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Abstract

The nonhomogeneous Poisson process is commonly used in the modeling of failure times of complex repairable sys-

tems. In practice there may be a substantial heterogeneity in the failure behavior among apparently identical repairable

systems. In this paper we introduce a new approach for statistical modeling of failures and the corresponding statisti-

cal inference when there is both an observable and unobservable heterogeneity between such systems. The approach

is partly nonparametric and hence avoids making restrictive assumptions about the underlying process. The main

feature of the approach is the elimination of the effect of unobservable heterogeneity, which leaves an optimization

problem involving the observable covariates only. The new method is introduced in a power law process setting and

can easily be extended to general nonhomogeneous Poisson process. The satisfactory performance of the method is

verified in an extensive simulation study as well as in a case study, and the method compares favorably to the gamma

frailty model and to the classical regression model not assuming an unobserved heterogeneity. The approach can be

adapted for a wide class of models.

Keywords:
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1. Introduction

The reliability of complex repairable systems is commonly studied by using counting process models, where

events correspond to failures of the system. The most prominent model is the nonhomogeneous Poisson processes

(NHPP), which is completely described by its rate of occurrence of failures (ROCOF). This description should take

into account that in many real life applications there is a substantial heterogeneity between apparently identical re-

pairable systems. The motivation for this paper was the joint presence of observed and unobserved heterogeneity in

failure patterns of German onshore wind turbines analyzed in detail in [15]. Several factors like size of a turbine,

manufacturer or local climatic conditions are known to influence the reliability of wind turbines ([5]). These may be

represented by a set of covariates, leading to the consideration of regression models. Nevertheless, there are other
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factors that potentially may affect the reliability, e.g., position of a turbine inside a wind farm or specific technology

used in a turbine, which are not recorded or are difficult to quantify. The latter types of factors are not necessarily

observable, but may still have a significant effect on the reliability. Thus, if ignored, a regression analysis of repairable

systems may give misleading or wrong results.

In [14] we introduced a new approach for modeling and analysis of repairable systems with an unobservable

heterogeneity. We adopted the common approach of multiplication of the basic ROCOF by a positive random variable,

a so called frailty, taking independent values across the systems. While in traditional frailty models it is necessary to

make parametric assumptions about the distribution of the frailties, we made a nonparametric approach, thus avoiding

numerical and other problems that may occur with the parametric models, especially in large data sets and when using

complicated models.

In this paper we extend the technique from [14], where focus is now on regression models for NHPPs, involving

observed covariates in addition to unobservable heterogeneity. The main idea is to eliminate the possible disturbances

of the unobserved heterogeneity, thus enabling estimationof the net effect of the observable covariates in the behavior

of the systems. The most common way to incorporate covariates into the ROCOF model is to multiply a baseline

ROCOF by a function of the covariates, with the exponential function being the most common choice, leading to what

corresponds to the proportional hazards model in survival analysis, which here also might be called the proportional

ROCOF model. A heterogeneity can then be added to such a modelby multiplication of the frailty, as indicated

above. A classical reference for regression modeling in NHPPs is [10], where heterogeneity (called random effects)

is also treated by assuming the standard approach of lettingfrailties be gamma distributed. A subsequent review of

applications of proportional hazards models in repairablesystems was given in [9]. More recent reviews are given in

[12] and [7]. The former of these papers advocates the use of trend tests to guide in the search for appropriate failure

models. The latter paper, on the other hand, considers the problem of model selection for multiple repairable units,

with emphasis on unobservable heterogeneity, dependencies and trend.

It seems that the majority of analyses of repairable systemsdo not include factors or covariates that may affect

the failure process. Thus the literature on repairable systems with covariates is much less rich than, for example, the

literature on regression models for recurrent events in biostatistics. There are, however, several recent approachesin

reliability where covariates play an important role. For example, [13] used covariates such as length or diameter of

pipes, age and presence of clay in order to explain the reliability of pipe failures in water networks. The same data were

reanalyzed in [1] using time-dependent covariates. Motivated by a similar application and using similar covariates,

[11] introduced a dynamic NHPP, where the ROCOF of a system increases with the observed number of failures.

The importance of taking covariates and differences in environment into consideration is furthermore discussed in

the paper [2], analyzing data for drill bits in a bauxite mine. The paper [3] made use of the power law process

for multiple repairable units with differing reliability characteristics to predict the expectednumber of failures for a

fleet of military aircrafts, while [18] extended the power law model by introducing a single multiplicative covariate

with the interpretation of a known scaling of the system’s failure behavior. The paper [20] proposed the use of a
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proportional hazards model with time-varying covariates for residual life prediction of repairable systems. The paper

[19] models operational and environmental stress factors as covariates in repairable systems. A different approach

to involving both observable and unobservable heterogeneity has recently been presented in [8]. The authors’ main

idea is to introduce a joint distribution of the parameters of the baseline power law ROCOF function, and estimate its

parameters by an empirical Bayes procedure.

The rest of this paper is organized as follows. In Section 2 wereview the main results of [14]. Section 3 is the main

section where we introduce the new model which extends the model in [14] by inclusion of covariates. In particular

we present a novel approach for estimation of the coefficient vector which describes the influence of the covariates.

