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Background and objective

Statoil has been focusing on the design and development of gas bearing technology for more than
10 years. This type of bearing should allow for a simplification and CAPEX reduction of the
compression unit with respect to traditional oil lubricated or magnetic bearings.

Statoil has issued two related patents (US2011/0052375, US2012/0163742): the working
principle is the same, but one is related to a radial gas bearing type and the other to an axial type.
More specifically this technology consists of a tapered textured surface (fixed to the stator)
facing a cylindrical plain surface on the shaft, in other words a traditional textured surface seal
with convergent geometry. The textured surfaces can be envisioned to be the typical hole pattern
or honeycomb type as per traditional high pressure cylindrical seals. Part of the compressed
process fluid is convoyed through the resultant tapered annular channel and, thanks to the
dynamic effects generated, stiffness and damping capacities are created. The concept therefore
leverage on the axial pressure differential created across the convergent annulus to generate
lifting and damping capacities to the magnitude required to lift the rotor and keep it run in a
stable manner. Hence we speak about a combined gas bearing/seal technology.

Statoil has started investigating the capability and performances of the combined thrust
gas/bearing by performing CFD simulations. Those simulations provide an extensive
understanding about the phenomena occurring within the bearing, but they are quite costly and
time consuming, not suitable for feasibility studies or quick screening as typically requested at
the early design stage of a new project.

For this reason a program was started in cooperation with the Norwegian University of Science
and Technology (NTNU) with the goal of developing an analytical tool to predict the rotor
dynamic performances of a honeycomb/hole pattern convergent axial gas seal/bearing and to
validate them through CFD simulations.

At present time a semester project has been completed (“Estimation of honeycomb/hole pattern
thrust gas bearing using the bulk-flow theory” by David Rondon).
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The following tasks are to be considered:

The scope of the master thesis will be to further develop the analytical tool presented in the
above project to predict static and dynamic performances of the Statoil patented axial gas
seal/bearing, with the possibility to validate them versus CFDs results.

More specifically the master thesis shall investigate the following subjects:

1. Influence and sensitivity of different integration methods

2. Zero order equations sensitivity analysis vs main parameters (i.e. entrance and exit loss
coefficients, different friction factors definition, adiabatic vs isothermal flow, geometry,
pressure and pressure differentials, etc.)

Laminar vs turbulent model

4. 1st order equations and sensitivity to pre-swirl and other boundary conditions

(8]

Within 14 days of receiving the written text on the master thesis, the candidate shall submit a
research plan for his project to the department.

When the thesis is evaluated, emphasis is put on processing of the results, and that they are
presented in tabular and/or graphic form in a clear manner, and that they are analyzed carefully.

The thesis should be formulated as a research report with summary both in English and
Norwegian, conclusion, literature references, table of contents etc. During the preparation of the
text, the candidate should make an effort to produce a well-structured and easily readable report.
In order to ease the evaluation of the thesis, it is important that the cross-references are correct. In
the making of the report, strong emphasis should be placed on both a thorough discussion of the
results and an orderly presentation.

The candidate is requested to initiate and keep close contact with his/her academic supervisor(s)
throughout the working period. The candidate must follow the rules and regulations of NTNU as
well as passive directions given by the Department of Energy and Process Engineering.

Risk assessment of the candidate's work shall be carried out according to the department's
procedures. The risk assessment must be documented and included as part of the final report.
Events related to the candidate's work adversely affecting the health, safety or security, must be
documented and included as part of the final report. If the documentation on risk assessment
represents a large number of pages, the full version is to be submitted electronically to the
supervisor and an excerpt is included in the report.

Pursuant to “Regulations concerning the supplementary provisions to the technology study
program/Master of Science” at NTNU §20, the Department reserves the permission to utilize all
the results and data for teaching and research purposes as well as in future publications.

The final report is to be submitted digitally in DAIM. An executive summary of the thesis
including title, student’s name, supervisor's name, year, department name, and NTNU's logo and
name, shall be submitted to the department as a separate pdf file. Based on an agreement with the
supervisor, the final report and other material and documents may be given to the supervisor in
digital format.
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Abstract

Looking for a cheaper and low maintenance alternative to magnetic bearings, Statoil patented a new
design for thrust gas bearings with honeycomb/hole-patterned surface. Honeycomb/hole-pattern
surface on annular seals have been extensively studied, as a good seal it reduced leakage of systems
previously using labyrinth seals, there is low temperature increase and provides better rotordynamic
stability, qualities highly desirable for thrust bearings.

Statoil wants to develop an analytical tool to predict leakage, thrust force, damping and stiffness of
axial bearings. The results from the tool must be compared to the results from Computational Fluid
Dynamics (CFD) simulations before planning experiments and this tool must be reliable. A similar
tool ISOTSEAL) has been developed for annular seals by Texas A & M University in the United
States and its results were validated with some experiment. Using a similar approach as in
ISOTSEAL, the development of this analytical tool starts by using the “Bulk-Flow” theory to
simplify the system from three-dimensional to one-dimensional. Two set of equations considered,
the zeroth-order equations for steady-state solutions (leakage and thrust force) and the first-order
equations for dynamic solutions (stiffness and damping).

The values for leakage are within 10% deviation from the CFD simulations carried out. But the
thrust force results are not satisfactory. A sensitivity test was carried out and the results reflected
that the entrance loss coefficient and the friction model were the most sensitive parameters. Later,
calculations using different friction models were carried out, but there has been no much
improvement since data from previous works is limited. The results for damping and stiffness
showed considerable deviations from the CFD results, mainly due to the influence of the results
from the zeroth-order equations, as they are also influenced by the friction model. In conclusion the
analytical tool does not give reliable results; the model is highly dependent on the friction model and
the conditions at the entrance. Another important factor is the ratio of the area of holes and the area
of the surface and it affects directly the calculations for stiffness and damping.
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Chapter 1

Introduction

Rotating equipment needs axial and radial support to work efficiently. For radial support there is a
wide variety of radial bearings. For axial support there are devices called thrust bearings and they also
come in different configurations, such as ball bearings, roller bearings, fluid bearings and magnetic
bearings. In general a good bearing has low friction, thus low power losses. Each type of bearing has
its specification, for some applications rolling-element bearings are better for supporting the rotor.
Fluid film bearings generally have lower friction and longer lifespan than mechanical bearings and
require little or no maintenance. Another important feature of fluid bearings is that they add
damping to the system, attenuating the vibrations at certain frequencies. Using gas instead of oil can
enhance benefits of fluid films bearings. In fact, due to lower viscosity, friction is lower and there is
no need for lubricants, making them better suited for high-speed applications. Gas has substituted
liquids in industrial applications due to stability and environmental concerns especially for low load
and high speed applications.

Regarding seals, there are many types of seals in the industry; some of them are dry while other
requires a lubrication fluid. A good seal is considered to allow low temperature increase and low
leakage, one type of seals largely popular in the industry is the labyrinth seal, which fulfills those
requirements. Unfortunately there are other issues that must be taken into account, such as the
excessive destabilizing forces that under some circumstances these seals exert on the rotor due to
development of high cross coupled stiffness and low direct damping. Therefore honeycomb/hole-
patterned seals have been used for replacing labyrinth seals in some particular applications, especially
when subjected to high differential pressure. These types of seals consist in many small pockets of
the shape of honeycomb or simple holes uniformly distributed over a surface. Not only they reduce
the leakage from older type of seals and reportedly present less than 5% temperature increase or
decrease, but also reduce swirl (responsible for increasing cross-coupled stiffness) and increase direct
damping, attenuating the destabilizing effects. There are also setbacks for these types of seals; the
most noticeable are related to their high sensitivity of their dynamic coefficients versus the tapering
of their geometry.



Statoil has patented a thrust bearing that uses a honeycomb/hole-patterned surface. This new design
brings the positive aspects of honeycomb/hole-patterned seals into the axial beating configuration,
such as high static force, low leakage and positive damping. This type of bearing are significantly
cheaper than magnetic bearings in terms of cost and manufacturability. For that reason the company
wants to develop an analytical tool to predict the leakage, thrust force, damping and stiffness of axial
bearings. The results must be compared to Computational Fluid Dynamics (CFD) simulations before
planning experiments.

Several studies have been developed for annular seals, equations and friction models. A tool called
ISOTSEAL was developed by the Turbolab at the Texas A&M University in the United States and
its results were validated with some experiments. However for some pressure ratios higher than a
certain value the tool is not able to predict any result.

Developing a similar tool to ISOTSEAL is requested, meaning that the user must input the boundary
conditions such as pressure at the inlet and outlet, temperature and the gas properties. In return the
tool must deliver the leakage, thrust force and damping and stiffness for different axial frequencies of
the rotor.

To accomplish the task, this study worked using the “Bulk-Flow” theory developed by G.G. Hirs in
1973 for lubricant films but adapted to the use of gas. The Bulk-flow theory has not only being
applied on analyzing seals but it is used for analyzing the flow through shrouded impellers for liquid
and gas, and it has successfully predicted the leakage and rotordynamic coefficients for seals and
impellers. For those reasons there are other algorithms beyond ISOTSEAL that apply the Bulk-flow
theory. With some assumptions made on the governing equations, the problem was simplified in a
1D problem. Two sets of equations are considered from the model. One determines the leakage and
thrust force assuming steady and axisymmetric flow, while the other defines the stiffness and
damping. This study does not take into account the tilting of the rotor, therefore cross-coupled
stiffness and cross-coupled damping were not considered.

The results were compared to the ones from CFD simulations ordered to another company. The
criterion for comparison is that leakage, thrust force, damping and stiffness from the algorithm must
be a reasonable error relative to the CFD simulations (i.e. 10%). There are previous studies showing
different friction models and the use of coefficients that show the losses at the inlet of the bearing
due to sudden contraction. Having many parameters that influence the accuracy of the results
requires a sensitivity test to determine the most critical ones; also other cases besides the ones
mentioned in the CFD simulation report were used for comparison.

Some restrictions must be considered. Firstly numerical integration using computational tools
involves their numerical errors due to computational resources (floating point and truncation, among
others). Another obstacle is the nonexistence of experimental results to which the results from the
analytical tool can be compared; even the CFD simulations used have not been validated yet.

The following chapters will provide the answers to the reader’s questions regarding phenomena,
procedures and analysis of the findings in this thesis. A literature review of the previous work in
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annular gas seal and shrouded impellers in addition to a review in rotordynamics can be found in
chapter 2. In chapter 3 the geometry of the thrust bearing that will be analyzed is presented with
insights of the phenomena involved. The bulk-flow is developed in chapter 4. The following chapter
shows the different friction models available at the moment and the models employed on this thesis.
The numerical methods are discussed in chapter 6. The last three chapters of this thesis show the
different results for leakage, thrust force, stiffness and damping and the consequent conclusions.






Chapter 2

Literature review

Hirs (1973) introduced the “Bulk-flow theory” that contributed to the theory of turbulent thin films
in journal bearings and seals. In Storteig(1999) it is argued that the theory “does not consider
fluctuations in local velocities due to turbulence or the shape of the velocity profiles when relating
average fluid velocity to wall shear stresses” (Storteig, 1999)

Fluid Swirl

-
Rotar

Figure 2.01. Hole-patterned annular seal (Shin, 2005).

Hole-Pattern Seal

This theory is a simplified mathematical modelling of seals, and though it was proposed for lubricant
films it has been used for gas seals as well. However, the equations must be adapted. The
compressibility effect must be counted in the equations by adding the energy equation and an

equation of state, such as ideal gas for example.

Nelson (1984,1985) developed a computational model using Hirs’ Bulk-flow theory to model a
system of smooth-rotor/roughened-stator. This model predicted that honeycomb seals would
decrease cross-coupled stiffness, which is beneficial to the stability of the system. It was also
predicted that convergent seals developed higher direct stiffness than constant clearance seals.



Figure 2.02. One-control-volume for annular seals (Nelson, 1984).

Childs (1991) developed a model for shroud impellers adapting the Bulk-Flow theory to determine
the axial forces developed on a pump impeller shroud. The procedure is the same as in previous
work, but differs in the coordinate system.

Figure 2.03. Shrouded impeller surface geometry (Gupta, 2005).

Before Ha & Childs (1996), the Bulk-Flow theory was considered for one-control-volume models.
Ha & Childs (1996) developed a two-control-volume model, which improved the predictions for
direct stiffness and damping, and cross-coupled stiffness.

6
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Conirol Volume B

Figure 2.04. Two-control-volume analysis (Shin,2005).

