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Summary 
Almost without exception, biological processes such as overt morphological changes, 

development (both reproductive and growth), toxicological responses and clinical 

manifestation to disease, have molecular basis. From our perspective (i.e. toxicological 

perspective), the evidence of receptor-mediated mechanisms of xenobiotic-induced effects is 

provided if the effect is tissue specific, predictable, if increases in the transactivation of 

specific genes can be demonstrated, transcriptional responses occur rapidly, compounds bind 

reversibly to intracellular macromolecules or compounds are stereo-specific. Thus, the 

primary objective of toxicological in vitro studies on cells and tissues is to characterize 

cellular and molecular substrates and pathways that contribute to adverse effects in an 

organism after toxicant exposure. The estrogenic and xenobiotic biotransformation gene 

expressions are receptor-mediated processes that are ligand structure-dependent interactions 

with estrogen-receptor (ER) and aryl hydrocarbon receptor (AhR). The anti-estrogenic 

activities of AhR agonists have been reported in vitro and in vivo studies. In teleost species, 

exposure to AhR agonists has been associated with reduced vitellogenin (Vtg) synthesis or 

impaired gonadal development. Recently, several studies have shown that AhR-agonists 

directly activate ERs and induce estrogenic responses in mammalian in vitro systems. The 

overall objective of this thesis was to develop diagnostic gene and protein response tools in 

the study of the molecular mechanisms of gene expression patterns of xenoestrogens and 

xenobiotic interactions in wildlife species. Contaminants known to be estrogenic 

(ethynylestradiol; EE2 and nonylphenol; NP) and/or anti-estrogenic (PCBs), either by direct 

ER or indirect AhR mechanistic pathways, were used as model xenobiotics and evaluated 

either singly or in combination using in vitro and in vivo test systems. 

Suppressive subtractive hybridization (SSH) was used to create a cDNA library of 

clones containing differentially expressed genes from Atlantic salmon (Salmo salar) 

separately exposed to ER and AhR agonists. Based on differentially expressed genes from the 

library, a targeted cDNA array (SalArray) was developed. Cellular in vitro systems, like cell 

and tissue models, facilitate the investigation of the direct molecular mechanisms accounting 

for predictable adverse effects of xenobiotic compounds on wildlife and humans. 

Consequently, in the studies presented primary hepatocyte cultures were isolated from the 

liver of trout and salmon by the collagenase perfusion method. The targeted SalArray and 

quantitative real-time PCR (q-PCR) were used to demonstrate that exposure of salmon 

hepatocytes to the ER-agonist NP singly or in combination with the AhR-agonist PCB77 
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produced differential gene expression patterns in salmon liver. Exposure of hepatocytes to NP 

mainly altered genes involved in the estrogenic pathway, including genes involved in steroid 

hormone synthesis and metabolism. The anti-estrogenic properties of PCB77 were 

demonstrated in the array analysis as NP induced gene expressions decreased by exposure of 

hepatocytes to PCB77. Our data showed a reciprocal inhibitory interaction between ER- and 

AhR-agonists. PCB77 produced anti-estrogenic effects by decreasing the mRNA expression 

of ER-responsive genes, and NP produced anti-AhR mediated effects as inhibitor of AhRR, 

Arnt, CYP1A1 and UGT expression. In vivo exposure of salmon to EE2 produced a 

significant decrease of CYP1A1 expression and these effects paralleled EROD activity and 

AhRR mRNA, suggesting a direct role of EE2 in controlling the cellular detoxification 

machinery. 

While a clear pattern of negative effects on ER-mediated gene expression was found in 

hepatocytes exposed to PCB77, exposure of cells to the more potent AhR-agonist and dioxin-

like PCB126 induced transcriptional activation of ER signalling demonstrated by increased 

Vtg and ERα mRNA and ERα protein levels. The decreased levels of ERα and Vtg 

expression in cells treated with PCB126 in the presence of ICI is novel, indicating a possible, 

but not conclusive “ER-hijacking” not previously reported in any fish species or lower 

vertebrate. Different gene expression patterns were obtained at similar time-interval with fish 

from different seasons, demonstrating the complexity of AhR-ER interactions. Thus, the 

direct estrogenic actions of PCB126 observed contribute new insight on the complexity of the 

mechanisms involved in ER-AhR crosstalk, prompting a new wave of discussion on whether 

AhR-mediated anti-estrogenicity is an exception, rather than a rule of action. This thesis 

demonstrates a complex mode of interactions between two different classes of ligand-

activated receptors and provides novel mechanistic insights on signalling pathways. Therefore, 

the degree of simultaneous interactions between the ER and AhR gene transcripts 

demonstrated support the concept of cross-talk between these signalling pathways, in addition 

to generating new hypotheses that need to be evaluated empirically. 
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Introduction 

The ER signalling pathway 

Communications between cells are required to maintain homeostasis and a normal 

progression of an organism’s development. Substances used in cell signalling include 

endogenous steroid hormones and other endocrine and paracrine compounds (Colborn et al., 

1993). Signalling compounds produced by one cell can direct the course of development and 

thereby determine the immediate and future functioning of another cell or group of cells. For 

instance, brain, ovaries, adrenal glands and the placenta in mammals produce steroid 

hormones that play major roles in the development of sexual characteristics of the offspring 

(Colborn et al., 1993).  

Synthetic chemicals, natural plant and animal compounds with the ability to modulate 

an organism’s endocrine system are generally referred to as endocrine-disrupting chemicals 

(EDCs) (Bogi et al., 2003; Ankley et al., 2005). EDCs are widely distributed in the 

environment and have been associated with developmental, general health and reproductive 

problems in wildlife and laboratory animals (Colborn et al., 1993; Guillette and Gunderson, 

2001; Fossi et al., 2004). There are also speculations that these chemicals may be affecting in 

similar ways (Golden et al., 1998). The outcome of exposure to EDCs is dependent on the 

specific developmental stage of an organism. For example, exposure of progeny (eggs, 

embryo or fetus) to EDCs could change the course of development (through an organizational 

process) and fitness, while effects of exposure in adulthood could be displayed in progeny 

(Guillette and Gunderson, 2001; Lintelmann et al., 2003). Critical exposures during early life 

stages could result in delayed effects that are not fully expressed until maturity (Colborn et al., 

1993). It is generally assumed that exposure to EDCs after maturity will not permanently 

disrupt functioning of hormone responsive (Colborn et al., 1993).  

The endogenous estrogens 17β-estradiol (E2), estriol and estrone (Figure 1) are 

predominantly produced in ovarian cells and transported to their target organs through the 

bloodstream. Estrogens control gene expression through interactions with estrogen receptors 

(ERs) that regulate several endogenous pathways (Smith, 1998; Wierman, 2007). In addition, 

estrogens are involved in growth regulation either directly or indirectly by interactions with 

growth promoting factors (Trudeau et al., 2005; Elango et al., 2006). EDCs could either 

activate or inhibit the estrogenic cell signalling pathways, by mimicking natural hormones and 

binding directly to intracellular hormone receptor proteins (Janosek et al., 2006). Anti-
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hormonal effects are observed when a compound prevents or alter hormonal binding to 

intracellular hormone receptors and thereby inhibiting trans-activation of cellular processes 

(Jansen et al., 1993; Denslow et al., 2004). Additionally, some EDCs are capable of altering 

the metabolism of natural hormones or modifying the synthesis and function of the 

intracellular hormone receptor proteins (Janosek et al., 2006). The estrogenic and anti-

estrogenic activities of several chemicals have been reported in several studies (Legler et al., 

1999; Smeets et al., 1999; Navas and Segner, 2000a; Gutendorf and Westendorf, 2001; 

Abdelrahim et al., 2003; Rankouhi et al., 2004).  

 

 

4-nonylphenol

17α-ethynylestradiol (EE2)17β-estradiol (E2) Estriol

ICI182,780Tamoxifen

4-nonylphenol

17α-ethynylestradiol (EE2)17β-estradiol (E2) Estriol

ICI182,780Tamoxifen  
 

Figure 1. Chemical compounds known to bind to the estrogen receptor. 17β-estradiol (E2), estriol, 17α-

ethynylestradiol (EE2), 4-nonylphenol (NP), Tamoxifen and ICI182,780 (Fulvestrant). 

 

Industrial chemicals, pharmaceuticals and personal care products, pesticides and surfactants 

are common and ubiquitous contaminants in aquatic environments. Therefore, chemical 

interactions after exposure to complex mixtures of environmental pollutants may have 

profound consequences on aquatic organisms (Mumtaz et al., 2002; Brian et al., 2005). The 

relative importance of the influence of complex chemical mixtures on biological systems is 

not well understood or quantified mechanistically. In the aquatic environment, the effects of 

EDCs on reproduction have been reported in several invertebrate and vertebrate species. For 

example, tributyltin (TBT) (an organotin compound used primarily as a biocide in antifouling 

paints for ships, boats and fishing nets) exert masculinizing effects in zebrafish (McAllister 
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and Kime, 2003). Altered steroid hormone levels and abnormal male and female gonads were 

observed in juvenile alligators exposed to organochlorine contaminants in Lake Apopka 

(Florida) (Guillette and Gunderson, 2001). DDT and its metabolites were shown to alter 

population structure by causing eggshell thinning as well as endocrine and reproductive 

toxicity in wild birds (Forsyth et al., 1994) and variable effects on steroid hormone receptors 

(Kelce et al., 1995).  

Several exogenous compounds are found to have estrogenic effects in fish, these 

include phytoestrogens, synthetic estrogens like the 17α-ethynylestradiol (EE2) used in birth 

control pills and several other synthetic substances (xenoestrogens) such as alkylphenols, 

insecticides, phthalates and hydroxylated (OH)-metabolites of polychlorinated biphenyls 

(PCBs) (Petit et al., 1997; Matthews et al., 2000). The causative agent of estrogenic effects on 

fish in rivers and estuaries appears to be the natural steroids 17β-estradiol (E2) and estriol, 

EE2 as well as alkyl phenols derived from poly-ethoxylated phenols (Segner et al., 2003; 

Rankouhi et al., 2004; Jobling et al., 2006). Examinations of fish from heavily contaminated 

rivers in the United Kingdom have uncovered synthesis of Vtg, inhibition of testicular growth 

in male fish and combined male and female gonadal characteristics (ovotestis), abnormal 

glands and duct and morphological changes of secondary sexual structures that may lead to 

impaired reproductive effects (Kirby et al., 2003; Kavanagh et al., 2004; Elango et al., 2006; 

Jobling et al., 2006).  

EDCs mediate their effects on target cells through ER-dependent or independent 

processes. The ERs are members of the nuclear steroid/thyroid/retinoic acid super-family of 

ligand-activated transcription factors (Hewitt and Korach, 2002; Wierman, 2007). These 

receptors are involved in regulation of different aspects of development, differentiation, 

growth, homeostasis and metabolism in the cells by activation or repression of gene 

expression (Zilliacus et al., 1995; Nilsson et al., 2001). The ER possess five domains with 

specific functions, namely: 1) The trans-activation domain, named the activation function 1 

(AF1), 2) the DNA binding domain (DBD), 3) a variable hinge region (H), 4) the ligand 

binding domain (LBD) that includes activation function 2 (AF2) and 5) a variable C-terminal 

region (C) (See figure 2). The  DBD and LBD domains are highly conserved, while the AF1, 

the hinge region and the C-terminal are less conserved (Leaver et al., 2007).  
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Figure 2. Schematic representation of estrogen receptor domains. The ER possess five domains encoding 

specific functions. Modified from Matthews and Gustafsson (2003). 

 

In the unbound state, the ERs are located in both the cytoplasm and nucleus associated with 

chaperone complexes that include heat shock protein 90 (hsp90) and other co-factors (Aranda 

and Pascual, 2001). The chaperone complex recognizes unliganded ERs and stabilizes the 

receptors to a conformation that favours ligand binding (Buchner, 1999). Upon ligand binding, 

the receptor dissociates from the associated chaperone-complex, dimerizes with another ER 

and subsequently bind to estrogen responsive elements (ERE) in the regulatory upstream 

region of the initiation site of ER controlled genes (Figure 3) (Aranda and Pascual, 2001; 

Sabo-Attwood et al., 2004). As the ER-complex binds to ERE, transcriptional co-factors that 

alter the chromatin structure of DNA are recruited and RNA polymerase II initiates mRNA 

transcription (Matthews and Gustafsson, 2003). Both co-activators and co-repressors are 

recognised in regulating ER controlled gene transcription (Klinge, 2000). The resulting 

mRNA transcripts are translated into polypeptides and modified into active proteins (Figure 

3). In fish, ERs mediates the transcription of the expression of egg yolk precursor protein 

(vitellogenin; Vtg) and eggshell proteins (zona radiata proteins; Zr-proteins) (Hyllner et al., 

1991; Oppen-Berntsen et al., 1992; Arukwe et al., 2000). These proteins are later transported 

to ovaries and incorporated in the eggs (Arukwe and Goksoyr, 2003).  

The DNA-binding sites of ERs (i.e. the EREs) consist of specific palindromic DNA 

sequences of the same hexameric DNA core motif (5’-AGGTCAnnnTGACCT) (Klinge, 

2000). The ERs bind as dimers to the response element and each monomer interacts with a 

half site sequence within the ERE (Zilliacus et al., 1995). The dimerization of nuclear 

receptors is a common mechanism to increase binding site affinity, specificity and diversity. 

The possibility for this is achieved as a result of a) the cooperative binding of receptor dimers, 

b) the lower frequency of two hexamer binding motifs separated by a spacer compared to that 

of single hexamers and c) because heterodimers might have distinct recognition sites 

compared to homodimers (Klinge, 2000).  
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Figure 3. Estrogen stimulated oogenic protein synthesis. E2 or an estrogen mimic bind to ER, this results in 

dissociation of ER from hsp-90 chaperones, receptor dimerization and activation of gene expression after 

binding to the ERE. Figure from Arukwe and Goksøyr (2003). 

 

In fish, three ER-isotypes have been characterized, namely the ERα, ERβ and ERγ (i.e. 

ESR2b in zebrafish) (Menuet et al., 2002; Hawkins and Thomas, 2004; Sabo-Attwood et al., 

2004; Greytak and Callard, 2007). The specific functions of the individual receptors are still 

not clarified. However, the receptor expression patterns varies between different tissues, life 

stages and hormonal or toxicological exposures (Jobling et al., 1996) and the ER isotypes 

have different ligand binding affinities and trans-activation properties (Menuet et al., 2004).  

The piscine ERs are known to control the mRNA transcription of several genes 

involved in growth, development and reproduction. Observed increases in ERE regulated 

gene expression in fish liver is tightly coupled to estrogen-dependent up-regulation of ERα 

expression both at the mRNA and protein level (Menuet et al., 2004; Meucci and Arukwe, 

2006). Increased endogenous E2 levels generally parallel hepatic production of Vtg and Zr-

protein that are transported in the bloodstream to the ovaries and incorporated in the eggs 

(Arukwe, 2001). The extracellular oocyte envelope of vertebrates contains three protein 

homologs referred to as zona radiata proteins (Zr-proteins) that are conserved from fish to 

mammals (i.e. zona pellucida). Zr-proteins respond to estrogen and xenoestrogen exposure 

with increased expression levels (Arukwe et al., 1997b). Xenoestrogen exposure could 
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interfere with the timing of oogenesis in immature and adult females and in the worst case 

scenario induce oogenesis in immature and/or male fish (Arukwe, 2001). Another protein 

produced in response to increased E2-levels is vigilin or high-density lipoprotein-binding 

protein (Goolsby and Shapiro, 2003). Vigilin is a ubiquitous protein that is highly conserved 

in eukaryotes and has been assigned a diversity of biological roles, including chromosome 

partitioning at mitosis, protein translation and control of mRNA metabolism (Goolsby and 

Shapiro, 2003). In african clawed frog (Xenopus laevis) the stability of Vtg mRNA transcripts 

is enhanced once E2-induced vigilin binds specifically to a 3’-untranslated region (3´-UTR) 

segment of the Vtg mRNA, thereby protecting the mRNA from degradation (Dodson and 

Shapiro, 2002).  

 

Aryl Hydrocarbon Receptor (AhR) signalling pathway 

Xenobiotic compounds that alter normal energy-yielding metabolism could represent a hazard 

to the organism if not eliminated or inactivated. The chemical properties of the compounds 

affect their biological and/or toxicological fate (Xu et al., 2005). For example, highly polar or 

volatile compounds may be excreted unchanged (Van der Oost et al., 2003). Non-polar 

lipophilic compounds could either be retained (stored in lipophilic compartments) or 

converted to more hydrophilic species spontaneously or enzymatically, before excretion 

(biotransformation) (Van der Oost et al., 2003; Leaver et al., 2007). The enzymatic 

metabolism of xenobiotics has been characterized as a biphasic process in which the 

compound first undergoes functionalisation (oxidation, reduction or hydrolysis) also called 

phase I metabolism (Mansuy, 1998; Guengerich, 2001). The metabolite could then undergo 

subsequent conjugation with highly water-soluble, endogenous substrates catalysed by 

transferases in a phase II metabolic process (Xu et al., 2005). While some xenobiotics 

undergo only phase I metabolism, others already hold functional groups appropriate for 

conjugation. However, metabolism is not always a detoxification or inactivation process, as 

several xenobiotics are metabolically converted to a potentially more reactive and harmful 

substances (Stearns et al., 1995; Yun et al., 1995).  

The majority of phase I biotransformation in eukaryotes are oxidation reactions 

catalyzed by membrane bound monooxygenases located in the smooth endoplasmatic 

reticulum of the cells (Ma and Baldwin, 2000). Among these, the cytochrome P450 (CYP)-

dependent monooxygenases are dominant (Guengerich, 2001). The CYP-enzymes play 

important roles in the biotransformation of both endogenous (steroids, fatty acids, bile acids 
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and prostaglandins) and exogenous (natural plant products, drugs and pollutants) substances 

(Bard, 2000). Expression and activity of CYPs are tightly regulated and can be induced by 

their respective substrates involving transcription and translation activation (Arukwe, 2002). 

The CYP-enzyme inserts one oxygen atom from molecular oxygen (O2) to a substrate via the 

enzyme’s heme group, and the reaction requires two electrons supplied by NADPH 

(Guengerich, 2001). The classification of CYP-enzymes is based on proposed evolutionary 

relationships between genes determined from the degree of amino acid sequence identity 

between pairs of enzymes in mammalian species (Nebert et al., 1987). The classification 

includes the designation of “CYP” followed by gene family (Arabic number), subfamily 

(capital letter) and specific gene (Arabic number) (Nebert et al., 1987). Transcriptional 

activation of many CYPs is regulated by distinct mechanisms. For example, CYP1A1, 

CYP1A2 and CYP1B1 are regulated via the AhR (Rowlands and Gustafsson, 1997; Ma, 

2001). The pregnane X receptor (PXR) induces expression of enzymes of the CYP3A family 

and the constitutively androstane receptor (CAR) is involved in CYP2B regulation (Waxman, 

1999; Wei et al., 2000; Xu et al., 2005). In fish, CYP1A1-mediated processes are regarded as 

the most important reaction of xenobiotic transformation to reactive intermediates. Important 

substrates or inducers are dioxin-like compounds such as 2,3,7,8-tetrachlorodibenzo-p-dioxin 

(TCDD), non-ortho polychlorinated biphenyls (PCBs) and poly aromatic hydrocarbons (Safe 

et al., 1985).  

In phase II metabolism, a water soluble group is added directly to an endogenous or 

xenobiotic compound or to the phase I metabolite by covalent binding. Conjugation reactions 

involving uridine-diphosphate glucuronosyltransferase (UGT) and gluthatione-S-transferase 

(GST) are extremely important mechanisms in handling xenobiotics (Clarke et al., 1992; 

Henderson et al., 1998). The UGTs are a multigene family of endoplasmatic reticulum-bound 

enzymes that conjugate UDP-glucuronic acid with lipophilic acceptors (Findlay et al., 2000). 

Members of the UGT1 and UGT2 subfamilies are important in xenobiotic metabolism 

(Leaver et al., 2007). Different UGTs have both dissimilar and overlapping substrate 

specificities. For example, UGT1 has a broad spectrum of substrates which include bilirubins, 

carboxylic acids, amines and phenols and UGT2 is involved in steroid and bile acid 

conjugation (Tukey and Strassburg, 2000; George and Taylor, 2002). Since conjugation is an 

energy dependent reaction, the enzymes are associated with high-energy compounds (Tukey 

and Strassburg, 2000). Chemical compounds that induce CYP1A biotransformation enzymes 

simultaneously regulate UGT-forms that conjugate planar substrates (Leaver et al., 2007). In 
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fish, the mRNA transcription of both CYP1A1 and certain isotypes of UGT is mediated 

through the AhR (Gu et al., 2000).  

GSTs belong to a superfamily of multifunctional proteins with fundamental roles in 

oxidative stress responses and in cellular detoxification of a wide range of endogenous and 

exogenous compounds (Frova, 2006). Several GSTs (but not all) are enzymes that catalyze 

the transfer of the tripeptide glutathione (GSH: γ-Glu-Cys-Gly) to a broad variety of 

substrates including xenobiotics (Frova, 2006). GSH is the co-substrate of GST reactions as 

well as an important antioxidant, reductant and radical scavenger (Jensson et al., 1986; 

Bartling et al., 1993). The conjugation reactions allow for subsequent renal excretion and 

removal of potentially harmful metabolites from the organism. GSTs are divided into three 

main subfamilies; the soluble or cytosolic (soluble) GSTs, the microsomal GSTs and plasmid-

encoded bacterial phosphomycin-resistance GSTs (Frova, 2006). The cytosolic GSTs are 

found in all aerobic organisms (Frova, 2006). The active enzymes consist of either homo- or 

hetero-dimers and the GST monomers are divided into seven classes in vertebrate species 

(alpha, mu, pi, zeta, theta, omega and sigma) based on the primary structure, physiological 

structure (intron number and position) and immuno-reactivity (Henderson et al., 1998). 

Studies on pi-GST double knockout mice indicate that the pi-class GSTs have no critical 

physiological function but have major roles in the xenobiotic defence involving detoxification 

of carcinogenic compounds such as PAH metabolites (Hu et al., 1997; Henderson et al., 

1998).  

Persistent organic pollutants (POPs) that include polycyclic aromatic hydrocarbons 

(PAHs), polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), 

polychlorinated dibenzofurans (PCDFs) and organochlorine pesticides (OCPs) are common 

and persistent environmental contaminants (Weber and Goerke, 2003). These compounds are 

characterized by low water and high lipid solubility that lead to bioaccumulation in adipose 

tissues (Pierce et al., 2007). Some POPs are also considered to be endocrine disrupters, which 

by altering the hormonal system can damage the reproductive and immune systems of 

exposed individuals as well as their offspring (Reijnders, 1986; Fossi et al., 2002; Lintelmann 

et al., 2003). 

 TCDD and structurally related compounds have been shown to have strong AhR 

binding affinity (Hahn, 1998). AhR is a member of the basic-helix-loop-helix Per, ARNT, 

Sim (bHLH-PAS) family of ligand activated transcription factors that also include factors 

involved in the hypoxia response, development of the central nervous system and day-night 

adaptations (Gu et al., 2000). AhRs are ubiquitously expressed in most organs and found in 
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the cytoplasm in complex with hsp90 chaperones and immunophilin-like proteins that 

participate in masking the nuclear localization signal present at the N-terminus of the AhR 

protein (Pollenz, 2002). Following ligand-binding, the AhR dissociates from the hsp90-

complex and translocates to the nucleus where it forms a heterodimer with another bHLH-

PAS protein - the AhR nuclear translocator (Arnt) (Gonzalez and Fernandez-Salguero, 1998). 

The AhR-Arnt heterodimer binds to xenobiotic response elements (XREs) which is regulatory 

DNA sequences found upstream of AhR regulated genes (Okey, 2007). Transcription is 

initiated when co-activators bridges between the AhR-Arnt complex and the TATA box-

associated factors (TAFs), thereby activating transcription by recruiting RNA polymerase II 

(Figure 4) (Kobayashi et al., 1997). The XREs consists of two half sites 5’-TNG-3’ and 5’-

GTG-3’ (N designate any nucleotide), which bind to amino acids within the AhR and Arnt, 

respectively (Kobayashi et al., 1997). The DNA-binding amino acids of bHLH-PAS proteins 

have been identified by domain mapping and amino acid substitution experiments (Karchner 

et al., 2006). Several genes involved in metabolism and degradation of lipophilic and 

persistent compounds contain XREs in their promoter regions among them CYP1A1, 

CYP1A2, UGT and AhR-repressor (AhRR) (Whitlock, 1999; Ma, 2001). The fact that AhR-

null mice is resistant to TCDD toxicity confirms the direct involvement of AhR in TCDD 

biotransformation (Gonzalez and Fernandez-Salguero, 1998).  

As previously stated, the metabolism of xenobiotic compounds could lead to formation 

of more detrimental substances. The AhR signal transduction pathway is regulated in order to 

determine the duration and magnitude of the regulatory response firstly by competition with 

AhRR, and secondly by depletion of AhR protein through 26S proteasome activity. 

Structurally, AhRR belongs to the bHLH-PAS transcription factor family and suppresses AhR 

mediated transactivation by competing with AhR for heterodimer formation with Arnt (Gu et 

al., 2000). Thus, the expression of AhRR is induced by the AhR, since transcription of AhRR 

is mediated through binding of the AhR-Arnt complex to XRE in the 5’- regulatory sequence 

of the AhRR gene (Mimura et al., 1999; Karchner et al., 2002). The regulation of AhR protein 

levels involves proteosomal degradation, since after exposure to TCDD a rapid down-

regulation of AhR proteins in rodent liver was observed (Pollenz, 1996; Franc et al., 2001). 

The AhR-Arnt complex induces AhR degradation through the ubiquitin-proteasome pathway. 

Ubiquitin is covalently attached to the ligand activated AhR and the ubiquinated receptor is 

subsequently degraded by the 26S proteasome complex (Ma and Baldwin, 2000). Proteasomal 

degradation is ligand dependent with stronger degradation for compounds possessing higher 

AhR affinity (Ma and Baldwin, 2000). The entire process is selective and does not affect the 
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stability of Arnt (Pollenz, 1996). Proteasomal degradation together with increased AhRR 

levels represents cellular control mechanisms necessary to maintain cellular homeostasis. The 

role of proteosomal degradation in receptor protein levels is also described for other nuclear 

receptors such as the ERs (Alarid, 2006).  
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Figure 4. Model of AhR mediated gene expression. The AhR resides in the cytoplasm bound to hsp90 dimers 

that mediates its structure in a ligand binding form. After activation by its ligand, AhR translocates from 

cytoplasm into the nucleus and exchanges its chaperones for Arnt. The AhR-Arnt heterodimer binds to the 

xenobiotic response element (XRE) with the base sequence TNGCGTG and activates transcription of down-

stream target genes. Among the activated target genes, the CYP-enzyme and UGT1 are involved in the adaptive 

response, and the AhR repressor (AhRR) is able to form a feedback inhibition loop by competing with AhR for 

the binding of Arnt. Ligand activation of AhR induces the proteasome degradation pathway. Modified from Gu 

(2000). 

 

The physiological role of AhR is yet to be fully characterized. The high degree of AhR 

conservation suggests an important fundamental role in cellular physiology (Hahn, 1998; Gu 

et al., 2000; Hahn, 2002). The involvement of AhR in cell cycle regulation provided evience 

on the influence of AhR ligands on cell proliferation, differentiation, and apoptosis, but the 

molecular mechanism by which the AhR affects the cell cycle is not fully understood (Chang 

et al., 2007). A number of endogenous ligands have been reported to activate AhR which 

suggests that the AhR contains a rather promiscuous ligand binding site (Denison and Nagy, 

2003). In addition, the activation of un-liganded AhR by phosphorylation has been suggested 

(Ikuta et al., 2004). The conversion of l-tryptophan to indole-3 pyruvate in mouse tissue 
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extracts followed by the spontaneous reaction of indole-3-pyruvate with water produces a 

large number of compounds acting as AhR agonists and indicated a physiological role of AhR 

in the metabolism of endogenously generated compounds (Bittinger et al., 2003). AhR double 

knockout (AhR null (-/-)) mice have been used to determine the physiological role of AhR, 

and studies showed that the AhR is required for vascular development regulation in liver and 

other organs (Gonzalez and Fernandez-Salguero, 1998) establishing a role of AhR in 

development and physiological homeostasis. Recently in our laboratory, we showed that the 

expression of retinoid acid receptor α-isoform (RARα) apparently required the activation of 

AhRα by PCB-77 in salmon liver (Nordbø and Arukwe, 2007).  

 

 
 
Figure 5. Phylogenetic analysis of the amino acid sequences of AhR of five teleost and one frog species.  The 

amino acid sequences of teleost AhRs and one AhRR were aligned using ClustalW analysis, and Bootstrap 

values based on 100 samplings were shown above each branch. Positions with gaps were excluded and 

corrections were made for multiple substitutions. Protein accession numbers used; O.mykiss AhRα 

(AAC95335.2), AhRβ (AAC95336.4), S.salar AhR1α (AAS00539.1), AhR1β (AAS00540.1), AhR2α 

(AAP46168.1), AhR2β (AAP46169.1), AhR2δ (AAO18424.1), AhR2γ (AAL12247.1), Danio rerio AhR 

(NP_571103.1), AhR1β (NP_001019987.1), AhR2 (NP_571339.1) Fundulus heteroclitus AhR1 (AAR19366.1), 

Microgadus tomcod AhR (AAC05210.1),  Xenopus laevis AhR1α (AAV49747.1), AhR1β (AAV49748.1) and 

the M.tomcod AhRR (AAV87644.1). 
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To our knowledge, only one AhR isotype has been characterized in mammals (Hahn, 

2002). In contrast, two distinct evolutionary AhR gene lineages assigned AhR1 and AhR2 

with several gene products (α, β, δ and γ in salmon) have been described in teleost species 

(Yamauchi et al., 2005; Hahn et al., 2006). The explicit role of each AhR isotype is not fully 

understood. However, the differential AhR expression patterns in different tissues of teleost 

species indicate explicit roles for each AhR subtype (Yamauchi et al., 2005). Phylogenetic 

analysis of the AhR amino acid sequences from different fish species (Zebrafish, Killifish, 

Atlantic salmon, Red seabream and Medaka) (Figure 5) indicates both isotype and species 

specific functions of piscine AhR (Yamauchi et al., 2005). The differences in AhR isotype 

function and activity further contribute to the complex regulation of AhR mediated gene 

transcription (Hahn et al., 2006). 