Section 4 describes briefly a comprehensive simulation study and some of its conclusion, where the simulation study

itself will be presented in the supplementary material. A case study using data from the WMEP database for German

wind turbines [5] is presented in Section 5. Some concludingremarks are finally given in Section 6.

2. NHPP with covariates and nonparametric frailty

2.1. The case with unobserved heterogeneity and no covariates ([14])

In this section we review the main results from [14]. As in that article, consider a model where, conditionally on

Z, the events (failures) follow an NHPP with ROCOF

λ(t|Z) = Zabtb−1 (1)

where the power law basic intensity was chosen for simple illustration. Recall thatZ is a positive random variable

representing the frailty of the system under study. In orderto avoid an identification problem concerning the scale

parametera we will here assume that E(Z) = 1. Further, we assume that Var(Z) is finite.

Let m independent processes described by (1) be observed on the time interval [0, τ j] for a random lengthτ j > 0

(realizations of a random variableτ), and let us denote number of observed eventsn j with event timesti j (i = 1, . . . , n j,

j = 1, . . . ,m). Unobserved individual frailties (unobserved realizations of a random variableZ) will be denoted as

z1, . . . , zm. τ is assumed to be stochastically independent ofZ.

In [14] we derived estimates ofa, b and their variances, as well as predicted values for the individual frailtiesz j.

Also, estimates of Var(Z) were given. Thus, while standard models of this kind use parametric distributions forZ,

e.g., the gamma distribution, the clue of [14] was to avoid any assumptions on the distribution ofZ.

Below we review the estimators,

b̂ =

m∑
j=1

n j − 1

m∑
j=1

n j log(τ j) −
m∑

j=1

n j∑
i=1

log(ti j)
(2)

â =
1
m

m∑

j=1

n j

τb̂
j

(3)
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ẑ j =
n j

âτb̂
j

(4)

Among several possible estimators, the preferred estimator of Var(Z) in [14] was their equation (34),

V̂ar(Z) = V̂ar
(
ẑ j

)
−

∑m
j=1 τ

−b̂
j

mâ
(5)

whereV̂ar
(
ẑ j

)
is the empirical variance of thez j from (4).

2.2. The new model: NHPP with covariates and nonparametric frailty

Suppose now that for each system there is an observable covariate vectorX = [X1, . . . , XR]. The idea is to modify

the model from [14], as described in the previous section, sothat the influence ofX is taken into account. The model

we shall consider for inclusion ofX is of the Cox-type, where the conditional ROCOF, given the frailty Z and the

covariate vectorX, can be written

λ(t|Z, X) = Zabtb−1exp
(
β′0X

)
(6)

As before,a > 0 andb > 0 are unknown parameters, whileβ0 = [β01, . . . , β0R] is the vector of unknown coefficients

(′ denotes the transposition of a vector).Z is as before a positive random variable withE(Z) = 1 and Var(Z) < ∞

representing the unobserved heterogeneity (frailty). Again, the process is observed from time 0 until a random time

τ > 0. The assumption is now that the variablesZ, X, τ are independent. Note, that the classical regression model

(i.e., the model without unobserved heterogeneity) is included in this settings as a special case with P(Z = 1) = 1.

The basic properties of NHPPs imply that the conditional expectation and variance of the number of eventsN

occurring within a timeτ are given by, respectively,

E(N|Z, X, τ) = Zaτbexp
(
β′0X

)
(7)

Var(N|Z, X, τ) = Zaτbexp
(
β′0X

)
(8)

Let us assume thatm independent processes of this type are observed, where thejth process is observed for a time

τ j and described by an observed vector of covariatesx j = [x j1, . . . , x jR], and an unobserved individual frailtyz j. The

number of observed events in thejth process is denoted asn j and the observed event times in this process are denoted

asti j (i = 1, . . . , n j, j = 1, . . . ,m).

The main interest is in the estimation of the coefficient vectorβ0 which explains the effect of covariates on the

failure behavior of a process and which is discussed in the following section. The estimation ofb, a and prediction of

thez j’s and Var(Z) are discussed in the section 2.4.

2.3. Estimation of the effect of covariates

The form of the conditional expected number of eventsN within a timeτ given by (7) allows the construction of

estimators of the coefficientsβ0 in (6). Taking the expected value of each side of (7) gives theunconditional expected

number of events (with use of the assumed independenceZ, τ andX)

E(N) = E(E(N|Z, X, τ)) = E(Z) aE
(
τb

)
E

(
exp

(
β′0X

))
(9)
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Similarly,

E


N

τbexp
(
β′0X

)
 = E

E


N

τbexp
(
β′0X

)

∣∣∣∣∣∣∣∣
Z, X, τ



 = E(Z) a (10)

Substitution of E(Z) a from equation (10) into equation (9) gives

E


N

τbexp
(
β′0X

)


E
(
τb

)
E

(
exp

(
β′0X

))

E(N)
= 1 (11)

Based on equation (11), let us define the functionh(β) by

h(β) = E

(
N

τbexp
(
β′X

)
) E

(
τb

)
E

(
exp

(
β′X

))

E(N)
− 1 (12)

