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a b s t r a c t 
This paper considers a parallel algorithm for Bayesian network structure learning from large data sets. The 
parallel algorithm is a variant of the well known PC algorithm. The PC algorithm is a constraint-based al- 
gorithm consisting of five steps where the first step is to perform a set of (conditional) independence 
tests while the remaining four steps relate to identifying the structure of the Bayesian network using 
the results of the (conditional) independence tests. In this paper, we describe a new approach to paral- 
lelization of the (conditional) independence testing as experiments illustrate that this is by far the most 
time consuming step. The proposed parallel PC algorithm is evaluated on data sets generated at ran- 
dom from five different real-world Bayesian networks. The algorithm is also compared empirically with 
a process-based approach where each process manages a subset of the data over all the variables on the 
Bayesian network. The results demonstrate that significant time performance improvements are possible 
using both approaches. 

© 2016 The Authors. Published by Elsevier B.V. 
This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

1. Introduction 
A Bayesian network (BN) [1–5] is a powerful model for proba- 

bilistic inference. It consists of two main parts: a graphical struc- 
ture specifying a set of dependence and independence relations 
between its variables and a set of conditional probability distribu- 
tions quantifying the strengths of the dependence relations. The 
graphical nature of a Bayesian network makes it well-suited for 
representing complex problems, where the interactions between 
entities, represented as variables, are described using conditional 
probability distributions (CPDs). Both parts can be elicited from ex- 
perts or learnt from data, or a combination. Here we focus on 
learning the graphical structure from data using a variant of the 
PC algorithm [6] exploiting parallel computations. 

Large data sets both in terms of the number of variables and 
cases may challenge the efficiency of pure sequential algorithms 
for learning the structure of a Bayesian network from data. Since 

∗ Corresponding author. 
E-mail addresses: alm@hugin.com (A.L. Madsen), fj@hugin.com (F. Jensen), 

antonio.salmeron@ual.es (A. Salmerón), helgel@idi.ntnu.no (H. Langseth), 
tdn@cs.aau.dk (T.D. Nielsen). 

the computational power of computers is ever increasing and ac- 
cess to computers supporting parallel processing is improving, it 
is natural to consider exploiting parallel computations to improve 
the performance of learning algorithms. A number of different ap- 
proaches to parallel structure learning have been considered in the 
literature. In [7] the authors describe a MapReduce-based method 
for learning Bayesian networks from massive data using a search 
& score algorithm while [8] describes a MapReduce-based method 
for machine learning on multi-core computers. Also, [9] presents 
the R package bnlearn which provides implementations of some 
structure learning algorithms including support for parallel com- 
puting. [10] introduces a method for accelerating Bayesian network 
parameter learning using Hadoop and MapReduce. Other relevant 
work on parallelization of learning Bayesian networks from data 
include [11–15] . 

In this paper, we consider two different approaches to paral- 
lelization of the PC algorithm. First, we describe a new parallel ver- 
sion of the PC algorithm for learning the structure of a Bayesian 
network from large data sets on a shared memory computer us- 
ing threads. The proposed parallel PC algorithm is inspired by the 
work in [16] on vertical parallelization of TAN learning using Bal- 
anced Incomplete Block (BIB) designs [17] . Second, we consider 
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an embarrassingly parallel version of the PC algorithm. This ap- 
proach uses processes where each process manages a subset of 
the data over all variables. In order to distinguish between the 
two approaches, the latter approach is referred to as the hori- 
zontal PC algorithm . The horizontal PC algorithm is developed for 
distributed memory concurrent computers using the standardized 
and portable message-passing system referred to as the Message 
Passing Interface (MPI) [18] . The horizontal PC algorithm also takes 
advantage of BIB designs to improve efficiency. The results of an 
empirical evaluation show a significant improvement in time per- 
formance over a purely sequential implementation for both ap- 
proaches. 

This paper is organized as follows. Section 2 presents pre- 
liminaries and notation, including an introduction to BIB designs 
and the PC algorithm. Section 3 describes the details of both 
methods for parallel structure learning while Section 4 presents 
the results of an empirical evaluation of the algorithms on both 
real-world Bayesian networks and examples from literature. Fi- 
nally, Section 5 gives a discussion of the results and Section 6 
conclusions. 
2. Material and methods 

Let X = { X 1 , . . . , X n } be a set of random variables such that 
dom( X ) is the state space of X when X is discrete. The state space 
size is || X|| = | dom (X ) | . A BN N = (X , G, P) over the set X con- 
sists of an acyclic directed graph (DAG) G = (V, E) with vertices V 
and edges E and a set of CPDs P = { P (X | pa (X )) : X ∈ X } , where 
pa( X ) denotes the parents of X in G . The BN N specifies a joint 
probability distribution over X : 
P (X ) = n ∏ 

i =1 P (X i | pa (X i )) . 
We use upper case letters, e.g., X i and Y , to denote variables 

while sets of variables are denoted using calligraphy letters, e.g., X 
and S . In this paper, we only consider discrete variables. 

We let D = (c 1 , . . . , c N ) denote a data set of N complete cases 
over variables X = { X 1 , . . . , X n } and we let I(X, Y ; S) denote condi- 
tional independence between X and Y given S . When learning the 
structure of a DAG G from D, we use a test statistic to test the 
hypothesis I(X, Y ; S) based on counts in D. That is, to test the con- 
ditional independence hypothesis I(X, Y ;S) between two discrete 
variables X and Y conditional on S based on counts in D, we use 
the test statistic G 2 = ∑ 

S= s G 2 s where 
G 2 s = 2 ∑ 

x,y O xy | s log O xy | s 
E xy | s , (1) 

where O xy | s is the observed count for x and y given s and E xy | s is 
the expected count for x and y given s under the null-hypothesis. 
2.1. PC algorithm 

The task of learning the structure of a Bayesian network from 
D amounts to determining the structure G . The PC algorithm of 
[6] consists of five steps: 
1. Determine pairwise (conditional) independence I(X, Y ; S) . 
2. Identify the skeleton of G . 
3. Identify v -structures in G . 
4. Identify derived directions in G . 
5. Complete orientation of G making it a DAG. 