 

ER-AhR interactions 

The endocrine disruptive effects, including anti-estrogenic activities of AhR agonists are well 

documented (Safe et al., 1991). Inhibitory AhR and ER cross-talk have been thoroughly 

described in human breast cancer cells, rodent uterus and mammary tumour cells (Safe et al., 

1991; Kharat and Saatcioglu, 1996; Wormke et al., 2000b; Abdelrahim et al., 2003). In fish 

hepatocytes, negative AhR effects on estrogenic responses are reported from both in vivo and 

in vitro studies (Smeets et al., 1999; Navas and Segner, 2000a; Arukwe et al., 2001b; 

Rankouhi et al., 2004; Vaccaro et al., 2005). Several hypothesis have been proposed for the 

observed anti-estrogenicity of AhR agonists (see Figure 6): 1) reduction or complete 

inhibition of ER mediated transcription after interactions between the nuclear AhR-complex 

with target sequences in the regulatory promoter area of ERE regulated genes, 2) induced 

transcription of modifying enzymes (e.g. CYP1A1) through ligand activated AhR that can 

directly inhibit E2 induced gene expression or indirectly inhibit the ER-mediated transcription 

through other factors, 3) induction of modifying enzymes that could inhibit the effects of E2 

induced proteins, growth factors or oncogenes on cellular growth and differentiation, 4) 

activated AhR may induce proteasomes that degrade both ER and AhR  or 5) the modifying 

enzymes could affect cellular growth and differentiation directly (Safe et al., 1991). Other 

suggested mechanisms of AhR induced anti-estrogenicity are AhR-mediated induction of 

proteosomal degradation of the ERs (Wormke et al., 2003) and competition between AhR and 

ER for common transcriptional cofactors such as the Arnt (Brunnberg et al., 2003). Recently, 
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Matthews et al (2007) showed that TCDD and PCB126 produced inhibition of ERα-

dependent expression of pS2 in human breast cancer cells and these response paralleled ERα 

recruitment to the CYP1A1 or CYP1B1 genes followed by reduced recruitment of ERα to the 

pS2 promoter.  
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Figure 6.  Proposed mechanisms of action of observed anti-estrogenic effects mediated by activated AhR. 

Activated AhR could inhibit ER mediated transcription directly by interfering with ER-ERE binding (1), 

activated AhR may induce modulating enzymes (M) that directly interfere with ER activity (2), or indirectly 

inhibit the ER-mediated transcription through other factors (TF) (3), activated AhR may induce proteasomes that 

degrade both ER and AhR (4) or M could affect cellular growth and differentiation directly (5). Modified from 

Safe et al. (1991). 

 

Current research on ER-AhR interactions indicate that AhR-agonist mediated anti-estrogenic 

activities documented in mammalian and fish cell-based systems could represent an exception 

rather a rule for these chemicals. Previously, Arukwe et al. (2001b) reported in vivo that fish 

exposure to combined AhR-agonist (3,3’,4,4’-tetrachlorobiphenyl, PCB77) and ER-agonist 

(nonylphenol, NP) resulted in both increase and decrease of NP-induced responses by PCB-77. 

These responses depended on the dose ratio of both chemicals, sequential order of exposure 

and influenced by seasonal changes (Arukwe et al., 2001b). Several other studies have used 

multiple approaches to study estrogenic action in cell systems (i.e. ligand competitive binding 

assay, receptor induced transcription, quantification of mRNA expression, estrogen dependent 
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cell growth, pull down assays and yeast two hybrid (Y2H) systems). It has been demonstrated 

that one substance can possess both estrogenic and anti-estrogenic qualities depending on the 

cell system and the dose-ratio of exogenous and endogenous compounds (Ohtake et al., 2003; 

Abdelrahim et al., 2006; Elango et al., 2006; Liu et al., 2006).  

One potential molecular mechanism behind AhR mediated estrogenicity that was 

recently proposed is the “hijacking” of ER by activated AhR-Arnt complex, followed by 

mRNA transcription of ERE-regulated genes (Figure 7) (Ohtake et al., 2003). The 

mechanisms of ER-hijacking are confirmed by other studies showing direct interactions 

between ER and the activated AhR-Arnt complex (Pearce et al., 2004; Abdelrahim et al., 

2006; Liu et al., 2006). In mice, stimulated estrogen production through AhR activation of 

Cyp19 gene expression was observed as well as initiation of ER mediated gene expression by 

AhR co-activation (Baba et al., 2005). While some studies suggest that AhR mediated 

estrogenicity requires un-liganded ERs (Ohtake et al., 2003; Boverhof et al., 2006), other 

reports imply that the presence of ER ligands is indifferent to the AhR mediated activation of 

ERE transcription of E2 regulated genes by AhR (Nesaretnam et al., 1996). Therefore, the use 

of in vitro versus in vivo studies must be evaluated when investigating mechanisms behind 

ER-AhR crosstalk. 

 

 

ERE

ERE

XRE

A)

B)

C)

ERE

ERE

XRE

A)

B)

C)

 
 
Figure 7. The ligand activated AhR-Arnt complex binds to and activates (hijack) ER. A) Eestrogen (E2) 

regulates cellular processes by binding to estrogen receptors in the nucleus. The activated receptors dimerize and 

bind to specific estrogen response elements (ERE) of the target genes and thereby induce gene transcription. B) 

The ligand activated AhR forms a complex with Arnt and mediates mRNA expression via the XRE. C) AhR 

ligands can mimic the effects of estrogens through a mechanism that involves the activation of ER by a 

transcriptionally active AhR–Arnt complex. The mechanism is called “ER-hijacking”. Modified from Brosens 

and Parker (2003). 
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Toxicogenomics and application of microarrays technology 

Previously, mechanistic toxicological questions have been approached mainly by studying the 

function(s) and expressions of individual genes or gene products (hypothesis-driven 

approach). This reductional approach has been rewarding, leading to the discovery of an 

impressive number of biological principles for the effects of environmental contaminants 

(Arukwe, 2007). However, many fundamental questions still remain concerning the 

mechanisms behind observed effects, mainly because gene products function singly or in 

combination. Hence, the biological processes leading to effects should be considered as 

complex networks of interconnected components (Volz et al., 2006). The combination of 

toxicology; the study of the nature and effects of poisons, with genomics; the investigation of 

the way organismal genetic make-up, the genome, translates into biological functions 

(toxicogenomics; most often associated with mammalian toxicology) has become a scientific 

discipline. Molecular and cellular events are causal and occur in a defined temporal sequence, 

and these molecular events branch out into different directions, up- and down-regulation of 

genes and proteins (i.e. molecular profiles of gene and protein expression patterns). Hence, 

molecular approaches have the potential to serve as predictors of toxicological (i.e endocrine) 

effects and to provide crucial and reliable information for specific mechanisms of hormonal 

action, including xenoestrogens on organismal health and reproduction (Arukwe, 2007). This 

implies that environmental contaminants may induce genomic responses in an organism. 

Depending upon the severity and duration of the toxicant exposure, genomic measures may be 

short-term toxicological responses leading to impacts on survival and reproduction (i.e. 

parental and offspring fitness). Thus, toxicogenomic approaches have emerged as a key and 

mainstream technique in screening new and emerging endocrine disruptors sigly or in 

combination, because it may reveal genetic signatures in organisms that can be used to predict 

their effects on the endocrine systems (Iguchi et al., 2006; Arukwe, 2007; Denslow et al., 

2007). Therefore, the development of powerful molecular tools represents unprecedented 

opportunities to elucidate biological responses to environmental toxicants and stressors at the 

genomic level.  

In the environment, chemical interactions may have profound consequences since 

organisms are exposed to complex mixtures of environmental pollutants. However, these 

complex interactions have only recently become the focus of systematic investigations 

(Arukwe et al., 2001b). There is no doubt that “omics-based” (i.e. genomics, proteomics and 

metabolomics) biomarkers (of exposure to environmental hazards, of effects to 

environmentally-induced cellular and molecular changes and of genetic susceptibility) are 
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revolutionizing the science of risk assessment. As a paradigm shift in investigative toxicology, 

toxicogenomic approaches are replacing the current hypothesis-driven toxicology research 

based on “is my gene or protein affected by a given exposure?” with a discovery-driven 

research based on “what genes or proteins are affected by a given exposure?”. Microarrays 

technologies are effective tools for understanding the mechanisms leading to toxicological 

effects.  Data derived from microarrays are used to full potential when applied in the 

investigation of behaviour and/or functions of biological network as well as some of its 

particular components individually (Ge et al., 2003; Arukwe, 2007). 

Quantitative (real-time) polymerase chain reaction (Q-PCR) and northern blotting are 

methods frequently applied for analysing alteration of gene expression on the single gene 

level, while microarray technologies provide high throughput assays for analysis of the 

transcriptome (mRNA transcribed in the cells of the system). Transcriptome analyses by 

microarrays have facilitated significant advances in the understanding of the molecular 

responses in cell and tissues after perturbations and damage caused by xenobiotics (Aardema 

and MacGregor, 2002). Unquestionably, the gene-array technology is a powerful tool to be 

used in toxicology with potential to reveal genetic signatures in organisms that can be used to 

predict toxicity and effects of xenobiotic compounds (Larkin et al., 2003b; Mazurais et al., 

2005; Iguchi et al., 2006).  
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Study outline and objectives 

In organisms, biological processes such as response to chemical exposure, cellular growth and 

organogenesis are mediated by processes of differential gene expression. An understanding of 

the molecular regulation of these processes requires the identification of relevant subsets of 

differentially expressed genes of interest to be cloned, and studied in details. Thus, the first 

interactions between contaminants and organisms occur at the molecular and cellular levels 

and these happen prior to clinical manifestation. Therefore, changes in gene expression as a 

result of environmental stressors and the subsequent molecular processes that lead to adverse 

health effects may be used as quantitative markers (“biomarkers”) for cellular, organismal and 

population effects. 

The overall objective of this thesis is to develop diagnostic gene and protein response 

tools in the study of the molecular mechanisms of gene expression pattern of xenoestrogen 

and xenobiotic interactions in wildlife species using differential gene-expression profiling in 

in vitro and in vivo systems. Contaminants known to be estrogenic (EE2 and NP) and/or anti-

estrogenic (PCBs), either by direct ER or indirect AhR mechanistic pathways, were used as 

model xenobiotics and evaluated either singly or in combination using in vitro and in vivo test 

systems.  The research addressed the following specific sub-objectives:  

• In vivo studies, using juvenile salmon as model fish species of the xenoestrogen-

induced modulation of xenobiotic systems (Paper I).  

• Development of a targeted custom gene array for gene expression profiling of 

xenoestrogen and xenobiotic interaction (Paper III). 

• In vitro studies, using hepatocyte cultures from model fish species (salmon and trout), 

of the molecular mechanisms and gene expression patterns for xenoestrogen and 

xenobiotic interactions (Paper II-V). 

There are many potential stressors regulating the composition and relative abundance of fish 

communities in a given system. Endocrine modulators have the potential to affect 

reproduction, growth and development in fish. The long-term benefit of this thesis is to 

quantify the relative importance of endocrine modulators by mechanism(s) and their 

interaction in a mixture with environmental chemicals with affinity to the AhR. In addition, 

this thesis was designed to develop new hypotheses for empirical evaluations on ER-AhR 

mechanisms of interactions through the production of the targeted gene array. These specific 

objectives applied chemicals and species models in assessing exposure to and prediction of 
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effects of contaminants at the individual and the population levels in aquatic systems. The 

specific objectives are explained in the following hypothesis: 

 

Hypothesis #1: The comparative responses of gene and protein expression biomarkers 

indicative of adverse health and reproductive effects in fish species demonstrate differential 

and parallel hepatic-specific patterns in control and exposed individuals.    

 

Hypothesis #2: Hepatic gene expression profile will show chemical exposure specific (i.e. ER 

and AhR agonists) patterns that will be dependent on concentration (or dose) and time of 

exposure. 

 

Hypothesis #3: Differences in the profile of gene and protein biomarker responses, including 

overexpression of certain biomarker genes in exposed individual tissue, will be indicative, 

prognostic and predictive of chemical susceptibility and adverse health and reproductive 

effects.  
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Material and Methods 

Atlantic salmon as a model system 

Fish, especially Atlantic salmon (Salmo salar) form the basis for economically important 

fisheries and aquaculture for Norway and several other countries. Salmon is an anadromous 

species that utilizes the best of two worlds (freshwater and seawater). Given the occurrence 

and distribution of pharmaceuticals and surfactants that affect the fish endocrine systems in 

the environment, this species provides an excellent and interesting model for the present study. 

By focusing on salmon and the integral aspects of the estrogenic and xenobiotic 

biotransformation pathways, this thesis has increaseed our understanding of the mechanisms 

and interactions of pollutants that affect the general fitness and disrupt organismal endocrine 

systems. It will also enhance our understanding of potential consequences of human 

consumption of contaminated fish resources. Salmon enjoys a number of natural advantages 

as an extremely important cultivated species: a well known reproduction biology, short egg 

and larval stages, rapid growth, good feed utilisation, suitable behaviour (“tame”), and, as far 

as we know, good health. Salmon also appears to adapt well to traditional sea-cages for 

aquaculture technology. 

In this thesis, we have mainly used Atlantic salmon as a model organism to increase 

the understanding of the mechanisms and interactions of pollutants with different mode-of-

action that affect the general fitness and disrupt the endocrine systems. Fish are known to 

contain more copies of genes than mammals and a ratio of 2:1 has been proposed (Jaillon et 

al., 2004). Atlantic salmon is a tetraploid organism, and evolution has provided this species 

with duplications of several genes that has single copy in other species (Allendorf and 

Thorgaard, 1984). The tetraploidity of salmon demand careful evaluation of gene expression 

studies since there is an increased number of pseudogenes (both functional and non-functional) 

in these organisms (Allendorf and Thorgaard, 1984). 

 

In vitro techniques as a tool for mechanistic studies 

The use of in vivo studies in toxicological studies focuses on absolute endpoints which do not 

allow discrimination of the underlying modes of action (Tiffany-Castiglioni et al., 1999). The 

direct effects of compounds in vivo are masked by pharmacokinetic distribution as well as 

secondary effects attributed to other unidentified factors (Soars et al., 2007b). The application 
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of in vivo studies are further complicated by the variation in genetic background between 

individuals and ethical questions concerning animal research since a large number of 

individuals are needed to perform statistically valuable experiments (Ge et al., 2003). In vitro 

systems, like cell and tissue models, facilitate and hence are widely used for investigating the 

direct molecular mechanisms accounting for adverse effects of xenobiotic compounds on 

wildlife and humans (Soars et al., 2007b). The primary objective of toxicological studies on 

cells and tissues in vitro is to characterize cellular and molecular substrates and pathways that 

contribute to adverse effects on the organism after toxicant exposure. Exposures to various 

compounds form a broad spectrum of responses that reflects the hierarchy of biological 

organisation (Tiffany-Castiglioni et al., 1999). At one end of the spectrum is the interaction 

between molecules leading to molecular responses and on the other, the whole organism that 

may or may not be affected by the exposure (Ge et al., 2003; Jansen, 2003). In the middle, 

there may be a formidable gap in knowledge (Ge et al., 2003). Since the liver is the most 

important organ in xenobiotic biotransformation, an ideal model system for xenobiotic 

biotransformation should accurately resemble biotransformation in vivo in the liver (Brandon 

et al., 2003; Navas and Segner, 2006). Both continuous growing cell cultures (cell lines) and 

primary cultures (cells taken directly from animals) have been used in mechanistic 

toxicological studies (Navas and Segner, 2006).  

The principal approach when selecting an in vitro system for mechanistic studies is to 

limit the scope of questions asked so that the appropriate system or model can be chosen. The 

cell phenotype should be normal or relevant to the proposed mechanism of action (Soars et al., 

2007a). While many continuous cell lines do not undergo the stages of development, 

maturation and aging and therefore stay young forever, others are reliably getting older 

(Tiffany-Castiglioni et al., 1999). The stage of differentiation of cell lines can be manipulated 

by growth factors that influence maturity or phenotype. Established hepatic cell lines have a 

relatively stable phenotype and are easier to culture and maintain compared to primary 

hepatocytes. One drawback of using cell lines in biotransformation studies is that, albeit 

having relatively stable enzyme concentrations, the expression levels of most phase I and 

phase II enzymes are low in these cells (Brandon et al., 2003). Primary cell cultures are 

obtained from tissues of individual animals and have a limited lifespan. As primary 

hepatocytes in culture provide the closest in vitro model to animal liver, they are well adapted 

for investigating xenobiotic transformation, enzyme induction and inhibition and 

biotransformation-mediated toxicity (Soars et al., 2007b). However, a number of liver-

specific functions, like cytochrome-P450 activity, are reduced during isolation and with time 
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(Segner, 1998; Brandon et al., 2003). The use of primary hepatocytes encounters the problem 

of considerable inter-individual variations, but the problem could be overcome by using 

mixtures of hepatocytes from multiple donors (Brandon et al., 2003; Soars et al., 2007b).  

To find the parallel between whole animal (in vivo) models and those not involving the 

use of whole animals such as ex vivo models (tissues from exposed animals) or in vitro 

models (cells and tissues that do not involve exposed animals), one has to include the 

interpretation of various in vitro/ex vivo experimental systems (Brandon et al., 2003). 

Particularly, an investigation of endpoints indicative of toxicities that occur under specific 

concentration regiments, with comparison to in vivo models (Tiffany-Castiglioni et al., 1999) 

is of primary significance. Knowledge of the system used, including the factors that may 

contribute to variability and phenotypic limitations are of vital importance, especially when 

attempts are made to extrapolate to events that occur in whole animals. In circumstances 

where the effects of exposure appear to be similar in an in vivo and in vitro experiment, the 

magnitude of the effects could differ, making extrapolation to in vivo events difficult 

(Tiffany-Castiglioni et al., 1999). There are times when the in vivo/in vitro difference is not 

resolvable. Ideally, in vivo studies should follow in vitro results whether the effects of the cell 

treatments are identified or not.  

The correlation between the concentrations needed to produce effects in vitro and 

those relevant to in vivo toxicities are not always comparable. There are a number of reasons 

why differences in concentrations occur and to disregard data solely because they were 

obtained at higher concentrations than those expected in animals is unwise due to the 

difference in uptake and metabolic mechanisms in cells and whole animals (Tiffany-

Castiglioni et al., 1999). The in vitro system chosen is of most importance. For example, 

continuous cell lines are extremely robust and not susceptible to lethal effects of many 

toxicants except at high concentrations (Brandon et al., 2003). In tissue cultures, the ability to 

penetrate the tissue is dependent on the method used and the concentrations of the compounds 

in question. In primary cell and tissue cultures, other factors like the exposure regimen, 

animal age and sex, the capacity for compensatory mechanisms and the tissue preparation 

method involving inclusion or elimination of certain cell types contribute to the effects 

observed after treatment (Shankland et al., 2007). Time response observations are valuable 

and should be incorporated as one of the essential controls when performing in vitro 

experiments (Navas and Segner, 2006). The actual age (in hours), of the culture and the 

developmental stage of the system may cause experimental variability (McGinnity et al., 2006; 

Navas and Segner, 2006). Although in vitro methods are not able to provide information 
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about behaviour of compounds in real organisms (e.g. pharmacokinetics), they are a strong 

tool for assessment of specific toxicity mechanisms and/or for screening a large number of 

chemicals (such as agrochemicals, pharmaceuticals or environmental contaminants) (Janosek 

et al., 2006). 

 

Liver perfusion technique 

Primary hepatocytes are popular in vitro systems for drug biotransformation research due to 

their strong resemblance of in vivo liver (Brandon et al., 2003). In the present studies (Paper 

II-V) hepatocytes were isolated from the liver of trout and salmon by the collagenase 

perfusion method described by Howard and coworkers (1967) and Berry and Friend (1969) 

and later modified for fish by Andersson et al. (1983). In the initial perfusion step, the liver is 

cleared of blood using a buffered salt solution containing a chelating agent such as EGTA to 

remove Ca2+ (Calsium is involved in blood coagulation and cell-cell connections). In the 

second step, Collagenase, which dissolves intercellular collagen, is added to the solution. In 

salmonids the perfusion is attained through the well developed portal vein. The enzymatic 

digestion is followed by mechanical disruption when the cells are gently massaged through 

filter mesh of 150 µm. The cells are collected in medium and washed by several low-speed 

centrifugations (50 x g for 2 minutes). The cell suspension obtained by perfusion contain 

mainly hepatocytes which occupy 80 % of the original liver volume (Segner, 1998).  

 

Suppressive subtractive hybridization (SSH) and SalArray analysis 

We generated a targeted cDNA library by performing suppressive subtractive hybridization 

(SSH) with liver samples from juvenile salmon exposed separately to ER-agonists (NP and E2) 

and AhR-agonists (TCB and BNF). The SSH experiment was performed in the forward and 

reverse directions to obtain up-regulated and down-regulated genes, respectively. 

Recombinant colonies were then picked and their cDNA insertions were sequenced before 

submitted to GenBank database under the title “SalArray SSH cDNA library”.  The 300-clone 

salmon membrane cDNA array (SalArray) was constructed of clones with unique expression 

patterns either as up- or down-regulated in the SSH. All clones were PCR amplified and 

verified by agarose gel electrophoresis. Clones were spiked with Arabidopsis thaliana mRNA 

as a control for loading differences and array was printed by EcoArray Incorporated (Alachua 

Fl, USA) under contract. Hybridization of the arrays was performed using P33-labeled cDNA 
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probes. Radioactivity was scanned using a Phosphoimager FLA-2000 (Fuji), and the spot-

density data for each membrane were individually quantified by Array Gauge v2.1 (Fuji Film). 

The general background of each membrane was subtracted from the average spot-intensity 

values for the duplicate spots on the membrane. Thereafter, the background-normalized spot-

intensity values were further normalized with the A. thaliana spikes on the same membrane.  
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Figure 8. Ratio intensity plots (RI-plots) showing loess normalization. Normalization was performed to 

minimize the effects of systematic errors between arrays. First, the product of spot signal intensity between 

exposed samples (S) and the respective control sample (C) were log2 transformed, and then, the ratio between S 

and C was found and log2 transformed. Presentation of data prior to loess normalization (A) and after loess 

normalization (B) showing the trend-line function in the top right corner of each figure. Note that in panel B, the 

distribution of data is centred about y = 0. 

 

Expression levels of genes were expressed as fold change relative to control by 

dividing the signal intensity of exposed samples (Si) by the signal intensity in the respective 

control sample (Ci). The ratio was log2 transformed, and the measured log2(Si/Ci) ratio was 

visualized as a function of the log2(Si*Ci)  product intensities in a ratio-intensity plot (RI plot) 

(Figure 8A). Finally, loess normalization was performed to minimize systematic deviations 

(RNA quality, probe labeling, hybridization, and development of image) in the log2(Si/Ci) 

ratio values of spot intensity levels between exposed samples and controls (Figure 8B). The 



 33

loess and spike normalizations were the only data normalization performed on the array data, 

since other options such as normalization with a suite of reference genes did not give useful 

results. The normalized ratio log2(r*) was evaluated, and stringent criteria were used to filter 

for genes that were regulated at least 0.3-fold as compared to their respective controls. 

 

Quantitative real-time PCR 

Quantitaitive real-time polymerase chain reaction (qPCR) is an established technique for 

determining the number of specific mRNA transcripts in biological samples. The method has 

high sensitivity, large dynamic range, the potential for high troughput as well as accurate 

quantification (Bustin, 2004). Total cDNA for the qPCR reactions were generated from 

DNase-treated total RNA using a combination of random hexamer and poly-T18 primers. The 

expression of individual gene targets was analyzed and every DNA amplification reaction 

contained controls lacking cDNA template to determine the specificity of target cDNA 

amplification. Briefly, cycle threshold (Ct) values obtained were converted into mRNA copy 

number using standard plots of Ct versus log copy number. The criterion for using the 

standard curve is based on equal amplification efficiency with unknown samples and this is 

checked prior to extrapolating unknown samples to the standard curve. The standard plots 

were generated for each target sequence using known amounts of plasmid containing the 

amplicon of interest. Data obtained from triplicate runs for target cDNA amplification were 

averaged and expressed as % of the solvent control sample quantity. Standard errors were 

calculated, statistical differences among treatment groups were tested using analysis of 

variance (ANOVA) and comparison of different exposure treated and control groups were 

performed using Tukey’s multiple comparison test.  

To obtain reliable results with biological significance, it is important that qPCR data 

are normalized with a proper internal control. In this regard, prudent reference gene selection 

is important in evaluating relative gene expression in samples (Czechowski et al., 2005). 

Several laboratories including ours have observed that the use of reference genes (so called 

house-keeping genes) in toxicology vary considerably between different experimental 

conditions and exposures (Brown et al., 2004; Bustin and Nolan, 2004). The effect of 

xenobiotic exposure on altered gene expression is dependent on the severity and duration of 

the toxicant exposures; therefore the assumption that certain genes have a constant level of 

expression regardless of experimental conditions has become a misconception of reasonable 
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concern. The considerable variability of so-called housekeeping genes across different 

experimental conditions could lead to misinterpretation of the expression profile of a target 

gene (Arukwe, 2006). One example is the widely use β-Actin gene for normalization, we have 

found that exposure of salmon to DDE or NP decreases and increases (respectively) β-Actin 

mRNA liver (Arukwe, 2006) and similar effect have been observed in several experiments 

and other so-called housekeeping genes in our laboratory. We are yet to find a house-keeping 

gene that does not vary according to experimental conditions.    

 

Immunochemical techniques 

Immunochemical detection methods represent sensitive laboratory techniques widely used to 

detect and quantitate antigens (proteins) present in samples. It can be quantitative (with a 

standard curve) or semi-quantitative (without a standard curve). The competitive Enzyme-

Linked Immunosorbent Assay (ELISA) used for plasma Vtg quantitation (Paper I) is a robust 

and reproducible method for quantifying Vtg in plasma. The method is based on competition 

between known concentrations of purified Vtg and unknown plasma samples for a polyclonal 

Arctic char Vtg antibody as previously described by Meucci and Arukwe (2005). 

Immunochemical analyses of ERα protein levels were performed using Western blotting 

(Paper V). Cellular homogenates were separated by sodium dodecyl sulfate polyacrylamide 

gel electrophoresis (SDS-PAGE) as described by Laemli (1970). The protein was then 

transferred to a polyvinylidene fluoride (PVDF) membrane and salmon ERα proteins were 

detected using primary polyclonal antibodies against human ERα amino acids 154-174 (Accn. 

No. NM_000125) and visualized after incubation with peroxidise conjugated secondary 

antibody and substrate for chemiluminescent detection.  
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General discussion 

Targeted SalArray gene chip 

As described in paper III, we constructed a custom cDNA library containing 300 clones of 

transcripts from Atlantic salmon exposed to combined ER- and AhR-agonists. The cDNA 

library was used for developing a toxicological targeted membrane cDNA array (SalArray). 

When genomic data for an organism is not available, the SSH method is a helpful tool for 

generating cDNA libraries containing DNA sequences of interest (Brown et al., 2006). The 

SalArray cDNA chip contained transcripts from genes that were either up- or down-regulated 

in salmon liver exposed to ER- and AhR-agonist.  
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Figure 9. Distribution and functional category assignment of genes identified as either up- or down-regulated in 

response to ER- or AhR-agonist exposure. 

 

When assigning the transcripts, we observed that a wide range of biological pathways were 

represented in the library confirming that in toxicology, almost without exception, gene 

expression in most pathways is altered as either a direct or indirect result of toxicant exposure 

(Volz et al., 2006). The distribution and functional category assignment of genes identified as 

either up- or down-regulated in response to combined ER- and AhR-agonist exposure is 

shown in Figure 9. However, several genes known to be involved in the transcriptional 

regulation of xenobiotic biotransformation and steroid metabolism (e.g. AhRs, ERs, 
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aromatase isotypes and the steroidogenic acute regulatory (StAR) protein) were not 

represented due to low expression levels. Hence, transcripts from these genes were amplified 

by PCR using specific primers from conserved regions of the respective genes based on 

sequence informations in the GenBank. The PCR-products were cloned into Escherichia coli 

plasmids and added to the array. All sequences were annotated and thereafter submitted to 

GenBank. 

Gene arrays are commercially available for several mammalian species as well as 

zebrafish and Rainbow trout (Larkin et al., 2003b; Finne et al., 2007; Pomati et al., 2007). 

Our SalArray contained transcripts from 300 clones which is a small number compared to 

commercially available arrays containing 40 000 genes. Comparatively, the targeted array 

approach contained a unique selection of genes generated by the SSH method. Thus, the array 

provided the required information for screening of toxicologically interesting candidate genes 

after exposure to environmental chemicals. Microarray analyses generate enormous amounts 

of data. Like most new technologies and approaches, interdisciplinary collaborations accross 

scientific disciplines are required for handling informations of this magnitude (Ge et al., 2003). 

Sophisticated methods for data storage and analyses are therefore the biggest obstacle in array 

analyses (Ge et al., 2003). Although several software packages are available for array analysis, 

these approaches and algorithms are yet to be standardized and their full potential can only be 

realized by trained staffs (Aardema and MacGregor, 2002). Therefore, the targeted arrays 

approach (with few, but toxicologically relevant genes) was a reasonable approach for our 

toxicological questions of interest. Commercial microarrays are usually used in a systems 

biology approach where the main goal is to investigate the effects of perturbations on network 

interactions (holistic approach). Given that targeted array was a reductional approach, the 300 

clone SalArrays provided adequate information to uncover novel genes to answer the 

toxicological questions asked and for the generation of new hypotheses.  

Thus, the combination of the analytical power of SSH, qPCR and hepatocytes culture 

was used to evaluate the interactions between the ER- and AhR-signalling pathways (Paper 

III). Primary cultures of salmon hepatocytes were exposed to NP and PCB77, given singly or 

in combination. Previously, we found that the concentrations used were optimal for in vitro 

studies for ER-AhR interactions in salmonids (Paper II). Altered gene and protein levels as a 

result of toxicological insult are expected to occur at concentrations below those that produce 

pathological alterations (Aardema and MacGregor, 2002). However, in order to reveal 

molecular mechanisms involved in ER-AhR interactions, the compound concentrations in this 

study needed to exceed the capacity of the cellular defence mechanisms. The SSH technique 
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favours the enrichment of high abundance transcripts and therefore is susceptible to a high 

false positive rate (Larkin et al., 2003a). Figure 10 presents a Venn diagram of the global 

expression patterns of transcripts of solvent control and cells exposed to NP and PCB77. 

 

 

 
 

Figure 10. Venn diagram of the global expression patterns of transcripts of solvent control and cells exposed to 

NP and PCB77. 

 

The array results showed that several genes involved in the steroid hormone synthesis and 

metabolism were increased in hepatocytes exposed to PCB77 singly or in combination with 

NP. Specifically; 3β-hydroxysteroid-dehydrogenase (3β-HSD), androgen receptor, CYP11α, 

CYP11β, CYP19α, CYP19β, in addition to the StAR protein were modulated. Among these, 

only CYP19α and β (aromatase) increased in response to NP (Paper III). PCB77 is an AhR 

agonist, previously it was shown that AhR deficient mice had insufficient synthesis of E2 and 

AhR was found to be a regulator of aromatase in female mice (Baba et al., 2005). The effects 

of NP and PCB77 on hepatic steroidogenic pathways represent the first report on the parallel 

expression of aromatase gene isoforms, StAR, CYP11β and 3β-HSD in fish liver and the 

subsequent modulation by an estrogen mimic. The teleost liver is not a typical steroid 
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producing organ, but rather a steroid metabolizing organ. Therefore, the physiological role or 

consequences of NP-mediated expression of aromatase-isoforms, StAR and 3β-HSD in 

salmon liver is yet to be established. Nevertheless, the induction of steroidogenic enzymes 

and proteins are highly tissue- and cell-type specific and is controlled by different promoters 

and second messenger pathways. These pathways may provide various targets for interaction 

with xenobiotics and studies. Even though the expression of steroidogenic enzymes and 

proteins in fish hepatic tissues has been established the functional role of steroidogenesis yet 

to be recognized (Wang and Ge, 2004; Zhou et al., 2005). 

