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Summary 

In casing design, the casing is required to withstand all loads it is exposed to during the well 

life. These loads are normally modeled in an industry leading software (ILS), which 

determines whether the casing can withstand the loads. The well cement is also subjected to 

the operational loads. However, the cement strength is not included in the ILS. Other 

complementary softwares are available, but are not always included as standard practice. 

In this thesis, a cement sheath mechanical model has been developed in order to investigate 

the necessity of considering the cement. Safety factors (SF) for the cement resulting from the 

model, and for the casing resulting from the ILS have been compared. This is done in order to 

determine if the cement fails before the casing fails in some scenarios. Through this 

comparison, the necessity of an additional feature in the ILS have been determined. 

The model have been developed by the use of axisymmetric thick-walled cylinder theory, 

considering three cylinders; one for the casing, one for the cement and one for the formation. 

By considering this theory, the stresses through a cross-section of the cylinders have been 

calculated, and further, failure criteria have been applied to the stresses. Three failure modes 

have been considered; debonding of the cement at the casing and formation interfaces, radial 

cracks and shear failure in the bulk cement. In order to thoroughly investigate how the cement 

SFs change with variable cement mechanical properties, sensitivity analyses have been 

performed at various pressure and temperature changes. For one load case, the worst- and the 

best-case combinations of mechanical properties for each failure mode have been identified, 

and included in the comparison with the ILS. This has been done to achieve a broad 

knowledge, and to more effectively conclude whether complementing the ILS is necessary. 

The results indicated that debonding was likely at well pressure decreases, while radial cracks 

mostly occurred at pressure increases. Shear failure occurred at both large pressure increases 

and pressure decreases. When the worst-case burst and collapse loads, for typical casing and 

cement properties, were considered, the cement failed in tension before the casing failed. 

However, the results were less prominent when the worst- and best-case of mechanical 

properties of the cement and formation were considered. The cement was mostly exposed to 

lose its integrity through debonding, due to several combinations of mechanical properties 

resulting in debonding for a worst-case collapse load. It was therefore concluded that it could 

be beneficial to include an additional feature to the ILS, which analyzes the cement integrity 

when performing casing design. 
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Sammendrag 

I fôringsrørdesign, må fôringsrørene tåle alle belastningene de er utsatt for gjennom brønnens 

levetid. Dette blir vanligvis modellert ved hjelp av en industriledende programvare (ILS). 

Denne vil da kunne avgjøre om fôringsrørene vil tåle lastene de blir utsatt for. Sementen i 

brønnen blir også utsatt for ulike laster, men den overnevnte programvaren tar ikke hensyn til 

dette. Det finnes likevel andre programvarer som ivaretar dette, men slike programvarer er 

normalt ikke en del av standard praksis i brønnkonstruksjon.  

I denne masteroppgaven har det blitt utviklet en mekanisk sementmodell. Sikkerhetsfaktorene 

for sementsvikt som resulterer fra denne, har blitt sammenliknet med sikkerhetsfaktorene for 

fôringsrørsvikt som resulterer fra ILS. Dette har blitt gjort for å kunne bestemme om det er 

tilfeller hvor sementen svikter før fôringsrørene svikter. Ved denne sammenligningen har det 

blitt mulig å bestemme nødvendigheten av å evaluere sementen, og nødvendigheten av å 

tilføye dette som en tilleggsfunksjon i ILS.  

Sementmodellen har blitt laget ved å anta tre sylindre i aksesymmetrisk tykkvegget sylinder 

teori. De tre sylinderne inkluderer én for fôringsrøret, én for sementen og én for formasjonen. 

Ved å bruke denne teorien har spenningene gjennom et tverrsnitt av sementen blitt regnet ut, 

og et bruddkriterium har blitt benyttet for å bestemme når sementen svikter. Sementen kan i 

hovedsak svikte på tre måter; den kan miste bindingen til fôringsrør- og formasjons 

grenseflaten, det kan oppstå radielle sprekker og det kan oppstå skjærbrudd i sementmassen. 

Sensitivitetsanalyser har blitt gjennomført for å undersøke nærmere hvordan sementens 

sikkerhetsfaktorer varierer med ulike sementegenskaper, trykk og temperaturer. I tillegg har 

dette blitt brukt til å finne den beste og den verste kombinasjonen av mekaniske egenskaper 

for hver lastsituasjon. Dette har blitt gjort for å oppnå en bedre sammenlikning med ILS. 

Dermed har det blitt mulig å konkludere mer presist om det er nødvendig å komplementere 

ILS, ved å implementere en sementmodell.  

Resultatene indikertr at en trykkreduksjon i brønnen førte til at sementen mistet bindingen til 

både formasjonen og fôringsrøret, og at radielle sprekker oppstod ved trykkøkning i brønnen. 

Skjærbrudd skjedde ved både høy økning og reduksjon i trykk. Resultatene viste også at en 

sement med vanlige egenskaper sviktet, i form av radielle sprekker eller avbinding, da typiske 

fôringsrør ble utsatt for høyt innvendig eller utvendig trykk. Ved endrede sementegenskaper, 

bla. stivheten til sement, viste det seg at den største risikoen er at bindingen mellom sement 

og fôringsrøret svikter. Det ble derfor konkludert at det kan være hensiktsmessig å 

implementere en tilleggsfunksjon i ILS, som analyserer sementens integritet. 
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1. Introduction 

 

Motivation 

The presence of leak paths through the cement sheath barrier is one of the primary causes of 

integrity issues in wells today. The interest in improving the cement design in order to avoid 

such issues is therefore present. The main purpose of the cement is to provide zonal isolation 

and mechanical support to the casing. When the integrity of the cement is compromised, it 

might lead to hazardous consequences. Cement bond logs is usually performed to confirm the 

quality of the cement. However, these logs have been claimed to be inaccurate or difficult to 

interpret, which can make the logs unreliable when determining the integrity of the cement. 

In casing design, the casing is required to withstand all loads it is exposed to during the well 

life. These loads are normally modeled in an industry leading software (ILS), which 

determines whether the casing can withstand the loads it is exposed to. The well cement is 

also subjected to loads.  The ILS for casing design takes the cement properties as inputs, but 

does not incorporate them in terms of stresses in the cement, zonal isolation or mechanical 

support. It might be a shortcoming for the ILS to not include any calculations on zonal 

isolation. However, other complementary softwares are available, but are not always included 

as standard practice. 

Goals 

The goal has been to develop a model that calculates the stresses in the cement sheath and 

determines when failures may occur. Additionally, the goal has been to investigate whether 

including cement sheath failure prediction should be a part of standard practice. If it turns out 

that the cement fails in cases where the casing is safe, complementing ILS might be 

necessary.  

Approach 

In order to investigate whether the cement fails for conditions where the casing is safe, safety 

factors (SF) have been determined for the different failure modes of the cement. These failure 

modes include tensile failures, in terms of debonding and radial crack, and shear failure. The 

SFs for the failure modes have been plotted together with the SFs of the casing, resulting from 
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the ILS, for the same load case. Production load cases for the 9 5/8-in production casing have 

been investigated, with a special focus on the worst-case collapse and burst loads.  

Sensitivity analyses have been performed for the mechanical properties of the cement and the 

formation. The analyses have been used to obtain a general conclusion when comparing the 

SFs from the cement model and the ILS. This is done by varying the cement and formation 

properties, and determining the worst and the best combination of the mechanical properties 

in order to avoid failure. 

When complementing the ILS, some features can be included in the cement sheath model. 

These features include the effect of the initial stress condition in the cement, the well 

geometry and the change in formation pressure. An investigation of how these features affects 

the SF for the various failure modes have been performed. 
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2. Theory 

 

 

2.1 Cement  

2.1.1 Casing Cement Purpose 

The well cement is placed in the annulus between the casing and the formation exposed to the 

wellbore. Some part of the cement is often a part of the primary and secondary barrier 

envelope. Hence, the consequences of a failure in the cement sheath can range from minor, 

such as sustain casing pressure, to fatal in terms of a blowout.  

According to NORSOK (2013 p. 178) the purpose of the cement “is to provide continuous, 

permanent and impermeable hydraulic seal along hole in the casing annulus or between casing 

strings, to prevent flow of formation fluids, resist pressures from above or below, and support 

casing or liner strings structurally”. In other words, providing zonal isolation and casing 

support.  

2.1.2 Cement in Terms of Well Integrity 

NORSOK (2013 p. 6) defines well integrity to be “application of technical, operational and 

organizational solutions to reduce risk of uncontrolled release of formation fluids throughout 

the life cycle of a well”. Generally, the hydrocarbons can flow to the environment through 

four distinct ways: Through the tubing, through the completion annulus, through the cement, 

and through communication path in the formation.  

In a technical perspective, the well needs to be designed with appropriate and sufficient well 

barrier elements to prevent flow to the surface. The well barrier elements are divided into two 

categories; primary and secondary barrier elements, where the primary barrier elements are 

closer to the wellbore fluids. The cement can often be a part of the primary barrier envelope, 

secondary barrier envelope or both envelopes. Hence, the cement is important to secure the 

integrity of the well. 

2.1.3 Zonal Isolation 

The main purpose of the cement is to provide zonal isolation. This involves excluding 

formation fluids from other zones than the reservoir. In order to achieve zonal isolation, it is 

necessary to create a hydraulic seal in the annulus, including good bonding and without fluid 

channels (Nelson and Guillot, 2006).  
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A consequence of insufficient zonal isolation maintenance is sustained casing pressure (SCP). 

Normally there are three sources of annuli pressure; intentionally applied pressure used by the 

operator for a specific purpose, thermally induced pressure from thermal expansion of trapped 

fluids, and SCP (Petrowiki, 2016). SCP occur when unintended pressure appears from 

communication between the annulus, and the formation or another annulus, from a defect or 

failed barrier. In an offshore case, there is a significant difference between a subsea well and a 

platform well. In a subsea well, the A annulus, which is the annulus outside the tubing, is 

often the only monitored annulus. Hence, a buildup of pressure in B or C annulus, which are 

the annuli outside the production- and intermediate casing respectively, could occur without 

being detected. In severe cases, this could result in a high collapse load for the inner casing 

and a burst load for the outer casing. For a platform well, the consequences are less severe 

since it is possible to monitor and bleed down the pressure in the annulus if SCP is detected. 

However, in severe cases, a remedial cement job might be necessary, or the well might be 

required to be shut in or abandoned.  

It is also worth mentioning that zonal isolation loss can occur from other situations than 

cement failure. A chemical attack or changes in the downhole temperature and pressure could 

result in loss of zonal isolation. Additionally, fracturing of the wrong zone could result in loss 

of zonal isolation (Nelson and Guillot, 2006 p. 269). 

2.1.4  Cement Bonding  

Together with the cement mechanical properties, the cement bonding is an important quality 

of the cement to provide zonal isolation. Bonding of cement includes both bonding between 

the casing and the cement, and the formation and the cement. In order to obtain adequate bond 

to the casing and the formation, shear bond and hydraulic bond are two criteria that needs to 

be satisfied at the interfaces. The shear bond mechanically supports the casing, and constitutes 

the shear bond strength. If the axial forces overcome the shear bond strength, movement of 

the casing will occur (Nelson and Guillot, 2006 p. 219). The hydraulic bond is related to zonal 

isolation, because it works by blocking the fluids that are traveling along the casing-cement 

and the cement-formation interfaces. It is measured by applying pressure at the two interfaces 

until leakage occur (Nelson and Guillot, 2006 p. 219). 

Several variables can affect the quality of the cement bonding; the formation composition, the 

drilling fluid composition and the cement slurry composition. Furthermore, temperature and 

pressure conditions can also affect the bonding quality (Nelson and Guillot, 2006).  
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An acoustic cement bond log is used to qualify the bonding quality. Acoustic logs do not 

measure the hydraulic seal, but the fraction of the casing covered with cement. This is done 

by measuring loss of acoustic energy as it propagates through the casing. There are two 

classes of sonic logging tools; sonic and ultrasonic. For the sonic logs there are two types; 

cement-bond-log, also called variable density log (CBL/VDL), or segmented bond tool 

(SBT). For the ultrasonic logging, the ultrasonic imagine tool (USIT) is commonly used 

(Bybee, 2007).  

However, several factors can affect the interpretation and the reliability of the cement bond 

log. Bybee (2007) mentions that the presence of a microannulus in the cement can lead to 

misinterpretation of the CBL/VDL, and that some of the logs demand adequate centralization 

in order to be interpretable. Additionally, fast formation and lightweight cement can 

negatively affect the interpretation of some logs (Bybee, 2007). 

NORSOK (2013) states that in critical cement cases the cement shall be logged. These cases 

include when the production casing or liner is set into a source of inflow of hydrocarbons, or 

when the cement is a part of the primary and secondary well barriers. Additionally, the 

cement is required to be logged if the injection pressure exceeds the formation integrity at the 

cap rock  

2.1.5 Cement Mechanical Properties 

Well cement has in general a brittle behavior in tension, and a ductile behavior in 

compression. Ductile failures (i.e. compressive) in the cement is harder to achieve than brittle 

failures (i.e. tensile) (Nelson and Guillot, 2006 p .277). Until recently, the unconfined uniaxial 

compressive strength (UCS) has been the most important mechanical property used when 

qualifying the cement design. The UCS represents the ability to support the casing and to 

survive the perforation stresses. However, the ability of the cement to withstand loads and to 

ensure zonal isolation throughout the lifetime of the well, have had a larger focus. To ensure 

this ability, mechanical parameters such as the tensile strength, the elasticity and the ductility 

of the cement have received more attention in later years. Additionally, laboratory 

experiments have shown that the principal cause of cement sheath damage is due to stresses 

induced by varying downhole conditions (Nelson and Guillot, 2006  p.269). 

Figure 1 shows a typical tensile test curve for porous cement, carried out with a constant 

confining pressure. In the figure, the axial stresses, which are positive, are compressive. The 

radial strain curve illustrates the typical brittle tensile behavior of the cement. 
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Some characteristics are differentiating from a tensile test carried out for a non-porous media. 

Firstly, the line from 0 to A is not linear. This is due to the collapse of pores when the cement 

is subjected to the applied stress. However, the curve has a nearly elastic region, where the 

stress-strain relationship is proportional to the Young’s modulus, E. This region is from A to 

B in the figure. After B, which is the yield point, the plastic behavior of the cement takes 

place and large deformations occur. Point C is the largest load the cement can take under the 

given confining pressure. Failure of the cement will occur at this point, and the cement will 

lose its integrity (Nelson and Guillot, 2006). 

 

Figure 1: Tensile test curve for cement (Nelson and Guillot, 2006 p. 271) 

 

2.1.6 Typical Cement Properties 

As mentioned above, some mechanical properties of the cement are of great importance in 

order to determine the quality of the design. Among these properties are the cement Young’s 

modulus (E), the Poisson’s ratio (ν) and the coefficient of linear thermal expansion (α). Table 

1 shows a typical range of these properties for the cement and the formation. The ranges are 

based on De Andrade (2015 p.41). 
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Table 1: Typical mechanical property ranges for cement and formation (De Andrade, 2015 

p.41). 

Mechanical Property Range 

Cement Young’s modulus 1-20 GPa 

Formation Young’s modulus 1-70 GPa 

Poisson’s ratio of cement 0.1-0.3 

Poisson’s ratio of formation 0.18-0.40 

Coefficient of linear expansion of cement 10*10-6-14*10-6 1/C 

Coefficient of linear expansion of formation 8*10-6-18*10-6 1/C 

 

When considering cement strength data, the USC and the uniaxial tensile strength (T0) are 

developed with Eq. (2.1) (De Andrade and Sangesland, 2016) and Eq. (2.2) (De Andrade, 

2015) respectively. 

  

 
20.0354 3.1509 4.0642UCS Ecem Ecem        (2.1) 

 
0

10

UCS
T     (2.2) 

Where, 

UCS= Uniaxial compressive strength [Pa] 

Ecem= Young’s Modulus of cement [Pa] 

T0= Uniaxial tensile strength [Pa] 

  

Hence, both the UCS and the T0 are related to the cement Young’s modulus. 
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2.2 Modeling Stresses in the Cement 

The state of stress in the cement sheath must be calculated and entered into an expression in 

order to determine whether the cement sheath will fail or debond in the annulus. The stress 

state is calculated by assuming a deformation behavior (e.g. elasticity). Convenient 

boundaries, such as the casing-cement and cement-formation interfaces, should be used. 

Considering the influence of pore pressure and temperature is necessary in some cases 

(Nelson and Guillot, 2006 p. 280). 

This section will cover the development of stresses in the cement sheath model. The basic 

mechanical theory is explained in Appendix C. 