Step 1 is performed such that tests for marginal independence 
(i.e., S = ∅ ) are performed first followed by conditional indepen- 
dence tests where the size of S iterates over 1 , 2 , 3 , . . . taking the 
adjacency of vertices into consideration. That is, in the process 

of determining the set of conditional independence statements 
I(X, Y ; S) , the results produced earlier are exploited to reduce the 
number of tests. This means that we stop testing conditional in- 
dependence of X and Y once a subset S has been identified such 
that the independence hypothesis is not rejected. When testing 
the conditional independence hypothesis I(X, Y ; S) , the condition- 
ing set S is restricted to contain only potential neighbors of either 
X or Y , i.e., a variable Z is excluded from S, if the independence hy- 
pothesis between X (or Y ) and Z was previously not rejected. This 
is referred to as the PC ∗ algorithm by [6] , but we will refer to it as 
the PC algorithm. 

Steps 2–5 use the results of Step 1 to determine the DAG G . 
We will not consider Step 2–5 further in this paper as experi- 
ments demonstrate that the combined time cost of these steps 
is negligible compared to the time cost of Step 1. This is clearly 
demonstrated in the empirical evaluation. The interested reader is 
referred to, e.g., [6] for more details. 

Hence, our proposal for scaling up the PC algorithm is based 
on parallelizing Step 1, which involve the calculation of the G 2 
score (see Eq. (1) ) between each pair of variables. An immediate 
approach for scaling up the algorithm could be to simply generate 
one computing thread for each pair of variables and then process 
the threads in parallel. However, with n variables this approach 
would require accessing the underlying database (n 

2 ) times, induc- 
ing a significant overhead in terms of disk/network access. Alterna- 
tively, one might group the variables in blocks so that each block 
only accesses the data a single time in order to calculate the suf- 
ficient statistics required for computing the G 2 score for all pairs 
of variables within the block. A key issue here is finding an appro- 
priate block size and at the same time ensuring that the blocks, 
in combination, guarantee that all pairs of variables are considered 
exactly once. 

To get an intuitive understanding of this process we can as 
an analogy consider the organization of the Speedway World 
Championship (SWC). After the initial pre-qualifying rounds for 
the SWC, the remaining 16 highest ranked riders should be 
compared to each other to obtain a final ranking of the riders. 
One approach to achieve this would be to pair-up the riders so 
that each rider will participate in 15 races, yielding a total of 
120 rounds with two riders competing in each round. This setup 
would put a strain on the riders and not use the full capacity 
of the speedway track, which is designed to accommodate four 
riders simultaneously. Instead, the SWC employs a heat-system 
ensuring that each of the 16 riders will meet each of the other 
riders at some time during the competition. Specifically, the 
heat-system consists of 20 heats with four riders in a heat. Each 
rider participates in only five heats, and within a single heat all 
riders compete jointly, thereby meeting each other. After com- 
pleting the 20 heats, all pairs of riders will have met exactly 
once. This can also be seen by labeling the riders { 0 , . . . , 15 } and 
constructing these heats: H 1 = { 3 , 6 , 12 , 15 } , H 2 = { 4 , 5 , 10 , 13 } , 
H 3 = { 0 , 4 , 6 , 7 } , H 4 = { 0 , 10 , 11 , 15 } , H 5 = { 7 , 10 , 12 , 14 } , H 6 = 
{ 0 , 8 , 9 , 14 } , H 7 = { 0 , 1 , 3 , 13 } , H 8 = { 1 , 6 , 8 , 10 } , H 9 = { 7 , 9 , 13 , 15 } , 
H 10 = { 1 , 5 , 14 , 15 } , H 11 = { 8 , 11 , 12 , 13 } , H 12 = { 5 , 6 , 9 , 11 } , H 13 = 
{ 1 , 4 , 9 , 12 } , H 14 = { 3 , 5 , 7 , 8 } , H 15 = { 3 , 4 , 11 , 14 } , H 16 = { 2 , 6 , 13 , 
14 } , H 17 = { 1 , 2 , 7 , 11 } , H 18 = { 0 , 2 , 5 , 12 } , H 19 = { 2 , 4 , 8 , 15 } , and 
H 20 = { 2 , 3 , 9 , 10 } . 

When it comes to computing the G 2 scores, the 16 riders cor- 
respond to variables and each heat represents a block consisting 
of four variables to be pairwise compared. Thus, rather than han- 
dling pairs of variables independently and having to make data ac- 
cess (16 

2 ) = 120 times, we can instead make 20 blocks/heats of four 
variables each and thereby only having to access the full dataset 
20 times. Note that with the particular setup above, we are guar- 
anteed not to make redundant calculations as the G 2 score is com- 
puted exactly once for each pair X i , X j , 1 ≤ i, j ≤ n . 
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This approach of distributing variables/riders into blocks/heats 

is an instance of a so-called balanced incomplete block (BIB) design ; 
in fact the heat-system configuration employed by the Speedway 
World Championship corresponds to a (16, 4, 1)-BIB design (see 
Definition 2 ). 
2.2. Balanced incomplete block designs 

The use of block designs dates back to the statistical theory 
of design of experiments [19] , motivated in its origin by agricul- 
tural experiments. In this context the goal was to compare the 
yield of different plant varieties, considering that the yield could 
be significantly affected by the environment, i.e., the conditions 
under which the plants are grown. The idea was to compensate 
for the effect of the environment by setting up blocks of land 
small enough to assume uniform environmental conditions inside 
a block, and distribute the plant varieties among them. With space 
limitations inside each block, one may not be able to fit sufficient 
replications of all plant varieties inside a single block, and there- 
fore rather required that each pair of plant varieties would be allo- 
cated at least once to the same block to facilitate a fair comparison 
between them. The relation to both the SWC and our calculation of 
the G 2 scores is evident. 

