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Summary

The aim of this thesis is to build a theoretical approach which allows to
describe the behavior of fluid during evaporation and condensation in multi-
component systems. We consider isotropic non-polarizable mixtures. We
have developed the description of the surface using continuous non-equilibrium
thermodynamics and established the link to the macroscopic non-equilibrium
thermodynamics of surfaces, which uses excess densities and fluxes. The
present analysis for the mixture’s surface generalizes the equilibrium square
gradient model and the non-equilibrium description of one-component systems.

The thesis is based on four articles. Within this work we have addressed three
major issues. First, we have established an analytical continuous description
of an interfacial region between two different phases of a mixture under non-
equilibrium conditions. Next, we have verified numerically the possibility to
describe the non-equilibrium surface as a separate phase. Finally, we have
investigated the connection between transport properties of a mixture inside
an interfacial region and those for the whole surface, both analytically and
numerically.

Within the continuous approach we have gone through a number of steps.
First, the equilibrium thermodynamic behavior in the interfacial region was
established. We used the square gradient theory as a model which describes
thermodynamic phenomena in the interfacial region. It has been widely used
for one-component equilibrium systems and has been extended to mixture
interfaces. Next, we extended the description to non-equilibrium. The non-
equilibrium Gibbs relation has been postulated and we discussed how the
gradient theory motivates the chosen form of this equation. The expression
for the entropy production, which gives one information about the measure
of the irreversibility everywhere in the interfacial region, has been obtained.
We have discussed how the gradient description breaks the three-dimensional
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isotropy of a mixture inside the interface. The resulting linear laws relating
the forces and the fluxes were given. Having this approach established we have
gotten the complete continuous description of a two-phase mixture under non-
equilibrium conditions. The theory was applied to and solved for a particular
mixture of cyclohexane and n-hexane. The details of the numerical procedure
were discussed and resulting profiles of various thermodynamic quantities were
obtained.

Another focus of the thesis was to make a link to the macroscopic description of
transport through a surface. Within this approach a surface in non-equilibrium
is treated as a separate phase which has its own thermodynamic properties,
such as the temperature or the excess density. This hypothesis is called
local equilibrium of a Gibbs surface. This is a simplifying assumption about
the behavior of real systems which is physically elegant. With the help of
the continuous gradient description we have verified the hypothesis of local
equilibrium of a surface for a binary mixture.

The macroscopic approach uses interfacial resistances to heat and mass transfer
through the surface as parameters of the theory. The continuous description
allowed us to obtain these coefficients directly and gave insight of the nature of
these coefficients. With the help of the continuous description we obtained the
excess entropy production of the whole surface and the resulting linear laws.
The interfacial resistances have been evaluated both numerically and with the
help of derived integral relations. By comparison with results from kinetic
theory it was shown that the continuous resistivity profiles have a peak in the
interfacial region. We have also shown that the interfacial resistances depend
among other things on the enthalpy profile across the interface. The enthalpy
of evaporation is one of the main differences between liquid and vapor phases
and therefore the interface is important for the resistance to heat and mass
transfer.
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Chapter 1

Introduction

1.1 Motivation and scope

Evaporation and condensation phenomena happening in mixtures are very
important in many industrial applications. A distinct example is distillation.
A typical distillation column consists of several stages at which separation of
components happens: more volatile components turn to the gas phase, less
volatile turn to the liquid phase.

Evaporation and condensation take place through the surface. In order to
describe these phenomena one needs to understand processes which happen at
the surface. The surface is a special thermodynamic system. It contains very
few particles, so that its width is about a few molecular diameters. On the
other hand this is a transition region from gas to liquid, the existence of which
one may not neglect. There are clear observable effects which are only due to
the existence of this region, for instance, the surface tension.

During these processes heat and mass transfer take place simultaneously. Non-
equilibrium thermodynamics is a natural tool to describe these phenomena.
It gives a systematic derivation of the necessary relations between the
temperature and chemical potential (pressure) differences across the surface in
terms of the heat and mass fluxes through the surface. Within this framework,
the transport through the surface is determined by the transfer coefficients,
which are the proportionality factors in a linear relations between the forces
and the fluxes. It is therefore important to investigate how evaporation and
condensation depend on the values of the interfacial coefficients. There is, for
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instance, evidence [6, 14] that coupling of heat and mass transfer is much more
important in the interfacial region than in the description of non-equilibrium
processes in the bulk phase. It can be shown that neglecting these coupling
effects, as is often done, is equivalent to neglecting the enthalpy differences in
the two phases for the components involved [6].

There are several methods to investigate surface phenomena. They may be
classified by the applied tool: theoretical, experimental or computational, —
or by scale: macroscopic, microscopic and mesoscopic. Each of these methods
has advantages and disadvantages.

1.1.1 Experiments

In experiments one can measure directly the thermodynamic forces which one
applies to the system and the resulting thermodynamic fluxes [15-17] or the
heat of transfer [14, 18|.

A spatial resolution of most of the experiments is such that it is not possible
to get the details about the temperature distribution in the interfacial region.
For instance, the experiments of Badam et al. [17] have a resolution of about
10 pm. They are basically macroscopic.

Experiments are expensive to set up. They also require to treat each system at
any set of various conditions. As the number of possible mixtures being used
in applications is very big as well as the range of conditions they are applied
to is very wide, it becomes very inconvenient to use experiments as the only
source of transport data.

1.1.2 Computer simulations

Another source of the data are computer simulations. Non-equilibrium
processes are described well by non-equilibrium molecular dynamic simulations
[19-22]. The motion of each molecule is determined mechanically by Newton’s
equation. Each particle moves in the potential field which is created by all
other particles. Usually this is a kind of Lennard-Jones(LJ) potential, which
is known to represent well the interactions in the fluid.

There are a few problems with molecular dynamics as well. Given the
exact interaction potential between molecules one may in principle determine
the motion of all the molecules exactly. The interaction potential between
molecules is long-range and in order to get correct data one may not restrict
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oneself by only the interaction with nearest neighbors. In principle one should
take into account interaction of each molecule with all other molecules. In
contrast to hard-sphere gas, molecules in which interact only during collision,
effects in real fluids are described by taking into account the whole LJ-potential,
including its "tail". In order to save on computer time, one uses a cut-off LJ-
potential, however. This leads to considerable error in the determination of,
for instance, the surface tension [23]. Also the value of the transfer coefficients
for the surface depend strongly on this cut-off [22].

Another restriction in molecular dynamics, which is limited by the
computational power, is the number of molecules. Taking into account all
the interactions between the molecules, not many molecules can be treated in
simulations. Typically, it is 10% — 10% particles. Since the interfacial region is
very thin, the typical number of particles which actually "belong" to this region
might be small compared to this number. One should be careful applying
thermodynamic statements to such systems.

1.1.3 Theory

For a meaningful interpretation of experiments or simulations it is important
to have a theory. The experiments and simulations also verify or reject the
validity of the theory. Depending on the length scales involved there are several
levels of description.

i) Microscopic approach

On a microscopic level one considers separate molecules. They are treated
using statistical mechanical methods or using the equation of motion of
separate particles [24]. If the number of particles is big enough, their behavior is
determined by collective properties, which are studied by statistical mechanics.
The Green-Kubo relations relate bulk transport coefficients to equilibrium
correlation functions of the system. There are several difficulties when building
the statistical description for surfaces. As it was said, the number of molecules
in the interfacial region is not big, so it is inappropriate to apply the ordinary
bulk approach there. The boundaries of the interfacial region need to be
specified. Such a specification identifies the system one works with. The
major problem is related to the fact that the density distribution in equilibrium
interfacial region is not uniform: it varies from a low value in the gas phase to
a large value in the liquid phase.

Another microscopic approach is to use kinetic theory to describe transport
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through the surface. Originally it was built for ideal gases of hard spheres. The
results of this approach should therefore be most appropriate when the density
of the gas is low and the interaction potential is short range. Simulations
confirm this [22, 25].

it) Mesoscopic approach

On a mesoscopic level one consider small volume elements with a nanometer
size. This allows to introduce field variables, such as local density or local
temperature. These variables are the averages of some microscopic properties
over a small volume. They depend continuously on the position and time. An
important example of the mesoscopic approach is the square gradient model,
which is the subject of this thesis. It makes it possible not only to describe
fluctuations near critical point in the homogeneous phases, but also to give a
detailed description of the interfacial region at temperatures far from critical
temperature. In Subsec. 1.3.1 we will give a short introduction to the square
gradient model.

There are many problems for which mesoscopic non-equilibrium
thermodynamics is relevant. We refer to the monograph of de Groot
and Mazur [5, pp. 226-234] for an introduction in this method.

iit)  Macroscopic approach

On a macroscopic level of description of a homogeneous phase one considers
the thermodynamic properties averaged over the whole system. In the
thermodynamic limit (i.e. infinite volume and quasistatic processes) this
gives the exact properties of a system. In non-equilibrium systems all the
properties vary in space and in time. Everywhere the system may be assumed
as being in local equilibrium, which makes a description using non-equilibrium
thermodynamics possible.

In the description of the transport properties through the interface one may
consider the interfacial region as a separate phase. The origin of this idea
comes from equilibrium, where the surface can be described by the Gibbs
excess densities. The coexistence between liquid and vapor implies therefore
the existence of the Gibbs surface which modifies the thermodynamics of a
system. This approach uses the fact that the system is in equilibrium, i.e. the
temperature profile as well as the chemical potentials are constant through
the homogeneous phases and the interface. This is not the case for non-
equilibrium systems. One may however simplify the description assuming that
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it is possible to assign a temperature and a chemical potential to the surface.
Thus a non-equilibrium system with an interface may be considered as three
adjacent macroscopic phases: gas, interface, and liquid. The transport in such
systems has been extensively studied using non-equilibrium thermodynamics
in the monograph by S.Kjelstrup and D. Bedeaux [6]. In Subsec. 1.3.2 we give
some further introductory remarks about this approach.

1.1.4 Multi-component systems

Evaporation of a single component is already a difficult problem. All the
statements given above are true for such system. It becomes even more difficult
when one wants to describe multi-component evaporation and condensation.
One needs to take into account effects which are present due to mixing. This
is limited not only to the use of special mixing rules. The presence of special
components may favor another component to accumulate in the surface, i.e.
adsorption. Other components may favor the homogeneous phases.

1.2 Structure of the thesis

1.2.1 Nomenclature
i) Notation convention

In this thesis we study the interface between multi-component phases, gas and
liquid, using the continuous mesoscopic approach. The continuous description
uses the field variables such as the temperature T'(r, t) of the velocity v(r, t)
at a particular position r in a specified time t. We refer to Appendix A for the
description of the symbols and nomenclature used in the thesis.

The field description also uses specific (i.e. per unit of mass or per unit of
mole) quantities such as the specific infernal energy. It is common in physics
to make the derivation in mass specific units while chemists use molar specific
units. The equilibrium properties are usually given in molar units while the
dynamics is usually described in mass units. While these two descriptions are
equivalent in equilibrium, it is extremely inconvenient to use molar units in
non-equilibrium. The main reason for this is the equation of motion, which
is essentially given for mass units. For one-component fluids the form of this
equation in molar units is the same as in mass units, since the molar mass
M is a constant number. The molar mass of mixtures, to be defined below,
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depends, in general, on position and time. The form of the equation of motion
in molar units is therefore different from the one in mass units. Another reason
is the use of the barycentric velocity, i.e. the velocity of the center of mass,
for the description of the dynamics of the system. The use of an alternative
velocity, like the molar velocity, does not eliminate these inconveniences.

In view of that, we will use mass specific units everywhere in this thesis if
not specified the opposite. Thus, most of derivation is done in mass specific
units. We will use the molar units when we speak about the homogeneous
thermodynamics in Sec. 3.4 and in some other places where we specify it
explicitly. Furthermore we give the numerical results mostly in molar specific
units. These are the numerical profiles in Sec. 4.5 and the whole Chapter 5.
For a specific quantity g we will use superscript v, if it is a specific quantity
per unit of mole, and superscript m, if it is a specific quantity per unit of mass.
If a specific quantity ¢ is used without any of these superscripts, it is a mass
specific quantity.

Some aspects of the description require the use of densities, i.e. quantities per
unit of volume. We will use superscript v to indicate a density per unit of
volume. Thus, for internal energy, u™ or u is the mass specific internal energy,
u” is the molar specific internal energy, and u" is internal energy density per

unit of volume.

We use common symbols for mass and molar densities. Thus, p is the mass
density of the mixture per unit of volume and c is the molar density of
the mixture per unit of volume. Furthermore p; and ¢;, where i = 1,n
are, respectively, the mass and the molar density of the i-th component.
Apparently, p = ¢ M and p; = ¢; M; where M and M; are, respectively, the
molar mass of the mixture and the molar mass of component ¢. While the
molar masses of the components are constants, the overall molar mass is not.

We will use the mass and the molar fractions which are defined, respectively, as
& = pi/p and ¢; = ¢;/c. It follows therefore that M = >"" | (; M;. In general,
for any specific quantity like, for instance, the internal energy, u = > 1" | & u;,
where u; is the partial internal energy of component .

ii) Naming convention

Within the thesis we will use the terms interfacial region, interface, surface
as synonyms. We will also use the terms bulk and homogeneous phase as
synonyms. The latter should not be confused with a pure one-component
fluid.
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In an n-component mixture there are n + 2 independent thermodynamic
variables, for instance, the temperature, the pressure and n masses of
components. However, a continuous description implies only n+ 1 independent
thermodynamic variables, since all the extensive variables are scaled by either
total mass, total number of moles, or total volume. All the variables become
intensive therefore. We will nevertheless continue to call the quantities like
the mass densities or the partial internal energy the ertensive quantities to
distinguish them from the quantities like the temperature or the chemical
potentials, which we will continue to call intensive.

In this thesis we are not focused on the specific mixing conditions and other
related issues. We will therefore use the terms partial quantity, partial specific
quantity, and specific quantity of component ¢ as synonyms. The latter should
not be confused with the specific quantity of the pure component 3.

Because of the identity > " ;& = 1, many thermodynamic relations contain
combinations g; — ¢, of the partial specific quantity ¢. For instance, as we
will see further, the combination u; — u, is very common both in equilibrium
thermodynamics and in the description of the transport processes. We will
therefore define ¢; = p; — pp, and call ¥; the reduced chemical potential of
component ¢ or the chemical potential difference of component 3.

All the derived equations must be Galilean invariant, i.e. independent of
the frame of reference. Moreover all the measurable quantities must be
independent of the reference state for the definition of the thermodynamic
potentials. We use this observation in order to distinguish between the
measurable heat flux, the heat flur, and the total energy flur as well as
between the corresponding resistivities. We address and discuss these issues in
Chapter 3.

We use the term resistivities to describe phenomenological coefficients in
local force-flux relations written on mesoscopic level, while we use the term
resistances to the describe the phenomenological coefficients in force-flux
relations written for the whole surface. The former are used starting from
Chapter 3, while the latter appear in Chapter 6 for the first time.

1.2.2 Overview of the thesis

There have been prepared 4 articles [1-4] the contents of which are presented
(with some modifications) in the following 7 chapters. Here we give a brief
review of the thesis.
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In the next section we give a review of the state of the art in the description
of the the surfaces using the square gradient theory and an overview of the
macroscopic non-equilibrium thermodynamics for surfaces. In the subsequent
chapters we focus on particular topics of our work. Each issue addressed there
has a detailed introduction and conclusion with relevant references.

In Chapter 2 we discuss the equilibrium interfacial thermodynamics using the
square gradient theory for mixtures. The equilibrium square gradient theory
of a single component has been developed over many years and we give an
overview in the introduction to the chapter. Less work has been done for
mixtures, however. We derive all the properties and relations required for the
subsequent analysis. We give explicit expressions for the pressure tensor and
other thermodynamic quantities for multi-component systems in the interfacial
region. To our knowledge, many of these expressions were not given earlier for
mixtures. We also focus on the Gibbs relation in the surface and discuss its
difference from the one in the bulk.

In Chapter 3 we build the general non-equilibrium description for the interfacial
region. It requires the hydrodynamic equations, equilibrium thermodynamics,
and the phenomenological force-flux relations. We use the usual hydrodynamic
conservation laws. Equilibrium thermodynamics for mixtures requires, in
its turn, the square gradient model and the homogeneous mixture theory.
The former one, being developed in Chapter 2 is extended directly to the
non-equilibrium case. It requires, among other things, postulating the
Gibbs relation, and we discuss this issue. A particular mixture theory of a
homogeneous fluid is not a focus of this thesis, so we consider one-fluid model
for mixtures as being satisfactory for most of the practical purposes. Using the
non-equilibrium Gibbs relation and the balance equations we obtain expression
for the entropy production for the mixture’s surface. The linear force-flux
relations, which come from the expression for the entropy production, require
the consideration of the surface symmetry. The three-dimensional isotropy of
the fluid is broken and we discuss in detail the two-dimensional isotropy of the
surface and the resulting phenomenological relations.

In Chapter 4 we study a particular binary mixture, which contains cyclohexane
and n-hexane as components. We give an extensive description of numerical
procedure used to solve a system of non-linear differential equations. We choose
a particular point in the phase diagram as initial coexistence state and perturb
the system out of equilibrium. We study the behavior only in the neighborhood
of this state and do not go to all possible domains in the phase diagram. As a
result, we give continuous profiles of various thermodynamic quantities which
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this mixture has in the interfacial region.

In Chapter 5 we focus on the surface property which is important for
macroscopic description of interfaces. We perform a numerical verification of
the hypothesis of local equilibrium for the surface. The numerical analysis
makes it possible to discuss in detail what local equilibrium implies for a
surface.

In Chapter 6 and subsequent chapters, we focus on the overall surface resistance
to heat and mass transfer through the surface. This is done for stationary
states as the commonly used condition in many applications. It is therefore
interesting to study this case separately. We do it with no restrictions to
a particular mixture. The local resistivities in the interfacial region are not
measurable, so it is desired to investigate the effect of the whole surface, which
is given by the overall resistances. Moreover, these coefficients are important
in the macroscopic approach where one uses the hypothesis of local equilibrium
for the surface and considers therefore the surface as a separate phase.

In Chapter 7 and Chapter 8 we derive the expressions for the overall surface
resistances given the local expressions for the resistivities. In Chapter 7 the
surface resistances are obtained from the non-equilibrium forces and fluxes
through the surface. This is done using two different methods and the results
are compared to the results of kinetic theory. In Chapter 8 we obtain the
surface resistances directly from the local resistivity profiles using integral
relations. This also requires the equilibrium coexistence profiles but not the
non-equilibrium ones. We consider these methods for an arbitrary binary
mixture, they can easily be generalized to multi-component systems. We then
again study the numerical values of the surface resistances for the mixture of
cyclohexane and n-hexane.

Finally, in Chapter 9 we give concluding remarks to the whole thesis and
possible directions for further research.

1.3 Non-equilibrium thermodynamics of a surface
1.3.1 The square gradient theory

The square gradient model has been used for many years to describe
phenomena related to coexistence of different phases. It originates from van der
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Waals [7] who in 1893 introduced a nonlocal contribution to the Helmholtz free
energy density of coexisting vapor and liquid (see also translation by Rowlinson
[8]). In 1901 Korteweg [26] introduced a nonlocal contribution to the stress
tensor to describe the dynamics of moving fluids (see also Appendix 2.B).
In 1950 Ginzburg and Landau [27] introduced a nonlocal contribution to the
Hamiltonian to describe a superconductor near the critical point. Finally, Cahn
and Hillard in 1958 [9] used a nonlocal contribution to the Helmholtz energy
do describe a liquid-liquid interface of a binary mixture.

In contrast to the description of a surface which assumes existence of a sharp
boundary between two phases, it is assumed in the square gradient theory that
all the quantities vary smoothly within a very thin interfacial region. Thus,
the fluid behavior at any position r is determined not only by the local density
¢(r) but also by the densities in the nearest surroundings. This is accounted
by allowing the system’s Hamiltonian depend on density gradients. Usually,
the gradients of higher order then two are neglected, and the Helmholtz free
energy of an isotropic fluid is written as

P(Ts6) = FTs )+ [ den(o.7) Vo0 (1)

where k is some coefficient which in general depends on the density and the
temperature, and Fy is the local part of the Helmholtz energy.

The square gradient model is very fruitful since it allows to describe many
different phenomena related to the surface. Among them are theory of
capillarity [28, 29|, critical phenomena and spinodal decomposition [30, 31|,
dynamic phase separation [32-34|, mixture diffusion [35-38|, heat transport
[10, 39, 40|, etc. This made the square gradient model to be also known
as the van der Waals square gradient model, the H-model, diffuse-interface
model, phase-field model, fluctuations model. It has been widely applied both
to equilibrium and non-equilibrium phenomena. It has also been used for
liquid-vapor, liquid-liquid, and liquid-solid interfaces. We refer to the above
articles and references therein for deeper review.

Different areas of focus of the square gradient model imply different
approximations. Thus, for the mixing phenomena one often assumes that
fluids are incompressible or immiscible [35]. In many dynamical problems it is
assumed that the temperature is constant [31] throughout the system. Both
of the assumptions are not unreasonable and reflect the applications these
descriptions are used for. However, this restricts the system to such conditions
where there is no heat flow or fluids may mix only in the interfacial region.
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Many of the approaches, which take into account both the temperature and
density variations in non-equilibrium, assume no coupling between heat and
mass transfer [39] which is expected to be important in the interfacial region
[6]. Some of the approaches perform the analysis in general but make the above
simplifications for a specific application [33, 37]|.

Most of the extensions of the square gradient model assume only one variable
to be treated as the order parameter in the interfacial region. This is either the
density in a one-component fluid or the fraction of one of the components in a
binary mixture. Thus, these analyses are restricted in number of components
to two. This does not govern such industrial applications as distillation, where
the number of components may be large.

Another issue, which is important in the thermodynamic non-equilibrium
description, is the Gibbs relation. It is probable, that because of the gradient
contributions to the Helmholtz energy, the Gibbs relation would also have
such contributions. Many of the descriptions use the local form of the Gibbs
relation.

In this thesis we try to establish a systematic approach which is free of most
simplifications. We follow the method of irreversible thermodynamics stated
in [5] for homogeneous systems. It requires a consecutive coverage of the
equilibrium thermodynamics and equation of state, the hydrodynamics of a
fluid, the Gibbs relation, the entropy production and the phenomenological
force-flux relations.

1.3.2 Macroscopic transport

A different way to describe a surface is using the excess quantities.
This approach originates from Gibbs [41], who introduced the excesses
of thermodynamic densities in equilibrium. A two-phase system is then
considered as two homogeneous phases separated by a surface phase. The
intensive properties, such as the temperature, are constant throughout the
system in equilibrium. All three phases, two bulk phases and surface, have the
same values of these properties. The extensive properties of the bulk phases,
such as the density, are determined by the coexistence conditions. The excess
densities play the role of the extensive properties for the surface. Spatially
they are described by, respectively, the constant values in either bulk phase
and singular (d-function like) excesses at the dividing surface.

During evaporation and condensation heat and mass is transported through
the interface. The common description of these phenomena uses certain
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assumptions which are debatable.  For instance, one usually assumes
equilibrium conditions at the interface [42]. This is a zero approximation and
it is desirable to extend it to a more accurate theory.

It is possible to describe the interface using the excess densities in non-
equilibrium [43]. It is, however, more complicated since the intensive properties
are no longer constant throughout such a system. Omne has to use the local
equilibrium hypothesis, assuming that every small element of the fluid is in
local equilibrium. For the surface it implies that one may speak about the
temperature of the surface 7% and the chemical potentials of the surface p,
which are related by the usual thermodynamic relation

n
u® =T%s° —’ys—l—Zuf Iy (1.2)
i=1
where u®, s°, I'{ are the excesses of the internal energy, entropy and density
per unit area, and *® is the surface tension. One may therefore build a non-
equilibrium description of singular surfaces [44].

In the non-equilibrium description of the interfacial phenomena, one observe
jumps of, for instance, the temperature between two adjacent bulk phases.
Moreover, the temperature of the non-equilibrium surface may be different
from either bulk values. Thus, macroscopic description of non-equilibrium
surfaces is essentially discontinuous. Given a traditional non-equilibrium
approach [5] and hypothesis of local equilibrium of a surface, it was possible
to build a systematic theory which describes transport through a surface using
the excess densities and surface intensive properties [6]. Within this theory
the expression for the entropy production of the surface was obtained

n
ot =i Xg = TIX; (1.3)

=1
where J7 is the heat flux, J7 are the matter fluxes and X7 and X/ are
corresponding interfacial forces. This implies the phenomenological force-flux

relations .

X; = Ry Ji = YRy
ot (1.4)
jq Yq

X = RS, JS - Zn:Rj?iJf
=1

Within the hypothesis of local equilibrium of a surface, the coefficients R® are
the surface resistances, which control the transport of heat and mass through
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the surface. In a macroscopic theory they are parameters, which determine
the jumps of the intensive variables through the surface.

The common description of heat and mass transfer through the surface consider
only pure heat conduction or pure diffusion and neglects the coupling effects
between heat and mass [6]. Neglecting the coupling coefficients was shown to
violate the second law of thermodynamics for a one-component system [45].
The coupling is important since the corresponding transfer coefficients depend
on the enthalpy of vaporization. The significance of this quantity in this context
is due to the large difference between the liquid and the vapor values of the
enthalpy.

The situation becomes even more complicated when one consider evaporation
in mixtures. These processes happen in such industrial applications as
distillation and therefore the precise description is important. Depending on
conditions one can get the mass fluxes of components in the same or in the
opposite directions.

There has been done a number of studies of the interfacial transport for
one-component systems: experiments [14, 15, 18, 46|, molecular dynamic
simulations [19, 20, 25, 47, 48| , kinetic theory [49-52] and square gradient
continuous description [12, 13]. All these works use different approaches, which
allows one to investigate different aspects. Mainly one-component systems have
been studied. One of the points of interest is the dependence of the overall
interfacial resistances on the continuous profiles. Once we have a description
which relates the resistance of the Gibbs surface 53] to the continuous profiles
of, in particular, local resistivities, we can describe the surface separately
from the adjacent bulk phases which is closely related to hypothesis of local
equilibrium of a surface [6].

In this thesis we establish a link between the continuous description of a
mixture’s surface under non-equilibrium conditions using the square gradient
theory and discontinuous description which uses the assumption of local
equilibrium of a surface. Using the continuous description we verify this
hypothesis numerically. The square gradient theory allows us to establish
the mascroscopic relation (1.3) and obtain the expressions for the interfacial
resistances R®.






Chapter 2

Equilibrium square gradient
model

2.1 Introduction

In order to describe the equilibrium properties of an interface between two
coexisting phases, using a continuous model, it is necessary to consider
contributions to the Helmholtz energy which depend on the gradients of for
instance the density [28]. Van der Waals |7, 8] was in 1893 the first to introduce
such a term for a one-component system. In 1958 Cahn & Hilliard [9] extended
the analysis of van der Waals and introduced gradient terms of the mol fraction
in binary mixtures. As the Helmholtz energy density given by van der Waals
is no longer a function of the local density or local densities alone. The
continuous description is in other words "not autonomous". We refer to the
monograph by Rowlinson and Widom [28] for a thorough discussion of the van
der Waals model in general and of this point in particular. A lot of work on
the equilibrium gradient model was done by Cornelisse [54]. We refer to his
thesis for the relevant references.

The gradient model is often used for a system in which properties vary only
in one direction. We do not restrict ourself in this manner and do the analysis
for a three-dimensional system.

We use the standard thermodynamic variables which obey the standard
thermodynamic relations for homogeneous mixtures. In Sec. 2.2 we consider
an inhomogeneous mixture. We postulate the dependence of the specific
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Helmholtz energy on the thermodynamic variables and their gradients, using
the fact, that in equilibrium the temperature is constant. Using the fact that
in equilibrium the total Helmholtz energy has a minimum and that the amount
of the various components is fixed, we derive the expressions for the chemical
potentials of all the components, using Lagrange’s method. This is done for
specific variables in Sec. 2.3 and for mass densities in Sec. 2.4. Extending
a method developed by Yang et al. [29], an expression is also found for
the pressure tensor. We derive the different forms of the Gibbs relations:
for a variation of thermodynamic quantities at a fixed position and for their
difference along spatial coordinates. Their importance is crucial for the non-
equilibrium description which should be based on the equilibrium analysis.
Explicit expressions are also given for the internal energy, the enthalpy, and
the Gibbs energy densities. In Sec. 2.6 we give a discussion and conclusion.

2.2 The gradient model

In order to describe inhomogeneous systems in equilibrium, one could assume
that this can be done by the usual thermodynamic variables, which depend
on the spatial coordinates. All standard thermodynamic relations are then
assumed to remain valid.

As van der Waals has shown for a one-component system 7], this, however,
is not enough to describe the surface. It is necessary to assume that
thermodynamic potentials, particularly the Helmholtz energy density, also
depend on spatial derivatives of the density. Cahn & Hilliard have shown for a
binary mixture [9], that the Helmholtz energy should depend on the gradients
of the mole fraction of one of the components. For a multi-component non-
polarizable mixture the general form of the Helmholtz energy density is

n
P = (T3 1(2), -, a0) + 5 D Fislbn, ., 60) Vor(r) Vs (r)
i,j=1

’ (2.1)
where f¢ is the homogeneous Helmholtz energy density and ¢;, i = 1,n are
the generalized densities. They can be either the mass density p; or the molar
density ¢; of each of the component. They can also be either the total density
p together with the n — 1 mass fractions of the components, {1, ..., {u—1}, or
the total concentration ¢ together with the n — 1 mol fractions fractions of the
components, {(1, ..., (n—1}. The corresponding sets of variables are treated
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in Sec. 2.3 and Sec. 2.4. The gradient coefficients k;; are different for each
set of the variables. They depend only on these variables, but neither on the
temperature, nor on the position explicitly.

This form of the Helmholtz energy density is obtained by the following
arguments (cf. also [8, 9, 29]). Dependence of the Helmholtz energy density on
the density gradients can be represented by the Taylor series in these gradients.
We describe here isotropic fluids, so any coefficient in this Taylor series may
not depend on any direction and thus should be a scalar. The zeroth term,
taken when all the gradients are equal to zero, is the homogeneous Helmholtz
energy f3(T; ¢1(r), ..., én(r)). In equilibrium, the total Helmholtz energy of
the system has a minimum. Thus, the first order term, with the first order
density gradients, V¢;(r), is zero. The second order term contains the terms
which are quadratic in the first order density gradients V¢;(r)-Ve;(r), and
the terms which are linear in the second order density gradients V2¢;(r). The
latter ones, however, contribute to the total Helmholtz energy the same way
as the former ones:

/VdrEiVQgZ)i(r) :—/Vdrv%i.v¢i(r)+/vdrv-(%iv¢i(r))=

_ /dr28“’ Vo, (r)-Vi(r /dSm Vi(r)

(2.2)
The first term on the right hand side of this equation can be combined with
the quadratic term in the first order gradients. The second one can be chosen
equal to zero by proper choice of the boundaries of integration. Thus, we end
up with Eq. (2.1) for the specific Helmholtz energy where the coefficients &;;
are the combinations of those from the quadratic in the first order density
gradients term and the corresponding ones from the linear in the second order
density gradients term. For ease of notation we will write x;; instead of
Kij(¢1(r), ..., ¢n(r)), remembering their dependence on these variables.

We note the ambiguity in the definition of the specific Helmholtz energy.
Different expressions for f(r) give the same expression for the total Helmholtz
energy F', due to the cancelation of the boundary contributions. This can
be interpreted such that the measurable quantity is only the total Helmholtz
energy, but not the specific one. To build the local description we need the local
quantities, however. We will use Eq. (2.1) for the specific Helmholtz energy,
remembering that a divergence of a vector field, the normal component of which
is zero on the boundary, can in principal be added. We show in Appendix 2.A
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that the ambiguity in the Helmholtz energy density in the interfacial region
does not lead to an ambiguity in the pressure and chemical potentials in the
interfacial region.

We may choose the matrix k;; to be symmetric with respect to the component
number (R;; = kj;) without loss of generality (since it appears only in
symmetric combinations). We shall always take k;; independent of the
temperature.

We note, that the square gradient model is, as it has been used here, a general
approach and is not only applied to surfaces. It has, for instance, been used in
the description of critical behavior using renormalization group theory [27, 55].
In this thesis we will focus on its use for the description of the surface.

In the following chapter, where we extend the analysis to non-equilibrium two-
phase mixtures, we need all the thermodynamic variables. We therefore derive
them and the necessary relations here for the given choice of the independent
variables. This is done in Sec. 2.3 for mass specific variables. We determine
how the Helmholtz energy varies with a change of the variables and with a
change of position and obtain so-called Gibbs relations in Subsec. 2.3.2. In
Subsec. 2.3.3 we determine the physical meaning of the Lagrange multipliers
and other quantities, for which expressions are derived. In Sec. 2.4 we derive
the results for volume specific variables following the same procedure as in
Sec. 2.3.

The analysis for molar specific units or the molar densities per unit of volume
is obtained from the present one in a straightforward manner by the replacing
mass densities with the molar densities and the mass fractions with the molar
fractions. The gradient coefficients k;; should be modified appropriately.

Further we will suppress r as an argument where this is not confusing. We will
indicate r as an argument mostly to emphasize the dependence of a quantity
on position.

2.3 Gradient model for the mass specific variables
2.3.1 The Lagrange method

We write the mass specific Helmholtz energy as

f(I‘) = fO(Tv P, 5) + K(p7 5, Vp, v&) (23)
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where

nfl
/4; Kege s
K(p, & Vp, VE) = =22 A 12+Z “lv Vet Z —pf VE-VE; (2.4)

=1 7j:l
and we use £ as short notation instead of whole set {1, ..., &,—1} and V¢ as
short notation instead of {V¢&1, ..., V&,—1}. The mass density distributions

are such that they minimize the total Helmholtz energy

P [ drpte) £ (2.5)

Assuming that no chemical reactions occur, the total mass of each component,

= [, dr&(r)p(r) for i = 1,n—1, as well as the overall total mass,
m = fV dr p(r), are constant. The problem of minimizing the functional
(2.5), having n constraints can be done using the Lagrange method. Thus
we minimize the integral

Q= [ o) 1(r) - Zm 0= [ a0

where u, and v; are scalar Lagrange multipliers. The densities distributions
which minimize the integral (2.6) must be solutions of the corresponding Euler-
Lagrange equations

o . % _,
op " Vp (2.7)
8p Op L —
. =0, 1=1,n-1
These relations give for the introduced Lagrange multipliers:
P n—1
Nn:a ( fO+IC> szfz_ <K'ppvP+Z’ip£iv§i)
P i=1
B - (2.8)
and an expression for p:
P n—1
p(r) = an—p(fo —HC) — pV-(f@pp Vp+ Z/@pgi V&) (2.9)

i=1
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The ambiguity in f(r) discussed above does not affect the expressions for p,,
¥ and p(r) (see Appendix 2.A). We will see in Subsec. 2.3.3 that the Lagrange
multipliers u, and v are the chemical potentials of the components and p(r)
is a pressure. The exact meaning of this pressure as well as the meaning of the
other quantities derived in this subsection will be discussed in Subsec. 2.3.3.

Solving Eq. (2.8) for p and &, one obtains the density profiles for the system.
To do this one needs the values for the Lagrange multipliers u,, and .