2.2.1 Stresses in a Cylinder 

In a cylinder subjected to temperature, internal and external pressures, three mutually 

perpendicular principal stresses are set up in the material. These principal stresses are shown 

in Figure 2, where , ,r t a    represent the radial, hoop(tangential or circumferential), and axial 

(longitudinal) stress respectively (Hearn, 1997).  

 

Figure 2: Hoop, axial and radial stress illustrated (Bellarby, 2009 p. 514) 
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As seen in Figure 2, hoop stresses are the normal stresses that are in the tangential (azimuth) 

direction, acting around the circumference of the cylinder. Any pressure differential across a 

cylinder pipe will result in hoop stress. Axial stresses are the stresses along the axis of the 

cylinder, while radial stresses are acting away from or towards the cylinder axis. According to 

thick-walled cylinder theory, the internal pressure is the radial stress at the inner wall, while 

the external pressure is the radial stress at the outer cylinder wall interface. In thin-walled 

cylinder theory the radial stresses are considered constant through the cylinder wall (Hearn, 

1997).    

2.2.2 Thin- and Thick-Walled Cylinder Theory 

Thin-walled cylinder theory can be used to determine stresses in terms of the hoop, radial and 

axial directions in a cylinder. However, this theory assumes that the radial and the axial 

stresses are constant across the wall thickness, and that the magnitudes of the radial stresses 

set up are small compared to the hoop and axial stresses. Consequently, the radial stresses can 

be neglected. Furthermore, thin-walled cylinder theory assumes that the ratio of wall 

thickness to inside diameter of the cylinder is less than 1/20. This is not applicable for the 

casing, nor for the cement. Hence, stress theory for thick-walled cylinder should be used. 

Lamé has developed a theory for stresses in thick-walled cylinders, which has been applied in 

this project. This theory account for a pressure gradient across the cylinder wall and varying 

hoop stresses across the thickness of the cylinder (Hearn, 1997). 

2.2.3 Development of Lamé’s Theory 

The derivation of Lamé’s theory can be shown in Appendix D, while Eq.(2.3) shows the main 

result. Eq.(2.3) can be used for different radii, to determine the hoop and the radial stresses in 

a thick-walled cylinder.  

 
2

2

r

H

B
A

r

B
A

r





 

 

  (2.3) 
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Where, 

2

Radial Stress [Pa]

Hoop Stress [Pa]

Lamé constant A [Pa]

Lamé constant B [Pa m ]

radius [m]

r

H

A

B

r











 



  

The constants A and B are determined for the relevant boundary conditions (Hearn, 1997). 

2.2.4 Defining the Boundary Conditions 

In order to develop a model for the stresses in the cement, Lamé’s equations have to be used 

for a cylinder experiencing both internal and external pressure. The boundary conditions 

where the cylinder experiences both internal and external pressure are shown in Eq. (2.4) 

  

 
( )

( )

r i i

r o o

r P

r P





 

 
  (2.4) 

Where, 

internal radius of the cylinder [m]

external radius of the cylinder [m]

internal pressure [Pa]

external pressure [Pa]

i

o

i

o

r

r

P

P









  

By inserting the boundary conditions into Lamé’s equation, the constants A and B are 

obtainable as shown in Eq. (2.5): 

 

 

 

 

2

2

2 2

2 2

2 2

2 2

i

i

o

o

i i o o

o i

i o i o

o i

B
P A

r

B
P A

r

r P r P
A

r r

P P r r
B

r r

  

  






 




  (2.5) 
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Then, equations for the hoop and radial stress in a cylinder can be obtained as shown in Eq. 

(2.6):    

 

 

 

 

 

2 22 2

2 2 2 2 2

2 22 2

2 2 2 2 2

i o i oi i o o
r

o i o i

i o i oi i o o
H

o i o i

P P r rr P r P

r r r r r

P P r rr P r P

r r r r r





 
 

  

 
 

  
  (2.6) 

Axial stress is shown in Eq. (2.7).  

 ( )z r H        (2.7) 

  

Where, 

axial stress [Pa]
z

    

2.2.5 Implementing the Equations into a Casing-Cement-Formation System 

Lamé’s equations (Eq.(2.6)) needs to be implemented into a casing-cement-formation system. 

Figure 3 shows this system with relevant radii. Ra is defined as the inner radius of the casing, 

rb is the radius to the outside of the casing. Rc is the radius to the outer border of the cement, 

and rd is the radius from the center of the well to the outer border of the formation. 

In order to obtain equations applicable for the cement, casing and formation a determination 

of the contact pressures is also necessary. A contact pressure is the pressure applied between 

two surfaces in contact with one another. The applicable contact pressures are at the casing-

cement interface and at the cement-formation interface (at rb and rc). These contact pressures 

are called Pc1 and Pc2, respectively (De Andrade, 2015). The derivation of the contact 

pressures are based on the work of De Andrade (2015) and are shown in Appendix E. 

Nevertheless, it is worth mentioning the main assumptions behind the derivation. The contact 

pressures are determined by assuming that the radial displacement of the cement and the 

casing are equal, due to bonded interfaces. Additionally, it is assumed that there is no axial 

movement.  

In order to calculate the contact pressures, it is necessary to calculate the change in 

temperature in the cement caused by the operational loads. The temperature change at the 
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cement-formation interface, ΔT2, is obtained by assuming conduction through the cement and 

the formation. Eq.(2.8) and Eq.(2.9) represent conduction set up for the cement and the 

formation, respectively.  

 1 2

ln

2

c

b

cem

r

rQ
T T

k

 
 
       (2.8) 

 2

ln

2

d

c

geo

form

r

rQ
T T

k

 
 
       (2.9) 

Where, 

1

2

Change in temperature in casing [C ]

Change in temperature in cement [C ]

Change in temperature in formation [C ]

Heat [W]

Thermal conductivity of cement 

Thermal condu

geo

cem

form

T

T

T

Q

Wk
m C

k

  

  

  



 
  

 ctivity of formation W
m C

 
  

  

It is assumed that 0
geo

T  . Since geo
T is the change in temperature at rd, 2

T is dependent on 

the chosen rd. 

 

Figure 3: Casing, cement and formation system with defined radii, free from De Andrade (2015) 
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In order to model the stresses in the cement sheath cross-section, Eq. (2.6) will be used, now 

by including the radii presented for the casing-cement-formation system, and the contact 

pressures. Eq. (2.10) to Eq. (2.12) show the results.  

In rock mechanics, the sign convention states that compaction is positive and tension is 

negative. This is because most stresses in rock mechanics are compressive. However, the sign 

convention in other mechanics might be defined as the opposite, and one must therefore be 

aware of this when the sign convention is inconsistent (Fjær et al., 2008 p. 1) 

In Eq. (2.4)-Eq. (2.7) the input pressure differential values are positive for pressure increases, 

and negative for pressure decreases. In Eq. (2.8) and Eq. (2.9) the input temperature 

differential values are positive for heating and negative for cooling. The equations will then 

give positive values for tensile stresses, and negative values for compressive stresses. 

In the cement sheath model, it is desirable that tension is negative and compaction is positive. 

Hence, a sign conversion is necessary to comply with rock mechanics. This is done by 

multiplying all the stresses with (-1) as shown in Eq. (2.10)-Eq.(2.12). 

For a radius between ra and rb, the resulting hoop and radial stresses are given by: 

 

 

 

 

 

2 22 2
11

, sing 2 2 2 2 2

2 22 2
11

, sing 2 2 2 2 2

( 1)

( 1)

i c a ba i b c
r ca

b a b a

i c a ba i b c
H ca

b a b a

P P r rr P r P

r r r r r

P P r rr P r P

r r r r r





 
   

  

 
   

  

  (2.10) 

For a radius between rb and rc, the resulting hoop and radial stresses are given by: 

 

 

 

 

 

2 22 2
1 21 2

, 2 2 2 2 2

2 22 2
1 21 2

, 2 2 2 2 2

( 1)

( 1)

c c b cb c c c
r cement

c b c b

c c b cb c c c
H cement

c b c b

P P r rr P r P

r r r r r

P P r rr P r P

r r r r r





 
   

  

 
   

  

  (2.11) 

For a radius between rc and rd, the resulting hoop and radial stresses are given by: 

 

 
 

 
 

2 22 2
22

2 2 2 2 2

2 22 2
22

, 2 2 2 2 2

( 1)

( 1)

c f c dc c d f

r formation

d c d c

c f c dc c d f

H formation

d c d c

P P r rr P r P

r r r r r

P P r rr P r P

r r r r r





 
   

  

 
   

  

  (2.12) 
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Where, 

,

r,cement

,cement

r,casing

Radial stress in the formation [Pa]

Hoop stress in the formation [Pa]

Radial stress in the cement [Pa]

Hoop stress in the cement [Pa]

Radial stress i

r formation

H formation

H





















H,casing

n the casing [Pa]

Hoop stress in the casing [Pa]

 inner radius of the casing [m]

outer radius casing/inner radius cement [m]

outer radius cement/inner radius formation [m]

outer radiu

a

b

c

d

r

r

r

r

 









1 b

2 c

s formation [m]

Change in internal pressure in the casing [Pa]

Contact pressure at r  interface [Pa]

Contact pressure at r  interface [Pa]

Change in external (formation) pressure [Pa]

i

c

c

f

P

P

P

P








  

For all radii, the equation for axial stress (Eq.(2.7)) is applicable with the relevant hoop and 

radial stresses. Appendix A shows how this is modeled in Visual Basic for Applications.     

  



 
 

15 

2.2.6 Including Initial Stress Condition 

Bosma et al. (1999) mentions the importance of initial stress in the set cement. Figure 4 shows 

three scenarios for a stable wellbore. Firstly, if there is a net shrinkage of the cement during 

curing, the initial stresses will be zero. Secondly, if no shrinkage occurs, the initial stress in 

the cement will be the hydrostatic pressure, which in many cases can be assumed to be the 

minimum horizontal stress. Furthermore, if an expansion of the cement occurs during curing, 

the stresses in the cement is the initial hydrostatic pressure plus the expansion restriction in 

the well.  

 

Figure 4: Scenarios for initial stress condition (Bosma et al., 1999 p. 10) 

The initial stresses are added to the stress variation that occur from the load case, and then 

implemented into a failure criterion.  

  



 
 
16 

2.3 Failure Criteria 

The physical properties of structures or components are usually found by laboratory 

experiments where the material is only subjected to a simple stress field. This can be done in a 

simple tensile test, where the material is subjected to stress, and the strains and stresses at 

fracture can be measured. However, determining the strength of a material subjected to a 

more complicated stress field, requires calculations that are more complex (Hearn, 1997).  

In the past, several failure criteria have been developed in order to determine the conditions 

where a material is failing. These failure criteria use different inputs, which varies from the 

case specific principal stresses ( 1 , 2 , 3 ), to other material properties such as Cohesion (c), 

or friction angle ( ).  

Nelson and Guillot (2006) describes three failure criteria that can be applicable for cement, 

these include ‘the maximum tensile stress criterion’, ‘The Tresca criterion’ and the ‘Mohr-

Coulomb criterion’. The first two criteria will be presented in this thesis, while the Tresca 

criterion can be found in Appendix G. Additionally, the Mogi-Coulomb have received 

acceptance as an applicable failure criterion for cement. In this thesis, the Maximum tensile 

stress criterion and the Mogi-Coulomb criterion are used when developing an analytical 

model to determine the stresses and failure in the cement. In Appendix G a relationship 

between the Mohr-Coulomb and the Mogi-Coulomb parameters are presented. 

2.3.1 The Maximum Tensile Stress Criterion 

The maximum tensile stress criterion states that failure occur when the maximum effective 

principal stress reaches the elastic stress limit in tension (Nelson and Guillot, 2006). However, 

since tension is defined as negative, tensile failure will occur when the minimum principal 

stress is less than the negative value of the uniaxial tensile strength: 

  

 3 0T     (2.13) 

 

Where, 

3 = minimum principal stress [Pa] 
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2.3.2 The Coulomb Criterion 

In 1776, the simplest and most important failure criterion was presented by Coulomb. His 

theory was that rock failure occurs when the shear stresses () on a specific plane reaches a 

value that is larger than the rock cohesion (c) together with the friction force that work against 

motion on the failure plane. According to the criterion, rock failure occurs when (Al-Ajmi, 

2006 p. 30): 

 tannc       (2.14) 

Where,  

shear stress [Pa]

cohesion of the material [Pa]

normal stress acting on the failure plane [Pa]

 angle of internal friction [radians]

n

c















  

Since failure with this criterion occurs first on a plane in the direction of 2 , the intermediate 

stress does not influence the  or n . This is why the intermediate stress is assumed to not 

have an effect on the rock strength. 

2.3.3 The Mohr Criterion 

The Mohr criterion assumes that the normal and shear stresses are related at failure by the 

following equation (Al-Ajmi, 2006 p. 33): 

 ( )nf    (2.15) 

Where, 

f = a function obtained experimentally 

The curve in the     space in Figure 5 represents this relation. When the Mohr criterion 

takes a linear form, it corresponds to the Coulomb criterion of failure. Hence, a linear failure 

criterion such as Eq.(2.14) is commonly known as the Mohr-Coulomb criterion. 

2.3.4 The Mohr-Coulomb Criterion 

The Mohr-Coulomb failure criterion is mostly used for highly brittle materials, such as 

concrete and cement. It is often preferred for materials with a much higher compressive 

strength compared to the tensile strength. The Mohr-Coulomb failure criterion considers only 
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the maximum, 1 , and the minimum, 3 , principal stresses. It does not consider the 

intermediate principal stress, 2 , with regards to the rock strength, which differ from the true 

triaxial stress state in the rock. In true triaxial tests (i.e polyaxial tests) the stresses can be 

controlled independently in three dimensions, in contrast to the conventional triaxial test 

where the stresses are only controlled along two axes (Wawersik et al., 1997). In the Mohr-

Coulomb criterion, it is assumed that the intermediate principal stress does not affect the 

strength of the material. 

As seen in Figure 5, the Coulomb failure line is drawn from the tangential point of the Mohr 

failure envelope and the Mohr circle. Above this line, the rock will experience shear failure. 

 

Figure 5: Mohr-Coulomb failure line and combined Mohr circles 

2.3.5 The Mogi-Coulomb Criterion 

Extensive polyaxial compressive tests in rocks was first performed by Mogi (1971). True 

triaxial experimental test data have shown that the intermediate stress, 2 , indeed has a 

strengthening effect on the rock for several lithology types (Al-Ajmi and Zimmerman, 2005). 

The Mogi-Coulomb criterion of failure takes the intermediate principal stress into account. 

When failure occurs, the fracture will propagate along a plane in the direction of the 

intermediate principal stress. Hence, Mogi concluded that it is the mean normal stress, ,2m , 

that opposes the initiation of fracture. Mogi therefore proposed a new failure criterion, 

expressed as (Al-Ajmi, 2006): 

 
,2

( )oct m
f     (2.16) 
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Where, 

oct = octahedral shear stress [Pa] 

     
2 2 2

1 2 1 3 2 3

1

3
oct             

f = monotonically increasing function [-] 

,2m =mean normal stress [Pa] 

 

When the Mogi-Coulomb criterion takes a linear form, the function can be expresses as 

shown in Eq. (2.17) (Jaeger and Cook, 1979) 

 

 max ,2cos sin mc         (2.17) 

Where,  

max = the maximum shear stress [Pa] 

1 3
,2

2

(1 sin )

2 cos

m

UCS
c

 














  

In Figure 6, max represents the compressive shear failure line. This line is referred to as 

allowance  in Appendix A. If the octahedral shear stresses fall below this line, there will be no 

shear failure.  
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Figure 6: Mogi-Coulomb failure envelope (De Andrade, 2015 p. 36) 

2.3.6 Failure Modes 

Three modes of failure are applicable for cement, which include debonding, radial cracks and 

shear failure. These failure modes can result in loss of zonal isolation (De Andrade, 2015). 

Shear failures are determined with the Mogi-Coulomb criterion, while debonding and radial 

cracks are determined with the maximum tensile stress criterion. Figure 7 illustrate the 

various failure modes. 

Debonding can occur both at the casing-cement interface and at the cement-formation 

interface. The bond that is initially set up between casing-cement and cement-formation 

interface when the cement hardens will fail if the radial stresses reaches a critical value. 