 In general, the targeted SalArray gene chip demonstrated that exposure of salmon to 

NP singly or in combination with PCB77 produced differential gene expression pattern in 

salmon liver. Array analysis showed that exposure of hepatocytes to NP mainly altered genes 

involved in the estrogenic pathway, including genes involved in steroid hormone synthesis 

and metabolism. The anti-estrogenic properties of PCB77 were demonstrated in the array 

analysis as genes induced by NP were decreased by PCB77. To study the effects of PCB77 on 

ER-mediated transcription, hepatocytes were treated for 48 h with tamoxifen (Tam; 1 μM) 

and ICI182, 780 (ICI; 1 μM). The effect of AhR on ER-mediated transcription was 

investigated by blocking AhR activity with α-naphthoflavone (ANF; 0.1 and 1 μM). 

Quantitative real-time PCR confirmed the changes in expression of ERα, ERβ, Vtg, Zr-

protein and vigilin for the ER-pathway and AhR2α, AhR2β, AhRR, Arnt, CYP1A1, UGT1 as 

well as a 20S proteasome β-subunit for the AhR-pathway. We found that exposure to NP and 

PCB77 both singly and in combination produced gene expression patterns that were 

negatively influenced by individual receptor antagonist. PCB77 caused decreased ER-

mediated gene expression and NP caused decreased AhR-mediated responses. Inhibition of 

AhR with ANF did not reverse the effect of PCB77 on ER-mediated transcription suggesting 

that AhRs do not have a direct role on PCB77-mediated decreases of ER-mediated responses. 

In contrast, the inhibition of ER with Tam and ICI reversed the transcription of AhR-mediated 

responses (except AhRR). Taken together, the findings in the present study demonstrate a 

complex mode of ER-AhR interaction, possibly involving competition for common co-factors. 

This complex mode of interaction is further supported by the observation that the presence of 

ER-antagonists potentiated the transcription of AhR isoforms.  
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Modulation of Estrogen Receptor signalling pathway 

The xenobiotic effects on the expression patterns of ERα, ERβ, Vtg, Zr-protein and vigilin 

were investigated with qPCR, while Vtg and ERα were analysed using immunochemical 

detection techniques (ELISA and Western immunoblots, Paper I and V, respectively). In 

classical endocrinology, it is assumed that estrogens and their mimics mediate their effects in 

liver through binding to the ERs. In teleost species ER mediates the expression of several 

genes involved in growth and development, including Vtg and Zr-protein. We investigated the 

effects of exposure to EE2 in salmon and to NP on primary hepatocytes of trout and salmon 

(Paper I-V).  

Three ER-isotypes (ERα, ERβ and ERγ) have been described (Matthews and 

Gustafsson, 2003; Sabo-Attwood et al., 2004). The specific functions of each receptor 

isotypes are still not clarified in teleost species. However, the receptor expression patterns 

varies between different tissues, life stages and hormonal or toxicological exposures (Sabo-

Attwood et al., 2004). ERα and ERβ exhibit differences in their transcriptional responses to 

EE2 and NP (more so for salmon ERs; Paper III-V), indicating isotype-specific differences 

in the ER LBD (Barkhem et al., 1998). The ERs have two activation domains, namely a 

constitutive activation function-1 (AF-1) and a hormone dependent (AF-2) domain. These two 

domains function in synergy but may also function independently in certain cell and promoter 

context (Nilsson et al., 2001). The ERβ mRNA expression pattern in salmon (Paper III- V) 

did not parallel that of ERα, Vtg or vigilin. Furthermore, the intrinsic transcriptional activity 

of ERβ in liver was minimal compared to ERα (Paper IV and V). For example, a human 

variant of ERα(-) Ishikawa endometrial cell line were unresponsive to E2, despite their 

expression of ERβ, reflecting the low transcriptional activity of ERβ, compared to ERα 

(Shipley and Waxman, 2006).  

In fish, the responses of target genes are directly dependent on the cellular ER 

concentration (Specker and Sullivan, 1994; Navas and Segner, 2006). The ERs are the rate 

limiting transcription factor for mediating estrogenic responses (Arukwe et al., 2001a). While 

minor alterations in ERα and ERβ expression levels were observed in liver of salmon exposed 

to EE2 for 3 and 7 days (Paper I), the expression levels of ERα increased in response to NP 

in trout and salmon primary hepatocyte cultures and of ERβ in trout hepatocytes (paper II-V). 

As described in paper I, a possible EE2 masking of effects on ER expression levels was 

suspected.  
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Exposures of salmon hepatocytes to NP produced a substantial ER expression after 12 

h, and thereafter, slight increases were observed at 24, 48 and 72 h post-exposure (Paper IV 

and V). The genes encoding the ER are constitutively expressed to produce basal levels of the 

receptors sufficient for maintaining its own expression (Flouriot et al., 1996). The ER 

expression levels are therefore auto-regulated. An increase in E2 levels requires additional 

receptors for activation of target genes. Thus, a rapid expression of ERs is brought about by 

binding of ERs to EREs upstream the ER gene (Pakdel et al., 1997; Yadetie et al., 

1999),resulting in the availability of sufficient ER levels for initiating oogenic protein gene 

regulations. However, complete regulation of oogenesis includes a complex biochemical 

network involving the HPGL-axis feedback process (Arukwe and Goksøyr, 1998).  

Analysis of cellular ERα protein levels was performed by western blotting using antiserum 

against human ERα (hERα). Our data showed a protein band of approximately 68 kiloDalton 

(kDa) in control and exposed samples (Paper V). The rabbit-anti-hERα antiserum was 

generated against amino acids 154 -171 that correspond to the DNA binding C-domain of 

human ER1 (Accn no. NM000125) (Sabo-Attwood et al., 2004). The use of hERα in 

detecting salmon ERα by immunoblotting was evaluated by aligning human and salmon ERα 

amino acid sequences (Figure 12). There is a high degree of conservation between the amino 

acid sequences of Atlantic salmon and human in the DB-domain. Given the high degree of 

conservation in thatn domain, antisera generated for hERα is suitable for detecting ERα from 

several vertebrate species, including Atlantic salmon, Rainbow trout, zebrafish (D.rerio), 

African clawed frog (X. laevis) and Chicken (Gallus gallus). Furthermore, the hERα antibody 

will probably detect the salmon ERβ due to their amino acid sequence similarities (see Figure 

11).  

Our data showed increased levels of ER mediated gene expression (Vtg, Zr-protein, 

ERα, ERβ and vigilin) as well as increased plasma Vtg and cellular ERα protein levels after 

treatment with EE2 and NP (Paper I-V). Vtg and Zr-protein are biomarkers of exposure to 

estrogenic chemicals and the responses observed in this study are in accordance with previous 

reports (Arukwe and Goksøyr, 1998; Celius et al., 2000; Fossi et al., 2002; Meucci and 

Arukwe, 2005). The induction of vigilin by NP in salmon hepatocytes (Paper III-V) supports 

its role of maintaining cellular Vtg mRNA levels before translation. The stability of liver Vtg 

mRNA is regulated by binding of vigilin to the 3’-untranslated region (3´-UTR) segment of 

Vtg mRNA, thereby obstruct mRNA degradation (Dodson and Shapiro, 2002). The regulation 

of the ERs and their downstream products share important common features, but they exhibit 
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striking differences in their transcriptional kinetics in response to estrogens reflecting 

different sensitivities to the liganded ER (Flouriot et al., 1996). For example in Paper III, a 3-

fold increase in ERα expression and a 35-fold Vtg expression were observed after exposure of 

hepatocytes to NP. A slight increase in cellular ER protein levels will promptly increase the 

expression of numerous gene products (including Vtg).  

 

DBDDBD

 
 
Figure 11. Protein sequences representing amino acids of the DNA binding domain (DBD) for the estrogen 

receptor alpha (ERα) for S.salar, O.mykiss, D.rerio, X.laevis and G.gallus aligned with the human ERα 

(Accession no. NM_000125). The DBD is indicated with black lines and the sequence used for antibody 

synthesis (hER aa 154-171) is boxed in red.  

 

For mechanistic evaluations, ER antagonists (Tam and ICI) were used for 

investigating the involvement of ER in ER-AhR interactions (Paper III and V). A unique 

aspect of both ER isoforms is that the partial and absolute ER antagonists (Tam and ICI, 

respectively) produced significant decreases of the expression pattern in presence of NP 

(Paper III). In teleost species, the expression profile of ERα and ERβ shows that both 

isoforms are expressed in fish liver (Sabo-Attwood et al., 2004) with different binding 

capacity and ability to induce transcription of E2-mediated genes (Menuet et al., 2004). The 

results in paper III confirmed the different potency of the ER antagonists. For example, Tam 

partially and ICI completely inhibited ERα, ERβ, Vtg and Zr-protein mRNA expression in 

hepatocytes. While Tam inactivates the ligand dependent AF2-domain and leaves AF-1 active, 

ICI completely inactivates both the AF1- and AF2-domains and mediates degradation of the 

receptor protein (Wormke et al., 2003). Thus, the result indicates that the ER mediated 

expressions are not simply controlled on the transcriptional level. For example, while the 
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absolute ER antagonist (ICI) reduced the ERα mRNA and ERα protein levels at 12 h 

postexposure, the ERα mRNA and protein levels were different at 24 and 48 h post-exposure 

(Paper V).  

 

Modulations of AhR and downstream responses 

The evaluation of AhRs and their donstream regulated responses was focused at the 

transcriptional level and activity levels (Paper I). Primary hepatocytes retain inducible 

expression of genes in xenobiotic transformation pathways (Segner, 1998). The interpretation 

of data concerning the AhR and its role in toxicology is complex. The complexity of the AhR 

regulation include 1) expression of several AhR genes in salmon, 2) the rapid degradation of 

AhR proteins in response to ligand activation and 3) the involvement of AhR in endogenous 

pathways. Comparative genomic analyses of sequenced genomes have revealed that AhR 

genes are more diverse in non-mammalian vertebrates compared to mammalian species (Hahn 

et al., 2006). In several fish species, both AhR1 and AhR2 genes have been characterized. For 

example, AhR2α, AhR2β, AhR2γ and AhR2δ are the four distinct AhR2 genes in salmonids 

species (salmon and rainbow trout). In addition, salmon genome contains two genes of AhR1, 

which are presumably non-functional (Hansson et al., 2003; Hansson et al., 2004). It has been 

suggested that rainbow trout AhR2α and AhR2β differ in their promoter preference and may 

regulate distinct sets of genes (Abnet et al., 1999). In salmon hepatocytes exposed to PCB126, 

apparently similar expression patterns were observed for the phylogenetically related AhR2γ 

and AhR2δ isotypes (Figure 12), in contrast to the different expression patterns observed for 

AhR2α and AhR2β (Paper V and Figure 12). Specifically, AhR2α mRNA expression did not 

show PCB126 related expression, AhR2β showed a pattern that was concentration-specific 

(increasing above control at 1 and 50 pM PCB126, and decreasing below control at 10 pM 

PCB126). In contrast, while 1 pM PCB126 decreased both AhR2δ and AhR2γ (total 

inhibition for AhR2γ), 10 and 50 pM PCB-126 had indifferent effect on these AhR variants 

(Fig. 12). Interestingly, while AhR2β mRNA expression maintained the effect from PCB126 

exposure alone, in the presence of NP; the AhR2α, AhR2δ and AhR2γ showed a reducing 

trend in the presence of NP. Thus, a hypothetical evaluation of the salmon AhR genes 

suggests that different isoforms may have different ligand-dependent and -independent 

functions in responses to environmental stresses/stressors and during development. 
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Figure 12. Expression of AhRα (A), AhRβ (B), AhRδ (C) and AhRγ (D) mRNA in salmon hepatocytes exposed 

to NP (5 and 10 µM) and PCB126 (1, 10 and 50 pM) singly or in combination. Cells were harvested 48 h post-

exposure and mRNA levels were quantified using real-time PCR with gene specific primer pairs. The data are 

given as percentage (%) of solvent control ± standard error of the mean (SEM: n=3). Different letters denote 

exposure group means that are significantly different for the respective mRNA expression using ANOVA 

followed by Tukey's multiple comparison test (p<0.05). No mRNA transcripts were detected in samples labelled 

“nd”. 

 

Nevertheless, it should be noted that in paper II, we investigated the mRNA 

expression of AhR2α and AhR2β mRNA in rainbow trout hepatocytes where the receptors 

showed a complex expression pattern in response to PCB77 treatment. The primer pairs used 

in Paper III were designed based on sequences published on Rainbow trout  (AhRα; 

AF065137 and AhRβ; AF065138) in a study by Abnet and colleagues (1999) where AhR2α 

and AhR2β were able to activate XRE driven reporter genes after exposure to TCDD. 

Unfortunately, the names published in GenBank were AhRα and AhRβ and not AhR2α and 

AhR2β. Therefore, erroneous designations for these receptors were used in paper I, II, III 

and IV. Due to the conserved nucleotide sequences between Rainbow trout and Atlantic 

salmon, the same analytical setups were used to quantify the AhR2α and AhR2β mRNA in 

samples from Atlantic salmon (Paper I, III, IV and V). Quantification of AhR1 expression 

was not conducted since the AhR1 clade is not functional in zebrafish and is primarily 
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expressed in brain, gonad and heart in F.heteroclitus (Andreasen et al., 2002; Hahn et al., 

2006).  

The role of the AhR as a ligand-dependent transcription factor for genes in the 

biotransformation pathways is well known (Hahn, 1998; Gu et al., 2000). The activation of 

the receptor, dimerization and binding to the XRE has been studied in AhR deficient mice, 

yeast-two-hybrid-systems (Y2H) and binding affinity studies after TCDD exposures (Klinge 

et al., 1999; Beischlag et al., 2002; Suzuki and Nohara, 2007). The transcriptional expression 

analysis presented in this thesis does not indicate direct regulation of the AhRs in response to 

the AhR-agonists used in the different experiments (Paper I-V). For example, minor changes 

in AhR2α mRNA expression were observed in hepatocytes exposed to PCB77 or PCB126 

alone (apparently concentration dependent for PCB77; Paper IV). On the other hand, the 

AhR2β transcription was altered in a random manner that reflects exposure condiotion and 

time (Paper II, IV and V). Transcriptional increases and decreases at certain AhR ligand 

concentrations were observed, exemplified by the decrease in cells exposed to 0.01 µM 

PCB77 (Paper IV) and 10 and 50 pM PCB126 (Paper V). Our findings are in accordance 

with previous studies in fish showing conflicting results in ligand-dependent AhR expression 

patterns. For example, in zebrafish embryo and liver cell line, TCDD induced a dose-

dependent increase of AhR2 mRNA expression (Tanguay et al., 1999). Similar effects were 

also observed in rainbow trout where the AhR2 and AhR2β were elevated in gonadal cell line 

and kidney tissue (Hahn, 1998). In addition, these authors did not observe increases in mRNA 

expression of either AhR2 or AhR2β mRNA after TCDD exposure in rainbow trout liver or 

spleen (Abnet et al., 1999). Elsewhere, TCDD or PCB77 doses did not affect transcriptional 

changes of AhR2 mRNA expression in Atlantic tomcod liver (Roy and Wirgin, 1997).  

We speculate that the concentration-specific up- and down-regulation of AhR mRNA 

levels observed in paper I-V could reflect a possible mechanism of receptor regulation that is 

influenced by chemical concentration and/or individual receptor function. In rodent liver 

exposed to TCDD, a rapid down-regulation of AhR mRNA was observed and thereafter 

followed by a gradual up-regulation that paralleled AhR protein. This effect was suggested to 

be due to proteasome mediated degradation through the ubiquitin-proteasomal pathway 

(Pollenz and Buggy, 2006). Degradation of AhR by 26S proteasome was shown be AhR-

ligand dependent and this was stronger for compounds with higher affinity to the AhR 

(Wormke et al., 2003; Alarid, 2006; Pollenz and Buggy, 2006). In paper III and IV we 

quantified the 20S proteasome subunit mRNA showing that exposure to AhR ligand alone did 
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not alter the mRNA expression. The choice of proteasome was based on its differential 

expression pattern on our subtractive cDNA library after exposure to ER- and AhR-agonists 

(Paper III). In the absence of proteasome activity measurement, the proteasome degradation 

pathway cannot be ruled out at this time. 

Exposure of hepatocytes with the synthetic flavonoid 7,8-benzoflavone (α-

naphthoflavone; ANF) significantly decreased the AhR mRNA expression, more so for the 

higher ANF concentration (Paper III). In mammalian cell lines, ANF is found to compete 

with TCDD for cytoplasmic AhR binding, leading to reduced AhR availability for TCDD 

followed by decreased CYP1A mRNA levels and enzyme activity (Merchant et al., 1990). 

The results from paper III indicate that the ANF not only competes with TCDD for 

cytoplasmic AhR binding, but also down-regulates AhR transcription.  

The AhR dimerization partner Arnt is a multifunctional protein; In addition to its 

function as a dimerization/activation partner for several bHLH-PAS proteins, it is found to be 

a co-factor for other nuclear transcription factors including the ERs (Gu et al., 2000; Wormke 

et al., 2000a; Brunnberg et al., 2003). Due to the multiple roles of Arnt, only minor alterations 

in Arnt mRNA expression are expected in response to xenobiotic exposures (Gu et al., 2000; 

Brunnberg et al., 2003). The Arnt expression patterns observed in paper III and IV showed 

that PCB77 exposure first induced Arnt at low concentrations and thereafter a concentration-

specific decrease was observed. Unlike the AhR, Arnt protein levels is not degraded in 

response to TCDD exposure (Pollenz, 1996) and in cells exposed to the more potent AhR 

agonist, PCB126, a concentration dependent increase of Arnt mRNA levels is observed 

(Paper V). However, on the basis of sequence homology with one of the ER co-factors 

(p160), it was shown that Arnt functions as a co-activator of ER and this effect was due to the 

C-terminal domain and not the conserved bHLH or PAS domains (Brunnberg et al., 2003). In 

addition, although the Arnt contains a less complex activation domain compared to AhR, the 

activation domains of AhR and Arnt are located in the carboxy-terminal of both genes 

(Sogawa et al., 1995). During CYP1A1 (and other genes) activation, the Arnt activation 

domain does not contribute to the activation of AhR complex (Ko et al., 1996). The 

transcription of several genes are activated through the AhRs and these genes contain one or 

several XREs in their upstream promoter region (Zeruth and Pollenz, 2007). We investigated 

the expression patterns of AhRR, CYP1A1, UGT1 and GSTpi type, all of which are 

controlled by AhRs (Paper I-V). The consistency between AhRR, CYP1A1 and UGT1 

(UDPGT) expression patterns suggests that this repressor singly may have caused the 

decrease in CYP1A1 and UGT1 levels (Paper IV). The AhRR-Arnt heterodimerization may 
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negatively regulate AhR driven gene expression through transcriptional repression (Karchner 

et al., 2002). In accordance with our data, the modulation of CYP1A1 by NP, E2, and BNF 

was recently shown to parallel the AhRR gene expression (Maradonna et al., 2004). This is 

supported by the fact that the bHLH-PAS proteins usually associate with each other to form 

heterodimers, AhR/Arnt or AhRR/Arnt, and bind the XRE sequences in the promoter regions 

of the target genes to regulate their expression. CYP1A1 is a well known biomarker for 

xenobiotic exposure and its induction is measured on the transcriptional level, the protein 

level and the enzyme activity is measured by the EROD activity (Mortensen and Arukwe, 

2007). Our data show that AhR ligands (PCB77 and PCB126) induced CYP1A1 gene 

expression in an apparent time-specific (Paper IV) and concentration-dependent (Paper II, 

III and V) manner. In paper II, the expression of a single CYP1A1 transcript was verified 

using northern blotting. The presence of mRNA transcripts is not synonymous with increased 

biotransformation capacity which could be measured with the EROD assays (Arukwe et al., 

2001b). However, the quantity of CYP1A1 mRNA transcripts is an excellent indicator of 

activated AhR after xenobiotic exposures. Quantification of UGT1 and GST is frequently 

used for monitoring the activity of the xenobiotic metabolism after xenobiotic exposures (Xu 

et al., 2005). The expression of UGT1 generally paralelled CYP1A1 in PCB77 treated cells, 

but with a lower induction rate of UGT (Paper III and IV). However, in treatment scenarios 

involving complex mixtures (PCB77 and NP in combination) the expression pattern of UGT1 

diverged from that of CYP1A1.  

 

Bi-directional ER-AhR Interactions 

AhR-mediated anti-estrogenicity 

Anti-estrogenic effects of AhR agonists have been described in breast cancer cells, rodent 

uterus and mammary tumours (Safe et al., 1991). In fish, exposure to AhR agonists has been 

associated with reduced Vtg synthesis or impaired gonad development in both in vivo- and in 

vitro studies (Anderson et al., 1996; Arukwe et al., 2001b; Navas and Segner, 2006). Results 

obtained in the thesis show that exposure to AhR agonists produced anti-estrogenic effects by 

decreasing the mRNA expression of ER-responsive genes (Paper II, III and IV). In paper 

IV, we showed that PCB77 decreased the expression of NP-induced transcription of ERα, 

Vtg and Zr-protein in a concentration- and time-specific manner. Additionally, we found that 

the anti-estrogenic effects of the AhR agonist PCB77 were evident at several concentrations 
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from 0.001 µM to 10 µM (Paper II and IV). Results from paper III showed that while the 

partial inhibition of AhR with α-ANF did not reverse the effect of PCB77 on ER-mediated 

transcription, treatment of cells with ER antagonists (Tam and ICI) reversed the transcription 

of AhR-mediated responses. These data indicate that the anti-estrogenicity observed after 

PCB77 treatment is not caused by the AhRs alone but includes other mechanisms. 

The anti-estrogenic effects of AhR agonist have proven to be tissue specific. Results 

obtained using one specific cell type (e.g. breast cancer cell line) may not be achieved when 

another cell line is used (Franc et al., 2001). Mechanistic studies on hepatocytes are valuable 

in toxicology since hepatocytes are central in detoxification as well as vitellogenesis in 

oviparous organisms (Smeets et al., 1999; Navas et al., 2004). The suppression of Vtg-protein 

by AhR-agonist is comparable to their order of potency to induce CYP1A1 (Smeets et al., 

1999). In paper II, we observed a direct negative relationship between CYP1A1 and ERα (r2 

=-0.55), ERβ (r2 =-0.27), Vtg (r2 =-0.33) and Zr-protein (r2 =-0.60). Since increased CYP1A1 

expression is mediated through the ligand activated AhR, PCB77 mediated anti-estrogenicity 

is probably dependent on binding of ligand to AhR. Increased CYP1A1 mRNA expression is 

synonymous with increased CYP1A1 protein levels but not necessarily enzyme activity 

(Mortensen and Arukwe, 2007). Therefore, it is not likely that PCB-mediated anti-

estrogenicity involves the CYP1A1 protein directly, but the effects are mediated through 

activated AhR-Arnt complexes. This statement is supported by data from Ohtake et al. (2003) 

that demonstrated the interactions between activated AhR-Arnt complex with unliganded ER 

in 3-MC treated cells and data from Klinge and co-workers (2000) showing that AhR 

interacted directly with ERα in a ligand specific manner.  

The presence of ERs is required in AhR mediated transcription via XREs (Matthews et al., 

2007). A shortage of available ERs would result in a negative relationship between AhR-

mediated (CYP1A1 and UDG1) and ER-mediated (Vtg and Zr-protein) gene products. Hence, 

we suggest that AhR does not have a direct role in PCB mediated anti-estrogenicity, but 

involves competition between the AhR- and estrogenic pathways for ER proteins and/or other 

cofactors. This is supported by our findings that the ER agonists Tam and ICI further 

potentated PCB77 mediated anti-estrogenic effects (Paper III). Contrasting results were 

presented by Nodland and co-workers (1997) where cells constitutively expressing ERs 

showed TCDD inhibited Vtg expression. We suggested that the observed anti-estrogenic of 

PCB77 exposure could be caused by mechanisms that interfere with the mRNA stability of E2 

responsive gene products (Paper II). AhR agonists could also be involved in regulating post 
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transcriptional events such as degradation and stabilisation of mRNA species (Flouriot et al., 

1996). Possible roles and mechanisms of AhR induced mRNA destabilisation is reviewed by 

(Dodson and Shapiro, 2002). However, the expression of vigilin mRNA follows a parallel 

pattern of Vtg expression (Paper III-IV). Since PCB77 alone does not decrease vigilin 

mRNA (Paper IV), we assume that the role of Vtg mRNA stability is not a major contributor 

in observed AhR-mediated anti-estrogenicity.  

 

ER-hijacking by activated AhR-Arnt complex 

Generally, the molecular mechanisms behind estrogen-related effects of typical AhR agonists 

appear to involve ER-AhR crosstalk. However, there is no universal mechanism of ER-AhR 

interaction that is generally accepted as the mode-of-action for these chemicals. The fact that 

some AhR agonists induce endometriosis and estrogen-dependent tumors indicates that they 

may possess estrogenic activities (Ohtake et al., 2003). In paper V, we show that PCB126 

activated mRNA transcription for ERα and its controlled genes (Vtg and vigilin) and proteins 

(ERα) in the absence of ER agonist. These findings are comparable with previous data from 

our laboratory demonstrating a positive effect of AhR agonists on estrogenic responses in 

salmon liver (Arukwe et al., 2001b). In addition, the findings of PCB126 mediated activation 

ERα response is also in accordance with recent reports demonstrating similar effects in 

mammalian in vitro systems (Pearce et al., 2004; Abdelrahim et al., 2006; Liu et al., 2006). 

We therefore concluded that the AhR agonist mediated anti-estrogenic activities that have 

been well documented in mammalian cell systems and some fish studies might be an 

exception rather than the rule for these chemicals.  

The first experiment was conducted to investigate the AhR-ER interactions using a 

potent and dioxin-like AhR agonist (PCB126) and a xenoestrogen (NP) showing that PCB126 

induced estrogenic responses above NP and control levels. To examine the involvement of 

ERs on these interactions, we conducted another experiment using ICI as antagonist for ERs. 

The results of experiment 2 showed elevated ERα and Vtg mRNA and protein levels (ERα) 

after exposure to PCB126 alone (Paper V). These responses were decreased in the presence 

of ICI at 12 and 24 h, indicating the involvement of ERα. However, the findings in 

experiments 1 (performed for only 48 h) and 2 (at 48 h) showed discrepant data for the 

investigated variables). There are conflicting reports on the direct activation of ER by AhR 

agonists. For example, while TCDD and PCB77 were shown to elicit estrogenic responses via 

direct ER binding (Nesaretnam et al., 1996), other studies showed that PCB77 did not produce 
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estrogenic responses (Ramamoorthy et al., 1999), and TCDD does not bind the ER (Klinge et 

al., 1999). Therefore, the “ER-hijacking” mechanism involving the activation of unliganded 

ER by ligand-activated AhR or a coactivator relationship between these signalling pathways 

was proposed (Ohtake et al., 2003).  

Experiment 1 was performed using saltwater adapted fish (in the autumn) under a 48 h 

fixed time interval that was chosen based on previous experiments that showed a stable 

culture condition and optimal response time in our laboratory (Paper IV). The stronger 

stimulation of Vtg and ERα expression in experiment 1 probable reflects different 

composition of endogenous and exogenous substances and physiology of the experimental 

fish since experiment 2, utilized hepatocytes isolated from freshwater adapted salmon (in the 

winter). The variation of timing and degree of ER stimulation observed in the experiments in 

the present study are in agreement with previous results showing that Atlantic salmon 

produced seasonal pattern of xenoestrogen response that are influenced by dose and 

sequential order of exposure to PCB77 and NP, singly or in combination (Arukwe et al., 

2001b). In addition, the estrogenicity of AhR agonists is shown to be both cell and tissue 

specific in mammalian systems (Nesaretnam et al., 1996; Ohtake et al., 2003; Boverhof et al., 

2006). 

 

Modulation xenobiotic biotransformation pathway 

The xenobiotic metabolizing system involves important biological processes that may be 

subject to chemical disruption. With basis in the previously discussed ER-AhR interactions, 

we have to consider whether the interactions between the AhR and ER involve bi-directional 

crosstalk. In paper I, we investigated the in vivo effects of EE2 on hepatic phase I and II 

biotransformation and estrogenic pathways. In fish the estrogenic potency of EE2 is 10-50-

fold higher than that of 17β-estradiol and estrone most likely due to its longer half-life and 

tendency to bioconcentrate (650- and 10,000-fold in whole-body tissues and bile, respectively) 

(Larsson et al., 1999; Segner et al., 2003).  Previously the effects of EE2 on fish have been 

investigated in liver, brain and gonad (Brown et al., 2004; Katsu et al., 2007; Larkin et al., 

2007). The expression of Vtg and Zr-protein mRNA showed concentration dependent 

increases at day 3 post exposure. The effects on the ER mediated gene expression patterns in 

liver were minor, reflecting the organism’s ability to biochemically buffer xenobiotic 

exposures (Brandon et al., 2003). The expression patterns of genes involved in AhR mediated 

transcription showed concentration specific responses to EE2 exposures (Paper I).  
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The expression of CYP1A1 is dependent on gender and season (Forlin and Haux, 1990) 

and EROD activity has been shown to decrease with increasing cellular E2 levels during 

sexual maturation in fish (Navas and Segner, 2000b). Additionally, environmental pollutants 

known to mimic the actions of estrogen (like NP) modify the responses of several CYP-

isozymes in both hepatic and extra-hepatic organs of fish (Arukwe et al., 1997a; Navas and 

Segner, 2000b). In paper II, we observed that NP decreased PCB77 induced CYP1A1 

transcription in Rainbow trout hepatocytes.  While exposure of salmon hepatocytes to NP 

alone did not alter the transcription of genes in the AhR pathways compared to solvent control, 

NP had a negative effect on PCB77 and PCB126 induced transcription of genes involved in 

phase I and II reactions (Paper III-V). Previously Arukwe and co-workers (Arukwe et al., 

1997a) reported negative effects on phase I and phase II enzyme activities (EROD and UGT-

assays) in microsomal fractions of salmon treated with NP The anti-AhR signalling effects of 

NP could be due to direct binding of NP to the CYP1A1 protein leading to inhibition of 

EROD activity. In Atlantic cod, NP was a potent inhibitor of EROD activity and CYP1A1 

protein levels (Hasselberg et al., 2004). However, NP binding to the CYP1A1 enzyme would 

only explain decreases in EROD activity and not the decreased CYP1A1 mRNA 

concentrations. Our results indicate that the ER-NP complex interferes with the AhR 

transcriptional machinery either directly by binding to EREs in proximity of XREs or 

indirectly by protein-protein interactions. Several XRE controlled genes have complete or 

partial EREs within their 5’promoter regions (Matthews et al., 2007). The requirement for ER 

in AhR mediated transcription is supported by the results presented in paper IV, as treatment 

of cells with Tam or ICI reversed the negative NP effects on AhR mediated transcription. 

