.97 67.21 ” 99.99
Size control 97.63 3.41 64.99 438.44 99.87
Size control look-back 97.83 3.38 66.07 ” 99.87

44

4.4. E2 EARLY STOPPING AND TREE PRUNING METHODS
COMPARISONS

4.4.2 E2.2 Diagonal domain 20% noise

Adding significant noise in the dataset, by adding one irrelevant and one co-related
attribute and 20% misclassifications (appearing both in the training sets and test
sets), it was expected that methods for avoiding overfitting could improve upon
the classification accuracy. The results are shown in table 4.6.

Table 4.6: E2.2 Diagonal domain 20% noise results. Classification accuracies, standard
deviations and training accuracy shown as percentage, run time shown as seconds.

EMTI type
Mean

accuracy
SD Mean size Run time

Training
accuracy

Basic pre opt. 75.70 7.06 142.48 742.02 90.54
Basic 76.20 7.27 ” ” ”
Min-err pruning 76.60 7.70 86.81 ” 86.45
Basic small set 74.53 7.75 128.78 645.72 91.86
Err-comp pruning 71.70 8.82 25.16 ” 75.56
Single look-back 73.63 8.33 120.04 ” 86.47
Size control 72.67 7.79 87.40 453.52 88.99
Size control look-back 72.17 7.74 95.61 ” 85.22

4.4.3 E2.3 Wisconsin Breast Cancer

This dataset taken from real world medical data has previously shown to cause some
overfitting in EMTI, so it was expected that the methods for avoiding overfitting
would improve the classification accuracy. The results are shown in table 4.7.

Table 4.7: E2.3 Wisconsin Breast Cancer results. Classification accuracies, standard
deviations and training accuracy shown as percentage, run time shown as seconds.

EMTI type
Mean

accuracy
SD Mean size Run time

Training
accuracy

Basic pre opt. 92.59 2.92 179.23 777.05 99.58
Basic 93.51 2.72 ” ” ”
Min-err pruning 94.38 2.67 96.35 ” 98.04
Basic small set 93.33 2.78 140.85 624.76 99.77
Err-comp pruning 93.16 3.27 32.16 ” 95.42
Single look-back 93.79 2.65 90.91 ” 97.78
Size control 93.52 2.87 95.16 530.09 98.68
Size control look-back 93.63 3.29 85.59 ” 97.87

45

CHAPTER 4. RESULTS

4.4.4 E2.4 House Votes ’84

Another real world dataset were EMTI has shown signs of overfitting, it was ex-
pected that methods for avoiding overfitting would improve results. The results
are shown in table 4.8.

Table 4.8: E2.4 House Votes ’84 results. Classification accuracies, standard deviations
and training accuracy shown as percentage, run time shown as seconds.

EMTI type
Mean

accuracy
SD Mean size Run time

Training
accuracy

Basic pre opt. 94.99 3.54 40.45 431.84 98.95
Basic 95.03 3.63 ” ” ”
Min-err pruning 95.33 3.60 28.78 ” 98.40
Basic small set 94.74 3.12 35.11 348.61 98.96
Err-comp pruning 95.66 2.89 7.27 ” 95.62
Single look-back 95.38 2.91 28.60 ” 97.87
Size control 94.90 3.46 26.86 270.26 98.61
Size control look-back 95.61 3.29 24.52 ” 97.94

4.4.5 E2.5 German Credit Data

This is a dataset with many attributes and complex relations (i.e. hard for decision
trees to express) that EMTI has shown to perform poorly on. It was unclear if
methods for avoiding overfitting would improve results. The results are shown in
table 4.9.

Table 4.9: E2.5 German Credit Data results. Classification accuracies, standard devia-
tions and training accuracy shown as percentage, run time shown as seconds.

EMTI type
Mean

accuracy
SD Mean size Run time

Training
accuracy

Basic pre opt. 67.86 4.75 878.50 2290.08 93.14
Basic 68.22 4.65 ” ” ”
Min-err pruning 69.76 4.77 611.40 ” 90.62
Basic small set 67.66 4.59 680.82 1940.07 95.26
Err-comp pruning 69.64 4.12 29.60 ” 72.73
Single look-back 69.94 4.14 207.26 ” 80.26
Size control 70.20 4.49 99.04 626.84 82.06
Size control look-back 70.60 4.50 89.60 ” 78.12

46

4.4. E2 EARLY STOPPING AND TREE PRUNING METHODS
COMPARISONS

4.4.6 E2.6 Car Evaluation

An artificial dataset with a complex relations between the attributes, but a clear
underlying structure and no noise. It was not expected that methods for avoiding
overfitting would improve classification accuracies. The results are shown in table
4.10.