Equation (11) then states that the true valueβ0 lies in the set described as

{β : h(β) = 0} (13)

With use of the double expectation rule, linearity of the expected value, equation (7) and assumed independencies

we get

E

(
N

τbexp
(
β′X

)
)
= E

(
E

(
N

τbexp
(
β′X

)
∣∣∣∣∣∣ Z, X, τ

))
= E

(
1

τbexp
(
β′X

)E(N|Z, X, τ)
)

= E(Z) aE
(
exp

(
(β0 − β)′X

))
(14)

Thus the functionh(β) can be represented as (by use of equation (14) and equation (9))

h(β) =
E

(
exp

(
β′X

))
E

(
exp

(
(β0 − β)′X

))

E
(
exp

(
β′0X

)) − 1 (15)

As can be easily checked from equation (15),h
(
β0
2 + β

)
= h

(
β0
2 − β

)
for all β, i.e. h(β) is symmetrical around the

pointβ = β0

2 .

From the Cauchy-Schwarz inequality|E(UV) |2 ≤ E
(
U2

)
E

(
V2

)
with U = exp

((
β0
2 − β

)′ X
2

)
, V = exp

((
β0
2 + β

)′ X
2

)

andUV = exp
(
β0

2

′
X
)

it also follows thath
(
β0

2 ± β
)
> h

(
β0

2

)
for all β , 0, i.e. the pointβ = β0

2 is the unique minimum

of the functionh(β). Thus we have the somewhat unexpected result

β0 = 2 argmin
β

(h(β))

which is the key result in the estimation procedure forβ0 to be presented below.

The idea is to minimize instead the sample versionĥ(β) of h(β) in (12), where the theoretical means are substituted

by simple sample averages and parameterb is substituted by its estimator. The resulting estimator ofβ0 is then

β̂ = 2 argmin
β

(
ĥ(β)

)
= 2 argmin

β



1
m2

m∑
j=1
τb̂

j

m∑
j=1

n j

m∑

j=1

n j

τb̂
jexp

(
β′x j

)
m∑

k=1

exp
(
β′xk

)


(16)
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Var(Z)=0.5, discrete, CV=0.1, E(N)=10, m=30000

Figure 1: The gray contours represent the contours of the function h(β) for the caseR = 2 and selected values of the parameters and specific

distributions ofX. The black contour represents the contour withh(β) = 0. The black cross represents the minimum ofh(β), the red cross

represents the estimateβ̂, the intersection of the blue dashed lines represent the true coefficient vectorβ0 = (1,−1). The curves are obtained by

utilizing the consistency of̂β and using the high value ofm = 30000 to obtain curves that are for practical purposes equalto the theoretical ones.
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Figure 2: The underlying distributions are the same as for Figure 1, but the curves are based on a simulated sample of observations fromm = 30

processes. The gray contours represent the contours of the empirical functionĥ(β) with black contour representing the contour with value equal

to 0. The black cross represents the minimum ofĥ(β), the red cross represents the estimateβ̂ of β0 which is represented by the intersection of the

blue dashed lines. The green triangle represents the value estimated by the classical regression model which does not assume heterogeneity, while

the green diamond represents the value estimated by gamma frailty model..
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An illustration of the process of obtaininĝβ in (16) is presented in Figures 1 and 2, which are based on values of

parameters used in the simulation study (see Section 3 for anexplanation).

It can be shown that the estimatorβ̂ is consistent forβ0, i.e., β̂ converges (in probability) toβ0 asm tends to

infinity. The clue is thath(β) is a convex function ofβ, and the result then follows from Theorem 1, page 49, in [4].

Since the derived estimatorβ̂ is twice the minimum of the sample version of the functionh(β), the variance of

the estimator̂β can be estimated by adaptation of the approach used in [6], i.e. by using a Taylor expansion and the

implicit function theorem, as briefly summarized in Appendix A.

2.4. Estimation of other parameters

2.4.1. Estimation of b

As was shown above, an estimate ofb is needed in the estimation ofβ0. It is seen from the derivation in Appendix

A of [14] that the problem of estimatingb is not changed by the inclusion of covariates. In fact, in model (6) we

can define the unobserved variableZ̃ = Z exp(β′0X), which brings (6) on the same form as (1). Hence (2) (and the

corresponding estimator of variance) is still valid.

2.4.2. Estimation of a

The estimation ofa can be done in a way similar to the derivation of ˆa for the case without covariates (see (3)).

SinceE(Z) = 1, the estimator ofa can be defined by the sample version of equation (10), involving the already derived

estimators, i.e.,

â =
1
m

m∑

j=1

n j

τb̂
jexp

(
β̂
′
x j

) (17)

Alternatively, equation (9) could be used to construct an estimator ofa.

The variance of ˆa (givenx j’s andτ j’s , j = 1, . . . ,m) can be derived with use of Taylor expansion and properties

of the estimatorŝb andβ̂ and NHPPs and is briefly summarized in Appendix B.

2.4.3. Estimation of unobserved heterogeneity

The traditional frailty models are characterized by the variance of the unobserved effects which can be estimated

with use of the properties of NHPPs following the recipes given by [14].

The unconditional variance ofN can be computed as follows, with use of (7) and (8) and the assumption E(Z) = 1.

