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Abstract. We prove that if E and F are large ideals of B(G) for which the
associated coaction functors are exact, then the same is true for E ∩ F . We
also give an example of a coaction functor whose restriction to the maximal
coactions does not come from any large ideal.

1. Introduction

In [BGW] Baum, Guentner, and Willett, striving to make advances in the Baum-
Connes conjecture, studied crossed-product functors σ that take an action (A,α)
of a locally compact group G to a C∗-algebra A !α,σ G lying between the full and
reduced crossed products. It is particularly important to know when σ is exact in
the sense that it preserves short exact sequences. Motivated by this, in [KLQa] we
introduced coaction functors, a certain type of functor on the category of coactions
of G. Every coaction functor gives rise to a crossed-product functor by composing
with the full-crossed-product functor. Among other things, we showed that if the
coaction functor is exact, then so is the associated crossed-product functor. We
paid particular attention to the coaction functors τE coming from large ideals E of
the Fourier-Stieltjes algebra B(G). An obvious question is, “For which large ideals
E is the coaction functor τE exact?” In the current paper we will call E exact if
τE is exact; for example, B(G) is exact, but the reduced Fourier-Stieltjes algebra
Br(G) is exact if and only if G is an exact group. In [KLQa, Remark 6.23] we asked
whether the intersection of two exact large ideals is exact, and we mentioned that
we had an idea of how to proceed, and promised to address the question in future
work. In the current paper we fulfill that promise in Theorem 3.2.

In [KLQa] we speculated that the proof would require a “somewhat more elab-
orate version of Morita compatibility”, and that it would “perhaps resemble the
property that Buss, Echterhoff, and Willett call correspondence functoriality (see
[BEWa, Theorem 4.9])”. It transpires that we ended up doing something slightly
different: rather than change our definition of Morita compatibility, we instead
combine it with another concept from [BEWa], namely the ideal property.

We also answer another question left open in [KLQa, Question 6.20]: there we
asked whether every coaction functor, when restricted to the maximal coactions, is
naturally isomorphic to one coming from a large ideal. In Example 3.16 we give a
counterexample, stealing a trick from [BEWa].
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2 KALISZEWSKI, LANDSTAD, AND QUIGG

2. Preliminaries

We briefly recall a few definitions from [KLQa]. In the classical category C∗ of
C∗-algebras, the morphisms are homomorphisms between the C∗-algebras them-
selves, not involving multipliers, and in the classical category Coact of coactions
the morphisms are morphisms in C∗ that are equivariant for the coactions. Since we
are interested in the classical category instead of the nondegenerate one (involving
nondegenerate homomorphisms into multiplier algebras), we regard maximalization
(A, δ) !→ (Am, δm) and normalization (A, δ) !→ (An, δn) as functors on Coact (and
we use the notation φm and φn for the respective images of a morphism φ).

We assume that we have fixed once and for all a maximalization functor (A, δ) !→
(Am, δm) and a normalization functor (A, δ) !→ (An, δn) on the classical cat-
egory of coactions, with canonical equivariant surjections qm

A : Am → A and
ΛA : A → An. Recall from [KLQa, Definition 4.1] that a coaction functor is a func-
tor τ on the classical category of coactions, together with a natural transformation
qτ from maximalization to τ such that for each coaction (A, δ), the homomorphism
qτA : Am → Aτ is surjective and has kernel contained in the kernel of the canonical
map ΛAm : Am → An (which is both a normalization of (Am, δm) and a maxi-
malization of (An, δn)). Maximalization, normalization, and the identity functor
are all coaction functors. There are other known coaction functors, determined by
large ideals of the Fourier-Stieltjes algebra B(G) (see [KLQa, Section 6]). Recall
from [KLQb, Definition 3.1] that we say an ideal E of B(G) is large if it is weak*
closed, G-invariant, and nonzero (in which case it will necessarily contain Br(G),
by [KLQ13, Lemma 3.14]). In Example 3.16 we adapt a construction from [BEWa]
(who studied crossed-product functors defined on a category of actions) to define
new coaction functors not of the preceding types.

In [KLQa, Definition 4.10] we defined a coaction functor to be exact if it preserves
short exact sequences.