BIB designs [17] can be applied to efficiently divide the statis- 
tical tests for independence among a set of, for instance, threads 
or processes. In particular, [16] describes how BIB designs can be 
applied to learn the structure of a TAN model from data by paral- 
lelization using processes on a distributed memory system. In this 
paper, we will use BIB designs to control the process of testing 
for marginal independence on a shared memory computer using 
threads and on a distributed memory system using processes. 

This section provides the necessary background information on 
BIB designs to follow the presentation of the method proposed. A 
design is defined as follows: 
Definition 1 (Design [17] ) . A design is a pair (X, A ) s.t. the follow- 
ing properties are satisfied: 
1. X is a set of elements called points , and 
2. A is a collection of non-empty subsets of X called blocks . 

In this paper, we only exploit cases where each block is a set 
(and not a multiset, i.e., we do not allow multiple instances of the 
same element in the set). Nevertheless, some definitions will con- 
sider multi-sets. A BIB design is defined as: 
Definition 2 (BIB design [17] ) . Let v, k , and λ be positive integers 
s.t. v > k ≥ 2. A ( v, k, λ)-BIB design is a design (X, A ) s.t. the 
following properties are satisfied: 
1. | X | = v, 
2. each block contains exactly k points, and 
3. every pair of distinct points is contained in exactly λ blocks. 

The number of blocks in a design is denoted by b and r de- 
notes the replication number , i.e., how often each point appears in 
a block. Property 3 in the definition is the balance property that 
we will exploit. In Step 1 of the PC algorithm, we want to test 
each pair of variables for marginal independence exactly once and 
therefore require λ = 1 . A BIB design is symmetric when the num- 
ber of blocks equals the number of points. This will not be the case 
in general. 
Example 1. Consider the (7, 3, 1)-BIB design. The blocks are (one 
out of a number of possibilities): 
{ 0 , 1 , 2 } , { 0 , 3 , 4 } , { 0 , 5 , 6 } , { 1 , 3 , 5 } , { 1 , 4 , 6 } , { 2 , 3 , 6 } , { 2 , 4 , 5 } . 

(2) 
This BIB design is symmetric as b = v . 

There is no single efficient method to construct all BIB designs. 
First, it is important to know that they do not exist for all com- 
binations of v, k , and λ. Second, the problem of finding a BIB de- 
sign is NP-complete [20] . To efficiently utilize them we have there- 
fore pre-calculated a number of BIB designs, and utilize those at 
run-time. Instead of storing the full designs, it is sufficient to store 
difference sets that can be used to generate some symmetric BIB 
designs: 
Definition 3 (Difference Set [17] ) . Assume (G, +) is a finite group 
of order v in which the identity element is 0. Let k and λ be posi- 
tive integers such that 2 ≤ k < v . A ( v, k, λ)-difference set in (G, +) 
is a subset D ⊆ G that satisfies the following properties: 
1. | D | = k, 
2. the multiset [ x − y : x, y ∈ D, x ̸ = y ] contains every element in 

G !{0} exactly λ times. 
In our case, we are restricted to using (Z v , +) , the integers 

modulo v . If D ⊆ Z v is a difference set in group (G, +) , then D + g = 
{ x + g| x ∈ D } is a translate of D for any g ∈ G . The multiset of all v 
translates of D is denoted Dev ( D ) and called the development of D 
[17, page 42] . 
Theorem 1 ( [17] , Theorem 3.8 p. 43) . Let D be a ( v, k, λ) -difference 
set in an Abelian group (G, +) . Then ( G, Dev ( D )) is a symmetric ( v, k, 
λ) -BIB design. 
Example 2. The set D = { 0 , 1 , 3 } is a (7, 3, 1)-difference set in 
(Z 7 , +) . The blocks constructed by iteratively adding one to each 
element of D (modulo 7) are: 
{ 0 , 1 , 3 } , { 1 , 2 , 4 } , { 2 , 3 , 5 } , { 3 , 4 , 6 } , { 4 , 5 , 0 } , { 5 , 6 , 1 } , { 6 , 0 , 2 } . 
Notice that the i th element of each block is unique across all 
blocks. This property will be used to assign blocks to threads 
in Section 3 . This was not the case for the blocks presented in 
Example 1 . 

The concept of a difference set can be generalized to the con- 
cept of a difference family . A difference family is a set of base 
blocks. A difference family can be used to generate a BIB design 
similarly to how difference sets are used. Table 1 shows a set of 
difference families for BIB designs on the form ( q , 6, 1), which we 
will use later. Base blocks for generating BIB-designs are tabulated, 
e.g., [21] , but can also be found computationally. The base blocks 
in Table 1 have been generated using SageMath 1 . The value k = 6 
is chosen for practical reasons: First, difference families for gener- 
ating the blocks need to be known to exist; second, we need to 
be able to store the count tables representing the joint distribu- 
tion of the variables in a block in memory, required to compute 
the G 2 scores. The main idea for parallelization considered in this 
paper is to use the ( q , 6, 1) design to distribute the computations 
of the scores over a set of computing units such that each score is 
computed exactly once from a smaller intermediate table over six 
variables. 
3. Theory 

There are two obvious approaches to parallelize the testing step 
of the PC algorithm. One approach is to assign the same number 
of cases to each thread. For a specific statistical test, each thread 
would then be responsible for computing the necessary counts 
over its data. The counts from all threads are combined and used 
to perform the statistical test. We refer to this as horizontal par- 
allelization. This approach is embarrassingly parallel, i.e., it requires 
little effort to separate the problem into a number of parallel tasks. 