Additionally both Tam and ICI alone significantly reduce the basal CYP1A1 mRNA levels in 

salmon hepatocytes (unpublished results). These results together with recent reports on ER-

requirement in AhR-mediated transcription (Matthews et al., 2007), indicate bi-directional 

AhR-ER crosstalk. However, the complete mechanism by which estrogenic compounds 

regulate the CYP system is still not fully elucidated.  
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Concluding remarks 

The anti-estrogenic effects of xenobiotic compounds, which induce synthesis of CYP1A, have 

been demonstrated in both in vivo and in vitro studies. The potent dioxin-like AhR agonists 

PCB77 and PCB126 were used in combination with the ER-agonist NP to investigate the 

AhR-ER interactions. Pharmaceuticals are ubiquitous pollutants in the aquatic environment 

where their potential effects on non-target species like fish have only recently become subject 

of systematic investigations. In paper I, we investigated the effects of a synthetic 

pharmaceutical and endocrine disruptor EE2 on phase I and II biotransformation system and 

hormonal responses in the liver of juvenile salmon. The effect of EE2 on the CYP1A1 gene 

expressions paralleled EROD activity and AhRR mRNA, suggesting a direct role of EE2 in 

controlling the cellular detoxification machinery. The findings showed that EE2 also induced 

variations in hepatic biotransformation and hormonal response pathways in fish.  

Generation of a toxicological cDNA library of clones containing differentially 

expressed genes from Atlantic salmon separately exposed to ER and AhR agonists was 

accomplished using suppressive subtractive hybridization (SSH). A targeted gene array 

(SalArray) was developed based on the clones in the cDNA library (Paper III). Using the 

targeted SalArray, we demonstrated that exposure of salmon to the ER agonist NP singly or in 

combination with the AhR agonist PCB77 produced differential gene expression patterns in 

salmon liver. Array analysis showed that exposure of hepatocytes to NP mainly altered genes 

involved in the estrogenic pathway, including genes for steroid hormone synthesis and 

metabolism. The anti-estrogenic properties of PCB77 were demonstrated in the array analysis 

as genes induced by NP were decreased by PCB77. Overall, our targeted array was a valuable 

tool for diagnostic screening and generation of new hypothesis that is currently under 

empirical evaluation in our laboratory. 

Most mechanistic events in toxicology are remote from direct observation in vivo. 

Hence, examinations of molecular mechanisms involved in ER-AhR interactions were 

conducted on primary hepatocyte cultures of trout and salmon. While a clear pattern of 

negative effects on ER-mediated gene expression were found in hepatocytes exposed to the 

AhR agonist PCB77 (Paper II-IV), exposure of cells to the more potent dioxin-like AhR-

agonist PCB126 induced transcriptional activation of ERα and estrogenic responses in the 

absence of ER-agonists (Paper V). Thus, the direct estrogenic actions of PCB126 observed 

contribute with new insight of the mechanisms involved in ER-AhR crosstalk, prompting a 
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new wave of discussion on whether AhR-mediated anti-estrogenicity is an exception, rather 

than a rule of action.  

Exposure of hepatocytes to NP and PCB77 both singly and in combination produced 

gene expression patterns that were negatively influenced by individual receptor antagonists. 

PCB77 caused decreased ER-mediated gene expression, and NP caused decreased AhR-

mediated responses. In paper III, inhibition of AhR with ANF did not reverse the effect of 

PCB77 on ER-mediated transcription suggesting that AhRs do not have a direct role on 

PCB77-mediated decreases of ER-mediated responses. In contrast, the inhibition of ER with 

Tam and ICI reversed the transcription of AhR-mediated responses (except AhRR). Taken 

together, the findings in paper III demonstrate a complex mode of ER-AhR interaction, 

possibly involving competition for common cofactors. This complex mode of interaction is 

further supported by the observation that the presence of ER antagonists potentiated the 

transcription of AhR isoforms and their mediated responses when PCB77 was given alone.  

The results indicated that the anti-estrogenicity observed after PCB77 treatment is not 

caused by the AhRs alone, but probably includes other mechanisms. Expression analysis of 

AhR isotypes show that the cellular AhR levels are not regulated as a direct response to 

agonist concentrations (Paper II, III and V). A hypothetical evaluation of the salmon AhR 

genes suggests that different isoforms may have different ligand-dependent and -independent 

functions in responses to environmental stress and during development. This hypothesis was 

supported by the observation that in salmon hepatocytes exposed to PCB126 (singly and in 

combination with NP), apparently similar expression patterns were observed for the closely 

related AhR2γ and AhR2δ isotypes, in contrast to the different expression patterns observed 

for AhR2α and AhR2β.  

The ability of ER and AhR to influence each others transcriptional activity appears to 

involve multiple factors. Supported by previously published results, our results suggest that 

ER concentrations play a role in mediating this cross-talk and they verify a bi-directional 

crosstalk between the ER and AhR receptors in Atlantic salmon hepatocytes. The findings of 

this thesis demonstrate a complex mode of ER-AhR interactions that is dependent on time, 

endogenous substances and the individual chemical. We have not uncovered a universal 

mechanism that can explain the mode of action, but the results presented in this thesis 

contribute with novel knowledge on ER-AhR interactions in teleost fish. We propose that the 

total outcome of chemical mixture exposure scenarios is dependent on toxicological factors 

(e.g. relative concentration relationship between the ER and AhR agonists), endogenous 

factors (e.g. composition of cell metabolites and proteins) and physiological factors (e.g. 
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tissue type, developmental stage) and seasonal changes  (autumn vs. winter). Hence, the 

complex nature of chemical interactions in biological systems may have more adverse effects 

on the health, fitness and reproduction than previously anticipated. 

Future perspectives 

The data from this thesis has contributed with novel understanding on ER-AhR interactions in 

teleost fish and there is general appreciation showing no universal mechanism(s) to explain 

the mode of action, most likely because there is no such universal mechanism. It should also e 

appreciated that the total outcome of chemical mixture exposure scenarios is dependent on 

toxicological, physiological and environmental factors. Given that an integral aspect of the 

data presented here was centred on transcript expression, the role of protein modification still 

remains uncertain. Therefore, an immediate future studies on AhR-ER interactions in Atlantic 

salmon are being pursued in our laboratory. The focus will be on the interactions between 

AhR and ER proteins and their ability to mediate gene expressions or transcript stability. We 

are investigating nuclear receptor degradation in response to AhR-ligand treatments of 

hepatocytes. Exposure to AhR ligand induces proteosomal degradation of nuclear receptors 

via the ubiquitin-proteasomal pathways. To test the mechanistic role of AhR on the PCB126-

mediated estrogenicity, we are using chemicals that inhibit protein synthesis (cycloheximide), 

proteasome degradation (MG132) and inhibit AhR (3',4'-dimethoxyflavone: 3',4'-DMF) in an 

in vitro system. This study will uncover the involvement of AhR-induced proteasomes in 

controlling the ER and AhR protein levels in salmon hepatocytes.  

One important question concerning the mechanisms behind AhR-ER crosstalk in fish 

is how the receptors interact with each other or cofactors, particularly at the promoter region. 

Future studies will evaluate the direct interaction between ER and AhR in in vitro using cells 

constitutively expressing labelled recombinant salmon ERs and/or AhRs. Then, 

immunological methods will be used to evaluate the direct interactions between the receptor 

proteins. Additionally, evaluation of mRNA species stabilisation and degradation via RNA 

inhibition could provide novel explanations for transcriptional changes observed in response 

to xenobiotic exposures. MicroRNAs (miRNAs) are generated by endonucleolytic cleavage of 

hairpin precursor transcripts, miRNAs can inhibit translation of target mRNAs with 

complementory sequences (Baulcombe, 2005). Dissection of the complex relationships 

between miRNAs on one hand and potential mRNA targets on the other should be powerful 

tools for dissecting the potential involvement of miRNA regulation in AhR-ER crosstalk.  
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bstract

Pharmaceuticals are ubiquitous pollutants in the aquatic environment where their potential effects on non-target species like fish has only recently
come subject of systematic investigations. In the present study, experiments were undertaken to examine the effects of a synthetic pharmaceutical
docrine disruptor, ethynylestradiol (EE2), given in water at 5 or 50 ng/L and sampled at days 0 (control), 3 and 7 after exposure, on hepatic phase
nd II biotransformation and hormonal pathways of juvenile salmon using quantitative (real-time) polymerase chain reaction (qPCR), Vtg ELISA
d 7-ethoxyresorufin O-deethylase (EROD) catalytic activity. Our data show that EE2 produced time- and concentration-specific modulation of
trogen receptor isoforms (ER�, ER�) and androgen receptor-� (AR�). EE2 produced a concentration-specific induction of vitellogenin (Vtg) and
na radiata protein (Zr-protein) at day 3 after exposure. At day 7, Vtg and Zr-protein mRNA (and plasma Vtg protein) expression were significantly
creased in the group given 5 ng EE2/L, compared to dimethyl sulfoxide (DMSO) control group. In the xenobiotic biotransformation pathway,
2 produced a significant increase of aryl hydrocarbon receptor-� (AhR�) at day 3 in the group given 5 ng EE2/L and AhR� was decreased at the

me concentration at day 7. While CYP3A was not significantly affected by EE2 exposure, the CYP1A1, AhR nuclear translocator (Arnt) and AhR
pressor (AhRR) mRNA showed an apparent EE2 concentration and time-dependent decrease. The expression of uridine diphosphoglucuronosyl
nsferase (UGT) and glutathione S-transferase class pi-like (GSTpi-like) mRNA were decreased after exposure to 50 ng EE2/L at both day 3 and

after exposure. The effect of EE2 on the CYP1A1 gene expressions paralleled effect on EROD and AhRR mRNA, suggesting a direct role of
2 in controlling cellular detoxification machinery. Interestingly, the carrier vehicle, DMSO produced significant time-dependent induction of

trogenic (ER�, Vtg and Zr-protein) responses, compared with blank (i.e. without DMSO) controls at day 7 post-exposure. The effect of DMSO

tally underscored the observed EE2 effect at day 7 after exposure. In general, these findings support previous reports on the endocrine effects of
2, in addition to effects on hepatic biotransformation system. In view of the data presented here and our recent studies, the use of DMSO as

rrier vehicle in endocrine toxicological experimental studies should be re-evaluated.
2007 Elsevier B.V. All rights reserved.
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Introduction

Ethynylestradiol (EE2) is a pharmaceutical and potent
docrine modulator known to be present in the aquatic
vironment at biologically active concentrations (Rotchell and
strander, 2003; Nash et al., 2004). In sewage treatment work
TW) effluents, steroidal estrogens are believed to, at least

part, be responsible for the feminized responses in some

ild fish species in reports from the United Kingdom (Jobling
al., 2002). The concentration of EE2 reported in effluents
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d surface waters from Europe range between 0.5 and 7 ng/L
arsson et al., 1999) and concentrations of up to 50 ng/L
ve been reported (Aherne and Briggs, 1989). In the United
ates, a survey of 139 streams showed that several rivers had
ncentrations >5 ng/L with an extreme EE2 concentration
to 273 ng/L reported at some riverine sites (Kolpin et al.,

02). Despite the lower EE2 concentrations in surface waters
mpared to natural steroidal estrogens, its estrogenic potency
fish in vivo studies is 10–50-fold higher than that of estradiol-
� (E2) and estrone (E1) (Segner et al., 2003) most likely

e to its longer half-life and tendency to bioconcentrate (650-
d 10,000-fold in whole-body tissues and bile, respectively)
arsson et al., 1999). Although these authors did not observe
y indication of EE2 de-ethynylation, it is possible that bilary

mailto:arukwe@bio.ntnu.no
dx.doi.org/10.1016/j.aquatox.2007.08.004


quati

c

e
e
t
e
-
e
e
-
r
,

r

f
-
e
s
f

l
c
-
s

e
.
e

-
t
t
t
e
-
,
-
r

-

e

-
t
-
c
s

.

-
e

r

r
e
.
-
s
)
-
.

-

-
f

l
t
e

-

l
.
)

-

-

r

t

l

e

114 A.S. Mortensen, A. Arukwe / A

EE2 may produce repeated exposure through enterohepati
circulation and/or enzymatic deconjugation.

The cytochrome P450 (CYP) enzymes play a central rol
in the oxidative metabolism or biotransformation of a wid
range of exogenous and endogenous compounds (Nelson e
al., 1996). Specifically, the CYP1, CYP2 and CYP3 enzym
superfamilies metabolize a wide variety of compounds. Glu
curonidation and conjugation by hepatic uridine diphosphat
glucuronosyltransferase (UGT) and glutathione S-transferas
(GST) are major pathways for the inactivation and elimina
tion of endogenous compounds but also significant for othe
lipophilic compounds such as certain xenobiotics (Leaver et al.
1992). The expression of CYP1A1, UGT and GST are regulated
by the ligand-dependent basic helix–loop–helix–Per–Arnt–Sim
(bHLH–PAS) transcription factor, aryl hydrocarbon recepto
(AhR) through which agonists cause altered gene expression and
toxicity (Bradshaw et al., 2002; Nelson et al., 1996). Because o
their roles in the detoxification and activation of foreign com
pounds, alteration of the expression of hepatic CYPs and phas
II enzymes markedly affects the potential risks and benefit
of xenobiotics and is important from a toxicological point o
view (Williams et al., 1998). The interaction (crosstalk) between
estrogen receptors (ERs) and AhRs has been reported in severa
teleost and mammalian studies, suggesting a possible agonisti
and/or antagonistic expression of the respective receptor regu
lated genes may occur. For example, in fish, there are report
showing a reduction in Vtg expression after exposure to AhR
agonists (Anderson et al., 1996; Mortensen et al., 2006). Th
exact mechanism(s) of anti-estrogenicity is not well known
Although induced metabolism of E2 may explain some of th
anti-estrogenic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin
(TCDD) and related compounds at relatively high concentra
tions or doses, there are several observations that do not suppor
the hypothesis and these has been summarized by Safe e
al. (1991). Recently, a new mechanism involving the direc
binding of AhR agonists activated AhR–Arnt complex to th
ER followed by activation of the ERE that results to estro
genic responses was demonstrated by Ohtake et al. (2003)
who showed that 3-methylchloranthrene (3MC) activated tran
scription of ER-signalling through ERE in a luciferase reporte
plasmid assay with MCF-7 cells.

Studies on endocrine disruptors, including synthetic phar
maceutical estrogens, such as EE2, have mainly focused on
reproductive steroids and other receptor-mediated effects (such
synthesis of oogenic proteins), but little is known about th
effects and mechanisms of endocrine modulators on steroid and
xenobiotic metabolizing systems. Research on endocrine toxi
cology has mainly focused on estrogenicity that involves direc
estrogen receptor mediated effects. In addition to direct receptor
mediated estrogenicity, modulation of steroid and xenobioti
biotransformation system is an important biological proces
in organisms that may be subject to chemical disruption with
equally or more severe consequences for organismal health

Therefore, the present study was undertaken to investigate the
effect of the pharmaceutical endocrine disruptor, EE2 on hep-
atic phase I and II biotransformation and estrogenic pathways of
salmon using quantitative PCR and CYP1A1 mediated catalytic
c Toxicology 85 (2007) 113–123

activity. Our hypothesis is that exposure of salmon to EE2 may
induce differential time- and concentration-dependent transcrip
tional and activity changes in the AhR and ER-signalling gen
expression patterns.

2. Materials and methods

2.1. Chemicals

17�-Ethynylestradiol and dimethyl sulfoxide (molecula
biology grade with 99.9% purity) were purchased from
Sigma–Aldrich Co. (St. Louis, MO, USA). Trizol reagent fo
ribonucleic acid (RNA) purification and TA Cloning kit wer
purchased from Invitrogen Corporation (Carlsbad, CA, USA)
IScript cDNA synthesis kit and iTAQTMSYBR® Green Super
mix with ROX were purchased from Bio-Rad Laboratorie
(Hercules, CA, USA) and GeneRulerTM 100 base pairs (bp
deoxynucleic acid (DNA) ladder and deoxynucleotide triphos
phates (dNTPs) were purchased from Fermentas GmbH (St
Leon-Rot, Germany).

2.2. Fish and exposure

Immature Atlantic salmon (mean weight and length
10 ± 2.5 g and 9 ± 2 cm, respectively) were obtained from Lun
damo hatcheries (Trondheim, Norway) and kept and exposed in
70 L aquariums at 7 ± 0.5 ◦C and for a 14-h light:10-h dark pho
toperiod at the Department of Biology, Norwegian University o
Science and Technology (NTNU) animal holding facilities. In
order to test the hypothesis that EE2 will modulate the expression
of hepatic phase I and II biotransformation system in paralle
with hormonal responses in a concentration- and time-dependen
manner, four groups of (18 individuals per group) fish wer
exposed to waterborne EE2 at concentrations of 5 or 50 ng/L
and one group serving as solvent control was exposed to the car
rier vehicle dimethyl sulfoxide (DMSO: 7.5 ppb). The last group
represented the blank without the solvent (DMSO). The fina
concentration of DMSO was the same in all exposure groups
Fish were exposed once under static (without water replacement
and aerated environmental condition. When toxicity factors such
as bioaccumulation, bioconcentration, biotransformation and
rapid adhesion to solid materials are considered, the EE2 con
centrations used in the present study represent environmentally
relevant concentrations (see Section 1). Six individuals from
each exposure group (from two different tanks) and group with
out the solvent (i.e. blank group) were sacrificed at sampling
day 0 (experimental control with solvent), day 3 and day 7 afte
exposure. A separate 7 days exposure experiment was performed
using waterborne nonylphenol (NP: documented ER-agonist) a
5 �g/L dissolved in ethanol (EtOH: 0.5%) and the same fish
group as in the first experiment, under identical environmenta
conditions. After sacrifice, the liver was excised and weighed
and snap frozen in liquid nitrogen until processed. During th

experimental period, fish were starved and six fish per expo-
sure group (from two different tanks) were sacrificed for gene
expression and enzyme activity determinations, respectively. No
fish mortalities or other EE2 related toxicological effects were
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served. For sampling, the fish were anaesthetized with benzo-
ine (5 mg/L), and blood was collected before sacrifice, After
crifice, the liver was excised and weighed, then processed as
plained below.

3. Determinations of enzyme activity and protein analysis

Enzyme activity of EROD was measured from microso-
al fraction. Microsomal fraction (10 �L) was added to the
ells of a black fluorometric plate containing 140 �L of
APDH (0.25 mg/mL) and incubated at 37 ◦C for 10 min. The
action was then started by adding 1 �L of ethoxyresorufin
80 �M in DMSO) and the fluorescence was measured in
microplate reader for 20 min (extinction: 535 nm; emission:
0 nm) according to Burke and Mayer (1974). Enzyme activ-

ies were expressed as pmol resorufin/min/mg protein. As a
ality control, two known samples were assayed in parallel with

l assay series to assure the consistency of the results obtained
ith unknown samples. All enzyme activities were analyzed
room temperature. Total amount of microsomal protein was
termined with the method of Bradford (1976), using bovine
rum albumin (BSA) as standard. All enzymes and protein mea-
rements were simplified using a Synergy HT microplate reader
om Bio-Tek Instruments Inc. (Winnoski, Vermont, USA) for
sorbance and fluorescence readings.

4. Enzyme-linked immunosorbent assay (ELISA) analysis
vitellogenin

A quantitative vitellogenin (Vtg) ELISA was performed
ing a polyclonal Arctic charr Vtg antibody as previously
scribed by Meucci and Arukwe (2005). Purified Vtg protein
as used to coat the plates and for preparation of the stan-
rd curve. Briefly, purified salmon Vtg was serially diluted
obtain standard concentrations between 3 and 1000 ng/mL.

tandards and diluted plasma samples were incubated for
h at 37 ◦C with an equal volume of the primary anti-
dy (diluted 1:5000). Triplicate aliquots of standards and
mples (200 �L) were added to 96-well microtiter plates pre-
ously coated with Vtg (100 ng/mL overnight at 4 ◦C) and
cubated for 1 h at 37 ◦C. The plates were washed with
een–phosphate-buffered saline (TPBS) and a 1:2000 dilution
goat anti-rabbit peroxidase-conjugated secondary antibody
io-Rad) was added and incubated for 1 h at 37 ◦C. Levels
Vtg in samples were measured colorimetrically at 492 nm

ing o-phenylenediamine dihydrochloride (OPD) as substrate
ith a Synergy HT microplate reader from Bio-Tek Instruments
c. Vtg ELISA Absorbance values (expressed as optical den-
ty, OD) were converted to the proportion of antibody bound
) expressed as a percentage in the zero standard by the fol-
wing equation: B (%) = ((OD − NSB)/(OD0 − NSB)) × 100
here OD is the absorbance of a given sample or standard,

D0 the absorbance of the zero standard and NSB is the non-

ecific binding absorbance value). Binding percentage values
ere logit transformed [logit B = log10(B/(1 − B))] and plotted
ainst log dose to achieve a linear transformation of standard
d plasma dilution curves. In evaluating the detection limit of

C
co
In
ge
oxicology 85 (2007) 113–123 115

e ELISA assay, the minimum amount of Vtg that produced
response significantly different from OD0 was 2 ng/mL with
% binding. The range of the standard curve was between 2 and
0 ng/mL, with 50% of binding around 35 ng/mL. ELISA val-
s for Vtg obtained from control and exposed fish are expressed
mean ± standard error of the mean (S.E.M.).

4.1. RNA purification and cDNA synthesis
Total RNA was purified from liver tissues homogenized
Trizol reagent according to manufacturer’s protocol. Total
NA for the real-time PCR reactions were generated from

�g DNase-treated total RNA from all samples using poly-T
imers from iScript cDNA Synthesis Kit as described by the
anufacturer (Bio-Rad).

4.2. Primer optimization, cloning and sequencing
The PCR primers for amplification of 96–391 base pairs

p) gene-specific PCR-products were designed from conserved
gions of the studied genes. The primer sequences, their ampli-
n size and the optimal annealing temperatures are shown in
ble 1. Prior to PCR reactions, all primer pairs were used in

tration reactions in order to determine optimal primer pair
ncentrations and their optimal annealing temperatures. All
osen primer pair concentrations used at the selected anneal-
g temperatures gave a single band pattern for the expected
plicon size in all reactions. PCR products from the genes
be investigated were cloned into pCR2.1 vector in INV�F′

. coli (Invitrogen). Each plasmid was sequenced using ABI-
ism 3100 Genetic Analyzer (Applied Biosystems, Foster City,
A, USA) at the Department of Biology, NTNU Norway.
equences were confirmed using NCBI nucleotide BLAST soft-
are (http://www.ncbi.nlm.nih.gov/BLAST).

5. Quantitative (real-time) polymerase chain reaction
CR)

Quantitative (real-time) PCR with gene-sequence primer
irs (Table 1) was used for evaluating gene expression profiles.

or each treatment, the expression of individual gene targets
as analyzed as described previously (Arukwe, 2005), using
e Mx3000P Real-time PCR System (Stratagene, La Jolla,
A, USA). Each 25 �L DNA amplification reaction contained
.5 �L of iTAQTMSYBR® Green Supermix with ROX (Bio-

ad), 1 �L of cDNA and 200 nM of each forward and reverse
imers. The three-step real-time PCR program included an
zyme activation step at 95 ◦C (5 min) and 40 cycles of 95 ◦C
0 s), 55–60 ◦C depending on target gene, see Table 1 (30 s) and
◦C (30 s), followed by a melting analysis at 95 ◦C for 1 min,
◦C for 30 s and thereafter decreasing fluorescence detection

ith increasing temperature between 55 and 95 ◦C. Controls
cking cDNA template (minus RT sample) were included
determine the specificity of target cDNA amplification as
scribed previously (Arukwe, 2005; Mortensen et al., 2006).
ycle threshold (Ct) values obtained were converted into mRNA
py number using standard plots of Ct versus log copy number.
our laboratory, we do not use the so-called housekeeping

nes as their expressions have been shown in several stud-

http://www.ncbi.nlm.nih.gov/BLAST
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Table 1
Primer pair sequences, accession numbers, amplicon size and annealing temperature conditions for genes of interest used for real-time PCR

Target gene Primer sequencea Amplicon size
(nucleotides)

Annealing
temperature (◦C)

GenBank
accession number

Forward Reverse

ER� TCCAGGAGCTGTCTCTCCAT GATCTCAGCCATACCCTCCA 173 55 DQ009007
ER� GAGCATCCAAGGTCACAATG CACTTTGTCATGCCCACTTC 126 59 AY508959
AR� ATGCTAGGGAGGATGCCC CCATGGGGAACATGTGGT 121 60 DQ367886
Vtg AAGCCACCTCCAATGTCATC GGGAGTCTGTCCCAAGACAA 391 57 DY802177
Zr-protein TGACGAAGGTCCTCAGGG AGGGTTTGGGGTTGTGGT 113 55 AF407574
AhR� AGGGGCGTCTGAAGTTCC GTGAACAGGCCCAACCTG 82 60 AY219864
AhR� GACCCCCAGGACCAGAGT GTTGTCCTGGATGACGGC 96 65 AY219865
AhRR TTCCTCCAGGGACAGAAGAA ATGGAGGGCAGCAGAAGAG 98 60 DQ372978
ARNT AGAGCAATCCCAGGGTCC TGGGAGGGTGATTGAGGA 107 60 DQ367887
CYP1A1 GAGTTTGGGCAGGTGGTG TGGTGCGGTTTGGTAGGT 76 60 AF364076
UGT ATAAGGACCGTCCCATCGAG ATCCAGTTGAGGTCGTGAGC 113 55 DY802180

TTAG
CTG
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Zr-protein mRNA (Fig. 2A) and plasma Vtg protein (Table 2)
levels after 7 days of exposure compared to 3 days of exposure.
To compare the effect of DMSO on estrogenic responses, we per-
formed a separate experiment using juvenile salmon exposed for

Table 2
Quantitative enzyme immunosorbent assay (ELISA) analysis of plasma Vtg
levels (�g/mL) in juvenile Atlantic salmon exposed to waterborne dimethyl
sulfoxide (DMSO: carrier vehicle control) and ethynylestradiol (EE2) at 5 and
50 ng/L and sampled at day 3 and 7 post-exposure

Exposure group Day 3 Day 7

Control 6.1 ± 1.3a 18.6 ± 0.89a

5 ng EE2/L 9.8 ± 2.2b 20.5 ± 1.3a

50 ng EE2/L 13.6 ± 0.15c 14.4 ± 1.3b
GSTpi CGCATTGACATGATGTGTGA TGTCGAGGTGG
CYP3A ACTAGAGAGGGTCGCCAAGA TACTGAACCGCT

a Sequences are given in the 5′–3′ order.

ies to vary with exposure condition and time (Arukwe, 2006)
In the absence of the so-called housekeeping genes (Arukwe
2006), the criterion for using the standard curve is based on
equal amplification efficiency with unknown samples and thi
is usually checked prior to extrapolating unknown samples to
the standard curve. The standard plots were generated for each
target sequence using known amounts of plasmid containing the
amplicon of interest. Data obtained from triplicate runs for targe
cDNA amplification were averaged and expressed as ng/�g o
initial total RNA used for reverse transcriptase (cDNA) reaction
and finally expressed as percentage of control in the graphs.

2.5.1. Statistical analysis
Comparison of different concentrations of EE2-treated and

control groups were performed using Dunnett’s method. Sta
tistical differences among treatment groups were tested using
multiparametric analysis of variance (ANOVA) after testing
homogeneity of variance and normal distribution. For all the
tests the level of significance was set at p < 0.05, unless otherwise
stated.

3. Results

3.1. Modulation of hormone receptors and signalling
pathway

Please note that the blank group (i.e. without DMSO) were
analyzed but not included in the figures as the DMSO group rep
resents the true experimental control. The expression of basa
hepatic estrogen receptor isoforms (ER� and ER�), androgen
receptor (AR�), Vtg and Zr-protein genes were evaluated in
juvenile salmon after exposure to waterborne EE2 concentra
tions and at different time intervals (Fig. 1). It should be noted
that several AR isoforms has been characterized in fish, the

primer pair sequences used in the present study, was designed
to amplify a gene fragment for the AR� gene isoform. The
ER� expression was significantly decreased after exposure to
50 and 5 ng EE2/L at day 3 and 7, respectively (Fig. 1A). For
GAAGG 121 57 DQ367889
GTTTG 146 55 DQ361036

ER� mRNA, EE2 exposure produced a 50% reduction at day
3 in the group exposed to 50 ng/L (Fig. 1B). An interesting
and parallel pattern of oogenic protein gene expression tha
was dependent on time and EE2 concentration was observed
Salmon exposure to EE2 produced an apparent concentration
dependent increase of Vtg and Zr-protein mRNA expression a
day 3 (Fig. 1C and 1D, respectively). At day 7, a significan
decrease of Vtg and Zr-protein mRNA expression was observed
when fish were exposed to 5 ng EE2/L, compared to solvent con
trol (Fig. 1C and 1D, respectively) and thereafter increased with
50 ng EE2. Compared to ER-isoforms, AR� mRNA expression
showed significant transcript reduction after exposure to 50 ng
EE2 (Fig. 1E) at day 3 and 7.

Fish exposure of to EE2 for 3 days produced the increase o
plasma Vtg levels in a concentration-dependent manner with
a 2.2-fold significant increase at 50 ng EE2/L, compared to
the control (Table 2). After 7 days, exposure to 50 ng EE2/L
resulted in a significant decrease of Vtg, compared to the con
trol (Table 2). Overall, it should be noted that the carrier vehicle
(DMSO) used in the present study caused significant time
dependent reduction of ER� mRNA and elevations of Vtg and
Data are given as mean ± standard error of the mean (S.E.M.: n = 5). Different
superscript letters (a–c) indicate means that are significantly different at the
respective time intervals (ANOVA, p < 0.01). Blank control samples had ELISA
value of 1.6 ± 1.4 �g/mL.
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Fig. 1. Effects of 17�-ethynylestradiol (EE2) on hepatic estrogen receptors (ER�, A and ER�, B), vitellogenin (Vtg, C), eggshell zona radiata protein (Zr-protein,
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(F
) and androgen receptor-� (AR�, E) mRNA levels in juvenile Atlantic salmon
ntrol (DMSO), 5 and 50 ng EE2/L after 3 and 7 days exposure. All values repre
posure groups that are significantly different (p < 0.05), analyzed using multip

days to NP dissolved in ethanol and Vtg mRNA analysis from
is study is shown in Fig. 2B.

