
Knowledge-Based Systems 117 (2017) 46–55
Contents lists available at ScienceDirect

Knowle dge-Base d Systems
journal homepage: www.elsevier.com/locate/knosys

A parallel algorithm for Bayesian network structure learning from
large data sets
Anders L. Madsen a , b , ∗, Frank Jensen a , Antonio Salmerón d , Helge Langseth c ,
Thomas D. Nielsen b
a HUGIN EXPERT A/S, DK-90 0 0 Aalborg, Denmark
b Aalborg University, DK-9220 Aalborg, Denmark
c Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
d University of Almería, ES-04120 Almería, Spain
a r t i c l e i n f o
Article history:
Received 28 February 2016
Revised 8 July 2016
Accepted 23 July 2016
Available online 25 July 2016
Keywords:
Bayesian network
PC algorithm
Parallelization

a b s t r a c t
This paper considers a parallel algorithm for Bayesian network structure learning from large data sets. The
parallel algorithm is a variant of the well known PC algorithm. The PC algorithm is a constraint-based al-
gorithm consisting of five steps where the first step is to perform a set of (conditional) independence
tests while the remaining four steps relate to identifying the structure of the Bayesian network using
the results of the (conditional) independence tests. In this paper, we describe a new approach to paral-
lelization of the (conditional) independence testing as experiments illustrate that this is by far the most
time consuming step. The proposed parallel PC algorithm is evaluated on data sets generated at ran-
dom from five different real-world Bayesian networks. The algorithm is also compared empirically with
a process-based approach where each process manages a subset of the data over all the variables on the
Bayesian network. The results demonstrate that significant time performance improvements are possible
using both approaches.

© 2016 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction
A Bayesian network (BN) [1–5] is a powerful model for proba-

bilistic inference. It consists of two main parts: a graphical struc-
ture specifying a set of dependence and independence relations
between its variables and a set of conditional probability distribu-
tions quantifying the strengths of the dependence relations. The
graphical nature of a Bayesian network makes it well-suited for
representing complex problems, where the interactions between
entities, represented as variables, are described using conditional
probability distributions (CPDs). Both parts can be elicited from ex-
perts or learnt from data, or a combination. Here we focus on
learning the graphical structure from data using a variant of the
PC algorithm [6] exploiting parallel computations.

Large data sets both in terms of the number of variables and
cases may challenge the efficiency of pure sequential algorithms
for learning the structure of a Bayesian network from data. Since

∗ Corresponding author.
E-mail addresses: alm@hugin.com (A.L. Madsen), fj@hugin.com (F. Jensen),

antonio.salmeron@ual.es (A. Salmerón), helgel@idi.ntnu.no (H. Langseth),
tdn@cs.aau.dk (T.D. Nielsen).

the computational power of computers is ever increasing and ac-
cess to computers supporting parallel processing is improving, it
is natural to consider exploiting parallel computations to improve
the performance of learning algorithms. A number of different ap-
proaches to parallel structure learning have been considered in the
literature. In [7] the authors describe a MapReduce-based method
for learning Bayesian networks from massive data using a search
& score algorithm while [8] describes a MapReduce-based method
for machine learning on multi-core computers. Also, [9] presents
the R package bnlearn which provides implementations of some
structure learning algorithms including support for parallel com-
puting. [10] introduces a method for accelerating Bayesian network
parameter learning using Hadoop and MapReduce. Other relevant
work on parallelization of learning Bayesian networks from data
include [11–15] .

In this paper, we consider two different approaches to paral-
lelization of the PC algorithm. First, we describe a new parallel ver-
sion of the PC algorithm for learning the structure of a Bayesian
network from large data sets on a shared memory computer us-
ing threads. The proposed parallel PC algorithm is inspired by the
work in [16] on vertical parallelization of TAN learning using Bal-
anced Incomplete Block (BIB) designs [17] . Second, we consider

http://dx.doi.org/10.1016/j.knosys.2016.07.031
0950-7051/© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.knosys.2016.07.031
http://www.ScienceDirect.com
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2016.07.031&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:alm@hugin.com
mailto:fj@hugin.com
mailto:antonio.salmeron@ual.es
mailto:helgel@idi.ntnu.no
mailto:tdn@cs.aau.dk
http://dx.doi.org/10.1016/j.knosys.2016.07.031
http://creativecommons.org/licenses/by/4.0/