Debonding might also take place if the shear stresses is significantly large. Debonding can 

occur if the well experiences a gradual pressure decrease during production, if the casing 

moves due to subsidence, if temperature and pressure fluctuations occurs or if stimulation 

operations such as hydraulic fracturing are performed (Nelson and Guillot, 2006 p. 14). If the 

radial stress at the respective interface exceeds the tensile strength in tension, the following 

equation describes failure by debonding: 

 0r     (2.18)  

Radial cracks can occur during the production phase of the well due to thermal or pressure 

fluctuations. Large variation in temperature or pressure can cause the casing to expand or 

contract depending on the conditions it is being exposed to. This will give rise to stress 
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gradients in the wellbore surroundings. If the tensile hoop stress exceeds the tensile strength, 

voids or cracks in the radial direction will start to form and propagate. When such cracks are 

present it will compromise the cement integrity (Nelson and Guillot, 2006 p. 14). If several 

radial cracks are connected, flow paths can be created, which can cause undesirable 

hydrocarbons to the surface or undesirable uncontrolled pressures (De Andrade, 2015). 

Cement failure by radial cracks occur when: 

      0Hoop T          (2.19) 

Shear failure is the third failure mode which the cement might be subjected to. When the 

cement experiences shear failure, it typically results in a complete cement sheath failure. The 

most common cause of shear failure is due to the increased effective stresses around the 

borehole when the reservoir is being produced. These stresses might rise due to rock 

subsidence or depletion of the reservoir. Vibrations from downhole pumps or ongoing gas-lift 

operations may also increase the effective-stresses and result in shear failure (Nelson and 

Guillot, 2006 p. 14). The Mogi criterion assumes that shear failure takes place when the 

octahedral shear stress ( oct ) exceeds the allowable shear stress ( max ) in Eq. (2.20), as 

shown in the following equation (De Andrade, 2015): 

     
2 2 2

max 1 2 1 3 2 3

1

3
                  (2.20) 

 

Figure 7: Failure modes in the cement sheath (De Andrade, 2015 p.15)   
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2.4 The Cement Model 

 

Figure 8: Flowchart of calculations in the cement model 

Figure 8 shows a flowchart of how the cement model is working. The main inputs are the 

operational properties, the mechanical data and the strength data. All operating data are in 

terms of change from initial condition. Meaning that Pi, is the change in internal pressure 

from initial condition. Pe is the change in external pressure, which in this model is the 

formation pressure. ΔT1 is the change in internal temperature. For the mechanical data; 

Young’s modulus, Poisson’s ratio and linear thermal expansion coefficient for formation, 

steel and cement are entered. The radii are according to Figure 3.  

The main output is the type of failure of the cement, in addition to SFs for the failure modes. 

However, the stresses at different radii are possible to obtain along the cross-section.  

The model is used for further analyses, which includes developing SFs for the failure modes 

in order to see if the cement fails before the casing. Additionally, it is used to complement the 

ILS when including the cement is necessary, in order to obtain a safe design.  
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2.5 Load Cases  

NORSOK (2013) states that both static and dynamic load cases for well barrier elements shall 

be defined for each well. What is considered relevant load cases for a well depends on the 

type of well and what its purpose will be during the entire well life. However, some load case 

scenarios should always be included for a safe design. NORSOK (2013) also states that 

design calculations should be performed by competent personnel using software accepted by 

the industry. In the ILS one can calculate resulting loads from standard or custom scenarios 

on a preselected grade of casing. When the calculations have been performed, ILS outputs the 

results as SFs among others. These SFs can be evaluated to see if the design is in good 

standing, or if it should be altered. 

2.5.1 Initial Conditions 

The initial condition is defined as the condition the casing is exposed to right after the cement 

is set and a packer is installed. The initial temperature in the well will be analogues to the 

geothermal gradient in the formation. Initial internal pressure of the production casing will be 

due to the fluid column in the annulus. All the load case scenarios calculated for the casing 

will be analyzed relative to this base case. The initial fluid column is defined as the mud used 

when running the casing (Bellarby, 2009). 

To determine the pressure and temperature changes, the initial pressure and temperature must 

be subtracted from the final pressure and temperature, resulting from the load cases. This is 

shown in Eq. (2.21) and (2.22). 

 , ,i i final i initalP P P     (2.21) 

 1 1, 1,final initialT T T     (2.22) 

iP = Change in internal temperature from initial to final condition [Pa] 

,i finalP = Initial pressure, in final condition [Pa] 

,i initalP = initial pressure in internal [Pa] 

iT = Change in internal temperature from initial to final condition [°C] 

,i finalT = Initial temperature, in final condition [°C] 

,i initalT = initial temperature in internal [°C] 
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2.5.2 Pressure Test 

The casing must always be tested for the highest burst load it might experience during the 

well life. For the production casing, the worst burst load scenario is often resulting from a 

tubing leak. In the load case tubing leak, it is assumed that a leak in the tubing occur right 

below the wellhead. Hence, pressure is applied to the fluid column in A annulus. In order to 

account for this in the pressure test, the testing pressure is set to the highest burst load 

pressure, including a kill margin. The kill margin for a 9 5/8-in casing is set to 35 bar 

(Brechan, 2014). The internal pressure during a pressure test can be calculated by 

(Economides et al., 1998): 

 ( ) msurfaceP z P µ z     (2.23) 

Where, 

P(z)= pressure at depth z [Pa] 

Psurface=test pressure at surface [Pa] 

m= mud weight gradient [Pa/m] 

z= depth [m] 

This burst load will increase with depth as the test pressure is applied to the fluid column in 

the A annulus. Since the pressure test is based on the worst case burst load scenario, the 

pressure test itself will be the highest burst load.  

The load case used in ILS have the same fluid in the annulus as the initial condition. Hence, 

the only variable input is the test pressure, which in turn will determine the internal pressure 

change from initial to final conditions. This pressure change will be constant with depth, as 

the fluid gradients are equal. The temperature change during a pressure test will be zero. 

2.5.3 Casing Evacuation 

Casing evacuation might occur in gas-lift wells when the well loses its injection pressure. As 

the injection pressure drops to zero, the annulus will be filled with gas down to the deepest 

gas-lift valve. Full evacuation might also happen if there is a leak in the packer, which can 

result in a complete loss of the packer fluid. During the casing evacuation, the inside of the 

production casing is emptied out due to buoyancy forces and the completion fluid is replaced 

with gas (Bellarby, 2009). 
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Casing evacuation will cause an increased collapse load due to the lighter fluid in the A 

annulus, which results in a larger differential pressure across the casing. Hence, the pressure 

change from initial to final conditions will depend on depth, and be greatest at the bottom of 

the gas column. The temperature change during  casing evacuation will be zero. 

2.5.4 Production/Injection 

During production and injection operations thermal loads must be considered. Production 

fluid from the reservoir tend to warm up the surrounding wellbore as it is transported up the 

well. If the injection fluid is cold, it will cool down the casing. The resulting temperature 

change during these operations, might have an effect on the strength of both the casing and 

the cement in the annulus. The internal pressure change from initial to final conditions will 

not be constant with depth, since it is assumed that the mud column from initial conditions is 

replaced with completion fluid during production or injection operations. 

 

2.6 Safety Factor, Design factor and Utilization factor 

The SF is defined as the component strength divided by the design load. This is shown in Eq. 

(2.24) 

 

Actual component strength

Design load
SF 

  (2.24) 

In a design approach, it is necessary to ensure that the SF is higher than the design factor 

(DF). DF is a set value, larger than or equal to 1. It is essential in order to determine the 

maximum allowable load that the well can be exposed to. The set DF can vary from company 

to company or from well to well.  

In a modeling perspective, a utilization factor (UF) can be used. UF has the same objective as 

the DF, but from the modeling perspective. If Eq.(2.25) is applicable, it is guaranteed that no 

cement failure will occur. The UF is determined by the modeling uncertainty and is less than 

1. A low UF imply large modeling uncertainty (De Andrade, 2015).  

 

load
UF

capacity


  (2.25) 

For the failure modes applicable for the cement the SF are defined as showed in Eq. (2.26)-

(2.28) 
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Shear Failure

SF=
oct




  (2.26) 

 

0

Debonding

SF=
r

T





  (2.27) 

 

0

Radial Cracks

SF=
H

T





  (2.28) 

Tensile failure can result in negative SFs. It can be shown from Eq. (2.27)-(2.28), that it is due 

to stresses in compression. A large negative SF is not necessarily worse than a low negative 

SF. If a low negative SF results from high compressive stresses, it is further from tensile 

failure than when the stresses are only slightly compressive. 
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3. Results  

This chapter consists of three main parts. First, the resulting stresses from the cement sheath 

model through the cross-section of the well are presented. Second, the failure modes are 

presented with the conditions for failure, both in terms of pressure and temperature. Finally, 

the resulting SFs from the comparison between the cement sheath model and the ILS are 

shown. 

The results are based on the inputs for the cement sheath model listed in Table 2, Table 3 and 

Table 4. These inputs will from now on be referred to as the base case. All temperatures, 

pressures and resulting stresses are always in terms of change from initial condition. 

It is important to mention that the cement sheath model contains uncertainties, and the results 

can be altered if the approach is expanded. 

Table 2: Standard inputs in the cement sheath model. Well geometry 

Well geometry  

Ra 0,1083945 m 

Rb 0,1222375 m 

Rc 0,155575 m 

Rd 10 m 

 

Table 3: Standard inputs in the cement sheath model. Casing, cement and formation properties 

Properties Casing Cement Formation 

 E 2,04E+11 Pa 1,00E+10 Pa 1,50E+10 Pa 

  0,31 0,26 0,4 

  0,000013 1/C 0,000016 1/C 0,00001 1/C 

 κ  1 W/m-K 2 W/m-K 
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Table 4: Standard inputs in the cement sheath model. Initial stress condition in the cement 

Initial Condition in the Cement  

Shrinkage In-situ stress=0 

 

3.1 Resulting Stresses in the Cement 

By using the base case inputs in the cement sheath model, the stresses at all radii have been 

calculated. The resulting stresses are shown in Figure 9 and Figure 10, for a positive and 

negative pressure change respectively. The cement is located between the black line at the 

casing-cement interface (rb) and the gray line at the cement-formation interface (rc). Positive 

pressure changes without temperature changes results in high compressive radial stresses, 

tensile hoop stresses and low tensile axial stresses in the cement. On the other hand, negative 

pressure changes without temperature changes results in high tensile radial stresses, 

compressive hoop stresses and low compressive axial stresses in the cement. From Figure 9 

and Figure 10 it can be seen that the internal pressure is equal to the radial stress on the inside 

of the casing, in compliance with thick-walled cylinder theory.  
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Figure 9: Hoop, radial and axial stress as a function of radius through a cross-section of the well. 

Positive pressure change of 400 bar, ΔT=0 °C. 

 

Figure 10: Hoop, radial and axial stresses as a function of radius through a cross-section of the 

well. Negative pressure change of 400 bar, ΔT=0 °C. 
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3.2 Typical Failure Conditions, Regarding Pressure and Temperature 

Variations 

The failure conditions for the three failure modes: debonding, radial crack and shear failure, 

will be presented in this section. The results are carried out in terms of SFs, where the SFs are 

plotted as a function of pressure, with three graphs representing different temperature changes 

(in °C). 

3.2.1 Debonding 

In this model, debonding will mainly occur at negative pressure changes. Therefore, the 

results from debonding will not be presented for positive pressure changes. It is worth 

mentioning that debonding only can occur at the casing-cement interface (rb) and the cement-

formation interface (rc). It is therefore important to analyze the stresses at these locations. 

Figure 11 and Figure 12 show the SFs for debonding at rb and rc, respectively.  

As seen in Figure 11 and Figure 12, the general tendency of debonding is that a large pressure 

drop will cause failure. A pressure drop accompanied by a temperature drop will increase the 

risk of debonding. This is true at both the casing-cement interface and the cement-formation 

interface.  

However, debonding is more likely to occur at rb than at rc, due to the lower SFs at this point. 

This is because rb is located closer to the well, where the cement may be more affected by the 

pressure change in the well.  

The effect of temperature is larger at rc than at rb. This can be seen in Figure 12 as a wider 

spread between the graphs for different temperature changes. This may be due to the reduced 

influence of pressure at this point. 
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Figure 11: SF debonding as a function of pressure changes for various temperature changes, at 

rb. 

 

Figure 12: SF debonding as a function of pressure changes for various temperature changes, at 

rc. 
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3.2.2 Radial Crack 

Radial cracks will mostly occur at positive pressure changes. Therefore, the general results 

from radial cracks will not be presented for negative pressure changes. Figure 13 and Figure 

14 show the SFs for radial cracks at the casing-cement interface (rb) and the cement-formation 

interface (rc), respectively.  

Radial cracks tend to form when the wellbore experiences a large pressure increase. Figure 13 

and Figure 14 show that if the temperature drops, radial cracks can form at rb and rc at lower 

pressure increases.  

When a positive internal pressure change occur, the results indicate that radial cracks will first 

begin to form at the casing-cement interface. Hence, the effect of positive internal pressure 

changes has the largest consequences for radial cracks when the investigated radius is close to 

the wellbore. Once a radial crack initiates, the crack will propagate radially outwards until the 

entire cement sheath fails in radial cracks. One can therefore assume, that when a radial crack 

initiates at rb, radial cracks will be present in the entire cement sheet. 

A large pressure increase results in the lowest SFs for radial cracks. However, these SFs are 

higher than the SFs for debonding at equivalent negative pressure. Hence, the initiation of 

debonding is easier than the initiation of radial cracks. However, this is dependent on the load 

case the well is exposed to.  
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Figure 13: SF radial crack as a function of pressure changes for various temperature changes, at 

rb. 

 

Figure 14: SF radial crack as a function of pressure changes for various temperature changes, at 

rc. 
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When the well experiences a large negative temperature change, radial cracks can also be 

initiated at low negative pressure changes, as shown for rb in Figure 15. Two graphs with 

large temperature drops are plotted for small pressure changes. There is a portion of the blue 

graph (i.e. dT1=-100) that falls below the black line (DF) on the left side of the y-axis. At 

these conditions, the casing cement is at risk of radial crack. 

 

Figure 15: SF radial crack as a function of low pressure changes, various temperature change, at 

rb 
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3.2.3 Shear Failure 

Shear failures can occur at both pressure increases and decreases. Therefore, the results from 

shear failure will be presented for both positive and negative pressure changes. Figure 16 and 

Figure 17 show the SFs for shear failure plotted at rb and rc, respectively. 

Table 5 shows the required Δp to cause shear failure at rb and rc. These pressure changes are 

only valid for the given temperature changes and the base case inputs. For the temperatures 

given in Table 5, it can be seen that a pressure increase is less critical to initiate failure than a 

pressure decrease. Additionally, failure will initiate easier if a temperature drop occurs. This 

is illustrated in Figure 16 and Figure 17. 

It is also interesting to point out that when the well experiences a pressure drop, the required 

pressure change to initiate failure through the whole cross-section, is not much higher than the 

required pressure to initiate failure only at the casing-cement interface. For positive pressures, 

this difference is higher.  

Table 5: Required pressure change for shear failure for specific temperature changes, at rb and 

rc 

Required pressure change for shear failure for specific temperature changes, at rb and rc 

Temperature change rb rc 

100 °C -640 bar -1040 bar 

843 bar 1349 bar 

0°C -623 bar -962 bar 

713 bar 1194 bar 

-100°C -571 bar -829 bar 

548 bar 985 bar 
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Figure 16: SF shear failure as a function of pressure changes for various temperature changes, 

at rb 

 

Figure 17: SF shear failure as a function of pressure changes for various temperature changes, 

at rc 
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3.3 Determining when the Cement Fails before the Casing Fails for Various 

Production Load Cases and if Complementing ILS is Necessary  

The motivation have been is to see if the ILS considers failure of the cement, to investigate 

the necessity of including a cement model in standard practice and to complement the ILS if 

required. In order to investigate the necessity of including a cement sheath model, the casing 

SFs from ILS will therefore be plotted together with the cement SFs. This is done for various 

production load cases. By determining whether it is the casing or the cement that fail first, the 

necessity can be obtained. This is from now on referred to as a comparison. 

All casing SFs are based on a vertical well, with a 9 5/8-in production casing shoe at 3000 m, 

which is cemented from 2500-3000m. The Casing DF for burst in ILS is set equal to 1.1. The 

cement properties correspond to the base case values found in Table 2, Table 3 and Table 4. 

The casing types are mostly selected arbitrary for illustration purposes. However, one of the 

most commonly used casing grades on the Norwegian continental shelf, #53.5 P-110, is 

always included. 

Normally, UF should be used to ensure that the well has a safe design and that the cement will 

not be exposed to failure, even if the cement model have some uncertainties. If UF is set to 

0.8, uncertainties are accounted for in order to make sure that there is no failure when the 

model reports no failure. 1/UF=1.25 is the equivalent in order to compare with SF to know 

when the design is safe. When comparing with ILS the DF for cement is set equal to 1. This is 

done to make sure that when the SFs for cement fall below this value, failure in the cement 

will be guaranteed. If there is failure in the cement, and ILS provides no failure in the casing, 

this might be a weakness in the program and complementing is necessary.  