Kleynhans & Childs (1997) showed that the cell of honeycomb seals reduce the effective acoustic
velocity of the flow within the seals and they demonstrated that “the acoustic influence of cell depth
caused frequency depended rotordynamic characteristic”, which means that the modeling of seals

required an acoustic model as well.

The bulk-flow model is highly dependent on the friction models, specially the friction-factor models.
D’Souza & Childs(2002) compared predictions for rotordynamic coefficients using three different
friction-factor models and found that except for cross-coupled coefficients, the three models predict
the same rotordynamic coefficients. It was discussed as well about the dependency of the friction-
factor on cell depth, clearance, cell width and the Reynolds number among other parameters.

Gupta (2005) presented the analysis for shrouded centrifugal compressor impellers, which adapted
the equations for pump impellers using the equation of state for gases. This work included the
centrifugal and Coriolis effects on the analysis and solution of the equations.

In Shin (2005) the equations for annular seals were adapted to add the energy equation for attempts
to predict the compressibility effects on the seal. Before that, the gas in the annular seals and
shrouded impeller were considered to follow an isothermal process. This study revealed that real gas
properties moderately affected the dynamic coefficients, especially for high pressure gas application.

In general the reaction forces acting on one-degree-of-freedom systems can be modeled as:

—F =MX%+Cx + Kx 2.01



In equation 2.01, x represents the axial displacement relative to the stator and I represents the
reaction force action on the rotor. The rotordynamic coefficients are the stiffness K and damping C.
M represents the added mass, but for gases the inertial effects are negligible.

Mx =0 2.02

Stiffness is a mechanical system in charge of opposing and resisting external dynamic forces
(Muszynska, 2005). It represents the rigidity of a system. Stiffness is associated to the ratio of an
applied dynamic force to the dynamic response of a mechanical device as in equation 2.03.

2.03

F
K=—
X

Equation 2.03 also describes the function of springs, which react with an opposite force when being
pulled or pushed. However, for springs the energy remains constant.

Damping creates forces that oppose motion by dissipating the energy of the movement. In general,
the dissipation can occur in three main forms of damping (Crawford, 1992):

e [Friction damping: it happens when two parts of a system slide against each other.
e Viscous damping: it comes from the resistive force against a body moving through a viscous
fluid.

e Hysteresis damping: it is due to the slipping and sliding of internal lanes when a material is
bent.

For systems of one degree of freedom (one direction of motion is allowed) when damping is
positive, it means a decay in the amplitude of vibrations, which keeps the system as “stable” whereas
negative damping is responsible for a grow in the amplitude of vibrations in time, this response is
unstable (AP, 2010).
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Chapter 3

Geometry and considerations

The model for thrust gas bearing is described by Underbakke et al.(2012) explaining the functionality
of such device. For this thesis it is necessary to describe the geometry of the bearing as well as some

important considerations when simplifying the governing equations employing the bulk-flow theory.

The thrust bearing consist in two tapered textured surfaces that face a smooth disk similar to a
balance drum from the rotor. The surfaces of the bearing have some orifices uniformly distributed as

illustrated in figure 3.01.

3 Sl ol el
e O S Y

S O T
AN

o

Figure 3.01. Distribution of the holes in the hole-patterned surface (Lloyd’s Register, 2012).
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Two base cases are taken in consideration in this thesis, case A as in figure 3.02 and case B as in
figure 3.03. Those figures show cases A and B at centered position, meaning that at both sides of the
bearing the clearance distribution is the same. The simulations were also carried out at offset
position. An offset position of 50% means that the smallest clearance will be reduced by 50% in one
side by moving the rotor that same distance towards that side and the other side will have 50% more
clearance, as illustrated in figures 3.04 and 3.05.

OUTLET T T

INLET

STATOR
— —
> INLET

Figure 3.02. Case A at centered position.

)|

STATOR OUTLET

— : —

— OUTLET ; —_—

— T o —
ROTOR e

Figure 3.03. Case B at centered position.

OUTLET

3Cx/2

STATOR INLET
— —

» INLET «

ROTOR

Figure 3.04. Case A with 50% offset.
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Figure 3.05. Case B with 50% Offset.

The fluid acts at both sides of the rotor, producing stiffness and damping in the system. For the
thrust bearing, this is equivalent of having two set of springs and dampers working in parallel as seen
in figure 3.00.

STATOR

Figure 3.06. Representation of the spring-damper system for both sides of the thrust bearing.

To calculate the equivalent stiffness and damping for two springs and dampers in parallel, equations
3.01 and 3.02 can be used:

Kequivalent =K +K, 3.01
1 3.02
Cequivalent = 1T 1
a'g

To account all the possible effects involved in the Bulk-Flow model for thrust bearings in chapter 4,
it is important to define some phenomena and terms:

13
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Entrance loss coefficient: the entrance loss coefficient counts all the losses at the entrance
due to a sudden contraction. This coefficient was used to model the losses due to local
separation and impacts at the inlet for annular seals and as a consequence affecting the
pressure and density distribution at the inlet. The loss of momentum due to sudden
contraction will apply for case B, but for case A it should account the losses due to impact
and change in flow direction. If the coefficient is “0” no losses due to sudden contraction are
assumed.

Exit Recovery factor: it has been studied in Childs (1993) the possibility of a greater pressure
downstream the bearing than the pressure immediately inside the bearing. In Childs (1993) it
has been noted as well that the exit-recovery phenomenon increases a seal’s direct stiffness.
When the exit recovery factor is “1”, no recovery of pressure is implied.

Pressure
F 3

B

P
—2‘ (1 - gexit)wgzxig

\ 4

Inlet section Outlet section

Figure 3.07. Pressure drop for a system (Hassini & Arghir, 2013).

Coriolis Effect and centrifugal effect: these two effects are not present in the calculations for
annular seals due to the assumption of zero radial velocities. They are both inertial forces
viewed in a rotating reference frame. They are both proportional to the mass of the fluid but
differ in the proportionality of the velocities. The Coriolis Effect describes the apparent
deflection of a particle when moving relative to a rotating system, the force is described as
F = —2MQxU, where m is the mass, {) is the rotating speed of the system and U, the

relative velocity. The centrifugal effect is the apparent force that draws a particle away from

2
its rotating axis; it can be described as F = M U% where Ug is the tangential velocity
(Persson, 2005).



The total The total
inertial force .~ inertial
=the common | force = . _The common
centrifugal force / / ¥

centrifugal

The Coriolis force

Figure 3.08. Hlustration of Coriolis and centrifugal forces (Persson, 2005).

e Joule-Thomson Effect. The Joule-Thompson effect (JTE) is normally referred to when
analyzing the performance of the fluid through a valve. It describes for real gas the effect on
temperature as a result of pressure drop in an adiabatic process, keeping the enthalpy
approximately constant. This is called throttling. The Joule-Thomson coefficient (Ur)
describes the behavior of temperature of the fluid during a throttling process and it is defined
in equation 3.03. For ideal gases the Joule-Thomson coefficient is zero because the enthalpy
is solely a function of the temperature, and therefore pressure drop do not cause a
temperature change. Nonetheless for real gases the temperature may increase or decrease and
it depends on the position of the process on a T-P diagram as in figure 3.09. The line that
passes through the points of zero slopes in the enthalpy lines is called the inversion line, at
the right side of the inversion line temperature increases when throttling and at the left side
the temperature increases when throttling (Sonntag & Van Wylen, 1991).

B (6T) 3.03
nu’T - aP h
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T Maximum inversion
tfemperature

Figure 3.09. T-P diagram for real gases showing the inversion line (Sonntag & Van Wylen, 1991).
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Friction: Friction appears as the force that opposes the motion development at the interface
of two bodies relatively moving to each other (Cengel & Boles, 1993). The energy supplied is
converted into heat during the process; therefore there is a temperature rise at the interface.
This friction does not involve solely two solid bodies in contact. It can be encountered
between fluid and solid or between the layers of a fluid moving at different velocities. In fluid
mechanics, friction is directly related to viscosity as it is a measure of fluid’s resistance to
flow, which relates local stresses in a moving fluid to the strain rate of the fluid element
(White,2011). There have been plenty of friction models to predict the friction in a system.
Hirs (1973) proposed adopting a Blasius-type pipe friction factor model while in Childs
(1993) it was defined a Fanning friction model like in equation 3.04, where T is the shear
stress at the wall, f the friction factor, p the density and v the fluid velocity relative to the

wall.

_ frpU? 3.04
="



Chapter 4
Bulk-flow model

In this chapter the work from Rondon (2013) will be expanded to introduce some terms related to
Coriolis and Centrifugal effects. The integral forms of the bulk-flow governing equations using the
control volumes illustrated in figure 4.01 are:

Figure 4.01. The two control volumes(Rondon, 2013).

Continuity
] . 4.01
—(ﬁ-f pdV) + #pV.ndA =0
ot
Circumferential momentum
] ~ 4.02

Radial momentum

4] - 4.03
&(ﬁ-f pURdV) + #—pURW.ndA = ZFR
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Energy

a —
&(ﬁ- pedV) + #(pe +p)V.7dA = —Rwt,y

—df

Figure 4.02. The system of coordinates for the two control volumes.

4.04

Adiabatic flow was assumed for the energy equation and it is only affected by the friction caused by

the rotor. It has been assumed adiabatic flow because in the CFD simulations the temperature

increased over 13% contrary to the temperature increase for seals reported by Kleynhans and Childs

(1997) which was less than 5% which was the reason for assuming isothermal flow.

Continuity equation for control Volume A:

a(H)+1a(UHR)+1a(UH)+ U, =0
ot P TRaR PUR Rog Pre) TPYZ =

Continuity Equation for control volume B:
dp
Hy;— =pU
a5 = PYz
Circumferential momentum equation

10 UgUp

R 06

10

2
(pUgH) + ROR

(pUgUgHR) + pH

0
—(pUgH
at(Pe )+
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+pU9UZ + Tro +ng =
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R 06

4.05
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UgURr
R

Where the term pH is the Coriolis term in the equation 4.07.

Radial momentum equation

10 10 ) Ug? P
235 PUsUrH) + == (PUR*HR) + pUgUy + Trp + Tog = pH—— = —H =

)
3¢ (PURM) + 355 ROR R

2
Where the term pH UT? is the centrifugal term in equation 4.08.

Energy equation for control volume A:

10 10

d
E(PHB) + Eﬁ((pe +p)UgHR) + Rﬁ((ﬂe +p)UgH) + (pe + p)U; = —RwT,g

Energy equation for control volume B:

Gl
a(pHde) = (pe + p)Uy

Where,

P Ug? Ug®

e=c—t—+
Zy—-Dp 2 2

4.08

4.09

4.10

4.11

The variable Uy, described as the transient axial velocity from control volume A to control volume

B, can be eliminated by substituting U, from equation 4.06 into equations 4.05, 4.07 and 4.08, and

equation 4.10 into equation 4.09.

For the energy equation, it is assume that the flow is adiabatic and therefore bi heat flow rate terms

appear.

The shear stresses are expressed as:

Tro 2
_ pfsUsUG
Tso T
_ pfrUrUR
Trr = T

412

4.13

414
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_ pfiUsUpg 4.15

Whete relative velocities are:

5 416
U, = \/UR + (Ug — Rw)?

417
Us = /URZ + Uy?

The friction factors are determined by the friction-factor model. The loss due to sudden contraction
at the inlet is modeled in equation 4.18 when the inlet is at the inner radius and equation 4.19 when
the inlet is at the outer radius:

1+ s)p(Ri)UR(Ri)Z 4.18
P - P(Ri) = 2

1+ g)p(Ro)UR(RO)Z 4.19
b= Py = >

Assuming an isentropic relationship between the conditions before and after the inlet, equation 4.20
when the inlet is at the inner radius and 4.21 when the inlet is at the outer radius are written:

Pwy _ (@)V 420
P Pr

Py _ (P(Ro)>y 4.21
P Pr

And the exit recovery is modeled in equation 4.22 when the outlet is at the outer radius and in 4.23
when the outlet is at the inner radius:

(1 - Z)p(RO)UR (RO)Z 4.22
PS - P(Ro) = 2

(1 - ()p(Rl) UR(Ri)Z 4.23
B =Py = >

To solve similar equations for seals and impellers, Nelson (1984,1985) and later Childs (1991,1993)
propose to use the “perturbation theory”. This theory consists on finding an approximate solution
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for mathematical problems that cannot be solved exactly by adding small terms to the description
(Vanden-Eijnden, n.d.). The solution of the problem A is expressed as a power series of small
parameters as in equation 4.24. The term A corresponds to the solution of the problem when it is
simplified, while the rest of terms are approximation or deviations from that solution, which are

higher-order terms.