Let (A, δ) and (B, ϵ) be coactions, and let (X, ζ) be an (A, δ)−(B, ϵ) imprimitivity-
bimodule coaction. [KLQa, Lemma 4.15] gives an (Am, δm)−(Bm, ϵm) imprimitivity-
bimodule coaction (Xm, ζm) such that

Xm-Ind ker qm
B = ker qm

A

(see [KLQa, Lemma 4.21] for the latter). In [KLQa, Definition 4.16] we defined a
coaction functor τ to be Morita compatible if for every (X, ζ) as above we also have

Xm-Ind ker qτB = ker qτA.

Trivially, maximalization is Morita compatible, and by [KLQa, Proposition 6.10]
every coaction functor coming from a large ideal is Morita compatible.

Recall that in [KLQc, Definition 7.2] we called a coaction (A, δ) of G w-proper
(and in [KLQb, Definition 5.1] we used the term “slice proper”) if (ω⊗ id) ◦ δ(A) ⊂
C∗(G) for all ω ∈ A∗.

If (A, δ) is a coaction, we call an ideal I of A strongly invariant (see, e.g., [KLQa,
Definition 3.16]) if

span{δ(I)(1 ⊗ C∗(G))} = I ⊗ C∗(G).

Note that this is precisely what is needed for the restriction of δ to I to be a
coaction.
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3. Main result

We recall a few definitions from [KLQa, Section 6]: given any coaction (A, δ)
and any large ideal E of B(G), we define an ideal

AE = {a ∈ A : E · a = {0}},

and we write AE = A/AE for the quotient C∗-algebra. The quotient map QE
A :

A → AE is equivariant for δ and a coaction δE on AE , and (A, δ) !→ (AE, δE) is a
coaction functor that we denote by τE .

Definition 3.1. We call a large ideal E of B(G) exact if the associated coaction
functor τE is exact.

We will prove that the set of exact large ideals of B(G) is downward directed
by showing that it is in fact closed under finite intersections. By induction, Theo-
rem 3.2 below does the job. It remains an open question whether the intersection
of all exact large ideals of B(G) is exact.

Theorem 3.2. The intersection of two exact large ideals of B(G) is exact.

The key idea of our proof is the following: for two large ideals E and F of B(G),
we compare the intersection E ∩ F to the product. The following definition makes
this precise.

Definition 3.3. For two large ideals E, F ⊂ B(G) we write ⟨EF ⟩ for the weak*-
closed linear span of the set EF of products.

Remark 3.4. It is somewhat frustrating that we do not know of any examples of
exact large ideals other than B(G) (and, when G is exact, Br(G)). Perhaps other
examples could be found using techniques similar to those of [BGW, Section 5].

Note that ⟨EF ⟩ is a large ideal of B(G) contained in the intersection E ∩ F . In
[KLQa, Corollary 6.9] we showed that if E or F is exact, then ⟨EF ⟩ = E ∩ F . On
the other hand, in [KLQb, proof of Proposition 8.4] we observed that it follows from
work of [Oka14] that if G is a noncommutative free group and Ep is the weak*-
closure in B(G) of span{P (G)∩Lp(G)}, where P (G) denotes the set of positive-type
functions on G, then for for every p > 2 we have

⟨E2
p⟩ ⊂ Ep/2 " Ep.

Note that in [KLQb, Section 8], Ep was defined using B(G)∩Lp(G); it now seems
clear that this should be changed to span{P (G) ∩ Lp(G)} — see [BEWb, Proposi-
tion 2.13]. We are grateful to Buss, Echterhoff, and Willett for pointing this out to
us.

Another key idea in our strategy is to first do it for w-proper coactions. Although
w-properness is quite a strong hypothesis, in some sense it is not.

Lemma 3.5. Every coaction is Morita equivalent to a w-proper one.