The black and dashed vertical line and the black vertical line in the figures represents the DF 

for cement and casing, respectively. When the SFs for shear failure, debonding or radial crack 

is less than the DF for cement, the cement will experience failure. When the SF for casing 

falls below the burst or collapse design factor, the casing will experience failure.  

The production load cases investigated in this section are pressure test, casing evacuation, 

steady stage production, steady stage injection and tubing leak. The internal pressure gradient 

for the initial condition and the pressure test load will be the mud gradient, while the other 

load cases will have an internal gradient from the completion fluid.  
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The results from the cement sheath model is calculated with no external pressure change. The 

external pressure profiles from ILS is therefore set equal to the initial condition. The external 

profile, for all load cases, will therefore consists of the mud gradient the production casing is 

run in, and the cement-mix-water gradient in the cemented zone. This is done for simplicity 

and to better match the conditions in the cement sheath model. The external pressure profile 

options available in ILS is described in Appendix F.  

It is important to mention that all the load cases can differentiate from well to well. For 

example, a pressure test could be necessary to perform at a high pressure to account for a 

tubing leak occurring right below the wellhead if the main bore fluid is light and the reservoir 

pressure is high. However, if the reservoir pressure is low and the wellbore fluid is heavy, a 

tubing leak will be less hazardous to the production casing, and the pressure test can be 

performed at a lower pressure.  

Later in this thesis, a sensitivity analysis regarding the load cases from this section will be 

performed for various cement properties. 

3.3.1 Load Cases 

Each load case will be presented in a separate plot. The SFs from the casing design is plotted 

together with the DF for burst or collapse, for the entire depth. The SFs and DF for cement is 

only plotted in the cemented section. Firstly, observations of the SF with the related DF for 

cement for all load cases are presented. Secondly, observations concerning the casing SFs are 

presented. Lastly, the results are compared and discussed.  

When performing a pressure test, the ΔP inside the casing will depend on the applied pressure 

at surface. Since the fluid column in annulus is the same as the one initial, ΔP will be constant 

with depth. The resulting SFs in the cement from this load will therefore also be constant with 

depth, as seen in Figure 18 for the SF line for shear failure (green) and the SF line for radial 

crack (purple). This is not the case with the other load scenarios: casing evacuation, 

production, injection and tubing leak. For these loads, Figure 18-Figure 22 show that the SFs 

for cement failure are depth dependent. This is due to Δp changing with depth, as the internal 

fluid column differentiates from the one initial. In Figure 18, which illustrates the pressure 

test load, the SF line for shear failure (dashed green) is high, and safe from failure. The SF 

line for radial cracks (dashed purple) is however lower than the DF for the cement, which 

indicates that the cement will fail in radial cracks when exposed to the pressure test load. For 
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the casing evacuation load case in Figure 19, debonding in the cement will occur. For the 

production load in Figure 20, there is no failure in the cement, and the radial stresses is 

compressive. The SF line for debonding (pink) are close to failure when considering injection 

in Figure 21, though it will be on the safe side of the cement DF. No radial crack or shear 

failure will occur with the tubing leak load in Figure 22.  

In Figure 18, the #43.5 N-80 casing (blue) will burst when exposed to the pressure test load. 

The #53.5 P-110 (yellow) will not experience burst. Figure 19 shows that the lower grade 

casing will fail in collapse in the casing evacuation load. In the rest of the load cases, the 

casing types investigated will withstand the applied load. The SFs for the tubing leak load 

with a wellhead pressure of 365 bar in Figure 22 is low, but for the selected casing grades, the 

casing design is safe. 

One interesting thing to point out is that the cement will fail in radial cracks in Figure 18, 

even if the #53.5 P-110 casing holds. Figure 19 shows that the cement will have debonding 

failure regardless of if the casing holds. These scenarios may prove that the ILS have a 

shortcoming regarding the cement and safe zonal isolation.  

 

Figure 18: SF and DF for both cement (at rb) and casing exposed to a pressure test with ΔP=400 

bar from initial condition. 
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Figure 19: SF and DF for both cement (at rb) and casing exposed to a casing evacuation 

 

Figure 20: SF and DF for both cement (at rb) and casing exposed to steady stage production. 
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Figure 21: SF and DF for both cement (at rb) and casing exposed to steady stage injection. 

 

Figure 22: SF and DF for both cement (at rb) and casing exposed to a tubing leak, with a 

wellhead pressure of 365 bar. 
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4. Discussion 

This part will cover the sensitivity analyses performed on the mechanical properties of the 

cement and the formation. The results from the sensitivity analyses are later included in the 

comparison with the ILS, and used to determine whether an additional feature should be 

implemented in the ILS. Additionally, the discussion will cover some features in the cement 

sheath model, and the uncertainties resulting from not including these features in the 

comparison.  

4.1 Sensitivity Analyses on Mechanical Properties 

Sensitivity analyses are performed on several parameters in order to see how these parameters 

will affect the safety factors for the different failure modes. Only mechanical properties of the 

cement and the formation are investigated. The variables analyzed are the Young’s modulus, 

the Poisson’s ratio and the coefficient of linear thermal expansion. For all sensitivity analyses, 

the variables not investigated are according to base case.  

All plots in this section will show the SF lines resulting from the various mechanical 

properties, with varying pressure at constant temperature. Appendix H will show the plots not 

included in this section, which contain the effect of changing the temperature, among other. 

It is observed for all sensitivity analyses that if one parameter is investigated at a condition 

resulting in a very low SF, the effect of changing this parameter is reduced. For instance, if 

radial crack is investigated at very large pressures increases, a change in a mechanical 

parameter will not alter the safety factor for radial crack to a great extent. In contrast, if the 

pressure and temperature condition are favorable to avoid failure, the parameter investigated 

will affect the SFs for the relevant failure mode to a greater extent. This is seen in the plots 

when the lines have a large spread between them. 
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4.1.1 Young’s Modulus 

An investigation, of how sensitive the SFs for the different failure modes are to change in the 

Young’s modulus of the cement and the formation, is performed. Eight cases with different 

combinations of Young’s moduli have been investigated. The Young’s moduli ranges are 

shown in Table 1. A discussion about the most favorable and unfavorable combination to 

prevent failure, and the general trend observed for the failure mode are presented. A 

discussion about the differences between considering the casing-cement interface (rb) and the 

cement-formation interface (rc) is also included. 

It is important to mention that in order to obtain more accurate results, and hence achieve a 

more general conclusion; a more extensive analysis should be performed.  

4.1.1.1 Debonding 

Figure 23 shows the SFs for various combinations of cement and formation stiffness, Ecem and 

Eform respectively. From the values evaluated, the probability of debonding at the casing-

cement and the cement-formation interfaces are highest when the Young’s modulus of cement 

is low, and the Young’s modulus of the formation is high (Eform > Ecem). This means that when 

the cement is placed next to a stiff formation, it is more prone to debonding. The combination 

that will result in the largest SFs is the largest cement Young’s modulus, and the lowest 

formation Young’s modulus (Ecem > Eform). The best-case combination when considering the 

ranges in Table 1 is then; Ecem = 20 GPa and Eform = 1 GPa. It has been found that as long as 

the cement Young’s modulus is larger than the formation Young’s modulus, the highest value 

of cement Young’s modulus is the most desirable. In contrast, the lowest SFs would be 

expected with Ecem = 1 GPa and Eform = 70 GPa. However, this has been found not to be the 

worst-case. The lowest SF, obtained by only considering round numbers Young’s moduli (in 

GPa), occurs when Ecem= 2 GPa and Eform = 70 GPa. There could be different reasons for this 

observation, however one reason could be that if the cement Young’s modulus is 1 GPa, the 

cement is very elastic, and is not as exposed to failure.  

As shown in the results, the likelihood of debonding increases at negative temperature 

changes, and this is true for all combinations of Ecem and Eform investigated. There are no 

major differences between the casing-cement interface and the cement-formation interface. 
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Figure 23: Effect of Young’s modulus for the cement and formation in GPa, on SF for 

debonding, ΔT = 0, at rb 
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formation interface. However, a second observation is that the worst-case scenario is present 

if the formation Young’s modulus is very small. According to the range presented in the 

theory, this means Eform= 1 GPa. Considering round numbers of Young’s moduli, the worst-

case scenario is present when the cement Young’s modulus is 9 GPa. The reason for this may 

be that the tensile strength in the cement sheath model is only dependent on the cement 

Young’s modulus. Hence, a very large cement Young’s modulus will result in a large tensile 

strength. On the other side, a low cement Young’s modulus can be favorable in order to avoid 

failure, because creating failures in a very elastic cement can be difficult.  

Thirdly, when considering the difference on the two interfaces it can be observed that the 

order in which the failure occur, when considering the eight cases, is slightly different. 

However, the best- and worst-case combinations are the same at both interfaces.  

A final observation when considering positive pressure changes is that for the most favorable 

combination of Young’s moduli, the hoop stresses can be compressive, as illustrated by the 

green line in Figure 24. This occur when the formation Young’s modulus is very large 

compared to the Young’s modulus of the cement. In these conditions, a radial crack can occur 

at negative pressures.  

For negative pressure changes, it has been observed for the base case, that a radial crack can 

only occur if a negative temperature change occurs at the same time. Additionally, this radial 

crack will only occur at small negative pressure changes. However, when the combinations of 

the Young’s moduli are changed, this result also changes. It has been observed that with a 

large Young’s modulus for the formation, radial crack can occur for a larger range of negative 

pressures. This range is also larger at rc than rb.  
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Figure 24: Effect of Young’s modulus, for the cement and formation in GPa, on SF for radial 

crack, ΔT = 0, at rb 

4.1.1.3 Shear Failure 
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Temperature will have an effect on the order of failure at both rb and rc. The plots show 

similar trends, but the degree of concurrent lines varies. At rb, the Young’s moduli will be 

significant for the resulting SFs for negative pressures. At rc, the Young’s moduli will mainly 

be significant for the resulting SFs for negative pressures, except for positive temperatures 

where there is no clear trend. 

 

Figure 25: Effect of Young’s modulus, for the cement and formation in GPa, on SF for shear 

failure, ΔT = 0, at rb  
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4.1.2 Poisson’s Ratio 

Generally, the effect of changing the Poisson’s ratio is less significant than changing the 

Young’s modulus. However, some trends are observed:  

First, when considering no temperature change, different Poisson’s ratios will not have a large 

impact on the SFs for any of the failure modes. Secondly, what combinations of Poisson’s 

ratio for the cement and the formation that is most desirable to obtain large safety factors, are 

opposite from positive to negative temperatures. This is valid for both radial crack and 

debonding. For example, in Figure 26 it is observed for debonding that the most favorable 

condition to prevent failure for positive temperature changes is a large Poisson’s ratio for the 

cement, and a low for the formation. For negative temperature changes, the most favorable 

Poisson’s ratios are a low value for the cement, and a high value for the formation. These 

observed trends are applicable at both rb and rc, for both radial crack and debonding. A third 

observation is that the combination of Poisson’s ratio for cement and formation that is most 

desirable to prevent shear failure, is not consistent for negative and positive pressure changes, 

nor for positive and negative temperature changes. 

 

Figure 26: SF Debonding, varying Poisson’s ratio for cement and formation. Positive 

temperature change of 100 °C, at rc. 
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4.1.3 Coefficient of Linear Thermal Expansion 

The effect of changing the coefficient of linear thermal expansion on resulting SFs for each 

failure mode has been investigated. By changing the coefficients for both the cement and the 

formation, and by plotting the SFs for various pressure and temperature changes, some 

distinct trends are observed. Firstly, when there is no temperature change in the well, the 

coefficient will as expected not have any impact on the resulting SFs. Hence, for the pressure 

test and evacuation load cases, all values of the coefficient (⍺) will give the same results. 

Secondly, debonding and radial crack seem to have the same trend when considering which 

combinations of the coefficient that result in the most favorable condition. For positive 

temperature changes, it is most desirable to have a large coefficient for the cement, and a low 

coefficient for the formation. Figure 27 illustrates this statement. It can be seen from the 

figure that the line, which has the highest SFs for all pressures, is the combination with the 

highest value for the cement and the lowest value for the formation. However, the opposite 

combination is favorable for negative temperature changes. Thirdly, an interesting trend is 

observed when considering the difference between rb and rc. The same combinations are 

desirable for each failure modes at both rb and rc, though the trends are more distinct when 

considering rc. For example, it can be seen at rc that a large thermal expansion coefficient for 

the cement together with a small coefficient for the formation is the most desirable. However, 

at rb, only low values for the formation are seen as the best alternative, and with no distinct 

trend in the cement’s value. This may be because when failure occurs at an interface, it is 

more sensitive to the properties at this interface. However, this does not explain why the 

coefficient of linear expansion for the formation is more dominant at rb.  

 

When discussing how shear failure is dependent on the coefficient of liner thermal expansion 

the trends are not as clear as for debonding and radial crack. However, it seems like opposite 

trends tend to appear when considering rb and rc. At rb, a high value for the formation is 

undesirable, while at rc a low value for the formation is undesirable. Generally, the most 

favorable combination is not consistent neither for negative or positive pressure changes, nor 

for positive or negative temperature changes.  
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Figure 27 SF Debonding with varying coefficient of liner thermal expansion of cement and 

formation. Positive temperature change of 100 °C, at rc 
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4.2 Complementing the ILS 

4.2.1 Approach 

In order to investigate the necessity of complementing the ILS, it is necessary to see if the 

cement fails in cases where the casing does not. In these cases, it would be desirable that the 

ILS could provide information to the user that the cement could be at risk of losing its 

integrity. In chapter 3.3 it has been shown that for the base case, radial cracks or debonding 

can occur, even if the casing is safe for the same load case. It is in these cases an improved 

user function could be added to the ILS. In order to expand these analyses, to be more 

general, various cement and formation properties have been added to the analyses. However, 

only the worst-case collapse and burst load cases, which are casing evacuation and pressure 

test, respectively, are discussed further. It is important to mention that these load cases vary 

for the different conditions the well are subjected to. However, it has been decided to expand 

the analyses from Chapter 3.3, by only changing the cement and formation properties, while 

the load cases remains the same. This is done by including the results from the sensitivity 

analyses, in terms of a worst- and a best-case scenario for each failure mode. By determining 

the combinations of Young’s moduli and Poisson’s ratios, for both the cement and the 

formation, that result in the most favorable and unfavorable conditions, the best- and the 

worst-case can be developed. The reason for not including the coefficient of linear thermal 

expansion is because the SFs does not vary when there is no temperature change. This is the 

case for pressure test and casing evacuation. Since rb is more exposed to failure in the various 

load cases, it has been decided to only consider this interface. 

When determining the combinations of Young’s moduli for the cement and the formation that 

result in the largest and lowest SFs for each failure mode, the results from Chapter 4.1 are 

used. In this case, the theoretical values of Young’s moduli are used; hence, worst- and best-

case scenarios tend to appear from the outer edges of the ranges. Meaning that the 

combinations not always are realistic, but they are necessary in order to quality check the 

results from the base case. It is important to mention that in order to develop the selected 

combinations of Young’s moduli for each case, only round values in GPa are considered.  

Since the Young’s moduli affect the resulting safety factors to a greater extent than the 

Poisson’s ratios, the Young’s moduli are determined fist. The trends observed in the 

sensitivity analysis for the Poisson’s ratios, are not consistent when the Young’s moduli are 

changed. That is why the combinations of Poisson’s ratios that result in the worst- and the 
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best-case scenarios, are not the same as shown earlier. This is evident in the worst-case 

mechanical properties of radial crack. Here, the Poisson’s ratios do not influence the results to 

any extent, and that is why the base case values are chosen.    

4.2.2 Pressure Test 

The cement and formation properties for best- and worst-case of the pressure test load are 

shown in Table 6. These properties are determined by investigating one failure mode at the 

time, for a pressure test performed at 400 bar.  

Table 6: Best- and worst-case combinations for mechanical properties, pressure test 

Failure mode Radial Crack Shear Failure 

Best-Case Ecem = 1 GPa 

Eform = 70 GPa 

Vcem= 0.3 

Vform= 0.18 

Ecem = 1 GPa 

Eform = 1 GPa 

Vcem= 0.3 

Vform= 0.4 

Worst-Case Ecem = 9 GPa 

Eform = 1 GPa 

Vcem= independent (base case) 

Vform= independent (base case) 

Ecem = 2 GPa 

Eform = 70 GPa 

Vcem= 0.3 

Vform= 0.18 

 

Figure 28 shows a SF plot for both casing and cement for a pressure test performed at 400 bar. 