.2. Modulation of Ah-receptors and signalling pathway

The expression of basal hepatic Ah-receptor isoforms (AhR�
nd AhR�), AhR nuclear translocator (Arnt), AhR repressor

hRR), CYP1A1, CYP3A, GST and UGT genes were eval-
ated in juvenile salmon after exposure to waterborne EE2
oncentrations. Exposure of salmon to EE2 produced 3.5-fold
gnificant increase of AhR� mRNA expression at day 3 in the
roup exposed to 5 ng/L, compared to solvent control (Fig. 3A)
nd 50 ng EE2 did not affect AhR� at the same time interval.
t day 7, a significant decrease of AhR� was observed in the
roup exposed to 50 ng EE2/L, compared to solvent control

ig. 3A). At day 3, the group exposed to 50 ng EE2 showed a

on-significant reduction of AhR� mRNA, compared to solvent
ontrol and 5 ng (Fig. 3B). A different, but similar to ER�, Vtg
nd Zr-protein expression pattern of EE2 effect was observed for

F
a
A
n

l-time PCR of mRNA expression levels with gene-sequence primer pairs of
e mean (n = 6) ± standard error of the mean (S.E.M.). Different letters denote

tric analysis of variance (ANOVA). C, Experimental control with DMSO.

hR� mRNA expression at day 7, where a significant decrease
as observed in the group given 5 ng EE2 (Fig. 3B). In contrast,
sh exposure to EE2 did not produce effect on the Arnt mRNA
pression (Fig. 3C). On the contrary, the expression of AhRR
owed apparent EE2 concentration and time-specific decrease,

lbeit not significant (Fig. 3D). The expression of CYP1A1
RNA was significantly decreased in a time- and concentration-

ependent manner after exposure to EE2 (Fig. 4A). The CYP3A
pression showed a slight but non-significant increase at day 3

ost-exposure, also at day 7 after exposure to 5 ng EE2 (Fig. 4B).
or the two phase II enzyme genes (GST and UGT) studied, EE2
roduced a concentration-specific mRNA decrease at days 3 and
after exposure to 50 ng EE2/L, compared to solvent control
ig. 4B and C, respectively).
Enzyme activity levels for EROD activity are shown in
ig. 4E. A significant decrease in EROD activity was observed
fter 5 ng EE2/L exposure at day 3 post-exposure (Fig. 4E).
t day 7, an apparent concentration-specific decrease, albeit
on-significant, was observed (Fig. 4E).
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Fig. 2. Effects of carrier solvents on estrogenic responses. (A) Time-dependent
transcriptional changes of hepatic vitellogenin (Vtg: left panel), eggshell zona
radiata protein (Zr-protein: middle panel) and estrogen receptors (ER�: right
panel) in juvenile Atlantic salmon exposed to 7.5 parts per billion (ppb) of the
carrier vehicle (DMSO). Real-time PCR of mRNA expression levels with gene-
sequence primer pairs. All values represent the mean (n = 6) ± standard error
of the mean (S.E.M.). Different letters denote exposure groups that are signifi-
cantly different (p < 0.05), analyzed using multiparametric analysis of variance
(ANOVA). “C” in this figure represents experimental control without DMSO or
blank control. (B) Vtg mRNA analysis of a separate experiment using juvenile
salmon exposed for 7 days to 5 �g/L nonylphenol (NP5) dissolved in ethanol
(EtOH).
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Fig. 3. Changes in hepatic aryl hydrocarbon receptors (AhR�, A and AhR�, B), Ah
juvenile Atlantic salmon after exposure to 17�-ethynylestradiol (EE2) concentration
control (DMSO), 5 and 50 ng EE2/L after 3 and 7 days exposure. All values represen
exposure groups that are significantly different (p < 0.05), analyzed using multiparam
c Toxicology 85 (2007) 113–123

4. Discussion

The present study investigated the effects of EE2 on phase
I and II biotransformation system and hormonal responses
in the liver of juvenile salmon. Our data based on nomina
exposure concentrations show that EE2 produced a time- and
concentration-specific transcriptional decrease of ER isoform
(ER� and ER�) and AR�, and increased Vtg and Zr-protein
gene expressions (also Vtg protein) in salmon liver at day 3
post-exposure. At the same time interval (day 3), EE2 pro
duced concentration-specific effect on AhR isoform (AhR�
and AhR�), Arnt and AhRR, CYP1A1, CYP3A, UGT and
GST mRNA expressions. At day 7 post-exposure, EE2 pro
duced increases in the studied hormonal parameters (including
Vtg protein), but these effects were totally underscored by the
unexpected increase of these responses by the carrier solven
(DMSO). The increase in Vtg and Zr-protein mRNA expressions
(also Vtg protein) paralleled a decrease in CYP1A1 (mRNA and
activity) and apparent increase in CYP3A at day 3 post-exposure
These findings show that the synthetic pharmaceutical endocrine
disruptor and ubiquitous environmental pollutant also induces
variations in hepatic biotransformation and hormonal response
pathways in fish.

4.1. Effect on hormonal responses
The present results demonstrated that EE2 decreased ER-
isoform gene expressions and increased plasma Vtg level and
Vtg/Zr-protein mRNA levels. The molecular basis for Vtg
gene and protein expression shows that the Vtg gene (and

R nuclear translocator (Arnt, C) and AhR repressor (AhRR, D) mRNA levels of
s. Real-time PCR of mRNA expression levels with gene-sequence primer pairs of
t the mean (n = 6) ± standard error of the mean (S.E.M.). Different letters denote

etric analysis of variance (ANOVA). C, Experimental control with DMSO.
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Fig. 4. Hepatic CYP1A1 (A), CYP3A (B), glutathione S-transferase (GST, C), uridine diphosphoglucuronosyl transferase (UGT, D) mRNA and (E) EROD activity
levels of juvenile Atlantic salmon after exposure to 17�-ethynylestradiol (EE2) concentrations. Real-time PCR of mRNA expression levels with gene-sequence
pr and 7
m erent
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imer pairs and enzyme activity of control (DMSO), 5 and 50 ng EE2/L after 3
ean (S.E.M.). Different letters denote exposure groups that are significantly diff
perimental control with DMSO.

r-protein) activations are receptor-mediated responses that
e ligand structure-dependent interactions with ER, probably
volving all isoforms, in addition to other co-activators. The
aintenance of Vtg synthesis and concentration in oviparous
ecies, including fish, is achieved through the activation of
trogen receptors by E2 or E2 mimics (Specker and Sullivan,
94). Therefore, the induction of Vtg and Zr-protein synthesis
response to estrogens and their mimics has been described
several fish species (Arukwe et al., 2001; Flouriot et al.,
97; Yadetie et al., 1999). In the present study, EE2 produced
opposing effect on ER-isoforms and AR� (decreased) and

tg and Zr-protein mRNA levels (increased) in salmon liver.
is well known that Vtg induction in the liver is mediated
rough binding of ligand–ER� and ligand–ER� complex to
nsensus ERE promoter region in DNA, resulting in increased
RNA transcription and subsequent translation followed by
st-translational modification to yield a mature protein that

on
te
P
ni
days exposure. All values represent the mean (n = 6) ± standard error of the
(p < 0.05), analyzed using multiparametric analysis of variance (ANOVA). C,

detectable in plasma samples (Pakdel et al., 1991; Ryffel,
78). It is not known whether both ER isotypes contribute
ually to the regulation of Vtg gene. Despite the negative cor-
lation between ERs and oogenic protein and mRNA levels,
e data do not show a direct mechanistic contribution of ER
otypes to protein regulation. These observations indicate that
e ER isotypes may not be contributing equally to estrogen-
pendent gene regulation. It also shows that the transcriptional
crease of the ERs may not have a major role in the transcrip-
onal regulation of Vtg and Zr-protein genes in EE2 exposed
sh, suggesting that basal ER levels might be enough to ini-
ate oogenic protein gene regulations. However, when basal
R levels are depleted the transcriptional machinery is turned
for refuelling (auto-regulation) and continued oogenic pro-
in gene synthesis (Bowman et al., 2002; Yadetie et al., 1999;
akdel et al., 1997). Furthermore, all the suggested mecha-
sms may be connected to an indirect pathway involving the
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hypothalamus–pituitary–gonadal–liver axis through a feedback
process that regulates receptor levels.

4.2. Effect on the biotransformation system

A number of hepatic CYPs in fish, mice and rats are expressed
in a sex-specific manner (Arukwe and Goksøyr, 1997; Larsen
et al., 1992; Waxman et al., 1985), suggesting a possible reg
ulatory role by sex steroids in their expression. It is known
that the post-pubertal expression of several sex-specific CYP
forms is regulated via neonatal programming by gonadal steroid
(Waxman et al., 1985). In this study, 5 ng EE2 produced a sig
nificant induction of AhR� at day 3 post-exposure (50 ng EE2
caused a reduction at day 7). Otherwise, the AhR�, Arnt and
AhRR showed apparent EE2 concentration-specific decreas
at day 3 post-exposure (also AhRR at day 7). The effect o
EE2 on AhRR directly paralleled CYP1A1 (partially with GST
and UGT) mRNA and EROD activity levels at day 3 and 7
after exposure. The temporal down-regulation of EROD activ
ity, CYP1A1, GST and UGT mRNA levels by EE2 suggests an
adaptive response to high cellular levels of estrogen-like com
pound. This speculation is supported by the fact that CYP1A1
catalytic activities have been shown to decrease with increas
ing cellular estrogen levels during sexual maturation in severa
fish species (Andersson and Förlin, 1992; Arukwe and Goksøyr
1997; Stegeman and Hahn, 1994). The parallel effect on AhRR
suggests a concomitant effect of EE2 in controlling cellula
detoxification process. Furthermore, it is also possible that ther
may be compensatory changes or auto-regulation through feed
back mechanism in gene expression, particularly for AhR�
that was induced at day 3 with 5 ng EE2. Generally, our dat
are in accordance with previous studies showing that estrogen
(such as E2) and estrogenic compounds significantly suppressed
hepatic CYP1A1 mRNA levels, EROD activity and CYP1A1
protein in in vivo and in vitro experiments using Atlantic salmon
(Arukwe et al., 2000; Navas and Segner, 2000). There are sev
eral hypotheses explaining the CYP1A1 down-regulation by E2
and their mimics. For example, steroid hormones can bind to
the CYP1A1 protein (Chan and Hollebone, 1995), and through
this binding, E2 or the metabolites generated from E2 may
inhibit the catalytic activity of P4501A1 protein (Arukwe and
Goksøyr, 1997). Navas and Segner (2000) hypothesized tha
the inhibitory action of E2 could be mediated, at least in part
through the hepatic estrogen receptor (ER) where the ER-E2
complex can interfere with the CYP1A1 gene directly or alter
natively may interact with the AhR, and indirectly regulat
CYP1A1 gene expression through binding the XRE. Estro
gens and their mimics may control the recruitment of ER and
possibly other co-activators, besides activating the detoxifica
tion pathway. In a recent study it was shown that E2 exert it
effects by activating the AhR–Arnt heterodimer, which is abl
to interact with the unliganded ER, leading to the induction o
estrogenic pathway (Ohtake et al., 2003). In accordance with

a recent study by Maradonna et al. (2004), our study showed
that the decrease of CYP1A1 system by EE2 paralleled the
decrease in AhRR gene expression. Liganded AhR complex has
been found to activate gene expression of AhRR, which inhibits
c Toxicology 85 (2007) 113–123

AhR function by competing with AhR for its nuclear dimer
ization partner, the Arnt and subsequent binding to the XRE
sequence. Thus, the AhR function is regulated by the feedback
inhibition of AhRR. Although the basic–helix–loop–helix–PAS
(Per–AhR/Arnt–Sim homology sequence) of transcription fac
tor usually associate with each other to form heterodimers
AhR/Arnt or AhRR/Arnt and bind the XRE sequences in th
promoter regions of the target genes to regulate their expres
sion, the complete mechanism by which estrogenic compound
regulate the CYP system is still not fully elucidated.

Steroid metabolism in lower vertebrates is catalyzed by spe
cific CYP3A enzymes (Stegeman, 1993; Zimniak and Waxman
1993). The ability of CYP3A to hydroxylate steroids is often
related to sex (Zimniak and Waxman, 1993). It has been sug
gested that CYP3A proteins are constitutively expressed in
fish (Celander et al., 1989), regulated during sexual maturation
(with males showing higher protein levels than females) and
metabolize endogenous substrates like testosterone and proges
terone at 6�-position (Klotz et al., 1986; Miranda et al., 1991
Stegeman, 1993). In the present study, EE2 did not produce
significant effect on CYP3A mRNA expression, although an
apparent concentration decrease of AR� was observed. Recen
findings have demonstrated that steroid hormone mimics mod
ulate CYP3A-mediated catalytic activities and mRNA levels in
a similar manner as natural steroid hormones (Arukwe et al.
1997; Hasselberg et al., 2005). Therefore, the effect of EE2 on
CYP3A and AR� observed in the present study is proposed to
represent an androgenic effect of this chemical.

In the absence of catalytic data for UGT and GST due to th
small sample size, the mRNA expression data from the presen
study (showing apparent concentration-specific decrease) are in
accordance with a previous report demonstrating the effect
of EE2 on phase II enzymes (Sole et al., 2000). The effec
of EE2 on UGT and GST mRNA observed in the presen
study may have several physiological explanations due to th
integral roles of phase II biotransformation enzymes in regu
lating steroid hormone homeostasis in organisms. The UGT
(and GSTs) are a multigene enzyme family that plays signifi
cant roles in the excretion of both endogenous and xenobioti
compounds (Clarke et al., 1992). In fish, several UGT gene iso
forms have been described, with prototypical substrates such a
bilirubin, testosterone, and phenolic xenobiotic (Clarke et al.
1992). Nucleotide sequence data has shown that as many as 10
different UGTs are present in zebrafish, with nucleotide sim
ilarities to some mammalian UGT gene families (George and
Taylor, 2002). The primer pair sequences used in our real-tim
PCR assay was designed based on up-regulated UGT and GST
sequences in subtracted salmon cDNA library in our labora
tory (Mortensen and Arukwe, 2007) and the primers spanned
the conserved regions of fish UGT1 and GSTpi. For exam
ple, it was reported previously using fish hepatic microsome
that an organotin compound (tributyltin, TBT) at concentration
as low as 5 �M, selectively inhibited UDP-glucuronidation o

testosterone (but not 17�-estradiol) (Morcillo et al., 2004). The
formation of glucuronides in fish may provide a physiological
means for controlling hormone action through their excretion
and removal (George and Taylor, 2002) or cellular transport in a



atic T

re
b
o
A
w
ti
th
te
d
o
st
x
b
a
ic
m
m
1

d
c
te
te
w
c
o
p
E
o
se
c
g
ti

4

ju
a
(M
D
ie
p
th
ex
a
7
e
sa
a
th
c
th
e
e
in
o

e
c
to
e
tr
si
th
m
a
n
a
ti
ti
b
v
te

in
st
v
(O
K
n
fo
ex
A
a
a
h
In
D
a
ic
in
o
p
c
d
in
in
a
in
re

5

to
m
eg
2
st
a

A.S. Mortensen, A. Arukwe / Aqu

ceptor-inactive form. These data show that EE2 can modulate
oth direct ER-mediated processes and drug/xenobiotic metab-
lizing systems and thereby expanded the previous study by
rukwe and Goksøyr (1997). It is still subject to speculation
hether a given XRE sequence will function as a transcrip-
onal activator enhancer or silencer and this may depend on
e role as a specific promoter. This hypothesis needs to be
sted experimentally with regard to pharmaceutical endocrine
isrupting chemical such as EE2. The differential regulation
f CYP1A1 and AhR-isoforms demonstrated in the present
udy may have some deleterious health consequences. Although
enobiotic-metabolizing enzymes, such as CYP1A1, protect the
ody against adverse effects, there may be other consequences
ssociated with activating these receptors. For example, signif-
ant induction of CYP enzymes by environmental chemicals
ay lead to activation of protoxicants and alterations of the
etabolism of drugs and endogenous substances (Guengerich,

992, 1999; Nelson et al., 1996; Stegeman and Hahn, 1994).
It should be noted that the present study was performed

uring a 7-day exposure period under static and nominal EE2
oncentration conditions. Without changing the fact these sys-
ms were modulated by EE2, the relevance of these findings in
rms of ecotoxicological and pharmacological consequences
ill depend on the environmental concentration of EE2, bio-

oncentration/bioaccumulation and synergistic interactions with
ther pollutants (note the differences in most gene expression
atterns at days 3 and 7 after exposure). The possible change in
E2 concentration between day 3 and 7 coupled with the effect
f the carrier vehicle (DMSO) would be expected to be more
vere for the lower nominal concentration than for the higher

oncentration and this may explain some of the differences in
ene expression observed for the concentrations at the different
me intervals.

.3. Effects of dimethyl sulfoxide (DMSO)

In recent studies, it was reported that estrogenic responses in
venile salmonids were modulated in both in vivo (Lyssimachou

nd Arukwe, 2007; Lyssimachou et al., 2006) and in vitro
ortensen and Arukwe, 2006; Osborne et al., 2007) studies by

MSO, a commonly used carrier vehicle in toxicological stud-
s. In accordance with these studies, a critical observation in the
resent study is the fact the carrier vehicle (DMSO) modulated
e hormonal gene responses at day 7 post-exposure. The 3-day
posures typically showed concentration-related effects in hep-

tic hormonal responses, but generally no significant effect after
days exposure, compared with control. However, when the

ffect of ethanol was evaluated after 7 days exposure of juvenile
lmon to NP, no negative effect of ethanol on NP-induced hep-

tic Vtg mRNA expression was observed (see Fig. 2B). Despite
e fact the EE2 and NP study utilized two different chemi-

als, it should be noted that both chemical are strong agonists to
e ER. In the NP experiment, separately designed to study the
ffects of NP on neurosteroidogenic pathways, we showed that
thanol modulated brain steroidogenic enzyme genes in salmon

vivo experiment (Arukwe, 2005), suggesting that the effect
f ethanol or other carrier solvents may be tissue and param-

L
re
su
ti
oxicology 85 (2007) 113–123 121

ter dependent responses. It does seem that EE2 produced a
oncentration-dependent effect on hormonal responses that was
tally underscored by DMSO at day 7. It is unlikely that the

nvironmental stress in the exposure tanks might have con-
ibuted to the effect of DMSO observed in the present study
nce the experimental animals were closely monitored during
e study period and showed apparently good condition. Further-
ore, the use of flow-through exposure system should have been
preferable condition for such a lipophilic compound and defi-
itely could not have uncovered the effect of DMSO in this study
nd other studies referred above. Despite the effect of DMSO, the
me-dependent differences in the hormonal and biotransforma-
on responses observed in the present study might be explained
y the physiological role and susceptibility of the investigated
ariables on the reproductive and xenobiotic metabolizing sys-
ms.
We chose to DMSO as carrier solvent as opposed to ethanol
this study because of evidence that alcohol may activate

eroidogenic enzymes (Arukwe, 2005) and promote the con-
ersion of testosterone to estradiol in mature female tilapia

reochromis niloticus) and their ovaries (Kim et al., 2003).
azeto et al. (2003) exposed juvenile zebrafish to EE2 and
onylphenol dissolved in DMSO (0.1%, v/v) for 3 days and
und that EE2 and nonylphenol induced P450aromB gene
pression in a concentration-dependent manner. Elsewhere,
lberti et al. (2005) exposed adult zebrafish to 17�-estradiol

nd nonylphenol dissolved in DMSO (0.02%, v/v) for 11 days
nd found a strong Vtg gene expression in the liver of male fish at
igh E2 (500 ng/L) and nonylphenol (250 �g/L) concentrations.

view of the above studies and the present study, it is clear that
MSO has the potential of modulating the endocrine system, in

ddition to other effects. Recently, Hutchinson et al. (2006) crit-
ally reviewed the acute and chronic effects of carrier solvents
aquatic organisms. It could be argued that DMSO modulation

f endocrine responses may be due to its absorption-enhancing
roperties, as it is widely used as a carrier for drugs across
ell membranes (Hui et al., 2001). Thus, DMSO could pro-
uce a time-dependent movement of estrogens or their mimics
to the hepatocytes, and subsequently produce time-dependent
creases in ER activation with enhanced vitellogenesis and zon-

genesis. Therefore, the use of DMSO as carrier vehicle in both
vitro and in vivo fish endocrine disruption studies should be

-evaluated, particularly in the brain.

. Conclusions

The combined effect of pharmaceutical endocrine disrup-
rs on biotransformation and hormonal pathways might have a
ore serious consequence for the organism than endpoints like
g yolk and eggshell protein inductions (Arukwe and Goksoyr,

003). In general, an integration of the findings in the present
udy with (a) the concentration of EE2 reported in effluents
nd surface waters from Europe (range between 0.5 and 7 ng/L;

arsson et al., 1999); (b) concentrations of up to 50 ng/L that was
ported by Aherne and Briggs (1989) and (c) the United States
rvey of 139 streams showing that several rivers had concentra-

on range of 5–273 ng/L (Kolpin et al., 2002) pharmaceuticals
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in the environment represent a more serious health concern both
to humans and wildlife.
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Abstract
Background: The estrogenic and xenobiotic biotransformation gene expressions are receptor-mediated
processes that are ligand structure-dependent interactions with estrogen-receptor (ER) and aryl hydrocarbon
receptor (AhR), probably involving all subtypes and other co-factors. The anti-estrogenic activities of AhR
agonists have been reported. In teleost fish, exposure to AhR agonists has been associated with reduced Vtg
synthesis or impaired gonadal development in both in vivo- and in vitro studies. Inhibitory AhR and ER cross-talk
have also been demonstrated in breast cancer cells, rodent uterus and mammary tumors. Previous studies have
shown that AhR-agonists potentiate xenoestrogen-induced responses in fish in vivo system. Recently, several
studies have shown that AhR-agonists directly activate ERα and induce estrogenic responses in mammalian in vitro
systems. In this study, two separate experiments were performed to study the molecular interactions between
ER and AhR signalling pathways using different concentration of PCB-77 (an AhR-agonist) and time factor,
respectively. Firstly, primary Atlantic salmon hepatocytes were exposed to nonylphenol (NP: 5 μM – an ER
agonist) singly or in combination with 0.001, 0.01 and 1 μM PCB-77 and sampled at 48 h post-exposure. Secondly,
hepatocytes were exposed to NP (5 μM) or PCB-77 (1 μM) singly or in combination for 12, 24, 48 and 72 h.
Samples were analyzed using a validated real-time PCR for genes in the ER pathway or known to be NP-
responsive and AhR pathway or known to be PCB-77 responsive.

Results: Our data showed a reciprocal inhibitory interaction between NP and PCB-77. PCB-77 produced anti-
NP-mediated effect by decreasing the mRNA expression of ER-responsive genes. NP produced anti-AhR
mediated effect or as inhibitor of AhRα, AhRR, ARNT, CYP1A1 and UDPGT expression. A novel aspect of the
present study is that low (0.001 μM) and medium (0.01 μM) PCB-77 concentrations increased ERα mRNA
expression above control and NP exposed levels, and at 12 h post-exposure, PCB-77 exposure alone produced
significant elevation of ERα, ERβ and Zr-protein expressions above control levels.

Conclusion: The findings in the present study demonstrate a complex mode of ER-AhR interactions that were
dependent on time of exposure and concentration of individual chemicals (NP and PCB-77). This complex mode
of interaction is further supported by the effect of PCB-77 on ERα and ERβ (shown as increase in transcription)
with no concurrent activation of Vtg (but Zr-protein) response. These complex interactions between two
different classes of ligand-activated receptors provide novel mechanistic insights on signalling pathways.
Therefore, the degree of simultaneous interactions between the ER and AhR gene transcripts demonstrated in
this study supports the concept of cross-talk between these signalling pathways.
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Background
Halogenated organic contaminants such as 2,3,7,8-tetra-
chlorodibenzo-p-dioxin (TCDD), polychlorinated biphe-
nyls (PCBs), and polycyclic aromatic hydrocarbons
(PAHs) are notorious environmental pollutants that cause
acute and chronic toxicity [1]. Several of these compounds
including planar PCBs, exert their biological effects
through the aryl hydrocarbon receptor (AhR or Ah-recep-
tor). The AhR is a ligand activated transcription factor that
regulates the activation of several genes encoding phase I
and II biotransformation enzymes [2]. The AhR belongs
to the family of basic helix-loop-helix (BHLH)/Per-ARNT-
Sim (PAS) proteins that are characterized by two con-
served domains, the N-terminal bHLH and the PAS
domain [2,3]. Cytochrome (CYP) P450 enzymes
(CYP1A1, 1A2, 1B1) are involved in the metabolism of a
wide variety of structurally different chemicals that
include many drugs and xenobiotics, through the AhR
[2,3]. For example, the molecular mechanism of CYP1A
activation has been extensively studied. Prior to ligand
binding, the cytosolic form of the AhR is associated with
a chaperone complex consisting of heat shock protein 90
(hsp90) and several other co-chaperones [2,3]. Upon lig-
and binding, the AhR is released from the hsp90 complex
and translocated into the nucleus where it dimerizes with
a structurally related protein, the AhR nuclear translocator
(ARNT). The AHR/ARNT complex binds with high affinity
to specific DNA sequences known as dioxin or xenobiotic
response elements (DREs or XREs) located in the regula-
tory regions of target genes leading to their activation and
expression. In addition to CYP enzymes, phase-II enzymes
such as uridine-diphosphate glucuronosyltransferase
(UDPGT) are now known to be inducible through the
AhR [2,3] and these responses are putatively controlled
through the AhR repressor (AhRR: [2]). Thus, AhR con-
trols a battery of genes involved in the biotransformation
of xenobiotics [2,3].

In oviparous animals, accumulation of yolk materials into
oocytes during oogenesis and their mobilization during
embryogenesis are key processes for successful reproduc-
tion [4,5]. Similarly, the envelope (zona radiata or Zr) sur-
rounding the animal egg plays significant roles in the
reproductive and developmental processes; firstly as an
interface between the egg and sperm, and secondly as an
interface between the embryo and its environment [4,5].
Vitellogenesis and zonagenesis are estrogen receptor (ER)-
mediated estradiol-17β (E2)-induced hepatic synthesis of
egg yolk protein (Vtg) and eggshell protein (Zr-protein)
precursor, respectively, their secretion and transport in
blood to the ovary and their uptake into maturing oocytes
[4,5]. The ERs (ERα and ERβ) are members of the nuclear
receptor (NR) gene superfamily. The ERs bind to estrogen
response elements (EREs) and activate transcription in an
estrogen concentration-dependent manner [6]. This tran-

scriptional activation requires the recruitment of co-acti-
vator complexes [6]. Xenoestrogens, such as nonylphenol
(NP) were shown to induce hepatic expression of Vtg and
Zr-protein genes in immature and male fish [7]. NP pre-
dominantly occurs as a degradation product of nonylphe-
nol ethoxylate (NPE), found in many types of products,
including detergents, plastics, emulsifiers, pesticides, and
industrial and domestic cleaning products.

There are many potential xenobiotics and xenoestrogens
in aquatic systems (e.g., pharmaceuticals, pesticides, sur-
factants and personal care products). Thus, in the environ-
ment, chemical interactions may have profound
consequences since organisms, including fish, are exposed
to complex mixtures of environmental pollutants [8].
These complex interactions have only recently become the
focus of systematic investigations both in laboratory and
elsewhere [8,9]. The anti-estrogenic activities of AhR ago-
nists have been reported [10]. In fish, exposure to AhR
agonists has been associated with reduced Vtg synthesis or
impaired gonad development in both in vivo- and in vitro
studies [11,9,12]. Inhibitory AhR-ER cross-talk has been
demonstrated in breast cancer cells, rodent uterus and
mammary tumors [13].

The relative importance of the influence of contaminants
on biological systems is not well-understood or quanti-
fied mechanistically in complex chemical mixtures. PCB-
77 is a documented AhR agonist with anti-estrogenic
activity and was previously shown to increase and
decrease (depending on dose ratios, season and sequen-
tial order of administration) NP-induced responses in
Atlantic salmon (Salmo salar) in vivo system [11]. In toxi-
cological sciences, almost without exception, gene expres-
sion is altered as either a direct or indirect result of
toxicant exposure. Depending upon the severity and dura-
tion of the toxicant exposure, genomic analysis may be
short-term toxicological responses leading to impacts on
survival and reproduction (parental and offspring fit-
ness). Therefore, gene expression profiling has become a
powerful tool in molecular biology with potential to
reveal genetic signatures in organisms that can be used to
predict toxicity of these compounds [14]. Therefore, the
present study was designed with the objective of investi-
gating the concentration- and time-dependency of inter-
actions (cross-talk) between the ER and AhR signalling
pathways using molecular approaches. In addition, we
wanted to establish in parallel, the time-dependency of
the potential bi-directional cross-talk between these two
signalling pathways.

Results
Based on previous studies in our laboratory, we selected 5
genes (ERα, ERβ, Vtg, Zr-proteins and vigilin) belonging
to the ER-pathway or known to be ER-responsive and 7
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genes (AhRα, AhRβ, AhRR, ARNT, CYP1A1, UDPGT and a
proteasome subunit) in the AhR-pathway or known to be
AhR-responsive for quantitative analysis using real-time
PCR with gene specific primers. Several subtypes of ARNT
and UDPGT have been characterized in fish and the
primer sequences used in the real-time PCR assays were
designed based on conserved regions of these genes.

Concentration-dependent expression of ER-responsive 
genes
Exposure to NP alone significantly elevated ERα expres-
sion (Fig. 1A). The low PCB-77 concentration (0.001 μM)
produced a significant 2-fold decrease of ERα, compared
to control and thereafter a concentration-specific increase
of ERα mRNA expression was observed (Fig. 1A). When 1
μM PCB-77 was given in combination with NP, an ele-
vated ERα expression above NP level was observed (Fig.
1A). In contrast, exposure to 0.01 μM PCB-77 in combina-
tion with NP produced decreased ERα mRNA below NP
level (Fig. 1A). For ERβ, exposure to NP alone produced a
significant increase of transcript level (Fig. 1B). When
hepatocytes were exposed to 1 μM PCB-77 alone or in
combination with NP, ERβ mRNA was not altered (Fig.
1B). In contrast, exposure to 0.001 and 0.01 μM PCB-77
alone produced significant increase of ERβ, and when
these PCB-77 concentrations were given in combination
with NP, ERβ mRNA was significantly decreased only in
the 0.01 μM PCB-77 group (Fig. 1B).