Multiplying the first of the equations in Eq. (2.8) with Vp(r) and the other
(n — 1) ones with V& (r) and summing them all up! we obtain the following
expression

Va0as(r) =0 (2.10)

where we use the summation convention over double Greek subscripts. The
tensor

Tap(r) = P (r) Oas + Yas(r) (2.11)

will be identified as the pressure tensor. Furthermore the tensor

n—1 n—1
dp Op Z”p@(agi p . Op 8&) £ hee 0 0¢;

Yan(¥) = Ko 5 =5 e 02, O O, Da 92,
(2.12)

will be referred to as the tension tensor?. We note, that both ca4(r) and
Yas(r) are symmetric tensors.

1,j=1

From the definition (2.6) of the p(r), we can see that the Helmholtz energy
given in (2.3) and quantities which are given by the Eq. (2.8) and Eq. (2.9) are
related in the following way

F06) = i Y 66) — p (1) () 213

Including a possible divergence term in f(r) would modify this equation by
adding this term also on the right hand side.

!This method is a generalization of the one given by Yang et al. [29] for a one-component
system.

2This form of the explicit expression for the pressure tensor in the square gradient model
for a multi-component mixture was, to the best of our knowledge, not given before. See also
the relevant discussion in Appendix 2.B.
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2.3.2 Gibbs relations

Before we consider the variation of the thermodynamic quantities, let us make
a comment on the notation. In this subsection we will come up with two
different kinds of the Gibbs relation which have different meanings. It is
therefore important to understand the precise meaning of the symbols used
in them. We use three different symbols to indicate different types of variation
of thermodynamic variables. We use symbol d to indicate that d¢ is an
independent (total) differential of a thermodynamic quantity ¢ at a particular
location r. We use the notation V,¢ to indicate the spatial variation of ¢ with
respect to coordinate x,. We use the notation d¢ to indicate the "substantial"
differential of ¢ (though it is used only in the following chapters). One should
not confuse the symbol § with an arbitrary variation of a thermodynamic
quantity. The meaning of § here (wherever it is used in the Gibbs relations in
this thesis) is the same as the total thermodynamic differential usually denoted
by d. We use the notation d¢ to distinguish this differential from the spatial
variation of ¢ and the "substantial" differential of ¢. We also use the word
variation in one of the three above meanings and never in the sense of a
variation which depends on a thermodynamic process.

i) Ordinary Gibbs relation

Consider a variation of the total Helmholtz energy © F[T, p, £, Vp, V] with
respect to the variation of the variables, which it depends on:

DFIT, p, & Vp, V€] = /V dr {f(T, p, &, Vp, V&) op+pdf(T, p, & Vp, VE)}

(2.14)
where the variation
d a gy
ST, .6 V. V) = ghor+ Loy S e
= (2.15)
of of

L5 OV,
+5V,0 vp+;8v& \Y3

is the total thermodynamic differential of the specific Helmholtz energy with
respect to the thermodynamic variables, which it depends on3. Given Eq. (2.3),

3Within the gradient model, T, p, and £ as well as Vp and V¢ are considered to be the
independent thermodynamic variables. The Helmholtz energy density is a function of these
variables. Eq. (2.15) gives therefore the total differential of f by definition.
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Eq. (2.8), and Eq. (2.9), one can show that Eq. (2.15) becomes

3fo

Sf(T, p, & Vp, V&) = 6T+f5 +sz5@ vé@ (2.16)

where

n—1
®(p7 57 VP: vé) = (HPP Vp + Z K;pgi v§z> 5P+
=1 (2.17)
n—1 .

n—1
+Z (’@psk Vp + Z Keep sz’) 0
k=1 i=1

Upon substituting Eq. (2.16) into Eq. (2.14), the term containing 6® does not
contribute to the variation of the total Helmholtz energy: the boundary integral
J ¢ dS-00 disappears, because we have chosen boundaries of the system such
that the density gradients are zero everywhere along the boundaries. Thus, we
will interpret the following expression

fo 5T+—5p+2w25@ (2.18)

=1

Sf(T, p, & Vp, V&) =

as the total thermodynamic differential of the specific Helmholtz energy.

We note the ambiguity in the definition of the total thermodynamic differential
of the specific Helmholtz energy. Different expressions Eq. (2.16) and Eq. (2.18)
for 0f give the same expression Eq. (2.14) for ©F, due to the cancelation of
the boundary contributions. This can be interpreted such that the measurable
quantity is only the total thermodynamic differential of the total Helmholtz
energy, but not the total thermodynamic differential of the specific one. This
ambiguity is similar to the ambiguity in definition of the specific Helmholtz
energy. We will use Eq. (2.18), remembering this ambiguity.

We write Eq. (2.18) in the form

n—1
Sf(T,v,€1, .., &no1) = —s0T —p v+ Y _ 1 0& (2.19)

i=1

where v = 1/p is the specific volume and

S="35 (T7 v, 5) = _88]1 f()(T, v, f) (220)
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Eq. (2.19) has the form of the usual Gibbs relation for a homogeneous mixture.
For an inhomogeneous mixture, however, the validity of such a relation is not
obvious. Eq. (2.19) together with Eq. (2.13) imply that with respect to the
variations of the thermodynamic variables the specific Helmholtz energy is
still homogeneous of the first order. We will call Eq. (2.19) the ordinary Gibbs
relation. With the help of Eq. (2.13) and Eq. (2.19) we obtain the Gibbs-
Duhem relation

n—1
s(r) 0T — v(r) op (r) + Spn + Z &i(r)dY; =0 (2.21)

=1

it) Spatial Gibbs relation

Using the following conditions, which are true for equilibrium

VT(r) =0
Viin(r) =
Vii(r) =0, fori=1,n—1 (2.22)
Vaoas(r) =0
and Eq. (2.13) together with Eq. (2.11), we obtain
n—1
Vi f(r) = —p(r) Voo(r) + ) ¢i Va&i(r) +0(r) Va vas(r) (2.23)
i=1

We will call Eq. (2.23) the spatial Gibbs relation. As the temperature is
independent of position, the expected term —s(r) V3T is zero.

2.3.3 Equilibrium surface

Away from the surface p(r) — p, &(r) — & and Vp(r) — 0, V& (r) — 0
and we have the homogeneous mixture. In that region we may use the usual
thermodynamic relations for the homogeneous mixture. The specific Helmholtz
energy is given by

n—1

fO(T7 ¢, 5) = :U’n,O(Tv ¢, é) + Zwk,O(Ta ¢, 5) é‘k —Po (T7 ¢, 5)1) (224)

k=1
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with the specific entropy, pressure and chemical potential differences given by

30(T7 Cy f) = _88T fO(T7 Cy f)

0
Po (T7 ¢, f) = _% fO<T7 ¢, g) (225)
0 .
¢k,0(T7 ¢, 5) = ¢ fO(T7 ¢, g)? k= 1,77,—1
3
such that the differential of the specific Helmholtz energy is given by
n—1
de(Ta c, 6) = _SO(Ta c, 5) T _pO(Ta c, 5) dv + Zwk,O(Tv c, 5) dfk (226)
k=1

where wk,O(Tv ¢, 5) = :uk,O(T7 ¢, g) - MH,O(Ta & 5)

Quantities derived in Subsec. 2.3.1 converge in the homogeneous limit in a
following way

wk - %fO(Ta C, g) 1 = T/Jk,O(T7 c, f)
pn = Jo(Ts ¢, €)=Y i o(T, ¢, )& +po(T, ¢, &) v = pn,o(T, ¢, &)
=1
p(x) — ngpfo(T,  €) — (T, ¢, €)
Uaﬁ(r) - pO(T7 C, g) 50&/3 = Uaﬁ,O(Ta C, f)

(2.27)
We use these limits to determine the meaning of the derived quantities in the
interfacial region, where gradients are not negligible.

In equilibrium )y, and pu,, are everywhere constant. Away from the surface they
represent the homogeneous chemical potentials, which in equilibrium should be
constant everywhere, particulary throughout the whole interfacial region. Thus
it is natural to identify u, and v with, respectively, the chemical potential of
the n-th component and the difference between the chemical potential of the
k-th and the n-th components, also within the interfacial region.

To determine the meaning of p(r) and o,4(r) we have to resolve an ambiguity
in the definition of qs(r). It follows from Eq. (2.10) that a constant tensor
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can be added to o,4(r) without affecting the validity of this equation. In
a homogeneous limit this tensor does not vanish, so it should be present in
the homogeneous tensor o, o(r), which is proportional to the homogeneous
pressure po(7, ¢, £). The homogeneous pressure po(7T), ¢, £), however, is
determined unambiguously by the specified equations of state. It follows
then that this constant tensor has to be equal to zero and o,4(r) is given
by Eq. (2.11) unambiguously.

Using that ¥, = pr — pyn and p, have the same meaning as in the bulk phase
and Eq. (2.13), it is then also natural to identify p(r) given by Eq. (2.9) with
a pressure everywhere. This pressure is not constant, however. The tensor
0as(r) can be identified with the tensorial pressure. It is known that at the
surface one can speak about the "parallel" and the "perpendicular" pressure
[28], so the pressure reveals tensorial behavior. For a flat surface, when all
the properties change in one direction, say x, one can show that o, (r) is the
"perpendicular" pressure and p(r) = oy, (r) = 0.(r) is the "parallel" pressure.
For curved surfaces such an identification, however, can in general not be made.

One can also conclude, that the quantity, determined by Eq. (2.20) is the
specific entropy of the mixture in the interfacial region. It does not have
gradient contributions. This is due to the assumption that the coefficients of
the square gradient contributions are independent of temperature. We refer to
van der Waals |7, 8, 28] who discussed this property.

We shall also define other thermodynamic potentials in the square gradient
model for the interfacial region. Considering Eq. (2.13) and conforming to
Eq. (2.27) we define interfacial molar internal energy, enthalpy and Gibbs
energy densities as follows

u(r) = f(r)+s(r)T
h(r) = u(r) + p(r) v(r) (2.28)
g(r) = f(r) +p(r)v(r)

It is important to realize that these thermodynamic relations are true in the
interfacial region only by definition. One can also find support for these
definitions in [10] where they were considered for a simplified one-component
system.

Using Eq. (2.19) and Eq. (2.28), for the internal energy at each point in space
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we then get the ordinary Gibbs relation
n—1
u(s,v, &1, .., &n1) = Tds(r) — p(r) Su(r) + > 1 6&(r) (2.29)
i=1
From Eq. (2.22) and Eq. (2.28) we get the spatial Gibbs relation
n—1
Vau(r) =T Vys(r) = p(r) Vou(r) + ) ¢ Va&i(r) +o(r) Vavas(r) (2.30)

One can easily write the Gibbs relations for other thermodynamic potentials.

2.4 Gradient model for the densities (per unit of
volume)

We write the extended Helmholtz energy per unit of volume as

F2(x) = 3T, p) + K (p, Vp) (2.31)
where
K*(p, Vp) = Z Kpipj Vpi(r)-Vp;(r) (2.32)
1,j=1
We use p as an argument as a short notation for the set {p1, ..., pn} and Vp
as a short notation for {Vpi, ..., Vpp} in Sec. 2.4. As it is used only as an

argument, it should not be confused with the total density.

We will not repeat in details the procedure, given in Sec. 2.3 and give only
the results here. Using the Lagrange method we obtain the expressions for the
constant Lagrange multipliers, which are equal to the chemical potentials

a n
o= g5+ K - > V(00 Vi) (2.33)
=1

and the expression for a pressure p:

sz (K = (f5 +KY) = Zpy (Kpip; Vi) (2:34)

4,j=1
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which was defined by
£(r) = pipi(r) = p(r) (2.35)
i=1

One can derive the same symmetric pressure tensor oa4(r) as in Eq. (2.11),
which obeys the relation Eq. (2.10), where the symmetric tension tensor yos(r)
is given by

- dp; Op;j
Yas () = Y Ko, o aTc; (2.36)
ij=1 «

Varying the total Helmholtz energy F[T, p, Vp|] with respect to the variation
of the variables, we obtain the total thermodynamic differential of the specific
Helmholtz energy as

ofy -
of°(T, p, Vp) = 8‘29 (5T+Zuk opr, + V00" (2.37)
k=1
where
30" (p, Vp) = Y (kese; Vi) 6p; (2.38)
ij=1

The total Helmholtz energy variation becomes then

Ofy -
DFT, p, Vp| = / dr 0T+ » g opk (2.39)
o (G 0T+ o)

since the boundary integral |, 4 dS-6@" disappears. Thus, we will interpret the
expression in parenthesis as the total thermodynamic differential of the specific
Helmholtz energy:

Ofy "
5T, 0, V) = B0 6T 43" o (2.40)
k=1
We write Eq. (2.40) in a form
Sf*(Tpr, -y pn) = —5" 6T + > pidpi (2.41)

=1
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which we will call Eq. (2.41) the ordinary Gibbs relation. Here

0

v v 9 v
S 5_87 (T7 P1s 7pn):_87TfO(T7 P1, 710”) (242)

is the specific entropy of the mixture, which has no gradient contribution. With
the help of Eq. (2.35) and Eq. (2.41) we obtain the Gibbs-Duhem relation

n

s'(r) 0T = op (r) + Y _ pr(r) S = 0 (2.43)
k=1

Using the following conditions, which are true for equilibrium

VT(r) =0
Vuypg(r) =0, fork=1,n (2.44)
Va O’a/g(r) - 0

and Eq. (2.35) together with Eq. (2.11) we obtain the spatial Gibbs relation

Vo [U(r) =D 1 Vs pilr) + Va Yas(r) (2.45)
i=1

The interfacial specific internal energy, enthalpy and Gibbs energy densities
are

w(r) = f2(r) + $(r) T
ho(r) = 5°() T+ Zu pi(r) (2.46)

g°(r) = é i pi(r)

The Gibbs relations for the internal energy are

ou’(s,p1, -y pn) =T s°(r) + Zui dpi(r) (2.47)
i=1
and .
Vsu®(r) =TV, s"(r) + Z 1i Vg pi(r) + Va Yas(r) (2.48)

=1
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2.5 Gradient coefficients

2.5.1 Mass and volume specific coefficients

The coefficients & ,.,. used in Sec. 2.4 are different from k,,, K,¢., and k... . used
PiP; ppy Vpe;s ;&

in Sec. 2.3. Comparing Eq. (2.4) and Eq. (2.32), one can derive the following
relations between them

1 2 «
Kpip; = HKpp + ;(’%si + Kpej) — 2 Z"ﬂpskpk
k=1

, - o (2.49)
+EK€Z’€]’ s Z (Hskaj + Keep )Pk + A Z Kepe; PEPL
k=1 kl=1
and
n—1 n—1
Kpp= Z & & ("Gpipﬁ"‘ﬁpnpn_ Kpipn— ’fpnpj) +2 Z &i (Kpypi—Kpnpn) + Kpppn
=1 i
Kpe; = P Z & (’{Piﬂj—i_ Kpnpri Kpipn— ”pnpj) + P (Kp;on —Epnpn)
j=1
eye; = 07 (Kpip it BonpiiKpipi—Kpnp;)
(2.50)

We note, that these relations are exact.

2.5.2 Mixing rules

All the coeflicients k,p, kpe;, and Ke¢ ., as well as K, ,. are in principle known
i i85 iPj
functions of the densities. In practice they are not known for mixtures.
Only the values for pure components may be more or less obtained from
experiments, measuring the surface tension. Thus, it is necessary to express the
cross-coefficients in a form such that one can approximate them using pure-
component values. From Sec. 2.4 one can see, that r,, are simply related
to the pure-component coefficients: k, , = k; is the coefficient for the pure
1P
component, 7.

Cross-coefficients can then be approximated by one of the so-called mixing
rules for the gradient coefficients. We will assume the following mixing rule

Kpip; = \/Kikj (2.51)
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For i = j, Eq. (2.51) is just a definition. For i # j, this relation is an
approximation.

This mixing rule for the gradient coefficients is analogous to the mixing rule
for the van der Waals coefficients in an equation of state (see Sec. 3.4 for
details). Given these mixing rules for Kpip; coefficients, one can easily deduce

the corresponding mixing rules for r,p, iy, and Keje i using Eq. (2.50).

We shall note here, that the choice of the particular mixing rule is based on the
empirical knowledge and does not follow from any theory. We may expect, that
for similar components, the mixing rule (2.51) would be adequate. However, for
different components, one may probably not use it. The extensive investigation
of the mixing rule for the gradient coefficient goes beyond the issues addressed
in this thesis. We therefore will use only Eq. (2.51) as a mixing rule.

2.6 Discussion and conclusions

In this chapter we have established the framework of the gradient model for
the liquid-vapor (or, alternatively, liquid-liquid) interface in an isotropic non-
polarizable mixture. It is necessary that the homogeneous Helmholtz energy fj
allows solutions which imply equilibrium coexistence between different phases.
Otherwise we only have the homogeneous phase. Standard mixture theories
[56] give a Helmholtz energy which allows liquid-vapor coexistence.

Using the assumption that in the interfacial region the fluid can be described
by the local densities and their gradients, we have extended the gradient
models, used to describe one-component fluids and binary mixtures, to three-
dimensional multi-component mixtures. The condition which the system
should satisfy is that the total Helmholtz energy is minimal. With the help
of Lagrange method it was possible to derive the equations, which the profile
distribution should satisfy, given the fixed total content of the components.
The Lagrange multipliers are equal to the chemical potentials of the coexisting
liquid and vapor. It was also possible to determine the pressure behavior in
the interfacial region. It is crucial, that the pressure has a tensorial behavior.
The difference between the tensorial part of the pressure tensor and the scalar
part determines the surface tension.

An important observation is the ambiguity in the determination of the
local thermodynamic potentials, for instance the specific Helmholtz energy.
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While the total Helmholtz energy is unique and has a minimum, the specific
Helmholtz energy is not unique. One can add a term which is the divergence
of some vector field without affecting the total Helmholtz energy, if the normal
component of this field vanishes on the system boundaries. This general
observation in the context of the gradient model implies that the density
gradients are taken equal to zero on the boundary. It must be emphasized,
that for realistic boundaries these gradients are not zero. We refer to the
wall-theorem [57] in this context. We take the freedom to set them equal to
zero assuming, that the boundary layer does not affect the properties of the
interface we want to study. In the Appendix 2.A we show that this ambiguity
does not affect the results.

As one can see from Eq. (2.13) and Eq. (2.35), it is possible to relate the
thermodynamic variables for an inhomogeneous fluid in the same way as it
is done for a homogeneous one. However, unlike the homogeneous mixture,
these variables contain gradient contributions. The local behavior of the
mixture is determined not only by it’s local properties but also by it’s nearest
surroundings.

We have given explicit expressions for each thermodynamic quantity in the
interfacial region. We have also determined how the thermodynamic potentials
change with the change of the variables they depend on. An important part of
the thermodynamic description is the relations between the rate of change of
the thermodynamic variables, the Gibbs relations. In an equilibrium interfacial
region thermodynamic variables vary in space, unlike in a homogeneous
system. Thus one can speak about the relation between the rates of change
of thermodynamic variables for a given point in space, the ordinary Gibbs
relation. One has also to speak about the rates of change of the thermodynamic
variables in space, the spacial Gibbs relation. Even though the thermodynamic
potentials, particularly the specific Helmholtz energy, depend on the spatial
derivatives of the densities, we have shown that variation of these gradients
do not contribute to the ordinary Gibbs relations. Thus, the ordinary Gibbs
relations have the ordinary form of the Gibbs relations for the homogeneous
mixture. The important observation here is, however, that the ordinary
Gibbs relations relate the inhomogeneous thermodynamic variables; i.e. those,
which contain the gradient contribution. As the spatial derivatives of the
temperature, chemical potentials and pressure tensor are zero in equilibrium,
we can determine the spatial Gibbs relation. The new term which appears
because of the inhomogeneity is V, 74s5(r), which is only unequal to zero close
to the surface.
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For temperatures far from the critical point the surface thickness is known to
be very small (in the sub-nm range). This imposes an upper limit to the values
of the coefficients kpp, Fpe;, Fie;e; and Kp;p.

In previous sections we used different specific variables. For the mass specific
quantities we used the coefficients £y, Kpe;, and rge. and for densities per
unit of volume we used #,,,.. One can determine the relations between these
coefficients and verify, that all the quantities, determined in Sec. 2.3 and
Sec. 2.4 are the same. Thus, Eq. (2.9) and Eq. (2.34) give the same pressure
p(r), as well as Eq. (2.12) and Eq. (2.36) give the same tension tensor v,4(r).
And 044(r), which is given by Eq. (2.11) is the same for both sets of variables.
iy in Eq. (2.8) and Eq. (2.33) is the same and v taken from Eq. (2.8) are
equal to pp — uy taken from Eq. (2.33). This shows that the inhomogeneous
equilibrium description is independent of the choice of independent variables.
This is similar to the description of the homogeneous equilibrium phase.

The analysis in this chapter gives the basis to extend the description to non-
equilibrium systems. For one-component systems, in which the properties
varied only in one direction, such an extension was given by Bedeaux et al.

[10].

2.A On the ambiguity in the specific quantities

We show here that ambiguities present in the definition of the specific
Helmholtz energy and the total thermodynamic differential of the specific
Helmholtz energy do not affect the validity of all the thermodynamic relations,
derived in this chapter. We do this for mass specific variables, the same
arguments can be used for the densities per unit of volume.

The total Helmholtz energy of a mixture [, drp(r)f(r) can be expanded
around a homogeneous state as

F=[,dr [ p fo(T, p, &)+

L W2, S 1
+5 kpp [Vp|* + ; Kpe, VP V& + 5

n—1
P ARG
1,j=

n—1
—I—ng) V2p + ; 1@(,2 V2 + .. }
(2.52)
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where the series is truncated after the second order terms. As it is shown in
Eq. (2.2) this can be rearranged as following:

F= [, dr { p fo(T, p, &)+

n—1 n—1
+1kpp |V 2+ 21 Kpe; VP-VEi+ 5 'Zlﬁgigj VE&-VE+

1= 1,]=

n—1
+V- (52 Vp + % RO VE) + . ]

(2.53)
where

Kpp = ”E’? —2 (6“,(0?0)/810)
Koy = K — (Okby 06) — (kG [Op) (2.54)

Fege; = kg, — (One) [08)) — (Dnie) /06:)

are the coefficients used in Eq. (2.4).

Let us define

n—1 n—1

f(x)=pfo(T, p, §) + %ﬁpp Vp ‘2 + Zl Kpe; Vp-V§ + %Zl Feje; V§;i-VE;
i= i,j=

" n—1

fr) = J) + V(50 Vo + & nfe) V&)

(2.55)

so that F'= [, drp(r)f(r) = [, drp(r)f(r). One can also define

p) = S i) — 1)

n—1 ~ n—1
Br) =g+ X i) = ) = plr) - V- (i Vp + x Ko VE;)
1= 1=
(2.56)
and follow the same procedure as in Subsec. 2.3.1. (Note, that the second order
terms should be added to the Euler-Lagrange equations in such case). Then,
as it follows from a known theorem of variational calculus, one obtains for the
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chemical potentials u,, and ¥y

= = 2.57

Pk = aik(f) - ;V~<ﬂpngp+:§m5i§kV§i>, k=1,n—1

and for the pressure tensor o,s(r)

Tap(r) = P(r) das + Yas(r) (2.58)

for both definitions of p(r) and p(r). As one can see, there is no ambiguity
in the expressions for the chemical potentials and the pressure tensor. They
are determined irrespective of the ambiguity in the definition of the specific
Helmholtz energy. Technically, the reason for this is that u, and ¢ are the
integral properties of the equilibrium mixture, which minimize the Helmholtz
energy of the whole mixture. Thus, they cannot depend on local ambiguities.

Thus, it is natural to use f(r) as the specific Helmholtz energy and use p(r) as
a pressure. As we have seen in Subsec. 2.3.3 only p(r) has a physical meaning
but not p(r). With such a choice, all the thermodynamic quantities derived in
this chapter do not contain any ambiguity.

2.B Interfacial pressure

In this section we shall see how our expressions for the pressure and the tension
tensors in the interfacial region Eq. (2.9), Eq. (2.12), and Eq. (2.11), reduce to
the conventional quantities such as the parallel and the perpendicular pressures
for the flat interface and the Korteweg tensor. These quantities were mostly
given for systems in which only one variable changes through the surface, either
the density in one-component systems or the mass fraction in binary mixtures.
We will therefore consider here only such systems, assuming that we speak
about the density in a one-component system. The discussion for a binary
mixture is analogous.

i) Korteweg tensor

The scalar pressure in a one-component system is

p(r)=p afp(fo + 2|Vpf2) — p V- (k Vp) (2.59)
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and the tension tensor is

~Op Op
Yas(r) = ﬁ%aixg (2.60)

and the pressure tensor is still given by Eq. (2.11).

Taking into account that p?(dfy/dp) = po is the homogeneous pressure, we
obtain

1 10k
p(r) =po(p,T) = kpV?p— Sk|Vpl* = 5 == p[Vp|? (2.61)
2 2 0p
so the pressure tensor (2.11) becomes
0as = po(p,T) dap + Was (2.62)
where
1 10k
Was (1) = Yas(r) = 5 (0 V20 + o5 [Vpl?) — 355" Vol (2.63)

is the Korteweg tensor [26].

In this work we use the scalar pressure p(r) and the tension tensor v,s(r)
instead of the homogeneous pressure po(p,T') and the Korteweg tensor wqs(r).
The reason for this is that in the interfacial region, it is p(r), not po(p,T),
which enters all the thermodynamic relations, and it is 7as(r), not waes(r),
which determines the surface tension.

it) Parallel and perpendicular pressure

In the case of planar interface with cartesian coordinate xz directed
perpendicular to the surface, the pressure tensor takes the following form

pi(xr) 0 0
O’ag(:(}) = 0 p”(x) 0 (2.64)
0 0 pj=)
where
1 10k
p1(x)= p(x) + Yea (@)= po(p, T) — kpp” + Sk p' — 209p pp'

2
o 10k (2.65)

1
p)(z)=p(z) =po(p.T) = rpp" =S hp T29,""
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are the perpendicular and parallel pressures in the interfacial region. Here
prime indicates the derivative with respect to x. The difference between them

Yea(2) = pu(z) — py(z) = K p" (2.66)

determines the surface tension [28, 29

’Y:/dx'%cz(w) (2'67)

According to Eq. (2.10), the perpendicular pressure is constant in the interfacial

region
pi(z) =0 (2.68)

while the parallel is not: it has a peak which is opposite to v, (z) in sign.



Chapter 3

Non-equilibrium continuous
description

3.1 Introduction

Because of the lack of local equilibrium, the extension of non-equilibrium
thermodynamics to a continuous description of an interface is not
straightforward. Earlier work [10-12| has shown that that such an extension
is possible for one-component fluids, with all the variables dependent on the
normal coordinate for a planar interface. Temperature gradients, pressure
differences and the resulting heat flux and evaporation or condensation fluxes
were determined through the interface. For systems away from equilibrium,
square gradient models have been used before, we refer to [58-60| in this
context. Very little work has been done on systems with a varying temperature
[60], and on two-phase systems, however. The systematic treatment of heat
and mass transport through the liquid-vapor interface, along the lines sketched
in [10-12], was to our knowledge, new!.

In the first chapter we extended the analysis of van der Waals to equilibrium
multi-component systems. Explicit expression for all the thermodynamic
quantities were given. In particular, we derived the expression for the pressure
tensor and discussed the validity of the Gibbs relation in the interfacial
region. In this chapter we will extend this approach to multi-component

!Since then there have appeared some works addressing the similar issues [31, 39, 40].
See Subsec. 1.3.1 for a review.
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non-equilibrium mixtures in three-dimensions. Because of considering three-
dimensional systems it is possible to derive systematically all system properties,
which were postulated in the one-dimensional description.

The traditional local equilibrium hypothesis implies that in non-equilibrium a
small volume of the system at each moment of time can be considered to be
in equilibrium. Thus, all thermodynamic relations, valid for the whole system,
remain valid for this small volume. The important assumption is that the state
of each small volume is determined only by the properties of this volume, and
no other ones. To describe the interface in equilibrium, one needs to introduce
a dependence on the density gradients however. Such a description is not local
in the traditional sense: the system behavior in a small volume depends on
the properties of this volume and the properties of the nearest neighborhood.
This implies that one cannot apply the usual local equilibrium hypothesis to
the interfacial region.

A mixture can be described by mass densities and temperature T as
independent variables. We will use p as the total mass density of the mixture,
or v = 1/p as the mass specific volume, and {&, ..., {,—1} as the mass
fractions of components. Furthermore we will write £ instead of the set of
arguments {1, ..., -1} and V¢ instead of the set {V¢&i, ..., V&,—1} to
simplify the formulas. New variables which appear in the non-equilibrium
description are the velocities of each component {vy(r, t), ..., vu(r, t)}. For
a one-fluid mixture is more convenient to use the barycentric velocity of the
whole mixture

1 n
v(r, t) = p(rt); pi(r, t)vi(r, t) (3.1)

where p; = &; p is the mass density of component ¢, and n — 1 diffusion fluxes
{J1, ey Jn—l} where

JkEpék(Vk—V), k:].,n (32)

n

as independent variables. We note that > Jx = 0 so only n — 1 of n diffusion
i=1

fluxes are independent.

We will follow the traditional procedure used in non-equilibrium
thermodynamics. In Sec. 3.2 we review briefly the main results of the
equilibrium square gradient model for the interface. We extend all equilibrium
results, derived in the first chapter to non-equilibrium. Explicit expressions
for the necessary thermodynamic properties of the non-equilibrium mixture
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are given. To be able to derive the entropy production one needs the
Gibbs relation. It was shown in the first chapter that within the interfacial
region one can speak about two kinds of Gibbs relation, the ordinary Gibbs
relation and the spatial Gibbs relation. We show in Sec. 3.3 how these two
static relations are combined into a non-equilibrium Gibbs relation. For a
one-component system this non-equilibrium Gibbs relation reduces to that
given in [10]. Within the framework of the one-fluid approach we discuss
the expression for the homogeneous Helmholtz energy fp which is needed
to determine thermodynamic quantities in Sec. 3.4. In Sec. 3.5 we give the
hydrodynamic equations. We use the so-called one-fluid approach which has
been shown [61, 62] to be appropriate for common mixtures. In Sec. 3.6 we
discuss the consequences of the special surface symmetry. After deriving the
entropy production in Sec. 3.7 and using the Curie principle, we give the
linear relations between the thermodynamic fluxes and forces in Sec. 3.8. It
is found that, for instance, the resistivities for transport through and into
the interfacial region will in general contain square gradient contributions.
Concluding remarks and a discussion are given in Sec. 3.9.

3.2 The square gradient model

Assuming that the specific Helmholtz energy can be written as

f(x) = fo(T, p, &) + K(p, &, Vp, VE) (3.3)
where
1 n—1 ; 1 n—1 y
K(p, €, Vp, VE) = 5% Vol + > % UATEEDS ”—/j VEVE  (34)
=1 2,7=1

and where all coefficients x, x; and k;; are assumed to be independent of the
temperature, one can derive the chemical potential u, of the n-th component
and the reduced chemical potentials ¢, = pr — pn, where £ = 1,n—1 (all
integers from 1 to n—1), which are constant through the surface in equilibrium.
We refer to the first chapter for the expressions for the chemical potentials,
p(r) and other quantities. These quantities are related by the ordinary
thermodynamic relation

n—1
) = = p () 0(x) + 3 i Gilx) (3.5)
i=1
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Other thermodynamic potentials, like the specific internal energy was defined
in the interfacial region as

u(r) = f(x) + s(x) T (3.6)
The entropy and the enthalpy are also given there.
In the interfacial region, the pressure has a tensorial behavior:
0as(r) = p(r) das + Yas(r) (3.7)

where the tension tensor is given by

_ O dp N~ (96 Op  Op OGN N~ 06 0
’Yaﬁ—fﬁaxaaxﬁ-i-zz:fﬁ <8xa%+%8xﬂ>+”z: Rij 8560487% (38)

For a flat surface, p(r) is the parallel pressure.

In order to describe non-equilibrium processes in a multi-phase mixture using
thermodynamics, one must assume, that all thermodynamic quantities are
defined at each point in space and at all times. This in particular holds also
in the interfacial region. In non-equilibrium, the density p(r, ¢) and the mass
fractions &(r, t) depend on the time explicitly. We do not have the restriction of
a constant temperature and chemical potentials: T'(r, t), un(r, t) and ¥;(r, t)
may therefore depend both on position and time as well.

To describe non-equilibrium inhomogeneous systems we shall assume that all
the relations between thermodynamic variables valid in equilibrium, which
were discussed in more details in the second chapter, remain valid away from
equilibrium. Away from the surface this is the usual assumption made in
non-equilibrium thermodynamics. In the interfacial regions, it extends this
assumption to places where the gradient contributions become important. As
said in [5], the validity of such a hypothesis can be verified only by experiment.

3.3 The Gibbs relation

An important part of the equilibrium description is the relation between the
variation of thermodynamic potentials and the independent thermodynamic
variables, in other words the Gibbs relation. In the interfacial region, properties
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may change with position, so we have to speak about two kinds of Gibbs
relations: ordinary Gibbs relations and spatial Gibbs relations. Ordinary Gibbs
relations relate the changes of thermodynamic variables at the given point in
space for different states. For the internal energy the ordinary Gibbs relation
was found to be

n—1
Su(s,v,€) = Tos(r) + Y 1 6&(r) — p(r) su(r) (3.9)
=1

Spatial Gibbs relations relate differences of thermodynamic variables for the
given state at neighboring points in space. For the internal energy it was found
to be

n—1
Vou(r) = T Vas(r) + Y i Va&i(r) —p(r) Vou(r) — v(r) Vayas(r) (3.10)
=1

Notice in particular the last contribution on the right hand side.

Similar to the description of a homogeneous fluid, we extend the equilibrium
Gibbs relations to non-equilibrium in the simplest way. One needs to make an
important observation before such an extension, however: equilibrium equation
Eq. (3.9) describes the change of local thermodynamic variables between two
different states at a fixed point in space. These two states can be separated
in time. So we can say that this equation describes the change of local
thermodynamic variables in time at a fixed point in space:

0s _ du ‘= 0¢; v
T(r, t) % o Z¢i(ru t) ot +p(r, t) e (3.11)
i=1

We similarly use the equilibrium spatial Gibbs relation for the specific internal
energy, Eq. (3.10), for the non-equilibrium case:

n—1
T(r,t)Vs=Vu— Z%(r, t) V& +p(r, t) Vo —v
i=1

Map
0xq

(3.12)

See also relevant discussion in Appendix 3.A.

Next we combine Eq. (3.11) and Eq. (3.12) in order to get the non-equilibrium
Gibbs relation in terms of the substantial (barycentric) time derivative

—=_+4vV (3.13)
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This should be done carefully, taking into account that all dynamic equations,
particularly the Gibbs relation, must be Galilean invariant. Thus, a naive
approach to contract Eq. (3.12) with v(r, ¢) and sum with Eq. (3.11) is not
appropriate here. The resulting equation would contain the term vz Va7yas
which is not Galilean invariant, while the other terms containing substantial
derivative are, of course, Galilean invariant. We shall construct the non-
equilibrium Gibbs relation from Eq. (3.11) and Eq. (3.12) in such a way that
it satisfies the Galilean invariance.