1 www.sagemath.org . 
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Table 1 
Examples of difference families for a set of ( q , 6, 1) BIB designs. 

BIB design Difference family # (base blocks) b = q · # (base blocks) 
(31 ,6,1) {(1, 2, 7, 19, 23, 30)} 1 31 
(91 ,6,1) {(0, 1, 3, 7, 25, 38), 3 273 

(0, 5, 20, 32, 46, 75), 
(0, 8, 17, 47, 57, 80)} 

(151 ,6,1) { (1 , 32 , 118 , 7 , 73 , 71) , . . . } 5 755 
(211 ,6,1) { (0 , 1 , 107 , 55 , 188 , 71) , . . . } 7 1477 
(271 ,6,1) { (1 , 242 , 28 , 9 , 10 , 232) , . . . } 9 2439 

Horizontal parallelization mainly addresses learning from data sets, 
where N is large, i.e., many cases. Another approach is referred 
to as vertical parallelization as used by [16] for parallelization of 
TAN learning. In vertical parallelization, processes read all data for 
a subset of variables and the pairwise conditional independence 
tests between a pair of features conditional on the target variable 
are distributed using BIB designs. Vertical parallelization mainly 
addresses learning from data sets where |X | is large, i.e., many 
variables. Each process reads all data over the variables assigned 
to it. 

Improving the performance of the PC algorithm on large data 
sets can be achieved in a number of ways, see, for instance, 
[9,11,13] . We consider one approach where the counting of suffi- 
cient statistics for a specific conditional independence test is per- 
formed in parallel and an approach where the tests for (condi- 
tional) independence are performed in parallel. 

For the case where we use threads to perform tests in par- 
allel, two different approaches are considered. When testing for 
marginal independence the set of tests to be performed are known 
in advance and we use BIB designs to obtain parallelization. For 
the higher order tests we do not know which tests to perform as 
this depends on the results of previous tests. Therefore, we create 
an edge index array, which the threads iterate over to select the 
next edge to evaluate for each iteration. The edge index array con- 
tains all edges that have not been removed at an earlier step and it 
is sorted in decreasing order of the test score as explained below. 
Step 1 of the PC algorithm is implemented as three steps: 
1. Test all pairs X and Y for marginal independence. 
2. Perform the most promising higher-order conditional indepen- 

dence tests. 
3. Test for conditional independence (X, Y ;S) where |S| = 1 , 2 , 3 . 

In [6] bounding the order of the conditional independence re- 
lations is suggested as a natural heuristic to reduce the number of 
tests. Experiments show that by far the most edges are removed 
for low order tests and statistical tests become increasingly unre- 
liable as the size of the conditioning set increases. For these rea- 
sons, the size of the conditioning set is limited to three in the im- 
plementation. In Step 3 of the process of testing for conditional 
independence between X and Y given S, we select S as a subset 
of the potential neighbours of X (except Y ). Step 2 is explained in 
more detail below. This implementation of the PC algorithm was 
described in [22] , which also reports on an empirical evaluation of 
its performance. 
3.1. Test for marginal independence 

The tests for pairwise marginal independence I ( X, Y ; ∅ ) for all 
pairs X, Y should be divided into tasks of equal size such that 
we test exactly all pairs X, Y for marginal independence. This is 
achieved using BIB designs of the form ( q , 6, 1) where q is at least 
the number of variables. That is, q is selected as the smallest value 
larger than the number of variables such that a ( q , 6, 1)-BIB design 
is known to exist. This means that some points will not represent 

any variable and tests involving points not representing a variable 
are not performed. The blocks of the BIB design are generated us- 
ing a difference family (e.g., Table 1 ). Each block is used to com- 
pute the marginal counts of the variables represented in the block. 
If all the variables have the same state space size, then the count 
tables will be of equal size. 

The computation of the G 2 scores is parallelized assigning 
blocks to threads as each thread can compute the scores corre- 
sponding to a block in parallel with other threads. Blocks are as- 
signed to threads using the unique rank of each thread. A thread 
with rank r iterates over the block array and considers only blocks 
where the array index modulus t equals r where t is the number 
of threads (the uniqueness means that there is no need for syn- 
chronization). When a thread has selected a block, it performs all 
pairwise independence tests using a (3, 2, 1)-BIB design where the 
6-block is reduced to three blocks with four variables each (in this 
case each point corresponds to two variables). The operation of re- 
ducing a count table to a lower dimension by adding the counts for 
a specific configuration of the remaining variables is referred to as 
marginalization. The table of four variables is marginalized down 
to all pairs for testing where the first pair is ignored producing a 
total of (6 

2 ) = 15 tests. 
Fig. 1 illustrates this principle, assuming an example with q = 

31 variables labelled as X 0 , . . . , X 30 . The first block (second row in 
the figure) is { X 1 , X 2 , X 7 , X 19 , X 23 , X 30 }, corresponding to the dif- 
ference family for design (31, 6, 1), as given in Table 1 . The second 
block would be obtained by adding 1 to the index of the variable 
in each coordinate, modulo 31, i.e. { X 2 , X 3 , X 8 , X 20 , X 24 , X 0 }. Ac- 
cording to the same procedure, the third block would be { X 3 , X 4 , 
X 9 , X 21 , X 25 , X 1 } and so on. 