The expression pattern of Vtg was induced 19-fold after
exposure to NP alone (Fig. 1C). While PCB-77 alone did
not alter the expression levels of Vtg mRNA, the combined
exposure with NP produced a PCB-77 concentration-spe-
cific decrease of NP induced Vtg expression (Fig. 1C). Par-
ticularly, exposure of hepatocytes to NP in combination
with medium PCB-77 concentration (0.01 μM) produced
a total inhibition of Vtg mRNA expression (Fig. 1C). The
expression Zr-protein showed a similar pattern with Vtg
(Fig. 1D). While exposure to NP alone produced a 3.7-
fold increase of Zr-protein mRNA, the combined exposure
with PCB-77 exposure produced significant PCB-77 con-
centration-specific decrease of Zr-protein, compared with
NP exposure alone (Fig. 1D). PCB-77 exposure alone pro-
duced significant decrease of Zr-protein mRNA expres-
sion, compared with solvent control (Fig. 1D). Exposure
to PCB-77 concentrations singly or in combination with
NP produced minor changes, albeit not significant in vig-
ilin mRNA expression (Fig. 1E). Exposure to PCB-77 con-
centrations singly or in combination with NP produced
non-significant changes in proteasome mRNA expression
(Fig. 1F).

Concentration-dependent expression of AhR-responsive 
genes
Exposure of hepatocytes to PCB-77 alone produced a sig-
nificant concentration-dependent increase of AhRα
mRNA. While NP alone did not alter AhRα expression,
combined NP and PCB-77 at 0.01 and 1 μM caused
decreases of AhRα mRNA, compared with PCB-77 expo-
sure alone (Fig. 2A). The expression of AhRβ was signifi-
cantly decreased after exposure to PCB-77 alone,
compared with control (Fig. 2B). Exposure to combined
NP and all PCB-77 concentrations showed decreased
expression of AhRβ mRNA, significant in 0.001 and 0.01
μM PCB-77 concentrations, compared to PCB-77 expo-
sure alone (Fig. 2B). For AhRR, exposure to PCB-77 alone
produced a concentration-dependent increase of AhRR
mRNA expression and the presence of NP caused only
slight decreases of PCB-77 mediated effects on AhRR
expression (Fig. 2C). NP exposure alone did not signifi-
cantly alter the expression of AhRR mRNA (Fig. 2C). A dif-
ferent expression pattern was observed for ARNT (Fig.
2D). Exposure to the low PCB-77 concentration (0.001
μM) produced a 4.2-fold increase of ARNT mRNA expres-
sion and thereafter a PCB-77 concentration-dependent
decrease was observed (Fig. 2D). While NP exposure
alone produced a slight, albeit not significant, elevation of
ARNT mRNA, combined exposure with 0.001 and 0.01
μM PCB-77 produced respective significant decrease and
increase of ARNT mRNA expression, compared with the
respective PCB-77 concentration alone (Fig. 2D).

The expression pattern of CYP1A1 showed significant
PCB-77 concentration-dependent induction and com-
bined exposure with NP produced significant reduction of
CYP1A1 mRNA expression, compared with PCB-77 expo-
sure alone (except with 0.001 μM PCB-77; Fig. 2E). NP
exposure alone did not alter CYP1A1 mRNA expression
(Fig. 2E). Exposure to PCB-77 produced a concentration-
specific increase and combined exposure with NP pro-
duced significant reduction of UDPGT mRNA expression,
compared with PCB-77 exposure alone (except with 0.001
μM PCB-77; Fig. 2F). NP exposure alone did not signifi-
cantly alter UDPGT mRNA expression (Fig. 2F).

Time-dependent expression of ER-responsive genes
Exposure of hepatocytes to NP alone or in combination
with PCB-77 caused an apparent time-dependent increase
of ERα mRNA expression (Fig. 3A). At 12 h post-exposure,
NP exposure singly produced a significant (11-fold)
increase of ERα, while combined exposure with PCB-77
slightly reduced (albeit not significant) the NP effect on
ERα at the same time interval (Fig. 3A). Although the
expression ERα was reduced at 72 h, compared to 12 h, in
the NP exposure group alone, the combined exposure
with PCB-77 produced significant 2-fold reduction of
ERα, compared with NP exposure alone at the same time
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interval (Fig. 3A). When hepatocytes were exposed to
PCB-77 alone, a 3.5-fold increase of ERα mRNA expres-
sion was observed at 12 h, and thereafter the expression

was reduced below control levels at 24, 48 and 72 post-
exposure (Fig. 3A). The expression of ERβ mRNA followed
a similar pattern with ERα, but with higher PCB-77 effect

Expression of ERα (A), ERβ (B), Vtg (C), Zr-protein (D), vigilin (E) and 20S proteasome subunit (F) mRNA in primary culture of salmon hepatocytes exposed for 48 h to 5 μM NP and PCB-77 at 0.001, 0.01 and 1 μM, singly and in combinationFigure 1
Expression of ERα (A), ERβ (B), Vtg (C), Zr-protein (D), vigilin (E) and 20S proteasome subunit (F) mRNA in 
primary culture of salmon hepatocytes exposed for 48 h to 5 μM NP and PCB-77 at 0.001, 0.01 and 1 μM, singly 
and in combination. Messenger ribonucleic acid (mRNA) levels were quantified using quantitative (real-time) PCR with gene 
specific primer pairs. The data are given as % of the solvent control ± standard error of the mean (n = 3). Different letters 
denote exposure group means that are significantly different for the respective mRNA expression using ANOVA followed by 
Tukey's multiple comparison test (p < 0.05).
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Expression of AhRα (A), AhRβ (B), AhRR (C), ARNT (D), CYP1A1 (E) and UDPGT (F) mRNA in primary culture of salmon hepatocytes exposed for 48 h to 5 μM NP and PCB-77 at 0.001, 0.01 and 1 μM, singly and in combinationFigure 2
Expression of AhRα (A), AhRβ (B), AhRR (C), ARNT (D), CYP1A1 (E) and UDPGT (F) mRNA in primary cul-
ture of salmon hepatocytes exposed for 48 h to 5 μM NP and PCB-77 at 0.001, 0.01 and 1 μM, singly and in 
combination. Messenger ribonucleic acid (mRNA) levels were quantified using quantitative (real-time) PCR with gene specific 
primer pairs. The data are given as % of the solvent control ± standard error of the mean (n = 3). Different letters denote 
exposure group means that are significantly different for the respective mRNA expression using ANOVA followed by Tukey's 
multiple comparison test (p < 0.05).
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(Fig. 3B). Exposure to NP alone produced a significant 11-
fold increase of ERβ at 12 h post-exposure and combined
NP and PCB-77 exposure resulted to 6-fold reduction
compared with NP exposure alone at the same time inter-
val (Fig. 3B). When PCB-77 was given alone, a 4.5-fold
increase of ERβ mRNA expression was observed at 12 h
after exposure (Fig. 3A). Otherwise, exposure to NP and
PCB-77 singly or combined caused minor but variable
effects on ERβ mRNA levels at 24, 48 and 72 h after expo-
sure (Fig. 3B).

The expression of Vtg was massively induced (20-fold)
after exposure to NP alone at 12 h post-exposure, com-
pared with solvent control (Fig. 3C). Thereafter, Vtg
expression in NP-exposed cells showed a time-dependent
decreasing trend, albeit massively induced compared to
control, at 24, 48 and 72 h after exposure (Fig. 3C). PCB-
77 alone produced significant increase of Vtg expression
at 24 h post-exposure, compared to control (Fig. 3C).
When hepatocytes were exposed to NP and PCB-77 in
combination, the NP-induced Vtg expression was reduced
at all exposure time points (Fig. 3C). The mRNA expres-
sion of Zr-proteins increased 3-fold in NP exposed hepa-
tocytes at 12 h post-exposure and decreased back to
control level at 24 h (Fig. 3D). Thereafter, a time-depend-
ent increase of Zr-protein mRNA, peaking at 72 h, was
observed in the NP treated group alone (Fig. 3D). PCB-77
caused significant decreases of Zr-protein mRNA expres-
sion at 12 and 72 h after exposure, compared to NP
treated groups alone (Fig. 3D). When PCB-77 was given
alone, a 2-fold increase of Zr-protein mRNA was observed
at 12 h post-exposure, and thereafter a time-specific
decrease was observed (Fig. 3D).

Time-dependent expression of AhR-responsive genes
Compared to solvent control, NP caused variable effect on
AhRα, producing a 2-fold significant reduction at 72 h
post-exposure (Fig. 4A). The AhRα expression increased 2-
fold at 12 and 48 h after exposure with PCB-77 alone and
combined NP exposure did not produce significant differ-
ences, except at 72 h when NP caused 2-fold decrease of
PCB-77 induced AhRα expression (Fig. 4A). In contrast,
the expression levels of AhRβ mRNA were not signifi-
cantly affected over time with NP (Fig. 4B). When PCB-77
was given alone, a 2- and 8-fold increase of AhRβ mRNA
expression was observed at 24 and 72 h after exposure,
respectively (Fig. 4B), while the combined exposure with
NP significantly decreased these effects at the correspond-
ing time intervals (Fig. 4B). For AhRR, NP exposure
slightly increased the mRNA level at 24 h, but this effect
decreased thereafter with time (Fig. 4C). Exposure of
hepatocytes to PCB-77 produced a time-specific signifi-
cant increase of AhRR mRNA expression and these effects
were not significantly affected when PCB-77 was given in
combination with NP (Fig. 4C). For ARNT, a different pat-

tern of NP-PCB-77 effect was observed (Fig. 4D). NP
induced a 2.5-fold significant increase of ARNT at 12 h,
and thereafter a 2-fold decrease at 24 h post-exposure was
observed, compared to control (Fig. 4D). The ARNT
expression in NP exposed group alone returned to control
levels at 48 and 72 h post-exposure (Fig. 4D). Exposure to
PCB-77 alone produced a 2-fold significant decrease and
increase of ARNT mRNA expression at 48 and 72 h,
respectively, compared to control (Fig. 4D). When PCB-
77 was given in combination with NP, PCB-77 caused
respective significant decrease (at 12 and 48 h) and
increase (at 24 and 72 h) of NP-mediated ARNT mRNA
expression (Fig. 4D). Exposure to PCB-77 singly produced
a time-dependent induction of CYP1A1 mRNA reaching
45-fold at 72 h after exposure (Fig. 4E). When hepatocytes
were exposed to combined PCB-77 and NP, the PCB-77-
induced CYP1A1 mRNA expressions were significantly
reduced reaching 15-fold at 72 h post-exposure (Fig. 4E).
The UDPGT mRNA expression levels followed a different
pattern compared with CYP1A1. NP exposure alone pro-
duced a 3.8-fold increase and 1.5-fold decrease of UDPGT
expression at 12 and 24 h after exposure, respectively (Fig.
4F). The expression pattern of UDPGT in PCB-77 exposed
group alone was generally similar to NP exposure alone,
but with non-parallel abundance at 12 and 72 h after
exposure. Combined PCB-77 and NP exposure produced
decreased UDPGT mRNA expression level at 12 h com-
pared with NP exposure alone. At 72 h, the UDPGT
expression was significantly increased in the combined
PCB-77 and NP exposure group, compared with NP expo-
sure alone (Fig. 4F).

Discussion
In the present study, we investigated the ER-AhR interac-
tions and their mediated signalling pathways using ago-
nists for these receptors, genomic methods and in vitro
system. In our laboratory, we have previously reported
that PCB-77, an AhR agonist with known anti-estrogenic
activity, caused increases and decreases of in vivo ER-medi-
ated NP-induced Vtg and Zr-protein gene and protein
expression patterns in Atlantic salmon [11]. We found
that the in vivo responses were dependent on PCB-77 and
NP dose ratios and sequential order of exposure and inter-
estingly influenced by seasonal changes [11]. In a recent
study, we showed that the partial inhibition of AhR with
α-naphthoflavone (ANF) did not reverse the effect of
PCB-77 on ER-mediated transcription suggesting that
AhRs does not have a direct role on PCB-77 mediated
decreases of ER-mediated responses; and the inhibition of
ER with tamoxifen (Tam – partial ER antagonist) and ICI
182,780 (ICI – absolute ER antagonist) reversed the tran-
scription of AhR-mediated responses, except AhR repres-
sor (AHRR) [15]. Taken together, these findings
demonstrate a complex mode of ER-AhR interaction that
is dependent on time- and the individual chemical (NP
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and PCB-77) concentrations. In order to further character-
ize the molecular mechanism(s) behind these responses,
the analytical power of quantitative (real-time) PCR and
salmon primary hepatocyte culture was used with one
concentration of NP (5 μM) and different concentrations
of PCB-77 (0.001, 0.01 and 1 μM) to study the time-
dependent expression patterns of relevant genes in the ER
and AhR signalling pathways. Our data show a bi-direc-
tional ER-AhR interaction that is dependent on time and
PCB-77 concentration.

Modulation of ER responsive genes
The biological effects of estrogens and their mimics, such
as NP are mediated through the ERs. At present, three ER

subtypes have been isolated in teleosts. The mRNA tran-
scription of ERα and ERβ, and three estrogen responsive
genes (Vtg, Zr-protein and vigilin) were studied using real-
time PCR. We found that exposure of hepatocytes to NP
and PCB-77 singly or in combination produced distinct
expression patterns of each ER subtypes, albeit less than
NP induced levels. Both ER subtypes (α and β) were sig-
nificantly altered by NP exposure singly. In mammals, the
tissue and cell specific roles of ER isotypes have been
described [16]. Tight relationship between the ERα gene
isoform expression and Vtg synthesis in a number of tele-
ost species have been reported and strongly suggest that
this particular ER plays the dominant role in regulating
vitellogenesis [17-19]. In this study, PCB-77 was anti-

Time-dependent expression patterns of ERα (A), ERβ (B), Vtg (C) and Zr-protein (D) mRNA in primary culture of salmon hepatocytes exposed to 5 μM NP and 1 μM PCB-77, both singly and in combinationFigure 3
Time-dependent expression patterns of ERα (A), ERβ (B), Vtg (C) and Zr-protein (D) mRNA in primary cul-
ture of salmon hepatocytes exposed to 5 μM NP and 1 μM PCB-77, both singly and in combination. Hepatocytes 
were sampled at 12, 24, 48 and 72 hours post-aexposure. Expression of mRNA levels was quantified using quantitative (real-
time) PCR with gene specific primer pairs. The data are given as % of the solvent control ± standard error of the mean (n = 3). 
Different letters denote exposure group means that are significantly different for the respective mRNA expression using 
ANOVA followed by Tukey's multiple comparison test (p < 0.05).

DMSO NP PCB-77 NP+PCB-77
0

250

500

750

1000

1250

1500
12 h
24 h
48 h
72 h

E
R
�

(%
of

co
nt

ro
l)

(B) ER�

a

d

d

c
b

c
b

c

V
tg

(%
of

co
nt

ro
l)

DMSO NP PCB-77 NP+PCB-77
0

250

500

750

1000

5000

10000

15000

20000

25000

(C) Vtg

c

b

a

d

e

f

g

h

i

j

DMSO NP PCB-77 NP+PCB-77
0

100

200

300

400

500

(D) Zr-protein

Z
r-

pr
ot

ei
n

(%
of

co
nt

ro
l)

a

b

c

d

c

b

e
  b

c c

b
b

DMSO NP PCB-77 NP+PCB-77
0

300

600

900

1200

1500

(A) ER�

a

b

a

b bc
bc

d

b

E
R
�

(%
of

co
nt

ro
l)
Page 7 of 14
(page number not for citation purposes)



Comparative Hepatology 2007, 6:2 http://www.comparative-hepatology.com/content/6/1/2
estrogenic on NP induced Vtg and Zr-protein expression
in a time-specific manner and these effect showed a paral-
lel pattern of expression with ERα gene expression [20].

Modulation of AhR responsive genes
We investigated the effects of NP on PCB-77-induced AhR
signalling. It should be noted that in this study AhRα and

Time-dependent expression patterns of AhRα (A), AhRβ (B), AhRR (C), ARNT (D), CYP1A1 (E) and UDPGT (F) mRNA in primary culture of salmon hepatocytes exposed to 5 μM NP and 1 μM PCB-77, both singly and in combinationFigure 4
Time-dependent expression patterns of AhRα (A), AhRβ (B), AhRR (C), ARNT (D), CYP1A1 (E) and UDPGT 
(F) mRNA in primary culture of salmon hepatocytes exposed to 5 μM NP and 1 μM PCB-77, both singly and in 
combination. Hepatocytes were sampled at 12, 24, 48 and 72 hours post-exposure. Expression of mRNA levels was quanti-
fied using quantitative (real-time) PCR with gene specific primer pairs. The data are given as % of the solvent control ± stand-
ard error of the mean (n = 3). Different letters denote exposure group means that are significantly different, for the respective 
mRNA expression using ANOVA followed by Tukey's multiple comparison test (p < 0.05).
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AhRβ are used synonymously with AhR1 and AhR2,
respectively. We observed that PCB-77 produced effects
on AhR signalling by transcriptional changes of AhR-sub-
types (AhRα and AhRβ), ARNT, AhRR, CYP1A1, UDPGT
and 20S proteasome subunit. The effects on AhR signal-
ling pathway were dependent on time of exposure and
PCB-77 concentration, and were negatively affected by
NP. In accordance with the present study, the induced
transcription of phase I and II biotransformation enzymes
by PCB-77 has previously been reported [9]. The expres-
sion of AhRα and AhRR followed a parallel pattern with
CYP1A1 and UDPGT after exposure to PCB-77 concentra-
tions. On the contrary, AhRβ and the AhR nuclear dimer-
ization partner, ARNT were differentially affected. For
ARNT expression, we observed that a decreased expression
pattern with increasing PCB-77 concentration. The overall
function of ARNT is not fully understood in teleost, while
in mammalian cells, this protein appears to be constitu-
tively active [2]. Although the biochemical and molecular
properties of AhR has been characterized in mammalian
cells, there are still uncertainties concerning the regula-
tion, interactions with other proteins and transcriptional
properties of AhRs [21]. In zebrafish (Danio rerio) embryo
and liver cell line, TCDD induced a dose-dependent
increase of AhR2 mRNA expression [22]. Similar effect
was also observed in rainbow trout where the AhR2 and
AhR2β were elevated in gonadal cell line and kidney tissue
[21]. In addition, these authors did not observe increases
in mRNA expression of either AhR2 or AhR2β mRNA after
TCDD exposure in rainbow trout liver or spleen [23]. Else-
where, TCDD or PCB-77 doses did not affect transcrip-
tional changes of AhR2 mRNA expression in Atlantic
tomcod (Microgadus tomcod) liver [24].

As a transcription factor, the normal physiological and
toxicological significance of the multiple AhRs and their
associated proteins in many fish species is yet to be fully
characterized. In view of the present study and others
[25], a comparison of the in vivo endogenous response
with in vitro reporter assays that have utilized different
AhR subtypes from rainbow trout suggests that AhRα may
account for the CYP1A1 induction by PCB-77 in our sys-
tem [21]. It has been shown that the amino acid sequence
of AhR1 is most closely related to mammalian AhRs
which mediate the molecular response after exposure to
halogenated aromatic hydrocarbons [26]. The AhR1 (or
AhRα) mRNA is nearly undetectable in many tissues that
exhibit TCDD (and related compounds)-inducible
CYP1A1 expression, implying that AhR2 (or AhRβ) is
capable of mediating this response [25]. The transcrip-
tional capability of bHLH-PAS family of transcription fac-
tors is yet to be fully understood and their individual in
vivo functions are still subject of current discussions.

ER-AhR interactions
Several reports have shown that AhR ligands possess anti-
estrogenic properties [11,27,28]. A direct in vitro ligand
specific interaction between AhR and ERα has been
reported by Klinge and co-workers [29]. In our laboratory,
a bi-directional ER-AhR interaction has been reported in
rainbow trout in vitro system [9]. Herein, we show that
PCB-77 decreased the expression of NP-induced transcrip-
tion of ERα, Vtg and Zr-protein in a concentration- and
time-specific manner. Interestingly, PCB-77 alone signifi-
cantly increased ERβ expression. Studies of TCDD ability
to bind to ER demonstrated that this strong AhR agonist
did not compete with E2 for binding to the ER [30]. Four
possible mechanisms have been suggested for the anti-
estrogenic actions of AhR agonists: 1) increased rate of E2
metabolism; 2) decreased cellular ER isoform levels; 3)
suppression of E2 induced transcription; and 4) ER-AhR
competition for transcriptional co-factors [31]. Recently, a
new mechanism of action termed "ER-hijacking" that
defies the above named mechanisms has been postulated
[32]. ER-hijacking describes the ability of AhR ligands to
activate ER-regulated transcription independent of ER-lig-
ands and has raised the possibility that several xenoestro-
gens may indeed have estrogenic properties through
activation of AhR-ER complex [33]. In fish, we first
reported this alternative mode of action for AhR agonists,
using PCB-77 and salmon in vivo system in 2001 [11]. In
that report, we proposed that although the mechanisms
by which AhR-agonists induce CYP1A and mediate their
antiestrogenic effects seem to be well understood, it could
be argued that these mechanisms may be the exception
(with regard to estrogen mimics) rather than the rule for
the actions of TCDD and related compounds there seem
to be ER isoform preferences that favour the α-isoform.
Today, several reports have demonstrated that AhR ago-
nists directly induce estrogenic activity through AhR-ERα
interactions [[33-35]; Mortensen and Arukwe, in prep].
However, there seem to be ER isoform preferences that
favour the α-isoform. For example, a human variant of
ERα(-) Ishikawa endometrial cell line were unresponsive
to E2, despite their expression of ERβ, reflecting the low
transcriptional activity of ERβ compared to ERα [32,33].
Herein, high PCB-77 concentration produced an increase
of ERα (also at 12 h post-exposure), above control and
statistically equal to NP levels, and in combination with
NP produced elevated ERα above NP and control levels.
PCB-77 produced an increase of ERβ that was concentra-
tion specific, it is possible that AhR agonists, such as PCB-
77 may "hijack" both ER subtypes that does not result in
the activation of Vtg (but Zr-protein at 12 h) response.

When these potential mechanisms are put into context of
the present study, degradation of endogenous E2 (or NP)
by metabolizing enzymes induced by AhR may lead to
decreased ER-mediated transcription. The involvement of
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CYP1A1 in E2 metabolism was previously investigated in
female carp by Smeets and co-workers [36] and reported
that the anti-estrogenicity of different AhR ligands in
female carp was found to be mediated through the AhR,
not involving the CYP1A1. This is in accordance with the
present study, showing no clear pattern of decreased ER,
Vtg or Zr-protein gene expression in response to increased
CYP1A1 gene or enzyme activity (measured as 7-ethoxyre-
sorifin O-deethylase, EROD- data not shown) after treat-
ment with PCB-77.

The ER degradation by proteasomes induced by AhR has
been explained as another possible anti-estrogenic mech-
anism [37,38]. In addition to activating AhR, TCDD is
found to rapidly reduce the level of AhR protein in cells
and mechanistic studies have established that the turno-
ver is mediated through the 26S proteasome, involving
ubiquitination of AhR and requires the transcription acti-
vation domain of AhR [39,40]. Our data does not support
these speculations since despite being expressed there is
no direct relationship between a 20S proteasome β-subu-
nit quantified in this study with ERα expression levels. On
the contrary, a partial relationship was observed between
the proteasome subunit and AhR subtypes, AhRR,
CYP1A1 and UDPGT in the combined NP and PCB-77 at
0.01 and 1 μM concentrations. This discrepancy might be
caused by the possibility that we may have quantified the
wrong proteasome subunit. The choice of proteasome in
the present study was based on its differential expression
pattern on our subtractive cDNA library after exposure to
ER- and AhR-agonists [15]. Furthermore, while the pro-
teasome hypothesis provided us with a rationale for meas-
uring the proteasome gene expression, it should be noted
that changes in gene expression are generally not a surro-
gate for changes in protein degradation due to proteas-
ome degradation. Thus, the proteasome hypothesis
should be studied at the protein level.

Previous report have shown that mouse hepatic cell line
lacking functional AhR due to mutations in the ARNT, lost
ER trans-activation potential in the presence of TCDD due
to a sharp decrease in its ability to bind to an ERE [41].
Elsewhere, TCDD prevented reporter gene expression in
Xenopus Vtg A2 regulatory sequences even when cells
were transiently over-expressing ER, suggesting that the
mechanism does not involve ER down-regulation by
TCDD [42]. While treatment with E2 increased ER-ERE
complex formation, TCDD alone did not have an effect
and the binding of ER to ERE was completely lost in cells
simultaneously treated with both E2 and TCDD. These
observations led the authors to conclude that TCDD was
no longer anti-estrogenic in the mutated cell line since
AhR was required for the ability of ER to trans-activate
from the ERE [41]. When these finding are compared to
the data in the present study where PCB-77 produced an

apparent concentration-specific increased and decrease of
ERα and ARNT, respectively, it is plausible to suggest that
PCB-77 mediated anti-NP effect does not involve the
down-regulation of ERα expression.

Another possible target for AhR-mediated anti-estrogenic-
ity is the mRNA stability of ER and its transcriptional
downstream products (Vtg and Zr-proteins). RNA gel
mobility shift assays has shown that an estrogen-induci-
ble mRNA stabilizing protein that bound specifically to
Vtg mRNA in an area previously implicated in estrogen-
mediated stabilization of Vtg mRNA [43]. The stability of
mRNA is determined by site-specific mRNA endonuclease
activities [44]. The endonuclease catalyzed mRNA decay is
regulated through the binding of RNA-binding proteins to
target mRNAs that prevent their cleavage by endonucle-
ases [45]. Vigilin, or high density lipoprotein-binding pro-
tein, is an ubiquitous protein in vertebrate cells [43]. For
example, the stability of liver Vtg mRNA in Xenopus laevis
is regulated by an E2-induced vigilin that binds specifi-
cally to a 3'-untranslated region (3'-UTR) segment of the
Vtg mRNA and protects it from degradation [43]. In the
present study, the expression of vigilin mRNA in NP expo-
sure singly or in combination with PCB-77 concentration
did not produce parallel expression pattern with Vtg or Zr-
protein. Interestingly, the low PCB-77 exposure alone or
in combination with NP that produced an almost total
inhibition of Vtg and Zr-protein levels showed the highest
vigilin expression. We are performing further studies to
explain this discrepancy. However, it should be noted that
0.01 μM PCB-77 produced a consistent, but complicated
pattern of effect in both ER and some AhR mediated
responses (see Figs. 1, 2).

On the AhR signalling pathway, we observed that the NP
decreased the transcription of AhRα, AhRβ, AhRR, ARNT,
CYP1A1 and UDPGT to below PCB-77 exposed levels in a
PCB-77 concentration- and time-specific manner, indicat-
ing that NP has anti-AhR signalling effects. Interestingly,
the expression of AhRβ and ARNT showed a different pat-
tern of effect in PCB-77 exposure alone and in combina-
tion with NP. We observed PCB-77 exposure first induced
ARNT at low concentration and thereafter a concentra-
tion-specific decrease was observed. ARNT functions as a
dimerization partner for several proteins in the bHLH-
PAS protein superfamily [2,28], therefore, only minor
alterations in ARNT gene expression could be expected in
response to xenobiotic exposures. However, on the basis
of sequence homology with an ER transcription factors
p160, it was shown that ARNT functions as a co-activator
of ER and this effect was due to the C-terminal domain
and not the conserved bHLH or PAS domains [28]. In
addition, although the ARNT contains a less complex acti-
vation domain compared to AhR; the activation domains
of AhR and ARNT are located in the carboxy-terminal of
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both genes [46]. During CYP1A1 (and other genes) activa-
tion, the ARNT activation domain does not contribute to
the activation of AhR complex [47].

In general, the present data are consistent with previous
studies showing that NP (i.e., estrogen mimic) and E2 sig-
nificantly suppressed hepatic CYP1A1 mRNA levels,
EROD activity and CYP1A1 protein in in vivo and in vitro
experiments using several teleost species [48,49]. Based
on the possible mechanisms explained above, we hypoth-
esize that NP can bind the CYP1A1 protein [50], and
through this binding, NP or its metabolites may inhibit
the CYP1A1 expression [51]. Alternatively, the effect of
NP could partially be mediated by the liver ERs through a
process that may involve the ER-NP complex interfering
with the AhR transcription machinery either directly or
with the CYP1A1, or indirectly through bind to the XRE
and regulating AhR-induced gene expression. In addition,
NP may control the recruitment of ER and possibly other
co-activators, besides activating the detoxification path-
way.

The consistency between AhRR, CYP1A1 and UDPGT
expression pattern suggests that this repressor singly may
have caused the decrease in CYP1A1 and UDPGT levels.
The AhRR-ARNT heterodimerization may negatively regu-
late AhR driven gene expression through transcriptional
repression [52]. In accordance with our data, the modula-
tion of CYP1A1 by NP, E2, and BNF was recently shown
to parallel the AhRR gene expression [53]. Any of the
above mentioned mechanisms might have caused the NP
effect on AhR signalling. This is supported by the fact that
the BHLH-PAS (Per-AhR/ARNT-Sim homology sequence)
of transcription factor usually associate with each other to
form heterodimers, AhR/ARNT or AhRR/ARNT, and bind
the XRE sequences in the promoter regions of the target
genes to regulate their expression.

Conclusion
The findings in the present study demonstrate the interac-
tions between NP and PCB-77 in primary culture of
salmon hepatocytes. The AhR-agonist (PCB-77) func-
tioned as anti-NP-mediated effect, and NP functioned as
anti-AhR-mediated effect or as inhibitor of AhRα, AhRR,
ARNT, CYP1A1 and UDPGT expression. Overall, the find-
ings demonstrate a complex mode of ER-AhR interactions
that were dependent on the time of exposure and individ-
ual chemical (NP and PCB-77) concentrations. A novel
aspect of the present study is that low (0.001 μM) and
medium (0.01 μM) PCB-77 concentrations increased ERβ
mRNA expression above control and NP levels, and at 12
h post-exposure, PCB-77 exposure alone produced signif-
icant elevation of ERα, ERβ and Zr-protein expressions
above control levels. Nevertheless, a retrospective evalua-
tion of the data presented here showed that 12 h could

have been a better exposure time for the concentration
study since it was at this time point most unique
responses were observed. However, the choice of our
exposure time was based on previous studies in our labo-
ratory (and elsewhere) that have produced significant
interactions between NP and PCB-77 is fish primary hepa-
tocyte culture. In our laboratory, we are still performing
studies on cross-talk between the ER-AhR signal transduc-
tion systems and underlying mechanism(s) by which
xenobiotics and xenoestrogens interact with each other.
This complex interaction between two different classes of
ligand-activated receptors provides novel mechanistic
insights on signalling pathways.