We contract all the terms in Eq. (3.12), except v V47q5, With the barycentric
velocity v(r, t), while the term v V744 is contracted with a velocity v(r, t) —
v*(r, t), where the exact meaning of a velocity v*(r, t) will be clarified later.
Summing the result with Eq. (3.11) we and obtain

ds du i, dv 07
T i —= — — 5y 122 14
(r,8) & = Zw +p(r t) o = (Ve —v3) Oz, (3.14)

We emphasize that one should not regard the above procedure as the derivation
of the non-equilibrium Gibbs relation. One may not derive any non-equilibrium
Gibbs relation. Any non-equilibrium Gibbs relation should be considered as
an assumption which satisfies the following requirements: i) it is Galilean
invariant; 2) it reduces to the equilibrium Gibbs relation in the limit of quasi-
static processes; 3) the conclusions derived from it are not contradictory
and agree with experiments. Eq. (3.14) satisfies the first requirement by
construction. As in equilibrium both v(r, ¢) and v*(r, t) are zero, Eq. (3.14)
satisfies also the second requirement. The question whether it satisfies the
third requirement cannot be answered here. It can only be justified by virtue
of the results of, for instance, this thesis. We therefore take it as an assumption
for the further analysis.

Eq. (3.14) is the Gibbs relation for the non-equilibrium two-phase mixture
including the interface. One can show that it reduces to the Gibbs relation
used by Bedeaux et al [10] for the case of a one-component fluid. The above
analysis gives more insight in the origin of the contribution proportional to the
divergence of the surface tension field. This was not clarified in the analysis of
Bedeaux et al.
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3.4 Homogeneous thermodynamics of one-fluid
mixture

In this section we shall discuss the homogeneous expressions for the
thermodynamic quantities needed for the non-equilibrium description. This
analysis uses the equations of state which are usually written for the molar
specific variables. We will therefore use the molar variables in this section.
The final results can be converted to the mass specific variables.

3.4.1 Equation of state

To obtain the homogeneous specific Helmholtz energy one may use the common
one-fluid equations of state:
— van der Waals equation of state:

RTc

pw (T, ¢, ¢) = 1B A(T, ¢)c? (3.15)

— Soave-Redlich-Kwong equation of state:

RTc AT, ¢) o

pSRK<T, ¢, C):l—B(C)C_l—B(C)CC (3.16)

— Peng-Robinson equation of state:

RTc A(Tv C) 2
1-B()c 1+2B()c-B0)2°

pPR(T’ ¢, C:) = (3'17)

where ( is a short notation for the molar fractions {1, ..., (u}.

In the one-fluid approach, constants A(T') and B, depend on the fractions of
the species according to the mixing rules:
A(Ta Clv DRI Cn) = azk(T) CZ Ck
! (3.18)

B(C1y -+, Cn) = lbka

%

NG

where usually a;x(T) = v/a;(T) ar(T), and ax(T) and by, are the corresponding
coefficients for the pure substances (see e.g. [63] and [56]). For one-fluid
mixtures, these mixing rules, as well as the above equations of state, are
considered to be satisfactory. The matrix a;;(7) is symmetric in its indexes.
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3.4.2 Helmholtz energy of a mixture of ideal gases

According to [64] the total Helmholtz energy of a homogeneous mixture of
ideal gases is

FoialT, ¢, (] = —RTZVkln[ ew(T) ]

3.19
e Na A3 (T) ( )
where vy, is the number of moles and ¢, the molar density of component k.
Furthermore Ay is the thermal de Broglie wavelength and wy, is a characteristic
sum over the internal degrees of freedom of component k

A(T) = hNg\/27 /MRT | Wk(T)Ezgexp(—af/kBT) (3.20)

where M, is the molar mass of component k and ¢ ,f are the energy levels of the
internal degree of freedom of component k. If one describes the mixture using
molar specific variables the following equivalent expression is more useful

_ ew(T, ¢ ¢ AYT) wi(T)
Fol €= mee [J\WTC] RTZ” ln[ oo NIT, O w(T. )
(3.21)

where c is the total molar density of the mixture,

A(T, ¢) = hNa\/27/M(C)RT (3.22)

is the mixture’s thermal de Broglie wavelength, w(7', ¢) a characteristic sum
over all the internal degrees of freedom of the mixture and

n n—1
=3 GMy = Mo+ G(My, — M) (3.23)
k=1 k=1
is the molar mass of the mixture. The exact expression for w(7', (), as well as

expression for wi(7), is determined by model approximation for the mixture.

The specific Helmholtz energy of a mixture of ideal gases then becomes

ew(T, ¢) }

il )= —RTIn | G

(3.24)

1 ( My, )3/2 wi(T)
G \M(©))  w(T, ()

—RTi Ck In
k=1
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Due to the spirit of the one-fluid approach we have to equate the second term
to 0. Thus,

v _ GW(T, C)
fO,id(Tv ¢, ()=—RT In [C]VAAB(T,C)] (3.25)
where o
_ - wi(T) < Mj, )
w(T, ¢) = exp ; Ck In o M) (3.26)

can be considered as a mixing rule for the w. We note that Eq. (3.25) together
with Eq. (3.26) does not impose any assumptions: it is nothing but Eq. (3.24)
written with the help of one-fluid terms.

3.4.3 Homogeneous Helmholtz energy

To find the homogeneous specific Helmholtz energy f§ (T, ¢, £) we integrate the
equations of state over the volume at constant temperature and molar fractions
of the components. The integration constant should be chosen such that the
specific Helmholtz energy of the system with a small mixture’s concentration
(¢ — 0) is equal to the specific Helmholtz energy for a mixture of ideal gases
(3.25).

Integrating the equations of state Egs. (3.15)-(3.17) and using Eq. (3.25), we
obtain the following expression for the homogeneous molar Helmholtz energy?:

c]evAm (1=B(Q)e)| = AT, O cd(B()c)
| (3.27)

where ¢(w) has the following expressions, respectively, corresponding to each
equation of state:

fo(T, ¢, () =—RT In

Psri (w) =—In(1+w) (3.28)

11 22w
Penl) =5 R0 (H 1+w(l— \/§)>

2We note, that Eq. (3.27) is the expression for the specific Helmholtz energy of a non-ideal
mixture. This is accounted by using the equation of state of a real mixture, see Subsec. 3.4.1.
The reference to an ideal mixture is needed only for the determination of the integration
constant.
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To obtain w(7', ¢) one has to know w(7') defined in Eq. (3.20). The particular
mixture would imply a particular expressions for wy (7). Again, as the focus
of this thesis is not the homogeneous mixture theory, we neglect any particular
dependence of these quantities on the temperature and the molecular structure.
For the exact values we refer to the next chapter where we give the numerical
values for all the parameters.

3.5 Hydrodynamics of one-fluid mixture

The analysis in the above sections defines all the quantities and gives all the
relations we need for the non-equilibrium description. It is a generalization of
the hypothesis of local equilibrium. We will further omit the arguments (r, ¢)
to simplify the notation.

We can now derive all hydrodynamic equations, using the conservation laws
of matter, momentum and energy. The laws of conservation of mass can be

written as d
£ = —pV v
a -~ °
(3.29)
dfk —
— =-V-J k=1n-1
P dt k> y

The momentum conservation law, i.e. the equation of motion, can be written

as
dvg O(0ap + Tas)
_ _9\%as T Map) 3.30
P o7 + pgs (3.30)

where g is the gravitational acceleration. o4 is the thermodynamic pressure
tensor defined by Eq. (3.7) and ms(r, t) is the viscous pressure tensor,
which still is to be determined. We assume, that this tensor is symmetric.
The thermodynamic pressure tensor and the viscous pressure tensor without
subscripts will be indicated by &(r, t) and II(r, t) respectively.

The law of energy conservation is (see [5])
de
Pt

where J. is the total energy flux and the total specific energy e is given by

+V-(Je—pve) =0 (3.31)

e(r, t) = u(r, t) +7(r, t) + ¢(r) (3.32)
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© is the gravitational potential field, so that g = —V. We will assume, that
¢ does not depend on the time.

We restrict ourself to systems, where the acceleration of the components
relative to each other is small compared to the acceleration of the mixture’s
center of mass. This implies that the kinetic energy of the component’s relative
motion is small compared to the kinetic energy of the mixture’s center of mass
motion. This is true, when the relaxation time of the relative motion is very
small. For the common mixtures which are described by one-fluid approach
this is the case. Thus, the specific kinetic energy is

r(r, t) = %v2(r, ) (3.33)

From momentum conservation we obtain:
dr O(0ap + Tas)

- _ . .34
Par = VT g trVE (3.34)
For the internal energy we get
d -
pdif[: - _qu - 7TO(,3 V,@a - O'()(,B VBOt <335)
where vz = 0vs/0z, and where
quJe—pve—6~v—H-v (3.36)
is called the total heat flux.
We write the Gibbs relation (3.14) in the form
ds dv Nag
o —p Zp@bz — (Ve =) G (3.37)

Using previous equations and performing algebraic transformations we obtain?
s _ _y. (J Z b I+ (v — v°)- T) +
— = — vV—v
P dt kJEk

~ 1 1
+<Jq+(V—V )V*—ZJk VT Tﬂ-aﬁvﬂa_f'}/aﬂvavg

(3.38)
where T = v4;.

3 21 P 1 P
Note that Y Ik = Mk Jr and JkV(ipk/T) = JkV(,U,k/T)
k=1 k=1 k=1 k=1
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3.5.1 The energy fluxes

We follow [5] in the naming the fluxes of energy and heat. In general, the
energy flux J. contains various contributions. It is natural to call it the total
energy fluz, as it contains all the possible energy flows by definition

dpe
o = -V-J. (3.39)

The total energy flux contains the following contributions. One is a co-moving
energy pve, which represents a convective energy flux. Another term is the
thermodynamic work performed on the system, &-v. For inhomogeneous
regions like surface, thermodynamic pressure is a tensor and the corresponding
work has therefore this form. For viscous mixtures there is also a dissipative
work ITv which contributes to the total energy flux. The rest of the energy flow
is due to a heat flow. Thus, it is natural to call the flux J, defined by Eq. (3.36)
a heat flux. Convective energy flux, thermodynamic work, and viscous work all
depend on the frame of reference. After we deducted all these fluxes from the
total energy flux, the remaining flux is independent on the frame of reference,
i.e. Galilean invariant.

It is possible, however, to define another heat flux which would also represent
the flow of a heat. A heat flux J q’ is defined in the homogeneous region as

I)=3,-> hid; (3.40)
=1

where h; is the partial specific enthalpy of component 7. One can define it
similarly in the interfacial region as well. We do not introduce this flux here,
since we do not give the explicit expressions for the partial enthalpies in the
interfacial region.

All the thermodynamic potentials, such as the internal energy or the chemical
potentials are defined with respect to some reference state. This determines
some thermodynamic state as an absolute state and all the thermodynamic
potentials are measured with respect to this reference state.  This is
similar to choosing the particular frame of reference, which has an absolute
velocity. Similarly to the Galilean invariance of the mechanical equations, the
thermodynamic relations must be independent of the reference state.

Both heat fluxes jq and J é are Galilean invariant, i.e. independent on the

particular frame of reference. However, the heat flux jq depends on the choice
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of particular reference state, while the heat flux J; does not. It means that the
essential measure of the heat flow is the flux J é. It is therefore natural to call

J (; the measurable heat fluxz, while jq, by analogy with J., the total heat fluz.

The above definitions of energy fluxes in the interfacial region are
straightforwardly reduced to the ones in the homogeneous region, and coincide
with the definitions used in [5].

3.6 2D isotropy of the surface

Even though the fluid does not have any preferred direction microscopically,
we cannot say that it has a 3-dimensional isotropy everywhere, since there are
the mesoscopic directions of the density gradients. The two-phase equilibrium
state is not 3-dimensionally isotropic.

A special care should be taken to determine the normal direction to the surface.
With the help of the equilibrium analysis one can obtain distributions of
the equilibrium densities in the interfacial region. It is possible therefore
to determine the equidensity surfaces, i.e. mathematical surfaces, where
either density is constant, and which are normal to the corresponding density
gradient. One may in principle use the gradients of either of the densities to
define a direction normal to the surface. For the mixture we find it more
convenient, however, to define a normal using the tension field V,7vqs(r).
We call the surfaces, which are everywhere normal to this vector field, the
equitensional surfaces. The thickness of the interfacial region will be assumed
to be much smaller then the radii of curvature of these equitensional surfaces.
Given this assumption the tension vector field in good approximation does not
change its direction through the interface. Thus, it is possible to speak about
the normal vector n on the surface, which is parallel to the tension vector in
this region.

This allows us to speak about the symmetry of the surface. If the surface
curvature is the same in both directions, parallel to the surface, a small
surrounding of the normal through the interfacial region is invariant for any
rotations around and reflections with respect to this normal. Thus we can say,
that such a system has a local 2-dimensional isotropy. We shall refer to such a
property of the interfacial region as the 2-dimensional isotropy of the surface.
If the two radii of curvature differ, the surface is not 2-dimensionally isotropic
anymore. For a surface which is thin compared to the radii of curvature one



50 Chapter 3. Non-equilibrium

can, in a good approximation, consider it to be 2-dimensionally isotropic. We
assume this to be the case for the systems we will consider.

If the system has 3-dimensional (3D) isotropy, then coupling occurs only
between forces and fluxes of the same 3D tensorial character. For an interfacial
region, which is 2-dimensionally (2D) isotropic, coupling occurs only between
forces and fluxes of the same 2D tensorial character. Thus, phenomenological
coefficients must remain unchanged under rotations and reflections with respect
to the direction normal to the surface. Below we show how one can extract
2D-isotropic quantities from 3D scalars, vectors and tensors.

We shall use the special notation for the tensorial quantities of different order
and different behavior in this section. Any tensorial quantity is denoted as
Q47 Here d indicates the dimensionality of the space, in which the quantity
is being considered, and can be either 3 or 2 here. r indicates the rank of the
tensorial quantity, and can be s for scalar, v for vectorial or t for tensorial
quantities. We refer to Appendix 3.B for the details.

Consider the entropy production, which has a form
os = SB%) RBs) Ly GV) jpyBy) L pBY) . () (3.41)

To be able to use the 2D Curie principle [65] one may proceed along the
steps, explained in [5]. To clarify this we shall write this expression as a
combination of independent 2D scalars, vectors and tensors. The details are
given in Appendix 3.B, here we will give the results.

One can split the vectorial and tensorial quantities into the normal and parallel
components with respect to the normal vector n on the surface. We use the
subscripts L and || for this quantities. Because of 2D-isotropy of the surface,
these quantities reveal the scalar, vectorial or the tensorial behavior under
rotations around and reflections with respect to this normal in a 2D space.
This will be indicated by superscripts 2r as explained above.

Any 3D scalar is also 2D scalar, since it remains invariant under any kind of
coordinate transformations.

§Bs) — g(2s) = g(s) (3.42)

Any 3D vector VY can be written as (cf. the notation with Eq. (3.67)):

Ve = ( () v”(2V>) (3.43)
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Any 3D tensor T}V can be written as (cf. the notation with Eq. (3.70)):

(5) (V) (s) 2v)
T3t — Ti; Ti2ll — Ti,; 2TLH Ll (3.44)
G T T (U 4 1Y

Combining these components we obtain for the entropy production
Os = Os,scal + Os,vect + Os.tens (345)
where

Oaseat = SO RO + VO W L0 g9 4 Ly Tﬁt)) (Tt n”ﬁ R)

Oovet = ViV WP 42 2 (3.46)
_ p(2t) . 77(2¢0)
Os,tens = Ty = Iy
where T(Y) = l(T(zv) + T(2V)) and we have used the symmetry of the tensor
# T 2VL 1 Y y

TBY. The little circle above a 2x2 tensor like in 7' indicates the symmetric
traceless part of this tensor.

The 2D Curie principle tells us that coupling occurs only between quantities
of the same 2D tensorial order.

3.7 The entropy production
Comparing Eq. (3.38) with the balance equation for the entropy

d
p d—i =-V-Js+ 05 (3.47)

we conclude, that the entropy flux and the rate of entropy production in the
interfacial region are given by, respectively,
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n—1
1/~ s
JSZT(Jq—;%JkJr(V—V)'T) (3.48)
and
n—1
~ 1 1 1
o = (Jq +(v— VS)-T>-Vf — ZJI@'V% ~ 7 Mas Voa = 7 Yas Vavy (3.49)
=

According to the second law o is non-negative.

Consider the last term in Eq. (3.49). It is the product of the tension tensor v,
which is nonzero only in the interfacial region and the gradient of some velocity
(the factor 1/T is irrelevant for the upcoming arguments). The contribution
to the entropy production from this term moves along with the surface in non-
equilibrium processes. It is therefore natural to associate v® with a velocity of
the surface?.

Each of the terms in Eq. (3.49), except the last one, has a form JX, where
both flux J and force X vanish in equilibrium. In other words, their Taylor
expansion in the powers of perturbation starts from the first order term. Their
product therefore has a Taylor expansion which starts from the second order
term. Since o, is non-negative the coeflicient at this second order term must
be non-negative.

Now consider the last term in Eq. (3.49). It is the product of a velocity
gradient, which vanishes in equilibrium, and the tension tensor 7,4, which
remains finite in equilibrium in the interfacial region. The first non-zero term
in the Taylor expansion of this product therefore is proportional to the first
order of perturbation. The only option for this term to be non-negative for
any perturbation is to be equal to zero. v® is therefore equal to some constant.
Since any velocity is determined up to the constant velocity relative to the
selected frame of reference, we may conclude, that v® represents the surface
frame of reference. With no loss in generality we may impose

vi=0 (3.50)

meaning that we choose the surface frame of reference rather then the
laboratory frame of reference. All subsequent analysis is done in the surface
frame of reference.

4One could, in fact, do this identification immediately after the introduction of this
velocity in Eq. (3.14). We consider it more convenient to do it here, however.
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Eq. (3.48) and Eq. (3.49) in the surface frame of reference become respectively

n—1
1 /~

Jo= 7 (Jq S G d v-T) (3.51)

k=1

and
n—1
- 1 ve 1

s = (Jq—l—v-T)-VT—;Jk-VT—Tﬂaﬁvﬁa (3.52)

Note, that the expressions for Js and o in the interfacial region are different
from those given in [5] for homogeneous phase. They however reduce to the
homogeneous expressions in homogeneous phase. The fundamental difference
here is the presence of the tension tensor T = 7,5 which is only nonzero in
the interfacial region. This makes the interfacial transport to be essentially
different from the bulk one.

We define the heat flur J, in the surface frame of reference (i.e. taking into
account that v® = 0) as

qujq—i—v-T:Je—pve—pv—lTv (3.53)

Away from the interfacial region J, and jq coincide. Jg, is also the flow of
essentially a heat, which explains its name.

With this definition, the entropy flux and the entropy production become
respectively

n—1
1
Jo=7 <Jq - ;_1 wak) (3.54)
and
n—1
1 Yg 1
Og :Jq‘vT—kE_le'vT—Tﬂ'a@V/ga (355)

which has the same form as in [5]. As we mentioned above, there is a crucial
difference between homogeneous and interfacial expressions, which is hidden
behind this form.
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3.8 The phenomenological equations

3.8.1 The force-flux relations

Comparing Eq. (3.55) with Eq. (3.45) and Eq. (3.46) we can write the entropy
production for a 2D-isotropic surface as the sum of 2-dimensional scalar,
vectorial and tensorial contributions

n—1

1 Ui Vive  Trmy Vi
o =J, 1 Vi=— Jg 1 Vi——7 —
s, scal q, L LT ; k, L V1 T 11 T 9 T
-1
15 U \a
Tssvet =301V = DIV = 2mpe
k=1
. (V)
Os,tens = T|||| * T
(3.56)
where vV = %(V”VJ_ + VJ_VH)
The linear force-flux equations for the scalar force-flux pairs are
1 = m Tem
VJ_T = Tgq, 11 Jg 1 — 1;—:1 Tak, LLJp = T, LLT11L— Tgn 1| 5
i S m Trmy)
VL? = Tig 1L g 1= 22 Tik, L1 — Tim, LLTLL— Tim, 1| —
k=1
Vivy n-l1 Tr
T = Trg, 1L g, L= 22 Tk, L1y = Tom, LML= T, 1| T”H
k=1
Vievi _ P gm 3 Tem
T = et el X Tk LT e LT T )

(3.57)
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For the vectorial force-flux pairs they are

n—1

1 VY Vi
Jol = Lo Vig — ;qu,nnVnT = Ln, |
1 n—1 1/] vy
k

i = LignVig — ELMMT — Lim g (3.58)
1 n—1 '¢ v
_ k #
2my = Lug ) Vigp — ;ka,#llvllT = Lom g

and for the tensorial force-flux pairs they are

(V) vy)

T

All the resistivities r and conductivities L are scalars. One can easily invert
the resistivity matrix r and write the corresponding relations for the fluxes
using the conductivities L, and vice versa.

— (3.59)

For flat surfaces it was found [66] that the resistivities are additive in the
normal direction to the surface while the conductivities are additive in the
parallel direction. We therefore consider it convenient to write the force-flux
relations in the above form.

3.8.2 The phenomenological coefficients

The Onsager relations for the phenomenological coefficients are the following.

Tgh,LL = Thq, L1 Lok, = Lig,

Tgm,ll = Tmq Ll Lon = Lang |

Tem, L = Trq,|L Liri = L

Tik, Ll = Thi, 11 Lizj# = L, (3.60)
Tig, 1L = Tmi, L1

Tim, Ll = Tmi,||L

Trem, L] = T || L

As the ordinary Onsager relations, these are the consequence of the microscopic
time reversal invariance.

As usual, the values of the phenomenological coefficients locally will depend
on the local thermodynamic variables. These are the local concentrations,
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p, &, and the temperature, T'. In the gradient theory the density gradients
are also considered as local thermodynamic variables. In view of this,
the phenomenological coefficients may also depend on the gradients of
the densities. The values of the phenomenological coefficients and their
functional dependence on the thermodynamic variables are not given by
the mesoscopic theory. They should be either calculated from statistical
mechanical considerations, or from experiments, either real or computer. While
they are well investigated for homogeneous fluids and fluid mixtures, such data
are not available for the surface coefficients of fluid mixtures.

We shall use the following expression for each of the resistivity coefficients

g L g ¢_¢g V4 g |V§b|2

r=r+ " —r )r—qbg +a(r'+r )7’v¢€q’?naX (3.61)
where 79 and 7¢ are the resistivities for the coexisting homogeneous bulk phases,
gas and liquid, in the equilibrium state. Here ¢ is the order parameter, typically
this is just the density p or the molar concentration c. ¢4 is the equilibrium
profile and |V ¢eq|max is the maximum value of the gradient of this profile. The
first two terms are just a smooth transition of the resistivity from the value
in the one phase to the value in the other phase. This is the first natural
assumption for the resistivity profile. The origin of the third term comes
from the assumption that the resistivity has a peak in the interfacial region.
Particularly one can observe this fact in the molecular dynamic simulations
[67]. The exact form of this term may be debated. It was chosen to model a
rise of the resistivity in the interfacial region. The |V¢|? factor makes this term
significant only in the interfacial region. It is scaled with |V¢ey|2 . in order to
make this factor dimensionless and not far from unity. The (rf+79) factor gives
the average value of the resistivity of both phases. The dimensionless factor
« represents the magnitude of this effect at equilibrium. The homogeneous
resistivities 9 and ¢ are the known functions of the mass fraction and the
temperature along the plane of coexistence.

For the conductivities used in Eq. (3.58) and Eq. (3.59) one may use expressions
analogous to Eq. (3.61). The conductivities along the surface are expected to
be additive [66]. Thus, it is important to use this equation for the conductivities
and not for the resistivities along the surface. In this respect it is important
to note that o may in principle be negative as long as the corresponding r
and L remain everywhere positive. For the resistivity this would describe an
interfacial region with a lower resistivity and for the conductivities it would
describe an interfacial region with a lower conductivity. We will only consider
positive a’s.
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3.9 Discussion and conclusions

In this chapter we have built the framework for the non-equilibrium gradient
model for the surface. This requires the following important steps. With
the help of the equilibrium gradient model for the mixtures, established in
the previous chapter, we were able to extend the thermodynamic description
of the interfacial region to the non-equilibrium case. Explicit expressions
for the Gibbs relation and the pressure tensor were given. We found that
compared to homogeneous systems, the Gibbs relation for the interfacial region
contains an additional term, proportional to the divergence of the tension
tensor. This tensor plays an important role in the surface and integration of
its perpendicular component gives the surface tension. Away from the surface
this tensor is equal to zero and we have the familiar Gibbs relation. For a
single component system the Gibbs relation in the interfacial region reduces
to the one given by [10].

For the non-equilibrium description we use the standard hydrodynamic
equations for the so-called "one-fluid" model of the fluid. Together with
the Gibbs relation and the balance equation for the entropy density, we were
then able to obtain explicit expressions for the entropy flux and the entropy
production not only in the homogeneous phases but also in the interfacial
region. This identifies the conjugate thermodynamic forces and fluxes in the
interfacial region. This made it possible to give the general force-flux relations
in this region. The explicit form of these equations depends on the symmetry
of the system. We discuss why one can consider a fluid-fluid interface to be
two-dimensional isotropic. Due to the Curie principle, coupling occurs only
between 2-dimensionally isotropic scalars, vectors and tensors of the same rank
in such a system. The resulting force-flux relations in the interfacial region
are accordingly simplified and given. Interesting is that the components of
the fluxes normal to the surface are scalar and couple therefore to chemical
reactions in the interfacial region. This is related to active transport, a
phenomenon of great importance. We do not explicitly consider reacting
system in this thesis, but may do this in future. Having all these equations,
the non-equilibrium description of the surface is complete.

We conclude that the description we have given, using an extension of the
square gradient model, will be a useful tool to study many details of the
dynamics of evaporation and condensation in multi-component systems. Non-
equilibrium molecular dynamic simulations of evaporation and condensation
could obtain density, mass fraction and temperature profiles. We expect
the comparison of these profiles with the present model to be very useful.
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In particular, this will give insight in the size and possible density, mass
fraction and temperature dependence of the coefficient .. In this manner we
expect the model to form a bridge between the microscopic description using
non-equilibrium molecular dynamic simulations and the discrete macroscopic
description using the excess densities introduced by Gibbs [41]. In Chapter 5
we intend to investigate whether the discrete description satisfies the local
equilibrium assumption for an arbitrary choice of the dividing surface, a
property which was verified for one-component systems [11|. This would be a
rather remarkable result, given the fact that the continuous description does
not obey this property. For a systematic development of the non-equilibrium
thermodynamic description of surfaces this property is essential |44, 68].

3.A On the extension of the Gibbs relation to non-
equilibrium

For the specific Helmholtz energy the ordinary Gibbs relation in equilibrium
was found to be

n—1
5f(s,0,€) = —s(r) 6T + Y _ 3 6&(x) — p (r) 6u(r) (3.62)

i=1

Spatial Gibbs relations in equilibrium was found to be

n—1
Vi) = v VEr) —p ) Vo) + o) D (36
i=1 @

One may wonder why to use the Gibbs relations for the specific internal energy,
not for the specific Helmholtz energy, to extend them to non-equilibrium
analysis. Following the same procedure, as in Sec. 3.3, we can extend the
Gibbs relations for the specific Helmholtz energy to non-equilibrium in the
following way

n—1

afg;t) = —s(r, 1) 6T§;’t) + z; Yi(r, t) W —p(r, t) avgt’ ) (3.64)
S e, ) Ve ) - Pl 1)
Vi, 1) = i(r, t) V&(r, t) — p(r, t) Vo(r, t) + v(r, t) P (3:69)

i=1
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For the ordinary Gibbs relations, like in homogeneous description, there is no
preference in the thermodynamic potential. Provided Eq. (3.6), equilibrium
ordinary Gibbs relations (3.9) and (3.62) are equivalent. The non-equilibrium
relation between these potentials

u(r, t) = f(r, t) + s(r, t) T'(r, t) (3.66)

makes non-equilibrium ordinary Gibbs relations (3.11) and (3.64) to be
equivalent as well.

The situation is different for the spatial Gibbs relations, however. Provided
Eq. (3.6), equilibrium spatial Gibbs relations (3.10) and (3.63) are equivalent.
The non-equilibrium relation Eq. (3.66) between these potentials makes,
however, non-equilibrium spatial Gibbs relations (3.12) and (3.65) to be not
equivalent. The reason for that is that the equilibrium spatial Gibbs relation
for the specific Helmholtz energy, as given in Eq. (3.63), does not contain the
term, proportional to VT, since VI' = 0 in equilibrium. In non-equilibrium
VT'(r,t) # 0 and, as one can see from Eq. (3.12) and Eq. (3.66), Vf(r, t)
contains such a term.

We see, that the Gibbs relations for the specific internal energy describe the
system more adequately since they do not suffer from the unaccounted effect
of possible temperature changes. Because of this reason we should use the
Gibbs relations for the specific internal energy, not the specific Helmholtz
energy, to extend them to non-equilibrium. Of course, this does not make
the internal energy to be somehow preferred thermodynamic potential in non-
equilibrium. If one does not disregards terms with VT or others which
are zero in equilibrium, one will see the fully equivalence between all the
thermodynamic potentials, as it should be.

3.B 2D isotropic components in the 3D tensorial
quantities

As in Sec. 3.6 we shall use the special notation for the tensorial quantities of
different order and different behavior in this section. Any tensorial quantity is
denoted as Q). Here d indicates the dimensionality of the space, in which
the quantity is being considered, and can be either 3 or 2 here. r indicates
the rank of the tensorial quantity, and can be s for scalar, v for vectorial or t
for tensorial quantities. For example, Q2% indicates the 2-dimensional tensor,
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i.e. the quantity (£ 2), where g;; are numbers, and Q®Y) indicates the 3-

dimensional vector, i.e. the quantity (ql, q2, Q3), where ¢; are numbers. Scalars
are the numbers irrespectively of the dimensionality of the space, so they will
be denoted simply by Q(¥.

Some quantities reveal the tensorial behavior of a some rank in d-dimensional
space only under some specified transformations, while in general they don’t.
In this section we are interested only in rotations around and reflections
with respect to some constant vector N®¥) in 3-dimensional space. We will
denote quantities which reveal the tensorial behavior of rank r under these
transformations by Q(@*~),

We show how in presence of the constant vector N®V) one can split the
tensorial quantity Q") into a combination of the tensorial quantities Q2*~).
Without loss of generality we will assume that N3 = (1, 0, 0).

From 3D vector V3Y) one can construct the following quantities, which are
linear in V3Y): one scalar quantity

V( SN) = V(gv)'N(3V) _ V1(3v)
and one vectorial quantity
V(SVN) = V(3v) B V(SN) NGBV — (0’ ‘/2(3v)7 ‘/3(3V))

which is perpendicular to the NG3V). Denoting V@EvN) = (VQ(?’V), V3(3v)) we
can write that VE~) = (0, V¥V, Thus,

V(SV) _ V(SN) NGBV + V(SVN) _ (V(SN), V(2VN)) (367)

From 3D tensor TG%) one can construct the following quantities, which are
linear in TGY: 2 scalar quantity,

789 = TeT®Y = 139 4 730 4 7Y

and
Tl(SN) = N(3V) ‘T(3t) .N(3V) — Tl(ft)

two vectorial quantities

Tl(gvm = NGO ey NGV — (o, e, Tl(gt))
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and
TT(?’VN) — 7Bt NyBv) _ T NGBV — (0’ TQ(iit)’ Tg,(ft))

(which are equal, if TGY ig symmetric); and tensorial quantity

TBtN) = TBt) _ TISN NGBV) yBv) _ Ttl(3VN) NGBV) _ NyBv) TT(3V) —
0 0 0

3t 3t
0 1" 1Y

3t 3t
0 13" 1Y

Denoting
7N _ (30 (30 o _ (T T
! = (T12 » T3 ) e = (T(3t) T(3t)>
32 33
) 2 (8, 7)
we can write that
IOV — (0, 7)) 76w — (8 T(QOtN)>
TV — (0, T2V

Thus®
7B — TI(SN) NGBV N6V +Tl(3VN)N(3v) + NGBV T7§3VN) 4+ 73N =

- TI(SN) j—,l(QVN)
- T7§2VN) T(2tN)

(3.68)
Tensor T(2t¥) still contains the scalar part
TN = e 7o) = 73Y 4 7EY
which obeys the relation
TS = 7lsn) 4 pisw) (3.69)

Two of these three scalar quantities are linearly independent, and one can use
any pair. Since we want to reduce all the quantities to the form Q™ ~) we will

use Tl( S¥) and T2( SN) as independent pair. Introducing the traceless tensor

3 s 3t
Tp" =3 1Y )

3t 3t s

32

33

5Note, that if the product of two tensorial quantities of rank r > 0 is written without -,
it means that this is the product, not the internal product.
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and

0 7T@tn)

2t _ 1 0 3t _ O 0
o >:<0 1) o N>:<0 U<2t>>

we can write a 3D tensor as

where

T(St) — Tl(SN) N(3v) N(3v) + %TZ(SN) U(StN) +j’7(3tN)+
+Tl(3VN) N@Bv) + NBv) T7«(3VN) —
(3.70)
Tl(SN) T(2VN)

l
- (T7§2VN) %TQ(SN) U(2t)+r_f(2tN)>



Chapter 4

Numerical solution for the
binary mixture

4.1 Introduction

In previous chapters, we have established the square gradient description of
the interface between two phases in non-equilibrium mixtures. We considered
temperature, density and mass fraction gradients; heat and diffusion fluxes
as well as evaporation or condensation fluxes through the interface. In this
chapter we apply this analysis to a particular binary mixture. We then solve
the derived equations numerically. In this chapter we give the description of
the numerical procedure and the profiles of various thermodynamic quantities.

To obtain the numerical solution we have to imply a number of assumptions
about the system’s behavior, geometry and conditions. The system is
considered to be in a stationary state. The numerical analysis of stationary
states is a natural first step, as the numerical analysis of non-stationary states
is much more involved. We consider a flat interface between a binary liquid
and it’s vapor with the normal n = (1,0,0) pointing from the vapor to the
liquid. We choose all fluxes and gradients to be in the z—direction. Due to
this, all variables depend only on the r—coordinate. We choose the system
such that the gas is on the left hand side and the liquid is on the right hand
side. The z-axis is directed from left to right and the gravitational acceleration
g is directed towards the liquid. To simplify the analysis we assume the fluid
to be non-viscous, so that the viscous pressure tensor mys = 0. Neither the
parallel nor the normal hydrostatic pressure are assumed to be constant.
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For all the quantities except the measurable heat flux Jq’ , the prime / symbol
indicates the derivative with respect to position x.

In Sec. 4.2 we give the complete set of equations, which are required for the
determination of the various profiles in stationary states of the system. We
shall give the various thermodynamic densities which follow from the van der
Waals equation of state and the gradient terms to be added in the interfacial
region. In Sec. 4.3 we describe the numerical procedure which has been used
to solve these equations. The numerical solution is calculated between two
points where boundary conditions are given. The region between these two
points we refer to as the box. In Sec. 4.4 we specify the input data for the
chosen mixture. We use cyclohexane and n-hexane as components. We give
the profiles of different thermodynamic quantities under various conditions in
Sec. 4.5.

