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Abstract 
The ability to perform accurate pore pressure and reservoir inflow estimation during a kick incident is 

necessary, particularly when drilling in formations with narrow pressure margins. Currently available 

techniques for pore pressure estimation and reservoir characterization either rely on empirical correlations 

requiring access to well logging data and other petrophysical information, or require downhole pressure 

sensing and advanced flow metering capabilities. This paper introduces a model-based estimation 

technique which uses surface measurements commonly available in a Managed Pressure Drilling (MPD) 

system, coupled with a simplified transient two-phase model. This model is capable of representing 

essential dynamics during a gas kick with reduced computational overhead, but without sacrificing 

significant modeling accuracy. First, the model is validated in a gas kick scenario against experimental 

data, showing good agreement between key measured parameters and the model predictions, and thereby 

justifying the model applicability to field operations. Next, data generated from a commercial simulator 

test case is used to evaluate the proposed estimation methodology. The estimated pore pressure and 

reservoir productivity are close to their respective values from the commercial simulator, and the flow out 

rate and surface back-pressure predicted by the simplified two-phase model yield very good match against 

the simulator results. 

 

1. Introduction 
When drilling wells in challenging subsurface environments, such as complex geo-pressured 

deepwater prospects, it is crucial to maintain the wellbore pressure at a value above both the reservoir 

pore pressure and the minimum mud pressure required for wellbore stability (or in the case of 

underbalanced operations, between the wellbore stability limit and the pore pressure). Furthermore, 

wellbore pressure should not exceed the fracture pressure at any depth in the open-hole section, which 

effectively limits the available pressure window for safe drilling. Of these pressure limits, the most critical 

is the pore pressure, as falling below this value in an uncased hole section (e.g. due to insufficient mud 

weight, poor hydraulics management, improper hole fill-up during tripping or an abnormally pressured 

zone) leads to influx of formation fluids (oil, water, gas, or a combination thereof) into the wellbore. 
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Influxes (also known as “kicks”) tend to be more hazardous when the formation fluids contain gas, which 

expands in the annulus causing large variations in annular pressure. An uncontrolled kick triggers a 

“blow-out”, which has potentially catastrophic consequences, impacting rig personnel safety, the 

surrounding environment, project economics, company and industry reputation (Karimi Vajargah et al., 

2014). As a result, the proper planning and execution of well control operations is a major concern in any 

well being drilled, and the ability to model the gas influx dynamics in real-time, in addition to robustly 

estimating pore pressure, can significantly improve the success of a well control procedure. 

With the development of MPD techniques enabling precise control of the annular pressure profile, 

wells can be drilled more safely in formations with narrow pressure margins. A particular variant of MPD, 

which has become more prevalent in recent years, is the constant bottom-hole pressure (CBHP) technique. 

This method relies on a dedicated choke manifold for applying back-pressure on the annular side, with the 

goal to maintain the bottom-hole pressure constant throughout the operation. Additionally, CBHP MPD 

systems include an accurate flow metering system, enabling early kick detection by constant monitoring 

of return flow in the closed-loop circulation system (Santos et al., 2003). The early kick detection, 

combined with immediate application of back-pressure by manipulating the size of the choke valve 

orifice, allows small and medium size kicks to be safely circulated out the of the well without the need for 

a conventional shut-in operation (Karimi Vajargah et al., 2014; Kinik et al., 2015; Aarsnes et al., 2016a).  

In addition to state-of-the art actuation and sensing equipment, the CBHP MPD technique also requires 

an accurate hydraulic model with multi-phase flow capabilities. Although advanced models have been 

developed to this end, their complexity makes them impractical for real-time applications such as model-

based closed-loop control and estimation. As a result, most MPD control systems in the industry still rely 

on single-phase dynamic models (e.g. Godhavn, 2010; Kaasa et al., 2012; Reitsma and Couturier, 2012). 

Therefore, introducing a fit-for-purpose model which can capture the essential dynamics of gas expansion 

with limited computational expense and complexity is highly desirable. One potential application of such 

a model is the real-time estimation of pore pressure and reservoir productivity during a kick incident. This 

paper introduces a model-based estimation methodology employing a simplified two-phase flow model 

developed by the authors (Ambrus et al., 2015; Aarsnes et al., 2016b). An experimental test data set is 

first used to validate the model, and subsequently the estimation algorithm is applied on a test case 

generated using a commercial multi-phase simulator. 

 

2. Background 
The proper knowledge of pore pressure, together with fracture pressure and the pressure required for 

wellbore stability is a primary factor in the design of a well program prior to drilling. Traditional methods 

for determining pore pressure in a drilling operation rely either on repeat formation tests and drill stem 

tests, or on empirical correlations to petrophysical logs, such as sonic, density and resistivity logs 

(Aadnoy et al., 2009). Among the most widely used correlation techniques are Eaton’s method, used for 

estimating pore pressure in shales based on normal compaction trends and resistivity, sonic, or “d-

exponent” logs, and Bowers’ method, which uses a correlation between sonic velocity and effective stress 

accounting for the underlying causes of overpressure (Ameen Rostami et al., 2015). 

The development of MPD techniques has enabled new approaches to real-time pore pressure 

estimation during kick incidents. Gravdal et al. (2010) used statistical modeling of the surface back-

pressure build-up curve during shut-in to arrive at an estimate of pore pressure. A polynomial curve-fit 

was used to ascertain the wellbore pressure balanced the formation pressure, such that the measured 

bottom-hole pressure could be used as the new pore pressure estimate. Application of this algorithm 

requires a downhole pressure sensor, or an estimate thereof arrived at using a transient model such as the 

one suggested in this paper. Santos et al. (2003) introduced a method for determining pore and fracture 
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pressure while drilling through stepwise reduction or increase in surface back-pressure until a micro 

influx or leak off is detected. Ameen Rostami et al. (2015) showed a more recent application of this 

technique, where downhole pressure is continuously monitored during the test using a Pressure While 

Drilling (PWD) tool, and the readings are used to calibrate previous pore pressure estimates, obtained 

using Eaton’s d-exponent method or other similar techniques.  

Real-time reservoir characterization has also been facilitated by underbalanced drilling (UBD), where 

the bottom-hole circulating pressure is intentionally kept below the pore pressure, effectively producing 

formation fluids while drilling (Vefring et al., 2003). In addition to minimizing reservoir impairment and 

maximizing production, UBD enables a better understanding of reservoir properties through comparison 

between real-time production rates and well logging data (Culen and Killip, 2005). Additional 

information can be inferred from pressure buildup data and gas and liquid flow metering on surface, 

leading to more accurate estimates of reservoir pressure and productivity index for different reservoir 

sections (Suryanarayana et al., 2007; Shayegi et al., 2012). 

In addition to the methodologies above, which are mostly empirical and/or measurement-intensive, 

several researchers have attempted model-based estimation techniques, relying on physics-based models 

of the drilling hydraulics. Zhou et al. (2011) used an adaptive observer in conjunction with a single-phase 

hydraulic model and a linear reservoir model to estimate influx rate and pore pressure in an MPD system. 

Their estimation algorithm did not take gas expansion into account, which reduced performance when gas 

was being circulated out. An adaptive observer was also used by Hauge et al. (2012) for estimating the 

influx rate as well as the depth of the influx zone. A more sophisticated approach, using an infinite-

dimensional boundary observer was applied to a transmission line model of the drilling hydraulics in 

order to estimate influx or lost circulation events occurring in an MPD setting (Hauge et al., 2013).  

In the context of UBD operations, Vefring et al. (2003) used an Ensemble Kalman Filter and the 

Levenberg-Marquardt method on the Drift-Flux Model coupled with a dynamic reservoir model to 

estimate reservoir pore pressure and permeability. Biswas et al. (2003) employed a genetic algorithm in 

conjunction with a transient two-phase reservoir simulator for the problem of estimating reservoir 

permeability as a function of depth. Aarsnes et al. (2014a) used the Drift-Flux Model in conjunction with 

an Extended Kalman Filter for on-line estimation of the productivity index, while uncertain model 

parameters, such as friction factor, choke model coefficients and slip velocity, required off-line 

calibration. 