Taking the first block, we form three pairs of variables, P 1 = 
{ X 1 , X 2 } , P 2 = { X 7 , X 19 } and P 3 = { X 23 , X 30 } and compute the blocks 
of a (3, 2, 1)-BIB design, where each block has two pairs. These 
blocks are actually all the possible pairings of P 1 , P 2 and P 3 , namely 
{ P 1 , P 2 }, { P 2 , P 3 } and { P 3 , P 1 }, placed on the third row of Fig. 1 . It 
can be seen that every three pairings we come up with 5 × 3 = 15 
pairs of features for which the G 2 score is computed. In fact, each 
block corresponding to a pairing { P i , P j } yields 6 pairs of vari- 
ables, but the first one is discarded in order to avoid repetitions. 
In Fig. 1 it is indicated by marking both variables in red on the 
lower row. 

Notice that k = 6 represents 15 pairs and the number of times 
we count is reduced by a factor of 15, but each count is a factor 
three more expensive (as we are counting six variables instead of 
two variables). In addition, there is the task of marginalizing the 
count tables to pairs. If the number of states for some variables is 
high, then it may be more efficient to compute the score directly 
from the data set instead of creating an intermediate table. 
3.2. Extra heuristics 

Once the testing for marginal independence is completed, a 
new step compared to the traditional PC algorithm is performed. 
This step performs a set of the most promising tests for each edge, 
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X0 X1 X2 · · · X7 · · · X19 · · · X23 · · · X30 · · · Xn

X1 X2 X7 X19X23X30 X2 X3 X8 X20X24 X0 X3 X4 X9 X21X25 X1 · · ·

X1 X2 X7 X19 X7 X19X23X30 X23X30 X1 X2 · · ·

X1 X2 X1 X7 X1 X19 X2 X7 X2 X19 X7 X19 · · ·

Fig. 1. Example illustrating the use of ( q , 6, 1) and (3, 2, 1) designs. 

X1 X2

X3

X5

X4

1

2
3

4

5

7

6

Fig. 2. Example illustrating the use of the heuristic weights. 
i.e., tests with high likelihood of not rejecting the independence 
hypothesis. At this and the following steps of the conditional 
independence testing we do not know in advance which tests we 
need to perform (since we are using previous results to reduce the 
number of tests performed). 

For each edge ( X, Y ) the set of best candidate variables to in- 
clude in the conditioning set S are identified using the weight of 
a candidate variable Z . The weight w ( Z | ( X, Y )) is equal to the sum 
of the test scores for ( X, Z ) and ( Y, Z ). The idea is to condition on 
candidate variables that have a strongest association with both X 
and Y . 

We create an array of best candidates. This array contains up to 
five variables, which are all neighbours of X (or Y ) in the current 
graph. The main reason for limiting the number of candidate vari- 
ables to five is to make sure that the count table fits in memory. 
If variables have many states, then the number of candidates is re- 
duced as follows. First, the combined state space size of X and Y 
is computed. Next, candidate variables are selected until the com- 
bined state space size reaches the number of cases in the data set 
or all five candidates are selected. The objective is to perform as 
many tests where the null hypothesis is not rejected as quickly as 
possible. There is a balance between increasing the number of can- 
didate variables and the time and space required to perform the 
tests. Since the size of the count table increases exponentially with 
the number of candidate variables included, there is an upper limit 
on the number of candidate variables. The limit of five candidate 
variables has been set based on experience with simple tests. This 
array is sorted by the sum of the edge weights. 

The threads iterate over the sorted edge index array. A thread 
performs all tests for a selected edge (with the size of S run- 
ning from one to three) from the table of up to seven variables by 
marginalising down to the appropriate number of variables. From 
the table of counts all possible tests are performed generating sub- 
sets using the combinatorial number system [23] as we want to 
generate the most promising subsets first. 
Example 3 (Candidates) . Assume Fig. 2 shows the graph after 
completing the marginal independence tests where the score for 
marginal independence is shown above each edge and assume all 
other scores are zero. 

The edge with the highest score is ( X 3 , X 4 ) and it is the first 
edge in the edge index array. For the edge ( X 3 , X 4 ), variable X 2 
is the only candidate variable with weight w (X 2 | (X 3 , X 4 )) = 3 + 4 . 
This means that a table over X 2 , X 3 , X 4 is created. From this table 
the three conditional independence tests I ( X 2 , X 3 | X 4 ), I ( X 2 , X 4 | X 3 ), 
and I ( X 3 , X 4 | X 2 ) are performed by one thread. 

The three tests performed based on edge ( X 3 , X 4 ) may lead to 
removal of up to three edges (in the case the null hypothesis is 
not rejected for any of the tests). The aim of sorting the edges and 
selecting candidate variables based on a score is to remove edges 
from the graph as quickly as possible in order to reduce the num- 
ber of later tests. 

Assuming independence assumptions are rejected for the tests 
associated with ( X 3 , X 4 ), ( X 4 , X 5 ), and ( X 2 , X 5 ), we reach edge 
( X 2 , X 4 ) which has two candidates X 3 and X 5 with weights w (X 3 | 
(X 2 , X 4 )) = 3 + 7 = 10 and w (X 5 | (X 2 , X 4 )) = 5 + 6 = 11 . If the num- 
ber of candidate variables is limited to one, then only X 5 is con- 
sidered producing the count table over X 2 , X 4 , X 5 . Using an upper 
limit of five candidates (and assuming their joint state space is less 
than the number of cases), the count table over X 2 , X 3 , X 4 , X 5 is 
created. From this we can perform a total of seven conditional in- 
dependence tests. 