4.2 Complete set of equations
4.2.1 Conservation equations

In a stationary state the conservation equations take the following form. The
law of mass conservation for the components gives

d

@(PV) =0

(4.1)

L (htpev) =0

where p = p1 + p2 and v = (p1v1 + p2ve)/p are the mass density and the
barycentric (center of mass) velocity. Furthermore £ = p;/p is the mass
fraction of the first component and J; = p1 (vi—v) = p& (v1—v) is the diffusion
flux of the first component relative to the barycentric frame of reference. The
diffusion flux of the second component is Jo = py (vo — v) = —J1. Momentum
conservation is given by

d
. (,ov2+p+%cx) =Py (4.2)

where ., is the normal component of the thermodynamic tension tensor,
which will be given below. Furthermore p and p+ ., are the pressures parallel
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and perpendicular to the interface, for the planar interface under consideration.
Energy conservation is given by

a
dx
where J. = J; + pev + pv is the total energy flux, J, is the heat flux, and

e = u+v?/2 — gz is the total specific energy and u is the specific internal
energy.

Jo =0 (4.3)

4.2.2 Thermodynamic equations

The square gradient model, discussed in the previous chapters, gives the
following expressions for the specific Helmholtz energy f, the specific internal
energy u, the parallel pressure p, the chemical potential difference ¢ = 1 — o,
the chemical potential of the second component p = p2 and the xz-element of
the tension tensor 7,;:

f(.’E) = fO(T7 P 5) +’C(p7 6’ P/7 5,)

(@) = fo(T, p. €) — T 2 fo(T, p. &)+ K(p, £, p', €1

oT
0 ) d 0 Y
0 ;o 1d 0 P
0() = g¢ (FolT . 1Ko, € 0", ) = 4 (0 5Kl € ', €1)

0 0
IU(QZ‘) = (97,0<p (fO(Ta Py £)+K(p7 57 p,’ 5,))) - %(p 87,0,K:(p’ ga :0/7 5/))_

~4(o)¢
5(2) = ~ o Io(T, 9, €)

Yaz(z) = 2pK(p, &, Pl7 5/)
(4.4)
Here fo(T, p, &) = fY(T, ¢, {)/M(() is the specific Helmholtz energy of the
homogeneous phase (see Subsec. 4.2.3), which can for instance be derived from
the equation of state. Furthermore K(p, &, p’, ') is the gradient contribution
(see Subsec. 4.2.4). Since the equation of state is usually given in molar
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quantities, it is convenient to use them here as well. Thus, ¢ = p/M is the
molar concentration, ( = £ M /M; is the molar fraction of the first component,
where M = My My/(My + & (Mo — My)) = My + ¢ (M — Ma) is the molar
mass of the mixture, and M; and Ms are molar masses of each component.

4.2.3 The Helmholtz energy of a homogeneous system
This energy is given by the following equation

e w(T, ¢

c N4 A3 (T, ¢) (1—B(¢) 0)> —A(T, ¢ (4.5)

fUT, ¢, () =—RT ln<

where the de Broglie wavelength A and the characteristic sum over internal
degrees of freedom w are respectively:

27 1/2
AT = (5777

¢ 1-¢
T 0 wi /My 3/2 wy [ My 3/2
w =|—=(= —
’ ¢ \ M 1-¢\ M
Expressions for the characteristic sums over internal degrees of freedom for each
component, wi and wa, are given in Chapter 3. In this thesis they are assumed
to be independent of the temperature and the molar fractions as well as the

particular internal molecular structure, i.e. just constant numbers. Eq. (4.5)
together with Eq. (4.6) follow from the van der Waals equation of state.

(4.6)

The mixing rules for A and B are

AT, ¢) = a1 ®+2a12¢ (1 —¢) +an(l-1)?
B(() = bi¢+ba(1-()

with a;; = /a; a;, where a; as well as b; is a coefficient of a pure component 4.
We will assume in this thesis that all a;; and b; are independent of temperature.

(4.7)

4.2.4 The gradient contribution

This contribution is given by the following general expression for a binary
mixture

1

¥ (Fon(p: € 0™ + 200 (p, €) "€ + ree(p, ) €7) (4.8)

,C(pv 57 Pl, 5/) =
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The coefficients x,,, kpe and kg can be expressed in the gradient coefficients
Kpipy and Kp,p, for components 1 and 2 in the following way (see Sec. 2.5 for
details)

Kpp(Ps §) = (Fpipr = 2Kp1ps + Kpaps) £ +2 (Kprps = Fpaps) €+ Kpaps
Kpe (p, &) = (“plm — 26p,p, + ’fpzpz) P2€ + (“mpz - “pzpz) p
Kee (s 5) = (Hmm — 2Rpipp + ’%pzm) P
(4.9)

where for the cross coefficient we use the mixing rule k,,p, = \/Kpip1 Kpaps
similar to the one for coefficients a;;. We will further assume k,,,; to be
independent of the densities.

With the above mixing rules the gradient contribution can be written in the
form

12
Kkq
K(p, & p', €)= (4.10)
2p
where
K = Kpyps
¢ =p(l+eme) (4.11)
eM=¢, = [feier g
Kpapa

Some of the quantities from Eq. (4.4) can be rewritten as

2
p(xr) =po—k (%q/ +qq”>
p(z) =po—rq” (4.12)
Y(z) =vo—enkq”
where pg, po and 1y are values of the corresponding quantities in the
homogeneous phase, which are found from Eq. (4.4) by setting £ = 0. For
a one-component fluid ¢ equals the density. For the two-component mixture

q plays a similar role as the density for the one-component fluid. We shall
therefore refer to ¢ as the order parameter.

For the surface tension of the flat interface one may show, using Eq. (4.10) and
Eq. (4.4), that in equilibrium

Yeq = /dl’ Yoz, eq(T) = K /dm q@/q2 (4.13)
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It follows that k,,,, is proportional to the surface tension 7, ; of the pure
component ¢. It follows therefore that as estimate for e, one may use the

relation

en ] (4.14)

V2

In an organic mixture like cyclohexane and n-hexane, a mixture we will study in
more detail in this thesis, the components are very similar and as a consequence
lex| is small, as one can see from Eq. (4.14). The order parameter is then in
good approximation equal to the density. When the components are very
different || may be large and ¢ may become in good approximation equal to
the density of one of the components.

4.2.5 Phenomenological equations

In the previous chapter we derived the general expression for the entropy
production of a mixture in the interfacial region. For a binary mixture which
has only gradients and fluxes in the x—direction, it takes, neglecting the viscous
contribution, the following form

d 1 d
s=Jyg—=—J —= 4.1
=0 T NGt (4.15)
where we used that Jo = —J7. The resulting linear force-flux relations are:
d 1
AT Jg—rqda
(4.16)
d
%% =rigdqg — 111

The resistivity coefficients rqq, 711 and 741 = r14 will in general depend on the
densities, their gradients as well as on the temperature, so they vary through
the interface. Expressions for the resistivity profiles in the interfacial region
are not available. We model them, using the bulk values as the limiting value
away from the surface and the order parameter profile as a modulatory curve

req(z) = qu + (qu - qu) qo(z) + O‘qq(rgq + rgq) q1()
() =ri+ (rh =) ao(@) + ap(rhy + ) a1 (x) (4.17)
rq1(x T+ (g —791) @0(@) + agi(ry +rg) oz )

ri(z) =1} + (rfy —r{) qo(x) + an(r]; +rfy) a1 ()
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where ,
T) — q24 "(x
q(z) — g (@) l¢'(z)|

) = ——F—5 4.18
ng - ng ( )

qo(x) =
|44 (7) 12,00

are modulatory curves for resistivity profiles. Here ¢¥; and ng are the
equilibrium coexistence values of the order parameter of the gas and liquid
respectively. Furthermore ¢/ (z)|%,,, is the maximum value of the squared
equilibrium order parameter gradient. For each resistivity profile ¢ and r¢ are
the equilibrium coexistence resistivities of the gas and liquid phase respectively.
Coeflicients agq, agq1, 11 control the size of the gradient term, which gives
peaks in the resistivity profiles in the interfacial region. Such a peak is observed

in molecular dynamic simulations of one-component fluids [67].

Limiting coefficients r® (where b is either g or ¢) are related to measurable
transport coefficients in the bulk phases: thermal conductivity \°, diffusion
coefficient D® and Soret coefficient s%. In the description of transport in the
homogeneous phases it is convenient to use measurable heat fluxes

TP =Jb— J(hh — hh) (4.19)

where h? is a partial specific enthalpy of component i in phase b (cf. Eq. (3.40)).
Furthermore we used that Jé’ = —J{’ . In the homogeneous phases the entropy
production then takes the following form:

US:J’—x——Jl—— (4.20)

where we have suppressed the superscript b for now. The subscript T of ¥
indicates that the gradient is calculated keeping the temperature constant.
Using the Gibbs-Duhem relation in a homogeneous phase at a constant pressure
one can show that
dpe O 1 de
de 06 (1—¢&)dx

(4.21)

After introducing measurable transport coefficients, the force-flux relations
derived from Eq. (4.20) can be written in a form used in [5] :

dT o de
/ — _ -
Jo = A TP e TPy,
(4.22)
dr d
Jo=—pe(-gDs, L yp &

dzx dx
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Comparing Eq. (4.16) and Eq. (4.22) in the homogeneous region we find the
values of resistivity coefficients in the bulk phase

1 Dp
E 7 e
1 D
Tql = T1q _W(I/Jgp(hl_h2)+DSTp§(1_§)T)
1 D
11 :LT2 <wgp(hl—h2)2+DSTpf(1—f)T(h1—hg)—l—)\T)

(4.23)
where ¢ = (01/0€), L= (AD p/1¢) — (D sy p& (1—€))?T. All the quantities
in Eq. (4.23) are taken in the specified bulk phase, either gas or liquid.

4.3 Solution procedure

The numerical procedure is similar to the one, described in [10], however it
has some differences. We will describe the special features below. We use the
Matlab procedure bvpéc [69] to solve the stationary boundary value problem.
This requires a reasonable initial guess as well as boundary conditions. First,
we obtain the equilibrium profile, and then we use it as the initial guess for
the non-equilibrium problem. We use a box of width 80 nm with the grid
containing of 81 equidistant points.

4.3.1 Equilibrium profile

It is easier to describe equilibrium properties of the mixture using molar
quantities. Everywhere in this subsection we will do this. The superscript v
indicates a molar quantity. The total molar concentration and molar fraction
of the first component are denoted by ¢ and ( respectively.

Equilibrium coexistence is determined by the following system of equations
ng = Mg (T€q7 ng, ng) = :u(y] (Teq, C£q7 ng)
d}gq = 77[)6/ (Teqv ng’ CgQ) = 1/}6 (Teqa ng) ng) (4.24)

Peq = PO (Teq7 nga ng) = Po (Teqa Cﬁq, ng)
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where v = (94 /0C), u§ = f§ + ¢(Df/dc) — ¥y ¢ and po = cX(DfF /dc) are
chemical potentials and pressure of the homogeneous phases. gy, (%, and cﬁq,
qu are the coexistence concentration and molar fraction of the gas and the

liquid phase respectively.

Having 6 equations (4.24) and 8 unknowns ¢y, ¢Z;, cﬁq, (fq, Vegr Megs Pegs
Teq, two of the unknowns are free parameters. Indeed, the phase rule says
that for a two component binary mixture two parameters need to be specified.
The temperature and the pressure are experimentally a convenient choice. We
have found, however, that it is more convenient to control T¢, and ¢, in the
calculations. This is because g, changes monotonically with ¢Z, or qu, and it
is therefore a good measure of the composition. Since ¥¥ = p} — ps, the value
of ¢V also reflects the difference in the composition of the mixture.

To obtain the equilibrium profiles cq(z) and (cq(2) one needs to solve a system
of two differential equations

ey, = pp(c,¢) — k" (¢7)"
(4.25)
Yeq

v (e Q) —eg k" (¢")"
which follow from Eq. (4.12) in equilibrium. Here

¢" =c(l+ei¢)=qM
KY =K M2 (4.26)
e, = (1+ex) (M1/M3) -1

where M, and M, are the molar masses of the components. The system of
equations (4.25) is, in fact, singular, since coefficients of the higher derivatives
differ by a constant factor. Thus, we can deduce one algebraic equation instead
of a differential one

¥o (e, Q) —ex po(c, €) = they — ek tieg (4.27)

The bvp4c procedure takes only differential equations, so we have to transform
Eq. (4.27) to a differential one. This can be done easily by taking the derivative
of both sides. After some transformations, we get the following equation set

()" = % (18 (e, ©) — )
(4.28)

Yoe —EkMoc ek >_1
Voo — €k Mo 1+er¢

Iy ((1+ez<>
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where subscripts ¢ or ¢ mean partial derivative of the corresponding quantity
with respect to ¢ or ¢. This is a system of 3 first order differential equations
for 3 variables ¢, ¢¥ and (¢”)’, which requires 3 boundary conditions. One of
them is Eq. (4.27) taken on one of the boundaries, which simply determines
the integration constant for the second differential equation. The other two are
(¢¥)'(x9) = 0 and (¢¥)'(x*) = 0, which indicates the fact, that box boundaries,
29 and zf, are in the homogeneous region.

The numerical procedure allows the variables to take any value. However,
not all the values are allowed physically. For instance, the mole fraction ( is
bounded in the interval (0;1) and the molar concentration is bounded in the
interval (0; B~1), where B is given in Eq. (4.7). In order to avoid out-of-range
problems, we use the function which safely maps a unit interval to real axes:

ur(u) = arcsin(2u — 1)
y (4.29)
Va—

In order to translate real values back to the unit interval we use the inverse
functions

d
u2r’(u,u’) = %uQr(u) =

1
r2u(r) = sm(rz +
4.30)
d / (
r2u’(r,r') = %rQu(T) =T C;)S(T)

Particularly, the actual variables, which we provide to the bvp4c procedure are

Y1 =u2r(¢)
Yy = u2r(q”/q%,) (4.31)
Y3 =u2r'(¢" /a5, (¢")'/d%)

where ¢4, = min(1/b1,1/b2) max(1,|eZ|) is the limiting value for ¢”.

4.3.2 Non-equilibrium profile

In this subsection we continue to use mass specific quantities. The equilibrium
solution found in previous subsection is translated from molar to mass specific
units and is fed as an initial guess to the non-equilibrium solver.
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Non-equilibrium conditions are implemented by changing temperature or
pressure from their equilibrium values. This results in mass and heat fluxes
through the interface. The amount of matter will then change in the gas and
liquid phase. We will put the system in such conditions, that the total contents
of the box is constant and equal to the equilibrium contents. It means, that
if some amount of liquid has been evaporated, the same amount of gas is
condensed externally and put back into the liquid phase.

We introduce the overall mass m(z) = [, dyp(y) and the mass of the 1st

component me(z) = [ dy p(y) &(y), which obey the following equations by
definition ) @)
m'(z) = p(x

4.32

o) €(a) 32

We introduce the overall mass flux .J,,, the mass flux of the 1st component Jg,
the energy flux J. and the "pressure" flux J,:

Im =pv
Je =N +EIn
Jo =Jg+JIm <u0+;<']:>2+;(pL—;ﬁql2)—gSC> (4.33)

2
Jp Epl"_?m_mg

where p, (z) = p(z) + k¢’>. From Subsec. 4.2.1 one can see, that all these
fluxes are constant.

From Eq. (4.12) we obtain

1 1
kq" =<po—m+2q’>
q

1
€k

(4.34)

Hq// —

(Yo — )

As in Eq. (4.25) we have a singular set which leads to the algebraic equation
€ 1
1/10—1/)—;<p0—p¢+2q/2)=0 (4.35)

Taking derivative of this equation with respect to the coordinate we obtain the
expression for the first derivative of the fraction

;o = (ol = (o — )l (enf9)

<= Yoe — (Po — pL)e (€xq) (4.36)
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where ¢¢ = (9¢/0€) and gb]é ¢ — e &' = ¢gq' + ¢r T' for any ¢. The
expressions for ¢, T' and ¢’ are taken from Eq. (4.16) and Eq. (4.34).
The expressions for pg, o, as well as Yo, oq and 1p¢ can be derived
from Eq. (4.5) using standard formulas. Furthermore, p; ¢ = —J2 ,/q and

pile=(ga+q" I3 /) (1 + e ).

ll

As a consequence we have 7 unknown variables, ¢, ¢/, m, mg, §, T, ¢ and 4
unknown fluxes Jp,, J¢, Je, Jp. This requires 7 first order differential equations
and 11 boundary conditions (7 of them determine integration constants of
differential equations and 4 of them determine constant fluxes). As differential
equations we use Eq. (4.32), Eq. (4.16), one of Eq. (4.34) and Eq. (4.36). As
boundary conditions we use the following.

The first boundary condition is Eq. (4.35) taken on one of the boundaries,
which simply determine the integration constant for Eq. (4.36). The 4 other
conditions control the overall content of the box (particularly, it is the same
as in equilibrium)

m(x9
me (2
m(z*
me(z*

(4.37)

Il
SSOC’

— — — —

eq

Here mey and mg o4 are the equilibrium values of the total overall mass and
the total mass of the 1st component in the whole box.

The 2 more conditions are

"(9) =0
4 0 (4.38)

which indicate the fact, that box boundaries are in the homogeneous region.
In contrast to the equilibrium case, the density in the non-equilibrium
homogeneous region may vary with coordinate. ¢’ may therefore differ from
zero on the boundaries, and, in fact, it does. The value of the ¢’ in the
homogeneous region is, however, small, comparing to the value in the interfacial
region, so we may neglect it and use such approximation. This will lead to the
wrong profile behavior only in the small vicinity on the boundary, which we
will exclude from the further analysis.

The choice of the 4 last boundary conditions should preferably reflect the
conditions of a possible experiment. For instance, we may control the
temperatures on both sides of the box, the pressure on the vapor side and
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the fraction on the liquid side.

T(x9) =T9

T(z%) =T*
m((-%'gi =p? (4.59)

gaf) =¢t

To solve these equations numerically we use the same techniques as in the
equilibrium case. All the variables should be properly scaled in order to make
them to be the same order of magnitude. This balances the numerical residual
and gives better solution result. We use the following variables

Y] = u2r(§)

Yy = u2r(q/qoo)

Y3 = u2r'(¢/qoo, 4'/40)

Yy =m/(z*q") (4.40)
Y5 =me/(x"q")
Ys =T*/T

Yo = (¢/T)(T"/¢)

where u2r is defined in Eq. (4.29), goo = ¢% /M2 and scaling parameters z* =
x@ - xg’ T* = Teqa W = ¢eqa q* = peq/wezp

4.4 Data input

We choose a mixture of cyclohexane (component 1) and n-hexane (component
2) and give below some of their properties relevant for our calculation. We
note, that among them only the molar masses have been measured exactly.
There are number of problems to obtain the values of other material properties.
We determined, for instance, the two van der Waals coefficients of the pure
components using critical temperatures and pressures' of these components.
As a consequence the critical volume of each of the components in our
description differs substantially from the experimental value. For the mixture,

n this we follow the example of the Handbook of Chemistry and Physics [70] rather
than refs. [10, 11] where T, and v, were used.
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the van der Waals coefficients were then found using the mixing rules Eq. (4.7).
We use the values of the molar mass and the van der Waals coefficients given
in Table 4.1:

Table 4.1: The molar mass and the van der Waals coefficients of cyclohexane(1)
and n-hexane(2)

component | M, x1072 kg/mol | a, J m3/mol? | b, x10~> m?/mol
1 84.162 2.195 14.13
2 86.178 2.495 17.52

As we mentioned in Chapter 3 we do not focus on the particular internal
structure of the molecules. We therefore choose the wy to be equal 1E+4 for
each of the component. The particular value is not important as it appears
under In operation, and being the same for both components, basically scales
the Universal gas constant R.

As the basis for the numerical study we consider the liquid-vapor coexistence
at Teq = 330 K and g, = 700 J/mol. The equilibrium state is calculated at
this condition. Non-equilibrium states are created by perturbing the system
from this equilibrium state.

Transport coefficients of homogeneous fluids depend on temperature and
densities, while these dependencies are not always available. We use typical
constant values of these coefficients at the conditions, close to the the
equilibrium conditions specified above. The values of the thermal conductivity
A are well-tabulated and we take them from [71]. We take a typical value of
the diffusion coefficient D for the liquid mixture in the barycentric frame of
reference from |72] and estimate a typical value of the diffusion coefficient for
the gas mixture as being 4 orders of magnitude larger (cf. [5, p.279]). A typical
value of the Soret coefficient s, is estimated to be of the order of 107° to 1073
reciprocal degrees, both in gaseous and liquid mixtures [5, p.279]. We use an
average value from that range. The values of the coeflicients we use are given
in Table 4.2

Table 4.2: Transport coefficients

A W/(mK) | D,m?/s sp, 1/K
phase \ component | 1 2
gas 0.0140 | 0.0157 | 3.876 x 10— | 10~*
liquid 0.1130 | 0.1090 | 3.876 x 1072 | 10~
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together with the "mixing" rules for the heat conductivity

M= & N+ (1= &) A

4.41
N = el (- €)X 441)

The values of the gradient coefficients are not available at all. Omne can
determine them comparing the actual value of the surface tension of a pure
fluid with the one, calculated with a given x,,,,. For given conditions the value
of the surface tension of the mixture is about 0.027 N/m. We therefore choose
k" to be equal 12 x 10718 J m®/mol? and &¥ = 0.01. This gives x ~ 16 x 10716
J m®/kg? and e, ~ 0.03 according to Eq. (4.26). This also gives values of the
surface tension around 0.03 N/m.

All the profiles and the equilibrium properties were calculated with an accuracy
107.

4.5 Results

We give all the results in molar specific units.

The above parameters and conditions give the coexistence data listed in
Table 4.3:

Table 4.3: Coexistence data

Teq — 330 [K]
e, = 700 [J/mol]
4%, = -57098  [J/mol]
Peq — 376095  |Pal

clqy = 153.23  [mol/m?]
cf, = 4898.26 [mol/m?|
¢% = 0.5519

¢

¢t = 0.5934

The resulting profiles for the equilibrium molar concentration, the equilibrium
mole fraction of the first component and the equilibrium tension tensor
component .., the integral of which gives the surface tension, are given in
Fig. 4.1 and Fig. 4.2.
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4.5.1 Non-equilibrium

Here we investigate different aspects of the non-equilibrium solution. We first
consider the typical profiles of various thermodynamic quantities. We give
them for a rather extreme perturbation in which the temperature of the liquid
boundary is 5% higher then the equilibrium value and the corresponding value
at the gas boundary. In absolute units this is about 15 °K. Fig. 4.3(a) gives
the profiles of the molar concentrations. Under non-equilibrium conditions the
bulk values of the concentrations are no longer constant. Fig. 4.3(b) gives the
profiles of the chemical potentials of both components. In non-equilibrium they
are not constant as well. In Fig. 4.4 we give the profiles of the thermodynamic
potentials. Fig. 4.4(a) gives the specific quantities per unit of mol, while
Fig. 4.4(b) gives the densities per unit of volume.

Furthermore we consider the entropy production profile in the interfacial
region. Varying the temperature at the liquid boundary T*, the pressure at
the gas boundary p?, and the mole fraction at the liquid boundary (¢, as
well as resistivity amplitudes a4y and a1, we give the profiles of the entropy
production in Fig. 4.5. One can see, that the entropy production has a clear
peak in the interfacial region. The magnitude of this peak depends on the
resistivity amplitude.

Next we consider the effect of modifying different parameters of the system:
resistivity amplitudes and boundary conditions.

i) Effect of resistivities

The first aspect we will try to clarify is the influence of the square gradient
amplitude of the resistivity to transport, see Eq. (4.17). We consider in
particular three cases. In the first, only g4, the square gradient amplitude
for the heat resistivity coefficient 744, is unequal to zero. In the second, only
a11, the square gradient amplitude for the diffusion resistivity coefficient rqq,
is unequal to zero. In the last case, only aq1, the square gradient amplitude for
the diffusion resistivity coefficient r41, is unequal to zero. We do it for different
perturbation conditions. We plot the temperature and the mole fraction for
these cases.

In Fig. 4.6 the system is brought out of equilibrium by reducing the
pressure on the vapor side to 0.95pey, Where peq is the equilibrium pressure.
The temperatures on both ends of the box are kept equal to equilibrium
temperature T¢4, as well as the mole fraction at the liquid boundary is kept
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equal to the equilibrium value ¢/,. In Figs. 4.6(a)-4.6(b) only agq # 0. The
mole fraction increases about 2 % on the vapor side when g, increases from
0 to 10. The temperature decreases due to the evaporation. In all cases the
extrapolated temperature in the liquid is higher then the value in the vapor,
where we extrapolate to the inflection point of the total molar concentration.
For a4q = 10 the minimum of the temperature is below both extrapolations. In
that case the temperature "jump" in the the extrapolated profiles has increased
to about 3 K. In Figs. 4.6(c)-4.6(d) only a1 # 0. The modification of the
mole fraction is now more dramatic. In the vapor it decreases up to 27 %. The
temperature increases for larger values of a11. This is related to a decrease of
the evaporation. The temperature jump in the extrapolated profiles is in all
cases not more than 0.5 K. In Figs. 4.6(e)-4.6(f) only aq1 # 0. We see, that
the variation of g1 does not affect much the non-equilibrium profiles.

In Fig. 4.7 we consider the case when the vapor pressure and temperature
are kept equal to the equilibrium values and the liquid temperature is 5 %
higher then the equilibrium value. The mole fraction at the liquid boundary is
again kept equal to the equilibrium value (fq. Figs. 4.7(a)-4.7(b) consider the
agq # 0. The change in the mole fraction went up to 12 %. The temperature
jump goes up to about 20 K. In Figs. 4.7(c)—4.7(d) we consider the a1 # 0.
One can notice again the more dramatic behavior of the mole fraction and
temperature profiles for big values of a11. The variation of a1 considered in
Figs. 4.7(e)-4.7(f) again does not affect much the resulting profiles.

Finally, in Fig. 4.8 we consider the case when the mole fraction at the liquid
boundary is 5 % higher then the equilibrium value, while the vapor pressure
and boundary temperatures are kept equal to the equilibrium values.

it) Effect of boundary conditions

We now fix the values of the square gradient amplitudes of the resistivity
coefficients in Eq. (4.17) as agq = 1, ag1 = 0 and o33 = 1. We consider the
corresponding profiles in Fig. 4.9

The mixture is then perturbed from equilibrium for the following three cases:
1) setting T¢ equal to 0.98, 0.99, 1.01, 1.02 of T, and keeping T9, p9 and (*
equal to their equilibrium values, see Figs. 4.9(a)—4.9(b);
2) setting pY equal to 0.98, 0.99, 1.01, 1.02 of p, and keeping T, T* and ¢*
equal to their equilibrium values, see Figs. 4.9(c)—4.9(d);
3) setting ¢* equal to 0.98, 0.99, 1.01, 1.02 of ¢{, and keeping 79, T* and p?
equal to their equilibrium values, see Figs. 4.9(e)—4.9(f).
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Lowering (raising) T* gives evaporation (condensation). This lowers (rises) the
temperature on the vapor side as expected. The temperature profile goes down
for evaporation and up for condensation.

4.6 Conclusions

We considered a binary mixture of cyclohexane and n-hexane and describeed in
detail how to implement the general analysis presented in the previous chapter
to stationary states. We gave a numerical procedure to solve the resulting
system of differential equations. The profiles of continuous variables obtained
are presented in Appendix 4.A. We see, in particular, that a two-component
mixture develops a temperature profile in the surface region which is similar
to the temperature profile obtained for a one-component system [10]. Another
characteristic of a binary mixture is the difference ¥ = pu; — us between the
chemical potentials of the components. The behavior of the profile of % in
non-equilibrium steady-states shows that it has different values in the two
bulk phases and we observe a transition from one value to the other in the
surface region.

4.A Numerical profiles
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O

N
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Figure 4.1: Equilibrium tension 7., and perpendicular pressure p, profiles.
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Chapter 5

Local equilibrium of the Gibbs
surface for the two-phase binary
mixture

5.1 Introduction

In the general description of the interface one uses contributions to the
Helmholtz free energy density proportional to the square of the density and
mass fraction gradients. These contributions imply that it is not possible
to use continuous local equilibrium thermodynamics in the interfacial region,
i.e. to calculate the local values of the various thermodynamic parameters in
terms of the local density, mass fractions and temperature only. Rowlinson
and Widom (see |28, page 43|) use the name point thermodynamics for this,
to distinguish it from other quasi- or local thermodynamic treatments. Given
the non-autonomous nature of the square gradient model, it is sensible to
question whether a description in terms of excess variables along the lines
given by Gibbs [53|, can be autonomous. Gibbs’ treatment, though only given
for equilibrium systems, suggests such an assumption. This would imply that
the surface is a separate thermodynamic phase. Bakker [73] and Guggenheim
[74, page 45] made this assumption, the validity of which was subsequently
disputed by Defay and Prigogine [75]. We refer to Rowlinson and Widom
[28, page 33| for a discussion of this point. In the theory of non-equilibrium
thermodynamics of surfaces [6, 44, 68, 76] Gibbs’ description in terms of excess
variables has been used. It is then assumed that Gibbs’ description of the



90 Chapter 5. Local Equilibrium

surface in terms of excess variables is autonomous, or in other words that one
can use this property, which we will call local equilibrium of the surface, to
describe the surface. In earlier work [11], this property was verified for a one-
component square gradient system. It is the main objective of this chapter to
verify this property for binary mixtures. For details about the extension of the
square gradient model to non-equilibrium mixtures we refer to Chapter 3 and
Chapter 4. In this chapter we focus on the properties of the excess variables.

The validity of local equilibrium for a surface in a non-equilibrium mixture is
a great simplification. Without this simplification the surface excess densities
depend also on the values of the temperature and chemical potentials of the
adjacent phases. This complicates the description to a level that is difficult
to manage. Also the possibility to introduce and define a temperature and
chemical potentials for the surface, which are independent of the location of the
dividing surface chosen, is an important simplification. For the one-component
system, local equilibrium has been verified on the basis of both molecular
dynamics simulations [19, 20, 22| and the non-equilibrium square gradient
model [11]. For binary mixtures a limited number of molecular dynamics
simulations of evaporation and condensation have been done [77-80]. None are
available which verify the property of local equilibrium, however. Establishing
this property using the square gradient model is therefore the only available
option. For a proper understanding of an important industrial process like
distillation, the validity of local equilibrium for the interface would be a great
help. In this chapter we succeed to prove this for a binary mixture. Given the
validity for one- and two-component systems we feel confident to formulate
the hypothesis that local equilibrium is valid for surfaces in non-equilibrium
multi-component mixtures.

In this chapter we use molar specific units. We therefore omit superscript
v, which indicates the molar specific quantity, to simplify the notation. The
verification is performed numerically and we use therefore the same system as
in Chapter 4. Namely, we consider a planar interface between vapor and liquid
in stationary non-equilibrium states. All the perturbations are performed in
the direction perpendicular to the surface, coordinate along which we denote by
x. The particular numerical values are obtained for the mixture of cyclohexane
and n-hexane.

In Sec. 5.2 we speak about the Gibbs surface in equilibrium and how we
want to establish local equilibrium property of a surface for non-equilibrium
conditions. We then introduce excesses for the Gibbs surface in Sec. 5.3.
Furthermore we will in Subsec. 5.4 develop a method to obtain T° and ¢*®
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which are independent of the choice of the dividing surface and introduce
other thermodynamic quantities. We then define local equilibrium in Sec. 5.5.
In Sec. 5.6 we give the results of the verification procedure. Finally, in Sec. 5.7
we give concluding remarks.

5.2 Equilibrium Gibbs surface

In equilibrium it is possible to describe the surface in terms of Gibbs excess
quantities [53]. One can treat a system of coexisting liquid and vapor as a
three-phase system: liquid and vapor bulk phases and the surface. The surface
has thermodynamic properties. The temperature and chemical potentials have
the same equilibrium value as in the rest of the system. Furthermore the
thermodynamic state of the surface is given by excess concentrations and
thermodynamic potentials. Following Gibbs we have for the surface

s _ S S s
heq = Hl,eq Cl,eq + H2,eq CQ,eq + Teq Seq
US, = WleqCl g+ M2.eqCy oy + Yoy + Teq S8
eq ,€q “1,eq 2,eq €2 eq eq €q “eq (5 1)
s _ s S s :
feq = Hl,eq €1 eq T H2,eq C2.eq + Yeq
s _ S S
Geq = Ml,eq € eq T H2,eq €2 eq

The superscript s indicates here the surface and equal to the excess of
corresponding quantities. In these relations the equilibrium temperature and
chemical potentials are the same everywhere independent of the choice of the
dividing surface. The excesses depend on the choice of the dividing surface,
in such a way that the above relations are true for any choice of the dividing
surface, see Gibbs [53].

It is our aim in this chapter to show that the surface in a non-equilibrium
liquid-vapor system can also be described as a separate thermodynamic phase
using the Gibbs excess quantities. We will call this property local equilibrium
of the surface. The property of local equilibrium for the surface implies that it
is possible to define all thermodynamic properties of a surface such that they
have their equilibrium coexistence values for any choice of the dividing surface
given the temperature of the surface 7% and the chemical potential difference
Y® = pj — ps of the surface.
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5.3 Calculating the excess densities

The definition of the excesses consists of 3 steps: determining the phase
boundaries, defining the specified dividing surface and, in particular, defining
the excesses.

To determine the phase boundaries we will use the order parameter q. We
introduce a small parameter § and define the §-dependent boundary between
the vapor and the surface, xg’s, by

Q(fl’g’s) - QEos(pJ_(angl’ C(xgs)’ T(xg,S)) ﬁ (5'2)
q(z3”)

where geos(p1, ¢, T') is the equation of state’s value (no gradient contributions)
of ¢ for pressure p;, mol fraction ( and temperature 1T". The [S-dependent
boundary between the surface and the liquid, xé’s, is defined in the same way.

The numerical procedure calculates profiles only at specified grid points, which
we provide to the procedure. That means that 2 and xf;’s can only be situated
at points of the grid. We choose their position to be the last bulk point of the
grid where the left hand side of Eq. (5.2) does not exceed the right hand side.
In our calculations we will choose 3 = 10~ and use a grid of 81 points.

We shall also choose bulk boundaries near the box boundary where, because of
the finite size of the box, the behavior of the profiles might be uncharacteristic.
To avoid this effect, we do not consider the first 5 points of each phase close
to these boundaries when we calculate the properties in these phases. The 6th
point is called 29 and the 76th point is called .

The bulk gas therefore ranges from x9 to z%° and the bulk liquid ranges from
xff to x‘. The surface therefore ranges from z%° to xf;’s. In order to define
excess quantities properly, we always choose conditions such, that the widths
of the vapor and the liquid phases, xg’s — 29 and 2t — xé’s are larger then the
surface width xf;’s — 29",

In order to determine excess densities, we need to extrapolate profiles from
the vapor and the liquid phases into the interfacial region. In equilibrium,
extrapolated bulk profiles are constants which are equal to the coexisting
values of the corresponding quantities. Non-equilibrium bulk profiles are not
constant. We fit the bulk profile with a polynomial of order n;, = 2 and use
this polynomial to extrapolate non-equilibrium bulk profiles into the interfacial
region. This is done with the help of Matlab functions polyfit and polyval.
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The extrapolation of the bulk profiles introduces a certain error depending on
the choice of 8 and ny in particular for non-equilibrium systems. This error is
the main source of inaccuracy in the determination of the surface quantities.
We will come back to this later.