 

3. Theory 
The methodology presented in this paper comprises a simplified transient two-phase hydraulic 

simulator (the “reduced Drift Flux Model”) and an estimation algorithm which builds upon a reservoir 

inflow model. The information flow among these key components and their input and output parameters 

are schematically illustrated in Figure 1. The models and algorithms used are detailed in Section 3.1 and 

Section 3.2. It should be noted that this approach only requires surface measurements (mud flow rate in 

and out of the well, pressure at the well head, and pit gain), whereas downhole pressure is computed using 

the reduced Drift Flux Model. 
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Figure 1. General flow diagram for proposed methodology. 

 

3.1. The Reduced DFM 
The Drift-Flux Model (DFM) is one of the multi-phase models most frequently used in drilling 

applications. The DFM consists of separate mass balance equations and a combined momentum balance, 

together with several closure relations and a slip relation (see Appendix A for the mathematical 

formulation). Although widely employed in well control simulation software (e.g. Nickens, 1987; Podio 

and Yang, 1986; Rommetveit and Vefring, 1991; Petersen et al., 2008), the DFM remains too unwieldy 

for real-time application in conjunction with model-based estimation and control techniques (Aarsnes, 

2016). Finding efficient numerical solutions of the DFM is considered difficult due to strong non-linear 

coupling mechanisms and challenges associated with transition to single-phase regions (Evje and Wen, 

2013). As such, a series of “reduced” DFMs, also called “No Pressure Wave” models, have been 

suggested (Taitel et al., 1989; Masella et al., 1998; Choi et al., 2013). These models represented attempts 

to simplify the classical DFM by imposing a quasi-equilibrium momentum balance, with the goal of 

simplifying the resulting model equations. The use of these models has been justified for applications 

where the relatively slow gas propagation dynamics are more important than the fast pressure dynamics 

(Aarsnes et al., 2015). For applications such as MPD, where the transient evolution of the wellhead 

pressure as controlled by the back-pressure choke is of importance, a relation giving the dynamics of the 

pressure at the boundary is required. The proposed reduced DFM addresses this issue by adding a first-
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order ordinary differential equation representing the pressure dynamics (Eq. 2), coupled with a transport 

equation for the propagation of the void fraction (𝛼𝐺)  through the well (Eq. 1). 

In this paper we employ the model presented in Aarsnes et al. (2016b), augmented with the slip law of 

Shi et al. (2005) to improve performance when compared to full-scale wellbore operations. The model 

formulation is summarized below, with a detailed derivation outlined in Appendix A: 

 
𝜕𝛼𝐺
𝜕𝑡

+ 𝑣𝐺
𝜕𝛼𝐺
𝜕𝑥

= 𝐸𝐺 + Γ𝐺
∗ − Γ𝐿

∗ ,  

 

(1) 

 

𝑑𝑃𝑐
𝑑𝑡

=
𝛽̅

𝑉
(𝑞𝐿 + 𝑞𝐺 − 𝑞𝑐 + 𝑇𝑋𝐸), 

 

(2) 

 

where: 

 

𝐸𝐺 = −
𝛼𝐺(1 − 𝐶0𝛼𝐺)

𝛾𝑃
(
𝑑𝑃𝑐
𝑑𝑡

+ 𝑣𝐺𝑆̅ ) , 

 

(3) 

 

Γ𝐺
∗ ≡ 

(1 − 𝐶0𝛼𝐺) Γ𝐺
𝜌𝐺

, Γ𝐿
∗ ≡ 

C0αGΓ𝐿
𝜌𝐿

, 

 

(4) 

 

𝛽̅ ≡
𝛽𝐿

1 +
𝛽𝐿
𝑉 ∫

𝐶0𝛼𝐺
𝛾𝑃 𝐴𝑑𝑥

𝐿

0

   

, 

 

 

 

(5) 

 

𝑇𝑋𝐸 ≡ 𝐴(𝑣𝐺(𝐿) − 𝑣𝐺0),  
 

(6) 

 

𝑣𝐺0 = 𝐶0
𝑞𝐺 + 𝑞𝐿
𝐴

+ 𝑣∞. 

 

 (7) 

 

The model formulation is completed by the following closure relations: 

 

𝑃(𝑥) = 𝑃𝑐 +∫ 𝑆̅(𝜉)𝑑𝜉
𝑥

𝐿

, 

 

(8) 

 

𝜕𝑃

𝜕𝑥
= 𝑆̅(𝑥) = −(𝜌𝐿𝑎𝐿 + 𝜌̅𝐺𝛼𝐺) [𝑔𝑐𝑜𝑠𝜃(𝑥) +

2𝑓(𝑞𝐺 + 𝑞𝐿)|𝑞𝐺 + 𝑞𝐿|

𝐴2𝐷
] , 

 

(9) 

 

𝑣𝐺(𝑥) = 𝑒
−𝐼𝑣(𝑥) (𝑣𝐺0 + 𝐶0∫ [

𝑐𝐺
2(𝜁)

𝛾𝑃(𝜁)
Γ𝐺(𝜁) +

Γ𝐿(𝜁)

𝜌𝐿
]

𝑥

0

 𝑒𝐼𝑣(𝜁)𝑑𝜁) , 

 

(10) 

 

𝐼𝑣(𝑥) = ∫
𝐶0𝛼𝐺(𝜉)

𝛾𝑃(𝜉)

𝑥

0

𝑆̅(𝜉)𝑑𝜉, 
(11) 

 

 

and, finally, the boundary condition  
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𝛼𝐺(0, 𝑡) =
𝑞𝐺
𝐴𝑣𝐺0

.  (12) 

 

 

The present formulation assumes that the influx is pure gas, and should thus be used only for drilling 

operations where gas kicks are expected. Also, mass transfer is not considered, limiting the model use to 

water-based drilling fluids, where the effects of gas dissolution are generally negligible (Karimi Vajargah, 

2013). Additionally, due to the simplifying assumptions in the derivation of the gas dynamics, the 

formulation does not handle scenarios where the well is completely shut-in (i.e. with both the blow-out 

preventers and choke closed), as it can prescribe only one boundary condition (Eq. 12). In a shut-in case, 

an additional boundary condition is required to accommodate a zero net flow rate at the well head. This 

limitation can however be avoided if the slip velocity is low enough (or the well long enough) such that 

the gas bubble does not reach the well head before the circulation is resumed and the well control choke is 

opened. Furthermore, this is not an issue for dynamic well control operations in CBHP MPD, where up to 

a certain kick size, a complete shut-in is not required to safely bring the well back to overbalance.  

For use in back-pressure MPD scenarios, the model can be augmented with an equation relating the 

choke flow rate to the back-pressure and gas amount going through the choke (Aarsnes et al., 2014b): 

 

𝑞𝑐 =
𝐶𝑣𝑧

√𝜌𝐿
√𝑃𝑐 − 𝑃𝑠 + [(1 −√

𝜌𝐺
𝜌𝐿

1

𝑌
)𝐴𝑣𝐺𝛼𝐺] |

𝑥=𝐿

. 
 (13) 

 

 

3.2. Pore Pressure and Reservoir Inflow Estimation 

In this section, we present an approach for estimating the inflow rate and pore pressure of the flowing 

zone based on drilling parameters recorded during a kick. This requires a fit-for-purpose hydraulics model 

and a reservoir model, which correlates flow from the reservoir to the pressure drawdown, and also to a 

productivity index, a lumped parameter which is affected by the length of exposed zone, reservoir 

permeability, porosity, skin factor, reservoir fluid viscosity and compressibility (Vefring et al., 2003). For 

this application, we are more interested in the qualitative relationship between inflow rate, productivity 

and pore pressure, thus we use a qualitatively correct, linear inflow relationship (Shayegi et al., 2012): 

 