Methods
Chemicals and reagents
4-nonylphenol (NP; 85% of p-isomers) was purchased
from Fluka Chemika-Biochemika (Buchs, Switzerland).
The impurities in 4-nonylphenol consist mainly of phe-
nol (8–13%), tripropylene (~1%) and 2,4-dinonylphenol
(~1%). 3,3',4,4'-Tetrachlorobiphenyl (PCB-77; 99.7%
pure) was purchased from Dr. Ehrenstorfer GmbH (Augs-
burg, Germany). Dulbecco minimum essential medium
(DMEM) with non-essential amino acid and without phe-
nol red, fetal bovine serum (FBS), L-glutamine and TA
cloning kit were purchased from Gibco-Invitrogen Life
Technologies (Carlsbad, CA, USA). Dimethyl sulfoxide
(DMSO), 100× penicillin-streptomycin-neomycin solu-
tion, collagenase, bovine serum albumin (BSA), N-[2-
hydroxyethyl]piperazine-N'-[2-ethanesulfonic acid]
(HEPES), ethyleneglycol-bis-(β-aminoethylether) N,
N'tetraacetic acid, (EGTA), 0.4% trypan blue were pur-
chased from Sigma Chemical (St. Louis, MO, USA).
E.Z.N.A. total RNA kit for ribonucleic acid (RNA) purifica-
tion was from Omega Bio-Tek (Doraville, GA, USA).
IScript cDNA synthesis kit and iTAQ™ SYBR® green super-
mix with ROX were purchased from Bio-rad Laboratories
(Hercules, CA, USA). GeneRuler™ 100 base pairs (bp)
DNA ladder and deoxynucleotide triphosphates (dNTPs)
were purchased from Fermentas GmbH (St. Leon-Rot,
Germany).

Collagenase perfusion, isolation and culture of 
hepatocytes
Juvenile Atlantic salmon (Salmo salar) of approximately
400–500 g were supplied by Marine Harvest AS, Dyrvik,
Norway and kept at the animal holding facilities at the
Biology Department, NTNU. Fish were supplied with con-
tinuously running saltwater at a constant temperature of
10°C. Prior to liver perfusion all glassware and instru-
ments were autoclaved before use. Solutions were filtra-
tion sterilized by using 0.22 μm Millipore filter (Millipore
AS, Oslo, Norway). Hepatocytes were isolated from 3
individuals (triplicate exposures) by a two-step perfusion
technique with modifications as described by Andersson
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and co-workers [54]. The cell suspension was filtered
through a 150 μm nylon monofilament filter and centri-
fuged at 50 × g for 5 min. Cells were washed three times
with serum-free medium and finally resuspended in com-
plete medium. Following collagenase perfusion and isola-
tion of hepatocytes, viability of cells was determined by
the trypan blue exclusion method. A cell viability value of
> 90% was a criterion for further use of the cells. Cells
were plated on a 35 mm Primaria culture plates (Becton
Dickinson Labware, USA) at the recommended density
for monolayer cells of 5 × 106 cells in 3 ml DMEM
medium (without phenol red) containing 2.5% (v/v) FBS,
0.3 g/L glutamine, and 1% (v/v) penicillin-streptomycin-
neomycin solution. The cells were cultured at 10°C in a
sterile incubator without additional O2/CO2 for 48 hr
prior to chemical exposure.

Exposure of hepatocytes
After 48 h pre-culture, two separate experiments were per-
formed. Firstly, we evaluated the effects of different PCB-
77 concentrations on NP mediated effects. Secondly, we
investigated the time-response pattern of these effects.
Both NP and PCB-77 concentrations were chosen based
on previous experiments. These studies showed that these
concentrations are optimal in vitro concentrations for ER-
AhR interactions in salmonids [9]; Mortensen and
Arukwe, submitted). In the first experiment, hepatocytes
were exposed (triplicate plates for each exposure group)
for 48 h to 0.01% DMSO (control), 5 μM NP and 0.001,
0.01 and 1 μM PCB-77 singly and also in combination. In
the second experiment, hepatocytes were exposed (tripli-
cate plates for each exposure group) for 12, 24, 48 and 72
h to 0.01% DMSO (control), 5 μM NP and 1 μM PCB-77
singly and also in combination. In both experiments,
media were replaced with fresh media containing the
respective test chemical and concentrations every 24 h.
Media and cells were harvested after exposure and lysed in

E.Z.N.A lysis buffer for total RNA isolation according
manufacturers protocol (Omega Bio-Tek).

Quantitative (real-time) PCR
Total cDNA for the real-time PCR reactions were gener-
ated from 1 μg total DNase-treated RNA from all samples
using poly-T primers from iScript cDNA Synthesis Kit as
described by the manufacturer (Bio-Rad). Quantitative
(real-time) PCR was used for evaluating gene expression
profiles. For each treatment, the expression of individual
gene targets was analyzed using the Mx3000P REAL-TIME
PCR SYSTEM (Stratagene, La Jolla, CA, USA). Each 25-μL
DNA amplification reaction contained 12.5-μL of iTAQ™
SYBR® Green Supermix with ROX (Bio-Rad), 1 μL of cDNA
and 200 nM of each forward and reverse primers. The 3
step real-time PCR program included an enzyme activa-
tion step at 95°C (5 min) and 40 cycles of 95°C (30 sec),
55–65°C for 30 sec, depending on the primers used (see
Table 1), and 72°C (30 sec). Controls lacking cDNA tem-
plate (minus reverse transcriptase sample) were included
to determine the specificity of target cDNA amplification
as described previously [9,55]. Briefly, cycle threshold
(Ct) values obtained were converted into mRNA copy
number using standard plots of Ct versus log copy
number. The criterion for using the standard curve is
based on equal amplification efficiency with unknown
samples and this is usually checked prior to extrapolating
unknown samples to the standard curve. The standard
plots were generated for each target sequence using
known amounts of plasmid containing the amplicon of
interest. Data obtained from triplicate runs for target
cDNA amplification were averaged and expressed as ng/μg
of initial total RNA used for reverse transcriptase (cDNA)
reaction. Standard errors were calculated using S-plus sta-
tistic software 6.2 (Insightful Corp, USA). Statistical differ-
ences among treatment groups were tested using analysis
of variance (ANOVA) and comparison of different expo-
sure treated and control groups were performed using

Table 1: Primer pair sequences, accession numbers, amplicon size and annealing temperature conditions for genes of interest used for 
real-time PCR.

Target Gene Primer sequence* Amplicon size 
(nucleotides)

Annealing 
temperature (°C)

GenBank accession 
number

Forward Reverse

ERα TCCAGGAGCTGTCTCTCCAT GATCTCAGCCATACCCTCCA 173 55 DQ009007
ERβ GAGCATCCAAGGTCACAATG CACTTTGTCATGCCCACTTC 126 59 AY508959
Vtg AAGCCACCTCCAATGTCATC GGGAGTCTGTCCCAAGACAA 391 57 DY802177

Zr-protein TGACGAAGGTCCTCAGGG AGGGTTTGGGGTTGTGGT 113 55 AF407574
Vigilin GGGATACGCACAGACACCTT CCCAGATTCCACAGACACCT 86 60 DY802195
AhRα AGGGGCGTCTGAAGTTCC GTGAACAGGCCCAACCTG 82 60 AY219864
AhRβ GACCCCCAGGACCAGAGT GTTGTCCTGGATGACGGC 96 65 AY219865
AhRR TTCCTCCAGGGACAGAAGAA ATGGAGGGCAGCAGAAGAG 98 60 DQ372978
Arnt AGAGCAATCCCAGGGTCC TGGGAGGGTGATTGAGGA 107 60 DQ367887

CYP1A1 GAGTTTGGGCAGGTGGTG TGGTGCGGTTTGGTAGGT 76 60 AF364076
UDPGT ATAAGGACCGTCCCATCGAG ATCCAGTTGAGGTCGTGAGC 113 55 DY802180

Proteasome TCTTTGACCAGGTTGCACAG CATACAAAGCTGGTGGCTCA 134 60 DY802110
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Tukey's multiple comparison test. The multiparametric
ANOVA test was performed after testing for normality and
also variance homogeneity, using the Levene's test. For all
the tests the level of significance was set at p < 0.05, unless
otherwise stated.
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Abstract

Available toxicological evidence indicates that environmental contaminants with strong affinity to the aryl hydrocarbon receptor (AhR) have anti-
estrogenic properties in both mammalian and non-mammalian in vivo and in vitro studies. The primary objective of the present study was to
investigate the interactions between the AhR and estrogen receptor (ER) in salmon in vitro system. Two separate experiments were performed and
gene expression patterns were analyzed using real-time PCR, while protein analysis was done by immunoblotting. Firstly, salmon primary
hepatocytes were exposed to the dioxin-like PCB126 at 1, 10 and 50 pM and ER agonist nonylphenol (NP) at 5 and 10 μM, singly or in combination.
Our data showed increased levels of ER-mediated gene expression (vitellogenin: Vtg, zona radiata protein: Zr-protein, ERα, ERβ and vigilin) as
well as increased cellular ERα protein levels after treatment with NP and PCB126, singly or in combination. PCB126 treatment alone produced, as
expected, increased transcription of AhR nuclear translocator (Arnt), CYP1A1 andAhR repressor (AhRR)mRNA, and these responses were reduced
in the presence of NP concentrations. PCB126 exposure alone did not produce significant effect onAhR2αmRNAbut increased (at 1 and 50 pM) and
decreased (at 10 pM) AhR2βmRNA below control level. For AhR2δ and AhR2γ isotypes, PCB126 (at 1 pM) produced significant decreases (total
inhibition for AhR2γ) of mRNA levels but was indifferent at 10 and 50 pM, compared to control. NP exposure alone produced concentration-
dependent significant decrease of AhR2β mRNA. In contrast, while 5 μM NP produced an indifferent effect on AhR2δ and AhR2γ, 10 μM NP
produced significant decrease (total inhibition for AhR2γ) and the presence of NP produced apparent PCB126 concentration-specific modulation of
all AhR isotypes. A second experiment was performed to evaluate the involvement of ER isoforms in PCB126 mediated estrogenicity. Here, cells
were treated with the different concentrations of PCB126, alone or in combination with ICI182,780 (ICI) and sampled at 12, 24 and 48 h post-
exposure. Our data showed that PCB126 produced a time- and concentration-specific increase of ERα and Vtg expressions and these responses were
decreased in the presence of ICI. In general, these responses show a direct PCB126 induced transcriptional activation of ERα and estrogenic
responses in the absence of ER agonists. Although not conclusive, our findings represent the first study showing the activation of estrogenic responses
by a dioxin-like PCB in fish in vitro system and resemble the “ER-hijacking” hypothesis that was recently proposed. Thus, the direct estrogenic
actions of PCB126 observed in the present study add new insight on the mechanisms of ER–AhR cross-talk, prompting a new wave of discussion on
whether AhR-mediated anti-estrogenicity is an exception rather than rule of action.
© 2007 Published by Elsevier Inc.
UNKeywords: Dioxin-like PCB126; AhR; Estrogen receptor activation; Nonylphenol; Interactions; Fish; In vitro system
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activation of CYP1A gene, among other transcription products.
The estrogen receptors (ERα and ERβ) belong to the nuclear
receptor superfamily of transcription factors (Nilsson et al., 2001),
while the AhR is a member of the helix–loop–helix–PAS (bHLH–
PER–ARNT–SIM) family of gene regulatory proteins (Gu et al.,
2000). Upon binding to a ligand the AhR dimerizes with AhR
nuclear translocator (Arnt) and the complex translocates to the
nucleus where it transactivates mRNA transcription of genes con-
taining XRE (xenobiotic responsive elements) in their upstream
regions. Several genes involved in metabolism and degradation
of lipophilic and persistent compounds contain XREs in their
promoter, including CYP enzymes, uridine-diphosphate glucur-
onosyltransferase (UGT) and AhR repressor (AhRR) (Gu et al.,
2000). Similarly, binding of estrogens or their mimic to the ERs
results in dimerization and subsequent binding of cofactors that
produce the transactivation of genes (such as vitellogenin; Vtg)
with estrogen responsive elements (EREs) upstream of the ini-
tiation site (Nilsson et al., 2001). In addition, the endonu-
clease catalyzed mRNA decay is regulated through the binding
of RNA-binding proteins to target mRNAs that prevent their
cleavage by endonucleases (Dodson and Shapiro, 2002). Vigilin
or high density lipoprotein-binding protein is a ubiquitous pro-
tein in vertebrate cells. For example, the stability of liver Vtg
mRNA is regulated by an E2-induced vigilin that binds specifi-
cally to a 3′-untranslated region (3′-UTR) segment of the Vtg
mRNA and protects it from degradation (Dodson and Shapiro,
2002). Thus, ER and AhR are critical for their respective gene
expressions. The molecular basis for Vtg and CYP1A1 gene ex-
pression shows that these gene activations are receptor-mediated
responses that are ligand structure-dependent interactions with
respective ER and AhR, probably involving several receptor iso-
forms. Inhibitory AhR and ER cross-talk have been demonstrated
in breast cancer cells, rodent uterus and mammary tumor cells
(Safe et al., 1991).

Previously, we reported that in vivo exposure of fish to
combined AhR agonist (3,3′,4,4′-tetrachlorobiphenyl, PCB77)
and ER agonist (nonylphenol, NP) resulted in the potentiation
and inhibition (depending on dose ratio, sequential order of
exposure and seasonal changes) of NP-induced responses by
PCB77 (Arukwe et al., 2001). Based on this study, we suggested
that AhR agonist mediated anti-estrogenic activities that have
been well documented in mammalian cell-based systems and
relatively few studies in fish might be an exception rather than
the rule for the mode of action for these chemicals. In the aquatic
systems, industrial chemicals, pharmaceuticals and personal
care products, pesticides and surfactants are common and ubi-
quitous contaminants. Therefore, chemical interactions may
have profound consequences since organisms, including fish,
are exposed to complex mixtures of environmental pollutants
(Brian et al., 2005; Mumtaz et al., 2002). These complex in-
teractions have only recently become the focus of systematic
investigations both in laboratory and elsewhere using genomic
approaches (Arukwe et al., 2001; Brian et al., 2005; Mortensen
et al., 2006; Mumtaz et al., 2002). The relative importance of the
influence of contaminants on biological systems is not well
understood or quantified mechanistically in complex chemical
mixtures. Therefore, the present study was designed with the
Please cite this article as: Mortensen, A.S., Arukwe, A., Activation of estroge
3,3′,4,4′,5-Pentachlorobiphenyl (PCB126) in salmon in vitro system, Toxicol. Ap
TE
D
PR

OO
F

1primary objective of investigating the AhR–ER interactions
1using a potent and dioxin-like AhR agonist (PCB126) and
1a xenoestrogen (NP). To examine the involvement of ERs
1on these interactions, we deployed an absolute ER antagonist
1(ICI182,780). It should be noted that our primary study desig-
1ned was to test the hypothesis that the dioxin-like PCB126 will
1produce concentration-dependent anti-NP responses that will
1parallel AhR activation and subsequent induction P450 res-
1ponses in primary salmon hepatocyte culture.

1Materials and methods

1Chemicals and reagents. 4-Nonylphenol (NP; 85% of p-isomers) was
1purchased from Fluka Chemika-Biochemika (Buchs, Switzerland), 3,3′,4,4′,
15-Pentachlorobiphenyl (PCB126) from Cambridge Isotope Laboratories (Ando-
1ver, MA, USA) and ICI182,780 (ICI) from Tocris BioScience (Bristol, England).
1Dulbecco minimum essential medium (DMEM) with non-essential amino acid
1and without phenol red, fetal bovine serum (FBS), L-glutamine and TA cloning
1kit were purchased from Gibco-Invitrogen Life Technologies (Carlsbad, CA,
1USA). Dimethyl sulfoxide (DMSO), 100× penicillin–streptomycin–neomycin
1solution, collagenase, BSA, N-[2-hydroxyethyl]piperazine-N′-[2-ethanesulfonic
1acid] (HEPES), ethyleneglycol-bis-(β-aminoethylether) N,N′tetraacetic acid,
1(EGTA), 0.4% trypan blue and rabbit-anti-hERα antiserumwere purchased from
1Sigma-Aldrich Chemie GmbH (Munich, Germany). EZNA total RNA kit for
1ribonucleic acid (RNA) purification was from Omega Bio-Tek (Doraville, GA,
1USA). IScript cDNA synthesis kit and iTAQ™SYBR® green supermix with
1ROX were purchased from Bio-Rad Laboratories (Hercules, CA, USA).

1Collagenase perfusion, isolation and culture of hepatocytes. Juvenile Atlantic
1salmon (Salmo salar; body weight of 300–350 g) were supplied by Marine
1Harvest AS, Norway. In experiment 1 (performed in November 2005) seawater
1adapted salmon were used and in experiment 2 (performed in February 2007)
1freshwater adapted salmon were used. The fish were kept at the animal holding
1facilities at the Biology Department, NTNU. Prior to liver perfusion all glass-
1ware and instruments were autoclaved and solutions were filtration sterilized by
1using 0.22 μmMillipore filter (Millipore AS, Oslo, Norway). Hepatocytes were
1isolated by a two-step perfusion technique with modifications as previously
1described (Mortensen and Arukwe, 2007a). The cell suspension was filtered
1through a 150 μM nylon monofilament and centrifuged at 50×g for 5 min. Cells
1were washed three times with serum-free medium and finally resuspended in
1complete medium. Following collagenase perfusion and isolation of hepato-
1cytes, viability of cells was determined by the trypan blue exclusion method. A
1cell viability value of N90% was a criterion for further use of the cells. Cells
1were plated on a 35 mm TPP Tissue Culture Plates (Techno Plastic Products AG,
1Switzerland) at the recommended density for monolayer cells of 5×106 cells in
13 ml DMEM medium (without phenol red) containing 2.5% (v/v) FBS, 0.3 g/l
1glutamine, and 1% (v/v) penicillin–streptomycin–neomycin solution. The cells
1were cultured at 10 °C in a sterile incubator without additional O2/CO2 for 48 h
1prior to chemical exposure.

1Exposure of hepatocytes. Two separate exposure experiments were performed.
1In experiment 1, we evaluated the interaction between the ER and AhR using
1strong agonists for both receptors. In experiment 2, we wanted to determine
1whether PCB126 activation of ER and its signaling were dependent on direct
1activation of ER isoforms. The time–response pattern of PCB126 effects in cells
1exposed to PCB126 singly or in combination was evaluated with the absolute ER
1antagonist ICI. Both NP and ICI concentrations were chosen based on previous
1experiments conducted in our laboratory showing that these concentrations are
1optimal in vitro concentrations for investigating ER–AhR interactions in
1salmonids (Mortensen and Arukwe, 2007a,b). In the experiment 1, hepatocytes
1were exposed in triplicate for each exposure group for 48 h to 0.1% DMSO
1(control), 5 and 10 μM NP or 1, 10 and 50 pM PCB126 singly and also in
1combination. The exposure time of 48 h was chosen based on previous expe-
1riments showing that a 48 h time interval gives a stable culture condition and
1optimal response time. In the experiment 2, hepatocyteswere exposed in triplicate
1for each exposure group for 12, 24 and 48 h to 0.1% DMSO (control), 1, 10 and
n receptor signaling by the dioxin-like aryl hydrocarbon receptor agonist,
pl. Pharmacol. (2007), doi:10.1016/j.taap.2007.11.003
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Table 1t1:1

Primer pair sequences, accession numbers, amplicon size and annealing temperature conditions for genes of interest used for real-time PCRt1:2

t1:3 Target gene Primer sequence a Amplicon
size
(nucleotides)

Annealing
temperature
(°C)

GenBank
accession
number

t1:4 Forward Reverse

t1:5 ERα TCCAGGAGCTGTCTCTCCAT GATCTCAGCCATACCCTCCA 173 55 DQ009007
t1:6 ERβ GAGCATCCAAGGTCACAATG CACTTTGTCATGCCCACTTC 126 59 AY508959
t1:7 Vtg AAGCCACCTCCAATGTCATC GGGAGTCTGTCCCAAGACAA 391 57 DY802177
t1:8 Zr-protein TGACGAAGGTCCTCAGGG AGGGTTTGGGGTTGTGGT 113 55 AF407574
t1:9 Vigilin GGGATACGCACAGACACCTT CCCAGATTCCACAGACACCT 86 60 DY802195
t1:10 AhR2α AGGGGCGTCTGAAGTTCC GTGAACAGGCCCAACCTG 82 60 AY219864
t1:11 AhR2β GACCCCCAGGACCAGAGT GTTGTCCTGGATGACGGC 96 65 AY219865
t1:12 AhR2δ AGGGGCGTCTGAAGTTCC GTGAACAGGCCCAACCTG 139 60 AF495590
t1:13 AhR2γ GACCCCCAGGACCAGAGT GTTGTCCTGGATGACGGC 139 60 AY052499
t1:14 AhRR TTCCTCCAGGGACAGAAGAA ATGGAGGGCAGCAGAAGAG 98 60 DQ372978
t1:15 Arnt AGAGCAATCCCAGGGTCC TGGGAGGGTGATTGAGGA 107 60 DQ367887
t1:16 CYP1A1 GAGTTTGGGCAGGTGGTG TGGTGCGGTTTGGTAGGT 76 60 AF364076
t1:17 20S Proteasome TCTTTGACCAGGTTGCACAG CATACAAAGCTGGTGGCTCA 134 60 DY802110

a Sequences are given in the 5′–3′ order.t1:18

Fig. 1. Transcriptional changes of ERα (A) and ERβ (B) mRNA in salmon
hepatocytes exposed to NP (5 and 10 μM) and PCB126 (1, 10 and 50 pM) singly
and also in combination. Cells were harvested 48 h post-exposure and mRNA
levels were quantified using real-time PCR with gene specific primer pairs. The
data are given as percentage (%) of solvent control±standard error of the mean
(SEM: n=3). Different letters denote exposure groupmeans that are significantly
different for the respective mRNA expression using ANOVA followed by
Tukey's multiple comparison test (pb0.05).
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50 pM PCB126 singly or in combination with 1 μM ICI182,780. In both
experiments, media were replaced with fresh media containing the respective test
chemical and concentrations every 24 h.

Quantitative (real-time) PCR. Cells for total RNA isolation were harvested in
E.Z.N.A lysis buffer according to manufacturer's protocol (Omega Bio-Tek).
The integrity of the RNA samples was verified by spectrophotometric analysis
and formaldehyde agarose gel electrophoresis. Total cDNA for the quantitative
real-time PCR (Q-PCR) reactions was generated from 1 μg total DNase-treated
RNA from all samples using a combination of random hexamer and poly-T
primers from iScript cDNA Synthesis Kit as described by the manufacturer (Bio-
Rad). The expression of individual gene targets was analyzed using theMx3000P
REAL-TIME PCR SYSTEM (Stratagene, La Jolla, CA, USA). Every 25-μl
DNA amplification reaction contained 12.5 μl of iTAQ™YBR® Green
Supermix with ROX (Bio-Rad), 5 μl of diluted cDNA and 200 nM of each
forward and reverse primers. The 3-step real-time PCR program included an
enzyme activation step at 95 °C (5 min) and 40 cycles of 95 °C (30 s), 55–65 °C
for 30 s, depending on the primers used (see Table 1), and 72 °C (30 s). Controls
lacking cDNA template were included to determine the specificity of target
cDNA amplification as described previously (Mortensen and Arukwe, 2007b).
Briefly, cycle threshold (Ct) values obtained were converted into mRNA copy
number using standard plots of Ct versus log copy number. The criterion for
using the standard curve is based on equal amplification efficiencywith unknown
samples and this is usually checked prior to extrapolating unknown samples to
the standard curve. The standard plots were generated for each target sequence
using known amounts of plasmid containing the amplicon of interest. Data
obtained from triplicate runs for target cDNA amplification were averaged and
expressed as ng/μl of initial total RNA used for reverse transcriptase (cDNA)
reaction. This absolute quantificationmethod is a well-validated procedure in our
laboratory as we do not use the so-called housekeeping genes because of their
parallel modulation pattern with experimental samples both in our laboratory
(Arukwe, 2006) and elsewhere (Steele et al., 2002).

Immunoblotting analysis of protein levels. Cells for immunochemical studies
were washed in 1 ml of 0.1 M sodium phosphate buffer (containing 0.15 M KCl,
1 mM EDTA, 1 mM dithiothreitol (DTT) and 10% glycerol at pH 7.4) then
homogenized in 150 μl of the same buffer with 4–6 up and down strokes using a
potter-elvehjem type teflon glass homogenizer. The homogenate was centrifuged
for 30 s at 12,000×g at 4 °C, and the pellets were discarded. Total protein
concentrations in samples were determined with the Bradford method using
bovine serum albumin (BSA) as standard and the protein measurements were
simplified using a Synergy HT microplate reader from Bio-Tek Instruments Inc.
(Winnoski, Vermont, USA) for absorbance reading. Immunochemical analyses
of ERα protein levels were performed using Western blotting. Proteins (10 μg)
were separated by 7.5% separating sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS–PAGE). The gel was then transferred to PVDFmembranes
Please cite this article as: Mortensen, A.S., Arukwe, A., Activation of estroge
3,3′,4,4′,5-Pentachlorobiphenyl (PCB126) in salmon in vitro system, Toxicol. Ap
ED
PRand incubated with the primary polyclonal antibodies against human ERα amino

acids 154–174 (IgG fraction of antiserum, Sigma-Aldrich) diluted 1:2000. The
rabbit-anti-hERα antiserum was generated against amino acids that are included
in the conserved DNA binding domain of human ER1 (Accn no. NM-000125)
(Sabo-Attwood et al., 2004). After washing, membranes were incubated with
peroxidase conjugated goat anti-rabbit antibodies (GAR-HRP; Bio-Rad) diluted
1:3000 using SuperSignal West Pico Chemiluminescent kit (Pierce Biotechnol-
ogy, IL, USA) and visualized with Eastman KODAK Company's Molecular
Imaging Systems (Rochester, NY, USA).
n receptor signaling by the dioxin-like aryl hydrocarbon receptor agonist,
pl. Pharmacol. (2007), doi:10.1016/j.taap.2007.11.003
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Fig. 2. Representative immunoblot analysis of ERα protein using anti-hERα antiserum in cells exposed for 48 h to carrier solvent control (DMSO), PCB126 (1 pM),
NP (10 μM) and combined PCB126-NP at the respective concentrations. Ten micrograms of total cellular protein was loaded per well.

Fig. 3. Transcriptional changes of vitellogenin (Vtg: A), Zr-protein (B) and
vigilin (C) mRNA in salmon hepatocytes exposed to NP (5 and 10 μM) and
PCB126 (1, 10 and 50 pM) singly and also in combination. Cells were harves-
ted 48 h post-exposure and mRNA levels were quantified using real-time PCR
with gene specific primer pairs. The data are given as percentage (%) of solvent
control±standard error of the mean (SEM: n=3). Different letters denote
exposure group means that are significantly different for the respective mRNA
expression using ANOVA followed by Tukey's multiple comparison test
(pb0.05).
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Statistical analysis. Standard errors were calculated using the S-plus statistic
software 6.2 (Insightful Corp, USA). Statistical differences among treatment
groups were tested using analysis of variance (ANOVA) and comparison of
different exposure treated and control groups was performed using Tukey's
multiple comparison test. The multiparametric ANOVA test was performed after
testing for normality and variance homogeneity, using the Levene's test. For all
the tests the level of significance was set at pb0.05, unless otherwise stated.

Results

Modulation of ERs and their signaling by PCB126

Analysis of ERαmRNA levels in cells exposed to NP at 5 and
10 μM showed a respective significant 2- and 2.4-fold increase in
ERα mRNA levels compared to control (Fig. 1A). Interestingly,
exposure of cells to PCB126 at 1, 10 and 50 pM produced
significant increases of ERα mRNA levels showing a respective
3-, 2.7- and 2.7-fold increase, compared to the controls (Fig. 1A).
A slight decrease of PCB126 induced ERα expression was
observed when cells were exposed in combination with NP
(Fig. 1A) and this decrease was apparently PCB126 concentra-
tion-dependent. For ERβ, the expression patterns were different
from that of ERα showing that 5 μM NP did not alter ERβ
mRNA levels and a significant 2-fold decrease was observed in
cells exposed to 10 μMNP, compared to control (Fig. 1B). While
exposure to PCB126 concentrations alone did not alter ERβ
expression patterns compared to the control, combined exposure
with NP reduced the ERβ transcription in all PCB126 exposure
groups (Fig. 1B). A representative immunoblotted ERα pro-
tein levels showing the effect of cell exposure to NP (10 μM) and
PCB126 (1 pM) singly or in combination is shown in Fig. 2. An
ERα protein of approximately 68 kDa, representing Atlantic
salmon ERα, was detectable in control and exposed samples.
A semiquantitative evaluation of protein band intensity showed
that cells exposed to 10 μM NP produced more ERα protein
compared to control, less protein compared to 1 pM PCB126
alone or in combination with 10 μM NP (Fig. 2, right panel).

The expression of Vtg mRNA significantly increased in a con-
centration-dependent manner when salmon hepatocytes were ex-
posed to 5 and 10 μM NP, showing a 14- and 100-fold induction,
respectively (Fig. 3A). Treatment of cells with 1, 10 and 50 pM
PCB126 produced VtgmRNA induction above NP levels showing
respective 130-, 530- and 160-fold increase (Fig. 3A). Generally,
treatment of cells to combined NP and PCB126 concentrations
did not alter the effects of PCB126 on Vtg expression, except
for 10 pM PCB126 exposure group in combination with 10 μM
NP, where a significant decrease of Vtg mRNA was observed
(Fig. 3A). Zr-protein transcript expression increased in response
Please cite this article as: Mortensen, A.S., Arukwe, A., Activation of estroge
3,3′,4,4′,5-Pentachlorobiphenyl (PCB126) in salmon in vitro system, Toxicol. Ap
OF 2to NP treatment alone (significantly at 5 μM NP; Fig. 3B). Ex-
2posure of hepatocytes to 1, 10 and 50 pM PCB126 alone produ-
2ced a respective significant 3.3-, 1.5- and 2-fold increase in Zr-
2protein mRNA levels (Fig. 3B) and the presence of 5 μM NP
n receptor signaling by the dioxin-like aryl hydrocarbon receptor agonist,
pl. Pharmacol. (2007), doi:10.1016/j.taap.2007.11.003
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decreased the effects below PCB126 levels. In contrast, com-
bined PCB126 concentrations and 10 μM NP did not produce
any Zr-protein mRNA transcriptional changes, compared with
PCB126 exposure alone (Fig. 3B). The vigilin mRNA expression
showed an expression pattern that is apparently similar to ERα
and Vtg mRNA expression (Fig. 3C). Specifically, analysis of
vigilin mRNA levels in cells exposed to 10 μM NP showed a
significant 2-fold increase compared to control (Fig. 3C). Ex-
posure to PCB126 (1, 10 and 50 pM) produced significant increa-
ses of vigilin expression showing a respective 3-, 2- and 1.7-fold
increase, compared to the control (Fig. 3C). Within the PCB126
concentration exposure groups, a concentration-dependent dec-
rease of vigilin mRNA expression was observed. When PCB126
and NP concentrations were given in combination, a PCB126
concentration-dependent decrease of vigilin mRNA expression
was also observed (Fig. 3C).