In this plot the SF graph for the commonly used 9 5/8-in casing, #53.5 P-110, is shown 

together with the base-, best- and worst-case of the two applicable failure modes for a 

pressure test; radial crack and shear failure. From this figure, the following are observed. 

First, when considering shear failure it was determined from the base case that a shear failure 

of the cement was not likely to happen during a pressure test. However, it can be seen from 

the figure that with the least desirable conditions, a shear failure can occur. This can be seen 

by the worst-case scenario SF line being located to the left of the cement DF line. However, 

this occurs at very unfortunate conditions, and may not be worth considering, due to 

unrealistic mechanical properties, and a small possibility for failure. It can be seen from the 

range in the figure, which is between the worst- and the best-case scenarios, that a larger 
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portion of the range is located to the right of the DF line, meaning that the design is safe for 

most of the cases. 

Secondly, when considering radial crack it is not that easy to see the range. This is because for 

some combinations of the mechanical properties, the hoop stresses will be in compression 

resulting in negative SFs. This is a safe state when considering radial cracks. However, it can 

be seen that the distance from the worst-case SF line to the DF line is larger compared to the 

SF line for shear failure. This means that more combinations of Young’s moduli will lead to 

radial crack than to shear failure. 

It can therefore be concluded that for a pressure test, radial crack is the failure mode that is 

most important to consider. Radial cracks propagate radially from its initiation point, and can 

result in a loss of zonal isolation. Multiple radial cracks can result in a connected channel, 

which equalizes the pressure above and below the cement, and undesirable communication 

occur. The consequences of a zonal isolation loss are, as mentioned in the theory, in terms of 

both economics and safety.   

 

Figure 28: Pressure test SF for casing and cement with varying properties 
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4.2.3 Casing Evacuation 

When considering the worst-case collapse load, casing evacuation, .  

Table 7 shows the combinations of Young’s moduli and Poisson’s ratios of the cement and the 

formation, which results in the worst- and the best-case scenarios.  

Even though the evacuation results in different negative pressure changes along the well 

depth, the worst- and best-case mechanical property combinations are the same.  

Table 7: Best- and worst-case combinations for mechanical properties, casing evacuation 

Casing Evacuation 

Failure mode Debonding Shear Failure 

Best-Case Ecem = 20 GPa 

Eform = 1 GPa 

Vcem = 0.1 

Vform = 0.4 

Ecem = 1 GPa 

Eform = 1 GPa 

Vcem = 0.3 

Vform = 0.4 

Worst-Case Ecem = 2 GPa 

Eform = 70 GPa 

Vcem = 0.3 

Vform = 0.18 

Ecem = 2 GPa 

Eform = 70 GPa 

Vcem = 0.3 

Vform = 0.18 

 

Figure 29 shows the SF lines for a #53.5 P-110 casing and the cement failure modes, with 

their worst- and best-case scenarios.  

First, when considering shear failure, the range where shear failure can occur, extend across 

the DF line. This means that various combinations of mechanical properties can result in both 

a safe and an unsafe design. Additionally, the SFs for the worst-case are lower than when 

comparing to the worst-case of pressure test. It is therefore more important to consider shear 

failure, when a negative pressure change occur.  

Secondly, debonding is also more critical than what radial crack was in the pressure test. This 

can be seen when the best-case scenario is within the safe zone by a small margin. This 
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means, that for most of the cases, if an evacuation occurs, the cement will be in risk of debond 

from the casing. However, with favorable combinations of mechanical properties, the design 

can be safe.  

If debonding occurs, and the cement is not bonded to the casing or the formation, a 

microannulus or a cavity at these interfaces are created. As for radial crack, this means that in 

order to develop communication through the cement, a continuous pathway is necessary. 

Normally this is not the case, however according to the governing documentation for the 

various companies; a certain length of good bonded cement is required. This is normally 

confirmed by a cement bond log, which has been claimed to be inadequate in certain 

situations. Hence, a thoroughly model, to accurately determine situations where debonding 

occur in order to avoid these situations, could be of great need in the industry.  

 

Figure 29: Casing evacuation SF for casing and cement with varying properties 
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4.2.4 Shortcoming with the Approach  

Generally, it is important to mention that it could be an unrealistic approach to only consider 

one failure mode at the time. Meaning that if more failure modes are considered at the same 

time, the difference between the worst- and the best-case scenarios, are less, implying a 

narrower range. It could be called a conservative approach from the analysis perspective, 

since the range obtained is larger than what it would be if multiple failure modes were 

included.  This is because the worst- and the best-case scenarios differentiate with the various 

failure modes. Additionally, it is conservative to only account for one load at the time when 

the well is exposed to both collapse and burst loads. A narrower range, between the best- and 

the worst-case would be developed if multiple loads where considered together. Then a more 

precise and realistic conclusion could be drawn. 
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4.3 Model Features and Uncertainties 

In order to complement the ILS, some features, and how they affect the previous results will 

be discussed. These features include the effect of initial condition, the effect of change in 

formation pressure, the effect of changing the cement thickness and the effect of varying the 

outer boundary of the cement model. For all analyses of the features, the base case properties 

shown in Table 2, Table 3 and Table 4 are used as the main inputs. The most important plots 

are shown in the relevant section, while the remaining plots are shown in Appendix I. 

4.3.1 Effect of Initial Condition  

One feature of the model is to include the initial stress condition in the cement. Until now, 

shrinkage of the cement has been considered, meaning that the initial stress is zero. Zero net 

shrinkage, which means that hydrostatic stress is the initial stress in the cement, is another 

approach that can be used. The assumption behind the hydrostatic pressure can vary, but one 

approach is to set the minimum horizontal stress as the hydrostatic stress. Then the minimum 

horizontal stress is added to all the stresses before it is set into the failure criterion. Appendix 

B shows the pore pressure plot, where the used values of minimum horizontal stress can be 

found. In this case, the initial condition is analyzed at 2500 m, which is the top of cement 

(TOC). It is important to mention that if zero net shrinkage is included when considering the 

entire depth of the cement section, the load cases will have a larger depth dependency due to 

the minimum horizontal stress varying with depth. 

 

In this chapter, a comparison between the two approaches is performed, finally leading to a 

discussion about the uncertainty resulting from the assumed initial condition. The effect of the 

initial condition has been investigated for the three failure modes. The results are plotted in 

terms of SF, with different pressure and temperature.  

 

Figure 30, Figure 31 and Figure 32 show the effect of initial stress in the cement for radial 

crack, debonding and shear failure respectively. This is illustrated by plotting the SF for the 

failure mode as a function of radius through the cement. The figures show the results for 

constant temperature, but with varying pressures, which will be the case during a pressure test 

or an evacuation of the casing. 

 

As seen in both Figure 30 and Figure 31 when considering zero net shrinkage, the SFs will be 

negative for all pressures. A negative SF means that the cement stress is in compression, and 
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neither radial crack nor debonding occurs. The pressure effect is canceled out by the effect of 

initial stress when no shrinkage occurs. When shrinkage occurs, the effect of pressure is larger 

than for zero net shrinkage. When considering constant pressure with varying temperatures, 

the result will be the same. For zero net shrinkage the temperature effect is also canceled out. 

 

As seen from the figures, the effect of initial condition on radial crack and debonding 

differentiate from shear failure. Shear failure can occur with large pressure changes, even if 

initial stresses are present. However, initial stresses reduce the risk of shear failure. Figure 32 

shows the effect of initial condition on shear failure SF with varying pressures. The plot 

consists of graphs for -300 bar, 300 bar, -600 bar and 600 bar for both shrinkage and zero net 

shrinkage. Zero net shrinkage results in the highest safety factors, and none less than one. 

Hence, if hydrostatic stress is the initial condition, no shear failure will occur, even if the well 

is subjected to a 600 bar pressure decrease. However, if the cement shrunk during setting, a 

600 bar pressure decrease would result in SFs less than one, and hence a shear failure would 

be likely. It can also be seen from Figure 32 that the effect of the initial condition is larger 

when the pressure is low. This is evident from the distance between the lines; for 300 bar, the 

distance between shrinkage and no shrinkage is larger than for 600 bar.  

 

These results prove that the choice of initial condition is important when analyzing and 

determining what happens with the cement when it is subjected to loads. Hence, the initial 

condition represents a major uncertainty, especially when tensile failures are considered.  
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Figure 30: Effect of initial stress on radial crack SF, for different pressure changes in bar 

 

Figure 31: Effect of initial stress on debonding SF, for different pressure changes in bar 
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Figure 32: Effect of initial stress on shear failure SF, for different pressure changes in bar 
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In order to investigate the effect of changing the external pressure, the SFs for debonding, 

radial crack and shear failure have been calculated. This is done by varying the external 

pressure change for several fixed internal pressure and temperature changes. The results for 

debonding, radial crack and shear failure are plotted at rb.  

4.3.1.1 Debonding 

Generally, an external pressure increase is favorable to avoid debonding at both the casing-

cement and the cement-formation interfaces. A pressure reduction both internally and 

externally will increase the probability of debonding. As seen in Figure 33, Pi = -500 bar and 

T = -50 °C will never be higher than the DF-line when the radial stresses are in tension. 

Additionally, and the stresses will go straight into compression when the external pressure 

increase exceeds 100 bar. The pressure effects will attenuate the temperature effects when 

varying the external pressure. However, this trend is more visible at rb than at rc.  

 

Figure 33: SF Debonding, change of external pressure, at rb. Temperature change in °C. 
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4.3.1.2 Radial Crack 

In Figure 34, the SFs for radial cracks at rb show the same trend as the debonding SFs. 

Generally, an external pressure increase is favorable to avoid radial crack at both the casing-

cement and the cement-formation interfaces. However, there are larger differences between 

the required external pressure change in order to avoid failure for the diverse temperatures, 

compared to debonding. In contrast to debonding, will a pressure reduction externally 

combined with a pressure increase internally, increase the probability of radial crack. 

 

 

Figure 34: SF Radial crack, change of external pressure, at rb. Temperature change in °C 
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4.3.1.3 Shear Failure 

It can be seen from Figure 35 at rb, that a low external pressure increase is favorable to avoid 

shear failure, especially when there is a high internal pressure drop in the well. When there is 

an internal pressure increase together with an external pressure decrease, and vice versa, the 

effect of the pressure cancels out, and the cement is less exposed to shear failure. At rc, the 

SFs are more dependent on the external pressure change, than the internal pressure change. 

A temperature decrease together with an external pressure drop is unfavorable for shear 

failure, while the opposite is true for external pressure increases. This may represent a large 

uncertainty in the previous work, as it differs from the base case results for shear failure. 

 

Figure 35: SF Shear failure change of external pressure, at rb. Temperature change in °C 
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4.3.1 Thickness of the Cement 

One feature of the model is to investigate the effect of a thin and a thick cement. The way this 

is done is by changing rc, the cement-formation interface. It is important to mention that the 

model assumes that there is contact between the casing, cement and formation. This means 

that a large rc could represent a washout, and not necessarily a thick cement. The same is 

applicable for a small rc, which could represent an under gauged hole, and not necessarily a 

thin cement. This will increase the uncertainties of the investigation presented in this section. 

The effect of another medium between the cement and casing or formation (e.g. microannuli, 

voids etc) will therefore not be considered. 

In order to determine how the cement thickness influences the safety factors for the different 

failure modes, an analysis with varying rc has been performed. Values between 0.13 m to 0.2 

m have been chosen for rc.  

Some trends are detected when investigating how a change in the cement thickness affects the 

SFs for the various failure modes.  

It has been observed for debonding and radial crack that there is a difference when 

considering rb or rc. As seen from Figure 36, at rb the cement thickness does not influence the 

SFs of radial crack to a large extent. However, Figure 37 shows that a thin cement will fail for 

a larger range of pressures than a thick cement at rc. The main reason for this difference is that 

when the thickness is changed, the location where the stresses are considered is also changed 

when considering rc. This is not the case when considering rb, and hence the effect of the 

cement thickness is less. This is also due to the lower SFs at rb, since this interface is closer to 

the pressure and temperature source.  

For shear failure, the spread between the SF-lines is small for rb, but large for rc. Hence, the 

cement thickness has a greater influence at the cement-formation interface. A special case is 

at rb, with a temperature drop: the negative pressure side will have a larger spread between 

the graphs than the positive pressure side. The opposite is observed with temperature 

increases.  
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Figure 36: SF Radial Crack, for varying thicknesses, ΔT=0°C, at rb, rc in meter 

 

Figure 37: SF Radial Crack, for varying thicknesses, ΔT=0°C, at rc, rc in meter. 
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4.3.2 Choice of Rd 

In order to tune in the model to be as correct as possible, it is necessary to decide the outer 

boundary of the model, rd. Rd is mostly important for the temperature calculations, but it 

affects other parts through the resulting temperatures. This section will cover the effect of 

changing the rd, and a discussion about the most suitable rd. 

4.3.2.1 General Effect of Rd on ΔT2 

Rd affects the temperature calculations, because it is an important part in the calculations of 

ΔT2, which is the temperature change at the outer cement interface during the load case. In the 

calculations of ΔT2, it is assumed that the temperature change at rd is zero. Hence, a small rd 

will reduce the accuracy of the result. It is important that rd is chosen to be large enough so 

that this assumption is applicable.  

In Figure 38, ΔT2 is plotted against rc for each rd, for ΔT1 = -100C. The temperature change 

is less than 100C for all cases in the cement, but for large rd it is closer to 100C than for the 

small rds. This is because, if rd is chosen to be small compared to the well radius, the 

temperature change in the cement is more affected by the temperature change in the formation 

(which is zero) than the temperature change in the well. This is why the largest rc (0.2 m) 

results in the smallest temperature change in the cement, even if the internal temperature 

change is large (-100C). 

It is possible to see a convergence towards one common temperature for the large rds. It is 

therefore applicable to assume that these radii are the most accurate, and therefore adequate 

for the rest of the investigation.  

Figure 38 is sufficient to decide on an applicable rd. However, the next session will show a 

short overview of how changing the rd affect the SFs for the different failure modes, at rb and 

rc. 
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Figure 38: Effect of rd on ΔT2, ΔT1=-100°C, rd in meters. 
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to at rc. Additionally, one more trend is observed when comparing the difference in SFs at rb 

and rc for the failure modes. It can be seen that the SFs at rc have little dependency on 

temperature change in the well for small rds. This is because the temperature change at rd 

(which is zero) is much closer, and therefore affect the temperature change at rc in a greater 

extent. This results in small changes in temperature at rc, which will result in small changes in 

the SFs for different temperatures. 

 

Figure 39: SF Radial Crack, with varying rd at rb 
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4.3.3 Uncertainties  

The model and the analyses contain some uncertainties that are not as susceptible to 

modifications as the parameters shown in the previous chapters. Additionally, some 

shortcomings are present in the model, which are related to the assumptions behind the model.  

These uncertainties and shortcomings are in terms of external pressure profile when 

comparing the cement model and ILS, in addition to the fact that the model disregards pore 

pressure and successive loads.    

In the comparison with ILS, the external pressure profiles differentiate in the model and in the 

ILS. The cement model does not account for any annulus pressure, which is sufficient since 

this pressure does not affect the resulting SF for the cement. However, the casing SF is largely 

dependent on the annulus pressure. Hence, a comparison of the two SFs are not directly 

applicable. This is why the cement model is mainly useful to complement the ILS. However, 

if considering normal annulus pressures, the comparison may be applicable.  

Another uncertainly, which reduces the credibility to the results, is that the pore pressure in 

the cement is not included. By not including the pore pressure, the effect of considering a 

porous media is not included. The pore pressure will change the results because it is included 

by altering the stresses to effective stresses. However, pore pressures vary from field to field, 

and could therefore not be used in a general solution. In addition, the change in pore pressure 

is difficult to determine, especially if the initial stress condition in the cement affects it. 

Successive loads can alter when the initiation of failure occurs. For example, it is possible that 

debonding can occur after a large pressure increase resulting in a plastically deformed cement. 

If it then experiences a reduced positive pressure load, debonding can occur. However, this is 

not accounted for in this project. 
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5. Conclusion 

In the work performed with the casing-cement-formation mechanical model together with the 

ILS, the following conclusions are made: 

- Debonding may take place at the casing-cement or the cement- formation interface. 

The cement is more exposed to debonding at negative internal pressure changes, and 

negative temperature changes. When the cement Young’s modulus is large, and the 

formation Young’s modulus is small, the probability of debonding decreases in the 

cases investigated. 

- In the cases investigated, radial cracks will first initiate at the casing-cement interface. 

The cement is more exposed to radial cracks when the well experiences a pressure 

increase. A temperature drop will lower the required pressure change to initiate radial 

cracks at rb and rc. A high formation Young’s modulus is favorable in order to avoid 

radial crack, while a low Young’s modulus of the formation is unfavorable. It seems 

like the formation Young’s modulus is more dominating on the resulting radial crack 

SF than the Young’s modulus of cement. 