The distances between commonly used dividing surfaces, such as for instance
the equimolar surface and the surface of tension, are very small [11, 28|. Thus,
if there occurs an error in the determination of a dividing surface using a course
grid, that would lead to inaccurate results. We therefore divide each interval
of the course grid between 2 and {L‘g’s in 10* subintervals. This surface grid is
used for all operations related to the surface. Within the interfacial region we
interpolate all the profiles (which were obtained by extrapolation from the bulk
to the surface region using the course grid) from the course grid to the surface
grid using a polynomial of order ng = 3 with the help of Matlab functions
polyfit and polyval. The values n, = 2 and ng = 3 were chosen such that
the extrapolated profiles reproduce well the original ones.

We can now define the excess $ of any density ¢(x) as a function of a dividing
surface z° as

T4
P(z”) = /g , dz[o(z) — ¢%(x) O(a° — ) — ¢'(x) O(x — 2°)] (5.3)
Ty
where ¢9 and ¢’ are the extrapolated gas and liquid profiles and O(t) is the
Heaviside function. The density ¢ is per unit of volume and ¢ is per unit of
surface area. In our calculations integration is performed using the trapezoidal

method by Matlab function trapz.

We can now define different dividing surfaces. The equimolar dividing surface
x¢ is defined by the equation ¢(z¢) = 0. Analogously, we define equimolar
surfaces with respect to component 1 and 2: ¢;(z®) = 0 and é(z®?) = 0,
and the equidensity surface z”. The surface of tension z7 is defined from the
equation' 27 pj(z7) — Zpj(«7) = 0. All the profiles are given as arrays on a
coordinate grid, but not as continuous functions. Thus, in order to find the
solution of an equation ¢(x) = 0 we calculate the values ¢; = ¢(z;) for each
point x; within the surface region and find the minimum of it’s absolute value,
min;(|¢;|). Because of the discrete nature of the argument, this value may not
be equal to zero, but it will be the closest to zero among all other coordinate

le (z) gives the surface tension for the dividing surface z. This can be expanded in the
curvatures with the coefficient x o (z) — apl| () for the linear term. Zero of this expression
defines the position of the surface of tension z”.
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points. So we will call this point the root of the equation ¢(x) = 0. We use
the fine surface grid in this procedure.

If follows from Eq. (5.3) that

= ¢'(2°) — ¢* (") (5.4)

which we will use later.

5.4 Surface temperature and chemical potential
difference

An equilibrium two-phase two-component mixture has two free parameters, for
instance, the temperature 7" and the chemical potential difference ) = 1 — poa.
Local equilibrium of a surface implies, that also in non-equilibrium it should
be possible to define the temperature 7% and the chemical potential difference
Y® = pj — s of the surface. As was found in [11], 7' for one-component system
is independent of the choice of the dividing surface. We therefore expect this
for both 7 and %*® in two-component system.

The equilibrium temperature and chemical potential difference determine all
other equilibrium properties of the surface. Thus, there is a bijection from
Teq and 14 to any other set of independent excess variables X o4 and Xg ¢,
so that one can use them equally well in order to characterize a surface. In
non-equilibrium, the actual temperature and chemical potential difference vary
through the interfacial region, but Xj . and X»,. characterize the whole
surface, since they are excesses. If a non-equilibrium surface is in local
equilibrium, the same bijection should exist. This implies that given two
independent non-equilibrium excesses X1 . and X5 . one can determine the
temperature T° and the chemical potential 1® of the whole surface. Thus
one can calculate equilibrium tables of X1 ¢q(Teq, Veq) and Xo eq(Teq, teq) for
different values of T¢, and v, and then determine temperature and chemical
potential of a surface as T = T,q(X1 ne, Xone) and ¢° = g (X1 ne, Xone)-

As we want the temperature and chemical potential difference to be
independent of the position of the dividing surface, we shall use excesses which
are also independent of the position of a dividing surface in equilibrium for
X1 and Xs. For two component mixtures these independent variables are the
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surface tension v and the relative adsorption I'1s. If the number of components
is more than 2, additional relative adsorptions should be used.

These quantities are well defined for equilibrium, but not for non-equilibrium.
So we will define them first. In equilibrium, the surface tension is defined as
minus the excess of the parallel pressure v, = —]3\“. Alternatively one often
uses the integral of p1 —pj(x) = 722 (x) across the interface: veq = [ davpe ().
Both definitions are equivalent in equilibrium, since p, is constant through the
interface and 7, () is identically zero in the bulk phases. In non-equilibrium,
~Vzz () may differ from zero in the bulk regions, however, and this makes the
second definition inappropriate. We will therefore define the non-equilibrium
surface tension using the standard definition (cf. also [11])

V(2%) = —pj(«°) (5.5)

This quantity differs from 7,; by the term equal to p |, which is usually small
compared to pj.

The relative adsorption is defined as

4 9
Cleg —C
~ ~ 1,eq 1,eq
Dizeq =Cleqg = Coeq 75 (5.6)
2eq ~ “2eq
in equilibrium [75], where cf ¢q and d ¢q are coexistence concentrations of the

corresponding components. Since concentration profiles are not constant in
non-equilibrium, we cannot use this definition directly. One can however
see from Eq. (5.4), that both, in equilibrium and non-equilibrium ¢;’(z%) =

ci(x®) — c/(z*), where the prime indicates a derivative with respect to z°.
Since in equilibrium cf(2*) — ¢J(2%) = cf’eq — ¢, we can use the following
definition
0 (s 9 (S
. . (%) — cf(z°)
[o(2®) = ¢ (2®) — Ga(2®) = L 5.7
1(a?) = E(a") ) G (5.7)
both in equilibrium and non-equilibrium.
If the system is in local equilibrium we may write:
V(@) = Yeq(T%, 9%) ,
c Ts7 S —Cg Ts$ ws
Tio(z®) =721 (z®) — Ga(a?) 17€q( ¥°) 17611( 9°) (5.8)

Cfgeq(Tsa ¢s) - Cg@q (TS7 ¢S)
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Substituting the expressions for y(x*) and I'12(2*) from Eq. (5.5) and Eq. (5.7)
into Eq. (5.8) we obtain the following relations

(%) = D)eg(T*,¥%)

(29) = @) _ AT 8°) = ] oy (T, 0") (5:9)
(@) = (@) cheg(T%0%) = (T, 9)

NS =S

C

This gives the bijection equations to determine 7 and ® from the actual
non-equilibrium variables. As the left hand sides in Eq. (5.9) are in good
approximation independent of the position of the dividing surface, T and *
are similarly independent on this position.

5.4.1 Other surface quantities

The other quantities required for the Gibbs description of the non-equilibrium
surfaces we define in the following way. The surface chemical potentials are
the equilibrium coexistence values determined via the procedure discussed in
Subsec. 4.3.1
/‘L? = ,ul,eq(TSa ¢8) 5 10
MS = ﬂ?,eq(Tsvws) ( . )

We define the surface extensive properties as?

¢°(a°) = §(a°) (5.11)

5.5 Defining local equilibrium of a surface

The local equilibrium of a surface should be established for any choice of a
dividing surface. The results of the calculations for any particular choice of
a dividing surface may not be representative since they may be different for
another choice of a dividing surface. Thus, the property of local equilibrium
should be established for all dividing surfaces together.

Consider the profile of an excess qg(xs) as a function of position of a dividing
surface x®. It follows from Eq. (5.4) that the slope of the excess profile at z*
is equal to the difference between the extrapolated bulk values of this profile

*Note, that for some quantities this definition differs from the one, used in [11]. We will
come back to this point later.
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Figure 5.1: Equilibrium excesses at T = 330 K and ¢ = 700 J/mol as functions of
the position of the dividing surface. The vertical lines indicate the x?,
x7, x€, x4 dividing surfaces from left to right.

at . In equilibrium these values are constant and equal to the coexistence
values. Thus, equilibrium excess densities are linear functions of the position
of the dividing surface, as one can see on Fig. 5.1. Non-equilibrium profiles
in the bulk phases are not constant. We construct the extrapolated profiles
using npth order polynomials with n, = 2. Resulting non-equilibrium excesses
are therefore polynomials of the order n, + 1 = 3, according to Eq. (5.4).
These excesses, for rather extreme case of non-equilibrium perturbation T¢ =
1.027,,, are shown in Fig. 5.2. Even though these excesses are polynomials of
the 3rd order they are very close to straight lines. As one can see from Fig. 5.3
the variation in the slope is about 1% through the whole surface?. It indicates
that this non-equilibrium "state" is very close to an equilibrium one.

We therefore develop the procedure to relate the non-equilibrium state to an
equilibrium one by comparing thermodynamic quantities in equilibrium and
in non-equilibrium for the whole surface. The comparison performed in one
particular point of the surface may not be sufficient because it may suffer from
artifacts peculiar to this particular dividing surface. Moreover, any comparison

%Note, that the scale on Fig. 5.3 is different from the one on Fig. 5.2.
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Figure 5.2: Non-equilibrium excesses for the case of perturbing T¢ = 1.02 T., as

functions of the position of the dividing surface. The vertical lines indicate
the z°2, x7, z¢, x dividing surfaces from left to right.

performed in a particular point does not speak for the whole. We therefore
compare the non-equilibrium surface with an equilibrium one for all dividing
surfaces together.

To compare quantities for all dividing surfaces, we basically need to compare
function profiles in the surface. We therefore need some kind of a measure of
a function. We use a modified Euclidian norm defined in a following way.

Consider a non-equilibrium thermodynamic excess ¢°(z°) and a quantity
as(ms;T, ¥) which is a combination of excesses and may depend on (T, 1)
as parameters. We introduce the following measures of the difference between
¢° and ¢° B

51y (@ TL0) = |6°(%) — (a5 T, 0) (5.12)

and

Sea@¥) = Y [#6)-den)
8 € sur face

(5.13)

1
U{¢7$} (T7 ¢) = N S¢,$(T7 1#)
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Figure 5.3: Slopes of non-equilibrium excesses for the case of perturbing T* = 1.02T,,
as functions of the position of the dividing surface. The vertical lines
indicate the surface boundaries and x?, x7, x¢, x°* dividing surfaces.

where N is the number of surface points.

We define ¢* and gzNBS to be equivalent in the surface if the value of 94,8} is

negligible compared to the typical value of either |¢®(x*®)| or |q§s(xs;T ).
Thus, 4.8 O S (6.8 represents a measure of equivalence of the functions ¢*

and ¢°.

Parameters T" and 1 determine a whole family of functions QNSS (x5, T, ). All of
them are equivalent in the above sense, if ¢* is a continuous function of 7" and
1. Moreover, all of them are equivalent to the function ¢°.

Among all the values of parameters T" and ¢, we want to find those T' = T},
and ¢ = tby,sy, which make the function 55 to correspond best to the equivalent
function ¢°. Their measure of equivalence S (6.8} (T, %) is a function of T and
1, which reaches minimum for certain values of these parameters. We say, that
T(,sy and Yy,sy characterize the interface in a non-equilibrium state, if

5168 (T Viasy) = min Sy, g (T09) (5.14)
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One may recall that this definition is based on the least square sum method.

These definitions are easy to illustrate in equilibrium. If we define

hzq,gibbs (xs; T7 w) = Hil,eq (T7 w) Cieq + H2,eq (T') w) C;,eq +T qu

which is the right hand side of Eq. (5.1) for the enthalpy, it follows from
Eq. (5.1), that

hzq (ms; Teq, d}eq) - hg% gibbs (l’s; Teqa @ZJeq)

Furthermore
(0% Tegutbeq) # Wy ginps (4% Tegs Peq)
Thus
5{heq’ heq,gibbs}(xs; Teqseq) =0
and

5{954’ heq, g’ibbs} (ms; Tetb Ql}eq) ?é 0

It is also true that

min Sy,

T eq’ heq, gibbs} (T’ w) =0= S{he(p heq, gibbs} (Teq’ ¢eq)

and

Tlhegheq. gibbst (L2 P) K Tigeniheg ginpst (1> V)

According to the above definitions: i) kg, ... (2°) and hg (2°) are equivalent
functions, but k7, .,(z°) and g2 (z°) are not equivalent; ii) the equilibrium
state of the surface is characterized by Teq and 1)eq; as it should be.

This analysis gives nothing new in equilibrium. In non-equilibrium, where
we are going to implement this, it allows us to introduce properties of the
interfacial region, which i) characterize the whole surface in a non-contradictory
manner and ii) reduce to the common nomenclature in equilibrium.

Note, that while in equilibrium the conditions

5{¢,$} (:L,s; Teqa weq) =0 < S{¢:$} (Teq, weq) — min S{¢’¢} (CZ’7 1/})

are equivalent, this is not the case in non-equilibrium. In general it does not
follow in non-equilibrium from Eq. (5.14) that

J (% T,¢)=0 Va?° (5.15)

{¢.8}
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Thus Eq. (5.15) is not a good measure of the equality of the quantities and
states in non-equilibrium. We may therefore speak about the equality of
thermodynamic quantities as well as about the state T(,sy and ty,sy of the
surface in non-equilibrium only in the least square sense, as it is given in
Eq. (5.14).

Within establishing the local equilibrium property of a non-equilibrium surface,
we would like to verify the following properties: i) the existence of the unique
temperature 7T and chemical potential difference 1® which characterize a non-
equilibrium surface; ii) the validity of the Eq. (5.1) in non-equilibrium at the
surface’s T and 1*; iii) the possibility to determine all the properties of a
non-equilibrium surface from equilibrium tables at the surface’s T and %.
We do this in the following section.

5.6 Verification of local equilibrium

We calculate the equilibrium properties (coexistence data, such as the pressure
or bulk densities, as well as various excesses) of the system for the range of
temperatures T' = {325,326,...,340} K and the range of chemical potential
differences v = p3 — pe = {400,450,...,1000} J/mol. The value of a
thermodynamic quantity at any point (7),%) which is between these, is
interpolated using the Matlab procedures interp2 and griddata.

The temperature range was chosen to be well above the triple point of both
components (279.5 K and 177.9 K for cyclohexane and n-hexane respectively)
and below the critical temperature of both components (553.5 K and 507.5
respectively). As discussed in Subsec. 4.5.1 the equilibrium mole fractions of
cyclohexane in the vapor and in the liquid were 0.55 and 0.59 respectively,
when the temperature was 330 K and the chemical potential difference was
700 J/mol. As one can see in Fig. 4.9 it was enough to consider the range
of temperatures of 15 K and the range of chemical potential differences of
600 J/mol, for the stationary state conditions considered in this paper. A
larger range would be necessary to consider for unrealistically extreme non-
equilibrium conditions across the system.

In the calculations in this chapter we took the square gradient amplitudes of
the resistivity coefficients in Eq. (4.17) equal to zero, agq = 0, g1 = 0 and
a1 = 0. As one can see in the figures in the previous chapter, the choice of
agq = 1 of a1 = 1 leads to a relatively minor change in the continuous profiles.
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In view of the complexity of the analysis, we therefore restricted ourselves to
zero a’s. We do not expect finite values of a’s (which are more realistic) will
modify our results regarding the validity of local equilibrium for the surface.

5.6.1 Surface temperature and chemical potential difference

As was mentioned, in equilibrium both v and I'1o are independent of the
location of the dividing surface z°. Given the above definitions, Eq. (5.5)
and Eq. (5.7), we can calculate these quantities for non-equilibrium states.
Calculations show, that even though v and I'12 are not exactly independent on
x® away from equilibrium, the relative deviation is so small (about 0.004% for
and 4% for I'19 in the worst case), that one can consider these quantities to be
independent of the position of the dividing surface. Thus one may use them
in order to find the temperature, 7%, and the chemical potential difference,
1, of the surface in non-equilibrium states, which will be independent of the
position of the dividing surface.

Using Eq. (5.13) and Eq. (5.9) together with Eq. (5.4) we construct the
following expressions

Sy (T) = [B)(x*) = Bea(Ts )]

xS

(5.16)

¢ (z*) ¢y ()

&l (@5 To) & (2% Toy) 77
Staa(T0) =Z{“

where the prime indicates the derivative with respect to x*.

Si(T,%) (where i is either v or I'12) should reach the minimum at fos} and
¢{Sms}. We note however, that neither S;(7T,1) have a minimum at a single
point (7°%,1°). There is a whole generatrix curve of minima C;(T,¢) = 0
so the plot of S;(T,%) is a valley. One can see it on Fig. 54. Every
point of the generatrix curve is the minimum point of S;(7,v) along the
direction "perpendicular" to this generatrix. If pj(z*) or ¢/(z*) and ¢5(z*)
represent the corresponding profiles for some equilibrium state (Teq, 1eq), then
Si(Teq; eq) = 0 and the generatrix is constant. Since these profiles are non-
equilibrium profiles, the generatrix is not exactly constant but very close to it.
Thus Ci(T,1) = 0S;(T,1¢)/0w, where w is a direction in T-1 plane which is
perpendicular to generatrix. In fact, one should be careful speaking about
directions, since no metric is defined in the T-1 plane. Thus we cannot
introduce Vg so that Ci(T,v) = |VrySi(T,4)|. In fact, w can be any
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Figure 5.4: The plot of S(T,1) for the case of perturbing T¢ =1.02T,,. The lines
in the T-1 plane are lines of constant value of Sy (T, ).

direction which does not coincide or does not almost coincide with the direction
of generatrix. In practice we find that we can use w = T, while using w = ¢
gives less accurate results. Thus we determine the minimum curve from the
equation

0S;(T,

95(T.¢) _ 0 (5.17)

oT

One needs two quantities, S, and Sr,,, in order to determine TSCCS and 1/)5963}
uniquely. The surface temperature and chemical potential diliference, T{xs}
and wfzs}, are determined from the intersection of two minimum curves of Sy

and ST

OT  |ps oy .
{2} H{=%) (5.18)
aSF12 (Tv ¢) -0
oT I
Tasy Y%

Here superscript s indicates that we speak about surface quantities only (as
everywhere in this chapter) and subscript {z*} indicates that T{sms} and wfxs}

are the properties of all dividing surfaces together (in contrast to the values
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T°(2z%) and ¥*(z®) determined from Eq. (5.9) for each particular dividing
surface z°).

Table 5.1: Surface temperatures (K) and chemical potential differences (J/mol)
for the case of perturbing T* around Teq = 330 K.

Tt =1.02T,, T =0.98T,,
surface | T* ® T° P®
{5} 331.831 | 770.53 | 328.129 | 650.92
z° 331.823 | 769.51 | 328.124 | 650.29
z7 331.828 | 770.22 | 328.123 | 650.21
! 331.814 | 767.97 | 328.127 | 650.43
z? 331.838 | 771.86 | 328.121 | 650.1

Table 5.2: Surface temperatures (K) and chemical potential differences (J/mol)
for the case of perturbing p9 around p., = 376095 Pa.

p9 = 1.02 peq p9 = 0.98 peg
surface | T (N Ts s
{5} 330.796 | 683.87 329.059 | 696.52
x° 330.8 684.68 329.063 | 697.22
x7 330.799 | 684.44 329.063 | 697.12
x 330.804 | 685.19 329.065 | 697.46
x® 330.795 | 683.93 329.061 | 696.87

Table 5.3: Surface temperatures (K) and chemical potential differences (J/mol)
for the case of perturbing (¢ around (fq = 0.5934.

¢f=1.02¢/, ¢f =0.98¢t,
surface | T (1 T3 P®
{5} 329.577 | 559.32 330.24 | 812.86
x° 329.598 | 562.44 330.242 | 813.16
x 329.584 | 560.5 330.253 | 814.67
x 329.63 566.83 330.219 | 809.99
x¢? 329.554 | 556.3 330.278 | 817.99

We calculate the temperatures and the chemical potential differences for
different non-equilibrium conditions. They are outlined in Tables 5.1-5.3.
The first row of each table, corresponding to {z%}, gives T and ° calculated
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from Eq. (5.18). The following rows give, corresponding to different particular
dividing surfaces, the values of 7% and v*® calculated from Eq. (5.9). The
equilibrium parameters around which the system is perturbed are given in
Table 4.3: T, = 330 K and 1., = 700 J/K.

Note, that T° and ® are different from the actual values of T and % in the
interfacial region.

5.6.2 The non-equilibrium Gibbs surface

In this section we would like to verify that the surface quantities defined by
Eq. (5.11) satisfy Eq. (5.19) with T and ¢° = pj — p§ determined by Eq. (5.9)
and Eq. (5.18).

¢ = Gginps(T°,1°) (5.19)

Namely, we want to verify that with the definition (5.10) the following is true

h* =picl +pscs +1°s

u® =picl Fpscs+t+ T8 S0
PPo=patp3a+y®

9 =it

(5.20)

where the right hand side will also be denoted by qﬁgibbS(TS,ws) for the
corresponding quantity ¢. Eq. (5.20) is the non-equilibrium analog of

equilibrium Eq. (5.1).

In order to analyze the measure of validity of Eq. (5.19) we construct the
quantities

O°(2°) = Pipps (2% T, 9 ?
8¢gibbs(T7w) = Z [ (x) gbsg(bxbs)(x )

x5 € sur face

(5.21)

€dgivbs (2% T,¢) = ¢ (29)

¢* (%) — P (2% T, 1)) ‘

for each thermodynamic potential h, u, f, g. €4,,,, gives the relative error of
the determination of the surface quantity ¢° using the Gibbs excesses relations
(5.20) for all dividing surfaces together, while €4 ,, —gives this error for a
particular dividing surface. We build €dyivbs (T,4) both for T = Tfms}, P =
wfxs} determined from Eq. (5.18) for the whole surface, and for T' = T°(z%),

¥ = ¢¥5(x®) determined from Eq. (5.9) for particular dividing surface. We
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build &y ., (T,¢) for T = T{Sgcs}, Y = 1/1165} determined only for the whole

surface. The values of the corresponding errors are listed in Tables 5.4-5.6 in
Subsec. 5.8.1, and are found to be small.

As one can see, there is a variation in the value of the error for the different
dividing surfaces. This has two reasons. One reason is the slight variation in
T% and v® from Tables 5.1-5.3 for different dividing surfaces. The variation of
each excess potential reflects the variation of 7% and ® through these surfaces.
So do the relative errors.

Another factor which influences the value of these errors is the actual value of
an excess at a given dividing surface. If it is close to zero, then in the expression
for €, the value of denominator is small, which gives a large value for the error.
Particularly, ¢*(z¢) ~ 0 both in equilibrium and in non-equilibrium which
makes the row corresponding to g at z¢ be uninformative. One should not
take into account these data.

1

N

—(?LS -10 -5 0 5 10 15
X [nm]

Figure 5.5: The relative error ey, (2°; Tfms},z/)fxs}) for the case of perturbing T* =

1.02T,,. The vertical lines indicate the surface boundaries and z" dividing
surfaces.

There are such dividing surfaces for any potential ¢. If the particular dividing
surface is far from zero point of ¢°, then €y ,, gives a good measure of the
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error. But €p ;. fails to measure the error, if the particular dividing surface
is close to zero point of ¢®. One can see from Fig. 5.5 that the relative error
€pgip. 0deed rises enormously at x?. Particularly because of this fact, the
definition of the excess quantities in [11| was different from Eq. (5.11).

We emphasize however, that the overall error 8¢gibbs represents the whole
surface and does not suffer from this problem. The contribution from the
dividing surfaces, which make ¢* be very small, is negligible, since the amount
of such points is much less then the total amount of grid points in the surface.
We conclude that €4 ,,,, is the appropriate measure of the deviation of local
equilibrium for the surface. From Tables 5.4-5.6 in Subsec. 5.8.1 it then follows
that even for such extreme conditions, when the temperature difference across
the box is up to 10® K/m, the deviation is not more then a few per mill. For
less extreme conditions, the deviation is correspondingly smaller. This is in
agreement with the non-equilibrium surface being in local equilibrium.

Another possible test is to compare the absolute error [¢°(2°) — g5 (2% T, ¥°)]
with the deviation oy ,, (T,9) defined in Eq. (5.13). The calculations show
that for the particular dividing surfaces the former quantity does not exceed
the latter, which indicates that the absolute error is actually within the trust
region.

5.6.3 Equilibrium tables

In this subsection we verify the possibility to determine all properties of a
non-equilibrium surface from equilibrium tables at the surface’s T and )°.
The surface chemical potentials ;i and p5 are already constructed as their
equilibrium values in Eq. (5.10). So in this section we will verify the relation

¢° = ¢eq(T°,9°) (5.22)

As in Subsec. 5.6.2 we compare the actual excess of a thermodynamic potential
with the corresponding equilibrium value at given temperature and chemical
potential of the surface. Before we do this a note has to be made.

Under non-equilibrium conditions the profile of a quantity ¢* is shifted with
respect to the equilibrium one. One can see this in Fig. 5.6 for ¢ being the
enthalpy h. The reason for this is the flux of matter caused by the non-
equilibrium perturbation. The whole interface is therefore shifted. One can
clearly see this, comparing the positions of the particular dividing surfaces on
Fig. 5.1 and Fig. 5.2. It follows therefore that the direct comparison of the
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profiles should be done not in the observer’s frame of reference (OFO, which is
used in all other calculations), but in the surface’s frame of reference (SFO).
The SFO is simply shifted with respect to the OFO, depending on the rate
of non-equilibrium perturbations. Zero of the SFO is chosen at the reference
surface, which can be either the equimolar surface, or any other physically
sensible surface. If 2 is the position of this surface in OFO and ¢§ g (28 po) is
the profile of ¢* in OFO, then ¢&po (2ipo) = Poro(@hro) = Poro (Tiro +2°)
is the profile of ¢* in SFO.

We can now determine the equilibrium state, which the non-equilibrium one
should correspond to. Consider the following definitions of &4, ., and €, ,,.
which have the same meaning as in Eq. (5.21):

2
¢*(x7) — deq(ai + 2y — 2% T,4)
8(Zstcr,ble (T7 1/}) = Z [ g ¢5(x5) g
xf € surface v

(5.23)

o (25T ) = ‘gbs(f”s) - iq<w5;T,w>‘

¢*(2°)

for each thermodynamic potential h, u, f, g. Furthermore z© and zf, are the
non-equilibrium and equilibrium positions of the reference surface in OFO. The
set {7} is the non-equilibrium surface grid and is used for both profiles. Since
the width of an equilibrium surface may not be the same as the non-equilibrium
one, the summation may exceed the formal boundaries of the equilibrium
surface. This is not a problem however, since the equilibrium profile ¢g, is the
line with constant slope everywhere, as well as beyond the formal boundaries.
We don’t shift the surface grid in the definition of €y, ,, (x°; T, 1) because here
x® means the particular dividing surface (e.g. equimolar surface), while z?
means the point of the surface grid.

The values of the corresponding errors are listed in Tables 5.7-5.9 in
Subsec. 5.8.2, and, though somewhat larger then those in Subsec. 5.6.2, are
still small. As in Subsec. 5.6.2 we see, that for the equimolar surface the
relative error in ¢ is huge. There is the same reason for this, namely that
9°(z:) = 0 both in equilibrium and in non-equilibrium. This again makes the
row corresponding to g at x¢ be uninformative and one should not take into
account these data.

As discussed in Subsec. 5.6.2, €y,.,,. (T, %) is now the appropriate measure of
the validity of local equilibrium. In view of the small size of this quantity
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Figure 5.6: Non-equilibrium profile of h® for the case of perturbing T = 1.02 Teq
(solid line) compared to the profiles of by, calculated from the equilibrium
tables for different T., and 1., (dotted lines). The vertical lines indicate
the surface boundaries and dividing surfaces for non-equilibrium case.
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we similarly conclude that Eq. (5.22) is satisfied in good approximation. This
again supports that the non-equilibrium surface as described by Gibbs excess
densities is in local equilibrium.

5.7 Discussion and conclusions

This work continued the verification of the validity of local equilibrium for
the Gibbs surface started in [11]. This property means that a surface under
non-equilibrium steady-state conditions can be described as an equilibrium
one in terms of Gibbs excess densities. We have discussed the meaning of the
surface quantities in non-equilibrium and established the systematic procedure
to obtain them. We were in particular focused on i) the existence of the surface
temperature and chemical potentials which are independent of the choice of
the dividing surface; ii) the validity of the thermodynamic relations between
Gibbs excesses for a non-equilibrium surface; iii) the correspondence between
the non-equilibrium and equilibrium properties of the surface. It was possible
to verify that these properties are valid for all choices of the dividing surface
with a good accuracy. Similar results were obtained for the one-component
system in [11].

The solution procedure is numerical, and contains therefore a certain error.
We may not expect this error to be negligible, not only because of numerical
inaccuracy, but in particular also because of the non-equilibrium nature of the
system. All these errors contribute to the overall measure of the deviation €.
As this quantity is not more then a few per mill for very extreme boundary
conditions, we consider this a satisfactory verification of local equilibrium.

An important part of the analysis in the interfacial region is the introduction
of the excesses of thermodynamic densities, which are constructed with the
help of extrapolated bulk profiles. In contrast to equilibrium, non-equilibrium
bulk profiles are not constants, and therefore their extrapolation to the surface
region is not always accurate. The accuracy of extrapolation lowers when the
surface width increases. Apparent small deviations from local equilibrium are
therefore to some extent an artifact of the inaccuracy of the extrapolation.

In the description of the surface excess densities it may happen that for a
particular choice of the dividing surface not one but several of the excesses
are negligible. This increases the relative error enormously while the absolute
error remains finite and more or less constant. In order to avoid this problem



5.8. Excesses’ errors 111

we consider the excesses for all dividing surfaces together, rather then for a
particular dividing surface. Particularly, in [11] the definition of the excess
Gibbs energy was chosen differently because this excess was very small for the
equimolar surface. We have shown in this chapter why this is not needed.

One can see from these data, that within different ways of perturbing a
mixture from equilibrium, the biggest error comes when one perturbs the
temperature on the liquid side. This is the most extreme condition for the
mixture being in non-equilibrium. While the relative temperature perturbation
is only 2%, the resulting temperature gradient is about 108 K/m which is very
far beyond ordinary non-equilibrium conditions. The other perturbations make
the validity of local equilibrium for the surface more precise. Similarly smaller
perturbations make the validity of local equilibrium also more precise.

We therefore conclude that the local equilibrium of the surface is valid with
a reasonable accuracy also under extreme temperature gradients for binary
mixtures. For the description of transport through and into surfaces this
verifies that the use of non-equilibrium thermodynamics as done in, for instance
[6, 44, 68, 76| is appropriate. For the application to industrial processes this
is an important simplification, which is of great importance.