Proof. Let (A, δ) be a coaction, with maximalization (Am, δm). Since (Am, δm) is
maximal, the double crossed product gives a coaction (B, ϵ), an Am−B imprimitiv-
ity bimodule X, and a δm−ϵ compatible coaction ζ on X. By [KLQc, Corollary 7.8],
(B, ϵ) is w-proper since it is a dual coaction. Let I be the kernel of the maximaliza-
tion map qm

A : Am → A, and let J be the ideal of B induced via the imprimitivity
bimodule X. Since the imprimitivity bimodule X is equivariant, there is a coaction
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ϵ̃ on the quotient B/J such that the given coaction (A, δ) is Morita equivalent to
(B/J, ϵ̃). By [KLQb, Proposition 5.3], the coaction ϵ̃ is w-proper. !

Lemma 3.6. If E and F are large ideals of B(G), then for every w-proper coaction
(A, δ) there is a unique isomorphism θA making the diagram

A
QE

A !!

Q⟨EF⟩
A

""

AE

QF
AE

""

A⟨EF ⟩
θA

≃ !!❴❴❴❴❴ (AE)F

commute.

Proof. We will show that ker QF
AE = A⟨EF ⟩/AE . Since kerQ⟨EF ⟩

A = A⟨EF ⟩, this
will imply that

kerQ⟨EF ⟩
A = kerQF

AE ◦ QE
A,

and the result will follow. For all a + AE ∈ AE = A/AE we have a + AE ∈
kerQF

AE = (AE)F if and only if F · (a + AE) = {AE}, equivalently F · a ⊂ AE ,
equivalently EF · a = {0}. By definition, ⟨EF ⟩ is the weak*-closed span of EF .
Since δ is w-proper, the map

f !→ f · a : B(G) → A

is weak*-to-weakly continuous, so EF · a = {0} if and only if ⟨EF ⟩ · a = {0}, i.e.,
a ∈ A⟨EF ⟩. Thus

kerQF
AE = (AE)F = A⟨EF ⟩/AE . !

The following result almost shows that the θA of Lemma 3.6 gives a natural
isomorphism between the coaction functors τ⟨EF ⟩ and τF ◦ τE .

Lemma 3.7. Let E and F be large ideals of B(G). Let (A, δ) and (B, ϵ) be w-
proper coactions, and let ψ : A → B be a δ − ϵ equivariant homomorphism. Then
the diagram

(3.1) A⟨EF ⟩ ψ⟨EF⟩
!!

θA

""

B⟨EF ⟩

θB

""

(AE)F

(ψE)F
!! (BE)F

commutes equivariantly for the appropriate coactions.
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Proof. Equation (3.1) is the outer square of the following diagram:

A⟨EF ⟩ ψ⟨EF⟩
!!

θA

""

B⟨EF ⟩

θB

""

A
ψ

!!

QE
A
""

Q⟨EF⟩
A

##""""""""""""""
B

QE
B

""

Q⟨EF⟩
B

$$♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥

AE

ψE
!!

QF
AE

%%♦♦♦
♦♦♦

♦♦♦
♦♦♦

♦
BE

QF
BE

&&""
"""

"""
"""

"

(AE)F

(ψE)F
!! (BE)F .

The left and right quadrilaterals commute by Lemma 3.6. The top, middle, and

bottom quadrilaterals commute by functoriality. Since Q⟨EF ⟩
A is surjective, it follows

that the outer square commutes. Since all maps except possibly for θA and θB

are equivariant for appropriate coactions, the isomorphisms θA and θB are also
equivariant. !

Definition 3.8. Let τ be a coaction functor. We say that a coaction (A, δ) is
τ -exact if for every strongly δ-invariant ideal I of A, the sequence

0 !! Iτ !! Aτ !! (A/I)τ !! 0

is exact.

Thus a coaction functor τ is exact if and only if every coaction is τ -exact.

Lemma 3.9. If E and F are exact large ideals of B(G), then every w-proper
coaction is τ⟨EF ⟩-exact.

Proof. Let (A, δ) be a w-proper coaction, and let I be a strongly δ-invariant ideal
of A. Then we have an equivariant short exact sequence

0 !! I
φ

!! A
ψ

!! B !! 0,

where φ is the inclusion, B = A/I, and ψ is the quotient map. We must show that
the sequence

(3.2) 0 !! I⟨EF ⟩ φ⟨EF⟩
!! A⟨EF ⟩ ψ⟨EF⟩

!! B⟨EF ⟩ !! 0

is exact.
Since E is exact, the sequence

0 !! IE φE

!! AE ψE

!! BE !! 0

is exact. Then since F is exact, the sequence

0 !! (IE)F (φE)F

!! (AE)F (ψE)F

!! (BE)F !! 0

is exact.
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By Lemma 3.7, we have an isomorphism

0 !! I⟨EF ⟩ φ⟨EF⟩
!!