Var(N) = E(Var(N|Z, X, τ)) + Var(E(N|Z, X, τ)) (18)

= aE
(
τb

)
E

(
exp

(
β′0X

))
+ a2

(
E

(
Z2

)
E

(
τ2b

)
E

(
exp

(
2β′0X

))
− E

(
τb

)2
E

(
exp

(
β′0X

))2
)

which together with (9) gives

Var(Z) =
E

(
N2

)
− E(N)

E(N)2

E
(
τb

)2

E
(
τ2b

)
E

(
exp

(
β′0X

))2

E
(
exp

(
2β′0X

)) − 1 (19)
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Using empirical forms of the expectations and substitutingthe estimators of the parameterb and the vectorβ in (19)

gives the estimator̂Var(Z), i.e.,

V̂ar(Z) =
1
m

m∑
j=1

n2
j −

m∑
j=1

n j

(
m∑

j=1
n j

)2

(
m∑

j=1
τb̂

j

)2

m∑
j=1
τ2b̂

j

(
m∑

j=1
exp

(
β̂
′
x j

))2

m∑
j=1

exp
(
2β̂
′
x j

) − 1 (20)

The method of moments using equation (7) together with equation (10) allows us to express the individual frailties

z j as

z j =
n j

aτb
jexp

(
β′0x j

) (21)

This expression can also be obtained by the likelihood approach considered in [14] in which the individual frailties

z j are viewed as parameters. Using the derived estimators in (21) defines the estimators of the individual frailties ˆz j,

( j = 1, . . . ,m)

ẑ j =
n j

âτb̂
jexp

(
β̂
′
x j

) (22)

Note, that the empirical mean of the estimated individual frailties is equal 1, i.e.1m
m∑

j=1
ẑ j = 1.

A natural choice for the estimator of the variance of the unobserved effects is the empirical variance of the es-

timatedẑ j’s, which will be denoted aŝVar
(
ẑ j

)
. These are estimates of the variance Var

(
N

aτbexp(β′0X)

)
, which can be

computed as

Var


N

aτbexp
(
β′0X

)
 = E

Var


N

aτbexp
(
β′0X

)

∣∣∣∣∣∣∣∣
Z, τ, X



 + Var

E


N

aτbexp
(
β′0X

)

∣∣∣∣∣∣∣∣
Z, τ, X





=

E
(
τ−b

)
E

(
exp

(
−β′0X

))

a
+ Var(Z) (23)

This means that̂Var
(
ẑ j

)
overestimates the true variance of the unobserved effects by the factor

E(τ−b)E(exp(−β′0X))
a . The

formula (23) hence suggests an estimator of Var(Z),

V̂ar(Z) = V̂ar
(
ẑ j

)
−

m∑
j=1
τ−b̂

j

m∑
j=1

exp
(
−β̂′x j

)

m2â
(24)

which generalizes (5) to the case which includes observed covariates.

2.5. Remarks

• Sinceh(0) = 0 by (15), the sample version̂h(0) goes through 0 asymptotically.

• The estimation ofβ using minimization ofĥ(β) derived in this paper can be used also for models without

unobserved heterogeneity.
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• From the sample version̂h(β) is seen that the minimized function is a strictly convex, smooth and continu-

ous function with one global unique minimum (no other local minima or maxima). Therefore, the numerical

minimization of this function is stable, robust and quick.

• Efficient algorithms for the computation of the covariance matrix of β̂ exist ([6]).

• Since the estimation method mainly uses analytical expressions and simple numerical minimization, it is gener-

ally very quick. Bootstrapping can also conveniently be used for the estimation of the variance of the estimated

parameters.

• The estimation process depends heavily on the estimation ofmeans. It is, therefore, sensitive to extreme obser-

vations and outliers and a robust method for the estimation of the mean might be beneficial.

• A function h̃(β) analogous to the functionh(β) which does not involve time can also be derived,

h̃(β) = E

(
N

exp
(
β′X

)
)

E
(
exp

(
β′X

))

E(N)
− 1 (25)

Estimators ofβ0 based on the functioñh(β) will have larger variance than estimators based onh(β).

• Since the estimation ofa, b and Var(Z) generalize the approach of [14], the remarks herein are valid also in that

case.

• The derived estimation process can easily be generalized toother parametric NHPP models, i.e., for processes

with ROCOF

λ(t|Z, X) = Zλ0(t, θ)exp
(
β′0X

)
(26)

whereλ0(θ, t) denotes a basic ROCOF described by the parametersθ. The estimation process will then be an

extension of the approach sketched in Section 3 of [14].

3. Simulation study

The functionality of the derived approach was tested in a simulation study which follows the setting of the simu-

lation study in the previous paper [14]. Comparisons were made to the approaches using the gamma frailty model and

the classical model without unobserved heterogeneity.

The aim of the simulation study was to investigate the dependence on the number of systemsm; expected number

of events per system E(N); the coefficient of variation (CV = ratio of standard deviation and mean) of the distribution

of observation timeτ (modeled by lognormal distribution), correlation betweencovariates; and presence of unob-

served heterogeneity. The power law process with ROCOFλ0(t|a, b) = abtb−1 was chosen as the basic ROCOF, with

a = 1 andb = 1.3.