5.8 Excesses’ errors

To recall, each table in this section gives the values of different errors in percent.
Each line gives the relative error in the determination the corresponding
surface quantity ¢°. A line with €, gives the error over all surfaces together,
while a line with ey gives this error for a particular dividing surface. Two
major columns give the corresponding values for different perturbations. For
each perturbation, two finer columns give errors from different procedures to
determine surface temperature and chemical potential difference. A column
with {25} gives the values of corresponding errors for T' = fos}’ P = @bf[xs}
determined from Eq. (5.18) for the whole surface. A column with z* gives the
values of corresponding errors for T' = T%(x*), ¢ = ¥*(2®) determined from
Eq. (5.9) for a particular dividing surface.
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5.8.1 Gibbs excesses’ relative errors

Table 5.4: Gibbs excesses relative error for the case of perturbing T* in percent

Tt =1.02T,, T =0.98T,,
for {5} for x*® for {5} for x*
0.01328 - 0.033276 -
0.023799 0.023419 0.064597 0.065002
0.020605 0.020737 0.056585 0.057148
0.035878 0.033571 0.085212 0.085204
0.015606 0.016541 0.047847 0.048578
0.0071257 - 0.026714 -
0.016729 0.016462 0.045109 0.045392
0.015059 0.015156 0.041048 0.041457
0.022033 0.020616 0.054286 0.05428
0.012161 0.012889 0.036244 0.036797
0.20039 - 0.12983 -
7.3727 7.3666 8.7959 8.799
1.9809 1.981 2.2605 2.2602
1.6966 1.6881 2.5586 2.5602
0.65429 0.65354 1.0109 1.0095
0.36323 - 0.15487 -
272.37 272.15 73.468 73.494
2.7241 2.7242 3.2313 3.2309
1.4054 1.3983 1.9592 1.9605
0.72857 0.72773 1.1818 1.1802
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Table 5.5: Gibbs excesses relative error for the case of perturbing p9 in percent

p? = 1.02 peqy p? = 0.98 pey
¢ | error for {z%} for x* for {z%} for x*
h| &y 0.0013703 - 0.0019532 -
€p(x€) | 0.0018964 0.0022352 0.0011722 0.00088793
€s(27) | 0.0017063 0.0019978 0.0010683 0.00083823
eg(x) | 0.0025175 0.0030049 0.0015513 0.0010756
€p(x?) | 0.0014259 0.0016451 0.00090372 | 0.00076269
u | &y 0.00041867 | - 0.00033213 | -
es(x¢) | 0.0013316 0.0015695 0.00081921 | 0.00062057
€p(27) | 0.00124 0.001452 0.00077388 | 0.00060722
€p(x) | 0.0015926 0.001901 0.00096161 | 0.00066669
€p(x?) | 0.001093 0.001261 0.00069529 | 0.00058679
fl&s 0.043422 - 0.033692 -
6¢(:L’c) 1.4194 1.4152 1.2845 1.2884
eg(xY) | 0.3884 0.38805 0.37919 0.3795
€p(x) | 0.40171 0.39739 0.30303 0.30621
€p(x?) | 0.13128 0.1311 0.13976 0.13952
g | & 0.08442 - 0.021892 -
€p(x¢) | 28.236 28.152 48.786 48.935
ep(x7) | 0.56258 0.56208 0.54645 0.5469
€p(x) | 0.3187 0.31528 0.24447 0.24704
€p(x?) | 0.15021 0.15001 0.1583 0.15802

Table 5.6: Gibbs excesses relative error for the case of perturbing ¢ in percent

7 _ Y4 7 _ Y4
¢"=1.02¢., (" =0.98¢,
¢ | error for {z5} for x* for {z%} for z*
h| &g 0.00035435 | - 0.0011482 -
€p(x° 0.0023134 0.0028072 0.0042669 0.0042419

(z°)

(z7) | 0.0021873 0.0026065 0.0039043 0.0039484
€p(2) | 0.0028054 0.0035457 0.0054811 0.0052479

(z°?) | 0.0020102 0.0023063 0.0033597 0.0035215
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0.00040969
0.0016206
0.0015861
0.0017517
0.0015408

0.0063873
0.17101
0.014471
0.15718
0.062407

0.013595
5.3413
0.021
0.12645
0.071253

0.0019665
0.0018901
0.0022139
0.0017677

0.15419
0.015093
0.13049
0.065842

4.816
0.021903
0.10498
0.075175

0.0015073
0.0029893
0.0028345
0.0034446
0.0025842

0.0026805
0.033343
0.023261
0.066572
0.037405

0.0004864
0.77321
0.033471
0.052965
0.042467

0.0029717
0.0028665
0.003298

0.0027086

0.034999
0.022844
0.055875
0.042978

0.8116

0.032872
0.044454
0.048795

5.8.2 Equilibrium table excesses’ relative errors

Table 5.7: Equilibrium table excesses relative error for the case of perturbing T*

in percent
T =1.02T,, T =0.98T,,

¢ | error for {5} for z* for {5} for z*

h| & 0.67514 - 0.21243 -
€g(x€) | 1.1052 1.1012 0.51202 0.50951
es(27) | 0.0062189 0.0050111 0.074177 0.071345
€g(x') | 8.5087 8.4753 6.4524 6.4581
€p(x?) | 3.9073 3.8963 6.1946 6.1882

u | €y 0.32181 - 0.23381 -
ep(x®) | 0.77685 0.77406 0.35744 0.3558
€g(27) | 0.0043659 0.00366 0.053575 0.051756
€p(x) | 5.2257 5.2046 4.1104 4.1143
€p(x?) | 3.0451 3.0361 4.692 4.6875
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0.0046133
6.6737
7.242
15.74
13.328

0.0017615
246.55
9.9591
13.038
14.84

6.67
7.2428
15.7
13.306

246.41
9.9604
13.006
14.817

0.0035049
8.0558
0.37022
25.631
20.092

0.001069
67.29
0.52885
19.627
23.49

8.0599
0.37236
25.642
20.077

67.32
0.53228
19.635
23.472

Table 5.8: Equilibrium table excesses relative error for the case of perturbing p9

i percent
p? = 1.02 peqy p? = 0.98 pegy
¢ | error for {z5} for x* for {5} for x*
h| & 0.26501 - 1.3628 -
€p(x€) | 0.79783 0.80083 0.90685 0.90956
ep(x7) | 1.4549 1.457 1.2481 1.2505
€p(x) | 1.3056 1.2901 2.0582 2.0702
€p(x?) | 2.3955 2.3962 0.069749 0.072757
u | €y 0.047434 - 0.20486 -
ep(x¢) | 0.5599 0.56232 0.63362 0.63569
ep(27) | 1.0571 1.0589 0.90402 0.90589
ep(x) | 0.82642 0.81614 1.2756 1.2832
€p(x?) | 1.836 1.8368 0.053565 0.055977
fl&s 0.003912 - 0.0035128 -
ep(x®) | 1.218 1.2144 1.1886 1.1919
ep(x7) | 4.7735 4.775 2.1767 2.1788
€p(x) | 7.4201 7.3951 2.2105 2.2271
€p(x) | 5.5423 5.5439 1.9531 1.9467
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g | & 0.0013182 - 0.00041813 | -
€p(x®) | 24.251 24.157 45.122 45.27
ep(x7) | 6.9147 6.9164 3.1371 3.1398
€g(xr) | 5.8866 5.8671 1.7835 1.7967
€p(x?) | 6.3419 6.3437 2.212 2.2049

Table 5.9: Equilibrium table excesses relative error for the case of perturbing ¢*

i percent
¢"=1.02¢, ¢"=0.98¢/,
¢ | error for {z5} for z* for {z5} for z*
h| &g 0.093953 - 0.20248 -
ep(x¢) | 0.85205 0.86417 0.83511 0.8363
ep(x) | 1.5557 1.5598 1.1532 1.1601
€p(x) | 0.24334 0.33902 0.26902 0.23261
€g(x) | 1.265 1.2405 1.2654 1.3065
u | €y 0.068203 - 0.24097 -
€p(x¢) | 0.59647 0.60537 0.585 0.58586
ep(x7) | 1.1278 1.1311 0.8372 0.84222
€g(x) | 0.15127 0.21168 0.169 0.14618
ep(x?) | 0.96943 0.95081 0.97333 1.0049
flé&s 0.0026249 - 0.0035651 -
ep(z€) | 0.095422 0.080499 0.18152 0.18276
€p(x7) | 4.6443 4.6454 2.382 2.3867
eg(x1) | 2.3591 2.2252 2.7907 2.8466
€p(x?) | 1.6382 1.5842 1.897 1.9858
g | &y 0.00098739 | - 0.0010871 -
ep(x¢) | 3.025 2.5143 4.2062 4.237
ep(27) | 6.7404 6.7414 3.4276 3.4343
ep(x) | 1.8975 1.7901 2.2203 2.2648
€p(x?) | 1.8705 1.8088 2.1538 2.2546




Chapter 6

From continuous to
discontinuous description

6.1 Introduction

In earlier chapters we developed the general approach for the square gradient
description of an interface between two phases in non-equilibrium n-component
mixtures. Using that approach it is possible to determine the continuous
profiles of all variables through the interface during, for instance, evaporation
and condensation. In this chapter we will use these results to obtain the
transfer coefficients for heat and mass transfer through the liquid vapor
interface. The values of these transfer coefficients, or even their order of
magnitude, is extremely important for industrial processes which involve
evaporation and/or condensation of mixtures. Among these processes is, for
instance, distillation, when one needs to separate components with different
volatilities. As this involves evaporation and/or condensation repeatedly many
times, it is very important to know the exact effect of the surface. Some values
of the interfacial transfer coefficients may favor transport of one component,
while others may favor adsorption of a component at the surface. Of particular
interest are the values of the cross coefficients, which contribute to irreversible
transport, and which are in most descriptions neglected [6].

For the resistances in the relations expressing the differences of the temperature
and chemical potentials across the surface we will use the word transfer
coefficients as they describe the resistance to the transfer of heat and mass
and across the surface.
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A number of different methods have been used to obtain the surface transfer
coefficients for one-component systems: experiments |14, 15, 18, 46|, molecular
dynamic simulations [19, 20, 25, 47, 48] , kinetic theory [49-52]. In a paper [12]
the interfacial transfer coefficients obtained from the square gradient theory
for a one-component system were calculated and compared to the data in the
above references. Even for one-component systems the database of interfacial
transfer coefficients is poor and these data are pretty scattered. The situation is
even worse for mixtures. There are only few experiments available for several
systems [14, 18] in very restricted ranges of conditions, i.e. for instance, at
infinite dilution. No molecular dynamic simulations are available yet. The
only source of the values of interfacial coefficients is kinetic theory [51, 52|.
This theory is most appropriate for short range potentials and low density
gases. There is evidence from molecular dynamic simulations for longer range
potentials [48] that the coupling transfer resistances for liquid-vapor interfaces
of real fluids are substantially larger than those predicted by kinetic theory.

In the previous chapters we discussed the balance equations and the Gibbs
relation for the square gradient model of mixtures. The Gibbs relation
enabled us to derive the entropy production. It followed that if one uses as
thermodynamic forces the gradient of the inverse temperature, V(1/7), the
gradients of the chemical potential differences divided by the temperature,
V((pi — pn)/T), for i = 1,n—1, and the gradient of the velocity divided by the
temperature, (Vv)/T', then the conjugate fluxes are the heat flux, J,, minus
the diffusion fluxes of the first n — 1 components relative to the barycentric
frame of reference, —J;, and minus the viscous pressure tensor. Linear laws
relating these forces and fluxes were given. Together with the balance equations
it was then possible to calculate the profiles of all the variables.

Given the validity of local equilibrium for the description in terms of the Gibbs
excess densities, it is possible to develop a description using non-equilibrium
thermodynamics as explained in the monograph by Kjelstrup and Bedeaux [6].
This is much easier than the continuous description. As we will verify in this
chapter the expression for the excess entropy production of a surface has the
general form

Go= Y JiX; (6.1)

In this expression J; are the heat and mass fluxes through the surface and
X,; are the jumps in the intensive variables across the interface. In non-
equilibrium, one uses the finite jumps of the temperature and chemical
potentials across the surface, which leads to a non-zero entropy productions in
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the interfacial region. These jumps become the driving forces for the heat and
mass transport through the interface. Following the traditional approach of
non-equilibrium thermodynamics we then write the linear force-flux relations.
These expressions use the interfacial resistances or transfer coefficients which
are the key interest of the rest of the thesis.

Having the continuous profiles of thermodynamic quantities obtained from
the non-equilibrium gradient model we are able to calculate these resistances
independently. This gives a way to determine the coefficients and therefore a
possible source for comparison for future experiments and simulations.

In this chapter we establish the general link between the continuous analysis
described in the previous chapters and the discontinuous approach given in
[6]. The analysis is done for stationary states, when all the quantities have no
explicit dependence on time. In the next two chapters we focus on the methods
to obtain the interfacial resistances. There we also apply them to the binary
mixture of cyclohexane and n-hexane.

In Sec. 6.2 we derive the expression for the local entropy production for
stationary states in the continuous description. In Sec. 6.3 we discuss the
properties of the excess quantities in three-dimensional space. We consider
how the stationary state condition simplifies the non-equilibrium description.
In Sec. 6.4 we obtain the expression for the excess entropy production in
an interfacial region. In Sec. 6.5 we give the force-flux relations and discuss
the interfacial resistance coefficients. We consider different sets of coefficients
which are associated with different variables: gas- and liquid- side coefficients,
as well as mass and molar coefficients. Any coefficient of one set is determined
by the coefficients of the other set and equilibrium properties of pure bulk
components. These sets are therefore equivalent.

6.2 Local entropy production
6.2.1 Gibbs-Duhem equation

Consider a two phase n-component mixture. Let T be the temperature field
in this region, v; = u; — 4, be the chemical potential differences and p be the
scalar pressure, which in case of a planar interface coincides with the parallel
pressure p|. Furthermore, let u, s, v be the mass specific internal energy,
entropy and volume respectively, p = 1/v be the overall mass density and
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& = pi/p be the mass fraction of the i-th component. It was found that the
Gibbs equation for such a two phase system is given by:

d Ma
T(r, 1) % = o sz o D — vl (62)

where v is the barycentric velocity, d/dt is a substantial time derivative and we
use the summation convention over double Greek indices. 7,43 is the tension
tensor, which is given by

n—1

00 Op N~ (06 9p  Op 9% a6 0¢;
Yo = 830 Oxg + ;/{2 (Baca Oxg + 0z, 6:65) + Z Fij Ox, Ox (6.3)

)’

It is non-zero in particular in the interfacial region, where the gradient variables
V p and V¢; are significant. All thermodynamic densities (except the entropy)
have gradient contributions. For explicit expressions we refer to Chapter 2.
These densities are related by the ordinary relation

n—1

u:un+zwi&—pv—|—Ts (6.4)
i=1

Substituting Eq. (6.4) into Eq. (6.2) we obtain

st Zgz — v T UV, =0 (6.5)

This is the Gibbs-Duhem equation for a two-phase multi-component mixture.

For a stationary state the derivative 9/0t = 0 and Eq. (6.5) takes the following

form
oT aﬂn awz aO’aﬁ
Vg <s — 4t — E {Z D — 895& =0 (6.6)

where 0,3 = Pdag + Vag is the thermodynamlc pressure tensor. Note that
since ¥; = Wi — lin, We have

8/Jm 87/12 8/~Lz
Brs gs Zé (6.7)

which is the usual contribution to the Gibbs-Duhem equation associated with
the chemical potentials.
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6.2.2 Entropy balance

The entropy balance equation is

ds

P = —V-Js+ 05 (6.8)

with the entropy flux Js = J; 40t — psv and the entropy production o,. These
were found to be

n—1
J, = % <Jq =) Ji> (6.9a)
=1

n—1
1 wl 1 aVa
s — Vo5 iV T aB A .9b
o JqVT ZE:1J VT WﬁT@x/g (6.9b)
where J,; and J; are the heat and diffusion fluxes
J, =Je—pve—pv—nv=J.—J,(e+pv)—II-v
(6.10)

Ji =pi(vi—v)=J¢g =& In

where II = 7,4 is the viscous pressure tensor. The energy flux J. and the mass
fluxes J¢; = p; v; and J,;, = pv are convenient quantities, since in stationary
states

V-Je=0, VJg=0 V-J,=0 (6.11)
Furthermore, it follows from Eq. (6.8) that in stationary states
USZV‘JS—F,OV'VSZV'Js’tOt <612)

Using (6.6) and the conservation laws under stationary conditions, it is possible
to show that

vi/2 —gr 0 Tapvg
T or, T

1 g i
—J. V- — v g 1
0y =J.-V ;le Je, v _g,.v (6.13)

The expression for the entropy production, used in Eq. (6.13) contains
dependent fluxes J¢, and J,, and thus force-flux relations cannot be obtained
from it directly.
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6.3 Excesses in three-dimensional space
6.3.1 Definition of an excess

The definition of an excess requires the normal direction n to be defined in the
interfacial region. The surface may be curved and we may introduce curvilinear
orthogonal coordinates (x1,x2,x3) with r; = x; being the normal coordinate
and r) = (22, x3) being the tangential coordinates.

Let 29 and z%° be the boundaries of the interfacial region' at the gas and
liquid side respectively. Let ¢ be a function defined in the surface region.
Furthermore let ¢°, where superscript b stands either for ¢ or for g, be the
function ¢ extrapolated from the bulk to the surface region. The extrapolation
is done using the description in homogeneous phases which does not contain
gradient contributions. Outside of the interfacial region ¢® and ¢ are identical
but inside the surface, ¢® in general differs from ¢. We note the following
identity for the extrapolated functions

o (2", r)) = ¢(z™%,r)) (6.14)
Furthermore, for any function ® the following relation is true by definition
(.., ) =D(..,¢" .. ) (6.15)

in the interfacial region. We note however, that even though Eq. (6.14) and
Eq. (6.15) are exact, any numerical procedure will break these equalities. This
happens because the extrapolation procedure usually involves polynomials
in order to fit an actual curve, which introduces a non-zero error in the
extrapolated curve.

We then can define the excess ¢(z°, r||) of a density ¢(r) per unit of volume in
the 3-dimensional space as? [43]

R 1 xf,s
P(z°,1)) = b3 63 /33975 dz1 b1 b2 h3 ¢ (r; 2°) (6.16)
where
¢ (r;2°) = ¢(r) — ¢7(r) O(a® — 21) — ¢'(r) O(a1 — %) (6.17)

'The exact location of these boundaries depends on particular method we use to
distinguish the bulk region from the interfacial region. In Chapter 4 we discussed this
issue. Here we only need to know that these boundaries exist and satisfy Eq. (6.14).

2In the literature one also uses an alternative definition, which we show to be wrong in
Appendix 6.A.
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Furthermore, h; = b;(x1,r)) are Lamé coefficients for curvilinear coordinates
and bi = b;(z°,r)|). Given that ¢(r) is a density per unit of volume, excess
g(a:s,ru) is a density per unit of surface area. The excess depends on the
position of the dividing surface x®, which is the coordinate of the surface in

the normal direction, and the position r|| along the surface.

6.3.2 Stationary state of a surface

Consider the entropy production given in Eq. (6.13). All the terms except the
last one have the form J-V¢, where according to Eq. (6.11) V-J =0 and ¢ is
some scalar function. Thus, J-V¢ = V- (J¢). We show in Appendix 6.B that

IV = (J19) = (JLo) + V)-(J¢) (6.18)
where all the functions on the right hand side are evaluated at r®.

For each flux in Eq. (6.11) we can write VJ; + V|-J = 0. This gives an
approximate relation for the order of magnitude
A T 1Ayl

~ 6.19

As was discussed in Chapter 3, the interfacial region breaks the 3-dimensional
isotropy of the system. In addition to a typical macroscopic size of the problem
£, there exists the microscopic size 9, the surface width, which is of the order of
few nanometers. There are quantities which change drastically on the distances
of the order § in the direction perpendicular to the surface. However, the
significant change of any quantity along the surface may happen only on a
length scale ¢, which is of the order of either radii of surface curvature or the
system size. Because of this property of a surface, we may not expect the
change of the parallel component of a flux on a macroscopic scale along the
surface to be much larger then the change of the perpendicular component of
that flux on a microscopic scale through the surface. For the fluxes for which
changes A} J) | and |A|J)| are of the same order of magnitude, Eq. (6.19) takes
the form AJ/d ~ AJ/¢, which can hold only if AJ = 0, since § < ¢. This
means that both A J; = 0and AyJy = 0. If [A; J; | > [A)J)] this statement
becomes even stronger. We then may require that for a thin surface

ViJi(r)=0 (6.20a)

3For the special case of a system with planar surface in cartesian coordinates with all the
fluxes directed perpendicular to the surface, which is the case studied in this chapter, these
equations follow straightforwardly.
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V”J”(r) =0 (6.20b)

Thus, a stationary state condition V-J = 0 has a form of Eq. (6.20) in an
interfacial region. The extrapolated fluxes J? satisfy the same equation

Vil (r)=0 (6.21a)
V- Ji(r) =0 (6.21b)

since the extrapolated flux fields also satisfy V-J? = 0.

Both Eq. (6.20a) and Eq. (6.21a) are first order ordinary differential equations
which depend on a constant. These constants must be the same, since
according to Eq. (6.14) J4 (r®*) = J, (r>*) at boundary points. It means
that Jﬁ and J| are the same functions®:

J{(x) = Ji(r) = Ji(r) (6.22)

Consider the last term in Eq. (6.18). Since parallel divergences of both J| and
J ﬁ are zero,

Vi (Jy9) = Jy-Vyé (6.23)
where we used that V| ©(z1) = 0 (cf. Appendix 6.B).
Substituting Eq. (6.22) and Eq. (6.23) into Eq. (6.18) we obtain

IV =Ji (¢ — %)+ TV (6.24)

where all the functions on the right hand side are evaluated at r®.

6.4 Excess entropy production

Applying Eq. (6.24) to each term in Eq. (6.13) for the entropy production
we obtain the general form of the excess entropy production for a surface in

“Note that Eq. (6.22) does not lead to the relation Jy (z9°,r) = Jo (2", r|). Eq. (6.22)
is the relation between values of different functions at the same point but not the relation
between values of the same function at different points. However, it follows from Eq. (6.20a)
that in curvilinear coordinates d(h2h3J1)/(0x 1) = 0 and therefore h2h3J1 = const but not
J1 = const.
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stationary state

= 4
Os = JS,tOtJ_

- ~ ¢ l g g
- ZJ /Lf_&‘? B wLﬁvﬂ_Wlﬁvﬂ
T/f Sl \ e T g T¢ T9

T = /\ﬂz‘ R
+<Je,'V||T> -2 <Jsi,'V||T> - (V||~—T )

=1

- JS jtot | + VH Js totH =

(6.25)
where fi; = u; +v?/2 — g-r®.

The next step of the analysis is to provide constitutive relations in order to
relate thermodynamic forces Xj to thermodynamic fluxes J for the whole
surface. This requires that the excess entropy production has a form o5 =
> JxXk. However, as one can see from Eq. (6.25), the terms related to fluxes
along the surface do not have this form. One has to make further assumptions
on the nature of these terms to write them in this form. As our work is focused
on transport into and through the surface we will not consider non-equilibrium
perturbations which are applied along the surface. This guarantees that all the
terms along the surface are equal to zero. The only nonzero component of any
flux J is therefore J,, which we will denote simply as J. We will furthermore
restrict ourself to non-viscous fluids. The expression for the excess entropy
production simplifies to the following
n ~0 ~g
G, = J. <Tlf - ;g) - <;¢ - ;g) (6.26)

=1

It is convenient to write the excess entropy production in terms of the
measurable heat flux J; of either bulk phase, which is defined as

Tob=30 -3 "hlI=3.-> hlJg (6.27)

where we used Eq. (6.10) and h; = h; + v2/2 —g-r® = [i; + T's;, where s; is
the partial entropy and h; is the partial enthalpy. While Eq. (6.22) is valid for
Je and Jg, it is not valid for Jj: the difference between the measurable heat
fluxes on the gas and the liquid side is

—Jt= ZJ& hé — hY) (6.28)
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Note, that in non-equilibrium fzf — ilf is not equal to hf — hY since the velocities
of the gas and liquid are substantially different. In practice, however, the
magnitude of either velocity is small, so the corresponding kinetic energy term
does not affect much the value of the enthalpy. Moreover, as we will see below,
one should use equilibrium values of the corresponding enthalpies, which makes
the expression with tilde to be identical to the expression without tilde.

In terms of measurable heat fluxes, the expression for the entropy production
becomes

~ 1, ~f ~ Y4
os = J,9 (T’Z - g) - g Je. 7w <ui — @+ (T - T9)> (6.29a)

=1

11 - 1
~ 4l -0 -~ 0t
os=J, <T€ - Tg) - z; Jeig (/,LZ- — i+ STt — Tg)) (6.29h)
1=

It is important to realize that Eq. (6.29) are exactly equivalent to Eq. (6.26).
It is common to do these transformations neglecting third and higher order
contributions in the deviation from equilibrium. Such approximations were
not needed here.

Eq. (6.29) has the form of the entropy production for the surface used in [6].
It was obtained there using the local equilibrium hypothesis, which we have
proven to be valid in Chapter 5. Here we have derived Eq. (6.29) independently,
by calculating the excess of the continuous entropy production in the square
gradient model.

6.5 Surface transfer coefficients

Consider Eq. (6.29) for the excess entropy production which has the form
n
Go=J;Xg— Y Je X (6.30)
i=1

We will use the form (6.30) further, specifying the explicit expressions for fluxes
and forces where needed. Following the common procedure, we write the linear
force-flux relations for a given entropy production:

X = qu(Teqa ¢eq) Jql - Z?:l qu(Teqa ¢eq) Jéi
(6.31)
X = qu(Teq, Veq) Jq/ - Z?:l Rji(Teqa Yeq) Je,
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As these relations are true only to the linear order in perturbations, we must
keep only linear contributions in all terms. It means that all the resistances in
Eq. (6.31) are functions of only equilibrium temperature T,, and equilibrium
chemical potential difference 1., around which a particular perturbation is
performed. They do not depend on the nature of the perturbation.

Consider the following matrix notation of the above quantities

X, Ry Rg ... Rp J!
X1 Ry Ri1 ... R —J,

x= "1, r= | T T =] Y (6.32)
X, Rag Rui ... R —Je,

Let 8 indicate a measure of a non-equilibrium perturbation®, so that X = X(8)
and J = J(8). Then Eq. (6.31) can be written in a matrix form as

X(B) = R(Teq, teq)-J(B) (6.33)

For large values of 8, Eq. (6.33) is not correct, since large perturbations are not
described by the linear theory. As we decrease 8, the accuracy of Eq. (6.33)
increases and in the limit § — 0 becomes exact. It means that Eq. (6.33)
should be understood as

li X (8) = R(Tegs eg)-lim J(5) (6.34)

One should not write Eq. (6.34) in the form X(0) = R(T¢q, %eq)-J(0) however,
as both X(0) and J(0) contain only zeroes and such an expression makes no
sense. Even though X(8) and J(8) are continuous functions of 8, one should
write limg .o X(8) and limg_,o J(8) instead of X(0) and J(0) respectively. In
practice there exists a particular measure 8, of a perturbation, such that for
all B < B¢, Eq. (6.33) is satisfied with a satisfactory accuracy.

One should also note that the accuracy of a particular numerical procedure may
limit the validity of Eq. (6.34) as well. All the non-equilibrium profiles and
therefore forces and fluxes are calculated by solving the system of differential
equations numerically with some particular accuracy. If a perturbation rate

®Note, that a non-equilibrium state can be achieved by perturbing several independent
quantities simultaneously. In this case we have several perturbation parameters gi,..., (.
A measure  is a norm of this p-dimensional vector of perturbations. The exact expression
for this norm is irrelevant, as soon as it goes to zero if and only if all 51,..., 8, go to zero.
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is lower then this accuracy, say B,.m, the data obtained from the numerical
procedure are not reliable. Performing a numerical analysis we must therefore
replace the limiting value 0 by 8,,4m in Eq. (6.34).

As shown by Onsager [81], the cross coefficients must be the same. We therefore
have

Ryi = Rig
(6.35)
Ry = Ry
6.5.1 Gas- and liquid- side transport coefficients
For each of Eq. (6.29) one might associate the forces with
1 1
g _ yt = _—- _
Xo=Xo =gy
X9 =L (§f = pg 4 91t — 19 (6.36)
= e g — iy sy (T = T7) '
Xt = i ~0 ~g+ E(TZ_Tg)
J T Tg Hj = Hj T S5

As we are in the context of the linear theory, however, we must linearize these
forces with respect to the perturbation and discard all higher order terms.
Leaving them would not increase accuracy but may affect the consistency of
the linear theory. We therefore get the following phenomenological relations
up to the linear order®

1 1
—_ PRI /g n g
T T9 Ryq Jg¥ =21 Ry Je,
(6.37)
1 l
gt — o9 9 g _pg 79 _ N g
To (Nj [+ 85 oo(T° =T )) = Rj, Jq >im1 Bji Je;
5Given a small perturbation around equilibrium values, we can write 7% = To, + 617,

1P = pieq+6ub, and s” = seq+3s” up to the first order. Thus, 1/T°—1/T9 = (679 —6T") /T2,
is linear in perturbations and we may keep this term as it is. Furthermore

1 h . , i n 1 5Teoh , , i
fi; — i +s9(T° = T7) = T~ T3 Sfiy — 0fi] + (85 oy +059) (0T — 0T7)
eq eq

Tt H J,eq

The term §T° / qu is already linear in perturbations, so multiplying it with the expression
in parenthesis, which has also no zero order term, we get an expression which is at least
quadratic in perturbations and should therefore be neglected. Similarly the term 63? (5TZ —
0T?) should also be neglected. The remaining expression is exactly the one, which is used
in Eq. (6.37). Analogously we get Eq. (6.38).
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and

1 1
_ pt 71t Y]
T  T9 Ry Jg = 2ima Ry Je,
. (6.38)
~0 -~ ¢ ¢ e
Teq (“J’ — B+ 8 eg(T — Tg)) =R, Jg" = Xy Ry e,
Here and after we omit arguments (Teq,1%eq) as long as it does not lead to
confusion.

The measurable heat fluxes are related by Eq. (6.28) which after linearization
takes the following form

Jh9 Jq/,e _ Zn: Je, (}}f, e — ;}Z eq) (6.39)
=1

Comparing Eq. (6.37) and Eq. (6.38) and using Eq. (6.39) we get the following
relations between the coeflicients associated with the gas and liquid measurable
heat fluxes to linear order

¢ _ pYg
qu _qu

R, +nf ., R, = RS+ 1Y, R

i,eq i, eq

Rl +h . RL, = RS + 0. Ry

1, eq 2, eq

Y l Y ¢ A ¢ ¢ ¢ _ ng g g g g g g g
Rt o 1T 1 g Rgi 5 0P e 1gq = Rﬁ+hi,equq+hj,eqqu+hi,eth,iqqu)
6.40

where we took into account that af g = i eq and lN”ng eq ]N”Lf eq = h eq h -

The coefficients on the one side determine uniquely the coefficients on the
other side, having the values of jumps across the surface of the extrapolated
enthalpies. It follows from Eq. (6.40) that

L _ pY
qu_ Raq

Rf}i = Rgz‘ + (B g — I ) Riq

i,eq i,eq

RE, = RE+ (1, — hE ) Rl

i,eq i,eq

¢ _ ¢ ¢ ¢ ¢
Rji—R]g-i-i-(hg —h; )R?q—i-(h‘tZ —h )qu—l—(hg —ht (RS, —ht . )RS,

%,eq %,€q J,.€q J,€q 2,eq 1,eq J2.€q J,€q

(6.41)
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One can notice, that symmetry of RY coefficients implies the same symmetry
of R coefficients and vice versa.

To avoid confusion we recall that for the temperature T', chemical potential
i; and the partial entropy s; the superscript g or ¢ means the value of
the corresponding function extrapolated from either gas or liquid to the
interfacial region and evaluated at a particular dividing surface x°. We do
not indicate which dividing surface is used, as it is irrelevant for the present
analysis. In contrast, Jg9¢ = J. — 31, hi(29*) J;, where the partial enthalpy
is evaluated at the gas-surface boundary z9°. To the linear order however
hi(29°) = hy eq(29%) = ﬁgeq(:cs) = Isz,eq. For planar interface, J. and Jg,
are constants, and Jq/ 9 may be considered as the flux, evaluated at a dividing
surface z°. Furthermore, superscript ¢ or £ for the resistance RY or R’ neither
indicates any position nor the extrapolated resistance coefficient. It indicates
the measurable heat flux which the given resistance coefficient is associated

with, either J,'7 or Jql’e respectively.

6.5.2 Mass and molar transport coefficients

In applications, it is common to use the mass flux of the components and
the partial molar thermodynamic quantities, like, for instance, partial molar
entropy. The above equations should use either molar fluxes and partial molar
thermodynamic quantities or mass fluxes and partial mass thermodynamic
quantities. The transport coeflicients are different for different choices.
Consider Eq. (6.30) for excess entropy production. The thermodynamic forces
X; depend on partial thermodynamic quantities. We introduce therefore X"
as a force which uses partial mass quantities and X} as a force which uses
partial molar quantity. Furthermore, let J¢; = p;v; and J¢, = ¢;v; be the mass
and molar flux respectively of the i-th component. As X = X?/M; and
Je, = Je;M;, where M; is the molar mass of the i-th component, the excess
entropy production becomes

n n
Go=JyXg— > Je X" =JXg— > J, X! (6.42)
=1 =1

The force-flux relations become

Xy = RZ’; Jq/ - Z?:l RZZ Je,

Xp = Ry Y R

J 7q “q

(6.43a)
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and

Xy = RZq Jq, - Z?:l RZi JCi (6 43b)

Xy = Ry, = S Ry T

where the corresponding superscript for the resistance coefficient indicates the
association with the mass or molar quantities. These transport coefficients are
related in the following way

Roq = Rag

Ry =R M,
Ry = RpM,
RY, = R M;M;

(6.44)

6.6 Conclusions

In this chapter we have studied stationary transport of heat and mass through
the liquid-vapor interface in a mixture, using the square gradient theory. We
derived an expression for the excess entropy production of a surface from the
continuous description, which is identical to the one derived directly for the
discrete description using the property of local equilibrium [6]. This makes
it possible to give the linear force-flux relations for this case. These relations
involve the interfacial resistances or transfer coefficients, which were the main
focus of interest in this chapter.

6.A On the definition of an excess quantity

One may think of an alternative definition of an excess quantity

xf,s

<$a(xs,:v2,x3) = /g ) dxz1 b1 % (r; %) (6.45)

)

We note however, that (Ea has no physical meaning, while 5 has. The reason
for this is that

l,s

~ $ 7
D= //s dxy dzs b3 b3 d(2°, 29, 3) = //s /xg’s dxy dwy dws by b bs ¢ (r; %)
(6.46)
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is the total amount of some physical quantity in the volume which is limited
by the surfaces S at z9° and z%*, while

m&s
o, = // dxa dzs b3 b3 ¢a(2®, 2, 23) = // /978 dxy dzo dzs by b3 b5 ¢ (r; %)
° i (6.47)
is not. If the interfacial thickness is small compared to the radii of curvature,
the difference between $ and aa is small and vanishes for planar interface
considered under cartesian coordinates. However, it is ® but not ®, which is
a physical amount, and thus (E is the surface density.

6.B Excess of a gradient function in curvilinear
coordinates

Consider a function ¢ being the divergence of a vector function: ¢ = V-q(r).
Its excess

Vet ) = o [ e dribibabs (V)™ (ra®)  (6.49)
Furthermore
(V-a) (x;2%) = V-a(r) ~ {V-@?(x)} O(a" 1) ~ {V-a ()} O — 27) =
= V-(q°)(r;2°) + q?(r)-VO(2* — x1) + ¢‘(r)- VO (2, —(36:5219)

where
q“(r;2°) = q(r) — @’ (r) O(z° — 21) — q'(r) O(z1 — z°) (6.50)
and q9 and g’ are defined similarly to ¢9 and ¢.

Using the standard formula for the divergence of a vectorial function in
curvilinear coordinates

1 0 o o
9= o bs (8961(6253 Q) + 87:2([]163 a) + a—x?’(hlhg q3)> (6.51)
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one can show that
xﬁ,s
/ 01 b1 b3 by V() (1% =
z9°
(6.52)
s l,s

[ e () + (b
9.5 e L1 O 193 g2 X 19243

X
= bah3¢T

X

Using the standard formula for the gradient of a scalar function in curvilinear

coordinates
1 96 . 1 906 . 1 906 .

= —a L+ —F I+ 13
b1 0z b2 Oxo b3 Oxs
one can show that for Heaviside step function ©

\v/’] (6.53)

l,s

25
bslbs /gs dx1 b1 bha bs qb(r).V@(azl — ;CS) _ qb(g;37r||).i1 = qi’_(xs’r”)
273 ’

(6.54)

Substituting Eq. (6.49) into Eq. (6.48) and using Eq. (6.52) and Eq. (6.54) we
obtain

—

V-q(z®,r)) = ¢ (z% r)) — ¢f (z°,r)) + V|-q)(z*, 1)) (6.55)

where

l,s
_— 1 e 3, 0
T = s e @1 (GO0 4 i) (650)

x93

and we took into account that according to Eq. (6.14) ¢§*(29*) = ¢5*(2%*) = 0.

i) Parallel components

Consider a special form of a vector q for which q = J;¢ where V||-J = 0.
Here V) is a parallel component of three-dimensional nabla-operator so that

1 0 0
Viq = b1 Do b (M(f)lha Q) + 87:@([]162 Q3)>

1 00 1 00
g 109, 1090,
Vi b Oxa " b3 O3 '

(6.57)

Then
Vi (3y@) = 3y (V9) + (Vi g = 3y (V9) (6.58)






Chapter 7

Surface transfer coefficients for
the binary mixture

7.1 Introduction

In this chapter we describe how to obtain surface resistances given the non-
equilibrium solution of the system. For the sake of convenience we do it for
a binary mixture, however the procedure is applicable for a multi-component
mixture. In Sec. 7.2 we specify the general expressions for two-component
mixture. In Sec. 7.3 we discuss the different methods to obtain the resistances
from a non-equilibrium continuous solution. We give the results of our analysis
in Sec. 7.4. We analyze extensively different aspects of the problem and find
the values of parameters, which make the interfacial resistances obtained from
the continuous solution of the square gradient model to match kinetic theory.
We give the discussion and concluding remarks in Sec. 7.5.
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7.2 Two component mixture
We have the following expression for the excess entropy production
0 = J, Xq— J;, X1 — Je, Xo (7.1)

and force-flux relations (6.33) with

X, Ry Rp Rp J!
X = X1 s R = qu R11 R12 5 J= —ng (72)
X, Ry R21 Roo —Je,

We will also use an alternative expression for the excess entropy production,
which uses the total mass flux J,, = Jg + J¢, and the flux of one of the
components, say Je, = Jg:

G = J/ Xy — JeXe = JnXm (7.3)

where X¢ = X; — Xy and X, = X5. The resulting force-flux relations (6.33)

X(B) = R(Teqa weq) J(B) (74)
have the following terms
Xq qu Rqé qu Jql
X=|Xe|, R=| Ry Ree Bem |, J=| e (7.5)
Xm qu ng Rmm —Jm

where the coefficients from Eq. (7.2) are related to the coefficients from
Eq. (7.5) as

Ry1 = Rye + Rym Ri1 = Rye + Repy + R + Ree

qu = qu + qu Ros = Ryum (7 6)
qu = qu Ri2 = Ry + Rﬁm .
R2q = qu R21 = Rmm + Rm{

Having the numerical solution for a particular non-equilibrium stationary state,
we know all the fluxes J and forces X used in Eq. (7.4): the constant fluxes
are obtained directly from the non-equilibrium solution and the extrapolated
bulk profiles are obtained using the procedure described in Chapter 4. On the
other hand we know only the local resistivities but not the resistances R of the
whole surface.
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We now consider the inverse problem: to determine the transport coefficients
for the whole surface having the non-equilibrium solution. As one can see,
Eq. (7.4) has 9 unknown resistances’ and only 3 equations. It is therefore
not possible to determine all the transport coefficients uniquely having only
one stationary state solution. In order to incorporate more equations we need
to consider other non-equilibrium stationary solutions which are independent
of the previous. As the transport coefficients depend only on equilibrium
unperturbed state but not on non-equilibrium perturbations, considering
different perturbations around the same equilibrium state we will give missing
data. We must ensure however, that a given perturbation is small enough to be
described by linear-order equations. This would require for instance Eq. (6.35)
and Eq. (6.40) to be true. There are more constraints to be fulfilled which will
be discussed in Sec. 7.4.