The extra heuristics step is responsible for finding a significant 
number of the independence relations. In combination, the step 
testing for marginal independence and the step performing the 
most promising higher-order independence tests based on heuris- 
tics usually find by far the highest number of independence re- 
lations meaning that higher order tests mainly ensure that no 
further independence relations can be found. This also suggests 
putting an upper limit on the size of the conditioning set. The tests 
performed for each edge are stored. 
3.3. Higher order independence testing 

Once testing for marginal independence and the testing based 
on heuristics are completed, the remaining higher order tests for 
each edge are performed (unless independence has been estab- 
lished at a previous step). The algorithm iterates over |S| from one 
to three stopping when an independence hypothesis I(X, Y ;S) is 
not rejected. The threads iterate over the sorted edge index array. 
Candidate variables to be included in the conditioning set S are de- 
termined as potential neighbours of either X or Y . The list of edges 
(the candidate and its potential neighbour X or Y ) is sorted as de- 
scribed above and all possible subsets are generated again using 
the combinatorial number system in order to perform the most 
promising tests first, i.e., a heuristic is used to identify the con- 
ditional independence test where the independence hypothesis is 
least likely to be rejected. 

In an iteration, each thread selects an edge and performs all 
conditional independence test for |S| = i and writes the results to 
the edge index array. There is only synchronization on the edge 
index array when a thread decides which edge to test and when 
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Table 2 
Networks from which data sets used in the experiments are generated. 

Data set |X | | E | Total CPT size 
Ship-Ship [24] 50 75 130 ,478 
Munin1 [25] 189 282 19 ,466 
Diabetes [26] 413 602 461 ,069 
Munin2 [25] 1003 1244 83 ,920 
SACSO [27] 2371 3521 44 ,274 

writing to the array as we need to ensure that two threads do not 
select the same edge to test and that a thread does not try to read 
results from the edge index array when another thread is writing 
its results to the array. This synchronization is also performed in 
the previous step. 
3.4. Horizontal parallel PC 

The horizontal parallel PC algorithm is designed for a dis- 
tributed memory architecture. The basic idea of the horizontal par- 
allel PC algorithm is to divide the data set D into subsets such that 
each process manages a proper subset of the cases over all vari- 
ables in the data. That is, given a data set D = { c 1 , . . . , c N } and p 
processes, the data D is divided into p disjoint subsets D 1 , . . . , D p 
of (approximately) equal size such that ⋃ 

i D i = D. 
The structure learning process is controlled by a master pro- 

cess m , which is responsible for creating a set of p worker pro- 
cesses. The process m performs all steps of the PC algorithm as 
described in Section 2.1 , whereas the computation of the required 
sufficient statistics to perform the conditional independence test- 
ing in Step 1 is divided among the p worker processes. That is, 
each time a test for (conditional) independence I(X, Y ; S) is to be 
performed the process m asks each process p to compute and re- 
turn the marginal count table over X, Y, S computed from the data 
set D p . When count tables over subsets of variables are commu- 
nicated, all possible tests are performed from these count tables. 
That is, if a table over, for instance, X 1 , X 2 , X 3 is communicated, 
then all tests for marginal independence and conditional indepen- 
dence on a single variable are performed from the table over X 1 , 
X 2 , X 3 . 

When data is complete, it is possible to exploit BIB designs 
to further improve the efficiency of the testing for marginal in- 
dependence. BIB designs are used in the same way as described 
in Section 3.1 . That is, when data is complete we use a ( q , 6, 1)- 
BIB design to speed up the testing for marginal independence. The 
benefit is twofold; we reduce the number of times each worker 
process has to make a parse over the data and we reduce the num- 
ber of times the master process has to communicate with each 
worker process. On the other hand, we are in some cases increas- 
ing the amount of data transmitted for each communication. We 
will evaluate the impact of using BIB designs in horizontal parallel 
PC algorithm. 

This approach is most naturally used for learning tasks where 
the number of cases is large. Thus, the implementation used in the 
experimental analysis is based on the use of processes. 
4. Results 

Random samples of data were generated from the five networks 
of different sizes listed in Table 2 . Three data sets are generated 
at random for each network with 10 0,0 0 0, 250,0 0 0, and 50 0,0 0 0 
cases. All generated data sets used are complete, i.e., there are no 
missing values in the data. In cases where data is not complete it is 
not possible to use BIB designs to the full extent described above. 
Therefore, we consider an example where data is made incomplete 
by adding an empty case to the data. 

The empirical evaluation is performed on a desktop computer 
named Odin and a computer cluster named Fyrkat. Odin runs Red 
Hat Enterprise Linux 7 with a six-core Intel (TM) i7-5820K 3.3 GHz 
processor and has 64 GB RAM. Odin has six physical and twelve 
logical cores. Fyrkat is a computer cluster where each worker node 
used has two Intel Xeon (TM) X5260 processors and 16 GB RAM. It 
has a total of 80 such nodes. This cluster system uses SLURM (Sim- 
ple Linux Utility for Resource Management) for resource manage- 
ment. Odin is used to evaluate both approaches on shared memory 
while Fyrkat is used to evaluate the horizontal parallel PC on dis- 
tributed memory. All test programs are implemented using the C 
programming language and HUGIN API version 8.3. On Odin par- 
allelization is achieved using POSIX threads and on Fyrkat paral- 
lelization is achieved using MPI. 
4.1. Parallel PC 

The parallel PC algorithm is implemented employing a shared 
memory multi-core architecture. All data is loaded into the main 
shared memory of the computer where the process of the program 
is responsible for creating a set of POSIX threads to achieve paral- 
lelization. In the experiments, the number of threads used by the 
program is in the set {1, 2, 3, 4, 6, 8, 10, 12}, where the case of one 
thread is considered the baseline and corresponds to a sequential 
program. 