Four different values ofm were considered,m = 10, 30, 100, 300. Parameters were, furthermore, adjusted to given

values of E(N) = 3, 10, 30, 100 andCV = 0.1 or 0.5. Two cases with unobserved heterogeneity and one case without
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unobserved heterogeneity were considered -discrete frailty, where frailty is modeled as two unobserved groups in

data (each system belongs to one of the groups with probability 1
2, and Var

(
Z

E(Z)

)
= 0.5); gamma frailty, where frailty

is gamma distributed with mean equal to 1 and variance equal to 0.5; andno frailty. The covariatesx1 andx2 were

chosen as bivariate normal with mean 0, standard deviationsσ1 = 1 andσ2 = 0.5, and correlationρ equal to 0 or 0.5.

The values for the corresponding coefficients were chosen asβ1 = 1 andβ2 = −1.

The detailed setup of the simulation study is described in the supplementary material.

For each combination ofρ, m, E(N), CV, and each case of unobserved heterogeneity, 10000 simulations were run

and processed. The model introduced in this paper was fitted to each of the simulated datasets, as well as the gamma

frailty model and the classical model without unobserved heterogeneity. The unknown parametersa, b, β0, Var(Z)

(when appropriate) were estimated for each model and simulated dataset.

The classical model and the gamma frailty model were fitted bynumerical maximization of the loglikelihoods

(displayed in the supplementary material).

3.1. Summary of the results of the simulation study

• Empirical formulas

The empirical results from the simulation study agree satisfactorily with the theoretically derived formulas.

• Effect of covariates

The detailed results of the estimation of parametersβ1 andβ2 can be found in the supplementary material in the

tables 3, 4, 5, 6, 7 and 8. The results confirm the validity of the estimation approach introduced in this paper.

Comparing the mean squared errors, the classical model has the highest values in the simulations with un-

observed heterogeneity, while in the simulations without unobserved heterogeneity it is the best model (as

expected since it is the true model in this case). The estimation based on the new approach is comparable to the

results obtained from the gamma frailty model in the simulations with unobserved heterogeneity, although the

gamma frailty model has slightly lower mean squared errors in the simulations with unobserved heterogeneity

modeled as gamma frailty. In the simulations without unobserved heterogeneity the gamma frailty model is al-

most identical to the classical model, while the estimationbased on the new approach has slightly higher mean

squared errors.

The formula for the computation of the standard errors of theestimators ofβ1 andβ2 given by (A.10) contains

an estimator of the variance of the unobserved effects. Therefore the estimation of the standard errors of these

parameters is strongly influenced by the quality of the estimation of the variance of the unobserved effects.

If the variance of the unobserved effects is estimated well, then the theoretical standard errors are in a good

agreement with the empirical results while in case of bad estimation of the variance of the unobserved effects

the formula (A.10) can return negative values.
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The standard errors of the estimators of the parametersβ1 andβ2, computed from the hessians of the loglike-

lihood functions, behave similarly as for the parametersa andb in the analogous simulation study in [14].

That means that they underestimate the empirical standard errors of these estimators in the simulations with

unobserved heterogeneity in the classical model, while in the simulations without unobserved heterogeneity the

standard errors computed from the hessians of the loglikelihood functions slightly overestimate the empirical

standard errors in the classical model. The standard errorsof the estimators of the parametersβ1 andβ2 in

the gamma frailty model computed from the hessians of the loglikelihood functions slightly overestimate the

empirical standard errors of the estimatorsβ1 andβ2.

• Parameters a, b and Var (Z)

The results from the theoretical formulas describing the approach of this paper are in very good agreement with

the empirical results, which confirms the validity of the derived formulas.

The results of the estimation of the parametera andb and Var(Z) agree with the results from the analogous

simulation study in [14], and can be found in the supplementary material.

Remark related to the numerical solution

The optimizations were performed using the optimization procedureoptim() in R.

It was found that the numerical maximizations of the loglikelihoods for the classical model and gamma frailty

model are quite sensitive to the choice of starting points used by the optimization procedure (especially in case of

fitting gamma frailty model to data without unobserved heterogeneity) while the finding of the minimum of the

function defined by (16) was numerically stable (since, as was argued above, it is a strictly convex function with one

global minimum). Moreover, it was observed that the estimation with use of the function (16) and related equations

was generally quicker than finding the maximums of the loglikelihoods. The gain in speed depends on the choice of

the starting points.

The problems with optimization of loglikelihood functionscan of course be influenced by the implementations of

the optimization procedures, which may be improved. On the other hand, it is necessary to be aware of these problems

when working with real data.

4. Case study

Failure data from WMEP database which contains reports about failure stops of German onshore wind turbines

between years 1989-2009 were analyzed as a real life example. More about this database can be found in [5] and

detailed analysis of this dataset can be found in [15].
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In total, 9900 failure stops from 702 wind turbines from 369 different wind farms were processed (most of wind

farms consists of 1 turbine, the biggest wind farm consist of28 turbines). The mean time of observation of a turbine

was 10.8 years, on average 1.3 failures per turbine per year were observed with mean time between failures 260 days.