Table 4.10: E2.6 Car Evaluation results. Classification accuracies, standard deviations
and training accuracy shown as percentage, run time shown as seconds.

EMTI type
Mean

accuracy
SD Mean size Run time

Training
accuracy

Basic pre opt. 91.47 2.25 545.50 2583.71 99.15
Basic 92.05 1.89 ” ” ”
Min-err pruning 90.20 2.50 230.68 ” 93.93
Basic small set 91.82 2.26 424.14 2144.33 99.49
Err-comp pruning 90.54 2.86 225.40 ” 96.46
Single look-back 91.55 2.49 446.68 ” 98.48
Size control 90.82 2.38 209.26 1338.30 96.58
Size control look-back 91.04 2.49 225.92 ” 96.28

4.4.7 E2 Summary

Table 4.11 and 4.12 shows a summary of the results of the different methods com-
pared to basic EMTI in terms of tree sizes and classification accuracies respec-
tively.

Table 4.11: E2 size summary in terms of node count.

Dataset Basic
Min-err
pruning

Err-comp
pruning

Single
look-back

Size control
Size control
look-back

Diagonal 0 67.66 58.30 64.60 67.21 64.99 66.07
Diagonal 20 142.48 86.81 25.16 120.04 87.40 95.61
WB Cancer 179.23 96.35 32.16 90.91 95.16 85.59
Votes 40.45 28.78 7.27 28.60 26.86 24.52
Credit 878.50 611.40 29.60 207.26 99.05 89.60
Car eval. 545.50 230.68 225.40 446.68 209.26 225.92
Mean 308.97 185.39 64.03 160.12 97.12 97.89

47

CHAPTER 4. RESULTS

Table 4.12: E2 accuracy summary (%).

Dataset Basic
Min-err
pruning

Err-comp
pruning

Single
look-back

Size control
Size control
look-back

Diagonal 0 99.53 96.36 96.33 97.76 97.63 97.83
Diagonal 20 76.20 76.60 71.70 73.63 72.67 72.17
WB Cancer 93.51 94.38 93.16 93.79 93.52 93.63
Votes 95.03 95.33 95.66 95.38 94.90 95.61
Credit 68.22 69.76 69.64 69.94 70.20 70.60
Car eval. 92.05 90.20 90.54 91.55 90.82 91.04
Mean 87.42 87.10 86.17 87.01 86.62 86.81

4.5 E3 Comparisons with other learning methods

In this experiment Basic EMTI and EMTI with minimum-error pruning was tested
on a variety of datasets and compared with three well known tree decision learning
algorithms, ID3, C4.5 and Random Forest and one neural network classifier, the
Multilayer Perceptron (MLP). A brief explanation of these algorithms can be found
in chaper 2.1.3. The external algorithm testing was done using the Weka [36]
machine learning software while EMTI was tested in the EMTI OSX environment
using the exact same datasets. To ensure there were no significant differences
between the software, for example differences created by the way data is read
or in the way cross-validation is handled, a local implementation of ID3 in the
EMTI OSX environment was also added. The Min-err method for decision tree
pruning was added to the experiment on the basis of its results in experiment E2,
as discussed in section 5.1.2.

Two statistics are measured in the experiment, tree sizes (only applicable for EMTI,
ID3 and C4.5), shown in table 4.14, and classification accuracies, shown in table
4.14. The Weka ID3 algorithm does not give a size measure, so it could not be in-
cluded in the tree size comparison. The different algorithms are labeled accordingly
in the tables:

ID3 local: The ID3 algorithm used in the EMTI OSX environmnent.

ID3 weka: The ID3 algorithm used in Weka.

C4.5 : Weka’s J48 algorithm, the java equivalent to C4.5, with pruning.

C4.5 no pruning: Weka’s J48 algorithm without pruning.

Random Forest: Weka’s version of the Random Forest algorithm.

MLP: Weka’s version of the Multilayer Perceptron algorithm.

EMTI : the basic EMTI algorithm.

Min-Err : EMTI using minimum-error pruning.

48

4.5. E3 COMPARISONS WITH OTHER LEARNING METHODS

10-fold cross-validation was done 10 times for all the results, except for the monk,
corral and mofn datasets, that supply their own test set. While the other algo-
rithm’s results are deterministic when using the same test set, EMTI results may
still vary. For this reason EMTI was repeated 50 times and the results were av-
eraged for each run on each monk dataset, the corral and mofn dataset. As in
E2, mutation rate and crossover rate was set to 1.0 and sigma scaling for parent
selection and generational mixing for adult selection was used. The rest of the
experiment settings for EMTI are listed in table 4.13.