Effect of ICI on PCB126-mediated estrogenicity

To determine the contribution of ERα on PCB126 media-
ted estrogenicity, we exposed hepatocytes for 12, 24 and 48 h
with PCB126 (1, 10 and 50 pM) singly or in combination
with ICI182,780. It should be noted that fish used in the se-
cond experiment were freshwater adapted and from a different
season, compared to the first experiment. The ERα mRNA
UN
CO

RR
EC

Fig. 4. Changes in ERα (A) and vitellogenin (Vtg: B) mRNA in salmon hepatocytes e
(ICI: 1μM) at 12, 24 and 48 h after exposure. Cells were harvested 48 h post-exposure
pairs. The data are given as percentage (%) of solvent control±standard error of the m
different compared with control using ANOVA followed by Tukey's multiple comp
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expression patterns showed that PCB126 produced a concen-
tration-specific increase of ERα mRNA expression at 12 h
exposure, and co-treatment with ICI resulted in a slight (but
not significant) decrease of PCB126 induced ERα mRNA
levels, except at 50 pM (Fig. 4A). After 24 h of PCB126
treatment, ERα mRNA levels were not significantly altered
compared to control, and co-treatment with ICI actually in-
creased ERα expression at 1 pM (Fig. 4A). A significant de-
crease of ERα mRNA was observed in cells treated with
PCB126 concentration for 48 h and combined exposure with
ICI brought mRNA expression back to control levels (Fig. 4A).
For Vtg mRNA expression, a significant 4.5-fold increase was
observed only in cells treated with 10 pM PCB126 for 12 h
and combined exposure with ICI reduced Vtg mRNA ex-
pression back to control levels (Fig. 4B). A similar effect was
observed at 24 h of exposure showing a 7-fold induction of
Vtg mRNA expression after exposure to 10 pM PCB126 that
was restored to control levels by ICI (Fig. 4B). Exposure to
1 and 50 pM PCB126 for 12 and 24 h produced minor increa-
ses of Vtg mRNA expression, compared to control and these
increases were reduced in the presence of ICI (Fig. 4B). At 48 h,
exposure of cells to PCB126 concentrations alone did not
significantly alter Vtg mRNA expression, but combined ex-
posure with ICI reduced Vtg levels (Fig. 4B). Analysis of
cellular ERα protein levels showed that cells collected after 12 h
TE

xposed to PCB126 (1, 10 and 50 pM) singly or in combination with ICI182,780
and mRNA levels were quantified using real-time PCRwith gene specific primer
ean (SEM: n=3). Asterisks denote exposure group means that are significantly
arison test (pb0.05).

n receptor signaling by the dioxin-like aryl hydrocarbon receptor agonist,
pl. Pharmacol. (2007), doi:10.1016/j.taap.2007.11.003
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Fig. 5. Representative immunoblot analysis of ERα protein using anti-hERα antiserum in cells exposed for 12 h (A), 24 h (B) and 48 h (C) to carrier solvent control
(DMSO), ICI (1 μM), PCB126 (10 pM) and combined PCB126-ICI at the respective concentrations. Ten micrograms of total cellular protein was loaded per well.
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exposure either to PCB126 alone or in the presence of ICI
(Fig. 5A) showed the highest cellular ERα protein levels,
compared to 24 and 48 h (Fig. 5B and C, respectively). Within
the different exposure time intervals, cellular ERα protein le-
vels increased in response to treatment with 1 pM PCB126,
while the presence of ICI reduced PCB126 mediated increase
of cellular ERα protein levels (Fig. 5A, B and C, respectively).
UN
CO
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EC

Fig. 6. Expression of AhRα (A), AhR2β (B), AhR2δ (C) and AhR2γ (D) mRNA in s
singly or in combination. Cells were harvested 48 h post-exposure and mRNA levels w
given as percentage (%) of solvent control±standard error of the mean (SEM: n=3).
the respective mRNA expression using ANOVA followed by Tukey's multiple com
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3Right panels of Fig. 5A, B and C showed a semiquantitative
3analysis of relative ERα protein intensity.

3Modulation of the AhR pathways by NP and PCB126

3Exposure of salmon hepatocytes to PCB126 and NP pro-
3duced AhR isotype-specific mRNA expression patterns. AhR2α
almon hepatocytes exposed to NP (5 and 10 μM) and PCB126 (1, 10 and 50 pM)
ere quantified using real-time PCR with gene specific primer pairs. The data are
Different letters denote exposure group means that are significantly different for
parison test (pb0.05). “nd” indicates no detected mRNA transcripts.

n receptor signaling by the dioxin-like aryl hydrocarbon receptor agonist,
pl. Pharmacol. (2007), doi:10.1016/j.taap.2007.11.003
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Fig. 7. Transcriptional changes of CYP1A1 (A) and AhRR (B) in salmon
hepatocytes exposed to NP (5 and 10 μM) and PCB126 (1, 10 and 50 pM) singly
or in combination. Cells were harvested 48 h post-exposure and mRNA levels
were quantified using real-time PCR with gene specific primer pairs. The data
are given as percentage (%) of solvent control±standard error of the mean
(SEM: n=3). Different letters denote exposure group means that are sig-
nificantly different for the respective mRNA expression using ANOVA followed
by Tukey's multiple comparison test (pb0.05).

Fig. 8. Expression of Arnt (A) and 20S proteasome subunit (B) mRNA in
salmon hepatocytes exposed to NP (5 and 10 μM μM) and PCB126 (1, 10 and
50 pM) singly or in combination. Cells were harvested 48 h post-exposure and
mRNA levels were quantified using real-time PCR with gene specific primer
pairs. The data are given as percentage (%) of solvent control±standard error of
the mean (SEM: n=3). Different letters denote exposure group means that are
significantly different for the respective mRNA expression using ANOVA
followed by Tukey's multiple comparison test (pb0.05).
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EmRNA expression analysis shows that neither NP nor PCB126

significantly altered AhR2α mRNA expression in cells when
administered alone, compared to control (Fig. 6A). Combined
exposure of 5 μMNP with all PCB126 concentrations produced
apparent decreases of AhR2α expression levels with increasing
PCB126 concentration (Fig. 6A). While a significant decrease
of AhR2α mRNAwas observed in cells exposed to 10 μM NP
in combination with 10 pM PCB126, increased mRNA level
was 2observed when the same NP concentration was given in
combination with 50 pM PCB126 (Fig. 6A). On the contrary,
AhR2β mRNA showed a different pattern compared to AhR2α
after exposure to NP and PCB126 either singly or in com-
bination (Fig. 6B). The transcript pattern of AhR2β mRNA
showed a 2-fold reduction and a complete inhibition after
treatment with 5 and 10 μM NP, respectively (Fig. 6B). When
PCB126 was administered alone, an 8- and 6.5-fold increase of
AhR2β mRNA was observed for 1 and 50 pM, respectively
(Fig. 6B). On the other hand, cells treated with 10 pM PCB126
alone or in combination with NP showed a significantly rep-
ressed AhR2β expression, reaching an almost total inhibition.
A decrease of PCB126-induced AhR2β mRNA expression was
observed in cells co-treated with 1 and 50 pM PCB126 with NP
concentrations, compared with the respective PCB126 concen-
trations alone (Fig. 6B). Apparently, more similar expression
patterns were observed for the phylogenetically related AhR2δ
and AhR2γ (Fig. 6C and D, respectively). While exposure to
Please cite this article as: Mortensen, A.S., Arukwe, A., Activation of estroge
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5 μM NP singly or in combination with PCB126 did not sig-
nificantly alter AhR2δmRNA expression, a 2-fold decrease was
observed after exposure to 10 μMNP alone (Fig. 6C). Decreased
AhR2δ levels were observed after treatment of cells with 1 pM
PCB126, but 10 and 50 pM PCB126 produced indifferent effect,
compared with control (Fig. 6C). Combined exposure of cells
with PCB126 and 10 μM μM NP resulted in decreased AhR2δ
expression (total inhibition at 10 μM NP in combination with
50 pM PCB126: Fig 6C). A total inhibition of AhR2γ mRNA
expression was observed when cells were exposed to either
10 μMNP or 1 pM PCB126 alone (Fig. 6D). Exposure to 10 and
50 pM PCB126 produced non-significant slight increase of
AhR2γ mRNA expression (Fig. 6D). Increased AhR2γ levels,
compared to control, were detected after combined 1 pMPCB126
and 5 μM NP treatment (Fig. 6D). In hepatocytes treated with
10 μM NP alone, or in combination to 50 pM PCB126, a total
inhibition of AhR2γ transcript was observed (Fig. 6D).

Exposure of hepatocytes to 10 μM NP and PCB126 con-
centrations alone produced significant concentration-depen-
dent increase of CYP1A1 mRNA showing respective 3-, 3-, 4-
and 8-fold induction levels for PCB126 concentrations (Fig. 7A).
When NP concentrations and 50 pM PCB126 concentration
were given in combination, NP significantly decreased PCB126-
induced CYP1A1 mRNA expression, compared 50 pM PCB126
alone (Fig. 7A). An increase in AhRR mRNA was observed in
n receptor signaling by the dioxin-like aryl hydrocarbon receptor agonist,
pl. Pharmacol. (2007), doi:10.1016/j.taap.2007.11.003
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cells treated with 10 μM NP or PCB126 concentrations alone,
showing a respective 4-, 3-, 3.5- and 6-fold increase (Fig. 7A).
Exposure of cells to 5 μM NP in combination with 10 pM
PCB126 produced a significant increase of AhRR mRNA levels,
compared to 10 pM PCB126 alone (Fig. 7B). On the contrary,
exposure of cells to 10 μMNP in combination with 1 and 10 pM
PCB126 produced a significant decrease of PCB126 induced
AhRR mRNA expression and combined exposure with 50 pM
PCB126 did not produce significant effect (Fig. 7B).

For Arnt, the expression pattern increased in a concentration-
specific manner (showing significant increase in all concentra-
tions when compared with control) in cells exposed to PCB126
alone (Fig. 8A). Specifically, cells exposed 10 pM PCB126
produced a decrease of Arnt mRNA levels compared to 1 and
50 pM (Fig. 8A). When cells were exposed to PCB126 at 1 and
50 pM in combination with NP concentrations, apparent de-
crease of Arnt mRNA expression was observed, compared with
the PCB126 exposure concentration alone (Fig. 8A). Exposure
of cells to NP concentrations alone did not alter Arnt mRNA
levels. Analysis of a 20S proteasome mRNA levels showed that
exposure of hepatocytes to NP alone did not produce significant
alteration of the expression levels (Fig. 8B). When cells were
exposed to PCB126, an apparent concentration-dependent de-
crease in the 20S proteasomal mRNA expression was obser-
ved. Decreased levels were also observed in cells exposed to a
combined NP and PCB126 concentration, compared to control
(Fig. 8B).

Discussion

In teleost, exposure to AhR agonists has been associated with
reduced Vtg synthesis or impaired gonadal development in both
in vivo and in vitro studies (Arukwe et al., 2000; Navas et al.,
2004; Ramamoorthy et al., 1999). Cross-talk between the AhR
and ER that inhibited breast cancer cells, rodent uterus and
mammary tumors has also been demonstrated in mammals
(Safe et al., 1991; Safe and Wormke, 2003). Previously, we
showed that PCB77 increased and decreased NP-induced res-
ponses in fish in vivo system and these effects were dependent
on PCB77 and NP dose ratios and sequential order of exposure
and interestingly influenced by seasonal changes (Arukwe et al.,
2001). Recently, several studies have shown that AhR agonists
directly activate ERα and induce estrogenic responses in mam-
malian in vitro systems (Abdelrahim et al., 2006; Liu et al.,
2006; Ohtake et al., 2003; Pearce et al., 2004). Furthermore, we
showed in a very recent study that PCB77 at 1 μMconcentration
alone produced a time-dependent increase of ERα, above con-
trol and statistically equal to NP levels, and in combination
with NP produced elevated ERα, above NP and control levels
(Mortensen and Arukwe, 2007a). However, PCB77 produced
an increase of ERβ mRNA that was concentration specific
(Mortensen and Arukwe, 2007a), suggesting that AhR agonists,
such as PCB77, may induce transcription of both ER subtypes
with or without a concomitant or partial activation of estrogenic
response. In another separate study, we showed that the partial
inhibition of AhR with α-naphthoflavone (ANF; 0.1 μM)
reversed the effect of PCB77 on ERβ, Vtg and Zr-protein (but
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4not ERα and vigilin) transcription, suggesting that AhRs have
4a direct role on PCB77 mediated decrease of estrogenic res-
4ponses; and the inhibition of ER with tamoxifen (Tam; partial
4ER antagonist) and ICI reversed the transcription of AhR-
4mediated responses, except for the AhR repressor (AhRR)
4(Mortensen and Arukwe, 2007b). Taken together, these findings
4demonstrate a complex mode of ER–AhR interaction that is
4dependent on time and the individual chemical (NP and PCB77)
4concentrations. The present study was designed to investigate
4molecular AhR–ER interactions using the dioxin-like PCB126
4in salmon in vitro system. We show that exposure of salmon
4primary hepatocytes to NP and PCB126 singly or in combina-
4tion produced increased levels of genes controlled by the ER as
4well as cellular ERα protein levels. Specifically, PCB126 pro-
4duced increased transcription levels of ERα, Vtg and Zr-protein
4expression, and as expected, together with increased levels of the
4AhR2β, CYP1A1, AhRR and Arnt mRNA expressions. Thus,
4the PCB126 mediated activation of ERα and its downstream
4regulated responses coupled with the negative effect of ICI
4treatment suggest that this dioxin-like AhR agonist may be
4hijacking the ER in the absence of ER agonists, with subsequent
4induction of downstream responses.

4Activation of ER signaling by PCB126

4PCB126 is one of the most potent dioxin-like AhR agonists
4(Smeets et al., 1999) and the anti-estrogenic actions of AhR
4agonists have been described in numerous in vivo and in vitro
4studies using mammalian (Harris et al., 1990; Safe et al., 1991;
4Safe and Krishnan, 1995) and teleost systems (Mortensen and
4Arukwe, 2007b; Mortensen et al., 2006; Smeets et al., 1999;
4Vaccaro et al., 2005). Generally, the molecular mechanisms
4behind estrogen-related effects of typical AhR agonists appear
4to involve ER–AhR cross-talk. However, there is no universal
4mechanism of ER–AhR interaction that is generally accepted as
4the mode of action for these chemicals. The fact that some AhR
4agonists induce endometriosis and estrogen-dependent tumors
4indicates that they may possess estrogenic activities (Ohtake
4et al., 2003). In the present study, we show that PCB126
4activated mRNA transcription for ERα and the ERα controlled
4genes (Vtg, Zr-protein and vigilin) and proteins (ERα) in the
4absence of ER agonist. These findings are in accordance with
4past and very recent data from our laboratory demonstrating
4the positive effect of AhR agonists on estrogenic responses in
4both in vivo and in vitro (Arukwe et al., 2001; Mortensen and
4Arukwe, 2007a). In addition, the present findings showing
4PCB126 mediated activation ERα responses are also in accor-
4dance with recent reports demonstrating similar effects in mam-
4malian in vitro systems (Abdelrahim et al., 2006; Liu et al.,
42006; Pearce et al., 2004). The ER can initiate cellular responses
4through ligand-dependent, ligand-independent, DNA binding-
4independent and cell surface (non-genomic) signaling mechan-
4isms (Boverhof et al., 2006). Recently, it was shown that
4PCB126 does not induce ERE controlled mRNA transcription
4by direct binding to ERα (Matthews et al., 2007). AhR-mediated
4estrogenicity that involves direct binding of activated AhR–Arnt
4complex to the ER followed by activation of the ERE was
n receptor signaling by the dioxin-like aryl hydrocarbon receptor agonist,
pl. Pharmacol. (2007), doi:10.1016/j.taap.2007.11.003
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recently demonstrated by Ohtake and co-workers (2003), sho-
wing that the AhR ligand 3-methylchloranthrene (3MC) acti-
vated transcription of ER signaling through ERE in a luciferase
reporter plasmid assay ofMCF-7 cells. However, the presence of
17β-estradiol (E2) was shown to reduce 3MC activation of
ER responsive genes. Elsewhere, it was shown that TCDD
increased, independent of estrogen, the DNA-binding activity
of the ER in rats (Chaffin et al., 1996), and treatment of MCF-7
cells with TCDD produced a cell cycle transition from G0/G1 to
S-phase and other estrogen-like mitogenic responses (Abdelra-
him et al., 2003). In a recent study, it was shown that the AhR–
Arnt complex is involved in AhR agonists mediated estrogeni-
city since ANF abolished TCDD induced growth hormone and
prolactin mRNA expression in Rainbow trout pituitary gland
culture (Elango et al., 2006). Compared with the study of Oh-
take and co-workers (2003), our study showed that combined
NP and PCB126 exposure slightly reduced PCB126-induced
estrogenicity.

In order to investigate the involvement of ERα in PCB126-
induced estrogenicity, hepatocytes were exposed to PCB126
singly or in combination with ICI, showing that ERα and Vtg
mRNA and protein levels (ERα) were elevated after exposure
to PCB126. These responses were decreased in the presence
of ICI at 12 and 24 h, indicating the involvement of ERα. The
decision to co-administer ICI with PCB126 was made based
on previous studies in our laboratory (Mortensen and Arukwe,
2007b). Given that ICI treatment alone did not inhibit ERα
after 48 h, compared to control, it is therefore less likely that
pretreatment of cells with ICI may possibly have increased
the effect and specificity of the ER antagonist or change the
total outcome of our findings. However, the Vtg and ERα
mRNA responses were decreased in the presence of ICI at 12
and 24 h, indicating the involvement of ERα. It should be noted
that the rabbit-anti-hERα antiserum used in the present stu-
dy was generated against amino acids 154–171 that corres-
pond to the DNA-binding C-domain of human ER1 (Accn no.
NM-000125) (Sabo-Attwood et al., 2004). The use of hERα
in detecting salmon ERα by immunoblotting was evaluated by
aligning human and salmon ERα amino acid sequences. There
is a high degree of conservation between the amino acid se-
quences of Atlantic salmon and human in the DB domain.
Given the high degree of conservation in that domain, antisera
generated for hERα are suitable for detecting ERα from several
vertebrate species, including Atlantic salmon, Rainbow trout,
zebrafish (D. rerio), African clawed frog (X. laevis) and Chicken
(Gallus gallus). Furthermore, the hERα antibody detected a
consistent 2-band protein pattern (see Figs. 2 and 5), indica-
ting the immunoreactivity of both salmon ERα and ERβ due to
their amino acid sequence similarities shown in our alignment
evaluation. However, the findings in experiments 1 (48 h) and 2
(48 h) showed discrepant data for the investigated variables.
Experiment 1 was performed using saltwater adapted fish (in the
autumn) under a 48 h fixed time interval that was chosen based
on previous experiments that showed a stable culture condition
and optimal response time in our laboratory (Mortensen and
Arukwe, 2007a). The stronger stimulation of Vtg and ERα
expression in experiment 1 probable reflects different composi-
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tion of endogenous and exogenous substances and physiology of
the experimental fish since experiment 2 utilized hepatocytes
isolated from freshwater adapted salmon (in the winter).

The variation of timing and degree of ER stimulation ob-
served in the experiments in the present study are in agreement
with previous results showing that Atlantic salmon produced
seasonal pattern of xenoestrogen response that is influenced by
dose and sequential order of exposure to PCB77 and NP, singly
or in combination (2001). In addition, the estrogenicity of AhR
agonists is shown to be both cell and tissue specific in mam-
malian systems (Boverhof et al., 2006; Nesaretnam et al., 1996;
Ohtake et al., 2003). Overall, the ICI decrease of PCB126-
mediated ERα and Vtg responses suggests that these responses
are ER dependent. There are conflicting reports on the direct
activation of ER by AhR agonists. For example, while TCDD
and PCB77 were shown to elicit estrogenic responses via direct
ER binding (Nesaretnam et al., 1996), other studies showed that
PCB77 did not produce estrogenic responses (Ramamoorthy
et al., 1999), and TCDD does not bind the ER (Klinge et al.,
1999). Therefore, the “ER-hijacking” mechanism involving
the activation of unliganded ER by ligand-activated AhR or a
coactivator relationship between these signaling pathways was
proposed (Ohtake et al., 2003).

Despite the fact that the ER–AhR interactions have been
extensively studied (Beischlag and Perdew, 2005; Brunnberg
et al., 2003), there is still a reasonable level of discrepancy as
to the ER coactivator or corepressor function on AhR–Arnt
mediated induction of CYP1A1 (Beischlag and Perdew, 2005;
Matthews et al., 2005). Contrary to the anti-estrogenicity of
TCDD and related compounds, recent studies have demonstrated
that TCDD induces the AhR to interact directly with ERα in the
absence of estrogen or estrogen-like compounds (Beischlag and
Perdew, 2005; Matthews et al., 2007, 2005). In the 1980s and
1990s, there were considerable reports with evidence that TCDD
and related compounds have anti-estrogenic properties. This was
first reported using inhibited development of spontaneous tu-
mors in female Sprague–Dawley rats by Kociba et al. (1978).
For different PCDDs, there was an excellent correlation between
the binding affinity of these congeners to the AhR and their
ability to down-regulate uterine and hepatic ERs (Astroff et al.,
1990). In fish, there were reports showing similar responses
using Vtg as a marker for estrogen response (Anderson et al.,
1996b). The exact mechanism(s) of anti-estrogenicity is not
known. However, it has generally been attributed to increased E2
metabolism by CYP isozymes (Spink et al., 1990). Although
induced metabolism of E2 may explain some of the anti-estro-
genic effects of TCDD and related compounds at relatively high
concentrations or doses, there are several observations that do
not support the hypothesis. These data were summarized by Safe
et al. (1991) and include the following: (a) anti-estrogenic effects
in rodents are not accompanied by decreases in circulating E2
levels; (b) down-regulation of nuclear ER levels occurs at con-
centrations (1 pM) that do not induce the induction of P450
activities; (c) down-regulation of nuclear ER levels occurs within
2 h after treatment and only minimum induction of CYP was
observed within this short time frame; (d) 6-methyl-1,3,8-tri-
chlorodibenzofuran (MCDF), which exhibits minimal CYP1A-
n receptor signaling by the dioxin-like aryl hydrocarbon receptor agonist,
pl. Pharmacol. (2007), doi:10.1016/j.taap.2007.11.003

http://dx.doi.org/10.1016/j.taap.2007.11.003


C

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

56

57

58

59

60

61

62

63

64

65

66

67 Q1

68

69

70

71

72

73

74

75 Q2

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

00

01

02

03

04

05

06

07

08

09

10

11

12

10 A.S. Mortensen, A. Arukwe / Toxicology and Applied Pharmacology xx (2007) xxx–xxx

ARTICLE IN PRESS
UN
CO

RR
E

inducing activity, also produced anti-estrogenic activity. Since
TCDD and related compounds do not competitively bind to the
steroid ER nor do steroid hormones bind to the AhR (Safe et al.,
1991), a different scheme of approach as a working model for the
possible mechanisms of TCDD- and related compound-induced
anti-estrogenicitywas proposed bySafe and co-workers (1991)—
(a) the AhR complex itself may directly inhibit estrogen-induced
genes, (b) TCDD or related compound may induce modulatory
protein(s) which degrade the nuclear ER directly inhibits estrogen-
induced gene transcription, (c) inhibits the action of estrogen-
induced growth factors or (d) exhibits other anti-mitogenic acti-
vities. Therefore, when all the proposedmechanisms and working
models are put into context present model of “ER-hijacking” by
activatedAhR–Arnt complex and the findings from present study,
it is still possible that the suggested mechanisms of AhR–ER
interactions are both biological and toxicological/pharmacological
exception rather than rule of action (Arukwe et al., 2001) with
strong implications for cancer therapy, reproductive physiology,
molecular toxicology and pharmacological concepts.

Another interesting aspect of the present study is that the ex-
pression patterns of ER isotypes showed that ERα and ERβ res-
pond differently to NP and PCB126 treatments. Since ERα is
highly inducible by both estrogenic and xenoestrogenic compounds
in fish hepatocytes, it is believed to play the dominant role in
regulating vitellogenesis (Sabo-Attwood et al., 2004). In previous
salmon in vitro studies (2007a), while ERα was induced, ERβ
mRNA expression was not altered by exposure to NP indicating
possible isotype-specific differences in the ER ligand binding
domain. The ERs have two activation domains, namely a constitu-
tive activation function-1 (AF-1) and a hormone-dependent (AF-2)
domain. These two domains function in synergy but may also
function independently in certain cell and promoter context (Nils-
son et al., 2001). Despite that the ERβ mRNA expression pattern
did not parallel that of ERα, Vtg, Zr-protein or vigilin, it is possible
that the AhR–Arnt complex could “hijack” both ER isoforms, but
ERβ-hijacking does not result in the activation of estrogenic res-
ponses (Mortensen and Arukwe, 2007a) due to low intrinsic trans-
criptional activity of hepatic ERβ, compared to ERα. However,
there seem to be ER isoform preferences that favor theα-isoform in
regulating vitellogenesis. For example, a human variant of ERα(−)
Ishikawa endometrial cell line was unresponsive to E2, despite its
expression of ERβ, reflecting the low transcriptional activity of
ERβ, compared to ERα (Shipley and Waxman, 2006).

AhR–ER interaction

Our results provide novel aspects of ER–AhR interactions
distinct from those proposed earlier in fish. The recruitment of
ERα to AhR target genes in the absence on E2 has been des-
cribed, and this is most likely related to the direct interactions
between ER and activated AhR–Arnt (Beischlag and Perdew,
2005; Matthews et al., 2007, 2005). In the present study, expo-
sure to NP alone did not alter AhR2α, Arnt and 20S proteasome
subunit mRNA levels but reduced AhR2δ and totally inhibited
AhR2γ (at 10 μM) and reduced AhR2β (at 5 and 10 μM)
expression. Particularly, we observed a concentration-specific
increased expression of Arnt mRNA after PCB126 treatment
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6and the presence of NP decreased this effect. The overall func-
6tion of Arnt is not fully understood in teleost, while in mam-
6malian cells, this protein appears to be constitutively active (Gu
6et al., 2000). The AhR and Arnt belong to the bHLH class of
6transcription factors that usually associate with each other to
6form heterodimers (Gu et al., 2000). However, on the basis of
6sequence homology with an ER transcription factors p160, it
6was shown that Arnt also functions as a co-activator of ER,
6indicating multiple roles of Arnt in AhR–ER interactions
6(Brunnberg et al., 2003). The AhR genes are more diverse in
6non-mammalian vertebrates compared to mammalian species as
6was revealed through comparative genomic analyses (Hahn
6et al., 2006). In several fish species, both AhR1 and AhR2 genes
6have been characterized. For example, AhR2α, AhR2β, AhR2γ
6and AhR2δ are the four distinct AhR2 genes in salmonid species
6(salmon and rainbow trout). In addition, salmon genome con-
6tains two genes of the AhR1 variant, which are presumably non-
6functional (Hansson et al., 2003, 2004). It has been suggested
6that rainbow trout AhR2α and AhR2β differ in their promoter
6preference and may regulate distinct sets of genes (Abnet et al.,
61999). In the present study, exposure to PCB126 apparently
6produced similar expression patterns for the phylogenetically
6related AhR2γ and AhR2δ isotypes, in contrast to the different
6expression patterns observed for AhR2α and AhR2β. Specifi-
6cally, AhR2α mRNA expression did not show PCB126 related
6expression, AhR2β showed a pattern that was concentration-
6specific (increasing above control at 1 and 50 pM PCB126, and
6decreasing below control at 10 pM PCB126). In contrast, while
61 pM PCB126 decreased both AhR2δ and AhR2γ (total in-
6hibition for AhR2γ), 10 and 50 pM PCB126 had indifferent
6effect on these AhR variants. Interestingly, while AhR2βmRNA
6expression maintained the effect from PCB126 exposure alone,
6in the presence of NP; the AhR2α, AhR2δ and AhR2γ showed
6a reducing trend in the presence of NP. Thus, a hypothetical
6evaluation of the salmon AhR genes suggests that different
6isoforms may have different ligand-dependent and -independent
6functions in responses to environmental stresses/stressors and
6during development. Fish are known to contain more copies of
6genes than mammals and a ratio of 2:1 has been proposed
6(Jaillon et al., 2004). Atlantic salmon is a tetraploid organism,
6and evolution has provided this species with duplications of
6several genes that has single copy in other species (Allendorf and
6Thorgaard, 1984). Therefore, the tetraploidity of salmon de-
6mands careful evaluation of gene expression studies since there
7is an increased number of pseudogenes (both functional and
7non-functional) in this organism (Allendorf and Thorgaard,
71984). Indeed, the multiplicity of salmon genome may have
7direct or indirect influence on biological responses and whether
7this is true for the observed responses is subject for future
7toxicological studies.
7The AhR expression patterns in different tissues of teleost
7indicate distinct roles for each AhR subtype (Yamauchi et al.,
72005). The concentration-specific up- and down-regulation of
7AhR2 mRNA levels observed in the present study is suggested
7to reflect a possible different mechanism of receptor regulation
7that is influenced by chemical concentration. In rodent liver
7exposed to TCDD, a rapid down-regulation of AhR mRNAwas
n receptor signaling by the dioxin-like aryl hydrocarbon receptor agonist,
pl. Pharmacol. (2007), doi:10.1016/j.taap.2007.11.003
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observed and thereafter followed by a gradual up-regulation that
paralleled AhR protein. This effect was suggested to be due to
proteasome mediated degradation through the ubiquitin–pro-
teasomal pathway (Pollenz and Buggy, 2006). Degradation of
AhR by 26S proteasome was shown be AhR ligand dependent
and this was stronger for compounds with higher affinity to
the AhR (Pollenz and Buggy, 2006). In this study we quantified
the 20S proteasome subunit mRNA showing that PCB126 ex-
posure alone did not alter its mRNA expression. However, in
cells treated with combined PCB126 and NP concentrations,
slight decreases were observed. It is known that receptor func-
tions are cross-regulation through modulation of proteolysis that
occurs among nuclear receptors (Wormke et al., 2003). But,
PCB126-induced proteosomal ERα protein degradation was
not observed in the present study. Despite this observation, the
involvement of proteasome degradation of ERα cannot be
ruled out since the magnitude and time course of proteasome
mediated degradation have been shown to vary between cell
types (Pollenz and Buggy, 2006).

Conclusions

Data from the primary study objective to investigate the ER–
AhR cross-talk in salmon primary hepatocytes cultures changed
the focus of our study to estrogenic effects of dioxin-like PCB
congener. We found that exposure of cells to the AhR ago-
nist PCB126 stimulated ER signaling shown by increased Vtg,
Zr-protein and ERα mRNA and ERα protein levels. The de-
creased levels of ERα and Vtg expression in cells treated with
PCB126 in the presence of ICI indicate an effect resembling the
recently proposed “ER-hijacking” in mammalian systems not
previously reported in fish species or lower vertebrate. The
differences obtained at the similar time interval with fish from
different seasons demonstrate the complexity of AhR–ER in-
teraction and emphasized the significance of confounding
factors. Since the total outcome of exposure is dependent on
toxicological factors (e.g. relative concentration relationship
between the ER and AhR agonists), endogenous factors (e.g.
composition of cell metabolites and proteins) and physiological
factors (e.g. tissue type, developmental stage and seasonal
changes, namely autumn vs. winter), the complex nature of
chemical interactions in biological systems is of added health
consequences than previously anticipated.
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