A.L. Madsen et al. / Knowledge-Based Systems 117 (2017) 46–55 47
an embarrassingly parallel version of the PC algorithm. This ap-
proach uses processes where each process manages a subset of
the data over all variables. In order to distinguish between the
two approaches, the latter approach is referred to as the hori-
zontal PC algorithm . The horizontal PC algorithm is developed for
distributed memory concurrent computers using the standardized
and portable message-passing system referred to as the Message
Passing Interface (MPI) [18] . The horizontal PC algorithm also takes
advantage of BIB designs to improve efficiency. The results of an
empirical evaluation show a significant improvement in time per-
formance over a purely sequential implementation for both ap-
proaches.

This paper is organized as follows. Section 2 presents pre-
liminaries and notation, including an introduction to BIB designs
and the PC algorithm. Section 3 describes the details of both
methods for parallel structure learning while Section 4 presents
the results of an empirical evaluation of the algorithms on both
real-world Bayesian networks and examples from literature. Fi-
nally, Section 5 gives a discussion of the results and Section 6
conclusions.
2. Material and methods

Let X = { X 1 , . . . , X n } be a set of random variables such that
dom(X) is the state space of X when X is discrete. The state space
size is || X|| = | dom (X) | . A BN N = (X , G, P) over the set X con-
sists of an acyclic directed graph (DAG) G = (V, E) with vertices V
and edges E and a set of CPDs P = { P (X | pa (X)) : X ∈ X } , where
pa(X) denotes the parents of X in G . The BN N specifies a joint
probability distribution over X :
P (X) = n ∏

i =1 P (X i | pa (X i)) .
We use upper case letters, e.g., X i and Y , to denote variables

while sets of variables are denoted using calligraphy letters, e.g., X
and S . In this paper, we only consider discrete variables.

We let D = (c 1 , . . . , c N) denote a data set of N complete cases
over variables X = { X 1 , . . . , X n } and we let I(X, Y ; S) denote condi-
tional independence between X and Y given S . When learning the
structure of a DAG G from D, we use a test statistic to test the
hypothesis I(X, Y ; S) based on counts in D. That is, to test the con-
ditional independence hypothesis I(X, Y ;S) between two discrete
variables X and Y conditional on S based on counts in D, we use
the test statistic G 2 = ∑

S= s G 2 s where
G 2 s = 2 ∑

x,y O xy | s log O xy | s
E xy | s , (1)

where O xy | s is the observed count for x and y given s and E xy | s is
the expected count for x and y given s under the null-hypothesis.
2.1. PC algorithm

The task of learning the structure of a Bayesian network from
D amounts to determining the structure G . The PC algorithm of
[6] consists of five steps:
1. Determine pairwise (conditional) independence I(X, Y ; S) .
2. Identify the skeleton of G .
3. Identify v -structures in G .
4. Identify derived directions in G .
5. Complete orientation of G making it a DAG.

Step 1 is performed such that tests for marginal independence
(i.e., S = ∅) are performed first followed by conditional indepen-
dence tests where the size of S iterates over 1 , 2 , 3 , . . . taking the
adjacency of vertices into consideration. That is, in the process

of determining the set of conditional independence statements
I(X, Y ; S) , the results produced earlier are exploited to reduce the
number of tests. This means that we stop testing conditional in-
dependence of X and Y once a subset S has been identified such
that the independence hypothesis is not rejected. When testing
the conditional independence hypothesis I(X, Y ; S) , the condition-
ing set S is restricted to contain only potential neighbors of either
X or Y , i.e., a variable Z is excluded from S, if the independence hy-
pothesis between X (or Y) and Z was previously not rejected. This
is referred to as the PC ∗ algorithm by [6] , but we will refer to it as
the PC algorithm.

Steps 2–5 use the results of Step 1 to determine the DAG G .
We will not consider Step 2–5 further in this paper as experi-
ments demonstrate that the combined time cost of these steps
is negligible compared to the time cost of Step 1. This is clearly
demonstrated in the empirical evaluation. The interested reader is
referred to, e.g., [6] for more details.