For the Weka algorithms the default parameter settings were used:

C4.5 used the following parameters: binarySplits = false, confidencefactor = 0.25,
minNumObj = 2, numFolds = 3, reducedErrorPruning = false, subtreeRaising =
true, unpruned = false (true for C4.5 no pruning), useLaplace = false.

Random Forest used the following parameters: maxDepth = 0 (unlimited), num-
Features = 0, numTrees = 100, seed = 1.

MLP used the following parameters: autobuild = false, decay = false, hiddenLay-
ers = a, learningRate = 0.3, momentum = 0.2, nominalToBinaryFilter = true,
normalizeAttributes = true, normalizeNumericClass = true, reset = true, seed =
0, trainingtime = 500, validationSetSize = 0, validationThreshold = 20.

There are no values for Weka’s ID3 algorithm for the house votes and W.B. cancer
datasets in table 4.15 because they contain missing values, which ID3 normally does
not handle. The ID3 for the EMTI OS X environment uses the same data reading
as EMTI, which reads and registers all attributes found in the data file without
the use of .names file, making it possible for it to handle missing values.

Table 4.13: Overview of E3 settings.

Dataset Pop. size Generations k

1 Diagonal 0 100 500 5
2 Diagonal 10 100 500 5
3 Diagonal 15 100 500 5
4 W. B. cancer 100 1000 5
5 Lymphography 100 1000 5
6 House votes 100 500 5
7 Zoo 100 500 5
8 Car eval. 100 1500 5
9 Bal. Scales 100 1500 3
11 Monk 1 100 1000 7
12 Monk 2 100 1000 7
13 Monk 3 100 1000 7
14 Corral 100 500 5
15 Mofn 3-7-10 100 1000 5

49

CHAPTER 4. RESULTS

Table 4.14: E3 tree sizes in terms of node count.

Dataset ID3 local C4.5 no pruning C4.5 EMTI Min-err
Diagonal 0 69.02 66.49 58.30 67.06 58.84
Diagonal 5 127.13 78.30 46.70 77.41 62.46
Diagonal 15 225.11 90.47 3.85 84.96 54.71
W. B. Cancer 208.14 133.40 30.90 195.7 100.14
Lymphography 106.52 46.22 26.23 79.04 27.14
House votes 64.85 37.93 15.49 44.26 28.09
Zoo 22.92 18.46 18.30 20.22 18.84
Car eval. 207.29 186.37 169.88 197.17 100.23
Bal. Scales 486.10 111.60 42.60 498.90 120.20
Monk 1 90.00 43.00 18.00 39.96 38.34
Monk 2 171.00 73.00 31.00 164.00 132.30
Monk 3 41.88 25.00 12.00 41.88 22.62
Corral 23.00 11.00 11.00 13.00 13.00
Mofn 3-7-10 113.00 63.00 27.00 104.72 77.16
Mean 139.71 70.30 36.51 116.31 61.01

Table 4.15: E3 classification accuracies with standard deviations (%).

Dataset ID3 local ID3 weka C4.5 Random Forest MLP EMTI Min-err

Diag. 0 97.97 (2.90) 97.83 (2.86) 93.23 (4.82) 99.20(1.96) 93.37(5.03) 99.87 (0.81) 97.33 (4.03)

Diag. 5 88.86 (6.70) 89.19 (2.02) 87.70 (10.40) 91.67 (4.53) 90.80 (5.15) 95.50 (4.01) 93.77 (5.09)

Diag. 15 68.86 (8.09) 70.03 (7.38) 73.77 (1.99) 80.90 (5.95) 80.53 (6.66) 86.20 (6.48) 84.13 (7.60)

Cancer 89.80 (3.29) - 94.57 (2.92) 96.35 (2.32) 95.55 (2.18) 93.52 (2.94) 94.28 (2.76)

Lympho 70.00 (11.31) 72.90 (11.06) 77.84 (9.33) 82.79 (8.19) 80.81 (9.51) 74.32 (11.42) 77.29 (9.70)

Votes 92.97 (3.56) - 96.57 (2.56) 96.50 (2.52) 94.85 (3.19) 95.08 (3.27) 95.44 (2.94)

Zoo 95.05 (6.59) 97.12 (4.96) 92.61 (7.33) 97.02 (5.20) 95.25 (5.69) 94.95 (7.26) 92.77 (8.31)

Car eval. 90.16 (3.53) 89.19 (2.02) 92.22 (2.01) 94.63 (1.56) 99.41 (0.74) 93.58 (2.97) 94.22 (2.64)

Scales 38.69 (5.67) 37.74 (4.92) 64.14 (4.16) 79.55 (3.79) 98.23 (2.25) 71.36 (5.18) 68.10 (4.58)