In order to illustrate the method of the present paper we considered two covariates,x1 representing the rated power

of a turbine (in MW), and covariatex2 representing the local harshness of environment. These arewell known from the

literature to influence the reliability of wind turbines, see e.g. [17] and [16], and they were also found to be the most

important covariates in the analyses of [15]. Note that, dueto lack of information in the database about local climatic

conditions, a proxy covariate for harshness of environmentwas constructed in [15] using the available information

on number of stops caused by external natural factors such aslightning, high wind and icing. More precisely, the

corresponding covariate, which isx2 in the present study, was computed for each wind farm as the average number of

such stops per year for the turbines of the farm. It is important to note that the corresponding turbine stops were then

not considered as failures in the analysis.

The distribution of the two covariates can be seen in Figure 3. The transformed variables, log(x1) and
√

x2, were

used in the analysis in order to avoid too big influence of a fewlarge values.
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Figure 3: Distribution of the covariatesx1 (left) andx2 (right) in the case study.

We fitted the nonparametric frailty model with covariates introduced in this paper, based on the power law process,

to the data. The results are shown in table 1, together with the corresponding results when using the gamma frailty

model. For comparison, we also fitted the classical power lawmodel which does not take into account unobserved

heterogeneity.

It is seen from table 1 that the results from the nonparametric model are in good agreement with the results

from the gamma frailty model, which indicates a satisfactory behavior of our method. Since there is obviously a

non-significant heterogeneity present in the data (revealed through the estimated Var(Z) and the corresponding low
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Table 1: Result of fitting considered models to wind turbine failure data.V̂ar(Z) in the nonparametric frailty model is based on (24) and its standard
error was estimated with use of bootstrapping (over wind turbines).

â SE(â) b̂ SE
(
b̂
)

β̂1 SE
(
β̂1

)
β̂2 SE

(
β̂2

)
V̂ar(Z) SE

(
V̂ar (Z)

)

nonparametric frailty model 1.8042 0.1307 0.9418 0.0095 0.4303 0.0345 0.9060 0.0857 0.3162 0.0289
gamma frailty model 1.7375 0.1167 0.9429 0.0095 0.4164 0.0316 0.9442 0.0839 0.2998 0.0203

classical model 1.8549 0.0661 0.9471 0.0094 0.4378 0.0152 0.8521 0.0312 - -

standard errors), the classical model, which does not involve heterogeneity, should be rejected as a good description

of the data. As an observation from table 1, the estimated standard errors (with use of the hessian of the loglikelihood)

of the parameters are smaller for the classical model, whichapparently is caused by the more restricted assumptions

of this model. The standard errors in the classical model were also computed with use of bootstrapping (over wind

turbines which preserves the unobserved heterogeneity) and the results, which are summarized in table 2, show that

the standard errors computed with use of hessian of the loglikelihood underestimate the real standard errors if the

unobserved heterogeneity is not taken into account (the standard errors computed empirically and with use of hessian

of the loglikelihoods are in good agreement for the gamma frailty model and the new method, as can be seen from the

results of the simulation study). A consequence is that by constructing confidence intervals for the parameters by the

standard method ’estimate plus two standard errors’ we would obtain too optimistic intervals when using the classical

(wrong) model.

Table 2: Comparison of standard errors computed with use of the hessian of the loglikelihood describing the classical model without unobserved
heterogeneity and with use of bootstrapping (over wind turbines) using the same model.

SE(â) SE
(
b̂
)

SE
(
β̂1

)
SE

(
β̂2

)

standard errors computed with use of hessian 0.0661 0.0094 0.0152 0.0312
bootstrap standard errors 0.1385 0.0125 0.0393 0.0709

One may then ask, what is the engineering conclusion that canbe drawn from the case study? The estimated

b is close to 1, which indicates that the failure process of individual wind turbines are approximately homogeneous

Poisson processes, though with differing ROCOF’s, due to differences in observed covariates as well as possibly with

differing frailtiesZ.

Referring back to Section 2.3, Figure 4 illustrates the process of estimation of the regression parametersβ1 and

β2 corresponding to the observed covariates, and also shows the estimated parameters by each of the three methods

considered. Since the estimated values of the coefficientsβ1 andβ2 are positive and they have exponential influence on

the ROCOF, the results confirm the negative effect of rated power and weather conditions on the number of failures.

Figure 5 plots the estimated individual frailties for both the gamma frailty model and the new proposed model.

The latter are given by (22), while the gamma frailty model isconsidered in more detail in the supplementary material

and in [14]. The figure shows that the frailties in the gamma frailty model are pushed more towards 1 compared to the

ones obtained from the nonparametric model. For an explanation of this fact, see the discussion of the gamma frailty

model in Section 2.2 of [14].

The estimated frailties can be viewed as coming from latent covariates which were not observed, but which if
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observed would have had an effect on an individual system’s ROCOF. Such unobserved ”covariates” might in the

present case be effects such as differing maintenance strategies, differences in the manufacturing process, position of

turbines inside a wind farm etc.