The average computation time is calculated over five runs with 
the same data set. The computation time is measured as the 
elapsed (wall-clock) time of the different steps of the parallel PC 
algorithm. We measure the computation time of the entire algo- 
rithm in addition to the time for identifying the skeleton (Step 2), 
identifying v -structures (Step 3) as well as identifying derived di- 
rections (Step 4) and completing the orientation of edges (Step 5) 
combined. 

Fig. 3 (left) shows the average run time in seconds (left axis) 
and speed-up factor (right axis) for Ship-Ship using 50 0,0 0 0 cases. 
Notice that the computation time is low for the Ship-Ship net- 
work even with one thread meaning that the potential improve- 
ment from parallelization is limited as the evaluation shows. 
Fig. 3 (right) shows the average run time and speed-up factor for 
Munin1 using 250,0 0 0 cases where the speed-up deteriorates for 
six or more threads illustrating the principle of diminishing re- 
turns. The additional threads add overhead to the process and we 
expect that the increase in time cost is due to the synchronization 
on the edge index array. 

Fig. 4 (left) and (right) show the average run time and speed- 
up factor for Diabetes using 250,0 0 0 and 50 0,0 0 0 cases, respec- 
tively. The speed-up factor increases smoothly for both 250,0 0 0 
and 50 0,0 0 0 cases. 

Fig. 5 (left) and (right) show the average run time and speed- 
up factor for Munin2 using 250,0 0 0 and 50 0,0 0 0 cases, respec- 
tively. For 250,0 0 0 cases there is a smooth improvement in speed- 
up whereas for 50 0,0 0 0 cases the speed-up factor drops slightly 
using ten or twelve threads. 

Fig. 6 (left) and (right) show the average run time and speed- 
up factor for SACSO using 250,0 0 0 and 50 0,0 0 0 cases, respectively. 
The experiment on SACSO using 50 0,0 0 0 cases is the task with the 
highest number of variables and cases considered in the evalua- 
tion. This task produces an average speed-up of a factor 6.46 with 
average run time dropping from 737 to 114 s. The experiment on 
Diabetes using 50 0,0 0 0 cases is the task taking the longest time to 
complete. This task produces an average speed-up of a factor 6.36 
with average run time dropping from 3084.65 to 484.65 s. 

Step 1 of the PC algorithm consists of marginal independence 
tests, extra heuristics and higher order conditional independence 
tests. Fig. 7 shows the time costs for the marginal independence 
tests and extra heuristics. 
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(a) Ship-Ship 500,000
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(b) Munin1 250,000

Fig. 3. Average run times for Ship-Ship with 50 0,0 0 0 cases and Munin1 250,0 0 0 cases. 
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(a) Diabetes 250,000
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(b) Diabetes 500,000

Fig. 4. Average run times for Diabetes with 250,0 0 0 and 50 0,0 0 0 cases, respectively. 
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(a) Munin2 250,000
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Fig. 5. Average run times for Munin2 with 250,0 0 0 and 50 0,0 0 0 cases, respectively. 
Figs. 8 and 9 show the time costs for higher order tests for each 

size of the conditioning set. It is clear from Figs. 7–9 that the most 
time consuming step is the marginal independence tests where a 
large number of edges are excluded from the graph. 

Table 3 shows the average time cost of identifying the skeleton 
(Step 2), identifying the v -structures (Step 3) and identifying de- 
rived directions as well as completing the orientation to obtain a 
DAG (Step 4 and Step 5). 

It is clear from Table 3 that the costs of Step 2–5 are negligible 
compared to the total cost. 

Table 3 
Average run times in seconds for Steps 2–5. 

Data set Skeleton v -structures Orientation 
(Step 2) (Step 3) (Step 4 & 5) 

Ship-Ship 0 0 0 
Munin1 0 .005 0 0 .001 
Diabetes 0 .001 0 .004 0 .002 
Munin2 0 .006 0 .002 0 .034 
SACSO 0 .051 5 .692 0 .502 
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(a) SACSO 250,000
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(b) SACSO 500,000

Fig. 6. Average run times for SACSO with 250,0 0 0 and 50 0,0 0 0 cases, respectively. 
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(a) SACSO 500,000, marginal
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(b) SACSO 500,000, extra heuristics

Fig. 7. Average run times for SACSO with 50 0,0 0 0 cases for marginal independence testing and extra heuristics, respectively. 

Fig. 8. Average run times for SACSO with 50 0,0 0 0 cases for higher order tests using |S| = 1 and |S| = 2 , respectively. 
4.2. Horizontal parallel PC 

The horizontal parallel PC algorithm is implemented employ- 
ing a distributed memory multi-processor architecture. The imple- 
mentation is based on MPI where a master process is responsible 
for performing all steps of the PC algorithm using a set of worker 
processes to compute sufficient statistics for subsets of the data in 
parallel. The communication between the master and worker pro- 
cesses is performed using MPI. In the experimental evaluation of 
the horizontal parallel PC algorithm, we will consider the effect of 
using ( q , 6, 1)-BIB designs to improve performance. BIB designs can 
only be used for the set of variables with complete data. Thus, in 
order to evaluate the impact of BIB designs on performance, we 
add a single empty case to each data set considered in the evalua- 

tion. Incomplete data is handled at the level of each independence 
test I(X, Y ; S) where a configuration over X, Y and S with a miss- 
ing value is ignored. Since data is made incomplete by adding a 
single empty case, we are in practice using the same data in the 
evaluation (just without exploiting the fact that data is complete). 