Monk 1 77.08 78.47 75.69 92.36 100.00 100.00 (0.00) 98.50 (1.38)

Monk 2 66.67 64.58 65.05 69.90 100.00 69.79 (1.14) 69.00 (1.04)

Monk 3 93.98 94.44 97.22 96.06 93.52 94.25 (1.72) 95.38 (1.12)

Corral 81.25 87.50 81.25 96.88 100.00 98.88 (1.50) 98.88 (1.50)

Mofn 89.06 91.02 85.55 93.65 100.00 94.38 (2.93) 92.60 (2.47)

Mean 81.46 80.83 84.10 90.53 94.45 90.12 89.41

50

CHAPTER 5

Evaluation and Conclusion

In this chapter the results from the experiments in chapter 4 are evaluated and
these evaluations are put in relation and used for discussing and answering the
research questions that were posed in chapter 1. Finally, the project’s potential
and possibilities for future work is discussed.

5.1 Evaluation

In this section the results of the experiments presented in chapter 4 are analyzed
and evaluated.

5.1.1 E1 evaluation

The results of experiment E1 are shown in figure 4.1c and table 4.3.

E1.1 clearly shows how majority vote end node setting drastically improves EMTI
search speed. Looking at figure 4.1c, using majority vote node setting the fitness
quickly reaches closes the maximum, while random end node setting progresses a
lot slower and never reaches the maximum fitness as seen in figure 4.1a.

Looking at table 4.3, E1.2 presents more unclear results, apart for the fact that
the crossover operator is shown to be a vital part of the algorithm. For the diag-
onal domain dataset, no branch cut and no implode slightly weakens the search
effectiveness while no deplode nearly halts the search completely (most of the time
exceeding the 1000 cycle threshold). Curiously, as it is corresponds to the tradi-
tional form of mutation in evolutionary algorithms, no flipping improves the search
effectiveness significantly. But when looking at the results for the Wisconsin breast
cancer dataset, we see that using no flipping provides significantly worse results,
while no deplode has just a small negative impact. This suggest that different

51

CHAPTER 5. EVALUATION AND CONCLUSION

mutation types have different effectiveness depending on the dataset and its qual-
ities (the diagonal dataset has a very clear underlying structure, while the breast
cancer dataset is a real life dataset with significant noise.) This is also reflected
in how no deplode has just a small negative effect for the Wisconsin breast cancer
dataset.

5.1.2 E2 evaluation

The results of experiment E2 are shown in detail from table 4.5 to 4.10 and sum-
marized in table 4.11 and 4.12.

At a glance, we can see that the avoiding overfitting methods generally performed
better on the real life datasets (Cancer, Votes and Credit), while basic generally
performed better on the artificial ones (Diagonal 0, Diagonal 20 and Car). For all
the experiments, basic scores higher accuracies using unvisited end-node optimiza-
tions. Looking at the results for basic small set, we can observe that reducing the
size of the training set, which is required for many of the methods, already signif-
icantly worsens the classification accuracy for the small size datasets used in the
experiments. This worsening is expected to be much less when training on larger
datasets.

Starting at E2.1, the diagonal dataset with 0% noise, basic scores best with an
average accuracy of 99.5%, the early stopping methods scores between 97.6-97.8%,
slightly improving upon the score of basic small set. The two pruning methods
scores worst with 96.3%. In E2.2, the diagonal dataset with 20% noise, the avoiding
overfitting methods were expected to improve upon basic EMTI. But all methods
score significantly worse and also worse than basic small set, except for min-err
pruning which delivers slightly improved results1, scoring 76.6% compared to the
score of 76.2% for basic. Min-err pruning scores consistently well for E2.3 cancer,
E2.4 votes and E2.5 credit, but performs worst in E2.6 car, though not significantly.
Compared to min-err pruning, comp-err pruning prunes more radically, creating
often much smaller tree sizes, but classification accuracy tends to be lower, except
for the votes dataset, were it had the best accuracy of all methods, scoring 95.7%.
Comp-err pruning overall created the smallest trees in the test, followed by Size
control look-back. Size control look-back scores best of the early stopping methods,
scoring especially high in E2.4 votes (95.6%) and E2.5 credit (70.6%), perhaps
scoring only badly in E2.2 diagonal 20 (72.2%).

Looking at run times, we can see that basic and min-err, which use all available
data for training, naturally uses longer time than the methods using parts of the
data as validation set, because they have more data to evaluate the population
on for each tree in each cycle. The size control methods speed up their run times
further, up to 4 times faster than basic, by keeping their tree sizes lower, which
makes traversing them faster.

1It should be noted that, as seen in E3, min-err pruning scores worse than basic for the diagonal
domain with 15% noise, and also for any lower noise levels.