β1

β 2
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Figure 4: Illustration of the process of estimation of the parametersβ0 introduced in this paper, i.e. by the equation (16), in the case study. The gray

contours represent the contours of the functionh(β) with black contour representing the contour with value equal to 0. The black cross represents

the minimum of the empirical version of the functionh(β), the red cross represents the estimated value. The green triangle represents the value

estimated by classical model while the green diamond represents the value estimated by gamma frailty model.

5. Conclusions

This paper introduces a new method for estimation of the effect of covariates for a large class of models. The

method extends the method introduced in [14] to the case withobservable heterogeneity described by covariates. The

main advantage of the new approach is that it is partly nonparametric and hence avoids making restrictive assumptions

about the underlying process.

The functionality, advantages and disadvantages of the method, with respect to varying process parameters, have

been illustrated and discussed in detail and compared to theclassical models in a simulation study using the power

law process as the basic model. In addition, the method has been applied in a case study using real data for wind

turbine failures.

The simulation study shows that the new method performs verycompetitively compared to the classical model

and to the gamma frailty model, while avoiding restrictive assumptions and numerical problems related to the use of

the gamma frailty model. The method appears to be very well suited for solution by numerical methods.
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Figure 5: Estimated individual frailties (for each wind turbine) in the case study by the nonparametric frailty model (blue) and by the gamma frailty

model (red). Turbines are ordered by the size of the estimated unobserved individual frailties in the nonparametric frailty model.
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Appendix A. Variance of the estimatorβ̂

Recall that the measured covariatesx j’s and the observation timesτ j’s ( j = 1, . . . ,m) are observed parameters

describing the process, since they are known before the start of the process and they do not change during the process.

The sample version of the functionh(β) will therefore be viewed as a function of the observed number of events and

the estimator̂b (which together form an observed data), i.e. the notationĥ(β, d), whered = [n1, . . . , nm, b̂], will be

used. All the computations below are done conditionally onx j’s andτ j’s ( j = 1, . . . ,m), which will be, in most

of cases, omitted from the notation. The set of allx j’s, j = 1, . . . ,m, will be denoted byx and the set of allτ j’s,

j = 1, . . . ,m, will be denoted byτ.

The minimum of the function̂h(β, d) is described by the set of equations

Φ(β, d) =

{
Φr(β, d) =

∂ĥ(β, d)
∂βr

, r = 1, . . . ,R

}
= 0 (A.1)

which has a solutionβ = β̂2 as was shown above.

Let us assume, that

∂Φ

∂β


β̂

2
, d

 =



∂Φ1
∂β1

· · · ∂Φ1
∂βR

...
. . .

...

∂ΦR
∂β1

· · · ∂ΦR
∂βR




β̂

2
, d

 (A.2)

is an invertible matrix. This assumption is not very restrictive, since the sample version of the functionh(β) is strictly

convex. The implicit function theorem then ensures existence of a function

ϕ(d) = {ϕr(d), r = 1, . . . ,R} = β̂
2

(A.3)

which maps the observed datad = [n1, . . . , nm, b̂] into an estimateβ̂2 .

As can be easily checked by minimization of the functionĥ(β,E(d|x, τ)), where E(d|x, τ) represents the condi-

tionally expected data, (which were computed with use of theindividuals version of (7), properties of the estimatorb̂

and the double expectation rule),

E(d|x, τ) =
[
E(n1|x1, τ1) , . . . ,E(nm|xm, τm) ,E

(
b̂|x, τ

)]′

=

[
aτb

1exp
(
β′0x1

)
, . . . , aτb

mexp
(
β′0xm

)
, b

]′
(A.4)

this function maps the conditionally expected data into thepoint β0

2 , i.e. ϕ(E(d|x, τ)) = β0

2 . Taylor expansion of the

functionϕ(d) around the conditionally expected data E(d|x, τ) therefore gives

β̂

2
= ϕ(d) ≈ β0

2
+ ∇ϕ (E(d|x, τ))′ [d − E(d|x, τ)] (A.5)

where∇ =
[
∂
∂n1
, . . . , ∂

∂nm
, ∂
∂b̂

]
denotes the (row) gradient operator.
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The equation (A.5) can also be used for the computation of theconditional covariance matrix ofβ̂2 , which gives

the well-known approximation

Cov


β̂

2

∣∣∣∣∣∣ x, τ

 ≈ ∇ϕ (E (d|x, τ))′Cov(d|x, τ)∇ϕ (E (d|x, τ)) (A.6)

where Cov(d|x, τ) is the covariance matrix of the observed numbers of eventsn j’s and the estimator̂b given the mea-

sured covariatesx j’s and the observation timesτ j’s ( j = 1, . . . ,m). Since the systems are assumed to be independent

and Cov
(
n j, b̂

∣∣∣ x, τ
)
= 0 for eachj = 1, . . . ,m (which follows from the properties of the estimatorb̂ and the condi-

tional covariance rule), the covariance matrix Cov(d|x, τ) is a diagonal matrix where the firstm diagonal terms can

be computed as (by using the individuals versions of (7) and (8))

Var
(
N j|X j, τ j

)
= E

(
Var

(
N j|Z j, X j, τ j

))
+ Var

(
E

(
N j|Z j, X j, τ j

))

= aτb
jexp

(
β′0X j

)
+

(
aτb

jexp
(
β′0X j

))2
Var(Z) (A.7)

where Var(Z) denotes the variance of the unobserved effects. The (m+1)st term on diagonal of the matrix Cov(d|x, τ)

is equal to Var
(
b̂
∣∣∣ x, τ

)
.