𝑞𝑟𝑒𝑠 = 𝐽(𝑃𝑟𝑒𝑠 − 𝑃𝑏ℎ),  (14) 

 

with 𝑃𝑟𝑒𝑠 the reservoir pressure, 𝑃𝑏ℎ the bottom-hole pressure, and 𝐽 the productivity index (PI). In the 

above, it is assumed that 𝑃𝑟𝑒𝑠 > 𝑃𝑏ℎ (i.e. the well is underbalanced), otherwise, 𝑞𝑟𝑒𝑠 is set to zero. Eq. 14 

can be recast in a form more amenable for parameter estimation:  

 

𝑞𝑟𝑒𝑠 = 𝜙
𝑇𝑋,  (15) 

 

where 𝑋 = [
𝐽𝑃𝑟𝑒𝑠
𝐽
] is the vector of unknown or uncertain parameters and 𝜙 = [

1
−𝑃𝑏ℎ

] is the  

regressor. Since, for a kick incident, 𝑞𝑟𝑒𝑠 is not directly measured, we will instead use an estimate, 𝑞̂𝑟𝑒𝑠. 
As a baseline, we can compute 𝑞̂𝑟𝑒𝑠 from the instantaneous mud flow out rate minus the mud injection 

rate, however, this is susceptible to measurement noise (particularly flow out), and does not account for 

dynamics due to pressure changes and gas expansion as the kick is circulated. Therefore, we employ the 



7 

 

first-order pressure dynamics from Eq.2, where we use 𝑞̂𝑟𝑒𝑠 in place of the gas source term 𝑞𝐺 and we 

isolate all terms which explicitly depend on 𝑞̂𝑟𝑒𝑠 (Note: in the following, all parameters which are 

estimated or derived from estimated quantities are denoted with a "^" above their symbol) 

 

𝑑𝑃𝑐
𝑑𝑡

=
𝛽̂

𝑉
[𝑞𝐿 − 𝑞𝑐 + 𝑞̂𝑟𝑒𝑠 + 𝐼0 + 2(𝑞𝐿 + 𝑞̂𝑟𝑒𝑠)

2 𝐼1], 

 

with 

 (16) 

 

𝐼0 = ∫
𝐶0𝛼̂𝐺

𝛾𝑃̂ 
𝑣𝐺𝜌̂𝑚 𝑔𝑐𝑜𝑠(𝜃)𝐴𝑑𝑥,

𝐿

0

 

 

 (17) 

𝐼1 = ∫
𝐶0𝛼̂𝐺

𝛾𝑃̂
𝑣𝐺𝜌̂𝑚 

𝐿

0

𝑓

𝐴𝐷
 𝑑𝑥, 

 

 (18) 

where 𝐼0, 𝐼1 account for gas expansion due to the hydrostatic and frictional pressure gradients, 

respectively. Note in the above that 𝑣𝐺  is computed from Eq. 10 with Γ𝐿 = Γ𝐺 = 0 and the quantities 

𝛽̂, 𝑃̂(𝑥), 𝑣𝐺(𝑥), 𝛼̂𝐺(𝑥) are also estimates of the true values as they all depend on 𝑞̂𝑟𝑒𝑠.  
For MPD scenarios, where kick size is usually limited, we can assume 𝑞𝑟𝑒𝑠

2 ≪ 𝑞𝐿
2, and thus neglect the 

quadratic 𝑞̂𝑟𝑒𝑠 term in  Eq. 16, which yields:  

 

𝑑𝑃𝑐
𝑑𝑡

=
𝛽̂

𝑉
[𝑞𝐿 − 𝑞𝑐 + 𝐼0 + 2𝑞𝐿

2 𝐼1 + 𝑞̂𝑟𝑒𝑠(1 + 4𝑞𝐿𝐼1)].   
 

(19) 

 

Eq. 19 above can be low-pass filtered to remove noise in the measurements, and also to allow a 

mathematical formulation which enables linear regression techniques. Using Laplace transform notation 

for the low-pass filter transfer function, 𝐹(𝑠) =
1

𝜏𝑠+1
, we have:  

 

𝑠

𝜏𝑠 + 1 
𝑃𝑐 −

1

𝜏𝑠 + 1 

𝛽̂

𝑉
[𝑞𝐿 − 𝑞𝑐 + 𝐼0 + 2𝑞𝐿

2 𝐼1] =
1

𝜏𝑠 + 1 
{
𝛽̂(1 + 4𝑞𝐿𝐼1)

𝑉
 𝜙𝑇𝑋}. 

 

(20) 

 

Denoting the left-hand side of Eq. 20 by y and the term 
1

𝜏𝑠+1 
{
𝛽̂(1+4𝑞𝐿𝐼1)

𝑉
 𝜙} by 𝜓 allows us to finally 

write a linear equation of the form 𝑦 = 𝜓𝑇𝑋, which can be solved using an on-line regression technique, 

such as recursive least squares (RLS) (Ljung 1999). Details of the RLS implementation are provided in 

Appendix C. Using the notation above, an alternate approach to estimating influx rate is by computing the 

instantaneous estimate: 

 

𝑞̂𝑟𝑒𝑠
𝑖𝑛𝑠𝑡 =

𝑉𝑦

𝛽̂(1 + 4𝑞𝐿𝐼1)
. 

 

 

(21) 
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Figure 2. Detailed flowchart for pore pressure and reservoir inflow estimation methodology. 

The estimation methodology is summarized in Figure 2. While advanced kick detection techniques are 

beyond the scope of this work, a simple, threshold-based methodology was applied on the measured pit 

gain and differential flow rate (i.e. return flow minus flow in rate). Since the reservoir model (Eq. 14) is 

only valid while the well is underbalanced, the RLS algorithm can only be applied over the time window 

starting from the detection of the kick up to the point when the well reaches an overbalanced state. Thus, 

in order to ensure the estimated parameters do not diverge, the RLS module needs to be stopped as soon 

as influx from the formation ceases, which the proposed algorithm infers when the differential flow rate 

and the pit gain both decrease below specified thresholds (values for these thresholds and other design 

parameters used in the simulations in Section 4 are given in Table 1). As the gas percolates in the annular 

space, a slow increase in flow out rate and pit gain are still observed, but their rate of change is much 

slower than when the kick enters the wellbore, and should not be misinterpreted as additional influx. 
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Table 1. Design parameters for RLS estimation algorithm. 

Parameter Value Parameter Value 

Pit gain kick detection 

threshold 
0.5 barrels 

Initial estimate of reservoir 

pressure (𝑃̂𝒓𝒆𝒔(0) 
Hydrostatic pressure + 

150 psi 

Differential flow rate kick 

detection threshold 
10 gal/min 

Initial estimate of reservoir 

PI  
1.46 ft

3
/min/psi 

Pit gain kick stop threshold 0.1 barrels 
Initial value of RLS 

regressor (𝜓(0)) 

𝛽𝐿
𝑉
[

1
−𝑃̂𝒓𝒆𝒔(0)

] 

Differential flow rate kick 

stop threshold 
1 gal/min 

Initial value of RLS 

covariance matrix 
2(𝜓(0)𝑇𝜓(0) + 𝑰)−1 

Low-pass filter time 

constant (𝝉) 
10 seconds

 
RLS forgetting factor  1 

 

4. Results and Discussion 
4.1. Validation of Reduced DFM 

The model described in Section 3.1 was validated on an experimental data set obtained from a well 

control test conducted at Louisiana State University. The test setup, illustrated in Figure 3, was detailed by 

Chirinos et al. (2011). An 11-bbl gas kick was simulated by injecting natural gas inside the 1.25-in tubing 

while water-based mud was continuously pumped through the annulus formed by the 3.5-in drill pipe and 

the 1.25-in tubing, with returns taken through the annulus between the 9.625-in casing and the 3.5-in drill 

pipe. A manually operated choke manifold was used to provide back-pressure, with the goal of keeping a 

constant standpipe pressure throughout the gas circulation. The mud circulation and gas injection rate 

recorded during the test were used as inputs to the model and are shown in Figure 4. Well geometry, mud 

properties and other model inputs are detailed in Table 2. Since there was no down-hole pressure 

measurement in the experimental setup, the bottom-hole pressure was inferred from the standpipe 

pressure and flow in rate according to the following formula (Guo and Liu, 2011):  

 

𝑃𝑏ℎ = 𝑃𝑑 + 𝜌𝐿𝑔ℎ −
2𝑓𝑑𝜌𝐿𝑞𝐿

2

𝐴𝑑
2𝐷𝑑

𝐿 

 

(22) 

where 𝑃𝑑 is the recorded standpipe pressure and 𝑓𝑑 is the drill pipe friction factor, calculated using the 

correlations for yield-power law fluids detailed in Ahmed and Miska (2009). 