The non-equilibrium solution uses the following profiles for local resistivities
(see Chapter 4 for details)

Tq(z) = qu + (qu - qu) qo() + O‘qq(rgq + qu) q1()
rg(z) = ""21 + (7“51 - 7"31) qo() + O‘ql(rgl + 7“31) q1(z) (7.7)

ri(z) =r{ + (5 — i) w(@) + an(rfy + ) @i (@)

where go(z) and ¢1(z) are modulatory curves for resistivity profiles which
depend only on density profiles and their first derivatives. For each resistivity
profile, 79 and ¢ are the equilibrium coexistence resistivities of the gas
and liquid phase respectively. Coefficients agqq, g1, 11 control the size
of the peak in the resistivity profiles in the interfacial region. The non-
equilibrium stationary state depends on the values of these coefficients. The
surface resistance coefficients R will therefore depend on these coefficients as
parameters, R = R(oyq, a1, @11), which we will investigate.

7.3 Methods to obtain resistances

We determine the transport coefficients from three different methods: from a
"perturbation cell" method?, from an experimental-like procedure and from

n solving the inverse problem, we have to prove the Onsager reciprocal relations, rather
then impose them. So we have 9 unknown resistances, not 6.

2This method was first used by Johannessen et al. in [12] for one-component system. Here
we discuss the grounds for the legitimacy of this procedure and generalize it to mixtures.
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kinetic theory.

7.3.1 Perturbation cell.

Consider a stationary state which is perturbed from equilibrium by setting
the temperature of the liquid® T'(z%) = (1 4+ Br)T.q, the pressure of the gas
p(x9) = (1 + B,)peq and the mole fraction of the liquid ¢¢(z%) = (1 + ﬁg)qu
independently. The resulting non-equilibrium state is therefore a function of
parameters 3:

X(ﬂng]hﬂC) = R(Teqaweq)'J(ﬂT7ﬂpvﬂC) (7'8)

where X, J and R are given by Eq. (7.2). Consider the following set of 8
independent non-equilibrium perturbations:

X( B, B, 6) = R(Teqyweq)'*]( B, B, 5)
X( 5a—ﬂ7 B) = R(Teqvq/}eq)"]( ﬁa_ﬁa ﬂ)
X<_ﬁv B, ﬁ) = R(Teqyweq)"](_l& B3, ﬁ)
X(~B,~B, B) = R(Toqrteg)-J(~5,~5, 5) o)
X( ﬁv ﬁa_/@) = R(Teqyweq)'(]( B? ﬁv_ﬂ)
X( B8,=6,=8) = R(Teq;theq)-I( B,—8,—P)
X(—ﬁ, ﬁa_ﬁ) = R(Tetpweq)"](_ﬁv ﬁa_ﬁ)
X(_Ba_ﬂv_ﬁ) R(Teq7¢eq)'<](_/87_ﬁa_ﬁ)

Consider now the 3 x 8 matrices X and J which contain 8 column vectors X
and J respectively for each non-equilibrium perturbation specified above. For
these perturbations, X = X(3) and J = J(0) are the functions only on one
parameter 3. Eq. (7.9) may be written as

X(B) = R(Tegs teq)-3(B) (7.10)

As it was discussed in Sec. 6.5, for practical purposes the values of
corresponding matrices should be calculated at very small but finite value
of 5. R(Teq,eq) depends therefore on § and we will keep it as an argument.
From Eq. (7.10) we obtain

R(Tetp Qpeq; ﬁ) = (%(ﬁ)gT(ﬂ)) ’ (3(6)3T(6))7

where superscript 7 means the matrix transpose and ~!' means the inverted
matrix.

(7.11)

30ne should not confuse T'(z*) with T*. The former is the actual temperature at « = z*,
i.e. at the box boundary on the liquid side. The latter is the temperature extrapolated from
the liquid phase to the interfacial region and taken at z = x®, i.e. at the dividing surface.
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We note, that in order to obtain the resistance matrix R uniquely, it is
sufficient in principle to impose any 3 non-equilibrium perturbations which
have sufficiently small perturbation parameters 8z, 3, and ;. As each of r,
Bp and (¢ goes to zero, the resistance matrix will go to R(Teq, ¥eq) as fast as all
Br, By and B¢ go to zero. The method presented above makes the resistance
matrix converge to R(Teq,1eq) as fast as 3% goes to zero, however. This is
achieved by using 8 perturbations at the "corners" of a three-dimensional
"perturbation cell", so changing 8 to —3 would not change the "perturbation
cell" and the resulting R.

Because of using 8 perturbations instead of 3, there are 5 superfluous
perturbations which make the system of equations (7.10) overdetermined.
Contracting both sides of Eq. (7.10) with 37, we actually average all the
perturbations which are spread around T¢, and v, in the least square sense.
As the components of J matrix are linearly independent, this guaranteers
the matrix J-J7 to be invertible. Thus, the inverse matrix (J-3J7)~! exists
and Eq. (7.11) is mathematically legitimate. In the numerical procedure the
expression on the right hand side of Eq. (7.11) is obtained using Matlab matrix

division X/J.
7.3.2 Experiment-like procedure

In experiments it is convenient to measure the corresponding coefficients by
keeping zero mass fluxes through the system. It is also convenient to work
with the total mass flux J;,, and the flux of one of the components J¢, rather
then with fluxes of each component separately?, Je, and Jg,.

Consider a stationary state which is perturbed from equilibrium by setting
the temperature of the liquid T'(z*) = (1 4 B7r)T.,. The second perturbation
condition is either J; = 0 or CHat) = qu and we introduce the perturbation
parameter (3¢ which is 0 in the former case and 1 in the latter one. The
third perturbation condition is either J, = 0 or p(zY) = pe and the
corresponding perturbation parameter 3, is 0 or 1 respectively. The resulting
non-equilibrium state is therefore a function of 3 parameters:

X(ﬁT:ﬁE’ﬁm) = R(Tequ¢eq)‘J(ﬂTvﬁﬁyﬁm) (712)

where X, J and R are given by Eq. (7.5). Consider the following set of 3

“One of the reasons for this is that it is hard to make only Jg, = 0, keeping Jg, finite.
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independent non-equilibrium perturbations:
X(ﬁ,0,0) = R(Tapd)&])"](ﬁ:o;o)
X(ﬂ,l,O) = R‘(Teqa’(peq)"](ﬁvlvo) (713)
X(ﬁvlvl) :R(Teqaq/)eq)"](ﬁal:l)
From the first of Eq. (7.13) we find
qu (Teqaweq) = Xq, OO/Jq/700
Req (Teqv"‘/’eq) = X OO/Jq/,oo (7.14a)
qu(Teq7 djeq) = )(m7 00/ ch 00

where we use subscripts g, instead the functional dependence (Br, Bes Bm)
for simplicity of notation. From the second of Eq. (7.13) we find

Rq& (Teqa¢eq) = (Xq, 10 — qu (Teqv¢eq) Jq,, 10)/‘1& 10
Ree (Teqtheq) = (Xe 10 — Req (Teqyteq) Jg 10) / e, 10 (7.14Db)
R (Tegseq) = (X 10 = Ring(Teq eq) T4 10) / e, 10

The values X9 and Jyg are found directly from the calculations and the values
of Ryq(TeqsVeq)s Req(Teqs Veq) and Ryng(Teq, 1eq) are those which are found in
Eq. (7.14a), given the perturbation rate 7 is small enough. From the third of
Eq. (7.13) we find

Rom (Teqaweq) = (Xq, 11— Rgq (Teqvl/’eq) Jq,,n - Rq£ (Teqﬂ/}eq) J&ll)/Jm,ll

Rﬁm (Teq’ weq) = (XE, 11 — R&q (Teqa weq) Jq/,ll - R§§ (Teqa ¢eq) Jﬁ,ll) / Jm, 11

Rmm(Teq’ weq) = (Xm,ll - qu(Teq, weq) ch 11 — RmE(Teqa ¢eq) Jf,ll) / Jm, 11

(7.14c¢)

Again, all the quantities on the right hand side of Eq. (7.14c) are known and
we therefore can find the remaining resistances.

7.3.3 Comparison to kinetic theory

According to [6, p. 180] kinetic theory gives the following expressions for the
surface transport coefficients for a two component mixture

25m \ ¢ 2

16 w;
9Y(T,4p) = REV(T = —2RT Ro(T 1+ ——
RQZ ( 7¢) qu ( 7¢) R RO( ,¢){ + 51 ¢ }

By = (RDPRo@ ) {14326, (Lol

)

15)

—~ W
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where
Ro(T,v) =27%%/x R(RT)™/*(d/\/ My + )/ M)~
W) = (VAR () YT + e Y0 (7.16)

where R is universal gas constant, A\; and ng,eq are the thermal conductivity
and the gas coexistence concentration of i-th component respectively. o; is
the condensation coefficient, which is parameter in this theory and d;; is the
Kroneker symbol.

7.4 Results

We consider the mixture of cyclohexane (1st component) and n-hexane (2nd
component) in a box with gravity directed along axes z from left to right. The
gas phase is therefore in the left part of the box and the liquid is in the right
part of the box. The surface is planar.

Using the procedures described above we obtain different sets of transport
coefficients R(T', ), each of them as a function of equilibrium temperature and
chemical potential difference. Let us use subscript pc for the resistance matrix
obtained from the "perturbation cell" method and ex for the resistance matrix
obtained from the "experiment-like" method. In each method we calculate
the resistances associated with the gas- and liquid- side measurable heat fluxes
using Eq. (6.37) and Eq. (6.38). Furthermore we will use subscript kin for the
resistance matrix obtained from kinetic theory, for which only the gas- side
resistances are available.

We calculate the transport coefficients associated only with mass properties.
The corresponding molar coefficients may be calculated using Eq. (6.44). As
a result we obtain the following sets of resistances: Rj, Rf,c, RZ., Rﬁz, all
of which depend on temperature and chemical potential difference as well
as on parameters agq, g, o11. In addition we obtain Rim which depends
on temperature and chemical potential difference as well as on condensation
coefficients o1 and oo. We have the following constraints, which they must

obey for each T" and :
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- 1) the second law consistency;
- ii) the cross coefficients of each R matrix must satisfy Onsager relations (6.35);

- iii) the corresponding components of Ry, and Rf;c as well as RZ, and RY,
must satisfy Eq. (6.40);

- iv) the corresponding components of Rj., R, and R, as well as Rf,c and
RY, obtained at the same T and ¢ must be equal.

We study the dependence of the different resistance coefficients on agq, aiq
and a1 and on T and 1 and their convergence for small 3. We determine the
values of the parameters for which the above constraints are fulfilled.

7.4.1 Onsager reciprocal relations

In this subsection we investigate the values of parameters ayq, g, aq1 for
which the Onsager relations are fulfilled. This is done for a particular values
of equilibrium temperature and chemical potential difference T, = 330 K and
heq = 700 J/mol. In Tables 7.1-7.2 we give the relative error in percent for the
gas-side cross coeflicients \(R:?j — R?i)/RfjHOO% as a function of 3 for oy = 0,
a1y = 0, a1 = 0 obtained by different methods.

As one can see, § = 0.02 is really an extreme perturbation and the difference
is rather large. When we decrease (8 to 2e-4, the differences become small. As
we further decrease 3 to 2e-6 the inaccuracy of the numerical solution become
comparable to the size of the perturbation. We conclude that the values for (3
to 2e-4 are closest to the converged values and use them as such.

Table 7.1: Relative error in percent for gas-side cross-coefficients obtained by
"perturbation cell” method at T,y = 330 and ey = 700 for different 3
and for agq =0, a1 =0, a1 = 0.

B Ry Ry Ry
2.0e-002 8.963066 35.863259 34.908631
2.0e-003 0.273286 0.369082 19.683274
2.0e-004 0.011726 0.007231 1.909391
2.0e-005 0.066375 0.071266 2.336652
2.0e-006 4.963895 8.128243 5.843913
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Table 7.2: Relative error in percent for gas-side cross-coefficients obtained by
"experiment like” method at Teq = 330 and .q = 700 for different
B and for agq =0, a14 =0, oy =0.

B Ry Ryo Ryo
2.0e-002 1.275105 0.828600 754.982200
2.0e-003 0.038759 0.363715 38.708981
2.0e-004 0.131868 0.238584 6.247648
2.0e-005 1.301483 2.056102 20.984734
2.0e-006 13.282959 20.788752 632.124504

In Tables 7.3-7.4 we give the same data for the higher continuous resistivities
with rather substantial peak, when oy, = 10, a1y = 10 and a1; = 10. As one
can see, the Onsager relations are fulfilled there again best for § = 2e-4

Table 7.3: Relative error in percent for gas-side cross-coefficients obtained by
"perturbation cell” method at Teq = 330 and vYeq = 700 for different 3
and for agq = 10, ag = 10, a11 = 10.

B Ry Ryo Ria
2.0e-002 71.515410 78.166809 23.572836
2.0e-003 0.745604 0.896547 0.317348
2.0e-004 0.012358 0.012650 0.001919
2.0e-005 0.012078 0.007485 0.005290
2.0e-006 0.713969 1.124994 0.022121

Table 7.4: Relative error in percent for gas-side cross-coefficients obtained by
"experiment like” method at T.q = 330 and g = 700 for different
B and for agq = 10, a4 = 10, a1 = 10.

B Ry Ryo Ri2
2.0e-002 4.225362 2.559393 12.259260
2.0e-003 0.443944 0.256804 1.091842
2.0e-004 0.068621 0.019788 0.093041
2.0e-005 0.269764 0.407090 0.008844
2.0e-006 2.717575 4.149484 2.025054

The similar picture is observed for the liquid-side resistances and we do not
give those data here.
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We may notice that the behavior of the resistances with respect to [ is
independent on the behavior of the resistances with respect to ayq, a4 and
aq1. This is natural, as these parameters control the different aspects of the
system: (3 controls the perturbation rate, while a’s are adjustable parameters,
which control the size of the peak in the continuous resistivities.

7.4.2 Second law consistency

In this subsection we investigate the values of parameters ayq, oig, aq1 for
which the second law of thermodynamics are fulfilled. That is that the
excess entropy production is positive and therefore the matrix of the resistance
coefficients is positive definite. This requires that the diagonal coefficients are
positive, and for each pair ¢1, ¢2 and 12 of the cross coefficients the expression

1
DRy = Rij Ry — ~(Rix + Rii)?

; (7.17)

must be positive.

In Table 7.5 we give the diagonal coefficients and expression (7.17) for each
pair of the cross coefficients as a function of ayq for ayg = 0, @11 = 0 and 8 =
2e-4 obtained by the "perturbation cell” method. In Tables 7.6-7.7 we give
the same quantities for other choices of a.

We see, that the required quantities become positive for rather big values of
agq- They almost do not depend on the value of a4 and they are positive for
moderate values of parameter aq. It is clear that finite values of agq and a1
are needed to have a positive excess entropy production.

All these quantities almost do not depend on the value of 3 in the range [1le-5,
le-3]. The "experimental-like" procedure leads to almost the same values of
all the quantities. The liquid-side coefficients reveal a similar behavior.

Table 7.5: 2nd law consistency for gas-side coefficients. Data are obtained by
"perturbation cell” method at T.q = 330 and veq = 700 for different
aqq and for = 0.0002, a1, =0, ag; =0.

Qgq qu R11 R22 Dqu DRq2 DR12
0 7.06e-015 | 0.075 -0.092 2.13e-015 | -2.59e-015 | -0.028
1 3.36e-012 | 0.094 -0.074 | 1.26e-012 | -9.97e-013 | -0.028
10 | 3.35e-011 | 0.260 0.085 3.48e-011 | 1.14e-011 | 0.087
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Table 7.6: 2nd law consistency for gas-side coefficients. Data are obtained by
"perturbation cell” method at T.q = 330 and eq = 700 for different
a1q and for 8 =0.0002, ag, =0, ag; =0.

aig | Rgq R Rao Rq Rgo Rio

0 7.06e-015 | 0.075 -0.092 2.13e-015 | -2.59e-015 | -0.028
1 7.06e-015 | 0.074 -0.091 | 2.10e-015 | -2.57e-015 | -0.027
10 | 7.05e-015 | 0.067 -0.083 1.89e-015 | -2.34e-015 | -0.022

Table 7.7: 2nd law consistency for gas-side coefficients.

Data are obtained by
"perturbation cell” method at T.q = 330 and g = 700 for different
aqy and for f=0.0002, agq =0, arq = 0.

a11 | Ry R R Ry Ryo Ryo

0 7.05e-015 0.075 -0.092 2.13e-015 -2.59e-015 | -0.028
1 7.06e-015 0.370 0.266 1.04e-014 7.50e-015 0.381
10 7.10e-015 3.021 3.483 8.58e-014 9.90e-014 | -69.285

7.4.3 Gas- and liquid- coefficients

In this subsection we investigate the validity of Eq. (6.40). In Table 7.8 we
give the relative error in percent between the left hand side and the right hand
side of Eq. (6.39).

Table 7.8: Relative error in percent for invariant expressions in FEg. (6.39)
obtained by "perturbation cell” method at Teq = 330 and 1)eq = 700
for 3 =0.0002 and agq =1, a1g =1, a3; = 1.

Ryq R Rao
0.000000 0.000002 0.000085
Rq Rg2 Ry2
0.000001 0.000001 0.000060
R4 Ryq R
0.000389 0.000389 0.000003

These errors almost do not depend neither on the value of 3 in the range [le-5,
le-3] nor on the values of agq, g, c11. The "experimental-like" procedure
leads to almost the same results.
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7.4.4 Comparison to kinetic theory

In this subsection we investigate the values of parameters oyq, a4, @11 Which
make the coefficients agree with the kinetic theory coefficients. We do it for g3
= 2e-4 as this perturbation rate gives the most accurate results. We again do
this for temperature 7., = 330 K and chemical potential difference 1., = 700
J/mol. The values of parameters, used for kinetic theory are the same, as we
use in our calculations. Particularly, the heat conductivities are A\; =0.0140
W/(m K) and Ay =0.0157 W/(m K), M; = 84.162 g/mol and My = 86.178
g/mol. We compare here only the "perturbation cell" method with kinetic
theory.

We found that the variation of a4 from 0 to 10 makes the diagonal coefficients
vary about 1% and the cross coefficients vary not more then 5%. As the
variation of ay, is quite substantial, the variation in the coefficients which it
induce is negligible. We therefore take a1, = 0 in all further analysis.
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Figure 7.1: Dependence of Ryq on oqq obtained by "perturbation cell” method at Teq =
330 and Peq = 700 for arg = 0 and a1 = 1. Ryq kin 15 drawn as a
constant line.

For the above parameters Ryq in = 2.96792 x 10~ 1. We found that Ryq, pe 18
practically independent on a1 while it depends linearly on a4, see Fig. 7.1.
One can see from the plot, that Ryq rin = Rgq,pe for agq = 9.
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The diagonal coefficients R11, . and Raz ;. depend both on ayq and 1. Since
we have found the corresponding to kinetic theory value of ayq by mapping the
Ry, coefficient, we will further investigate the dependence of Ri1,p. and Ra pe
using this value of gy and varying only ay;. The diagonal coefficients Rq1, gin
and Ry in depend, in their turn, on the condensation coefficients o1 and o
respectively. We plot this dependence in the same plot with the dependency
of Rn,pc and R227pc on oqi, see Fig. 7.2.

Consider a particular value R o of the diagonal coefficient R;;, where ¢ is
either 1 or 2, which is indicated by a horizontal dashed line on a figure. To
find the value of aq; for which R ,. = R 0 we draw a perpendicular from
the point where it crosses the dotted line to the bottom z-axes. To find the
value of o; for which Rj; 1in = Rii,0 we draw a perpendicular from the point
where the horizontal dashed line crosses the solid line to the top z-axes. For
instance, the value Rz o = 1.1 corresponds to 11 = 3 and o2 = 0.62. The
value a1 = 3, in its turn, gives Rqq1,0 = 1.1 which corresponds to o1 = 0.54.

One may start by specifying aq1, rather then R;; o, to find o1 and o2. Then
we draw a perpendicular from the bottom axes until it crosses the dotted line,
which gives the value R;; o of Rj; .. Given the value of R;; iy, to be the same,
we find the value of o; as described above. For the above example a1; = 3
corresponds to o1 = 0.54 and g2 = 0.62. We see, that we may not specify both
o1 and o9 independently: they must have the values which both correspond
to the same a71. For similar components, like those we are interested in, o
and o9 should not differ much from each other, and therefore a1, a coefficient
which is related to the diffusion of one component through the other, should
reflect this difference.

Having the diagonal coefficient mapped, we have the parameters oy and aqy
defined uniquely (and taking into account that o, has negligible effect), as
well as 01 and o9 for kinetic theory. We now compare the values of the cross
coefficients given by "perturbation cell" method and kinetic theory.

One can see from Table 7.9 that while the diagonal coefficients are the same?,

the cross coefficients we find are between 1-2 orders of magnitude larger than

®One should not expect exact compatibility between kinetic theory, which is most
appropriate for gases with short range potentials, and the gradient theory, which is most
appropriate for fluids with long range potentials. The purpose of this comparison in not to
determine the exact values of adjustable parameters, but to show that it is possible to match
coefficients in the two theories and to show the typical values of the parameters. One should
not regard therefore on the difference in the values of diagonal coefficients in Table 7.9 for
given parameters.
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Figure 7.2: Dependence of Ri1,pe and Raa pe on 11 (dots, bottom azes) and Ri1, kin
and Raz, kin on o1 and oy respectively (curve, top axes). Data are obtained
at Teq = 330 and g = 700 for agy =9 and ayq = 0.

those found by kinetic theory. Ri2 even has a different sign.
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Table 7.9: Gas-side transport coefficients obtained from kinetic theory and by
"perturbation cell” method at T.q = 330 and 1.q = 700 for 5 = 0.0002.

parameters | Ry, Ri1 | Ryo | Ry Ry Ris
o1 =054 2.97e-011 | 1.11 | 1.09 | 3.83e-007 | 4.41e-007 | 0.013
0'2:0.62
Ogq =9
alg =0 3.02¢-011 | 1.12 | 1.14 | 2.31e-006 | 2.27¢-006 | -0.817
0411:3

7.4.5 Temperature and chemical potential difference dependence

In this subsection we investigate the dependence of the resistance coefficients on
the temperature and the chemical potential difference. In Figs. 7.3-7.5 we plot
these dependencies for the Rqq, g1 and 1y coefficients obtained from kinetic
theory and the "perturbation cell" method for the range of temperatures
[325, ..., 335] and for the range of chemical potential differences [400, ..., 1000].

3.6

x 1071 [(m? s) / (I K)]

325 400 600

800

Y [J/mol]

1000

Figure 7.3: Dependence of Ryq onT and 1 obtained from kinetic theory for oy = 0.54
and o9 = 0.62 (plane) and by "perturbation cell” method for cgy = 9,
a1 =0 and a1 = 3 (points).
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Figure 7.4: Dependence of Rq1 on T and 1) obtained from kinetic theory for o1 = 0.54
and oo = 0.62 (plane) and by "perturbation cell” method for agzq = 9,
a1 =0 and a1 = 3 (points).

The domain of T" and % is not big, so, as we see in these figures, the dependence
on them is linear, as expected.

7.5 Discussion and conclusions

In this chapter we have studied stationary transport of heat and mass through
the liquid-vapor interface in a two-component mixture, using the square
gradient theory. We have applied the general relations derived in Chapter 6
to the mixture of cyclohexane and n-hexane. Given the numerical solutions of
the non-equilibrium gradient model we were able to calculate these coefficients
directly. This gives an independent way to determine the interfacial resistances.

The main input parameters of the model are the local resistivity profiles used
to calculate the continuous solution. There is not much theoretical information
about the numerical value of these resistivities. In the vapor phase one can use
kinetic theory. In the bulk phases it is most appropriate to use experimental
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Figure 7.5: Dependence of R11 on T and v obtained from kinetic theory for o1 = 0.54
and o9 = 0.62 (plane) and by "perturbation cell” method for cgg = 9,
a1 =0 and a1 =3 (points).

values. There is no experimental information about the local resistivities in the
interfacial region. As the local resistivities change in the surface from one bulk
value to the other, it is natural to assume that they contain a contribution
similar to the profile of the order parameter. There is also evidence from
molecular dynamics simulations for one-component systems [67] that there is
a peak in the local resistivities in the surface. As we are in the framework
of the gradient theory, it is natural to assume that this peak is caused by
a square gradient term, which is similar to the gradient contribution, which
the Helmholtz energy density has in the interfacial region, namely |Vp|?. The
amplitude of this peak is not given by any theory and is used as a parameter.
We therefore get that each of three local resistivities for a two-component
mixture has the form given in Eq. (7.7). Thus we get three adjustable
amplitudes, agq, 14 and a1, two of which are found to contribute significantly
to the value of the transfer coefficients.

In order to determine the typical values of the a’s, we need to compare our
results with independently obtained resistances. Unfortunately, not much
experimental data are available for multi-component resistances and, to the
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best of our knowledge, no data are available for our system. Furthermore, no
molecular dynamic simulations are available for mixtures. The only reasonable
source of comparison is kinetic theory, which gives the expressions for the
interfacial resistances or transfer coefficients [51, 52|. We therefore compare our
results to kinetic theory. Having three adjustable parameters in the gradient
theory, aygq, a14 and 11, and two adjustable parameters in kinetic theory,
the condensation parameters o; and o3, we are able to match three diagonal
coefficients Rgq, R11 and Roo. We found that Ry, does not really depend on
a1q and oq1. This makes it possible to fit oy using R4, alone. For the values
of the temperature and chemical potentials considered this gave agq ~ 9. We
furthermore found that the interfacial resistances did not really depend on
a14. We therefore took this amplitude equal to zero. In kinetic theory Ri; and
R2o depend on the condensation coefficients o1 and o9, respectively. Choosing
11 = 3 gives values for the condensation coefficients of 0.54 and 0.62. As the
components are very similar, it is to be expected that these coefficients are
close to each other. The values of &’s obtained from the matching are such
that the excess entropy production of the surface is positive, the second law is
obeyed and the Onsager relations are valid. Having found the values of the a’s
from the diagonal transfer coefficients the value of the cross coefficients follows
uniquely. We found that the values of the cross coefficients, obtained by our
method are about 1 order of magnitude larger than those found from kinetic
theory. This confirms results from molecular dynamics simulations 48], where
it was found that increasing the range of the attractive potential increased
in particular the cross coefficients substantially above the values predicted
by kinetic theory. This is an interesting result, indicating that kinetic theory
underestimates the transfer coefficients for real fluids. This also indicates, that
the effect of coupling will be important in an interfacial region. Experiments
confirm the importance of the cross coefficients [14]. We did the comparison for
one value of the temperature and chemical potential only. If one extends the
analysis to a larger domain, one finds that the a’s depend on the temperature
and the chemical potential difference; we refer to [12]| in this context. The
results of kinetic theory [49-52] and molecular dynamics [20] both support the
existence of a peak in the diagonal local resistivities and therefore the use of
finite values for ayq and oq;.
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Integral relations for the surface
transfer coefficients

8.1 Introduction

In this chapter we extend the analysis done in [13] for one-component system.
Here we do the analysis for mixtures. Using the square gradient theory for
the non-equilibrium interface developed in the previous chapters, we derive
the general relations for the case of the transport perpendicular to the surface.
We show that, as in the case of one-component systems, one can obtain the
interfacial resistances using the continuous profiles obtained for equilibrium.
This simplifies analysis a lot since one does not need to consider a non-
equilibrium solution in order to obtain these coefficients. This is in fact a
requirement, which the interfacial resistances must satisfy: as being defined
within the linear force-flux relations they should depend only on unperturbed
quantities, i.e. equilibrium ones.

The evaporation and condensation often take place not only through planar
interfaces, but also through curved ones, like the evaporation into a bubble.
We do not restrict ourselves to the planar interfaces and give the expressions
for the interfacial resistances for curved surfaces.

In the previous chapter we have obtained the overall interfacial resistances
RY and R’ using three different methods: an experiment-like procedure, a
perturbation cell method and kinetic theory (only RY). Those methods were
found to be in a good agreement. In this chapter we compare them with
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the interfacial resistances found using integral relations, which relate these
quantities to the local resistivities directly. We show that the agreement is
also good.

We will focus on the heat and mass transfer through the interface of a two-
phase mixture. We will not consider non-equilibrium perturbation along the
surface. We will also assume the fluid to be non-viscous. Furthermore we will
focus on the stationary non-equilibrium perturbation. In Sec. 8.2 we recall the
expressions for the local and the excess entropy production found earlier. In
Sec. 8.3 we derive the integral relations in general form. It is convenient to
use measurable heat and mass fluxes and we therefore show how to translate
general relations to the resistances associated with the measurable fluxes in
Sec. 8.4. In Sec. 8.5 we give the explicit expressions for a binary mixture
and apply the analysis to the particular mixture of cyclohexane and n-hexane.
Concluding remarks are given in Sec. 8.6.

8.2 The entropy production
8.2.1 Stationary states

Consider the total energy flux J. and the mass fluxes J¢, = p; v; and J,,, = pv,
where p; and p are the density of i-th component and the overall density
respectively, while v; and v = Z;:ll & v; are the velocity of the i-th component
and the barycentric velocity respectively. Furthermore §; is the mass fraction
of i-th component and n is the total number of components. In the stationary
states these fluxes satisfy the relations

VJ.=0, V-J, =0, V-J,,=0 (8.1)

As we are interested in transport through the surface we will restrict analysis
to solutions of the form J(x1,r)) = (J(21),0,0), where J is one of the above
fluxes. Furthermore z7 is the normal coordinate to the surface and r =
(z2,x3) are the tangential coordinates. In the case of normal transport all the
quantities depend only on z1 but not on r||. For these solutions

1 d
vI=V,J=——— J)=20 8.2
1 b10203 dxl(hz b3 J) (8:2)
where b; = b;(z1,1)) are Lamé coefficients for curvilinear coordinates. It

follows from Eq. (8.2) that
ba(z1) bs(z1) J(z1) = h2(2®) bs(2®) J(2°) = b3 b3 J” (8.3)
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where 2° is the chosen dividing surface and b5 and b3 are the Lamé coefficients
on that dividing surface. We will suppress the superscript s for the flux J as
long as it does not lead to confusion.

8.2.2 Local entropy production

Consider the local entropy production for the mixture interface found earlier,
written for the case of transport in the direction through the interface !

n—1
1 i
Us:JqVLT* E JZVL% (8.4)
=1

where T is the temperature, J, is the heat flux and J; = p; (vi—v) = Jg, =& Jm
is the diffusive mass flux, which satisfies the relation ) ;" ; J; = 0. Furthermore
Wy = b — by, Where pu; is the chemical potential of the i-th component. The
heat flux is related to the total energy flux and to the measurable heat flux Jé
as

Jg="Jo—Jm (h+v?/2—gx) =J + ) hiJ; (8.5)
=1

Here h; and h are the partial enthalpy of the i-th component and the specific
enthalpy respectively, while g is the gravitational acceleration.

For the stationary transport through the interface, the Gibbs-Duhem relation
has the following form (see Chapter 6 for details):

oT - 8,U,Z' 8011 .
Saxl—i—;glaxl—vaxl—o (86)

where o017 is an element of the thermodynamic pressure tensor o,g3. Together
with the equation of motion,

Vieu+pVi(v?/2—gr)=0 (8.7)
it gives
n ﬂ _ 1
Zfi (VLT’—hNLT> =0 (8.8)
=1
'Note, that A Ji VL% = P Ji VLﬂ
1

i=1 T

i=
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where ji; = p; + v2/2 — g-r and h; = h; + v?/2 — g-r. Substituting Eq. (8.5)
and J; into Eq. (8.4) and using Eq. (8.8), one can express the local entropy
production (8.4) in terms of the total energy flux:

IR H
s =Je — _ Je. il 8.9
o \1 T i:E 1 & V1 T (8.9)
and in terms of the measurable heat flux:
1 n—1 7,[) 1
—_ 7/ — . v . —
s =Jy VLT ;1 J; <VLT mVLT) (8.10)

where n; = ilz — an = h; — h,. Note that the difference between partial
enthalpies with a tilde is equal to the difference without the tilde. In stationary
states Eq. (8.9), Eq. (8.10) and Eq. (8.4) are completely equivalent expressions.

8.2.3 Excess entropy production
We recall the definition of the excess <$(x5) of a density ¢(z*) per unit of volume
in curvilinear coordinates (cf. Chapter 6)

l,s

R e
3(z%) 1/ dz1 b1 ba by 677 (z1: ) (8.11)

~ b33 Jaos

where
¢ (21;2°) = ¢(11) — (1) O(2° — m1) — ¢'(11) O(21 — 2°) (8.12)

Here z® indicates the position of the chosen dividing surface while x9° and
zb° are the boundaries of the interfacial region at the gas and liquid side
respectively. These boundaries are chosen such that ¢(z9°) = ¢9(29°) and
d(x5%) = ¢f(25®) with a certain accuracy. Superscripts £ and g indicate the
function ¢ extrapolated from the liquid and gas to the surface region.

Taking the excess of the local entropy production given by Eq. (8.9), we obtain
5 LN Ny (A

Here T* = T%(2®) and TY9 = T9(x*) are the temperatures extrapolated from
the liquid and gas to the dividing surface. The analogous meaning have ﬂf
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g

and fi7. All the quantities, both the fluxes and the forces, are evaluated at the

dividing surface x°.

Using Eq. (8.5) we obtain

. 1 1 - T - (1 1
— /9 _ _ vt __ _h9 | _
os=J, ( 7 g) ;_1 Jg, [( 7 - = 7 (8.14)

1 1 n ~€ ,.,g B 1 1

N Y T ¢

Os = Jq’ <€ — g) - E Je, [(z — g) — h; <£ - g)] (8.15)
i=1

where Jq/’é and J;¥ are the measurable heat fluxes on the liquid and gas
side respectively. Again Eq. (8.14), Eq. (8.15) and Eq. (8.13) are completely
equivalent in stationary states.

8.3 Integral relations

Consider the local entropy production (8.9), each term in which has a form
J V1 ¢. Following the common procedure in non-equilibrium thermodynamics
one can write the force-flux relations for those entropy productions. Since all
the terms have the same form, it is sufficient to consider only one force-flux
pair. The phenomenological relation for that pair then reads

VJ_(Z)(JJl) = r(a;l) J(CEl) (816)

where V¢ = hfl(dgb/dml). The corresponding term in the excess entropy
production in Eq. (8.13) has a form J (¢’ —¢9). The phenomenological relation
relation for this term reads

¢'(a*) = ¢(z°) = R(z®) J (a*) (8.17)

For the general case, ¢ and J must be replaced by a set, as well as R and r
must be replaced by the corresponding matrix.