Hence, our proposal for scaling up the PC algorithm is based
on parallelizing Step 1, which involve the calculation of the G 2
score (see Eq. (1)) between each pair of variables. An immediate
approach for scaling up the algorithm could be to simply generate
one computing thread for each pair of variables and then process
the threads in parallel. However, with n variables this approach
would require accessing the underlying database (n

2) times, induc-
ing a significant overhead in terms of disk/network access. Alterna-
tively, one might group the variables in blocks so that each block
only accesses the data a single time in order to calculate the suf-
ficient statistics required for computing the G 2 score for all pairs
of variables within the block. A key issue here is finding an appro-
priate block size and at the same time ensuring that the blocks,
in combination, guarantee that all pairs of variables are considered
exactly once.

To get an intuitive understanding of this process we can as
an analogy consider the organization of the Speedway World
Championship (SWC). After the initial pre-qualifying rounds for
the SWC, the remaining 16 highest ranked riders should be
compared to each other to obtain a final ranking of the riders.
One approach to achieve this would be to pair-up the riders so
that each rider will participate in 15 races, yielding a total of
120 rounds with two riders competing in each round. This setup
would put a strain on the riders and not use the full capacity
of the speedway track, which is designed to accommodate four
riders simultaneously. Instead, the SWC employs a heat-system
ensuring that each of the 16 riders will meet each of the other
riders at some time during the competition. Specifically, the
heat-system consists of 20 heats with four riders in a heat. Each
rider participates in only five heats, and within a single heat all
riders compete jointly, thereby meeting each other. After com-
pleting the 20 heats, all pairs of riders will have met exactly
once. This can also be seen by labeling the riders { 0 , . . . , 15 } and
constructing these heats: H 1 = { 3 , 6 , 12 , 15 } , H 2 = { 4 , 5 , 10 , 13 } ,
H 3 = { 0 , 4 , 6 , 7 } , H 4 = { 0 , 10 , 11 , 15 } , H 5 = { 7 , 10 , 12 , 14 } , H 6 =
{ 0 , 8 , 9 , 14 } , H 7 = { 0 , 1 , 3 , 13 } , H 8 = { 1 , 6 , 8 , 10 } , H 9 = { 7 , 9 , 13 , 15 } ,
H 10 = { 1 , 5 , 14 , 15 } , H 11 = { 8 , 11 , 12 , 13 } , H 12 = { 5 , 6 , 9 , 11 } , H 13 =
{ 1 , 4 , 9 , 12 } , H 14 = { 3 , 5 , 7 , 8 } , H 15 = { 3 , 4 , 11 , 14 } , H 16 = { 2 , 6 , 13 ,
14 } , H 17 = { 1 , 2 , 7 , 11 } , H 18 = { 0 , 2 , 5 , 12 } , H 19 = { 2 , 4 , 8 , 15 } , and
H 20 = { 2 , 3 , 9 , 10 } .

When it comes to computing the G 2 scores, the 16 riders cor-
respond to variables and each heat represents a block consisting
of four variables to be pairwise compared. Thus, rather than han-
dling pairs of variables independently and having to make data ac-
cess (16

2) = 120 times, we can instead make 20 blocks/heats of four
variables each and thereby only having to access the full dataset
20 times. Note that with the particular setup above, we are guar-
anteed not to make redundant calculations as the G 2 score is com-
puted exactly once for each pair X i , X j , 1 ≤ i, j ≤ n .

48 A.L. Madsen et al. / Knowledge-Based Systems 117 (2017) 46–55
This approach of distributing variables/riders into blocks/heats

is an instance of a so-called balanced incomplete block (BIB) design ;
in fact the heat-system configuration employed by the Speedway
World Championship corresponds to a (16, 4, 1)-BIB design (see
Definition 2).
2.2. Balanced incomplete block designs

The use of block designs dates back to the statistical theory
of design of experiments [19] , motivated in its origin by agricul-
tural experiments. In this context the goal was to compare the
yield of different plant varieties, considering that the yield could
be significantly affected by the environment, i.e., the conditions
under which the plants are grown. The idea was to compensate
for the effect of the environment by setting up blocks of land
small enough to assume uniform environmental conditions inside
a block, and distribute the plant varieties among them. With space
limitations inside each block, one may not be able to fit sufficient
replications of all plant varieties inside a single block, and there-
fore rather required that each pair of plant varieties would be allo-
cated at least once to the same block to facilitate a fair comparison
between them. The relation to both the SWC and our calculation of
the G 2 scores is evident.