- Shear failure may occur at both pressure increases and decreases. However, it is more 

likely when the well experiences a pressure decrease. Shear failure generally demands 

a large pressure change in order to occur. However, the mechanical properties of the 

cement can alter this result. Negative temperature changes lower the required pressure 

changes to initiate failure, as long as there is no external pressure change. 

- Neither the Poisson’s ratio nor the coefficient of linear thermal expansion will 

significantly affect the SFs of the failure modes. 

- Some failure modes will occur in the cement sheath before the casing fails, for the 

burst and collapse load investigated. This is mostly applicable for the stronger casing 

grades, which includes the widely used 9 5/8-in casing; #53.5 P-110.  

o Shear failure is not likely to occur for the burst load nor for the collapse load 

considered. However, collapse loads are more critical. Nevertheless, with the 

most undesirable combinations of the mechanical properties, meaning mainly 

large values of the formation Young’s modulus, it can occur.  

o It can be concluded that for a pressure test, radial crack is the failure mode that 

is most important to consider. Radial cracks can occur when the casing 

experiences a pressure test load, while the casing remains safe. However, this 

case is highly dependent on the mechanical properties of the cement. Therefore 
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is it difficult to conclude whether ILS needs to be complemented, when 

considering radial crack. With the most desirable properties of the cement and 

the formation, the SFs are negative, meaning that no radial crack can occur.  

o Debonding is the most important failure mode to consider during a casing 

evacuation. For most combinations of the mechanical properties, the cement 

will fail, when the casing does not fail. However, a few combinations of the 

mechanical properties will result in a safe cement design. If the company 

considers debonding as a critical failure, complementing ILS would be 

desirable. NORSOK (2013) states that some cases requires logging of the 

cement, and in these cases, a complementary program is recommended to be 

included in the standard practice. It can therefore be concluded that debonding 

is the failure that is the most important to evaluate if an additional cement 

feature should be included in the ILS. The ILS should at least provide a 

warning when the well is not safe in terms of zonal isolation, even if the casing 

design is safe. 

- Model features, that can increase the uncertainty of the obtained results, include: 

o If no shrinkage of the cement is included, then no tensile failure will occur for 

the base case investigated. 

o By including external pressure profile, it is possible to implement the effect of 

depletion or subsidence of the formation. Generally, a drop in external pressure 

will increase the probability of failure for the cases investigated. External 

pressure will change the favorable temperature condition for shear failure, 

which represent a large uncertainty in the analyses.  

o By including a thin cement sheath, the SFs for all failure modes will be 

reduced. This effect is more significant when considering the cement-

formation interface. However, this analysis does not incorporate the presence 

of fluid channels or microannuli.  

o By changing the boundary of the model in terms of the outer radius, the SFs 

for all failure modes are altered. The chosen radius has a large impact on the 

temperature calculations. An rd of 10 m seems like an appropriate outer 

boundary in order to obtain an accurate prediction of the temperature 

variations. 
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6. Further Work 

In order to expand the thesis to conclude more thoroughly on cement sheath failure estimates, 

several measures could be taken. These measures include improvements of the model and 

improvements of the analyses already performed. Additionally, suggested investigations, 

using the features of the model, are presented. 

- Some model improvements may be: 

o Include assumption of porous cement, by including pore pressure in terms of 

effective stress for various initial stress conditions. 

o Investigate the stresses in the cement, when failure has occurred. 

o Incorporate transient load cases, i.e. effect of successive load cases, for 

investigation of thermal or pressure cycling. 

o Include the possibility to retrieve the degree of debonding, radial crack and 

shear failure in the cement sheet. 

- Some improvements to the analyses could be performed: 

o Include more cases in the sensitivity, or make a program that runs several cases 

for all the variable mechanical properties for the different pressures and 

temperatures. 

o Include sensitivity of altered cement strength data to investigate the effect on 

SFs. Additionally, this could be included into the already existing sensitivity 

analyses on mechanical properties. 

o Find, if possible, a combination of Young’s modulus and Poisson’s ratio that 

will be the best case for both burst and collapse loads for all failure modes. 

o An improvement in the analysis considering the cement thickness could be 

performed. In order to improve this part, a cylinder of fluid, representing the 

space between the cement and the formation should be included. This could be 

done by including one more cylinder with Lamé’s theory, and then obtaining a 

third contact pressure and a new interface radius. 

o Expand the analyses to include more than one casing, in order to see if the 

results are applicable for other casing sizes. 

o Determine applicable pressure changes that result from depletion and 

subsidence. 
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- Some further investigations, using the features of the model, could be performed: 

o Compare the stresses in the casing provided by the model, with the stresses 

provided by the ILS. From the ILS by using the resulting SF on the load, from 

the model by considering radii between ra and rb. Then the mechanical support 

from the cement may be determined.  

o The model can be verified by comparing with a load history of real well. By 

exposing the model to the same loads as the well, and by comparing the 

debonding results from the model with the associated CBL, a verification can 

be obtained.  
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7. Nomenclature  

Roman letters 

A = Areal 2[m ]  

A =intersection of the line on the   axis 

A Lamé constant A  

B = inclination of the line 

B Lamé constant B  

c = cohesion of the material [Pa]  

d = original diameter [m]  

E = Young’s Modulus [Pa] 

formationE = Young's Modulus formation [Pa]  

Young's Modulus cement [Pa]cementE   

steelE = Young's Modulus steel [Pa]  

F = Force [N]  

f = a function obtained experimentally [-] 

f = monotonically increasing function [-] 

cemk = Thermal conductivity of cement W
m C

 
  

 

formk = Thermal conductivity of formation W
m C

 
  

 

L = Original Length [m]  

1cP =
bContact pressure at r  interface [Pa]  

2cP =
cContact pressure at r  interface [Pa]  

iP = internal pressure [Pa]  
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iP = Change in internal pressure in casing [Pa]  

,i finalP = Initial pressure, in final condition [Pa] 

,i initalP = Initial pressure in internal [Pa] 

fP = Change in external (formation) pressure [Pa]  

oP = external pressure [Pa]  

Psurface=test pressure at surface [Pa] 

P(z)= pressure at depth z [Pa] 

r = radius [m]  

ar =  inner radius of casing [m]  

br = outer radius casing/inner radius cement [m]  

cr =outer radius of the cement/inner radius of the formation [m] 

dr = outer radius formation [m]  

ir = internal radius of the cylinder [m]  

or = external radius of the cylinder [m]  

,i finalT = Internal temperature, in final condition [°C] 

,i initalT = Internal temperature in initial condition [°C] 

0T = Tensile Strength [Pa] 

Q = Heat [W]  

z= depth [m] 

coY = Cohesion [Pa] 
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Greek letters 

  = coefficient of linear thermal expansion [1/C] 

formation  = coefficient of linear expansion for formation [1/C]  

cement  coefficient of linear expansion for cement [1/C]  

steel = coefficient of linear expansion for steel [1/C]  

d = change in diameter [m]  

L = Length Change [m]  

formationr = radial displacement of formation [m]  

cementr = radial displacement of cement [m] 

steelr = radial displacement of steel [m]  

iP = Change in internal pressure from initial to final condition [Pa] 

T = Change in temperature  [°C] 

geoT = Change in temperature in formation [C ]  

iT = Change in internal temperature from initial to final condition [°C] 

1T  Change in temperature in casing [C ]  

2T = Change in temperature in cement [C ]  

1T = Change in temperature at ra [°C] 

2T = Change in temperature at rb [°C] 

3T = Change in temperature at rc [°C] 

4T = Change in temperature at rd [°C] 

 =Strain []  



 
 
78 

 = angle of internal friction [radians] 

m= mud weight gradient [Pa/m] 

 =stress [Pa] 

c = Compressive strength [Pa] 

H = Hoop Stress [Pa]  

H,casing = Hoop stress in casing [Pa] 

,cementH = Hoop stress in cement [Pa]  

,H formation = Hoop stress in formation [Pa]  

r  Radial Stress [Pa]  

r,casing = Radial stress in casing [Pa]  

r,cement = Radial stress in cement [Pa]  

r formation = Radial stress in formation [Pa] 

,2m = mean normal stress [Pa] 

n = normal stress acting on the failure plane [Pa]  

n ’=effective normal stress acting on the failure plane [Pa] 

z = axial stress [Pa]  

1 = maximum principal stress [Pa]  

2 =  intermediate principal stress [Pa]  

3 = minimum principal stress [Pa]  

1 ' =  effective maximum principal stress confining stress [Pa]  
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2 ' = effective intermediate principal stress [Pa]  

3 ' =  effective minimum principal stress [Pa]  

 =shear stress [Pa]  

max = maximum allowable shear stress [Pa] 

oct = octahedral shear stress [Pa] 

 = Poisson’s ratio [] 

formation = Possions ratio of the formation []  

cement = Possions ratio of the cement []  

steel = Possions ratio of the steel []  
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Appendix A 

Visual Basic for Applications code 

Stresses 

Function hoop_stress(r, ra, rb, rc, rd, Pi, Pc1, Pc2, Pf)  

If ra <= r And r < rb Then 

    hoop_stress = (-1) * (((ra ^ 2 * Pi - rb ^ 2 * Pc1) / (rb ^ 2 - ra ^ 2)) + (((Pi - Pc1) * ra ^ 2 * rb ^ 2) / 

((rb ^ 2 - ra ^ 2) * r ^ 2))) 

ElseIf rb <= r And r <= rc Then 

    hoop_stress = (-1) * (((rb ^ 2 * Pc1 - rc ^ 2 * Pc2) / (rc ^ 2 - rb ^ 2)) + (((Pc1 - Pc2) * rb ^ 2 * rc ^ 

2) / ((rc ^ 2 - rb ^ 2) * r ^ 2))) 

ElseIf rc < r And r < rd Then 

    hoop_stress = (-1) * (((rc ^ 2 * Pc2 - rd ^ 2 * Pf) / (rd ^ 2 - rc ^ 2)) + (((Pc2 - Pf) * rc ^ 2 * rd ^ 2) / 

((rd ^ 2 - rc ^ 2) * r ^ 2))) 

End If 

End Function 

 

Function radial_stress(r, ra, rb, rc, rd, Pi, Pc1, Pc2, Pf) 

If ra <= r And r < rb Then 

    radial_stress = (-1) * (((ra ^ 2 * Pi - rb ^ 2 * Pc1) / (rb ^ 2 - ra ^ 2)) - (((Pi - Pc1) * ra ^ 2 * rb ^ 2) / 

((rb ^ 2 - ra ^ 2) * r ^ 2))) 

ElseIf rb <= r And r <= rc Then 

    radial_stress = (-1) * (((rb ^ 2 * Pc1 - rc ^ 2 * Pc2) / (rc ^ 2 - rb ^ 2)) - (((Pc1 - Pc2) * rb ^ 2 * rc ^ 

2) / ((rc ^ 2 - rb ^ 2) * r ^ 2))) 

ElseIf rc < r And r < rd Then 

    radial_stress = (-1) * (((rc ^ 2 * Pc2 - rd ^ 2 * Pf) / (rd ^ 2 - rc ^ 2)) - (((Pc2 - Pf) * rc ^ 2 * rd ^ 2) / 

((rd ^ 2 - rc ^ 2) * r ^ 2))) 

End If 



 
 

End Function 

Function axial_stress(vform, vcem, vsteel, sigmar, sigmah, r, ra, rb, rc, rd) 

If ra <= r And r < rb Then 

    axial_stress = (-1) * (vsteel * (sigmar + sigmah)) 

    ElseIf rb <= r And r <= rc Then 

    axial_stress = (-1) * (vcem * (sigmar + sigmah)) 

ElseIf rc < r And r < rd Then 

    axial_stress = (-1) * (vform * (sigmar + sigmah)) 

End If 

End Function 

 

Contact Pressures 

Function T1_steel(alpha_steel, deltaT1, v_steel) 

T1_steel = alpha_steel * deltaT1 * (v_steel + 1) 

End Function 

 

Function T2_steel(alpha_steel, deltaT2, v_steel) 

T2_steel = alpha_steel * deltaT2 * (v_steel + 1) 

End Function 

Function T1_form(alpha_form, deltaT1, v_form) 

T1_form = alpha_form * deltaT1 * (v_form + 1) 

End Function 

Function T2_form(alpha_form, deltaT2, v_form) 

T2_form = alpha_form * deltaT2 * (v_form + 1) 



 
 

End Function 

Function T1_cem(alpha_cem, deltaT1, v_cem) 

T1_cem = alpha_cem * deltaT1 * (v_cem + 1) 

End Function 

Function T2_cem(alpha_cem, deltaT2, v_cem) 

T2_cem = alpha_cem * deltaT2 * (v_cem + 1) 

End Function 

Function A_cem(v_cem, rb, rc) 

A_cem = (v_cem ^ 2 - 1) * (((rb ^ 2) / (rb ^ 2 - rc ^ 2)) + ((rc ^ 2) / (rb ^ 2 - rc ^ 2))) 

End Function 

Function A_steel(v_steel, ra, rb) 

A_steel = (v_steel ^ 2 - 1) * (((ra ^ 2) / (ra ^ 2 - rb ^ 2)) + ((rb ^ 2) / (ra ^ 2 - rb ^ 2))) 

End Function 

 

Function A_form(v_form, rc, rd) 

A_form = (v_form ^ 2 - 1) * (((rc ^ 2) / (rc ^ 2 - rd ^ 2)) + ((rd ^ 2) / (rc ^ 2 - rd ^ 2))) 

End Function 

Function B_1(Pi, ra, rb, v_steel, E_steel) 

B_1 = ((2 * Pi * ra ^ 2 * rb * (v_steel ^ 2 - 1)) / (E_steel * (ra ^ 2 - rb ^ 2))) 

End Function 

Function B_2(Pf, rc, rd, v_form, E_form) 

B_2 = (2 * Pf * rc * rd ^ 2 * (v_form ^ 2 - 1)) / (E_form * (rc ^ 2 - rd ^ 2)) 

End Function 

 



 
 

Function PC_1(rb, rc, T1_steel, T1_cem, T2_cem, T2_steel, T2_form, v_steel, v_cem, v_form, B_1, 

B_2, A_steel, A_cem, A_form, E_steel, E_cem, E_form) 

PC_1 = (rb * T1_steel - rb * T1_cem + B_1 - ((2 * rb * rc ^ 2 * (v_cem ^ 2 - 1) * (rc * T2_cem - rc * 

T2_form + B_2)) / (E_cem * (rb ^ 2 - rc ^ 2) * (((rc * (v_cem + v_cem ^ 2 - A_cem)) / (E_cem)) - ((rc 

* (v_form + v_form ^ 2 + A_form)) / (E_form)))))) / ((((rb * (v_steel + v_steel ^ 2 - A_steel)) / 

(E_steel)) - ((rb * (v_cem + v_cem ^ 2 + A_cem)) / (E_cem))) * (((4 * rb ^ 3 * rc ^ 3 * (v_cem ^ 2 - 1) 

^ 2) / (E_cem ^ 2 * (rb ^ 2 - rc ^ 2) ^ 2 * (((rb * (v_steel + v_steel ^ 2 - A_steel)) / (E_steel)) - ((rb * 

(v_cem + v_cem ^ 2 + A_cem)) / (E_cem))) * (((rc * (v_cem + v_cem ^ 2 - A_cem)) / (E_cem)) - ((rc 

* (v_form + v_form ^ 2 + A_form)) / (E_form)))) - 1))) 

End Function 

Function PC_2(rb, rc, v_steel, v_cem, v_form, A_steel, A_cem, A_form, E_steel, E_cem, E_form, 

T1_steel, T1_cem, T2_cem, T2_form, B_1, B_2) 

PC_2 = (rc * T2_cem - rc * T2_form + B_2 - ((2 * rb ^ 2 * rc * (v_cem ^ 2 - 1) * (rb * T1_steel - rb * 

T1_cem + B_1)) / (E_cem * (rb ^ 2 - rc ^ 2) * (((rb * (v_steel + v_steel ^ 2 - A_steel)) / (E_steel)) - 

((rb * (v_cem + v_cem ^ 2 + A_cem)) / (E_cem)))))) / ((((rc * (v_cem + v_cem ^ 2 - A_cem)) / 

(E_cem)) - ((rc * (v_form + v_form ^ 2 + A_form)) / (E_form))) * (((4 * rb ^ 3 * rc ^ 3 * (v_cem ^ 2 - 

1) ^ 2) / (E_cem ^ 2 * (rb ^ 2 - rc ^ 2) ^ 2 * (((rb * (v_steel + v_steel ^ 2 - A_steel)) / (E_steel)) - ((rb * 

(v_cem + v_cem ^ 2 + A_cem)) / (E_cem))) * (((rc * (v_cem + v_cem ^ 2 - A_cem)) / (E_cem)) - ((rc 

* (v_form + v_form ^ 2 + A_form)) / (E_form)))) - 1))) 

End Function 

 

Failure 

Function UCS(Ecem) 

UCS = 0.0354 * (Ecem * 10 ^ (-9)) ^ 2 + 3.1509 * (Ecem * 10 ^ (-9)) + 4.0642 

End Function 

Function T0(UCS) 

T0 = UCS * 10 ^ 6 / 10 

End Function 

Function c(UCS, angle) 



 
 

c = (UCS * (1 - Sin(angle))) / (2 * Cos(angle)) 

End Function 

Function t_allowance(c, angle, sigmam) 

t_allowance = c * Cos(angle) + Sin(angle) * sigmam 

End Function 

Function sigmam(sigma1, sigma3) 

sigmam = (sigma1 + sigma3) / (2) 

End Function 

Function t_max(sigma1, sigma2, sigma3) 

t_max = (1 / 3) * ((sigma1 - sigma3) ^ 2 + (sigma2 - sigma3) ^ 2 + (sigma1 - sigma2) ^ 2) ^ (0.5) 

End Function 

  



 
 

Appendix B 

Pore Pressure Plot   

 

 

Appendix Figure 1: Pore pressure plot used in model and ILS 
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Appendix C 

Definition of Basic Mechanics 

If a bar is subjected to a direct force that causes a uniform tension or compression of the bar 

over the cross sectional area, the bar is subjected to a uniform direct or normal stress. Eq. 