A=Ay+ €A + €A, + - 4.24

When the perturbation’s value € is rather small, equation 4.24 can be simplified into equation 4.25.

A = AO + EAI 4~25

For this thesis, the solvable term Aq refers to zeroth-order equations and the assumptions must be
steady axisymmetric flow to simplify the problem. The term A; refers to first-order equations and to
solve these equations axisymmetric flow with fixed axial motion of the rotor is needed. Leakage and
thrust force, also called static solutions are calculated using the zeroth-order equations and, stiffness
and damping are calculated using the first-order equations.

The procedure to solve the zeroth and first order perturbation governing equation is given in
appendix A. Once the solution is obtained, the first order perturbation pressure is integrated to get
perturbation reaction force. The general transfer function on two-control-volume is,

—Fgoy = D)X (ja) 4.26

The frequency of the axial movement of the rotor is Q, F(jQ) is the reaction force and Z(j) is the

displacement of the rotor. In terms of frequency dependent rotordynamic coefficients, the model s,

—F(Q) = K(Q)X + C(Q)X 4.27

Therefore,

Doy = K +JCa 428
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Chapter 5

Friction model

There have been many models proposed to approximate the experimental values of the friction
factor to apply them in the bulk-flow theory. Hirs (1973) first based his theory on using friction

model for pipes in a similar way as the renowned Blasius type:

f =n(Re)™ 5.01

Where f is the friction factor, n and m are the friction-factor coefficients and Re is the Reynolds
number that is defined as:

UD, 5.02
Re — P Ln
U
The hydraulic diameter is defined as:
4Area 5.03

h= po
Perimeter

For Bulk-flow applications, the hydraulic diameter is defined as:

D, =2H 5.04

Resulting in a definition of the Reynolds number for this case as:

2pUH 5.05
e=———
u

Where p is the dynamic viscosity of the gas and U is the velocity of the flow relative to the wall. The
coefficients “n” and “m” are empirically determined from experimental data.
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In chapter 4 it has been discussed the existence of two surfaces taken into account in the bulk-flow
model. A rotating surface and a stationary surface are considered in the model and that’s the reason
for the existence of two friction factors, different from each other due to the different surfaces, the
rotating part is considered smooth while the honeycomb/hole-patterned surface lays in the stationary
part.

The relative velocities of the flow are:

5.06
Us = /URZ + Up?

5.07

U, = JURZ + (Uy — Rw)?

Where sub-indexes s and r refer to the stationary and rotating parts respectively.

Hirs(1973) proposed to use the Blasius model with constant friction-factor coefficients to the flow
at each surface. For ISOTSEAL, as default, it was considered the following friction-factors equation
5.08 for the stator (honeycomb/hole-patterned) and equation 5.09 for the rotor (smooth surface):

f; = 0,0785(Re)~ %1101 5.08
f = 0,0586(Re) %17 5.09

On the other hand Ha & Childs(1994) adopted different models for each surface. For the rotating
part, a moody friction-factor model was proposed because the authors considered it a good model

for smooth surface:

5.10

1
e 106 /3
=0,001375 |1+ [ 10*=
fr + ( H + Rer)

Where e, is the roughness of the rotor and Re, is the Reynolds number at the rotor, using U, as the
velocity of the fluid.

For a honeycomb (as well as hole-patterned) surfaces it was found a correlation using the results
from a set of experiments using flat plates:

5.11
H| ¢

H, (%) + c3Ma®

f:g=C1+
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Where P, is the critical pressure of the gas, Ma is the Mach number of the flow and the constants’
value ¢y, €3, €3 and ¢4 are 0,0045; 0,0023; 0,1664 and 0,2663, respectively.

Ha and Childs (1994) noted several characteristics that support the use of equation 5.11, such as:

1. The friction-factor is approximately constant as Reynolds numbers increases, but shows a
better correlation to the Mach number,
2. 'The friction-factor decreases as the inlet pressure increases,

&

The friction-factor is sensitive to the changes in clearance,

4. 'The friction-factor is also sensitive to the change in the ratio of clearance to honeycomb cell
width.

On the other hand, Al-Qutub et al. (2000) pointed out that there are experiments proving that the
Mach number has little effect on the friction-factor. The Reynolds number is set back to be the
primary source of change in the friction-factor for both the rotor and the stator. Al-Qutub et al.
(2000) also noted that the friction-factor is sensitive to the change in the ratio of clearance to cell
width as it can be seen in the following equations:

f. = 0,081(Re) %215 s 1
i 5.13
£ = [0,05126 + 0,5569 (17)] Re-0.096
da

In D’Souza & Childs (2002) a comparison was made between three different friction-factor models,
among them are the models considered in Ha and Childs (1994) and Al-Qutub et al. (2000). A third
model is considered based on the following characteristics of the friction-factor from experimental
data:

1. Itis sensitive to changes in the clearance,

2. Depends strongly on the cell width, cell depth and clearance,

3. The ratio of clearance to honeycomb cell width and the ratio of cell depth to cell width are
important parameters

4. Depends on the Reynolds number
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Figure 5.01. Friction-factors as function of the Reynolds number for honeycomb seals for two
clearances (D’Souza & Childs, 2002).

Figure 5.01 shows measured friction-factor data at clearances 0,25mm and 0,38mm. D’Souza &
Childs (2002) used the test data using different clearances and obtained the following equations

based on the Blasius model:

At 0,25 mm clearance,

f =0,0776 Re~ %1465 5.14

And at 0,38mm clearance,

f =0,0973 Re~01277 5.15

Thus the coefficients will be considered as functions of the clearance in the following forms:

ns =aqg+aH 5.16

ms = bo + blH 5.17

Using ns and ms from equations 5.14 and 5.15, the equations 5.14 and 5.15 transform into:

ns = 151,54H + 0,0397 5.16

ms = 144,62H — 0,1827 5.17
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However there are a couple of issues to take into consideration:

e For liquid seals (the first case considered by the authors) the Reynolds number depends on

the average clearance because it was first considered for constant clearance seals.

e It was found in 40% of the cases that the friction factor abruptly increases with increasing

Reynolds numbers (Reynolds number in the order of 20.000 or higher).

After presenting the different friction models that were considered by many authors, for the

numerical integration of the zeroth order equations these are the friction models that were used:

Table 5.01. Friction models and/or friction coefficients for the simulations with zeroth-order

equations.

Simulation Rotor side Stator side

1 Blasius model Blasius model
nr=0,0586 , mr=-0,217 ns=0,0785 , ms=-0,1101

2 Al-Qutub et al. (2000) Al Qutub et al. (2000)

3 Ha & Childs Ha & Childs

4 Blasius model D’Souza & Childs. (2002)
nr=0,0586 , mr=-0,217

5 Blasius model Blasius model
nr=0,0586 , mr=-0,217 ns=0,0776 , ms=-0,1465

6 Blasius model Blasius model
nr=0,0586 , mr=-0,217 ns= 0,0973, ms=-0,1277

7 Blasius model Blasius model
nr=0,0586 , mr=-0,217 ns= 0,0586, ms=-0,217

8 Blasius model Blasius model
nr=0,0586 , mr=-0,217 ns= 0,1247, ms=-0,047

9 Blasius model Blasius model
nr=0,0586 , mr=-0,217 ns= 0,0612, ms=-0,044

10 Blasius model Blasius model

nr=0,0586 , mr=-0,217

ns= 0,032, ms=0,077

For the numerical integration of the first order equations, model used the friction coefficients from

table 5.02:
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Table 5.02. Friction coefficients for the simulations with First-order equations.

Simulation Rotor side Stator side
1 Blasius model Blasius model
nr=0,0586 , mr=-0,217 ns=0,0785 , ms=-0,1101
2 Blasius model Blasius model
nr=0,0586 , mr=-0,217 ns=0,0776 , ms=-0,1465
3 Blasius model Blasius model
nr=0,0586 , mr=-0,217 ns= 0,0973, ms=-0,1277
4 Blasius model Blasius model
nr=0,0586 , mr=-0,217 ns= 0,0586, ms=-0,217
5 Blasius model Blasius model
nr=0,0586 , mr=-0,217 ns= 0,1247, ms=-0,047
6 Blasius model Blasius model
nr=0,0586 , mr=-0,217 ns= 0,0612, ms=-0,044
7 Blasius model Blasius model

nr=0,0586 , mr=-0,217

ns= 0,032, ms=0,077

The reason behind choosing different friction coefficients for cases 5 to 10 for the zeroth-order and
2 to 7 for first-order equations is due to testing different friction models and their effect on the
results from the algorithm due to the importance of the friction model in the bulk-flow theory.
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Chapter 6

Numerical Solution

6.1 Zeroth-Order Equations

To solve the zeroth-order equations listed in Appendix A, 4 boundary values are needed. At the inlet
of the bearing three values are known: pressure, circumferential velocity and density. At the outlet of
the bearing there are two possible conditions: if the flow is choked, the Mach number is the
boundary value, and if the flow is unchoked, the pressure at the outlet must be given.

As stated before, 4 boundary values are known but not at the same border. This situation is referred
as Boundary Value Problem, because the system of ordinary differential equations (ODEs) is
required to satisfy boundary conditions at more than one value of the independent variable”
(Cambridge Press, 2007).

Solving a Boundary Value Problem requires to employ the Shooting Method. For this method
consistent values must be chosen for all the dependent variables at one limit in the shooting method.
The ODEs are integrated using those values, arriving at the other boundary. In figure 6.01,
discrepancies can be found from the desired boundary values leading to a multidimensional root-
finding problem, which can be solved by using the Newton-Raphson Method or the Bisection
Method.
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Figure 6.01. Schematic view of the shooting method (Cambridge Press, 2007).

The density, pressure and radial velocity at the bearing’s inlet depend on the Mach number, which is
the guessed value as stated in Appendix A. To adjust the Mach number at the inlet to match the
other boundary value, in this case the pressure at the outlet, the bisection method had to be
employed. The procedure is guessing two values for the Mach number at the inlet in order to get two
values for the pressure, the difference between them and the desired value must produce a crossover.
Interpolating using this function produces another value of the Mach number to evaluate the
function with, replacing the values of the boundaries.

6.2 First-Order Equations

Once the values for the dependent variables are obtained as a result of solving the zeroth order
equations, they will be needed for solving the first order equations. The equations only depend on
the nondimensional radius as explained in Appendix A.

The procedure to integrate the first order equation is different than in the first step. The shooting
method will not be necessary to guess the initial values as it was needed for the first set of equations.
Using the procedure described by Childs (1993), the first step is obtaining the transfer matrix by
using the equations at different initial values, then the initial values for the specific problem have to
be calculated using the transition matrix. The procedure is summarized in appendix A.
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6.3 MATLAB Solver

The zeroth and first order equations have been described as “stiff” by Gupta (2005) and Rondon
(2013). Due to the nonlinearity of the equations, Rondon (2013) stated that explicit methods cannot
be used to solve stiff problems. Gupta (2005) proposed an automatic stepsize adjust algorithm.

In MATLAB there is a tool called “odel51” which is capable of solving stiff systems of equations.
Odel5i is used for solving fully implicit differential equations using the “Backward Differentiation
Formulae”. Backward Differentiation Formulae (BDF) consist on many different implicit multistep
methods for numerically integrating ordinary differential equations. The BDF methods are
implemented together with a modified Newton method to “solve the nonlinear system at each time
step” (Ascher & Petzold, 1998).

ODEL151 is a function that requires several inputs. It first needs consistent initial conditions:
pressure, density, radial and circumferential velocities and their derivatives, for that reason it is
required to use the function “decic” that calculates these derivatives. After using “decic”, those new
values will be used by “odel51” as indicated in figure 6.02.

‘ Initial conditions ‘

!

— £0=[wo:uo:po;rhoo]: Ensures no change To guess initial
gteirrl\\;';:res nitial radial in initial conditions derivatives
position position

v
[£0, fp0)=decic(@ddr,1,£0, [1;1;1;1], [wo;uo;po;rhoo]), [0;0;0;0]);
Set the ‘ Relative tolerance ‘ Absolute tolerance
tolerances i

L________popzions = pdeset ('RelTol',le-T7, 'Ek=sTol", [1e-6 le-6 le-6 le-6]):

‘ Function of differential equations ‘

[zsol, f20l1]=0del5i (@ddr,linspace (1,Ro/Ri,n), £0, fp0, options) ;
Interval

Figure 6.02. The solver’s algorithm for stiff system of ordinary differential equations.
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Chapter 7

Results using Zeroth Order equations

The results for the static solution are compared to the results from the CFD simulations using the
same conditions. First, the simulations were compared using the friction coefficients used in
ISOTSEAL, then a sensitivity test was carried out varying thermodynamic parameters and physical
parameters, and finally the simulations were carried out for different friction-factor models. The
leakage and thrust force are of importance and therefore were compared at each simulation.