The average computation time is calculated over five runs with 
the same data set. The computation time is measured as the 
elapsed (wall-clock) time of the entire program. 

Fig. 10 shows the average run times of the horizontal parallel 
PC algorithm as a function of the number of worker threads for 
SACSO with 50 0,0 0 0 cases of complete and incomplete data run- 
ning on Fyrkat, respectively. As expected, the average run time for 
the complete case is significantly lower than for the incomplete 
case. The difference between having complete and incomplete data 
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Fig. 9. Average run times for SACSO with 50 0,0 0 0 cases for higher order tests using 
|S| = 3 . 
is twofold. First, in the incomplete data case there is no use of 
BIB designs in the marginal independence test. Second, no extra 
heuristic tests are performed involving variables with incomplete 
data. The difference between Fig. 10 (a) and (b) shows that these 
two optimizations produce a speed-up factor of more than two for 
the horizontal parallel PC algorithm. 

Fig. 11 shows the average run times of horizontal parallel PC for 
SACSO with 50 0,0 0 0 cases of complete and incomplete data run- 
ning on Odin, respectively. In comparison, Fig. 6 (right) shows the 
average run time of the parallel PC algorithm for the same network 
and data set. 

Recall that Figs. 10 and 11 show the average time cost as a func- 
tion of the number of worker processes (in addition to the master 
process). In the case of one worker process, this process still has to 
communicate the count tables to the master process (running on a 
different com puter). This is the reason that there is a difference in 
time performance between parallel PC and horizontal PC for the 
value one. 

Recall that Odin is a shared memory computer with a single 
CPU (six physical cores and 12 logical cores) whereas Fyrkat is a 
computer cluster with distributed memory. The significant differ- 
ence in the average run time for the same task is probably due to 
different CPU performance. 
5. Discussion 

This paper considers parallel Bayesian network structure learn- 
ing from data using a variant of the PC algorithm. Two approaches 
to parallelization have been considered in the paper. One approach 
is designed for a multi-core shared memory architecture whereas 
the other approach is designed for a computer cluster with dis- 

tributed memory. The first approach is based on the use of threads 
with all data cases stored in shared memory. 

The PC algorithm consists of five main steps where the focus of 
this paper has been on performing the independence tests in par- 
allel as the results in Section 4 clearly demonstrate that the total 
time cost of Steps 2–5 are negligible compared to the time cost of 
Step 1. 

Step 1 of the PC algorithm consists, as presented in this paper, 
of three steps. In the first step the tests for marginal independence 
are performed. Parallelization of this step in both approaches is 
based on the use of difference sets and families where the tests 
to be performed are known in advance as all pairs are to be tested 
for marginal independence. In the second step a set of the most 
promising higher order tests are performed whereas in the third 
step tests for conditional independence are performed using con- 
ditioning sets of size one, two and three, respectively. 

In the statistical tests for marginal independence, BIB designs 
are used on the subset of variables with complete data. BIB designs 
on the form ( q , 6, 1) are used to produce counts tables over six 
variables. If variables have many states and there are only a few 
cases, then this table may be larger than the number of cases in 
the original data set. Therefore, the approach requires a minimum 
number of cases. 

The edge index array is the central bottleneck of the approach 
as it is the only element that requires synchronization. There is no 
need for synchronization during the marginal independence test- 
ing. Synchronization is limited to selecting which edge to test and 
to determine which remaining tests need to be performed. There 
is no synchronization related to the counting. The counting usually 
being the most time consuming element of testing for conditional 
pairwise independence. 

The horizontal parallel PC approach is based on distributing a 
subset of the data over all variables to a set of worker processes. 
This approach is embarrassingly parallel. Each process holds a dis- 
tinct subset of the data cases over all variables and it is responsible 
for computing partial counts over this subset each time the master 
process needs to perform a test. When the horizontal parallel PC 
approach exploits the use of BIB designs (over variables with com- 
plete data), the tables communicated may become large. We have 
used a limit on the count tables equal to the number of cases in 
the original data set. 

The results of the empirical evaluation show a significant time 
performance improvement over the pure sequential method for 
both approaches. For most cases considered there is a point where 
using additional threads or processes does not improve perfor- 
mance illustrating the principle of diminishing returns. In a few 
cases, where the number of variables is low, the number of cases is 
low, or both, increasing the number of threads used may increase 
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Fig. 10. Average run times for SACSO with 50 0,0 0 0 on Fyrkat using complete and incomplete data, respectively, as a function of the number of worker processes. 
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Fig. 11. Average run times for SACSO with 50 0,0 0 0 on Odin using complete and incomplete data, respectively, as a function of the number of worker processes. 
time costs. Notice that on SACSO with complete data, the thread- 
based version is faster and offers a better speed-up factor than the 
process-based approach. 

The PC algorithm is known to be sensitive to the order in which 
the conditional independence tests are performed. This means that 
the number of threads used by the algorithm may impact the re- 
sult as the order of tests is not invariant under the number of 
threads used. This is a topic of future research. 

There is some variance in the run time measured. This should 
also be expected as the evaluation is performed on systems serving 
other users, i.e., the experiments have not been performed on an 
isolated system. 
6. Conclusions 

In this paper, we have considered two different approaches to 
parallelization of Bayesian network structure learning using the PC 
algorithm. The horizontal approach is embarrassingly parallel and 
shows that a significant speed-up is possible both on a shared 
memory system and a cluster system using processes. The other 
approach based on the use of BIB designs for marginal indepen- 
dence testing shows a significant speed-up on shared memory sys- 
tems using threads. This makes it possible to take advantage of 
multi-core and multi-processor systems to improve time efficiency 
of structure learning. 
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