θI ≃

""

A⟨EF ⟩ ψ⟨EF⟩
!!

θA ≃

""

B⟨EF ⟩ !!

θB≃

""

0

0 !! (IE)F

(φE)F
!! (AE)F

(ψE)F
!! (BE)F !! 0

of sequences, so the top sequence is exact since the bottom one is. !

The following is adapted from [BEWa, Definition 3.1].

Definition 3.10. We say a coaction functor τ has the ideal property if for every
coaction (A, δ) and every strongly δ-invariant ideal I of A, letting ι : I ↪→ A denote
the inclusion map, the induced map

ιτ : Iτ → Aτ

is injective.

Note that in the above definition, if τ has the ideal property, then the image
of Iτ in Aτ will be a strongly δτ -invariant ideal, and we will identify Iτ with this
image, regarding it as an ideal of Aτ .

[BEWa, Remark 3.4] says that the ideal property holds for every crossed-product
functor coming from a large ideal. This also follows from the following lemma.

Lemma 3.11. For every large ideal E of B(G) the coaction functor τE has the
ideal property.

Proof. This follows from [KLQa, Proof of Proposition 6.7], where it is shown that
[KLQa, Equation (6.4)] holds automatically. !

Remark 3.12. Every exact coaction functor has the ideal property, but normaliza-
tion is a coaction functor that is not exact but nevertheless has the ideal property.
We do not know an example of a decreasing coaction functor that is Morita com-
patible and does not have the ideal property.

Proposition 3.13. Let τ be a Morita compatible coaction functor with the ideal
property, and let (A, δ) and (B, ϵ) be Morita equivalent coactions. Then (A, δ) is
τ -exact if and only if (B, ϵ) is.

Proof. Let X be an equivariant A − B imprimitivity bimodule. Without loss of
generality assume that (B, ϵ) is τ -exact, let I be an invariant ideal of A, let J be
the ideal of B corresponding to I via X, and let

ψA : A → A/I,

ψB : B → B/J

be the quotient maps. We know that ψτ
B : Bτ → (B/J)τ is surjective and has

kernel Jτ , because we are assuming that (B, ϵ) is τ -exact.
Since maximalization is an exact coaction functor [KLQa, Theorem 4.11], the

homomorphism

ψm
A : Am → (A/I)m
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is surjective. Since qτ is a natural transformation from maximalization to τ , the
diagram

Am
ψm

A !!

qτ
A

""

(A/I)m

qτ
A/I

""

Aτ

ψτ
A

!! (A/I)τ

commutes. Thus ψτ
A is surjective. Since τ has the ideal property, Iτ is an ideal of

Aτ . For τ -exactness of (A, δ), it remains to show that Iτ = kerψτ
A.

Since τ is Morita compatible, by [KLQa, Lemma 4.19] we have an equivari-
ant Aτ − Bτ imprimitivity bimodule Xτ and a surjective qτA − qτB compatible
imprimitivity-bimodule homomorphism qτX : Xm → Xτ , where Xm is the equi-
variant Am − Bm imprimitivity bimodule of [KLQa, Lemma 4.14]. (Note that
[KLQa, Lemma 4.19] did not explicitly mention surjectivity of qτX , but this surjec-
tivity follows from that of qτA and qτB.) We visualize this using the diagram

Am

qτ
A

""

Xm

qτ
X

""

Bm

qτ
B

""

Aτ Xτ Bτ .

Similarly for qτX/Y : (X/Y )m → (X/Y )τ .
Consider the diagram

(3.3) Am

qτ
A

""

ψm
A

"""
"""

"""
"""

"

''""
"""

"""
"""

"

Xm

qτ
X

""

ψm
X

❘❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘

''❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘

Bm

qτ
B

""

ψm
B

❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙

((❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙

(A/I)m

qτ
A/I

""

(X/Y )m

qτ
X/Y

""

(B/J)m

qτ
B/J

""

Aτ

ψτ
A

"""
"""

"""
"""

"

''""
"""

"""
"""

"

Xτ

ψτ
X

❘❘❘❘❘❘❘❘

''❘
❘❘❘❘❘❘

Bτ

ψτ
B

❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙

((❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙

(A/I)τ (X/Y )τ (B/J)τ .