The reduced DFM was implemented using an explicit, first-order finite difference scheme (see 

Appendix D for the numerical implementation details) with a time step of 1 second and 200 grid cells. 

The simulation results were compared to flow out and pit gain data (Figure 5) as well as casing pressure 

data recorded from the experiment (Figure 6), showing excellent match for pressure and reasonable 

agreement for the pit gain and flow out, as indicated by the figures and also the average percent errors in 

Table 3. For flow out, the average percent error was computed until the point when gas reached the surface 

at 100 minutes. After that point, the measured flow out rate was zero, while the recorded pit gain, shown 

in the lower plot in Figure 5, started decreasing about five minutes later, and the slow pit volume decrease 

(which was similar in both the measurement and model prediction) suggested that flow out rate could not 

have been zero. Based on this observation, it can be inferred that the reduced DFM predicts the correct 
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flow out rate, whereas the flow meter may have not been properly calibrated for two-phase flow. 

Consequently, the flow out data can be used for validating the model only when all the flow through the 

meter is in a liquid phase, which is the case until gas reaches the surface.  

 

 
Figure 3. Louisiana State University well schematic (from Chirinos et al., 2011). 

 

 
Figure 4. Mud flow in rate (upper) and gas injection rate (lower) from well control test. 
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Table 2. Input parameters for simulation on experimental data set. 

Parameter Value Parameter Value 

Well measured depth  5,884 ft Mud weight 8.6 lbm/gal 

True vertical depth 5,884 ft Plastic viscosity 8 cP 

Casing shoe depth 5,884 ft Yield point 2 lbf/(100ft
2
) 

Casing size 9.625 in Bulk modulus 2.15x10
5
 psi 

Drill pipe outer 

diameter 
3.5 in Choke valve coefficient 0.107 ft

2
 

Drill pipe inner 

diameter 
2.6 in 

Choke gas expansion 

factor 
0.25 

Gas injection tubing 

diameter 
1.25 in Surface temperature 93 °F 

Mud circulation rate 
90-150 

gal/min 
Bottom-hole temperature 140 °F 

 

 
Figure 5. Comparison of experimental data with the reduced DFM, mud flow out (upper) and pit gain 

(lower). 
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Figure 6. Comparison of experimental data with the reduced DFM, bottom-hole pressure (upper) and casing 

pressure (lower). 

 

Table 3. Average percent error between experimental data and reduced DFM. 

Parameter Average percent error (%) 

Bottom-hole pressure 0.5 

Casing pressure 1.9 

Flow out rate 8.6 

Pit gain 10.4 

 

4.2. Pore Pressure and Reservoir Inflow Estimation Results 

The pore pressure and reservoir inflow estimation methodology from Section 3.2 was tested on an 

MPD well control scenario generated using the commercial multi-phase simulator OLGA (Bendiksen et 

al., 1991). The simulated case consisted of a 12,100-ft vertical land well with 9.625-in casing set up to 

8,000 ft and 3-in drill pipe extending down to the total depth. The simulation inputs are detailed in Table 

4. A 12-lbm/gal Newtonian water-based mud was circulated at a constant rate of 200 gal/min. At 12,090 ft 

the well intersected a dry gas reservoir with an average pore pressure of 7,750 psi, and a linear PI model 

was used to simulate the reservoir influx. The initial underbalance of 300 psi resulted in a 10-bbl kick 

taken over a period of 10 minutes. The choke opening was then adjusted using the built-in controller in 

OLGA to maintain a target bottom-hole pressure of 7,900 psi.  
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Table 4. Input parameters for OLGA simulation. 

Parameter Value Parameter Value 

Well measured depth  12,100 ft Plastic viscosity 30 cP 

True vertical depth 12,100 ft Yield point 0 

Casing shoe depth 8,000 ft Bulk modulus 3x10
5
 psi 

Casing size 9.625 in Reservoir pore pressure 7750 psi 

Hole / bit size 8.5 in Reservoir productivity index 
0.022 

ft
3
/min/psi 

Drill pipe outer 

diameter 
3 in Choke valve coefficient 0.0694ft

2
 

Drill pipe inner 

diameter 
2.5 in Choke gas expansion factor 0.3 

Mud circulation rate 200 gal/min Surface temperature 60 °F 

Mud weight 12 lbm/gal Bottom-hole temperature 150 °F 

 

During the RLS estimation, measured flow out and back-pressure were fed back to the algorithm for 

determining 𝑞𝑟𝑒𝑠, but after the influx ceased, the model was run in feedforward mode with 𝑞𝑟𝑒𝑠 set to 

zero, thus allowing comparison of predicted flow out and back-pressure to their measurements. The flow 

rate out trend is shown in the upper plot of Figure 7, indicating very good match with the OLGA data. The 

lower plot in Figure 7 gives the estimate of the gas influx rate, with both the RLS and instantaneous result. 

It should be noted that both show good agreement with the OLGA values during the kick, but once the 

influx stops, the instantaneous estimate starts to drift away from zero. This is a consequence of the 

difference between the predicted mud flow out rate and the OLGA data. That is, after the kick is known to 

have stopped, the instantaneous estimate can be used to gauge the correctness of the model prediction. 

The RLS estimate, on the other hand, is formulated directly from the reservoir model and will be equal to 

zero when the bottom-hole pressure exceeds the estimated pore pressure, and greater than zero, otherwise. 

This information will be useful to predict the size of secondary influxes which may arise, for instance, due 

the MPD system applying insufficient back-pressure while the kick is being circulated.  

 Figure 8 shows the estimates of pore pressure and PI, which converge in the proximity of the actual 

values (pore pressure estimate converged within 30 psi of the OLGA input, which is reasonable accuracy 

for practical purposes). This error can be further reduced if 𝑃𝑏ℎ is directly measured from PWD 

equipment, if such equipment is available and data sampling rates are sufficiently high, instead of being 

computed from the reduced DFM. It should be noted that the RLS algorithm was started after an initial pit 

gain of 0.5 bbl, which is sufficiently early to capture the magnitude of the influx, however, if higher 

thresholds are used for starting the algorithm, some of the gas entering the well would not be accounted 

for by the model, leading also to larger estimation errors. The low pit gain threshold for starting the RLS 

should not be an issue for MPD systems, where high-accuracy flow instrumentation enables kick 

detection at very low influx volumes (“micro influxes”) (Santos et al., 2003). Alternately, the RLS may be 

turned on before a kick is confirmed, and if the estimates are seen to diverge, the algorithm can be re-

started. Also, the instantaneous influx rate estimate (Eq. 21), which is continuously updated, may be used 

as input to the reduced DFM before the influx is confirmed by the detection algorithm. Finally, Figure 9 
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shows the comparison of OLGA pressure data to the values predicted by the reduced DFM, displaying 

good agreement as well.  

 

 
Figure 7. Mud flow rate out from OLGA and predicted by the reduced DFM (upper); estimated gas influx 

rate (lower). 

 
Figure 8. Reservoir pore pressure (upper) and PI (lower) estimated by the RLS algorithm. Actual values are 

the OLGA simulation inputs. 
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Figure 9. Bottom-hole pressure from OLGA and predicted by the reduced DFM (upper); surface back-

pressure from OLGA and predicted by reduced DFM (lower). 