7.1 Parameters

The different parameters are classified in the following categories:

7.1.1 Geometrical parameters

For case A:

e |D=300mm
e 0D =560mm
e H;=3mm

e y.=056

For case B:

e ID=560mm
e 0D =300mm
e H;=3mm

e y.=056
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7.1.2 Thermodynamic parameters

The heat capacity ratio, compressibility factor and dynamic viscosity were calculated with the average
result between inlet and outlet conditions from the CFD simulations using HYSYS with the Lee-

Pr = 120 bar
Ps = 60 bar
Tr = 120 Celsius

MW = 19,85 kg/kmol

y = 1,319
7. =095
u=1,679 x 10~°Pa.s

Kesler-Plocker equation of state package.

7.2 Simulations using the coefficients from ISOTSEAL

The simulations were carried out assuming that the fluid does not have any circumferential velocity
at the inlet. For the friction model the coefficients that were used are the same as in ISOTSEAL.
Table 7.01 through table 7.06 illustrate the equations the two cases at centered and 50% offset

position.
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Table 7.01 Results for leakage at case A centered.

Leakage Error
[kg/s] [%]
9,64 16,53

Table 7.02 Results for leakage at case A 50% offset.

Leakage Error
[kg/s] [%]
9,91 4,95




Table 7.03 Results for Thrust force at case A 50% offset.

Thrust Force Error
[N] [%]
197800 127,83

Table 7.04 Results for leakage at case B centered.

Leakage Error
[kg/s] [%]
0,65 15,50

Table 7.05 Results for leakage at case B 50% offset.

Leakage Error
[kg/s] [%]
6,91 19,73

Table 7.06 Results for Thrust force at case B 50% offset.

Thrust Force Error
[N] [%]
55100 +171

These were the results for adiabatic flow. The results for isothermal flow are shown in appendix H.

Figure 7.01 through figure 7.04 represent the pressure, temperature, radial and circumferential
velocity along the radius for case A at centered position. In figure 7.01 there is discrepancy in the
initial pressures, showing that there are important losses in pressure not been taken care of. Figure
7.02 shows the temperature of the gas along the bearing, showing again a discrepancy between both
results, from the algorithm and from the CFD simulations.
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Figure 7.01. Pressure of the flow along the radius for case A at centered position with 8,59% mean
percentage errof.
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Figure 7.02. Temperature of the flow along the radius for case A at centered position with 4,45%
mean percentage etror.
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For case B at centered position the same variables are shown in figure 7.05 through 7.08. The
pressure shown in figure 7.05 is closer than the pressure distribution for case A. The same trend can
be seen in appendix D for the offset position.
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Figure 7.05. Pressure of the flow along the bearing for case B at centered position with 2,05% mean
percentage etrof.
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Figure 7.06. Temperature of the flow along the bearing for case B at centered position with 1,53%
mean percentage errofr.
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Figure 7.07. Radial Velocity of the flow along the bearing for case B at centered position.
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Figure 7.08. Circumferential Velocity of the flow along the bearing for case B at centered position.

7.3 Sensitivity test

A sensitivity test was applied in Shin (2005) because the values for the predicted leakage were not in
accordance to the experiments. The friction coefficients were adjusted to fit the experimental results.
For this thesis several parameters were varied, including:

e Compressibility factor

e Heat capacity ratio

e Entrance loss coefficient
e Preswirl

e NS

e nr

The entrances loss coefficient and the friction coefficients ns and nr provided the highest variation
for the thrust force and the leakage and are shown in this chapter while the other parameters are
presented in appendix E.
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7.3.1 Case A

Figure 7.09 through 7.10 show the leakage and thrust force for case A varying the entrance loss
coefficient, it can be seen that the leakage decreases while increasing the entrance loss coefficient,

while for the thrust force it happens the opposite.
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Figure 7.09. The leakage variation with entrance loss coefficient for case A for centered and offset

position.
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Figure 7.10. The thrust force variation with entrance loss coefficient for case A at offset position.

Figures 7.11 and 7.12, show the variation of the leakage and thrust force with variation ns.
Decreasing ns from the coefficient used in ISOTSEAL increases the error for leakage but decreases

the error for thrust force.
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Figure 7.11. The leakage variation with ns for case A at centered and offset position.
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Figure 7.12. The thrust force variation with ns for case A at offset position.

Figures 7.13 and 7.14 show the variation for case A in leakage and thrust force with nr. Decreasing

nr seems to be beneficial for the errors for both cases, especially for leakage.
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Figure 7.13. The leakage variation with nr for case A at centered and offset position.
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Figure 7.14. The thrust force variation with nr for case A at offset position.

7.3.2 Case B

Figures 7.15 and 7.16 shows the effect of varying the entrance loss coefficient on leakage and thrust
force. Error for leakage decreases as this coefficient increases but it is the opposite for the thrust
force.
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Figure 7.15. The leakage variation with entrance loss coefficient for case B at centered and offset

position.

350

300

250

200

Error [%]

r 150

Thrust force [N]

0 0,5 1 1,5 2
entrance loss coefficient [-]

=—t— Thrust force ==[=-grror %

Figure 7.16. The thrust force variation with entrance loss coefficient for case B at offset position.

The effect of varying ns and nr on the leakage and thrust force for case B can be seen in figure 7.17
through figure 7.20.
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Figure 7.17. The leakage variation with ns for case B at centered and offset position.
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Figure 7.18. The thrust force variation with ns for case B at offset position.
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Figure 7.19. The leakage variation with nr for case B at centered and offset position.
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7.4. Sensitivity test using different friction-factor models

As seen in section 7.3, the change in friction at the stator shows critical variations for the thrust force
and the leakage. Unfortunately the data for different friction factors for the stator are limited, for that
reason there was needed a sensitivity test using different models for the friction factor. Observing
figure 7.21, the friction factor for most of the models seemed to be functions of the Reynolds
number. There are other models like Ha & Childs (1994) that do not depend on that parameter and
the model from D’Souza & Childs (2002) is a function of the clearance.
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Figure 7.21. Friction factor for the different models that depend on the Reynolds number.

7.4.1 Case A

For case A figures 7.22 and 7.23 show that for ns=0,0973/ms=-0,1277 the error of the leakage is the
lowest. The first three models show higher levels of accuracy, corresponding to three of the lowest
friction factors according to figure 7.21. But the model with the lowest friction-factor is at

ns=0,0586/ms=-0,217 shows the highest value for leakage, and this model is used for smooth
surfaces.
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Figure 7.22. Leakage and the errors for case A at centered position.
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Figure 7.23. Leakage and the errors for case A at offset position.
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On the other hand, lower friction assures high thrust force and for that reason low errors. These
values correspond to the model for smooth surfaces.
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Figure 7.24. Thrust force and the errors for case A at offset position.

7.4.2 Case B

For case B, it seems that the models for Ha & Childs (2000) and D’Souza & Childs (2002) give better
approximations for the leakage than most of the other cases, consistently giving errors lower than
10% for centered and offset configurations. In figure 7.27 the errors are above 100%, especially
D’Souza & Childs (2002) which gives the less accurate results for thrust force.
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Figure 7.25. Leakage and the errors for case B at centered position.
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Figure 7.26. Leakage and the errors for case B at offset position.
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Figure 7.27. Thrust force and the errors for case B at offset position.

7.5 Simulations for diverse cases

Using different cases from Appendix D, the error in leakage and thrust force are shown in figure
7.28 and 7.29. For case 8, leakage and thrust force shown to get values higher than the average.
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Figure 7.29. Errors for thrust force at different configurations.
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Chapter 8

Results using First-Order equations

In order to compare the results for stiffness and damping from the analytical tool to the results from
the CFD simulations, it is necessary to use the same axial frequency values: 10 hz,41,7 hz, 83,3 hz,
125hz and 166 hz.

8.1 Case A: Centered position

Figures 8.01 and 8.02 show the values for stiffness at the centered position for case A at different
area ratios. It seems that decreasing the area ratio improves the result for models with higher friction

factors. This trend is shown in appendix E.
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Figure 8.01. Stiffness of the bearing when the area ratio 1 for case A at centered position.
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Figure 8.02 Stiffness of the bearing when the area ratio 0,56 for case A at centered position.

Figures 8.03 and 8.04 show the effect of the area ratio on the damping. They cannot be compared to
the results from the CFD simulations because these values are not available. However, it has been
noted that for the CFD results there should be a crossover in the damping between 125 hz and 166
hz. Both graphs show that unlike the performance for the stiffness, the results for damping for the
different frequencies are similar but they differ greatly as the axial frequency lowers.
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Figure 8.03. Damping of the bearing when the area ratio 1 for case A at centered position.
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Figure 8.04. Damping of the bearing when the area ratio 0,56 for case A at centered position.

8.2 Case A: Offset position

Figures 8.05 and 8.06 show the effect of the area ratio on the stiffness for the offset case. Results

show that reducing the area ratio makes the stiffness for models with higher friction factor than the

smooth case get closer to the CFD results.
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Figure 8.05. Stiffness of the bearing when the area ratio 1 for case A at offset position.
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Figure 8.06. Stiffness of the bearing when the area ratio 0,56 for case A at offset position.

The results for damping for the case A at offset position figures 8.07 and 8.08. For an area ratio of 1,
some of the results show a crossover between 10 hz and 41.7 hz while for an area ratio of 0,56
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another behavior happens. For higher frequencies for both cases the results seem to be closer to the
CFD results.
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Figure 8.07. Damping of the bearing when the area ratio 1 for case A at offset position.
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Figure 8.08. Damping of the bearing when the area ratio 0,56 for case A at offset position.
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8.3 Case B: Centered position

For case B at centered position figures 8.09 and 8.10 show the results for stiffness at different area
ratios while figures 8.11 and 8.12 show the results for damping. In general it seems that the stiffness
is overestimated while damping is underestimated for different friction models.
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Figure 8.09. Stiffness of the bearing when the area ratio 1 for case B at centered position.
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Figure 8.10. Stiffness of the bearing when the area ratio 0,56 for case B at centered position.
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Figure 8.12. Damping of the bearing when the area ratio 0,56 for case B at centered position.

8.4. Case B: Offset position

For case B at offset position, figures 8.13 and 8.14 reflect the overestimation of the stiffness and
figures 8.15 and 8.16 reflect the underestimation of the damping, following the trend for the centered

position.
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Figure 8.13. Stiffness of the bearing when the area ratio 1 for case B at offset position.
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Figure 8.14. Stiffness of the bearing when the area ratio 0,56 for case B at offset position.
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Chapter 9

Discussions

9.1 Static Solutions

To calculate the approximate amount of leakage using the bulk-flow theory it was necessary to obtain
the radial velocity and density of the fluid at the outlet of the bearing. From results in section 7.2, the
leakage has been estimated within 10% of error.

The errors are not acceptable for the thrust force; the deviation seems to represent more than a
quarter of the value for case A while Case B displays a deviation of more than twice the value. The
thrust force is directly linked to the pressure distribution along the seal and for that reason it is
required to analyze the pressure distribution for offset cases in appendix E and, figures 7.01 and 7.05.

For case A at the higher clearance side figure E.01 shows the pressure distribution in the bearing and
it shows a large gap between the inlet pressure from the bulk-flow model and the same pressure
from the CFD simulations. From the CFD simulation there is an apparent recovery of pressure due
to the recirculation at the inlet, and since the bulk flow theory only takes into consideration the
average values for the different variables it is not expected to reproduce this recirculation. However,
the gap between the two curves is high and that affects the calculation of the thrust force as the
mean percent error is about 11%, the same happens with figure E.05, though the mean percent error
is less than half of the previous case. And these differences affect the calculation of the thrust force

for the offset position.

The effect of higher pressure values for each side is not as strong as the distribution along the radius,
this phenomenon is especially appreciated in case B. The mean percent errors for higher and lower
clearance cases are lower than for case A, with less than 2,5% but places with high percent error are
located at the inlet of the bearing where the inlet diameter is high. Other places with high percent
errors are located before the outlet of the bearing like it can be seen in figure E.09. Those factors are
responsible for the 171% error in the calculations of the thrust force.