52

5.2. DISCUSSION

Because of the high accuracy score, the solid theoretical support of the method and
the tendency to prune quite conservatively, which should give smaller variance in
accuracies, min-err pruning was chosen as the pruning method to use for testing
against other algorithms in E3.

5.1.3 E3 evaluation

The results of experiment E3 are shown in table 4.14 and 4.15.

Looking at table 4.14, basic EMTI produces smaller trees than ID3 for all datasets
except the Balance scales dataset. EMTI with Min-Err naturally produces even
smaller trees. A surprising result is how the unpruned version of C4.5 generally
produces smaller trees than EMTI, as it was expected that C4.5 without pruning
would behave similarly to ID3. Normal C4.5 seems to prune much more aggressively
than EMTI with Min-err, often creating much smaller tree sizes, for example for
the Diagonal 15 dataset, 3.85 to 54.71, Balance scales, 42.60 to 120.20 and the
Monk 2 dataset 31.00 to 132.30.

Table 4.15 shows MLP performing far better on average in terms of accuracy,
providing top results for many datasets and only scoring significantly lower for the
Diagonal domain datasets. Random forest scores the second best results, but only
slightly better on average than EMTI. All though C4.5 often scores on par or better
than EMTI, it has a few result dragging its average down, scoring particularly bad
on the Monk 1 and Corral dataset. EMTI with min-err scores slightly worse on
average than basic EMTI, but scores higher for the W.B. Cancer, Lymphography,
House Votes, Car evaluation and Monk 3 datasets. Surprisingly, min-err scored
worse than basic ETMI for the car evaluation dataset in experiment 2, but better
here. This could be caused by the bigger population and higher generation cycle
count used in experiment 3 for this dataset. EMTI scores the strongest of all the
methods on some of the artificial dataset; the diagonal, monk 1, corral and mofn
datasets.

5.2 Discussion

This section discusses and answers the research questions defined in section 1.1,
using the results and evaluation of the experiments presented in chapter 4.

5.2.1 RQ1 discussion

Which parts of EMTI are vital for its performance and which parts are not con-
tributing?

Experiment E1 showed the importance of the majority vote end node setting
method and the crossover operator for algorithm’s search effectiveness. The differ-

53

CHAPTER 5. EVALUATION AND CONCLUSION

ent mutation operators (cut, implode, deplode and flip) showed to have differing
effectiveness impacts depending on the domain the algorithm was run on, with all
methods being able to increase the effectiveness in certain domains. Experiment
E2 showed that using kNN for unvisited end nodes improves the EMTI’s ability to
classify accurately.

5.2.2 RQ2 discussion

In which way can methods for avoiding overfitting be added to EMTI to improve
its performance?

Three early stopping methods and two decision tree pruning methods were tested
against each other and against the basic EMTI implementation in experiment E2.
It was observed and it stands for reason that for domains with no potential for
overfitting to occur, these methods, aimed at simplifying the modeled functions,
can never achieve higher classification accuracies, only the same or worse than the
basic EMTI implementation. However, machine learning is ultimately intended to
be used in interactions with the real world, and domains in the real world are more
likely to contain noise and have potential for overfitting than artificial, abstract do-
mains. The experiments showed that the methods for avoiding overfitting increased
the classification accuracies for a number of real world datasets, which should be
given higher importance than the fact that they often degraded the accuracies for
artificial domains.

The pruning methods tried in E2 were relative simple and many, more sophisticated
decision tree pruning algorithms exist. Seeing how the C4.5 algorithm aggressively
prunes its decision tree and still scores higher than EMTI on real world datasets
such as the Wisconsin breast cancer, lymphography and house votes datasets sug-
gests that EMTI could with success utilize even more aggressive and sophisticated
pruning methods. But C4.5 also overly simplifies many of the problems, particu-
larly noticeable in the diagonal 15, balance scales and monk 2 datasets, causing
lower classification accuracies. If the choice was to either employ no method for
avoiding overfitting or always employing it, the latter is recommended. Min-err
has shown to be a good algorithm for such a scenario, by not pruning too aggres-
sively, it does not degrade EMTI significantly on the domains that have no need
for pruning and is still able to improve the accuracies in domains were pruning is
useful.

5.2.3 RQ3 discussion

Can EMTI’s ability of setting the maximum tree size be used in methods for avoiding
overfitting?

The experimental size control with look-back method achieved the third highest
mean accuracy score out of the five methods for avoiding overfitting and scored
higher accuracies than the basic EMTI implementation for the german credit,

54

5.2. DISCUSSION

house votes and Wisconsin breast cancer datasets, greatly reducing the tree sizes
found.

5.2.4 RQ4 discussion

What are the characteristics of the problems that EMTI functions well on?