One of the main advantages of this approach, compared to currently available methods for real-time 

pore pressure determination while drilling, is that it does not require intentional reduction of back-

pressure to ascertain the pore pressure value. The algorithm can be running in the background during 

normal MPD operations and does not interfere with existing well control procedures and kick detection 

systems. While this paper is focused on gas kick scenarios, the methodology presented can be extended to 

oil or water kicks, with the appropriate modifications to the reduced DFM, particularly to the slip law and 

equation of state (see Eqs. A6 and A8 in Appendix A). To this end, logic for determining the influx type 

(e.g. Karimi Vajargah et al., 2014) and robust kick detection algorithms (e. g. Pournazari et al., 2015) may 

be added to the current approach. It is further noted that a linear reservoir inflow model was employed in 

the present formulation; however, it should be possible to extend the algorithms to accommodate more 

general, non-linear inflow models (Wiggins et al., 1996), which require the application of non-linear 

regression techniques. 

 

5. Summary and Conclusions  

 This paper presents a novel approach for estimating pore pressure and reservoir inflow rates during 

gas kick events in Managed Pressure Drilling operations. The algorithm leverages a simplified 

transient two-phase wellbore flow model coupled with a reservoir inflow model, and a Recursive 

Least Squares regression technique. 

 The two-phase flow model consists of a transport equation governing the gas dynamics, coupled 

with an ordinary differential equation representing pressure dynamics in response to changes in 

choke opening. These equations yield a reduced Drift-Flux Model that can capture the essential 

two-phase dynamics during a gas kick with less numerical complexity compared to high-fidelity 



16 

 

simulators. This allows for a fast, explicit numerical solution scheme, which is suitable for real-

time implementation in automatic control and estimation applications. 

 The model was successfully validated on experimental data from a test well where a kick was 

simulated through controlled gas injection. Very good agreement was observed between the 

measured and the modeled casing pressure and pit gain, and also between the bottom-hole pressure 

predicted by the model and the value derived from the standpipe pressure measurements. 

 A low-pass filtered version of the pressure dynamics equation from the reduced DFM is used for 

dynamic estimation of the reservoir inflow rate, pore pressure and reservoir productivity from real-

time pressure and flow data. The algorithm only requires surface sensor measurements and does 

not interfere with well control procedures. It presents an advantage over existing methods for 

dynamic pore pressure testing in MPD, as it does not require surface back-pressure to be 

intentionally reduced until influx is observed. 

 The estimation methodology was tested on a MPD gas kick scenario generated with a commercial 

multi-phase simulator. The algorithm was able to estimate pore pressure within 30 psi of the actual 

value, and also the estimated influx rate and reservoir productivity index were matched closely. 

The estimated kick size was then input to the reduced DFM to predict the flow rate out and back-

pressure during the kick circulation, which gave a very good match with actual values from the 

simulator.  

 In the proposed algorithm, it is possible to compute the influx rate either directly from the RLS 

estimates of reservoir pressure and productivity index, or as an instantaneous value based on low-

pass filtered surface measurements. In the simulation scenario, both approaches gave accurate 

influx rate predictions while flow from the formation was active, but the instantaneous value was 

shown to drift away from zero once the influx stopped. While the instantaneous value is useful for 

evaluating the validity of the model prediction, for practical application, it is recommended not to 

use the instantaneous value once the well is overbalanced so as to avoid mistakenly inferring that 

additional kicks are taken. 
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Nomenclature  
 

Abbreviations 

CBHP= Constant Bottom-Hole Pressure 

DFM = Drift-Flux Model 

MPD = Managed Pressure Drilling 

PI     = Productivity Index 
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PWD = Pressure While Drilling 

RLS  = Recursive Least Squares 

SBP  = Surface Back-Pressure 

SPP   = Standpipe Pressure 

UBD = Underbalanced Drilling 

 

Symbols 
A  = Wellbore cross-sectional area (m

2
) 

𝐴𝑑  = Drill pipe cross-sectional area (m
2
) 

𝑐𝐺 = Velocity of sound in gas (m/s) 

𝐶𝑣 = Choke valve coefficient (m
2
) 

𝐶0 = Slip law profile parameter 

D’  = Dimensionless wellbore hydraulic diameter 

D  = Wellbore hydraulic diameter (m) 

𝐷𝑑    = Drill pipe hydraulic diameter (m) 

𝐸𝐺   = Local gas expansion rate (1/s) 

𝑓 = Wellbore friction factor  

𝑓𝑑  = Drill pipe friction factor 

F = Low-pass filter 

g = Gravitational constant (m/s
2
) 

h  = Well true vertical depth (m) 

i  = Cell index in numerical scheme 

I  = Identity matrix 

𝐼0 = Gas expansion variable due to hydrostatic term (m
3
/s) 

𝐼1 = Gas expansion variable due to frictional term (s/m
3
) 

𝐼𝑣 = Integral in gas velocity gradient equation 

J = Reservoir productivity index (m
3
/s/Pa) 

L  = Well measured depth (m) 

n  = Time index in numerical scheme 

N  = Number of grid cells in numerical scheme 

P = Pressure (Pa) 

𝑷 = RLS covariance matrix 

𝑞  = Volumetric flow rate (m
3
/s) 

RG = Ideal gas constant (J/kg/K) 

s = Laplace variable 

S = Source term in momentum balance equation (Pa/m) 

𝑆̅ = Approximated source term in momentum balance (Pa/m) 

t = Time (s) 

𝛥𝑡 = Time step in numerical scheme (s) 

T = Wellbore temperature (K) 
𝑇𝐸𝐺  = Total volumetric gas expansion rate (m

3
/s) 

𝑇𝑋𝐸 = Pressure dynamics source term due to gas expansion (m
3
/s) 

v = Fluid velocity (m/s) 

vcr = Characteristic velocity in slip model (m/s) 

v∞ = Slip velocity (m/s) 

V = Wellbore volume (m
3
) 
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x = Position along wellbore (m) 

𝛥𝑥 = Cell size in numerical scheme (m) 

𝑋 = Vector of estimated parameters in RLS algorithm 

𝑦 = Output of RLS equation 

Y = Choke gas expansion factor 

z = Choke opening 

𝑍𝐺   = Gas compressibility factor 

 

Greek letters 
𝛼 = Volume fraction 
𝛼𝐿 
∗  = Slip law profile parameter 
𝛽𝐿 = Liquid bulk modulus (Pa) 

𝛽̅ = Effective bulk modulus of gas-liquid mixture (Pa) 

𝛾 = Gas adiabatic constant 

𝛤 = Source term in mass balance equation (kg/m
3
/s) 

𝛤∗  = Normalized mass balance source term (1/s) 

𝜙 = Regressor in RLS estimation 

𝜓 = Filtered regressor in RLS estimation 

𝜖 = Convenience variable in RLS algorithm 

𝜆 = RLS forgetting factor 

𝜌 = Density (kg/m
3
) 

𝜌̅ = Approximated density (kg/m
3
) 

𝜎 = Gas-liquid interfacial tension (N/m) 

𝜃 = Well inclination (rad) 

𝜏 = Low-pass filter time constant (s) 
𝜉, 𝜁 = Dummy variables in integrals and summations  

 

 

Subscripts 

bh = bottom-hole 

c = choke/casing 

d = drill pipe 

G = gas 

L = liquid 

m = mixture 

res = reservoir 

s  = separator 

 

Superscripts  

inst = instantaneous 

 

Accents 

𝑥̂ = Estimated variable 

𝑥̅ = Approximated variable 
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SI Metric Conversion Factors 

bbl × 1.589 873 E-01 =m
3 

cP × 1.0 E-03 = Pa∙s 

ft × 3.048 E-01 = m 

(°F - 32)/1.8 E+00 = °C 

gal × 3.785 412 E-03 = m
3 

in. × 2.54 E-02 = m 

lbf × 4.448 222 E+00 = N 

lbm × 4.535 924 E-01 = kg 

psi × 6.894 757 E+03 = Pa 
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Appendix A. Derivation of the Reduced Drift-Flux Model  