(C.1) shows how stress is defined (Hearn, 1997).  

   

 ( )
Force F

stress
Area A

     (C.1) 

Where, 

2

Force [N]

= Area [m ]

F

A


  

When the bar is subjected to stress, a length change will occur. The length change l , divided 

by the original length L, gives the strain as defined in Eq. (C.2). 

 ( )
L

Strain
L


    (C.2) 

Where, 

Length Change [m]

= Original Length [m]

L

L

 
  

The relationship between the stress and the strain can be shown in a tensile test curve. A 

tensile test is carried out to compare the strength of different materials. A typical tensile test 

curve is shown in Appendix Figure 2. The curve consists of mainly two parts; an elastic part 

and a plastic region. In the elastic region, the deformation of the bar is reversible, meaning 

that it returns to its original shape when the pressure is released. In this region the stress is 

proportional to the strain with E, Young’s modulus, as the proportional constant. In this 

region Hook’s law apply (Hearn, 1997). This is shown in Eq. (C.3) 

 E    (C.3) 

Where, 



 
 

stress [Pa]

Young's modulus [Pa]

Strain []

E











  

 

Appendix Figure 2: Tensile test curve (Hearn, 1997) 

In the plastic region the strain occurring from the exerted stress is not recoverable and the bar 

experiences a permanent deformation. The capacity of a material to allow for the plastic 

deformation is the measure of the materials ductility (Hearn, 1997). 

When applying the defined terms in two-dimensions, Hook’s law is useful for modeling the 

stresses and strains in a bar. However, it is useful to introduce the term, Poisson’s ration. 

Poisson’s ratio is defined in Eq. (C.4) 

 
Latitudal strain /

Poissons ratio ( )=
Longitudial strain /

d d

L L







   (C.4) 

=poissons ratio []

change in diameter [m]

original diameter [m]

d

d



 



   

 

By using Hook’s law the strains in the different directions can be expressed as shown in 

Appendix Table 1. 



 
 

Appendix Table 1: Strain in different directions by use of Hook’s law 

Strain in x direction resulting from: 
x

E


 

Strain in y direction resulting from  

y

E


 

 

Strain in x direction resulting from 
y

E


  

Strain in y direction resulting from  
x

E


  

 

Using the strains from Appendix Table 1, two-directional strain can be obtained 

 
1

( )
yx

x x y
E E E


           (C.5) 
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( )
y x

y y x
E E E

 
           (C.6) 

By including three dimensions and strain due to temperature change Eq. (C.5) and (C.6) 

becomes Eq. (C.7)-Eq.(C.9). 
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x x y zT T
E E E E

 
                      (C.7) 
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E E E E

  
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E E E E
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Where,    

coefficient of linear thermal expansion

change in temperatureT

 

 
  

  



 
 

Appendix D  

Development of Lamé’s Theory 

This sections purpose is to describe the development of Lamé’s equation for thick-walled 

cylinders. This information is mainly collected from Hearn (1997), due to the good 

description of the theory. 

Considering a cylinder with stresses acting on an element with length L and radius r, as shown 

in Appendix Figure 3 and Appendix Figure 4. The radial equilibrium of the element can be 

expressed as Eq. (D.1) 

 
( )( ) 1 1 2 1 sin

2
r r r H

d
d r dr d rd dr


     

 
           

    (D.1) 

For small angles Eq.(D.2) is applicable 

 sin
2 2

radians
 
   (D.2) 

By neglecting second-order small quantities, a simplification of Eq. (D.1) can be developed 

by using the assumption as shown in Eq. (D.2). This is shown in Eq.(D.3) 

 

( d ) 2
2

Simplifying, by neglecting second order small quanitity

d

Reconstructing

r r r r r H

r r r r r H

r r H

r
H r

d
r d r dr d d rd dr

r d r dr d r dr

d r dr dr

d
r

dr


        

      

  


 

           

         

    

 

  (D.3) 

Assuming constant axial strain L  and axial stress L  at points remote from the ends 

 
 

1
( ) constantL L r H

E
        

  (D.4) 

 constant 2A(say)r H      (D.5) 



 
 

Substituting in Eq.(D.5) for H  in Eq.(D.3), Eq. (D.6) can be developed 

 2 r
r r

d
A r

dr


      (D.6) 

Multiplying through by r, and rearranging 

 

2

2 2

2 2 0

( ) 0

Therefore, integrating

r
r

r

d
r r Ar

dr

d
r Ar

dr






  

    

 
2 2 constant = -B(say)rr Ar     (D.7) 

From Eq.(D.7) and (D.6) Eq. (D.8) can be developed  

 
2

2

r

H

B
A

r

B
A

r





 
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  (D.8) 

Where, 

Radial Stress [Pa]

Hoop Stress [Pa]

Lamé constan A

Lamé constan B

radius [m]

r

H

A

B

r















 

Eq. (D.8) can be used for different r, to determine hoop and radial stresses in a thick-walled 

cylinder. The constants A and B are determined for different boundary conditions. This 

Equation is referred to as Eq. (2.3) in the theory. 



 
 

 

Appendix Figure 3: Stresses acting on a cylinder (Hearn, 1997) 

 

Appendix Figure 4: Stresses acting on an element of the cylinder wall (Hearn, 1997) 

  



 
 

Appendix E 

Derivation of Contact Pressures 

 

Appendix Figure 5: Casing-cement-formation system with respective radii, free from De 

Andrade (2015)  

 

This derivation is developed through conversation with Jesus De Andrade.  

In order derive the contact pressures, Lamé’s equation has to be used. This is done by 

assuming that the radial displacement is equal for the cement ( cem ) and the casing (

casing ) and that there is no axial movement. This is shown through Appendix Figure 6 and 

(E.1)  

 

Appendix Figure 6: Thermal expansion of a compound cylinder with the final position of the 

casing-cement interface, free from De Andrade (2015) 

 



 
 

   

 sin 0cement ca gr r     (E.1) 

To be able to derive the contact pressure from Eq. (E.1) it is necessary to develop an 

expression for the strain in the cement, casing and formation and implement it into the casing, 

formation and cement system.  

Developing an expression for the strain in the cement, casing and formation 

First, writing Hook’s law for axial and hoop strain 

 
 

1
H H L r T

E
              (E.2) 

  
1

L L H r T
E

              (E.3) 

With the assumption that strain in axial direction is negligible.  

  

 0L    (E.4) 

From Eq.(E.4), Eq.(E.5) can be developed assuming Hook’s law 

  L r H E T          (E.5) 

Substituting Eq.(E.5) in Eq.(E.2) 
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Finding contact pressures 

Following, a derivation of the contact pressures is shown. These are used in Eq. (2.10)-

Eq.(2.12). 

Expressing Eq. (E.6) in terms of strain in casing and in cement as shown in Eq.(E.7) and 

Eq.(E.8) respectively 
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Expressing Eq.(E.6) in terms if radial dispalcement r   

 
2 2(1 ) ( ) (1 )H r

r
r E T

E
                     (E.9) 

And in terms of casing (Eq.(E.10)), cement(in contact with casing) (Eq.(E.11)), cement (in 

contact with formation) (Eq. (E.12)) and formation Eq. ((E.13)) using the terms presented in 

Appendix Figure 5 
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Where, 
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By assuming that the radial displacement of the casing ( Eq.(E.10)) is equal to the radial   

cement (Eq. (E.11)). And by inserting Eq. (2.6) in (terms of radius mentioned in Appendix 

Figure 5) for the hoop and radial stresses, one can be able to obtain the contact pressures 

which are used to obtain the radial and hoop stresses for all r through the casing, cement and 

formation.  

  



 
 

First considering the casing and the cement (Pc1) 

Eq. (2.6) will then be converted to:  
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 Here, the radial and hoop stresses in the casing is expressed with regards to ra, rb, Pi and 

Pc1 (contact pressure). These equations represent the radial and hoop stresses at the contact 

between the casing and cement.  

Second, considering the cement and the formation (Pc2) 

Eq. (2.6): will them be converted to  
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  (E.15) 

Now, inserting Eq. (E.14) into (E.10)  
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and Eq.(E.15) into(E.11)  
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Assuming that the radial expansion of the cement is equal the radial compaction of the casing, 

 singcement car r    (E.18) 

 Eq. (E.16)and Eq. (E.17) can be used to obtain Pc1.  

However, Pc2 is also necessary to obtain.  

Third, considering the cement and rock interface (contact pressure 2) 

By using the radial and hoop stresses in the cement from Eq. (E.15) and the radial expansion 

of the cement connected to the formation (Eq. (E.12)), an equation for the radial expansion of 

the cement (in contact with the formation) can be obtained.  
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Fourth, considering the rock interface (Pf) 

 

 Eq. (2.6) will them be converted to  
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Where Pf is formation pressure. 

Inserting (E.20) into Eq.(E.13) 
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Assuming that the radial displacement of respectively the cement and the formation is equal 

 
cement formation

r r    (E.22) 

 Eq. (E.19)an Eq. (E.21)can be used to obtain Pc2. 

Two equations ((E.22) and (E.18)) containing two unknowns (Pc1 and Pc2) are possible to 

solve. Appendix A shows the symbolic equation, and the calculation method.  
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Appendix F  

Industry Leading Software (ILS) Cement Considerations 

The ILS software considered in this thesis is only considering the cement in terms of external 

pressure profiles. For production loads, several external pressure profiles can be selected, and 

several options are available for each profile. The different external pressure profiles are 

‘Fluid gradient (w/pore pressure)’, ‘Mud and Cement mix-water’, ‘Minimum formation pore 

pressure’, ‘Permeable zones’, ‘Mud and cement slurry’, ‘Pore pressure with seawater 

gradient’ and ‘Minimum formation pore pressure with backup option’. Appendix Table 2 

shows the different external profiles and the different options available. The external pressure 

profile ‘Permeable zones’ enable choosing “Poor cement” as an option. The ILS assumes that 

no zonal isolation has been achieved for any permeable zones if “poor cement” is enabled. 

Pressure communication occurs anywhere along the casing string cement column. Cement 

mix-water density is used above and below the permeable zones allowing for linear pressure 

profile from the permeable zone (Landmark, 2001). 

The different options for each external profile are shown in Appendix Table 2. 

  



 
 

Appendix Table 2: External pressure profile options in ILS 

EXTERNAL PRESSURE 

PROFILES 

OPTIONS AVAILABLE FOR THE 

PRESSURE PROFILE 

FLUID GRADIENT (W/PORE 

PRESSURE)  

 

- Mud weight above TOC 

- Fluid gradient below TOC 

- WH pressure 

*Pore pressure in open hole 

*Deteriorated mud 

MUD AND CEMENT MIX-WATER 

 

- Wellhead pressure 

*Deteriorated mud 

MINIMUM FORMATION PORE 

PRESSURE 

*Allow mud drop 

*Deteriorated mud 

- Wellhead pressure 

 

PERMEABLE ZONES *Poor cement 

*Deteriorated mud 

- Wellhead pressure 

 

MUD AND CEMENT SLURRY No options 

PORE PRESSURE WITH 

SEAWATER GRADIENT 

- Sea water gradient 

MINIMUM FORMATION PORE 

PRESSURE WITH BACKUP 

OPTION 

- Cement backup in cased hole 

- Cement back up in open hole 

*= enable or not enable 

- =choose value or other options  



 
 

Appendix G 

Failure Criteria 

Tresca Criterion (maximum shear stress) 

The Tresca failure criterion is the simplest shear failure criterion based on Mohr’s circle of 

stress. It is assumed that failure will occur when a critical value, the cohesion, is surpassed by 

the maximum shear failure inside any plane of the rock. Hence, the Tresca criterion is also 

referred to as the maximum shear stress theory (Hearn, 1997). By taking sign and the 

possibility that one of the stresses may be zero, the maximum shear stress can be found 

through the following equation: 

 1 3
max

2
c

 



    (G.1) 

Where, 
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2
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The Tresca failure envelope takes the form of a regular hexagon in the three dimensional 

principal stress space. When the internal angle of friction is zero, the Tresca failure criterion is 

considered a special case of the Mohr-Coulomb criterion (Rahimi, 2014 p. 7). Hence, the 

Tresca criterion can be expressed as: 
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The Tresca criterion is mostly applicable for very ductile materials, and not so much for 

brittle materials. The Von Mises criterion is often preferred over the Tresca criterion. Hence, 

the Tresca criterion is mostly used as a historical reference. 



 
 

Mohr-Coulomb Criterion 

In the Mohr-Coulomb criterion the materials cohesion and a factor corresponding to the 

coefficient of friction multiplied with the effective normal stress to the failure plane, are 

working against the shear stress for compressive failure (Nelson and Guillot, 2006p. 277). 

According to this criterion, rock failure will occur when: 

 tan 'co nY       (G.3) 

Where, 

coY = Cohesion [Pa] 

n ’=effective normal stress acting on the failure plane [Pa] 

 = angle of internal friction [radians] 

The shear stress, , is written in terms of an absolute value, because the sign of   only affects 

the sliding direction. In terms of principal effective stresses, the Mohr-Coulomb failure 

criterion is expressed by (Nelson and Guillot, 2006 p. 277): 
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From Eq.(G.4) it can be seen that the compressive strength of the material will increase 

linearly with increasing confining pressure. 

In terms of maximum, 1 , and minimum, 3 , principal stresses, the Mohr-Coulomb criterion 

can be expressed as (Rahimi, 2014 p.5): 

 1 0 3C q      (G.5) 

Where, 
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Mogi-Coulomb Criterion 

The Mogi-Coulomb criterion is not described with one specific function, but is assumed to be 

obtained experimentally (Al-Ajmi, 2006). Al-Ajmi and Zimmerman (2005) presents a linear 

relationship between the octahedral shear stress ( oct ) and the mean stress ( ,2m ) through 

the following equations: 

 
,2oct mA B      (G.6) 

Where, 

A =intersection of the line on the oct  axis 

B = inclination of the line  

This relationship corresponds well to the polyaxial test data. The parameters A and B  of the 

Mogi-Coulomb failure criterion are based on parameters from the Mohr-Coulomb criterion. 

The relationship between the Mohr-Coulomb parameters, 0C  and q , and the Mogi-Coulomb 

parameters, A  and B , is seen in the equations below: 

 
 

02 2

3 1

C
A

q
 


  (G.7) 

 
 

 

12 2

3 1

q
B

q


 


  (G.8) 

The linear Mogi-Coulomb criterion and the Mohr-Coulomb criterion of failure in the 

conventional triaxial state of stress are equal. Hence, the Mogi-Coulomb criterion can be 



 
 

perceived as an extension of the Mohr-Coulomb criterion in the true triaxial space (Rahimi, 

2014 p. 7). 