In experiment E3, EMTI scored particularly low on the monk 2, balance scales
and lymphography datasets. The monk 2 dataset is a relative simple problem with
two different categories. Still EMTI classifies just 69.8% of the test data correctly,
which is just 19.8% more than the expected result for someone guessing the category
randomly. The reason for this is that the monk 2 problem, stated as “exactly two of
the six attributes have their first value”, is designed to be difficult to express using
decision trees by not being in standard conjunctive form. To express this problem
with decision trees you would have to test for almost all the attributes [32] which
requires a very large tree. Here it should be noted how methods for avoiding
overfitting will directly work against the tree learning algorithm’s ability to model
problems like this, because these problem require large and complex solutions which
methods for avoiding overfitting will undermine, causing underfitting. The balance
scale domain touches on the same problem, though it is an artificial data set with no
noise, all the tree learning algorithms struggle to express the relationship between
the attributes. The MLP algorithm is able to handle this higher order logic and
scores nearly perfect for both the monk 2 and balance scales datasets. The real
world lymphography dataset seems to be a high noise dataset, with a high potential
for overfitting. EMTI with min-err pruning scoring worse than C4.5 and random
forest for this dataset showing that EMTI could benefit from a more aggressive
pruning method.

EMTI scores particularly well on the diagonal, corral and mofn datasets, which are
datasets with a clear underlying structure and in standard conjunctive form, but
with added noise and/or irrelevant and correlated attributes with a relative small
amount of training instances compared to the amount of possible permutations of
the problem. The risk for the greedy top-down algorithms when running on such
datasets is that it will do the first split of the dataset on the wrong attribute.
We can conclude that EMTI consistently avoids this and shows a strong ability to
ignore noise and to find the underlying structure of such problems, even achieving
higher accuracies than MLP. EMTI also scores perfectly on the monk 1 dataset,
where it seems that the other tree learning algorithms struggle with the same
problem of splitting the dataset on the wrong attributes. Further, EMTI shows a
strong ability to model a logical function based on a small set of example instances,
such as in the diagonal domain with 0% noise, were it scores the highest accuracy
(99.87%), scoring significantly better than MLP (93.37%).

55

CHAPTER 5. EVALUATION AND CONCLUSION

5.2.5 RQ5 discussion

How does ETMI’s performance compare to other well know classifier methods?

On average, EMTI performs in terms of classification accuracies worse than MLP
and slightly worse than Random Forests. The main advantage EMTI has over
these algorithms is its ability to clearly explain its decision making process. EMTI
performs better on average than ID3 and C4.5 in terms of classification accuracies,
though C4.5 shows somewhat better results for certain real world datasets that are
structured in such away that aggressive pruning is beneficial. EMTI is shown to
be a robust algorithm, providing consistent results with few negative outliers. The
limitations in the expressiveness of decision trees means that EMTI cannot compete
in terms of accuracy with learning methods such as artificial neural networks on
certain problem types.

The main motivation and hypothesis of the project was that by widening the solu-
tion search space of traditional greedy top-down tree learning algorithms such as
ID3 and C4.5 by the use of EA search, from local to global search, better solutions
can be found. The results show how this approach is able to avoid the problem
of splitting on the wrong attribute early in the tree, by testing many different at-
tribute splits in the genetic population, making it able to often find better solutions
than the traditional learning algorithms. Compared to ID3, the unpruned version
of EMTI consistently finds different, smaller solutions, showing how ID3, whose
basic methodology forms the basis of many top-down tree learners, consistently
finds solutions far from the optimal one.

5.3 Conclusion and Future Work

EMTI has been shown to be a robust learning algorithm that is able to create
accurate decision trees while maintaining their inherent comprehensibility. It can
make use of post decision tree pruning to avoid overfitting and is able to handle
strong data noise and to disregard irrelevant attributes, making it perform well
against other learning algorithms.

This master thesis project deals with the function modeling stage of a supervised
learning algorithm and explores some post modeling options like decision tree prun-
ing. There is potential for improving the performance of the algorithm both in the
data-preprocessing and the post modeling stages of the learning process. These
stages are modular; different methods can be used interchangeably without chang-
ing the EMTI algorithm. For the preprocessing stage there is a need for a data
discretization method, but also other methods could be useful, such as data scaling
and feature selection methods. For the post modeling stage, other tree pruning
methods using more sophisticated statistical pruning criteria is believed to be able
to improve the performance of EMTI in domains susceptible to overfitting.

One of EMTI’s expected abilities is to be able to adjust to new data in the domain

56

5.3. CONCLUSION AND FUTURE WORK

without resetting the solutions; it should be able to dynamically adjust the existing
trees in the population. This would need to be verified through testing.