BIB designs [17] can be applied to efficiently divide the statis-
tical tests for independence among a set of, for instance, threads
or processes. In particular, [16] describes how BIB designs can be
applied to learn the structure of a TAN model from data by paral-
lelization using processes on a distributed memory system. In this
paper, we will use BIB designs to control the process of testing
for marginal independence on a shared memory computer using
threads and on a distributed memory system using processes.

This section provides the necessary background information on
BIB designs to follow the presentation of the method proposed. A
design is defined as follows:
Definition 1 (Design [17]) . A design is a pair (X, A) s.t. the follow-
ing properties are satisfied:
1. X is a set of elements called points , and
2. A is a collection of non-empty subsets of X called blocks .

In this paper, we only exploit cases where each block is a set
(and not a multiset, i.e., we do not allow multiple instances of the
same element in the set). Nevertheless, some definitions will con-
sider multi-sets. A BIB design is defined as:
Definition 2 (BIB design [17]) . Let v, k , and λ be positive integers
s.t. v > k ≥ 2. A (v, k, λ)-BIB design is a design (X, A) s.t. the
following properties are satisfied:
1. | X | = v,
2. each block contains exactly k points, and
3. every pair of distinct points is contained in exactly λ blocks.

The number of blocks in a design is denoted by b and r de-
notes the replication number , i.e., how often each point appears in
a block. Property 3 in the definition is the balance property that
we will exploit. In Step 1 of the PC algorithm, we want to test
each pair of variables for marginal independence exactly once and
therefore require λ = 1 . A BIB design is symmetric when the num-
ber of blocks equals the number of points. This will not be the case
in general.
Example 1. Consider the (7, 3, 1)-BIB design. The blocks are (one
out of a number of possibilities):
{ 0 , 1 , 2 } , { 0 , 3 , 4 } , { 0 , 5 , 6 } , { 1 , 3 , 5 } , { 1 , 4 , 6 } , { 2 , 3 , 6 } , { 2 , 4 , 5 } .

(2)
This BIB design is symmetric as b = v .

There is no single efficient method to construct all BIB designs.
First, it is important to know that they do not exist for all com-
binations of v, k , and λ. Second, the problem of finding a BIB de-
sign is NP-complete [20] . To efficiently utilize them we have there-
fore pre-calculated a number of BIB designs, and utilize those at
run-time. Instead of storing the full designs, it is sufficient to store
difference sets that can be used to generate some symmetric BIB
designs:
Definition 3 (Difference Set [17]) . Assume (G, +) is a finite group
of order v in which the identity element is 0. Let k and λ be posi-
tive integers such that 2 ≤ k < v . A (v, k, λ)-difference set in (G, +)
is a subset D ⊆ G that satisfies the following properties:
1. | D | = k,
2. the multiset [x − y : x, y ∈ D, x ̸ = y] contains every element in

G !{0} exactly λ times.
In our case, we are restricted to using (Z v , +) , the integers

modulo v . If D ⊆ Z v is a difference set in group (G, +) , then D + g =
{ x + g| x ∈ D } is a translate of D for any g ∈ G . The multiset of all v
translates of D is denoted Dev (D) and called the development of D
[17, page 42] .
Theorem 1 ([17] , Theorem 3.8 p. 43) . Let D be a (v, k, λ) -difference
set in an Abelian group (G, +) . Then (G, Dev (D)) is a symmetric (v, k,
λ) -BIB design.
Example 2. The set D = { 0 , 1 , 3 } is a (7, 3, 1)-difference set in
(Z 7 , +) . The blocks constructed by iteratively adding one to each
element of D (modulo 7) are:
{ 0 , 1 , 3 } , { 1 , 2 , 4 } , { 2 , 3 , 5 } , { 3 , 4 , 6 } , { 4 , 5 , 0 } , { 5 , 6 , 1 } , { 6 , 0 , 2 } .
Notice that the i th element of each block is unique across all
blocks. This property will be used to assign blocks to threads
in Section 3 . This was not the case for the blocks presented in
Example 1 .