 
 

Appendix H 

Plots for the Sensitivity analyses 

For all plots where the legends are not described extensively: the first number represents the 

value for the cement, the second number is the value for the formation, while the last number 

is the temperature change.  
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H.1.2 Radial Crack 

At rb 
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H.1.3 Shear Failure 

At rb 
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H.2 Poisson’s Ratio 

H.2.1 Debonding 

At rb 

 

 

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

-3,00E+07 -2,80E+07 -2,60E+07 -2,40E+07 -2,20E+07 -2,00E+07 -1,80E+07 -1,60E+07

SF

Delta P [Pa]

SF debonding, vcem and vform, no temperature change

basecase 0

Vcem= 0.3, Vform
= 0.3, T= 0
Vcem=0.3,
Vform= 0.4 T =0
Vcem = 0.2,
Vcem=0.18, T=0
Vcem=0.2, Vform
=0.3 T =0
Vcem = 0.2,
Vform = 0.4 T =0
Vcem = 0.3,
Vform = 0.18 T =0
Vcem = 0.1 Vfrom
= 0.4 T =0

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

-3,00E+07 -2,80E+07 -2,60E+07 -2,40E+07 -2,20E+07 -2,00E+07 -1,80E+07 -1,60E+07

SF

Delta P [Pa]

SF debonding, vcem and vform, positive temperature change
base case 100

Vcem=0.3,
Vform= 0.3 T
=100
Vcem= 0.3,
Vform= 0.4 T
=100
Vcem = 0.2, V
form =0.18 T =100

Vcem= 0.2,
Vform=0.3, T
=100
V cem = 0.2,
Vform = 0.4 T =
100
Vcem = 0.3 V
form = 0.18 T
=100
Vcem= 0.1, V
form = 0.4 T =100



 
 

 

At rc 

 

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

-3,00E+07 -2,80E+07 -2,60E+07 -2,40E+07 -2,20E+07 -2,00E+07 -1,80E+07 -1,60E+07

SF

Delta P [Pa]

SF debonding, vcem and vform, negative temperature change

base case - 100

vcem= 0.3, v
form =0.3 T =-
100
Vform = 0.3,
Vcem= 0.4, T =-
100
Vcem=0.2,
Vform = 0.18
T=-100
Vcem = 0.2, V
form= 0.3 T =-
100
Vcem=0.2,
Vform=0.4 T =-
100
Vcem= 0.3,
Vform = 0.18 T
=-100
Vcem = 0.1,
Vform = 0.4 T
=-100

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

-4,00E+07 -3,50E+07 -3,00E+07 -2,50E+07 -2,00E+07

SF

Delta P [Pa]

SF debonding, vcem and vform, no temperature change
basecase 0

Vcem= 0.3,
Vform = 0.3,
T= 0
Vcem=0.3,
Vform= 0.4 T
=0
Vcem = 0.2,
Vcem=0.18,
T=0
Vcem=0.2,
Vform =0.3 T
=0
Vcem = 0.2,
Vform = 0.4 T
=0
Vcem = 0.3,
Vform = 0.18 T
=0
Vcem = 0.1
Vfrom = 0.4 T
=0



 
 

 

 

H.2.2 Radial Crack 

At rb 

 

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

-8,00E+07 -6,00E+07 -4,00E+07 -2,00E+07 0,00E+00 2,00E+07

SF

Delta P [Pa]

SF debonding, vcem and vform, negative temperature change
base case - 100

vcem= 0.3, v form
=0.3 T =-100

Vform = 0.3,
Vcem= 0.4, T =-
100
Vcem=0.2, Vform
= 0.18 T=-100

Vcem = 0.2, V
form= 0.3 T =-100

Vcem=0.2,
Vform=0.4 T =-
100
Vcem= 0.3, Vform
= 0.18 T =-100

Vcem = 0.1,
Vform = 0.4 T =-
100

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

0,00E+00 2,00E+07 4,00E+07 6,00E+07 8,00E+07

SF

Delta P [Pa]

SF radial crack, vcem and vform, no temperature change
base case 0

vcem=0.3 Vform
= 0.3, T =0

Vcem = 0.3,
Vfrom = 0.4, T
=0
Vcem=0.2,
Vform=0.18 T =0

Vcem= 0.2,
Vform = 0.3, T=0

Vcem = 0.2,
Vfrom =0.4 T =0

Vcem = 0.3,
Vform = 0.18 T
=0
Vcem = 0.1,
Vfrom = 0.4, T
=0



 
 

 

 

At rc 

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

-4,00E+07 -2,00E+07 0,00E+00 2,00E+07 4,00E+07 6,00E+07 8,00E+07

SF

Delta P [Pa]

SF radial crack, vcem and vform, negative temperature change
base case -100

vcem= 0.3, Vform =
0.3, T=-100

Vcem= 0.3, V form
= 0.4  =-100

Vcem=0.2,
Vform=0.18 T =-
100
Vcem=0.2, Vform =
0.3, T =-100

Vcem = 0.2 Vfrom
=0.4, T =-100

Vcem= 0.3, Vform
= 0.18, T =-100

V cem = 0.1, Vform
= 0.4, T =-100

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

0,00E+00 2,00E+07 4,00E+07 6,00E+07 8,00E+07

SF

Delta P [Pa]

SF radial crack, vcem and vform, positive temperature change
base case 100

vcem=0.3, Vform
= 0.3 T =100

V cem = 0.3,
Vform= 0.4, T
=100
Vcem = 0.2,
Vform =0.18, T
=100
Vcem = 0.2,
Vform =0.3, T
=100
Vcem=0.2, Vfrom
= 0.4, T=100

Vcem = 0.3,
Vform = 0.19 T
=100
Vcem = 0.1, V
form =0.4, T =100



 
 

 

 

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

0,00E+00 2,00E+07 4,00E+07 6,00E+07 8,00E+07

SF

Delta P [Pa]

SF radial crack, vcem and vform, no temperature change
base case 0

vcem=0.3 Vform
= 0.3, T =0

Vcem = 0.3,
Vfrom = 0.4, T =0

Vcem=0.2,
Vform=0.18 T =0

Vcem= 0.2,
Vform = 0.3, T=0

Vcem = 0.2,
Vfrom =0.4 T =0

Vcem = 0.3,
Vform = 0.18 T
=0
Vcem = 0.1,
Vfrom = 0.4, T =0

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

-2,00E+07 0,00E+00 2,00E+07 4,00E+07 6,00E+07 8,00E+07

SF

Delta P [Pa]

SF radial crack, vcem and vform, negative temperature change
base case -100

vcem= 0.3, Vform
= 0.3, T=-100

Vcem= 0.3, V form
= 0.4  =-100

Vcem=0.2,
Vform=0.18 T =-
100
Vcem=0.2, Vform
= 0.3, T =-100

Vcem = 0.2 Vfrom
=0.4, T =-100

Vcem= 0.3, Vform
= 0.18, T =-100

V cem = 0.1,
Vform = 0.4, T =-
100



 
 

 

H.2.3 Shear Failure 

At rb 

 

-2

-1,5

-1

-0,5

0

0,5

1

1,5

2

0,00E+00 2,00E+07 4,00E+07 6,00E+07 8,00E+07

SF

Delta P [Pa]

SF radial crack, vcem and vform, positive temperature change
base case 100

vcem=0.3, Vform
= 0.3 T =100

V cem = 0.3,
Vform= 0.4, T
=100
Vcem = 0.2,
Vform =0.18, T
=100
Vcem = 0.2,
Vform =0.3, T
=100
Vcem=0.2, Vfrom
= 0.4, T=100

Vcem = 0.3,
Vform = 0.19 T
=100
Vcem = 0.1, V
form =0.4, T =100

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

-8,00E+07 -3,00E+07 2,00E+07 7,00E+07

SF

delta P [Pa]

SF Shear, vcem and vform, no temperature change

base case 0

Vcem=0.3, Vform=0.3 T =0

Vcem=0.3, Vform=0.4 T =0

Vcem =0.2, Vform =0.18 T =0

Vcem=0.2, Vform =0.3 T 0

Vcem=0.2, Vform =0.4 T =0

Vcem =0.3, Vform = 0.18 T =0

Vcem =0.1, Vform =0.4 T =0



 
 

 

 

  

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

-8,00E+07 -3,00E+07 2,00E+07 7,00E+07

SF

delta P [Pa]

SF Shear, vcem and vform, negative temperature change

base case -100

vcem=0.3, vform=0.3 T =-100

Vcem=0.3, Vform=0.4 T=-100

Vcem=0.2, Vform =0.18, T =-100

Vcem=0.2, Vform =0.3 T =-100

Vcem =0.2, Vform =0.4 T =-100

Vcem=0.3, V form = 0.18 T =-100

Vcem =0.1, Vform =0.4 T =-100

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

-8,00E+07 -3,00E+07 2,00E+07 7,00E+07

SF

delta P [Pa]

SF Shear, vcem and vform, positive temperature change

base case 100

Vcem =0.3, Vform =0.3 T =100

Vcem=0.3, Vform =0.4 T= 100

Vcem =0.2, V form =0.18 T =100

Vcem =0.2, Vform =0.3 T =100

Vcem=0.2, Vform =0.4 T =100

Vcem =0.3, Vform =0.18 T =100

Vcem=0.1 V form =0.4, T =100



 
 

At rc 

 

 

1

1,1

1,2

1,3

1,4

1,5

1,6

1,7

1,8

1,9

2

-1,00E+08 -5,00E+07 0,00E+00 5,00E+07 1,00E+08

SF

delta P [Pa]

SF Shear, vcem and vform, no temperature change

base case 0

Vcem=0.3, Vform=0.3 T =0

Vcem=0.3, Vform=0.4 T =0

Vcem =0.2, Vform =0.18 T =0

Vcem=0.2, Vform =0.3 T 0

Vcem=0.2, Vform =0.4 T =0

Vcem =0.3, Vform = 0.18 T =0

Vcem =0.1, Vform =0.4 T =0

1

1,1

1,2

1,3

1,4

1,5

1,6

1,7

1,8

1,9

2

-8,00E+07 -3,00E+07 2,00E+07 7,00E+07

SF

delta P [Pa]

SF Shear, vcem and vform, negative temperature change

base case -100

vcem=0.3, vform=0.3 T =-100

Vcem=0.3, Vform=0.4 T=-100

Vcem=0.2, Vform =0.18, T =-100

Vcem=0.2, Vform =0.3 T =-100

Vcem =0.2, Vform =0.4 T =-100

Vcem=0.3, V form = 0.18 T =-100

Vcem =0.1, Vform =0.4 T =-100



 
 

 

H.3 Coefficient of Linear Thermal Expansion 

H.3.1 Debonding 
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H.3.2 Radial Crack 
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Appendix I 

Model Features and Uncertainties 

I.1 Initial Condition, remaining plots 

Hoop stresses in compression when including initial condition  
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Cement Thickness 
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At rb 

 

 

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

-5,00E+07 -4,00E+07 -3,00E+07 -2,00E+07 -1,00E+07 0,00E+00

SF
 [

]

Pressure [Pa]

SF debonding, temp =-60 C, varying rc @rb

rc=0.2

rc=0.18

rc=0.16

rc=0.1555

rc=0.15

rc=0.14

rc=0.135

rc=0.13

SF

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

-5,00E+07 -4,00E+07 -3,00E+07 -2,00E+07 -1,00E+07 0,00E+00

SF
 [

]

Pressure [Pa]

SF debonding, temp =0 C, varying rc @rb

rc=0.2

rc=0.18

rc=0.16

rc=0.1555

rc=0.15

rc=0.14

rc=0.135

rc=0.13

SF



 
 

At rc 

 

 

  

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

-5,00E+07 -4,00E+07 -3,00E+07 -2,00E+07 -1,00E+07 0,00E+00

SF
[]

Pressure [Pa]

SF debonding T=-60, @rc

rc=0.2

rc=0.13

rc=0.135

rc=0.14

rc=0.15

rc=0.1555

rc=0.16

rc=0.18

SF

0

1

2

3

4

5

6

7

8

9

10

-6,00E+07 -5,00E+07 -4,00E+07 -3,00E+07 -2,00E+07 -1,00E+07 0,00E+00

SF
[]

Pressure [Pa]

SF debonding T=0, @rc

rc=0.2

rc=0.13

rc=0.135

rc=0.14

rc=0.15

rc=0.1555

rc=0.16

rc=0.18

SF



 
 

Radial crack 

At rb 

 

 

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

0,00E+00 1,00E+07 2,00E+07 3,00E+07 4,00E+07 5,00E+07 6,00E+07

SF
 [

]

Pressure [C]

SF Radial Crack, varying Cement Thickness ΔT=0 
°C, at rb

rc= 0.2

rc=0.18

rc=0.16

rc=0.1555

rc=0.15

rc= 0.14

rc=0.135

rc=0.13

DF

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

0,00E+00 1,00E+07 2,00E+07 3,00E+07 4,00E+07 5,00E+07 6,00E+07

SF
 [

]

Pressure[C]

radial crack SF, T=-60 @ rb

rc= 0.2

rc=0.18

rc=0.16

rc=0.1555

rc=0.15

rc= 0.14

rc=0.135

rc=0.13

SF



 
 

 

At rc 

 

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

0,00E+00 1,00E+07 2,00E+07 3,00E+07 4,00E+07 5,00E+07 6,00E+07

SF
 [

]

Pressure [C]

radial crack SF, T=20@ rb

rc= 0.2

rc=0.18

rc=0.16

rc=0.1555

rc=0.15

rc= 0.14

rc=0.135

rc=0.13

SF

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

5,00

0,00E+00 1,00E+07 2,00E+07 3,00E+07 4,00E+07 5,00E+07 6,00E+07

SF
[]

Pressure [Pa]

SF radial crack T=-60, @rc

rc=0.2

rc=0.13

rc=0.135

rc=0.14

rc=0.15

rc=0.1555

rc=0.16

rc=0.18

SF



 
 

 

 

  

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1,60

1,80

2,00

0,00E+00 1,00E+07 2,00E+07 3,00E+07 4,00E+07 5,00E+07

SF
[]

Pressure [Pa]

SF radial crack T=0, @rc

rc=0.2

rc=0.13

rc=0.135

rc=0.14

rc=0.15

rc=0.1555

rc=0.16

rc=0.18

DF

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

5,00

0,00E+00 1,00E+07 2,00E+07 3,00E+07 4,00E+07 5,00E+07 6,00E+07

SF
[]

Pressure [Pa]

SF radial crack T=20, @rc

rc=0.2

rc=0.13

rc=0.135

rc=0.14

rc=0.15

rc=0.1555

rc=0.16

rc=0.18

SF



 
 

Shear 

At rb 

 

 

0

1

2

3

4

5

6

7

8

-6,00E+07 -4,00E+07 -2,00E+07 0,00E+00 2,00E+07 4,00E+07 6,00E+07

SF
 [

]

Pressure [Pa]

SF Shear Failure, T =0 C, varying rc @rb

rc=0.2

rc=0.18

rc=0.16

rc=0.1555

rc=0.15

rc=0.14

rc=0.135

rc=0.13

SF

0

1

2

3

4

5

6

7

-6,00E+07 -4,00E+07 -2,00E+07 0,00E+00 2,00E+07 4,00E+07 6,00E+07

SF
 [

]

Pressure [Pa]

SF shear failure, temp =-60 C, varying rc @rb

rc=0.2

rc=0.18

rc=0.16

rc=0.1555

rc=0.15

rc=0.14

rc=0.135

rc=0.13

SF



 
 

 

At rc 

 

0

1

2

3

4

5

6

7

8

-6,00E+07 -4,00E+07 -2,00E+07 0,00E+00 2,00E+07 4,00E+07 6,00E+07

SF
 [

]

Pressure [Pa]

SF Shear failure, temp =60 C, varying rc @rb

rc=0.2

rc=0.18

rc=0.16

rc=0.1555

rc=0.15

rc=0.14

rc=0.135

rc=0.13

SF

0

1

2

3

4

5

6

7

8

9

10

-6,00E+07 -4,00E+07 -2,00E+07 0,00E+00 2,00E+07 4,00E+07 6,00E+07

SF
[]

Pressure [Pa]

SF shear failure T=0, @rc

rc=0.2

rc=0.13

rc=0.135

rc=0.14

rc=0.15

rc=0.1555

rc=0.16

rc=0.18

SF



 
 

 

 

  

0

1

2

3

4

5

6

7

8

9

10

-6,00E+07 -4,00E+07 -2,00E+07 0,00E+00 2,00E+07 4,00E+07 6,00E+07

SF
[]

Pressure [Pa]

SF shear failure T=-60, @rc

rc=0.2

rc=0.13

rc=0.135

rc=0.14

rc=0.15

rc=0.1555

rc=0.16

rc=0.18

SF

0

1

2

3

4

5

6

7

8

9

10

-6,00E+07 -4,00E+07 -2,00E+07 0,00E+00 2,00E+07 4,00E+07 6,00E+07

SF
[]

Pressure [Pa]

SF shear failure T=60, @rc

rc=0.1555

rc=0.2

rc=0.13

rc=0.135

rc=0.14

rc=0.15

rc=0.16

rc=0.18

SF
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