Claim: there is an imprimitivity-bimodule homomorphism ψτ
X as (3.3) indicates,

with coefficient homomorphisms ψτ
A and ψτ

B. To get a linear map ψτ
X such that the
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diagram

Xm
ψm

X !!

qτ
X

""

(X/Y )m

qτ
X/Y

""

Xτ

ψτ
X

!!❴❴❴ (X/Y )τ

commutes, it suffices to show that ker qτX ⊂ ker qτX/Y ◦ ψm
τ . Suppose x ∈ ker qτX .

Since ker qτX = Xm · ker qτB , by the Cohen-Hewitt factorization theorem we can
factor x = x′ · b, where b ∈ ker qτB . Then

qτX/Y ◦ ψm
X (x)

= qτX/Y ◦ ψm
X (x′ · b)

= qτA/I(x
′) · qτB/J ◦ ψm

B (b)

(since qτX/Y and ψm
X are imprimitivity-bimodule homomorphisms)

= qτA/I(x
′) · ψτ

B ◦ qτB(b) (by naturality of qτ )

= 0,

as desired. The computations required to verify that the linear map ψτ
X is an

imprimitivity-bimodule homomorphism are routine: for the right-module struc-
tures, let x ∈ Xτ and b ∈ Bτ . By surjectivity we can write x = qτX(x′) and
b = qτB(b′) with x′ ∈ Xm and b′ ∈ Bm, and then

ψτ
X(x · b) = ψτ

X

(
qτX(x′) · qτB(b′)

)

= ψτ
X ◦ qτX(x′ · b′)

= qτX/Y ◦ ψm
X (x′ · b′)

∗
= qτX/Y ◦ ψm

X (x′) · qτB/J ◦ ψm
B (b′)

= ψτ
X ◦ qτX(x′) · ψτ

B ◦ qτB(b′)

= ψτ
X(x) · ψτ

B(b),

where the equality at ∗ follows since qτX/Y and ψm
X are imprimitivity-bimodule

homomorphisms. Similarly for the left-module structures. For the right-hand inner
products, let x, y ∈ Xτ . Factor x = qτX(x′) and y = qτX(y′) with x′, y′ ∈ Xm. Then

ψτ
A

(
Aτ ⟨x, y⟩

)
= ψτ

A

(
Aτ ⟨qτX(x′), qτX(y′)⟩

)

= ψτ
A ◦ qτA

(
Am⟨x′, y′⟩

)

= qτA/I ◦ ψm
A

(
Am⟨x′, y′⟩

)

= (A/I)τ
〈
qτX/Y ◦ ψm

X (x′), qτX/Y ◦ ψm
X (y′)

〉

= (A/I)τ
〈
ψτ

X ◦ qτX(x′),ψτ
X ◦ qτX(y′)

〉

= (A/I)τ
〈
ψτ

X(x),ψτ
X(y)

〉
,

and similarly for the left-hand inner products. Thus ψτ
X is an imprimitivity-

bimodule homomorphism with coefficient homomorphisms ψτ
A and ψτ

B, proving the
claim.

It now follows from [EKQR06, Lemma 1.20] that

kerψτ
A = Xτ − Ind kerψτ

B = Xτ − Ind Jτ .
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Since we also have the imprimitivity-bimodule homomorphism ψm
X with coefficient

homomorphisms ψm
A and ψm

B , and since maximalization is an exact coaction functor,

Im = kerψm
A = Xm − Ind kerψm

B = Xm − Ind Jm.