There are different parameters that affect the pressure profile in the algorithm. Figures 7.01, 7.05 and
the rest of the figures in Appendix E demonstrate that the pressure at the inlet is higher than the
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pressure in the CFD model, thus the boundary conditions must be modified. The entrance loss
coefficient which accounts all the losses at the inlet directly affects the pressure and the inlet velocity
according to equation 4.18. Furthermore, the friction coefficients also affect the magnitude of the
inlet conditions, but in a different way; it affects the development of the variables along the bearing
until numerical integration reach, and in chapter 6 it has been discussed that the system of equations
is a boundary value problem, meaning the boundary conditions at the outlet will be compared to the
results of solving the equations and affecting simultaneously the initial guess values until all the
conditions are satisfied.

The pressure at the outlet is also affected by the temperature. Figures 7.02 and 7.06 compared the
temperature of the flow along the bearing to the results from the CFD simulations. The inlet
temperature is indirectly affected by the entrance loss coefficient and the velocity. Yet along the
bearing, the temperature seems to be under 2 different phenomena acting simultaneously, these are
the JTE and the friction.

The JTE for gases means that a reduction in the pressure of the fluid carries out a reduction in the
temperature whereas acceleration of the fluid increase the friction in the system and this friction
increases the temperature. Figure 7.02 shows an increment in the temperature along the bearing for
the CFD result and the same happens for the CFD results in figure 7.06, showing that the friction
had a stronger effect on the temperature than the JTE. On the contrary, the results from the
algorithm showed low increments in temperature at the radii closer to the inlet unlike at the outlet
where there is decay in temperature, particularly for case B, indicating that the JTE had stronger
influence in the results.

Having such discrepancies between temperature and pressure distributions along the bearing, a
sensitivity test was necessary to determine which parameters could improve the calculations. In
appendix E, the results for the sensitivity test in the thermodynamic parameters and the preswirl
showed that they did not play a role in improving the calculations specifically with the thrust force.
However the other variables in section 7.3 showed stronger influence in both the leakage and thrust
force.

An increase in entrance loss coefficient means that losses at the entrance are taken into account. For
case A the losses are the change in direction of the fluid from axial to radial and incrementing this
coefficient in the calculations results in narrowing the gap between the pressure from the algorithm
and the CFD and thus incrementing the thrust force, especially for the higher clearance part. For
Case B this increments the value for thrust force and therefore increases the errors. For both cases
the leakage decreases when incrementing the coefficient, but for case A this result in incrementing
the error.

Changing the coefficients ns and nr to calculate the friction factor also showed relevance for
improving the calculations. For case A in figures 7.11 and 7.12 decreasing the ns from the value used
in ISOTSEAL benefits the calculations for the thrust force that goes from above 25% error to less
than 10% error, and simultaneously increasing the leakage. For case B the calculations for leakage
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becomes unacceptable while the error for the thrust force decreases but continues to be
unacceptable. Meanwhile, decreasing nr only from 0,0586 in ISOTSEAL decreases the errors for
leakage and thrust force (not significantly) for case A and results into negative effects for case B.

As it can be seen in figures 7.22 and 7.23, the first four friction models show higher leakage than the
rest and according to figure 7.21 they deliver the smallest friction factors. These results showed that,
according to the theory, lower friction means higher leakage; but the model with lower friction
factors increased the values for leakage in excess and raised the error. That friction model
corresponds to smooth surfaces; the same model is utilized for describing the performance of
smooth rotors in ISOTSEAL and according to figure 7.24 delivers the closest result for the thrust
force. On the other hand, using this model to desctibe the friction for honeycomb/hole-patterned
areas logically makes no sense. Similar results were obtained in figures 7.25, 7.26 and 7.27 although
for the thrust force there was not a significant improvement in the error.

Additionally, section 7.5 shows the results using the same base cases A and B but with different
inputs. This last section for the static solutions showed that for the majority of the cases the error for
leakage is fewer than 10%, showing that the results for outlet conditions for most of the cases are
acceptable. Nevertheless case 8 displayed over 20% error for leakage and at the same time the results
for thrust force stood out from the averaged 30% error for the rest of the cases excluding case 12
which does not correspond to the values attributed to a honeycomb/hole-patterned bearing.

These results showed that the algorithm is not able to predict well for small clearances. Small
clearances mean nonlinear effects acting on the fluid due to compressibility effects and having an
error of 80%, while for other cases is below 30%. These errors showed that there must be nonlinear
effects that are disregarded in the equations. The friction model has also an important influence in
the results as seen in section 7.3 and 7.4, and the friction model used to calculate the thrust force was
determined for clearances of 0,254mm, a quantity that belongs to the range of clearances at 50%
offset. For case 8, either the coefficients for friction factors are excessively low for the side with
more clearance or excessively high for the side with pinched side.

Results from sections 7.4 and 7.5 showed that changing the coefficients for the friction model
improves the results for the thrust force and the leakage, but neither of them accounted the effect of
the losses at the inlet and therefore augmenting the loss coefficient could improve the results without
using the friction model for smooth seals. These improvements only apply for case A; unfortunately
it is not the case for case B, strengthening the hypothesis of the lack of nonlinear effects represented
in the equations. Moreover case 8 with smaller clearances exhibited that the algorithm is not capable
of calculating the thrust force with the same error as the previous cases and probably is due to the
nonlinear effects. The dynamic solutions for the next section will give more hints towards this
hypothesis.

Last but not least, the results for cases A and B assuming isothermal flow and adiabatic flow were
compared in appendix H, and they show some improvement in leakage but none for thrust force in
case A, while for case B there was an improvement in thrust force but it’s still above 100% error.
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These results show that despite using different assumptions for the energy equation, the results for
both cases are similar. It is not accurate to assume isothermal flow when there is a temperature drop
or increase, nevertheless it has been used in ISOTSEAL and as already discussed the algorithm is
largely used in the industry. The advantage of assuming isothermal flow instead of adiabatic flow is
the need of three equations (continuity, radial and circumferential momentum) instead of four
equations because the model seems more affected by other parameters like entrance loss coefficients
and friction coefficients. To determine which model is correct, experimental data is needed.

9.2 Dynamic Solutions

There were two parameters that were varied for the simulations for dynamic variables of damping
and stiffness. These two parameters were the coefficients for the calculation of the friction factor
using the Blasius model and the ratio of the area of holes to the area of the surface of the bearing,

called in the figures as area ratio or y.

e C(Case A: Centered position. Figures 8.01 and 8.02 show very high stiffness at low axial
frequencies while from 41.70 until 166 hz the stiffness is lower. The data for damping is not
shown due to the unavailability of data, however it has been reported in (Lloyd’s Register,
2013) that negative damping is very high at low frequencies until there is a crossover between
125 hz and 166 hz. The values for stiffness from the algorithm using different area ratios
show that for frequencies higher than 10 hz they are in the same order of magnitude than the
results from CFD simulations, and figure 8.2 shows that the models using low friction factors
get closer values. Using an area ratio of 1 implies that the bearing has extra clearance along
the radius. This is true when the flow passes through a gap in the middle of the hole at the
surface, but this not true for the gap between holes (see figure 9.01). Hence using the effect
of the ratio between areas, this extra clearance is reduced to give a pocket effect on the fluid,
rising the stiffness and thus reducing the deviation from the CFD results, but at 10hz the
error is high for area ratio. For figures 8.3 and 8.4, the algorithm seems not to predict well at
a crossover area for the damping, and this is very important because as noted in chapter 3,
negative damping means increasing amplitudes and therefore instabilities in the system. For
area ratio of 1 the damping remains negative while for an area ratio of 0,56 there is a
crossover, but it is not in the reported range. The damping at low frequencies for both cases
is lower than the damping predicted in the CFD simulations and not being able to estimate
such rise in the damping and stiffness for low frequencies confirms that the algorithm is not
taking into account nonlinear effects.

e (Case A: Offset position. Figures 8.05 and 8.06 show better agreement between the CFD
simulations and the results from the algorithm. The stiffness does not seem to vary much
with the axial frequency, and the trend in area ratio is the same as in case A: results seemed to
have improved after adding the effect of the ratio of areas. The friction factor is also relevant
for the results, the simulations using lower friction factor deliver better agreement with the
curve for CFD than using higher friction factors. For damping the case is the opposite. The
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CFD simulations predict a crossover of the damping between 10 hz and 41,7 hz, but neither
of figures 8.07 nor 8.08 show that trend. For figure 8.07 at high frequencies the results
showed better correspondence for an area ratio of 1 while an area ratio of 0.56 the results for
frequencies of 41.7 and 83.3 hz are in better agreement. In contrast the crossover is the most
important feature to predict, for it determines at which frequency the system could be
unstable.

e C(Case B: Centered and Offset position. In general, stiffness is overestimated while damping is
underestimated for both cases. Reducing the area ratio doesn’t seem to improve the results
for all the cases. From appendix A, the results from the static simulations were needed to
solve the first order equations, as discussed in section 9.1 the results from case B
overestimated the thrust force, meaning that the pressure distribution along the radius is not
correct as the other variables such as density and velocity which affect the results for the first
order equations besides the pressure, causing an overestimation on the stiffness and the

underestimation in damping.
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Figure 9.01. Effect of the area ratio in the model for first-order equations.

There are many sources of error that must be considered:

¢ Boundary conditions. Calculating the boundary conditions is very important to obtain correct
values for all the variables. For the sensitivity test it was determined that including the losses
at the inlet due to change in direction of the fluid and impact losses leads to improve the
results for thrust force because pressure distributions fit better to the CFD results. However,
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including these losses did not guarantee errors lesser than 10%, meaning that the entrances

loss coefficient was not the only parameter needed to solve the problem, especially for case
B.

Friction model. From the sensitivity test in chapter 7 using different friction models and
coefficients may improve the solutions for thrust force and leakage for case A, but reducing
friction factors for case B did not solve the problems for thrust force. For case A, the best
case for calculating the thrust force was using the friction model for the smooth case at the
stator, but these results were not close enough, considering that it led to higher errors for the
leakage. Still this model is for smooth cases, which is not physically feasible using this model
for honeycomb/ hole-patterned bearings.

The algorithm. The algorithm could be another source of error. A similar algorithm for the
annular seal case was developed in order to compare its results to the ISOTSEAL ones as
stated in appendix G. Using the same Matlab® function odel5i, the maximum error was of
0,19%. This result validates the use of odel5i for thrust bearings.

Gas Law. The use of the average compressibility factor using the data from the CFD
simulations could be a source of error. It was argued by Shin (2005) that the results from
using ideal gas equations and real gas equations for the annular seal case did not show
discrepancies to each other, and validated the use of ideal gas law using the compressibility
factor as a good simplification.

Zeroth-Order and First-Order equations. These equations were based on the analysis for the
annular seal case and most of the terms in appendices A, B and C are similar to the equations
in Shin (2005) except for adding the centrifugal and Coriolis effect that are not present in the
analysis for gas seals. However the results in chapter 7 for different cases and results in
chapter 8 showed discrepancies at cases with small clearances and at low axial frequencies,
hinting that there are nonlinear effects acting and they are not taken into account in the
simulations. The nonlinearities are linked as well to the friction factor and the friction
coefficients must be revised for different set of clearances. The models and coefficients for
calculating the friction factor are limited to few cases with constant clearances and this thesis
used most of them out of their clearance range, giving wrong values for the variables.

Model. For the thrust bearing case the calculations for stiffness and damping were done by
calculating stiffness and damping at each side of the bearing assuming that the variables for
one side are not affected by the other side and assuming that at each side there is a spring
and damper working in parallel with the set at the other side. The model also assumes that
stiffness and damping are lineal. Conversely the geometry of the annular seal allows the
model to calculate the stiffness and damping of the seal without recurring to different
calculations to another side of the seal. Assuming linearity for the thrust bearing may have
affected the results because it is also assumed that the force is linearly proportional to the
clearance, while some phenomena ie. friction are clearly nonlinear. The consequence
assuming linearity of the stiffness and damping affected the reliability of this analysis.