The derivation starts from the classical two-phase Drift-Flux formulation (Gavrilyuk and Fabre, 1996): 

 
𝜕(𝛼𝐿𝜌𝐿)

𝜕𝑡
+
𝜕(𝛼𝐿𝜌𝐿𝑣𝐿)

𝜕𝑥
= Γ𝐿 , 

 

(A1) 

𝜕(𝛼𝐺𝜌𝐺)

𝜕𝑡
+
𝜕(𝛼𝐺𝜌𝐺𝑣𝐺)

𝜕𝑥
= Γ𝐺 , (A2) 

 

𝜕(𝛼𝐿𝜌𝐿𝑣𝐿 + 𝛼𝐺𝜌𝐺𝑣𝐺)

𝜕𝑡
+
𝜕(𝑃 + 𝛼𝐿𝜌𝐿𝑣𝐿

2 + 𝛼𝐺𝜌𝐺𝑣𝐺
2)

𝜕𝑥
= 𝑆, (A3) 

where 𝛼𝑖 , 𝑣𝑖 , 𝜌𝑖 , Γ𝑖 are volume fraction, velocity, density and mass source terms, for the 

gas and liquid phases (denoted by subscripts G and L, respectively), and S is the momentum source term, 

defined as:  

  

𝑆 =  −𝜌𝑚𝑔𝑐𝑜𝑠𝜃 −
2𝑓𝜌𝑚𝑣𝑚|𝑣𝑚|

𝐷
, 

(A4) 

 

 

where 𝜌𝑚,  𝑣𝑚 can be found from the mixture relations: 

 

𝜌𝑚 = 𝛼𝐺𝜌𝐺 + 𝛼𝐿𝜌𝐿;  𝑣𝑚 = 𝛼𝐺𝑣𝐺 + 𝛼𝐿𝑣𝐿 
(A5) 

 

In the above, Eqs. A1-A2 represent the gas and liquid mass balances, respectively, and Eq. A3 is the 

momentum balance. The gas and liquid velocities are related through the slip law: 

  

𝑣𝐺 = 𝐶0𝑣𝑚 + 𝑣∞ =
𝛼𝐺𝑣𝐺 + 𝛼𝐿𝑣𝐿
1 − 𝛼𝐿

∗ + 𝑣∞, 
(A6) 

 

 

where we define the profile parameter 𝛼𝐿
∗ ≡ (𝐶0 − 1)/𝐶0, and the slip velocity 𝑣∞. Several correlations 

exist for computing 𝐶0and 𝑣∞ (see e.g. Choi et al., (2012), Bhagwat and Ghajar (2014)), in our case we 

are assuming that 𝐶0 is constant and 𝑣∞ is obtained using the Shi et al. (2005) model, detailed in 

Appendix B. We also note the closure relations: 

 

𝛼𝐺 + 𝛼𝐿 = 1 (A7) 

and 

𝑃 = 𝑍𝐺𝜌𝐺𝑅𝐺𝑇. (A8) 
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Eq. A8 is the gas equation of state, where the compressibility factor, 𝑍𝐺 , can be computed as a function of 

the pressure and temperature profile in the well (for instance, the Hall-Yarborough correlation (Ahmed, 

2006) may be used).  

 

The following assumptions and simplifications are made for the reduced DFM derivation: 

1. The liquid phase density is constant. In practice, this will not be the case, as density varies with 

pressure and temperature, but an average value could be taken over the length of the well. 

2. Distributed pressure transients are neglected. This assumption is justified by the fact that void 

wave propagation is typically several orders of magnitude slower than pressure wave propagation 

in drilling fluids (Masella et al., 1998). 

3. When computing the frictional pressure drop, a uniform mixture velocity is used. 

4. When computing the gas velocity profile, pressure transients are neglected. 

 

The derivation starts with the following relation, found by rewriting the slip law (Eq. A6):  

 

𝛼𝐿𝑣𝐿 = (𝛼𝐿 − 𝛼𝐿
∗)𝑣𝐺 − (1 − 𝛼𝐿

∗)𝑣∞. 
(A9) 

 

 

Substituting Eq.A9 into Eq. A1, with the assumption of constant 𝜌𝐿 and 
𝜕[(1−𝛼𝐿

∗)𝑣∞]

𝜕𝑥
≅ 0, we get: 

 
𝜕𝛼𝐿
𝜕𝑡

+
𝜕[(𝛼𝐿 − 𝛼𝐿

∗)𝑣𝐺]

𝜕𝑥
=
Γ𝐿
𝜌𝐿
, 

(A10) 

 

 

which, after applying the product rule for derivatives, combined with Eq. A7, yields:  

 
𝜕𝛼𝐺
𝜕𝑡

+ 𝑣𝐺
𝜕𝛼𝐺
𝜕𝑥

= (𝛼𝐿 − 𝛼𝐿
∗)
𝜕𝑣𝐺
𝜕𝑥

−
Γ𝐿
𝜌𝐿
. 

(A11) 

 

 

From Eq. A2, we can apply the product rule to obtain the following relationship:   

 
𝜕𝑣𝐺
𝜕𝑥

=
Γ𝐺
𝛼𝐺𝜌𝐺

−
1

𝜌𝐺
(
𝜕𝜌𝐺
𝜕𝑡

+ 𝑣𝐺
𝜕𝜌𝐺
𝜕𝑥

) −
1

𝛼𝐺
(
𝜕𝛼𝐺
𝜕𝑡

+ 𝑣𝐺
𝜕𝛼𝐺
𝜕𝑥

). 
(A12) 

 

 

Inserting Eq. A12 into the right-hand side of Eq. A11 results, after algebraic manipulation, in:  

 
𝜕𝛼𝐺
𝜕𝑡

+ 𝑣𝐺
𝜕𝛼𝐺
𝜕𝑥

= 𝐸𝐺 + Γ𝐺
∗ − Γ𝐿

∗,   
(1) 

 

 

where we define the following variables:   

 

𝐸𝐺 ≡ −
𝛼𝐺(𝛼𝐿 − 𝛼𝐿

∗)

(1 − 𝛼𝐿
∗)𝜌𝐺

(
𝜕𝜌𝐺
𝜕𝑡

+ 𝑣𝐺
𝜕𝜌𝐺
𝜕𝑥

) ; Γ𝐺
∗ ≡

𝛼𝐿 − 𝛼𝐿
∗

1 − 𝛼𝐿
∗  
 Γ𝐺
𝜌𝐺
 ;  Γ𝐿

∗ ≡
𝛼𝐺

1 − 𝛼𝐿
∗  
 Γ𝐿
𝜌𝐿
. 

(A13) 
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where 𝐸𝐺  can be interpreted as the local gas expansion rate inside a grid cell, while Γ𝐺
∗ and Γ𝐿

∗ are 

contributions of the mass source terms to the overall gas dynamics. 

Using the variables defined in Eq. A13, we can simplify Eq. A12 as:  

 
𝜕𝑣𝐺
𝜕𝑥

=
𝐸𝐺 + Γ𝐺

∗

𝛼𝐿 − 𝛼𝐿
∗ +

1

1 − 𝛼𝐿
∗

Γ𝐿
𝜌𝐿
. 

(A14) 

 

 

The boundary condition for Eq. 1, defined at the bottom of the well (x=0), is: 

 

𝛼𝐺(0, 𝑡) =
𝑞𝐺
𝐴𝑣𝐺0

, (12) 

 

 
where 

𝑣𝐺0 ≡ 𝑣𝐺(0, 𝑡) = 𝐶0
𝑞𝐺 + 𝑞𝐿
𝐴

+ 𝑣∞, 
(7) 

 

 

with 𝑞𝐺 , 𝑞𝐿 gas and liquid injection rates, respectively. The result in Eq. 7 was derived from the slip law 

(Eq. A6) by setting 𝑣𝑚 =
𝑞𝐺+𝑞𝐿

𝐴
 .  