Now δ restricts to a coaction (I, qI), and by surjectivity of qτ we have

Iτ = qτB(Im),

and similarly Jτ = qτB(Jm). Combining, we get

Iτ = qτA(Im)

= qτA(Xm − Ind Jm)

= Xτ − Ind qτB(Jm)

(since qτX is an imprimitivity-bimodule homomorphism)

= Xτ − Ind Jτ

= Xτ − Ind kerψτ
B

= kerψτ
A,

finishing the proof. !
Proof of Theorem 3.2. Let E and F be exact large ideals. By [KLQa, Corollary 6.9]
we have E ∩ F = ⟨EF ⟩, and by Lemma 3.11 the coaction functor τ⟨EF ⟩ has the
ideal property. Further, by [KLQa, Proposition 6.10] τ⟨EF ⟩ is Morita compatible.
The conclusion now follows from Lemma 3.9, Proposition 3.13, and Lemma 3.5. !
Remark 3.14. The technique of proof of [KLQa, Theorem 4.22] shows that the
greatest lower bound of any collection of exact coaction functors is exact. Thus
it might seem that Theorem 3.2 above implies that the intersection E of all exact
large ideals of B(G) is exact. However, it is not clear to us how to show that τE

coincides with the greatest lower bound of {τF : F is an exact large ideal}; it is
certainly no larger than this greatest lower bound, but that is all we can prove at
this point. To see what the problem is, let {Ei} be the set of exact large ideals of
B(G), so that E =

⋂
i Ei. The issue is whether, for a given coaction (A, δ), the

union
⋃

i AEi of the upward-direct family of ideals is dense in the ideal AE . This
is true for (C∗(G), δG) since then AE = ⊥E and

⋃
i
⊥Ei is dense in ⊥E because

(
⋃

i
⊥Ei)⊥ =

⋂
i(

⊥Ei)⊥ = E. In the general case, we have (AE)⊥ = span{EA∗}
(the weak*-closure of the linear span of products, where E acts on the dual space
A∗ in the natural way). Obviously EA∗ ⊂

⋂
i span{EiA∗}, but we cannot see a

reason to expect span{EA∗} to be weak*-dense in this intersection.

Remark 3.15. [BEWa, Subsection 9.2, Question (1)] asks whether, for every exact
group G and all p ∈ [2,∞), the crossed-product functor !Ep is exact, where Ep

is the weak*-closure of B(G) ∩ Lp(G) (which should be changed to span{P (G) ∩
Lp(G)}, as in the discussion preceding Lemma 3.5 of the current paper and in
[BEWb, Proposition 2.13]). We know that if G is a free group Fn with n > 1, then
for 2 ≤ p < ∞ the coaction functor τEp is not exact. Of course, Fn is exact. We
think we might be able to deduce that !Ep is not exact. Note that this is nontrivial:
if we compose a coaction functor τ with the full-crossed-product functor CP that
takes an action (B,α) to the dual coaction (B !α G, α̂), we get a crossed-product
functor µτ := τ ◦ CP that takes (B,α) to the coaction

(
(B !α G)τ , (α̂)τ

)
.
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By [KLQa, Proposition 4.24], if τ is exact or Morita compatible, then so is µτ . But
to give a negative answer to the [BEWa] question we would be trying to draw a
conclusion that goes in the “wrong direction”.

Example 3.16. [KLQa, Question 6.20] asks whether for every coaction functor
τ there necessarily exists a large ideal E of B(G) such that the restrictions of τ
and τE to the subcategory of maximal coactions (but still taking values in the
ambient category of coactions) are naturally isomorphic. Borrowing a trick from
Buss, Echterhoff, and Willett, we give a negative answer. We adapt a construction
from [BEWa, Section 2.5 and Example 3.5]. Let R be a collection of coactions. For
each coaction (A, δ) let RA,δ be the collection of all triples (B, ϵ,φ), where either
(B, ϵ) ∈ R and φ : (A, δ) → (B, ϵ) is a morphism in Coact or (B, ϵ) = (An, δn) and
ϵ : (A, δ) → (An, δn) is the normalization surjection. Then let

⎛

⎝
⊕

(B,ϵ,φ)∈RA,δ

(B, ϵ),
⊕

(B,ϵ,φ)∈RA,δ

ϵ

⎞

⎠

be the direct-sum coaction. We can form the direct sum

QR
A :=

⊕

(B,ϵ,φ)∈RA,δ

φ : A → M

⎛

⎝
⊕

(B,ϵ,φ)∈RA,δ

B

⎞

⎠ ,

which is a nondegenerate

δ −
⊕

(B,ϵ,φ)∈RA,δ

ϵ

equivariant homomorphism. Let AR be the image of A under this direct-sum
homomorphism QR

A . Then by the elementary Lemma 3.17 below there is a unique
coaction δR of G on AR such that QR

A is δ − δR equivariant.
Claim: for every morphism φ : (A, δ) → (B, ϵ) in Coact, there is a unique

morphism φR in Coact making the diagram

(A, δ)
φ

!!