The possibly novel concept of majority vote end node setting (see section 3.1.7)
could be extended upwards in the tree to decision nodes, though with an exponen-
tial complexity cost for each extra tree layer looked at. If this is done all the way
up to the root node, the algorithm is essentially searching only for the structure
of the tree, no longer caring for which values it contains. This is believed to often
be achievable as it has been observed that for most domains the trees generated
extend in depth only in a small proportion to the attribute count of the domain.
Another less complex possibility is to test for different values just for the end nodes
and the root node of the tree, as the root nodes is the single most decisive value of
the decision tree. The main challenge will be to adjust the tree in domains were
different attributes have different amounts of categories.

In terms of improving run times, the potential for parallelization shows the most
promise, as EMTI is made up by many independent operations, such as the fitness
setting, mutation operator and the crossover operator, which together form the
largest part of the algorithm’s time complexity. There has been no particular focus
on the time performance of the implementation, so there is likely to be many ways
of improving run times by restructuring and optimizing the code, especially in the
way the tree structures are handled.

Decision trees are limited in their expressiveness, resulting in universal poor per-
formance on certain problems such as boolean satisfiability problems. It could be
interesting to research the possibility of applying evolutionary algorithms to other,
more expressive logical languages such as the propositional decision rule learning
used in the AQ-algorithm (Michalski [20]).

57

References

[1] Aitkenhead, “A co-evolving decision tree classification method”, Expert Syst.
Appl., vol. 34, no. 1, pp. 18-25, 2008

[2] Bandar and McLean “Genetic algorithm based multiple decision tree induc-
tion”, 6th International Conference on Neural Information Processing, pp. 429-
434, 1999

[3] Barros, Basgalupp, Carvalho and Freitas, “A Survey of Evolutionary Algo-
rithms for Decision Tree Induction”, IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews, vol. 42, issue 3, 2012

[4] Breiman, “Random Forests”, Machine learning 2001

[5] Breiman, Freidman, Olshen and Stone, “Classification and regression trees”,
California: Wadsworth International, 1984

[6] Eiben, Hinterding and Michalewicz, “Parameter control in evolutionary algo-
rithms” in IEEE Transactions on Evolutionary Computation, vol. 3, no. 2, pp.
124-141, Jul 1999

[7] Fayyad, “On the Induction of Decision Trees for Multiple Concept Learning”,
Doctoral dissertation, Department of Electrical, Engineering and Computer
Science, University of Michigan, 1991

[8] Freitas, “Data Mining and Knowledge Discovery with Evolutionary Algorithms”
Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2002

[9] Fu, Golden, Lele, Raghavan and Wasil, “A Genetic Algorithm-Based Approach
for Building Accurate Decision Tree”, INFORMS Journal on Computing/Vol.
15, No. 1, Winter 2003

[10] Fuglseth “Evolutionary induction of decision trees”, (Project report, TDT4501
Computer science, Specialization project, 2015)

[11] Google Scholar, web search engine of scholarly literature
https://scholar.google.com, last accessed June 2016

[12] Gnuplot, portable command-line driven graphing utility
http://www.gnuplot.info, last accessed June 2016

59

REFERENCES

[13] Graphviz, open source graph visualization software
http://www.graphviz.org, last accessed June 2016

[14] Hyafil and Rivest, “Constructing Optimal Binary Decision Trees is NP-
complete”. Information Processing Letters 5 (1): 15-17, 1976

[15] John, Kohavi and Pfleger, “Irrelevant features and the subset selection prob-
lem”, Machine Learning: Proceedings of the Eleventh International Conference,
1994

[16] Kennedy, Chinniah, Bradbeer and Morss, “The construction and evaluation of
decision trees: A comparison of evolutionary and concept learning methods”,
Evolutionary Computing, ser. Lecture Notes in Computer Science, D. Corne
and J. Shapiro, vol. 1305, pp. 147-161, 1997

[17] Kretowski and Grzes, “Mixed decision trees: An evolutionary approach”,
International Conference on Data Warehousing and Knowledge Discovery
(DaWaK 2006) pp. 260-269, 2006

[18] Loveard and Ciesielski, “Representing classification problems in genetic pro-
gramming”, Proc. Congr. Evolutionary Computation, May 27-30, pp. 1070-
1077, 2001

[19] Michalewicz and Schmidt, “Parameter control in practice”, Parameter Setting
in Evolutionary Algorithms, ser. Studies in Computational Intelligence, vol. 54,
pp. 277-294, 2007

[20] Michalski, “On the quasi minimal solution of the general covering problem”
Proc. 5th International Symposium on Information Processing (FCIP 1969),
Bled, Yugoslavia, vol. A3, pp. 25-128, 1969