Let us introduce excess operators &, and &, which we will apply to a quantity
¢. Let

:L‘Z’S

¢ {0} = g dx1h1 % (r; %) (8.18)

x?



158 Chapter 8. Integral relations

and
l,s

v b1

. déUl% @ (r; %) (8.19)
where ¢°* is defined by Eq. (8.12). In cartesian coordinates the excess operators
¢, €, and the excess ~, are given by the same expression when ¢ is a density
per unit of volume. One should not confuse them however, since these operators
have different meanings. The excess $ may be applied only to a volume density
¢ and means the surface density. In contrast, neither &,{¢} nor &,.{¢} need to
be applied to a volume density. In Eq. (8.9) ¢ can be the inverse temperature
or a chemical potential divided by the temperature.

e {0} =305 [

xg7

Applying &, operator to the both sides of Eq. (8.16),

En{Vig(z1)} = Ep{r(xr) J(21)} (8.20)

leads to
¢'(a*) — ¢(2°) = € {r} J(z°) (8.21)
Comparing Eq. (8.21) with Eq. (8.17) we conclude that

R=¢.{r} (8.22)

This is the general form of the integral relation between the resistivities r and
the resistances R. Eq. (8.21) together with Eq. (8.22) are the most important
and fundamental results of the chapter. The generalization to a set of ¢ and
J is straightforward and will be applied in the rest of the chapter.

We then proceed to the explicit expressions for the phenological equations.
The local entropy production (8.9) produces the following force-flux relations

1 & . e
VJ_T :rque—quiJ&
. ot (8.23)
/'LJ _ & €
Vig =rigde=D_ride
=1

where J, and Jg; as well as T" and p; are evaluated at the current position ;.
The excess entropy production (8.13) produces

1 1 -
T = Ragde— D Ry e,
i=1

B

- (8.24)
T g =R de - > RS I,
=1
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where J. and Jg; as well as T' and p; are evaluated at the dividing surface
x®. The off-diagonal coefficients of both sets satisfy the Onsager reciprocal
relations.

Comparing Eq. (8.23) with Eq. (8.24) and using Eq. (8.21) together with
Eq. (8.22) we may conclude that

Rgeq ~ GT {T(Zq} e (&
Rji =€, {Tji} =€, {rz‘j} = Rz‘j

Eq. (8.25) represents integral relations for the resistance coefficients associated
with the total energy flux.

8.4 Measurable heat fluxes

It is convenient to obtain the integral relations for the interface resistances
associated with the measurable heat fluxes, rather then the total energy flux.
We obtain the relations between the resistivities and between the resistances
for the whole surface.

First a note regarding the dependence of the resistances on the reference state of
for instance the enthalpy. Both R¢ and r¢ coefficients depend on the reference
state, as they are the coefficients associated with the absolute fluxes. The
coefficients RY and r’, which will be defined below, are associated with the
measurable fluxes and therefore independent of the reference state.

8.4.1 The whole surface

In order to obtain the resistances for the whole surface, we consider Eq. (8.14)
for the entropy production in terms of the measurable heat flux on the gas side
of the surface. The analysis for the liquid side is completely equivalent to the
one done for the gas side.

The entropy production (8.14) produces the following phenomenological
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equations

T Tg aq “'q

ﬂf :E’é'] g (1 1 g 7h9 Y g
(e 7s) # (7 ) =i =
1=1

1 1 "
— — — =RY Jh9_— § RY.Je,
ot (8.26)

The resistances from Eq. (8.26) and Eq. (8.24) are related, using Eq. (8.5) by
Ry = R
RS, =R +h Rj, +hi R}, + N h Ry

Eq. (8.26) and Eq. (8.24) are linear relations between the forces and the fluxes.
In Eq. (8.27) we should therefore use coexistence values of the enthalpies.

Inverting Eq. (8.27) and using the equilibrium enthalpies we obtain for the
resistances associated with the measurable heat flux

Rig =Ry,
g _ 79

Ry = Rgi — hi g By (8.28)
g _ 79 79 79 79

Ry = R = hy oq Ry = I o Boy 1 oy 15 cq g

where il@ eq = hi eq(®) —gr® and all the quantities are evaluated at the chosen
dividing surface.

8.4.2 Local resistivities

In order to write the linear laws for the local forces and fluxes we use Eq. (8.10)
and Eq. (8.4). The entropy production (8.10) gives

n—1

1 / / /
vif :qu‘]q_zrqi‘]i
" . = (8.29)
v el S

=1



8.4. Measurable heat fluxes 161

while the entropy production (8.4) gives

1
VJ_T = Tqq J. quz

o o 1 (8.30)
VLTJ = quJq — erit]i
i=1
The local resistivities 7 and r’ are related as follows
Tgg = Tag
7“(;2- ="Tgi — NiTqq (8.31)
rii = Tji = MiTiq = 75 Tqi + Mi7j Tag

Again, we should use the equilibrium profiles for 7;.

We now relate the local resistivities associated with the measurable heat flux
to the local resistivities associated with the total energy flux, similarly? to
how it was done for the overall surface resistances. Comparing Eq. (8.29) with
Eq. (8.23) we obtain

e __ !
Taq = Tqq
n—1
e __ 7 /
Tgi = Tagli — Tk &k F Tgi
k=1
n—1
e __ T
Ton = rqqhn— qufk
k=1
n—1
reo= rlhihi =Y Eu(rfohi + i)+l A rlihit
gi — Tqq'ty' E\"kq'"i qk'3 Jq'tt qi'tJ
k=1
n—1 n—1ln—1
—H" &k rm—i-r]k +§ g i &k &
k=1 k=1 =1
n—1 n—1n—1
! 7 1 ! T /
re, = rqqhnhi—g f(rkqh'—i-?"qkh +r D E Tk1§k+g g i &k &
k=1 =1
n—1n—1
72
T, = rqqhn h E & rkq+qu +E g rklgk@
k=1 =1

(8.32)

2The details of this procedure are given in Appendix 8.A.
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and comparing Eq. (8.30) with Eq. (8.23) we obtain

Taq = Taq
n—1

e __ .

T = reqh — g Tak §k + Tqi
k=1
e

e J—

an - quh— E Tqk €k
k= 1

5 = quhQ hz &k (Thq + Tqr) + h<7'yq + 7qi)+

n—1ln—1

+sz Z gk Tki + T]k: + Z Z Tkl gk gl

k=1 1=1
n—1ln—1

rhi = Tagh® = hZ§k Thg + Tqk) + hrgi — Zrkz§k+zz7“klfk§l

k=1 1=1
nlnl

Tin = Tah® — hZ§k Thg +7ak) + O D T ER&

k=1 I1=1
(8.33)

where h = h+v?/2—gr. In all the expressions i and j are in the range 1,n—1.

Again, as in Eq. (8.27), we should use the enthalpy and the mass fraction
profiles in Eq. (8.32) and Eq. (8.33) in equilibrium. This leads to the relation
hi = hi eq—grand h = heqg — g-r.

8.5 Results for the two component mixture
8.5.1 Integral relations

In this section we deduce the integral relations for a binary mixture. The
formulae given in this section is not restricted to a particular binary mixture
however. We do that for the sake of convenience as well as because we will apply
them to the particular two component mixture. For simplicity of notation we
will not write subscript ¢, for enthalpies, keeping in mind that all of them
should be evaluated at equilibrium.

The relations (8.32)-(8.33) between resistivities in case of binary mixture take
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the following form

e = Taq
o= Tig T &
Toy = rq’q hy — rq’l & (834
1 = Tgq h? + 21,1 &2 hi + 7], & .
TH = Tgq ho by + 71 (&2 hy — & 1) — i1 €169
T9 = Tgq h3 — 2rp &1 hy +1{, &
and
T4 = Taq
7";1 = Tgq h+ rq1 &2
7"22 = Tgq h— rq1 &1 (8.35)

r$1 = Tag h? + 2rq1 &2 h 4+ 111 €
S = Tagh? +rq(ba — E)h — 11 &1 &

T59 = Tqq h? — 2rq1 &1 h+ 711 §%

respectively. Using Eq. (8.25) and Eq. (8.28) we therefore obtain

Rig= & {rg}

Roy = & {rgg(hn = hY) + 15 &2}

Riy = & {rgq(ha —h3) —rg &i}

R = & {rj (b1 —h{)* +2r}; & (h1 — h{) + ] &5}

Riy = & {rg,(hy — h{)(ha — h3) + /1 (&2 (ha — hg) — & (hy — hY)) — 7], &1 &2}

Rgz = ¢ {Tq,q(hQ - hg)2 - 27"(;1 &1 (he — hg) + 7’1’1 5%}
(8.36)
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Rig= & {re}

Ry = € {rg(h—h{) +rq &}

322 = & {rg(h—h3) —ra &}

Riy = & {rg(h—h{)* +2rq1 & (h — h) +ri1 &3}

Riy= € {rg(h—hi)(h—h3) +rqa(& (h—h3) =& (h—h{)) — & &}

Ry = € {req(h —h3)* —2rp & (h — hg) +r11 &}

(8.37)
Furthermore we used that h; — ﬁlg = h; — h{ in both equations. Eq. (8.36)
and Eq. (8.37) are the integral relations for the resistances associated with the
measurable heat flux for a binary mixture. They clearly do not depend on the
reference chosen for the enthalpies.

We further need the values for the local resistivities. In Chapter 3 we developed
a scheme which uses r coefficients in calculation. We therefore use the following
expressions

Teq(x) = qu + (qu - qu) qo(z) + O‘qq(rgq + qu) q1()
_ .9 £ _ .9 ¢ g
rg(z) = T+ (qu qu) q(z) + ag (qu + qu) q1() (8.38)

rin(z) =1+ () —r{) qo(x) + an (vl +rfy) @ ()

where qo(x) and gi(x) for each resistivity are modulatory curves for the
resistivity profiles: ¢o(z) is a smooth arctan-like function which changes its
value from 0 to 1 within the range [#9-%; 2] and ¢; () is zero on the boundaries
of the [z9%; xe’s] interval and has a peak proportional to the square gradient
of the density inside this interval. Thus, the first two terms in each expression
for the resistivity represents a smooth transitions from the gas bulk resistivity
to the liquid bulk resistivity, while the third term represents a peak in the
resistivity proportional to the square gradient of the density.

The bulk values ¢ and 79 are related to the measurable transport coefficients
such as heat conductivity, the diffusion coefficient and the Soret coefficient.
We refer for the details to Chapter 4.
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8.5.2 Numerical data

Consider the binary mixture of cyclohexane and n-hexane used earlier.
Furthermore we consider a planar interface between liquid and vapor. The
mixture is in a box with gravity directed along axes x from left to right. The
gas phase is therefore in the left part of the box and the liquid is in the right
part.

We compare the resistivities found in Chapter 7 to the values obtained from
Eq. (8.37). The relative difference between them is almost the same within
the whole range of temperatures and chemical potential differences considered:
T = {325,---,335} and ¢ = {400, --- ,1000}. We therefore give the data only
for Teq = 330 and g = 700. In Table 8.1 we give the relative errors for gas
and liquid side coefficients. The data are obtained for a-amplitudes, values of
which were found to fit best kinetic theory in Chapter 7.

Table 8.1: Relative error in percent between the gas- and liquid- side coefficients
obtained by "perturbation cell” and "integral relations” methods at
Teq = 330 and 1eq = 700 for 8 = 0.0002 and agq = 9, a1q = 0,
Q11 = 3.

phase | Ryq | Ri1 | R Ra | R | Ria
gas 0.019 | 0.065 | 0.0589 | 0.020 | 0.020 | 0.097
liquid | 0.019 | 0.006 | 0.0004 | 0.036 | 0.035 | 6.234

The relative differences are not more then a few per mill. It is larger only for
R{, which is discussed below.

We also do a consistency check. Consider Eq. (8.26) for two component
mixture, which has a form
X, =Ry, J,— Rél Je, — Réz Je,
X1 = R{q Jq, - Rlll J§1 - R1,2 ‘]52 (8'39)
Xo = Réq Jq, - R2,1 Je, — R2,2 Je,

The left hand side of each equation must be equal to the right hand side. The
difference therefore reflects the error. We give the relative error between the
left an the right hand side of Eq. (8.39) in percent in Table 8.2. As a testing
perturbation, we used one of those used in the perturbation cell method.
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Table 8.2: Relative error in percent between the left- and right- hand side of
Eq. (8.39) for coefficients obtained by "perturbation cell" and "integral
relations” methods at T.q = 330 and Y.y = 700 for § = 0.0002 and

Oéqq:9, a1q:0, a11:3.

Integral relations Perturbation cell
phase Xq X1 X2 Xq X1 XQ
gas 0.059 | 0.038 | 0.297 | 0.047 | 0.087 | 0.867
liquid | 0.059 | 0.172 | 0.027 | 0.047 | 0.217 | 0.014

Again, the relative difference is not more then a few per mill. Given that this
is the case even for a few percent difference in one of the coefficients, we may
conclude that the values of the forces are insensitive to the precise value of
this resistivity coefficient. This also indicates that the value of this coefficient
obtained in Chapter 7 has a 6% error. This does not necessarily affect, however,
the accuracy of the integral relations.

8.6 Discussion and conclusions

In this chapter we have derived integral relations for the resistances to the
transport of heat and mass across the interface for mixtures. We have
given relations between the local resistivity profiles and the overall interfacial
resistances.

The integral relations make it possible to calculate the interfacial resistances
in a relatively simple way, using only the equilibrium profiles of the system.
This is important especially for mixtures, for which the computation of a non-
equilibrium profiles is much more time consuming.

The integral relations give an insight in the origin of the interfacial resistances.
According to Eq. (8.36) and Eq. (8.37) the interfacial resistances depend on
the variation of the enthalpy across the interface. The transport coefficients
depend on the equilibrium enthalpies which vary a lot through the interface.
One can see from the above formulae, that the dependence on the enthalpy
of evaporation (the difference between the enthalpies of the liquid and gas
phases) is crucial not only for the diagonal diffusion coefficient, but also for
the off-diagonal coefficients. This is an important result since cross coefficients
are usually neglected in the description of the interfacial phenomena.
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Another factor which affects the overall interfacial resistance is the local
resistivity profile. For instance, for the heat resistance this is the only factor.
It is noticeable that an interfacial resistance depends on the whole profile of
a local resistivity, not only on its bulk values. It is therefore crucial to have
complete information about the local resistivity profiles. We have used sums of
a function that smoothly connects the liquid and the vapor values and a peak
proportional to the square gradient of the density. In principle one can use
any model for this and further investigation are required. We have shown in
the previous chapter, by comparison with the predictions from kinetic theory,
that the local resistivities do have a peak in their profile and that the overall
resistances therefore depend on the amplitudes of these peaks. Within the
current theory these amplitudes are adjustable parameters.

The integral relations are in fact mathematical equalities. Given the local
resistivities defined through the local force-flux relations, for instance r¢ from
Eq. (8.23), Eq. (8.24) follows. One can therefore consider Eq. (8.25) as a
definition of the overall interfacial resistances R¢ used in Eq. (8.24). It means
that the force-flux relations (8.26) for the whole surface follow from the local
force-flux relations. One therefore does not need the excess entropy production
Eq. (8.14) to obtain Eq. (8.24).

This allows us to use them as a test for the accuracy of the numerical solution
of the non-equilibrium case. Given that both local and overall linear laws are
true independently, the different methods to obtain the overall resistivities give
information about the accuracy of the method. The discussion below Table 8.1
and Table 8.2 is based on this observation.

8. A Local resistivities

We need to relate the resistivities ¢ from Eq. (8.23) to the resistivities r’
from Eq. (8.29). This is done by comparing the coefficients at the same
fluxes in these equations. To do this we need to translate the set of fluxes
used in Eq. (8.29), {J,, J1,- -+, Ja—1}, to the set of fluxes used in Eq. (8.23),
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{Jes Jey, -+, Jg, }. This is done with the help of the relation

Ji= Jg =& ZJ&C
=l (8.40)
Jj= J.—=> Mg,
k=1

Substituting J, and J; into the first of Eq. (8.29) we obtain

—1 n—1 n—1
1 / < / ! 7 / ;3 ’
Vig=riade= 2 (v raghi = > rare) = T (raghn - > o)
1= i= =

(8.41)
Comparing it with the first of Eq. (8.23) we obtain
/
Taa = Taq
n—1
re. = r! fz‘—Zr' &n+rl, i=1,n—-1
qi aq"*i gk Sk T Tqi> )
k=1 (8.42)
~ n—1
T = Taghn = 316
k=1

which are the first 3 equations of Eq. (8.32).

In order to obtain the remaining relations we consider the second of Eq. (8.23),
which gives

DGV =T = D e D
7j=1 7j=1 =1 7j=1

n
Vi =V =0, = i) = > Je(r§ =), j=TLn-1
=1

Furthermore we use Eq. (8.8). Together with the second of Eq. (8.29) it gives
n /1 n B 1
Z&'VL% :Zgihiva

=1 i=1 )

e

U 1
VL% :mVLf—Fr]{qu/—Zr]{iJi
i=1

Substituting V1 (1/T) from Eq. (8.41) and J; and J; from Eq. (8.40) we obtain
the left hand side of Eq. (8.44) expressed in terms of the fluxes J. and Jg,

(8.44)
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and the resistivities r’. Comparing the result with Eq. (8.43) we obtain the
following equations sets for j,i = 1,n—1

Z] 1 ]qé-] _qu Zk‘ lgkhk

(8.45a)
TJQq —The = Tqqi + T
Z;L:I Tinbi = (7“ Zk; 1 qk &) et &k hi
(8.45b)

e

5 1
T = Ton = (TgqMi —I—r( hn — ity (rq’k nj —1—7“{ ) Ek
D158 = (rgghi — St Tak Sk + 7)1 &k h

TG T = (74N + r]fq)ﬁi — 22;11 (rék nj + r](k) &+ (réi n; + r]fi)

(8.45c¢)
solving which we obtain the relations between the remaining resistivities

n—1
e = Taqhsi — Zréq &k + 7
k=1
n—1
Thg = rq/qhn—Zr,éqfk
k=1
n—1
¢ = p! hihi — ! hi+rlh ' hi+ 1.k
Tji = Tqq'tjlli gkz(rkq 1+qu ])—’_rjq Z+Tqi it
k=1
n—1 n—1 n—1n—1
g = D Thi Gk = Z PRkt DD ik
k=1 L k=1 1=1 L L
n— n—1n—
= Toghibn =Y &u(rlghn +rochi) + 1) — Z Tt DY Th&E
k=1 k=1 1=1
-~ n—l _ n—1n—1
re, = rq’qhnhi—Zﬂr,;qh»wékh + 1 hihn Zr,ﬂgﬁzzrkl@gl
k; L L k=1 1=1
n—1n—
2
ren = Togh2 — hn ng Thg F o) DD Th&&
k=1 1=1

(8.46)

As one can confirm the symmetry of the r’-matrix leads to the symmetry of
the r“-matrix and vice versa. We therefore do not give the expressions for rj,,
Thg and 5, in Eq. (8.32).

The relations (8.33) between the r°- and - resistivities are derived in the
similar manner.






Chapter 9

Conclusions and perspectives

9.1 This thesis

The aim of the thesis was to build a theoretical approach which allows
to describe a fluid behavior during evaporation or condensation in multi-
component mixtures. This was done in the seven previous chapters. Each
chapter contains the detailed discussion and conclusions of the addressed issue.
Here we summarize the work.

In order to describe a nonuniform equilibrium mixture with an interface
between two coexisting phases, it is necessary to consider contributions to the
Helmholtz energy which depend on the gradients of, for instance, the density.
In Chapter 2 we extended the analysis of van der Waals |7] and Cahn & Hilliard
[9] to multi-component mixtures. Given the contributions to the Helmholtz
energy proportional to the square gradients of component’s densities or mass
fractions, we gave explicit expressions for most thermodynamic quantities in
the interfacial region. The analysis was done in three-dimensional space which
does not restrict the applications to planar interfaces.

An important characteristic of the interfacial region is that the pressure has
tensorial behavior. One can speak about the pressure tensor which can be
represented as a sum of a scalar pressure and a tension tensor, o3 = P das+Yas-
Both terms depend on the density gradients. Furthermore the tension tensor

S Opi Op;
Yas(r) = Y Koin; 8%87; (9.1)

4,j=1
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is the quantity which determines the surface tension and has a significant
importance in the interfacial dynamic description of a mixture.

Another important consequence of equilibrium being attained in a non-
homogeneous region, is that one has to speak about two kinds of Gibbs relations
between thermodynamic quantities which vary in space: the ordinary Gibbs

relation
n—1

Su=Tds—pov+ Y ;6 (9.2)
i=1
being established between two different states at the same position, and the
spatial Gibbs relation

n—1
Vou=TVs5—pVsv+ Y ¥ Vs&i+0VaYas (9.3)
=1

being established between different positions in the same state. The former
has the same form as usual Gibbs relation, but all the quantities in it have
gradient contributions. The latter has an additional term which is nonzero
only in the interfacial region.

In earlier work [10-12] a systematic extension of the square gradient model
to non-equilibrium one-component systems was given. In Chapter 3 we gave
an extension of this approach to multi-component non-equilibrium systems in
the systematic context of non-equilibrium thermodynamics [5]. We discussed
the thermodynamics of the homogeneous phases, the non-equilibrium Gibbs
relation, the hydrodynamics of one-fluid mixtures, and the surface symmetry
together with the resulting force-flux relations.

The research area of thermodynamic equations of homogeneous mixtures is
very large. In this thesis we did not intend neither to cover it nor to give
any contribution to it. We used common equations of state [56], which
together with normalizing conditions (coinciding with the standard expressions
in the limit of rare gases [64]), are expected to give an adequate description
of homogeneous mixtures. Furthermore we used common mixing rules. For
particular systems which are not well described by these equations, one should
use the appropriate ones. This does not affect the present analysis.

A crucial part of non-equilibrium thermodynamics is the Gibbs relation. In
non-equilibrium one does not derive it and may only assume a reasonable
expression. This relation should be therefore tested on further applications.
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We used the Gibbs relation
n—1

d§; dv sy OVap
; — —_— - 4
S trg e (94
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which is different from the common relation in homogeneous phase. It
was chosen such that it is Galilean invariant and reduces to the above two
equilibrium Gibbs relations. We were able to build a non-contradictory theory
with a number of numerical predictions. It is therefore possible to test it in
experiments and applications.

In the non-equilibrium description one obtains the expression for entropy
production and the resulting force-flux relations. In principle, any
thermodynamic force depend linearly on any thermodynamic flux. But
according to the Curie symmetry principle [65] coupling is allowed only between
forces and fluxes of the same tensorial order. A thin surface is no longer 3-
dimensionally isotropic. Because its thickness is very small compared to the
curvature radii, for many applications it may be considered as 2-dimensionally
isotropic. We have discussed how the two-dimensional isotropy modifies the
phenomenological relations in the interfacial region and allows coupling which
is different from the bulk one.

The local phenomenological coefficients may be measured in a bulk phase but
not in the surface. One has therefore to model the continuous expressions for
the phenomenological coefficients in the interfacial region. We used a form
of these coefficients which has two terms: one is a smooth transition from
one bulk value to another, the other term models a peak which is nonzero
only in the interfacial region. The further calculations confirm that the local
resistivities have to have a nonzero peak term in order to make the entropy
production be nonnegative. This result was also observed for one-component
systems [12, 67].

In Chapter 4 we applied the general analysis described in Chapter 3 to the
binary mixture of cyclohexane and n-hexane. We used the square gradient
model for the continuous description of a non-equilibrium surface and obtained
numerical profiles of various thermodynamic quantities in various stationary
state conditions. It was, for instance, shown that, like in one-component
systems, the temperature profile has a peak or a dip in the interfacial region.
Details of the numerical procedure were given and discussed.

The next step in the description was to make a link to a macroscopic non-
equilibrium description of surfaces [6]. In such a description one uses the
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assumption that a surface under non-equilibrium conditions may be considered
as an autonomous phase with its own temperature and other thermodynamic
characteristics which are related by the common thermodynamic relation

n
u' =T1°s" —° + Zuf Iy (9.5)
i=1
where u®, s%, v°, and I'{ are the Gibbs excess densities of the internal energy,
entropy, pressure, and concentration, respectively. In Chapter 5 we focused
on the verification of this hypothesis of local equilibrium of the surface. It
uses temperature and chemical potentials of a surface and the excess densities.
We gave a definition of the temperature and chemical potentials of the surface
and verified that these quantities are independent of the choice of the dividing
surface. We then verified numerically for a binary mixture that the surface in
a stationary state satisfies Eq. (9.5). The excess densities are found to be in
good approximation equal to their equilibrium values at the stationary state
temperature and chemical potentials of the surface.

In the last three chapters we calculated the interfacial transfer coefficients for
evaporation and condensation of mixtures. They show how the whole surface
resists the transfer of heat and mass. We used the continuous profiles of various
thermodynamic quantities, obtained in Chapter 4 using the square gradient
model. Furthermore we introduced the Gibbs surface and obtained the excess
entropy production for a surface. Following the traditional non-equilibrium
thermodynamic approach, we introduced the surface transfer coefficients which
we were able to determine from the continuous solution. The knowledge
of these coefficients is important for industrial applications which involve
transport through a surface, such as distillation. The square gradient approach
gives an independent way to determine the transfer coefficients for surfaces.
The general framework for this was established in Chapter 6 for stationary
states. We used different methods to obtain the overall interfacial resistances
which are described in Chapter 7 and Chapter 8.

The analysis in Chapter 7 used the numerical solution of a non-equilibrium
stationary state, while in Chapter 8 we derived integral relations between the
local resistivity profiles and the overall interfacial resistances. For instance, for
the thermal resistance in the case of planar surface we got

Ry, = /dxrgf; (9.6)

which is the same as in one-component systems [13|. The number of coefficients
in mixtures is larger and, for instance, for the thermal diffusion resistance to
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the second component of a binary mixture we got in the case of planar surface

Rgo = /dfC {rgq(h2 — hg) —ra& (9.7)
Similar relations were obtained for the other resistances.

The analysis presented in these chapters allowed us to make a number of
statements regarding the interfacial heat and mass transfer resistances. By
comparing our results with kinetic theory predictions [52] we showed in
Chapter 7 that local resistivity profiles must have a peak in the interfacial
region. This peak has its origin in the density gradients. The results of both
kinetic theory and molecular dynamics simulations [67] support the existence of
small peaks in the local resistivities in the interfacial region. Next, having the
diagonal coefficients matched to the values from kinetic theory, we found that
the values of the cross resistivities are one order of magnitude higher than the
ones from kinetic theory. This indicates that kinetic theory underestimates the
interfacial transfer coefficients in real fluids, in agreement with earlier findings
[48].

In Chapter 8 we have shown that interfacial resistances depend among other
things on the enthalpy profile across the interface. Since this variation is
substantial (the enthalpy of evaporation is one of the main differences between
liquid and vapor phases) the interfacial resistivities are also substantial.
Particularly, the surface puts up much more resistance to the heat and mass
transfer then the homogeneous phases over a comparable distance. This is the
case not only for pure heat conduction and diffusion, but also for the cross
effects like thermal diffusion.

9.2 Perspectives

The presented approach points to various further research. This includes
considering phenomena within the presented framework as well as linking it to
the other areas, outlined in the introduction.

First of all, the results of this thesis, supporting the work by Kjelstrup and
Bedeaux [6], may be used for description of distillation processes. Experimental
results would be useful to verify a number of assumptions which were made
in our theory, particularly the non-equilibrium Gibbs relation and the peak in
local resistivity profiles.
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The next-door target is to study mixtures in different domains of the phase
diagram as well as mixtures with different kinds of phase diagrams. Thus,
it is interesting and important to study evaporation and condensation in
mixtures with infinite dilution, not also with approximately equal distribution
of components. It is also necessary to study mixtures with non-similar
components. All this can be done applying the present theory directly. One
has to choose an appropriate homogeneous thermodynamic description of a
desired mixture and specify the desired domain in a phase space.

i) Applications and extensions

We studied transport through the surface in detail. The established framework
also allows us to study transport processes along the surface. This includes the
study of phenomena such as slip, thermal slip and the Maragoni effect [44].

We did the numerical calculations for planar interfaces. The analysis presented
has no such restriction on the geometry of the surface. We may therefore
study evaporation of spherical droplets, and use the 2-dimensional isotropy of
the surface. A relevant application here is the nucleation of sub-micrometer
droplets. There are many experiments and molecular dynamic simulations in
that area, but again, not much work is available for mixtures. If the radius
of a droplet is much larger than the interfacial thickness, the general analysis
presented in the thesis may be applied to such a system directly. Including
the appropriate curvature corrections it may also be applied to droplets with
a radius comparable to the interfacial thickness.

We have studied in details the evaporation and condensation. The square
gradient model for multi-component systems describes not only liquid-vapor
coexistence and transport, but also mixing-demixing phenomena [82]. A
relevant application is an osmotic pressure difference due to a temperature
difference. The developed analysis may be applied to these phenomena directly
as well.

Heat and mass transport through the surface are important in many biological
systems [83]. Biological cells have a semi-penetrable surface which allows
transport of different components, depending on the conditions. This is also
a mixing-demixing process. One may consider cells to have a 2D isotropic
surface. The transport processes in structures, which in equilibrium do not
poses the 2D isotropy, differs. Taking into account the symmetry of such
surfaces, one may modify the force-flux relations and apply the analysis to, for
instance, cylindrical cells.
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We did not study chemical reactions at the surface in this thesis. They
contribute to the entropy production and being scalar phenomena couple to
the heat and mass transport through the surface [5]. This is the subject of
active transport, a process also happening in biological systems [44].

There is a number of other transport processes which happen in non-
equilibrium systems, particularly, the transport of charge [6]. This is of interest
in many applications, such as fuel cells or electrolysis. The present theory may
not be applied to them directly, but one may proceed along the lines of this
work in order to get the description of these processes.

it) Relation to other fields

It is desirable to have an independent way to verify the non-equilibrium
continuous description. This can be done using molecular dynamics
simulations. Both the continuous description and molecular dynamics uses
a small set of input parameters which are related. These are, for instance,
the molecular diameter together with the depth of interaction potential in
molecular dynamic simulations and transport coefficients together with the van
der Waals mixture coefficients for continuous description. Both the continuous
description and molecular dynamics allows one to obtain macroscopic surface
properties within the theory developed by Kjelstrup and Bedeaux [6]. As
a continuation of this work one may choose the same system both for the
continuous description and for molecular dynamics and compare the resulting
macroscopic properties. They must be consistent.

Another source of justification is the microscopic theoretical descriptions.
A number of quantities come to the continuous mesoscopic description as
parameters. These are, among others, the local resistivities and the gradient
coefficients k. It is possible in principle to obtain the values of the gradient
coefficients from microscopic theories, either from the statistical mechanics
[84], or from kinetic theory [85]. It would be nice to get expressions for these
coefficients in mixtures from statistical mechanics. This, for instance, can give
an idea for mixing rules of the gradients coefficients, which currently are just
empirical expressions.

There are microscopic expressions for the bulk transfer coefficients, the Green-
Kubo relations. One can also obtain the microscopic expressions for the overall
interfacial resistances [44]. They are not available for the local interfacial
resistivities, however. It would be nice to obtain the microscopic expressions for
the resistivity profiles and, in particular, for the amplitudes of local resistivities.






Appendix A

Symbols list and notation
convention

Here we give the symbols used throughout the thesis. The meaning of the
symbols used only in particular sections of the thesis or "foobar" symbols is
explained in the text.

Vectorial quantities are typefaced bold, while scalar quantities are typefaced
with the ordinary font. Tensorial quantities are usually typefaced with the
ordinary font and two Greek indices are used as subscripts to distinguish them
from scalars. We use the summation convention over double Greek subscripts.

Table A.1: Superscripts: indicate quantities, associated with

— abulk

— gas bulk

— liquid bulk

an interface or a dividing surface
— mass specific quantity

— molar specific quantity

— density per unit of volume

@TS%NLQ@‘
|

Table A.2: Subscripts

0 —  bulk quantity
t, J, k, n — mixture component number
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a, B — cartesian coordinate component

I — parallel to the surface component of spatial coordinates

1 — perpendicular to the surface component of spatial coordinates
eq — equilibrium quantity

q — heat associated quantity

Table A.3: Operations

— definition

— contraction sign

— measurable quantity (for J; and r');

— spatial derivative (for all other quantities)

1,n — enumeration of all integers from 1 to n

$ — excess of ¢

5, o* — quantity, which has the meaning of ¢ but is different from ¢
according to the context

T — traceless part of a tensor T

\Y% — nabla-operator

Va, 0/0x, — partial derivative with respect to z, coordinate

0,0, d — differentials

dap —  Kroneker symbol

dr — infinitesimal volume element

dsS — infinitesimal external boundary element

All the quantities may have subscripts and superscripts, which specify the
exact meaning of this quantity. Specific quantities may be per unit of mass,
per unit of mol, or per unit of volume. We give the dimensionality for mass
units associated quantities only. A thermodynamic quantity with a subscript
indicating a component number is a partial specific quantity of that component.

Table A.4: Physical quantities

a [ ] — amplitude of the local resistivity

Ié] [—] — a small number, rate of the deviation from
equilibrium

r [mol/m?] — relative adsorption

YaB [ Pa | — tension tensor

¢ [ -] — mole fraction

K [ J/kg |, — square gradient contribution

[ J/m? ]
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H’B3§§

[Jm®/ke? |

[Jm/kg ]

[ J/m? ]

[Jm®/kg? |

[ m ]

[ J/(m Ks)]

| J/kg |
[ mol |
[ -]

| Pa |

| kg/m? |
| Pa |

[J/(Km?)]

[ J/ke |

[ mol/m? |

[ m?/s |

[ J/kg |
[J]

[ J/kg |

[ J/kg |
H/kg]
[J/(s m?)
[ kg/(s m?
[ J/(s m?)
[~ ]

[ kg/mol |
[ ke |
[—]

[ Pa |
[m |

|
|

|

square gradient coefficient associated with the
overall density

square gradient coefficients associated with the
overall density and the fraction of ¢-th component
square gradient coefficients associated with the
fractions of ¢-th and j-th components

square gradient coefficients associated with the
densities of i-th and j-th components

de Broglie wavelength

heat conductivity

chemical potential

number of moles

mass fraction

viscous pressure tensor

mass density

pressure tensor

entropy production

"foobar" variable

reduced chemical potential (chemical potential
difference)

van der Waals coefficients for mixture

van der Waals coefficients for components

molar concentration

diffusion coeflicient

specific total energy

total Helmholtz energy

specific Helmholtz energy

specific Gibbs energy

specific enthalpy

Lamé coefficients

any flux (of matter, energy, heat)

measurable heat flux
component number
molar mass

mass

number of components
pressure

position
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Appendix A.

Symbols

S R

[ J/(Kmol) ]
| /K|
[J/(Kkg)|
| 1/K]

local resistivity coefficient
overall interfacial resistance coefficient
Universal gas constant
total entropy

specific entropy

Soret coefficient
temperature

total internal energy
specific internal energy
total volume

specific volume

velocity

cartesian coordinate
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There are more things in heaven and earth, Horatio,
Than are dreamt of in your philosophy.

W. Shakespeare