 

Next, we derive a relationship between gas phase density and pressure, in the form of:  

 
𝑑𝜌𝐺
𝜌𝐺

=
𝑑𝑃

𝛾𝑃
, 

(A15) 

 

 

where 𝛾 = 1 for the isothermal case, and 𝛾  is equal to the adiabatic gas constant for an isentropic process. 

𝛾 = 1.3 is used in the simulations (assuming methane at standard temperature conditions). The relation in 

Eq. A15 allows us to write the gas expansion rate in terms of pressure and its time and space derivatives:  

 

𝐸𝐺 ≡ −
𝛼𝐺(𝛼𝐿 − 𝛼𝐿

∗)

(1 − 𝛼𝐿
∗)𝛾𝑃

(
𝜕𝑃

𝜕𝑡
+ 𝑣𝐺

𝜕𝑃

𝜕𝑥
) = −

𝛼𝐺(1 − 𝐶0𝛼𝐺)

𝛾𝑃
(
𝜕𝑃

𝜕𝑡
+ 𝑣𝐺

𝜕𝑃

𝜕𝑥
).  

(A16) 

 

 

We can also write the mass source term Γ𝐺
∗ as a function of pressure, using the relationship 𝑐𝐺

2 =
𝛾𝑃

𝜌𝐺
 

 

Γ𝐺
∗ =

𝛼𝐿 − 𝛼𝐿
∗

1 − 𝛼𝐿
∗  
 cG
2Γ𝐺
𝛾𝑃

.  
(A17) 

 

 

The pressure gradient, 
𝜕𝑃

𝜕𝑥
, can be calculated by imposing a static momentum balance in place of Eq. A3:.  

 

𝜕𝑃

𝜕𝑥
= 𝑆̅(𝑥) = −(𝜌𝐿𝑎𝐿 + 𝜌̅𝐺𝛼𝐺) [𝑔𝑐𝑜𝑠𝜃 +

2𝑓(𝑞𝐺 + 𝑞𝐿)|𝑞𝐺 + 𝑞𝐿|

𝐴2𝐷
],   

(9) 

 

 

where a mean or approximated gas density 𝜌̅𝐺 needs to be used since pressure is implicitly dependent on 

gas density (from Eq. A8). For instance, 𝜌̅𝐺 may be computed from Eq. A8 assuming a linear temperature 
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profile, and the pressure profile at the previous time instant. Integrating Eq. 9 from wellbore depth, x, to 

the top side (x=L) gives 

 

𝑃(𝑥) = 𝑃𝑐 +∫ 𝑆̅(𝜉)𝑑𝜉
𝑥

𝐿

, 
(8) 

 

 

where 𝑃(𝑥 = 𝐿) = 𝑃𝑐. The friction factor, f, in Eq. 9 is calculated from yield-power law fluid correlations 

for the annulus (Ahmed and Miska, 2009). 

 

Having obtained an expression for 𝜕𝑃/𝜕𝑥, we can further simplify the gas velocity expression (Eq. A14). 

Using Eq. A16-A17 together with Eq. 9, and the fact that 𝐶0 =
1

1−𝛼𝐿
∗ , yields: 

 

𝜕𝑣𝐺
𝜕𝑥

= 𝐶0 (−
𝛼𝐺𝑣𝐺
𝛾𝑃

𝑆̅ −
𝛼𝐺
𝛾𝑃

𝜕𝑃

𝜕𝑡
+
𝑐𝐺
2

𝛾𝑃
Γ𝐺 +

Γ𝐿
𝜌𝐿
). 

(A19) 

 

 

If we further neglect 𝜕𝑃/𝜕𝑡 when computing the velocity gradient, we have the approximation   
 

𝜕𝑣𝐺
𝜕𝑥

≈ 𝐶0 (−
𝛼𝐺𝑣𝐺
𝛾𝑃

𝑆̅ +
𝑐𝐺
2

𝛾𝑃
Γ𝐺 +

Γ𝐿
𝜌𝐿
). 

(A20) 

 

 

Integrating Eq. A20 over the length of the well, we get:  

 

𝑣𝐺(𝑥) = 𝑒
−𝐼𝑣(𝑥) (𝑣𝐺0 + 𝐶0∫ [

𝑐𝐺
2(𝜁)

𝛾𝑃(𝜁)
Γ𝐺(𝜁) +

Γ𝐿(𝜁)

𝜌𝐿
]

𝑥

0

 𝑒𝐼𝑣(𝜁)𝑑𝜁), 
(10) 

 

 

where  

 

𝐼𝑣(𝑥) = ∫
𝐶0𝛼𝐺(𝜉)

𝛾𝑃(𝜉)

𝑥

0

𝑆̅(𝜉)𝑑𝜉. 
(11) 

 

 

Furthermore, by neglecting the distributed pressure transients, we can assume that 𝜕𝑃/𝜕𝑡 ≈ 𝑑𝑃𝑐/𝑑𝑡. The 

pressure dynamics at the wellhead are formulated using a lumped expression, similar to the one used by 

Zhou et al. (2011)  

 
𝑑𝑃𝑐
𝑑𝑡

=
𝛽𝐿
𝑉
(𝑞𝐿 + 𝑞𝐺 + 𝑇𝐸𝐺 − 𝑞𝑐), 

(A21) 

 

 

where the 𝑇𝐸𝐺  term accounts for the gas expansion in the well, which can be obtained by integrating the 

gas velocity gradient (Eq. A19) times the cross-sectional area over the length of the well (note that here 

we include the term 𝜕𝑃/𝜕𝑡 ≈ 𝑑𝑃𝑐/𝑑𝑡): 
 

𝑇𝐸𝐺 = ∫ 𝐴𝐶0 (−
𝛼𝐺𝑣𝐺
𝛾𝑃

𝑆̅ +
𝑐𝐺
2

𝛾𝑃
Γ𝐺 +

Γ𝐿
𝜌𝐿
)

𝐿

0

𝑑𝑥 −
𝑑𝑃𝑐
𝑑𝑡

∫ 𝐴
𝐶0𝛼𝐺
𝛾𝑃

𝐿

0

𝑑𝑥. 
(A22) 
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If we define 

 

𝑇𝑋𝐸 ≡ ∫ 𝐴𝐶0 (−
𝛼𝐺𝑣𝐺
𝛾𝑃

𝑆̅ +
𝑐𝐺
2

𝛾𝑃
Γ𝐺 +

Γ𝐿
𝜌𝐿
)

𝐿

0

𝑑𝑥 = 𝐴(𝑣𝐺(𝐿) − 𝑣𝐺0), 
 

 (6) 

 

 

and substitute Eq. A22 into Eq. A21, then bring the 
𝑑𝑃𝑐

𝑑𝑡
 term to the left hand side of Eq. A21, we have:   

 

𝑑𝑃𝑐
𝑑𝑡

(1 +
𝛽𝐿
𝑉
∫

𝐶0𝛼𝐺
𝛾𝑃

𝐴𝑑𝑥
𝐿

0

) =
𝛽𝐿
𝑉
(𝑞𝐿 + 𝑞𝐺 − 𝑞𝑐 + 𝑇𝑋𝐸).  

(A23) 

 

 

Finally, if we define the effective bulk modulus 

 

𝛽̅ ≡
𝛽𝐿

1 +
𝛽𝐿
𝑉 ∫

𝐶0𝛼𝐺
𝛾𝑃 𝐴𝑑𝑥

𝐿

0

   

,  (5) 

 

 

we obtain the final equation:  

 

𝑑𝑃𝑐
𝑑𝑡

=
𝛽̅

𝑉
(𝑞𝐿 + 𝑞𝐺 − 𝑞𝑐 + 𝑇𝑋𝐸).  