If it would be possible to find the analytical expression of the function (A.3), the equation (A.6) together with

Cov(d|x, τ) would define the conditional covariance matrix of the estimator β̂. Although the function (A.3) can not

be found analytically, the implicit function theorem givesthe formula for the desired gradient of this function, i.e.,

∇ϕ (E (d|x, τ)) = −∂Φ
∂β

(
β0

2
,E(d|x, τ)

)−1
∂Φ

∂d

(
β0

2
,E(d|x, τ)

)
(A.8)

where∂Φ
∂β

(
β0

2 ,E(d|x, τ)
)

is defined by (A.2) and∂Φ
∂d

(
β0

2 ,E(d|x, τ)
)

is analogously defined as

∂Φ

∂d

(
β0

2
,E(d|x, τ)

)
=



∂Φ1
∂n1

· · · ∂Φ1
∂nm

∂Φ1

∂b̂
...
. . .

...
...

∂ΦR
∂n1

· · · ∂ΦR
∂nm

∂ΦR

∂b̂



(
β0

2
,E(d|x, τ)

)
(A.9)

Using the estimators of in the derived formulas gives the estimator of the conditional covariance of the estimator

β̂, i.e.,

Ĉov
(
β̂
∣∣∣ x, τ

)
= 4∇ϕ

(
Ê (d|x, τ)

)′
Ĉov(d|x, τ)∇ϕ

(
Ê (d|x, τ)

)
(A.10)

where

∇ϕ
(
Ê (d|x, τ)

)
= −∂Φ
∂β


β̂

2
, Ê (d|x, τ)


−1
∂Φ

∂d


β̂

2
, Ê (d|x, τ)

 (A.11)

The estimated conditional expected valueÊ(d|x, τ) is defined with use of (A.4), i.e.,

Ê (d|x, τ) =
[
âτb̂

1exp
(
β̂
′
x1

)
, . . . , âτb̂

mexp
(
β̂
′
xm

)
, b̂

]′
(A.12)

The estimated conditional covariance matrix̂Cov(d|x, τ) is a diagonal matrix with thejth entry (for j = 1, . . . ,m)

on the diagonal equal to ˆaτb̂
jexp

(
β̂
′
x j

)
+

(
âτb̂

jexp
(
β̂
′
x j

))2
V̂ar(Z) (estimated with use of (A.7)), wherêVar(Z) is the
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estimator of the variance of the unobserved effects derived below, and the (m+1)st diagonal element defined asb̂
2∑m

j=1 n j

(defined with usêVar
(
b̂
)

and the conditional variance formula).

The functionΦ(β, d) and its partial derivatives are defined by (A.1), (A.2) and (A.9) respectively.

Note, that the analytical expressions for the function andΦ(β, d) and its partial derivatives can easily be found

from the sample version of the functionh(β, d).

Appendix B. Variance of the estimator â

The variance of ˆa (givenx j’s andτ j’s , j = 1, . . . ,m) can be derived with use of Taylor expansion and properties

of the estimatorŝb andβ̂ and of NHPPs. Taking the Taylor expansion of the expressionn j

τb̂
jexp

(
β̂
′
x j

) around the points

E
(
b̂
∣∣∣ x, τ

)
= b, E

(
β̂
∣∣∣ x, τ

)
= β0 and E

(
n j|x, τ

)
= aτb

jexp
(
β′0x j

)
gives

n j

τb̂
jexp

(
β̂
′
x j

) ≈ n j

τb
jexp

(
β′0x j

) − a log(τ j)(b̂ − b) − ax′j(β̂ − β0) (B.1)

Taking the conditional variance of ˆa with use of (B.1) and properties of the estimatorsb̂ andβ̂ and nonhomoge-

neous Poisson processes then gives

Var(â|x, τ) ≈ a
m2

m∑

j=1

1

τb
jexp

(
β̂
′
x j

) + a2

m
Var(Z)

+


a
m

m∑

j=1

log(τ j)


2

Var
(
b̂
∣∣∣ x, τ

)
+


a
m

m∑

j=1

x j


′

Cov
(
β̂
∣∣∣ x, τ

)


a
m

m∑

j=1

x j



+ 2


a
m

m∑

j=1

log(τ j)




a
m

m∑

j=1

x j


′

Cov
(
b̂, β̂

∣∣∣ x, τ
)

− 2


a
m

m∑

j=1

x j


′ 

1
m

m∑

j=1

Cov
(
n j, β̂

∣∣∣ x, τ
)

τb
jexp

(
β̂
′
x j

)
 (B.2)

Substitution of unknown parameters by their estimators in (B.2) defines the estimator of the conditional variance

of the estimator ˆa. The unknown covariances Cov
(
b̂, β̂

∣∣∣ x, τ
)

and Cov
(
n j, β̂

∣∣∣ x, τ
)
, j = 1, . . . ,m can be estimated with

use of (A.5) and properties of the estimatorb̂ and of NHPPs.
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