QR
A

""

(B, ϵ)

QR
B

""

(AR, δR)
φR

!!❴❴❴❴❴ (BR, ϵR)

commute. We have

ker QR
A =

⋂

(C,η,ψ)∈RA,δ

kerψ,

while

kerQR
B ◦ φ =

⋂

(C,η,ψ)∈RB,ϵ

kerψ ◦ φ.

Since

{ψ ◦ φ : (C, η,ψ) ∈ RB,ϵ} ⊂ RA,δ,

we have

kerQR
A ⊂ ker QR

B ◦ φ,

and the claim follows.
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Uniqueness of the maps φR and surjectivity of the maps QR
A implies that there

is a unique decreasing coaction functor τR such that

(AτR , δτR) = (AR, δR)

and φτR = φR (see [KLQa, Definition 5.1 and Lemma 5.2]).
We will show that, whenever G is nonamenable, there is a suitable choice of

R for which the coaction functor τR is not Morita compatible, and therefore its
restriction to the maximal coactions is not naturally isomorphic to τE for any large
ideal E of B(G). Let

(A, δ) =
(
C[0, 1) ⊗ C∗(G), id ⊗ δG

)
.

We let
R = {(A, δ)}.

The coactions (A, δ) and (K ⊗ A, id ⊗ δ) are Morita compatible. We claim that
QR

A is faithful but QR
K⊗A is not. Since the coaction functor τR is decreasing, it will

follow that τR is not Morita compatible.
The triple (A, δ, id) is in the collection RA,δ, which implies that QR

A is faithful.
On the other hand, we claim that the only morphism in the collection RK⊗A,id⊗δ

is the normalization

idK⊗C[0,1) ⊗ λ : K ⊗ C[0, 1) ⊗ C∗(G) → K ⊗ C[0, 1) ⊗ C∗
r (G).

Since G is nonamenable, this normalization is not faithful. To verify the claim,
it will suffice to show that there are no nonzero homomorphisms from K ⊗ A to
A. Any such homomorphism would be of the form ψ1 × ψ2, where ψ1 and ψ2 are
commuting homomorphisms from K and A, respectively, to A, i.e.,

(ψ1 × ψ2)(k ⊗ a) = ψ1(k)ψ2(a).

Since A has no nonzero projections, the homomorphism ψ1 must be 0, and so
ψ1 × ψ2 = 0.

In Example 3.16, we used the following lemma, which is presumably folklore.
Since we could not find it in the literature we include the proof.

Lemma 3.17. Let (A, δ) and (B, ϵ) be coactions, and let φ : A → M(B) be a
δ − ϵ equivariant homomorphism. Let C = φ(A) ⊂ M(B). Then there is a unique
coaction η of G on C such that φ : A → C is δ − η equivariant.

Proof. By [Qui94, Corollary 1.7], it suffices to show that C is a nondegenerate
A(G)-submodule of M(B).

Now [KLQa, Proposition A.1] says that a homomorphism from A to B is δ − ϵ
equivariant if and only if it is a B(G)-module map. We need a slight extension
of this, namely the case of homomorphisms φ : A → M(B). The argument of
[KLQa, Proposition A.1] carries over, with the minor adjustment that in the second
line of the multiline displayed computation the map φ⊗ id must be replaced by the
canonical extension

φ⊗ id : M̃(A ⊗ C∗(G)) → M(B ⊗ C∗(G)),

which exists by [EKQR06, Proposition A.6]. Thus, since we are assuming δ − ϵ
equivariance, we can conclude that

A(G) · φ(A) = φ
(
A(G) · A

)
.

Since A is a nondegenerate A(G)-module, we are done. !

John Quigg


equivalent
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