(2) 

 

 

 
Appendix B. Slip Model 

From Shi et al. (2005), we can calculate the slip velocity between the gas and liquid phases, according 

to:  

 

𝑣∞ =
(1 − 𝛼𝐺𝐶0)𝐶0𝐾(𝛼𝐺)𝑣𝑐𝑟

𝛼𝐺𝐶0√
𝜌𝐺
𝜌𝐿
+ 1 − 𝛼𝐺𝐶0 

,  (B1) 

 

 

where  

 

𝑣𝑐𝑟 = [
𝜎𝑔(𝜌𝐿 − 𝜌𝐺)

𝜌𝐿
2 ]

1
4

, 

 

(B2) 

 

𝐾(𝛼𝐺) =

{
 
 

 
 

1.53

𝐶0
,    𝛼𝐺 ≤ 0.2 

3.182 (1 − 𝑒−
𝐷′

9.3833) , 𝛼𝐺 > 0.4

, 
(B3) 
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with 

 

𝐷′ = √
𝑔(𝜌𝐿 − 𝜌𝐺)

𝜎
𝐷 

 

(B4) 

 

and 𝐶0 the slip law profile parameter. For 0.2 ≤ 𝛼𝐺 < 0.4 , the 𝐾(𝛼𝐺) value can be obtained by linear 

interpolation between the two expressions in Eq. B3. 

 
Appendix C. Recursive Least Squares Algorithm 

We start from the linear model  

 

𝑦 = 𝜙𝑇𝑋,   
(C1) 

 

 

where y and 𝜙 represent measured parameters (y is a scalar, while 𝜙 is a vector) and 𝑋 is the vector of 

unknown parameters. If we denote  𝑋̂(𝑡) as the time-varying estimate of X, 𝑷(𝑡) the covariance matrix 

and 0 < 𝜆 ≤ 1 the forgetting factor, we have the RLS scheme (Ljung, 1999): 

 

𝑷(𝑡) =
1

𝜆
[𝑷(𝑡 − 1) − 𝜖(𝑡)𝜙𝑇(𝑡)𝑷(𝑡 − 1)],   

(C2) 

 

 

 

𝑋̂(𝑡) = 𝑋̂(𝑡 − 1) + 𝜖(𝑡)[𝑦(𝑡) − 𝜙𝑇(𝑡)𝑋̂(𝑡 − 1)],   
(C3) 

 

with: 

𝜖(𝑡) = 𝑷(𝑡 − 1)𝜙(𝑡)[𝜆 + 𝜙𝑇(𝑡)𝑷(𝑡 − 1)𝜙(𝑡)]−1. 
 

(C4) 

 

 
Appendix D. Numerical Scheme  

The reduced DFM equations are discretized using an explicit algorithm consisting of a first-order 

upwind scheme in space and the forward Euler method in time. In discretized form, Eq. 1 becomes, using 

the notation 𝛼𝐺(𝑖, 𝑛) = 𝛼𝐺(𝑖Δ𝑥, 𝑛Δ𝑡 ), with the cell index 𝑖 = 1,2, . . , 𝑁, and the time index 𝑛 = 1,2, …:  

 

𝛼𝐺(𝑖, 𝑛 + 1) − 𝛼𝐺(𝑖, 𝑛)

Δ𝑡
+ max (𝑣𝐺(𝑖, 𝑛), 0) [

𝛼𝐺(𝑖, 𝑛) − 𝛼𝐺(𝑖 − 1, 𝑛)

Δ𝑥
]

+ min (𝑣𝐺(𝑖, 𝑛), 0) [
𝛼𝐺(𝑖 + 1, 𝑛) − 𝛼𝐺(𝑖, 𝑛)

Δ𝑥
] = 𝐸𝐺(𝑖. 𝑛) + Γ𝐺

∗(𝑖, 𝑛) − Γ𝐿
∗(𝑖, 𝑛), 

 

(D1) 

 

 

where  
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𝐸𝐺(𝑖. 𝑛) = −
𝛼𝐺(𝑖, 𝑛)(1 − 𝐶0𝛼𝐺(𝑖. 𝑛))

𝛾𝑃(𝑖, 𝑛)
(
𝛽̅(𝑛)

𝑉
[𝑞𝐿(𝑛) + 𝑞𝐺(𝑛) − 𝑞𝑐(𝑛) + 𝑇𝑋𝐸(𝑛)]

+ 𝑣𝐺(𝑖, 𝑛)𝑆̅(𝑖, 𝑛) ) , 

 

(D2) 

 

Γ𝐺
∗ ≡ 

(1 − 𝐶0𝛼𝐺)𝑐𝐺
2(𝑖)Γ𝐺(𝑖, 𝑛)

𝛾𝑃(𝑖. 𝑛)
;    Γ𝐿

∗ ≡ 
C0αG(𝑖, 𝑛)Γ𝐿(𝑖, 𝑛)

𝜌𝐿
, 

 

(D3) 

 

𝑃(𝑖, 𝑛) = 𝑃𝑐(𝑛) −∑𝑆̅(𝜉, 𝑛) Δ𝑥

𝑁

𝜉=𝑖

, 

 

(D4) 

 

𝑆̅(𝑖, 𝑛) = −(𝜌𝐿𝑎𝐿(𝑖. 𝑛) + 𝜌̅𝐺(𝑖, 𝑛)𝛼𝐺(𝑖. 𝑛)) [𝑔𝑐𝑜𝑠(𝜃(𝑖)) +
2𝑓(𝑞𝐺(𝑛) + 𝑞𝐿(𝑛))

2

𝐴2𝐷
] , 

 

(D5) 

 

𝜌̅𝐺(𝑖, 𝑛) =
𝑃(𝑖, 𝑛 − 1)

𝑍𝐺(𝑖, 𝑛 − 1)𝑅𝐺𝑇(𝑖)
, 

(D6) 

 

  

𝑣𝐺(𝑖, 𝑛) = 𝑒−𝐼𝑣(𝑖.𝑛) (𝑣𝐺(1, 𝑛) + 𝐶0∑[
𝑐𝐺
2(𝑖)

𝛾𝑃(𝜁, 𝑛)
Γ𝐺(𝜁, 𝑛) +

Γ𝐿(𝜁, 𝑛)

𝜌𝐿
]

𝑖

𝜁=1

 𝑒𝐼𝑣(𝜁,𝑛 ) Δ𝑥) , 

 

 

(D7) 

 

𝐼𝑣(𝑖, 𝑛) =∑[
𝐶0𝛼𝐺(𝜉, 𝑛)

𝛾𝑃(𝜉, 𝑛)
𝑆̅(𝜉, 𝑛)]  Δ𝑥

𝑖

𝜉=1

, 
 

(D8) 

 

 

𝑣𝐺(1, 𝑛) =
𝐶0
𝐴
[𝑞𝐺(𝑛) + 𝑞𝐿(𝑛)] + 𝑣∞, 

(D9) 

 

 

with the boundary condition  

  

𝛼𝐺(1, 𝑛) =
𝑞𝐺(𝑛)

𝐴𝑣𝐺(1, 𝑛)
, 

(D10) 

 

 

Finally, Eq. 2 is discretized, with 𝑃𝑐(𝑛) = 𝑃𝑐(𝑛Δ𝑡),  using the explicit Euler method: 

 

𝑃𝑐(𝑛 + 1) − 𝑃𝑐(𝑛)

Δ𝑡
=  
𝛽̅(𝑛)

𝑉
[𝑞𝐿(𝑛) + 𝑞𝐺(𝑛) − 𝑞𝑐(𝑛) + 𝑇𝑋𝐸(𝑛)], 

 

(D11) 

 

 

where 
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𝛽̅(𝑛) =
𝛽𝐿

1 +
𝛽𝐿
𝑉
∑ [

𝐶0𝛼𝐺(𝜉. 𝑛)
𝛾𝑃(𝜉. 𝑛)

𝐴]𝑁
𝜉=1  Δ𝑥  

, 

 

 

 

(D12) 

 

𝑇𝑋𝐸 = 𝐴(𝑣𝐺(𝑁, 𝑛) − 𝑣𝐺(1, 𝑛)).  
 

(D13) 

 

 