CED results. The CFD results may also be incorrect. According to the report from Lloyd’s
Register (2012) the simulations were carried out using a real gas properties table as an input



to the analysis, assuming that density is only a function of pressure instead of a function of
pressure and temperature as in the ideal gas law. These simplifications were done in order to
solve convergence issues that were present at the beginning of the analysis. However,
implying that density is independent of the temperature and vice versa is not accurate and
could lead to wrong results. Another issue is related to the analysis for annular seals,
Kleynhans & Childs (1997) claimed that there is temperature reduction of less than 5% for
annular seals, while for the CFD simulations there was a temperature increment from the
inlet to the outlet of the bearing for both sides. Yet these two cases have opposite geometries
that could explain the increment in temperature for the axial case, though a further
experimental investigation should be conducted and compared with instead of CFD

modelling.
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Chapter 10

Conclusions

The objective of this study was to propose a reliable analytical tool to predict the rotordynamic
performance of a thrust bearing using gas as the process fluid. To ensure reliability, results from the
algorithm at certain conditions were compared to the results from CFD simulations. To accomplish
the objective it was necessary to propose the use of Bulk-Flow theory presented by Hirs (1973) and
adapt the governing equations for fluid mechanics to the geometry of axial bearings. Different
friction models were also needed to improve the results. The conclusions of this study are discussed
below:

e The analytical tool predicted the leakage within a 10% error while the static thrust force was
predicted with over 20% error respect to the results from CFD simulations for the case of
inflow coming from the inner radius. The same error for the case coming from the outer
radius was achieved for the leakage while for the thrust force was over 100%. Lower errors
can be obtained by tuning the effect of losses at the inlet (entrance loss coefficient) and
changing the friction model, but for thrust force the results were outside the acceptable error
margin.

e The analytical tool does not predict properly the thrust force for bearings with smaller
clearances than the base cases. Results have proven that there are nonlinear effects that seem
not to be considered in the model, therefore results are not reliable.

e The Bulk-flow model for thrust gas bearing highly depends on the friction models, as they
can represent the nonlinear effects acting on the flow when the rotor is closer to the stator
and especially for honeycomb/hole-patterned bearings. However, data from different friction
models are limited and most of them are valid for specific clearances. Extrapolation from
available experimental data to the actual model clearances provided even bigger gaps with
respect to CFD simulation results.

e Changes in thermodynamic variables such as the compressibility factor and the heat capacity
ratio did not affect the results for leakage and thrust force for neither of the cases.

e Modeling the equations for adiabatic flow or isothermal flow did not affect significantly the
results for thrust force and leakage. Experiments are needed to determine which assumption

1S more accurate.
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The calculations for damping and stiffness depend on the friction factor and the ratio of the
area of the holes and the area of the surface. The dependency on the friction factor is related
to the use of data from the steady state results and dependency on the area ratio is related to
the effect of including the cell-depth of the holes in first-order equations.

The analytical tool did not predict correctly the dependency of damping and stiffness on the
axial frequency of the rotor. This dependency refers to magnitude of the variables and
crossover. These results are strongly linked to the nonlinear effects on the fluid for smaller
clearances.

The model proposed in this study gives no reliable solutions to the problem. Further
attention needs to be given to the friction model and/or including terms to the equations in
appendix A to improve the model.

To improve the model, there are some recommendations to follow:
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Including the effects at the inlet of the bearing: it is recommended to assume values higher
than zero entrance loss coefficients and simultaneously changing the friction model and
compare them to the results from the CFD simulations.

Investigate more friction models for honeycomb/hole-patterned sutrface beatrings with
different clearances, cell-depth and rotational speed of the rotor. These models may
significantly improve the results for the model.

Experiments with thrust bearings are needed to validate the CFD simulations and the
performance of the analytical tool. There are some features used on these simulations that
are not accurate such as the relationship between temperature, density and pressure that
probably impacted the reliability on the results. Additionally, every model either CFD or
numerical integration must be validated against experimental data and improved.
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Appendix A
Adiabatic flow

Solution of governing equations

A.1. Non-dimensional Governing Equations

Non-dimensionalized parameters for case A are defined as following:
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And the nondimensionalized parameters for case B are defined as following:
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Non-dimensionalized governing equations for the combined control volume is expressed as:
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Energy equation:
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Non-dimensional entrance loss and exit recovery equations are:

When the flow goes from the inner radius to the outer radius,
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A.2. Perturbation Analysis

Perturbation variables are introduced here,
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Where € is the perturbed eccentricity ratio, which is a very small value. With the equations A.33-

A.37, the governing equations are separated into zeroth and first order perturbation equations.

A.2.1. Zeroth-Order Equations

For isothermal flow, zeroth-order equations are expressed in appendix H. The following equations

are for adiabatic flow.

Continuity equation
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( + Ug, ar + hg )P1 + PouRo ar +Poho_a + uRohO T o0~ - a8 +
hollg, 8p1
r 20 0
Circumferential momentum equation
P. 9p; 1 [~ /- s o _ o s A47
Do 96 + 2chy [uro(ugo - r) (frl - _fro> + frourou91 +fr0ur1(u90 - r) + urougo (fsl - h_0f50> +
6ﬁ 617 Ug dug 6u9
1 _Yo __Y1 _ Y1 _
fsolsoUo, +f50u51u90] + Ugy—— . L+ Ug, . —24+ 7 Ro - + Ug, e + e = 0
Radial momentum equation
Pc (0p1  P19po 1 [~ = _h = = = = = = _h A48
7o ( ar  po ar) t 2eng [uTO”Ro (frl ho fTO) + frollriUirg T frollroliry T syl (fSl hofso) +
_ — OURy — OuR, — Ug,lig, 0UR, Ug, OUR, _
stusluRO + stuSOuRl] + —r Uro + oy 4Ry + ZT + aree + > 98 — 0
Energy equation
podhy _ _ Pc (% —  Op1 + 1 9po +%%) _ Po( )[6131 = 0py +1 9Po + A.49
Che 0T Ze(y-1) Ro 5y T UR1 T, r a0 Zc(y-1) 9039  YR1 G,
p1— 9P 9p1 _ P1 - @] thd[ P 0p1 Po( 1 )6& (_ OuR,
Po 2o YRO 3y ar tu Ro or Do Urg or + ho Lz:.(y-1) ot Z:(y-1) +ho Urg ot +
_6u91 Po [~ 2(= — P1__h\- 3 = 2(= =
Ugo 57 )] " 2chy [uro (urofﬁ + 3urlfro) + (% - h_o) Urg fTo + Us, (usofsl + 3uslfso) +

P M 3
(ﬁo ho) S0 fSO]

Where,



Ug, g, + Tyl A50

a. =
S1 uSO
_ (@gy —1)Ug, + Up,lig, A51
T1 aso
And
py  hy Uy A.52
=ms —t—t=
f:gl f:gO (ﬁﬂ hO aS())
pyr  hy Ty A.53
fry =mrf, (_—+—+ — )
" "0\po  ho Urg

These equations can be rearranged as following:

[0 52+ (B ) 5+ (6o 55+ [P 8 + (B 2+ [Fo 52+ (600 55+ [keola = 0 o
Where vector X 1 1s represented as,
g, A55
=1l
p1
The matrices A,B,C,D and vectors E,F,G,L are given in appendix B.
As in Childs (1993) assuming that the clearance function is
h = hy — de'®t A56
with ¢ as the frequency of the axial motion of the rotor. Introducing f as,
A.57
-t
fis the frequency ratio.
h=hy —del'® A58
With
€h, = —de¥” A.59
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Figure A.01 Different frequencies acting on the rotor.

Assuming the dependent perturbation variables as,

Ug, = ﬁRl(r)e"f T A.60
P1= Pl(r)eifr A.61
Upy = Ugy e A.62
p1=py,.e" A.63

Applying equation A.60 through A.63 on the equation A.54 the first order equations are expressed in
matrix form:

ox L, d., A.64
(M- + Ve Ja =~ derp)]

The components for the matrix M, N and vector g are given in the Appendix C. Four boundary
conditions are required to solve equation A.64, equations A.65 and A.66 are conditions for cases A
and B:

ugl(‘ri) = 0 A65

ugl(ro) =0 A.66

And from equations A.27 to A.32, the following equations are the boundary conditions for case A:

A.67

1+e¢
2 - -_— —
(Prcro TRy’ + 2P0 Ty s r)

Piep = " 3p

— A -1
Pigry = YPoiy ™ Piry A.G8

Vi



_1=&, _ 2 95 _ _ A.69

Piey) =7 2P, (pl<ro)“R0(ro) + po(ro)uRO(ro)uRl(ro))

And for case B:

Py :-i(ﬁ g, |2+ 2P0, kg, \Ury,, ) AT

(ro) 2PC 1(TO) RO(TO) O(TU) RO(TO) Rl(ro)
p1(1,) = yﬁO(ro)y_lﬁl(ro) AT
1-¢&, 5 L B A72

Pigp =~ 5p (pl(n)uRO(ri) + Zpo(rz)uRO(ri)uRl(ri))

c

To solve the system, Childs (1993) used a transition-matrix approach. It was proposed the
homogeneous version of equation A.64 successively with the initial conditions (1,0,0,0), (0,1,0,0),

0,0,1,0) and (0,0,0,1) to obtain the transition matrix |® . As Childs (1993) remarked, a particular
Um p

solution is solved for initial conditions (0,0,0,0) with % = 1, yielding a vector {@)(f,r)} as the vector

non homogeneous solutions, so the complete solution for case A is:

i) = X ‘3 AT3
X = [PnlXig,) + —%r)

And for case B:

> > d A74
X1y = [PomXig,) + = ¥om

Following the procedure from Childs (1993) the equations must be solved for specific frequency
ratios. To solve the unknown initial conditions, equations A.73 and A.74 can be rewritten for case A

as:
- - - P @ _ W A75
UR1(rry) = P1(rrg UR1Gy T Pr2gryPron T Prag,Proy T 5 10
= u ) ® = W A.76
Pirrg) = Zrl(f,n,)”Rl(ri)Jr 22(fr)Plerp T 2’4(fr7”o)p1(ri)+z 2(f70)
A77

Piirry) = PatryBR1y F PazieryPray T PaacrryProp 2 Yo,y

And for case B:
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_ _ . AT8
UR1(rry = Priprp Ry T Pr2¢rrpPray) T PragrrpPrioy ¥ 2 Yigm

A9

Pirr = Poageyplrigy ¥ Pezirr ) Priy T PaagrryProy T2 Perrp

A.80

Piirry = Parip iRy T PazirryPriry) T PaaerpProy T2 Vagrr

Then equations A.75-A.77 are substituted into A.69 for the final equation, the matrix form of the
three substituted equations A.67-A.69 is:

YRy A.81
[A] P1 (D) = Z W
Pigry
Where A is a 3x3 matrix,
1+e,_  _
Ay = P. (p o0 Ur O(ri))

Ap=1

A2’1 -_ 0
AZ,Z -_ 1
Ay = _Vﬁo(r) -

Aan = P,y + (z—pc> ((D“'l(f.ro)uRO(ro) + Zpo(ro)uRO(ro)(bl'l(f.ro))

1-¢
— = 2 = =
Moz = Doz * ( 2P, )(CD‘*'Z(f,ro)uRO(ro) * Zpo(ro)uRO(ro)cbl-z(f,ro))
1-¢
— = 2 = =
Nss = Pasrry * ( 2P, )(CD‘*"*(f,ro)uRO(ro) +2p O(ro)uRO(ro)cbl-‘*(f.ro))
Wl =0
W2 =0

1-¢
— N 57 2 = 57
Ws = lpz(f,ra) ( 2P. )(Lp‘*(f,ro)uRO(ro) + Zpo(ro)uRO(ro)qjl(f,ro))



And equations A.78-A.80are substituted into A.72 for the final equation for case B, the matrix form
of the three substituted equations A.70-A.72 is:

Where,

Ur 1(ry)

A pl(ro) = EW
Pi(r,)

Ay = P, ('Eo(ro)ﬁRO(To))

Al’z = 1

A1 =0
Ayp =1
Ay 3 = —yp, y-1
2,3 YPo(r,)

1-¢

— = 2 = =
Bsx = Poagpyy + ( 2P, )(¢4'1(f.ri)uR0(ri) + Zpo(ﬁ)uRO(ri)cbl'l(f.ri))

1-¢

— o 2 = =
Ns2 = Doz + ( 2P. >((D4'2(f.ri)uR0(ri) +2p O(ri)uRO(ri)(Dl'Z(f.rz))

1-¢ _ 2 o~ =
Nss = Poagrry * ( 2P, )(¢4'4(f.ri)uR0(ri) + Zpo(ﬁ)uRO(ri)cbl'4(f.ri))
Wl = 0
WZ = 0

1-¢

— (> 57 2 ~ 5
Ws ==%2000p ( 2P, )(%(f.ri)”RO(ri) + ZPO(ri)“RO(rifpl(f,ri))

A.82

After the equations are solved, the Stiffness and Damping are obtained by integrating the function of

the first-order pressure:

K= —gﬂ Re(P,)dA

A.83



C= —%ﬂ Im(P,)dA

A.84

Xi
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Appendix B

Matrix A, as a 4x4 matrix:

Ay =ho+hy B.01
Az =1 B.02
A3y =1 B.03

hg _ _ B.04

A.=p_1 (1+ha) B.05
MU DUk

hg _ _ B.06

ol ) (1+7) o
App=—P—|7—F——<+1)(1+—
4 “Po\Z.(y—-1) ho

Matrix B, as a 4x4 matrix:

Bl,l = p_oho B.08
BL4 = hOﬁRo B.09
BZ,3 = ﬁRO B.10
B3, = ug, B.11
1 B.12

B3,2 - Pcp—_

0
B —p__ L = B.13

= u
R Vi
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Matrix C, as a 4x4 matrix:

Poho
Ci3 = —
14 =
1 po
Cz,z = ;Pcﬁ_
0
Ug
C3 = TO
Ug
G = ro
1 Ug
C 70
*2 Z.(y-1 r
po( 1 )_90
C,p,=-P
i o \Z:(y — 1)

Matrix D, as a 4x4 matrix:

_ Poho dhy dpo
Pra = gty
g g dh,  dig
14 = — Ro gy + hy dro
(uao ) diig,,
Dy, = ZChO [ o fro(my (ms + 1)] —+ ar

uRO

1
D,3 = Zch [ fro ((mr + 1)(u90 - r) + Uy, ) + ﬁ_sofso ((ms + 1)11902 + ﬁSOZ)] + -

1

Dyy=—
2% 2¢pohyg

Dy, = lno” | 1 pra () )y 1 (T) )| B
317 2ch, ﬁrofro M tig, ﬁsOf Ms uR0 dr

u u
Dy, = _Ro_ wﬂo(mr

0

[ﬁrofromr(aeo - r) + ﬁSOfSanomS]

7
(m, + 1)] +2%

Xiv

B.14

B.15

B.16

B.17

B.18

B.19

B.20

B.21

B.22

B.23

B.24

B.25

B.26

B.27

B.28



1 apo ﬁRO B.29
Dy, = —P——" 7 7
3,4 Cﬁoz or + Zcﬁgho [urofromr + uSOfSOms]
1 dpo Po 1 dpy  Pollr, B.30
bmr LT (L iR fil D+ ;
4,1 CZC()/ _ 1) a_r c Do Zc()/ _ 1) + dT‘ ZChO [urofro(mr + ) + uSOf:So(mS + )]
1 1 dp, B.31
Dyp=—P—(——v+1)—=
T, (zc(y -1 ) dr
Po |- _ L B.32
D4,3 = _ﬁ [u‘rofro(ueg - r)(mr + 3) + uSOf:S()uBO(mS + 3)]
0
Po _ ( 1 )dﬁo 1 _ B.33
Dy = Py (77— +1)=— — 5 1 1
4,4 Cﬁgz uRg ZC(V _ 1) + dr ZChO [u‘ro ﬁ”g(mr + ) + uSO f:?()(ms + )]
Vector E, column vector of 4 rows:
Ey = po B.34
Po B.35
E,=—-P.—=
4 c hO
Vector F, column vector of 4 rows:
Fy = polig, B.36
Vector G, column vector of 4 rows:
G, = ﬁoﬁgo B.37
r
Vector L, column vector of 4 rows:
Upodo _ dpy  _ diig, B.38
L= T +uR0?+p0 dr
1 _ . B.39
LZ = _z[u‘rofro(m‘r - 1)(u90 - T') + usofgoueg(ms - 1)]
2ch,
URy _ B.40
L3 = —02 [u‘r‘oﬁ"g(m‘r - 1) + uSOf:S()(mS - 1)]
2chy



P ) B.41
L, = _m[urogfro(mr -+ u503f50(m5 - 1)]
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Appendix C

Matrix M, as a 4x4 matrix:
M, = poho
M, = hoﬁRo
M,;5 = ﬁRg

M;, = ﬁRg

M =P -
3,2 Cpo

1
My,=P———
2 CZC(V - 1)

Mo =R 2 (st 1)
A VACEEY o

URy,

Matrix N, as a 4x4 matrix:

Ny, = 0 gr + hg— i
Ugyho dhy diig
N1,4 = _r + ‘LLRO d + ho d + f](ho =+ h’d)
(u“’o fy, dig,
Na, = 2ch0 fro(mr +1)+2% ., % f (ms+ |+ r +7
: 1 = 24 = 2 ﬁRo .
N2s = 2chy fro <(mr +D)(9, = 1) + 0y, ) tag T (Omg + Dg? + 157 [+ =2+ £

1 _ _ _
Ny4 = 25 [urofromr(ug0 -r)+ usOfSOugoms]

C.01

C.02

C.03

C.04

C.05

C.06

C.07

C.08

C.09

C.10

C.11

C.12
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dr

+

+fi

g 2| 1 7, \° 1 TG
Ro 70 So

Ny, =——|— m,+1+ +— mg+1+

317 2ch, [amf”]( " (aRO>> ﬁsofso< s (ﬁRO)>

— ﬁRO (aeo ) ﬁeg

N33 = 2ch, [u—rofro(mr (mg+ D[+ 27

1 apO aRo — —
N3, = —F; ?? + 2¢pohe [urofromr + usofsoms]
1 dpo Po 1 dpy  Polg,
Nyy=pP———0_phf - )% Ry 3) +1 3
4,1 CZC(,V _ 1) or Do <ZC(]’ _ 1) + ) dr ZChO [urgfro(mr + ) + uSOf:So(ms + )]

ha _

+fJ 7 Polirg

0
N—Pl( ! ) P ———— ! (1+hd)
2= 20— 1D iz -\ R

Po_ - _ L ha
N4-,3 = - 2¢ch [u‘rofTo(ueg - r)(m‘r + 3) + uSOf:Soueo(mS + 3)] + f] h_p0u90
0 0

Po _ 1 dpy 1 . =
Nyy=F— e 7 Urg (m )W - Tho [ur03fr0(mr +1+ u503f50(m5 + 1)]

ffc—(ﬁ )(”ZO)

R
Vector g, column vector of 4 rows:

UgogPo  _  dpg dig,
g1 = r tu ROd +po—— dr +f]P0
1 _ _ _
g2 = 2ch 5. 2 [urofro(mr 1)(u90 - T') + uS()f:?()uBO(mS - 1)]
0

= R 1z D+ 1
gs = 2ehy? [ty o frro My — 1) + T, f5, (Mg — 1)]
ﬁO [_

gs = _Thoz ur03fro(mr -D+ ﬁSOSfSO(mS B 1)] ke hy f]
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Appendix D

This appendix shows the different cases that were taken into account when analyzing the different
cases for each case with different settings than the base cases A and B.

Case 1:

Base case: A

Offset: 0%

Parameter Value Unit
Inlet Diameter 300 mm
Outlet Diameter 560 mm
Inlet Clearance 0,6 mm
Outlet Clearance 0,3 mm
Inlet Pressure 60 bara
Outlet Pressure 45 bara
Inlet Temperature 120 C
Speed 10000 rpm
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Case 2:

Base case: A

Offset: 50%

Case 3:

Base case: A

Offset: 50%

XX

Parameter Value Unit
Inlet Diameter 300 mm
Outlet Diameter 560 mm
Inlet Clearance 0,6 mm
Outlet Clearance 0,3 mm
Inlet Pressure 60 bara
Outlet Pressure 45 bara
Inlet Temperature 120 C
Speed 10000 rpm
Parameter Value Unit
Inlet Diameter 300 mm
Outlet Diameter 560 mm
Inlet Clearance 0,6 mm
Outlet Clearance 0,3 mm
Inlet Pressure 30 bara
Outlet Pressure 15 bara
Inlet Temperature 120 C
Speed 10000 rpm




Case 4:

Base case: B

Offset: 0%

Case 5:

Base case: A

Offset: 0%

Parameter Value Unit
Inlet Diameter 560 mm
Outlet Diameter 300 mm
Inlet Clearance 0,3 mm
Outlet Clearance 0,3 mm
Inlet Pressure 120 bara
Outlet Pressure 60 bara
Inlet Temperature 120 C
Speed 10000 rpm
Parameter Value Unit
Inlet Diameter 300 mm
Outlet Diameter 560 mm
Inlet Clearance 0,6 mm
Outlet Clearance 0,3 mm
Inlet Pressure 120 bara
Outlet Pressure 60 bara
Inlet Temperature 120 C
Speed 10000 rpm

Comment: It only features one side of the bearing, the other side is assumed of presenting constant

pressure of 60 bara.
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Case 6:

Base case: A

Offset: 50%

Case 7:

Base case: A

Offset: 0%

XXii

Parameter Value Unit
Inlet Diameter 300 mm
Outlet Diameter 450 mm
Inlet Clearance 0,6 mm
Outlet Clearance 0,3 mm
Inlet Pressure 120 bara
Outlet Pressure 60 bara
Inlet Temperature 120 C
Speed 10000 rpm
Parameter Value Unit
Inlet Diameter 300 mm
Outlet Diameter 560 mm
Inlet Clearance 0,4 mm
Outlet Clearance 0,2 mm
Inlet Pressure 120 bara
Outlet Pressure 60 bara
Inlet Temperature 120 C
Speed 10000 rpm




Case 8:

Base case: A

Offset: 50%

Case 9:

Base case: A

Offset:0%

Parameter Value Unit
Inlet Diameter 300 mm
Outlet Diameter 560 mm
Inlet Clearance 0,4 mm
Outlet Clearance 0,2 mm
Inlet Pressure 120 bara
Outlet Pressure 60 bara
Inlet Temperature 120 C
Speed 10000 rpm
Parameter Value Unit
Inlet Diameter 300 mm
Outlet Diameter 560 mm
Inlet Clearance 0,6 mm
Outlet Clearance 0,3 mm
Inlet Pressure 120 bara
Outlet Pressure 60 bara
Inlet Temperature 120 C
Speed 6000 rpm

XXiii



Case 10:

Base case: A

Offset: 50%

Parameter Value Unit
Inlet Diameter 300 mm
Outlet Diameter 560 mm
Inlet Clearance 0,6 mm
Outlet Clearance 0,3 mm
Inlet Pressure 120 bara
Outlet Pressure 60 bara
Inlet Temperature 120 C
Speed 6000 rpm

Case 11:

Parameter Value Unit
Inlet Diameter 560 mm
Outlet Diameter 300 mm
Inlet Clearance 0,6 mm
Outlet Clearance 0,3 mm
Inlet Pressure 120 bara
Outlet Pressure 60 bara
Inlet Temperature 120 C
Speed 6000 rpm

Base case: B

Offset: 0%
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Case 12:

Base case: A
Offset: 50%

Comment: Smooth seal.

Parameter Value Unit
Inlet Diameter 300 mm
Outlet Diameter 560 mm
Inlet Clearance 0,6 mm
Outlet Clearance 0,3 mm
Inlet Pressure 120 bara
Outlet Pressure 60 bara
Inlet Temperature 120 C
Speed 6000 rpm
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Appendix E

Results for Zeroth Order Equation

E.1 Offset cases

Case A: Higher clearance

T T T T T T T T
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——- matlab
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Figure E.01. Pressure of the flow along the radius for case A at the higher clearance side with
11,02% mean percentage error.
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Figure E.02. Temperature of the flow along the radius for case A at the higher clearance side with
5,94% mean percentage error.
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Figure E.03. Radial Velocity of the flow along the radius for case A at the higher clearance side.
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Figure E.04. Circumferential velocity of the flow along the radius for case A at the higher clearance

side.
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Case A: Lower Clearance
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Figure E.05. Pressure of the flow along the radius for case A at the lower clearance side with 4,81%

mean percentage €rror.
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Figure E.06. Temperature of the flow along the radius for case A at the lower clearance side with

1,41% mean percentage error.
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Figure E.07. Radial Velocity of the flow along the radius for case A at the lower clearance side.
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Figure E.08. Circumferential velocity of the flow along the radius for case A at the lower clearance

side.
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Case B: Higher Clearance
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Figure E.9. Pressure of the flow along the radius for case B at the higher clearance side with 2,48%
mean percentage etror.
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Figure E.10. Temperature of the flow along the radius for case B at the higher clearance side with
2,33% mean percentage errof.
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Figure E.11. Radial Velocity of the flow along the radius for case B at the higher clearance side.
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Figure E.12. Circumferential velocity of the flow along the radius for case B at the higher clearance

side.
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Case B: Higher Clearance
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Figure E.13. Pressure of the flow along the radius for case B at the lower clearance side with
1,1763% mean percentage error.
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Figure E.14. Temperature of the flow along the radius for case B at the lower clearance side with
2,76% mean percentage errof.
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Figure E.15. Radial velocity of the flow along the radius for case B at the lower clearance side.
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Figure E.16. Circumferential Velocity of the flow along the radius for case B at the lower clearance

side.
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E.2 Sensitivity test for case A
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Figure E.17. The leakage variation with compressibility factor for case A for centered and offset
position.
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Figure E.18. The thrust force variation with compressibility factor for case A for offset position.
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Figure E.19. The leakage variation with heat capacity ratio for case A for centered and offset
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Figure E.20. The thrust force variation with heat capacity ratio for case A for offset position.
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Figure E.21. The leakage variation with preswitl ratio for case A for centered and offset position.
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Figure E.22. The thrust force variation with preswitl ratio for case A for offset position.
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E.3 Sensitivity test for case B
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Figure E.23. The leakage variation with compressibility factor for case B for centered and offset
position.
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Figure E.24. The Thrust force variation with compressibility factor for case B for offset position.
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Figure E.25. The leakage variation with heat capacity ratio for case B for centered and offset
position.
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Figure E.26. The Thrust force variation with heat capacity ratio for case B for offset position.
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Figure E.27. The leakage variation with preswirl ratio for case B for centered and offset position.
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Appendix F