[21] Mingers, “An Empirical Comparison of Pruning Methods for Decision Tree
Induction”, Machine Learning, Volume 4, Issue 2, pp 227-243, 1989

[22] Mingers, “Expert systems rule induction with statistical data”, Journal of the
Operational Research Society, 38, 39-47, 1987

[23] Niblett and Bratko, “Learning decision rules in noisy domains”, Proceeding
Expert System 86, Brighton, Cambridge: Cambridge University Press, 1986

[24] Papagelis and Kalles, “Breeding Decision Trees Using Evolutionary Tech-
niques”, ICML ’01 Proceedings of the Eighteenth International Conference on
Machine Learning, pages 393-400, 2001

[25] Prechelt, “Early stopping - but when?”, Orr, G.B. and Müller, K.-R. (Eds.):
LNCS 1524, ISBN 978-3-540-65311-0, 1998

[26] Quinlan, “Induction of Decision Trees”, Machine Learning, Volume 1, Issue 1,
pp 81-106, March 1986

[27] Quinlan, “C4.5: Programs for Machine Learning”. Morgan Kaufmann Pub-
lishers, Inc., 1993

[28] Quinlan, “Simplifying decision trees”, International Journal of Man-Machine
Studies, 27, 221-234, 1987

60

REFERENCES

[29] Russell and Norvig, “Artificial intelligence: a modern approach”, 3rd edition,
Prentice-Hall, 2009

[30] Smith, “Rna search acceleration with genetic algorithm generated decision
trees”, iSeventh International Conference on Machine Learning and Applica-
tions, pp. 565-570, 2008

[31] Streichert, “Introduction to Evolutionary Algorithms”, University of Tuebin-
gen

[32] Thrun, Bala, Bloedorn, Bratko, Cestnik, Cheng, Jong, Dzeroski, Hamann,
Kaufman, Keller, Kononenko, Kreuziger, Michalski, Mitchell, Pachowicz,
Roger, Vafaie, Van de Velde, Wenzel, Wnek and Zhang, “The MONK’s Prob-
lems: A Performance Comparison of Different Learning Algorithms”, CMU-
CS-91-197, Carnegie Mellon University, Computer Science Department, 1991

[33] The Corral and Mofn 3-7-10 dataset were found here:
https://www.sgi.com/tech/mlc/db/, last accessed 2016

[34] Trollhetta AS,
http://www.trollhetta.com, last accessed June 2016

[35] UC Irvine Machine Learning Repository,
http://archive.ics.uci.edu/ml/, last accessed 2016

[36] Weka 3: Data Mining Software in Java,
http://www.cs.waikato.ac.nz/ml/weka/, last accessed June 2016

[37] Zhao and Ciesielski, “Multi-objective genetic programming approach to devel-
oping pareto optimal decision trees”, Decis. Support Syst., vol. 43, no. 3, pp.
809-826, 2007

61

	Abstract
	Sammendrag
	Preface
	Table of Contents
	List of figures
	List of tables
	List of abbrevations
	Introduction
	Goal and research questions
	Research Method
	Thesis structure

	Background theory and Related work
	Background theory
	Learning and Decision Trees
	Decision tree induction
	Specific learning algorithms
	Evolutionary Algorithms

	Literature Review Protocol
	Related work
	Choices in evolutionary decision tree induction
	The problem of overfitting

	Model
	Evolutionary Multi-Class Tree Inductor
	Representation and Operators
	Initial population
	Fitness function
	Adult and Parent selection
	Diagonal problem
	Algorithm properties
	Majority vote end node setting

	Implementation details
	TrollBrain integration

	Explanation tool
	Generating initial population using ID3
	Reinforcement learning
	Avoiding overfitting and other improvements
	EMTI weaknesses
	Early stopping
	Decision tree pruning

	Results
	Experimental plan
	Description of the datasets used
	E1 Method components effectiveness study
	E1.1 Majority end node setting effectiveness
	E1.2 Crossover and mutation components effectiveness

	E2 Early stopping and tree pruning methods comparisons
	E2.1 Diagonal domain 0% noise
	E2.2 Diagonal domain 20% noise
	E2.3 Wisconsin Breast Cancer
	E2.4 House Votes '84
	E2.5 German Credit Data
	E2.6 Car Evaluation
	E2 Summary

	E3 Comparisons with other learning methods

	Evaluation and Conclusion
	Evaluation
	E1 evaluation
	E2 evaluation
	E3 evaluation

	Discussion
	RQ1 discussion
	RQ2 discussion
	RQ3 discussion
	RQ4 discussion
	RQ5 discussion

	Conclusion and Future Work

	References