The concept of a difference set can be generalized to the con-
cept of a difference family . A difference family is a set of base
blocks. A difference family can be used to generate a BIB design
similarly to how difference sets are used. Table 1 shows a set of
difference families for BIB designs on the form (q , 6, 1), which we
will use later. Base blocks for generating BIB-designs are tabulated,
e.g., [21] , but can also be found computationally. The base blocks
in Table 1 have been generated using SageMath 1 . The value k = 6
is chosen for practical reasons: First, difference families for gener-
ating the blocks need to be known to exist; second, we need to
be able to store the count tables representing the joint distribu-
tion of the variables in a block in memory, required to compute
the G 2 scores. The main idea for parallelization considered in this
paper is to use the (q , 6, 1) design to distribute the computations
of the scores over a set of computing units such that each score is
computed exactly once from a smaller intermediate table over six
variables.
3. Theory

There are two obvious approaches to parallelize the testing step
of the PC algorithm. One approach is to assign the same number
of cases to each thread. For a specific statistical test, each thread
would then be responsible for computing the necessary counts
over its data. The counts from all threads are combined and used
to perform the statistical test. We refer to this as horizontal par-
allelization. This approach is embarrassingly parallel, i.e., it requires
little effort to separate the problem into a number of parallel tasks.

1 www.sagemath.org .

http://www.sagemath.org

A.L. Madsen et al. / Knowledge-Based Systems 117 (2017) 46–55 49
Table 1
Examples of difference families for a set of (q , 6, 1) BIB designs.

BIB design Difference family # (base blocks) b = q · # (base blocks)
(31 ,6,1) {(1, 2, 7, 19, 23, 30)} 1 31
(91 ,6,1) {(0, 1, 3, 7, 25, 38), 3 273

(0, 5, 20, 32, 46, 75),
(0, 8, 17, 47, 57, 80)}

(151 ,6,1) { (1 , 32 , 118 , 7 , 73 , 71) , . . . } 5 755
(211 ,6,1) { (0 , 1 , 107 , 55 , 188 , 71) , . . . } 7 1477
(271 ,6,1) { (1 , 242 , 28 , 9 , 10 , 232) , . . . } 9 2439

Horizontal parallelization mainly addresses learning from data sets,
where N is large, i.e., many cases. Another approach is referred
to as vertical parallelization as used by [16] for parallelization of
TAN learning. In vertical parallelization, processes read all data for
a subset of variables and the pairwise conditional independence
tests between a pair of features conditional on the target variable
are distributed using BIB designs. Vertical parallelization mainly
addresses learning from data sets where |X | is large, i.e., many
variables. Each process reads all data over the variables assigned
to it.

Improving the performance of the PC algorithm on large data
sets can be achieved in a number of ways, see, for instance,
[9,11,13] . We consider one approach where the counting of suffi-
cient statistics for a specific conditional independence test is per-
formed in parallel and an approach where the tests for (condi-
tional) independence are performed in parallel.

For the case where we use threads to perform tests in par-
allel, two different approaches are considered. When testing for
marginal independence the set of tests to be performed are known
in advance and we use BIB designs to obtain parallelization. For
the higher order tests we do not know which tests to perform as
this depends on the results of previous tests. Therefore, we create
an edge index array, which the threads iterate over to select the
next edge to evaluate for each iteration. The edge index array con-
tains all edges that have not been removed at an earlier step and it
is sorted in decreasing order of the test score as explained below.
Step 1 of the PC algorithm is implemented as three steps:
1. Test all pairs X and Y for marginal independence.
2. Perform the most promising higher-order conditional indepen-

dence tests.
3. Test for conditional independence (X, Y ;S) where |S| = 1 , 2 , 3 .