Case A: Centered

ns=0,0785/ms=-0,1101
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Figure F.01. Stiffness vs axial frequency at ns=0,0785/ms=-0,1101 for case A centered position.
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ns=0,0785/ms=-0,1101
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Figure F.02. Damping vs axial frequency at ns=0,0785/ms=-0,1101 for case A centered position.
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Figure F.03. Stiffness vs axial frequency at ns=0,0776/ms=-0,1465 for case A centered position.
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ns=0,0776/ms=-0,1465
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Figure F.04. Damping vs axial frequency at ns=0,0776/ms=-0,1465 for case A centered position.
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&0
- 50
\ B
E
i ¢ - 30
RN
£ = ——
’ O O O i ] L ag
’ e e -i'_--_' -
r 10
ﬂ ]
] 20 40 60 80 100 120 140 180 180

Axial Frequency [Hz]

—&— CFD —W— arearatio=l —— arearatio=0.56 ---#&-- error area ratio =1 - - error area ratio=0.56

Figure F.05. Stiffness vs axial frequency at ns=0,0973/ms=-0,1277 for case A centered position.
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ns=0,0973/ms=-0,1277
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Figure F.06. Damping vs axial frequency at ns=0,0973/ms=-0,1277 for case A centered position.

ns=0,0586/ms=-0,217
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Figure F.07. Stiffness vs axial frequency at ns=0,0586/ms=-0,217 for case A centered position.
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ns=0,0586/ms=-0,217
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Figure F.08. Damping vs axial frequency at ns=0,0586/ms=-0,217 for case A centered position.
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Figure F.09. Stiffness vs axial frequency at ns=0,1247/ms=-0,047 for case A centered position.
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ns=0,1247/ms=-0,047
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Figure F.10. Damping vs axial frequency at ns=0,1247/ms=-0,047 for case A centered position.
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Figure F.11. Stiffness vs axial frequency at ns=0,0612/ms=-0,044 for case A centered position.
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ns=0,0612/ms=-0,044
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Figure F.12. Damping vs axial frequency at ns=0,0612/ms=-0,044 for case A centered position.
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Figure F.13. Stiffness vs axial frequency at ns=0,032/ms=0,077 for case A centered position.
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Figure F.14. Damping vs axial frequency at ns=0,032/ms=-0,077 for case A centered position.

Case A: Offset

ns=0,0785/ms=-0,1101
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Figure F.15. Stiffness vs axial frequency at ns=0,0785/ms=-0,1101 for case A 50% offset position.
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Figure F.16. Damping vs axial frequency at ns=0,0785/ms=-0,1101 for case A 50% offset position.

ns=0,0776/ms=-0,1465
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Figure F.17. Stiffness vs axial frequency at ns=0,0776/ms=-0,1465 for case A 50% offset position.
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Figure F.18. Damping vs axial frequency at ns=0,0776/ms=-0,1465 for case A 50% offset position.
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Figure F.19. Stiffness vs axial frequency at ns=0,0973/ms=-0,1277 for case A 50% offset position.
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Figure F.20. Damping vs axial frequency at ns=0,0973/ms=-0,1277 for case A 50% offset position.
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Figure F.21. Stiffness vs axial frequency at ns=0,0586/ms=-0,217 for case A 50% offset position.
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Figure F.22. Damping vs axial frequency at ns=0,0586/ms=-0,217 for case A 50% offset position.
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Figure F.23. Stiffness vs axial frequency at ns=0,1247/ms=-0,047 for case A 50% offset position.
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Figure F.24 Damping vs axial frequency at ns=0,1247/ms=-0,047 for case A 50% offset position.
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Figure F.25. Stiffness vs axial frequency at ns=0,0612/ms=-0,044 for case A 50% offset position.
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Figure F.26. Damping vs axial frequency at ns=0,0612/ms=-0,044 for case A 50% offset position.
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Figure F.27. Stiffness vs axial frequency at ns=0,032/ms=0,077 for case A 50% offset position.
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Figure F.28. Damping vs axial frequency at ns=0,032/ms=0,077 for case A 50% offset position.

Case B: centered

ns=0,0785/ms=-0,1101
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Figure F.29. Stiffness vs axial frequency at ns=0,0785/ms=-0,1101 for case B centered position.
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Figure F.30. Damping vs axial frequency at ns=0,0785/ms=-0,1101 for case B centered position.
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Figure F.31. Stiffness vs axial frequency at ns=0,0776/ms=-0,1465 for case B centered position.
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Figure F.32. Damping vs axial frequency at ns=0,0776/ms=-0,1465 for case B centered position.
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Figure F.33. Stiffness vs axial frequency at ns=0,0973/ms=-0,1277 for case B centered position.
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Figure F.34. Damping vs axial frequency at ns=0,0973/ms=-0,1277 for case B centered position.
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Figure F.35. Stiffness vs axial frequency at ns=0,0586/ms=-0,217 for case B centered position.
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Figure F.36. Damping vs axial frequency at ns=0,0586/ms=-0,217 for case B centered position.
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Figure F.37. Stiffness vs axial frequency at ns=0,1247/ms=-0,047 for case B centered position.

Ixi



ns=0,1247 /[ms=-0,047

100
\ - 98
- 96
N - o4
—
N T—— | I
'E' * e Y —
- B - e v =
2 e 0 5
— N Y S =
= S an e [ N -y i}
- N B e - 88
£
& . - 86
.
“
~ - 84
- * — |
N - B2
%_#f— %‘ -
[} 30
o 20 40 80 30 100 120 140 160 180
Axial Frequency [Hz]
—&— CFD —#— area ratio=1 —— area ratio=0.56
----k---error area ratio =1 — M—-error area ratioc=0.56

Figure F.38. Damping vs axial frequency at ns=0,1247/ms=-0,047 for case B centered position.
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Figure F.39. Stiffness vs axial frequency at ns=0,0612/ms=-0,044 for case B centered position.
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Figure F.40. Damping vs axial frequency at ns=0,0612/ms=-0,044 for case B centered position.
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Figure F.41. Stiffness vs axial frequency at ns=0,032/ms=0,077 for case B centered position.
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Figure F.42. Damping vs axial frequency at ns=0,032/ms=0,077 for case B centered position.

Case B: Offset

ns=0,0785/ms=-0,1101
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Figure F.43. Stiffness vs axial frequency at ns=0,0785/ms=-0,1101 for case B 50% offset position.
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Figure F.44. Damping vs axial frequency at ns=0,0785/ms=-0,1101 for case B 50% offset position.

ns=0,0776/ms=-0,1465

1 [
i e - :#——r i_.——-
_L“-‘-"'--.-: ::: :‘::‘ |
"'-E-.. t..'\ | |
z x‘\.h ,/f
w e
| _____.__4r”/ S B
£ el .
T o M
= | | B
o]
(0] 20 40 60 30 100 120 140 160 180
Axial Frequency [Hz]
—&— CFD —— area ratio=1 —— grea ratio=0.56
---&--- error area ratio=1 — - error area ratio=0.56

140

120

100

3

Error [3]

20

o

Figure F.45. Stiffness vs axial frequency at ns=0,0776/ms=-0,1465 for case B 50% offset position.
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Figure F.46. Damping vs axial frequency at ns=0,0776/ms=-0,1465 for case B 50% offset position.
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Figure F.47. Stiffness vs axial frequency at ns=0,0973/ms=-0,1277 for case B 50% offset position.
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Figure F.48. Damping vs axial frequency at ns=0,0973/ms=-0,1277 for case B 50% offset position.
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& 140
——— "lv-.--.m__,l:‘ - 12ﬂ
M_' '--".;:__‘
——

- g - 100
£ %
£ -, | =
=, h - B0 &
i S T
= g
= *___________.__*’/A \\‘ - 60 &
E _—1 L

' | |

40
- 20
o o
0 20 40 60 80 100 120 140 160 150
Axial Frequency [Hz]
—— CFD —8— arearatio=1 —— area ratio=0.56
---4k--- error area ratio=1 —#l— error area ratio=0.56

Figure F.49. Stiffness vs axial frequency at ns=0,0586/ms=-0,217 for case B 50% offset position.
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Figure F.50. Damping vs axial frequency at ns=0,0586/ms=-0,217 for case B 50% offset position.
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Figure F.51. Stiffness vs axial frequency at ns=0,1247/ms=-0,047 for case B 50% offset position.
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Figure F.52. Damping vs axial frequency at ns=0,1247/ms=-0,047 for case B 50% offset position.
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Figure F.53. Stiffness vs axial frequency at ns=0,0612/ms=-0,044 for case B 50% offset position.
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Figure F.54. Damping vs axial frequency at ns=0,0612/ms=-0,044 for case B 50% offset position.
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Figure F.55. Stiffness vs axial frequency at ns=0,032/ms=0,077 for case B 50% offset position.
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Figure F.56. Damping vs axial frequency at ns=0,032/ms=0,077 for case B 50% offset position.
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Appendix G

Table G.01. Comparison in results using ISOTSEAL and the algorithm in Matlab for annular gas

seals.

Parameter units Case 1 Case 11 Case 111 Case IV
Reservoir Pressure bar 70 70 70 70
Sump Pressure bar 31,50 31,50 31,50 50,00
Reservoir Temperature C 17,40 17,40 17,40 17,40
Rotational speed rpm 6000 20200 20200 20200
seal diameter mm 114,74 114,74 160 114,74
seal length mm 85,7 85,7 85,7 85,7
Inlet clearance mm 0,4745 0,35 0,4745 0,4745
Exit clearance mm 0,2102 0,2102 0,2102 0,2102
entrance loss coefficient - 0 0 0 0
exit recovery factor - 1 1 1 1
absolute viscosity Ns/m” 1,88E-05 1,88E-05 1,88E-05 1,88E-05
Molecular weight kg/kmol 28,96 28,96 28,96 28,96
Z - 1 1 1 1
Leakage (ISOTSEAL) kg/s 0,7063 0,5986 0,9488 0,5683
Leakage (MATLAB) kg/s 0,7059 0,6006 0,9501 0,5694
Error % 0,06 0,33 0,14 0,19
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Appendix H

Isothermal flow

The zeroth-order equations for isothermal flow are:
Continuity equation

dp, ditg, dhy | _ H.01
pohor —— i + pohor —— ar +P0uR0 I + Potgyho = 0

Circumferential momentum equation

dug Ug Ughy 1 L o H.02
Ugyho d T r ; Z[frouro(u(’o - r) + ﬁSOuSOueo] =0
Radial momentum equation
dpo Po R dilg T2 H.03
h PC dr + . (fr'ou‘ro + f:S()uSO) + pOhOuRO dr 2 — pOhO rO =0

Three equations are needed because it has been assumed that temperature is constant and therefore
density is a function of the pressure.

The following tables show the comparison in errors for the isothermal and adiabatic cases.

Table H.01. Errors for leakage at case A centered

Error ISOTHERMAL) Error (ADIABATIC)
[%] [%]
+535 +6,53

Table H.02. Errors for leakage at case A 50% offset.

Error ISOTHERMAL) Error (ADIABATIC)
[%] [%]
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+4.22 +4.95

Table H.03. Errors for Thrust force at case A 50% offset.

Error ISOTHERMAL) Error (ADIABATIC)
[%] [%]
+27,83 +27,83

Table H.04. Errors for leakage at case B centered.

Error ISOTHERMAL) Error (ADIABATIC)
[%] [%]
+7,51 +5,50

Table H.05. Errors for leakage at case B 50% offset.

Error ISOTHERMAL) Error (ADIABATIC)
[%] [%]
+11,14 +9.73

Table H.06. Errors for Thrust force at case B 50% offset.

Error ISOTHERMAL) Error (ADIABATIC)
[%] [%]

+120 +171