In [6] bounding the order of the conditional independence re-
lations is suggested as a natural heuristic to reduce the number of
tests. Experiments show that by far the most edges are removed
for low order tests and statistical tests become increasingly unre-
liable as the size of the conditioning set increases. For these rea-
sons, the size of the conditioning set is limited to three in the im-
plementation. In Step 3 of the process of testing for conditional
independence between X and Y given S, we select S as a subset
of the potential neighbours of X (except Y). Step 2 is explained in
more detail below. This implementation of the PC algorithm was
described in [22] , which also reports on an empirical evaluation of
its performance.
3.1. Test for marginal independence

The tests for pairwise marginal independence I (X, Y ; ∅) for all
pairs X, Y should be divided into tasks of equal size such that
we test exactly all pairs X, Y for marginal independence. This is
achieved using BIB designs of the form (q , 6, 1) where q is at least
the number of variables. That is, q is selected as the smallest value
larger than the number of variables such that a (q , 6, 1)-BIB design
is known to exist. This means that some points will not represent

any variable and tests involving points not representing a variable
are not performed. The blocks of the BIB design are generated us-
ing a difference family (e.g., Table 1). Each block is used to com-
pute the marginal counts of the variables represented in the block.
If all the variables have the same state space size, then the count
tables will be of equal size.

The computation of the G 2 scores is parallelized assigning
blocks to threads as each thread can compute the scores corre-
sponding to a block in parallel with other threads. Blocks are as-
signed to threads using the unique rank of each thread. A thread
with rank r iterates over the block array and considers only blocks
where the array index modulus t equals r where t is the number
of threads (the uniqueness means that there is no need for syn-
chronization). When a thread has selected a block, it performs all
pairwise independence tests using a (3, 2, 1)-BIB design where the
6-block is reduced to three blocks with four variables each (in this
case each point corresponds to two variables). The operation of re-
ducing a count table to a lower dimension by adding the counts for
a specific configuration of the remaining variables is referred to as
marginalization. The table of four variables is marginalized down
to all pairs for testing where the first pair is ignored producing a
total of (6

2) = 15 tests.
Fig. 1 illustrates this principle, assuming an example with q =

31 variables labelled as X 0 , . . . , X 30 . The first block (second row in
the figure) is { X 1 , X 2 , X 7 , X 19 , X 23 , X 30 }, corresponding to the dif-
ference family for design (31, 6, 1), as given in Table 1 . The second
block would be obtained by adding 1 to the index of the variable
in each coordinate, modulo 31, i.e. { X 2 , X 3 , X 8 , X 20 , X 24 , X 0 }. Ac-
cording to the same procedure, the third block would be { X 3 , X 4 ,
X 9 , X 21 , X 25 , X 1 } and so on.

Taking the first block, we form three pairs of variables, P 1 =
{ X 1 , X 2 } , P 2 = { X 7 , X 19 } and P 3 = { X 23 , X 30 } and compute the blocks
of a (3, 2, 1)-BIB design, where each block has two pairs. These
blocks are actually all the possible pairings of P 1 , P 2 and P 3 , namely
{ P 1 , P 2 }, { P 2 , P 3 } and { P 3 , P 1 }, placed on the third row of Fig. 1 . It
can be seen that every three pairings we come up with 5 × 3 = 15
pairs of features for which the G 2 score is computed. In fact, each
block corresponding to a pairing { P i , P j } yields 6 pairs of vari-
ables, but the first one is discarded in order to avoid repetitions.
In Fig. 1 it is indicated by marking both variables in red on the
lower row.

Notice that k = 6 represents 15 pairs and the number of times
we count is reduced by a factor of 15, but each count is a factor
three more expensive (as we are counting six variables instead of
two variables). In addition, there is the task of marginalizing the
count tables to pairs. If the number of states for some variables is
high, then it may be more efficient to compute the score directly
from the data set instead of creating an intermediate table.
3.2. Extra heuristics

Once the testing for marginal independence is completed, a
new step compared to the traditional PC algorithm is performed.
This step performs a set of the most promising tests for each edge,

50 A.L. Madsen et al. / Knowledge-Based Systems 117 (2017) 46–55
X0 X1 X2 · · · X7 · · · X19 · · · X23 · · · X30 · · · Xn

X1 X2 X7 X19X23X30 X2 X3 X8 X20X24 X0 X3 X4 X9 X21X25 X1 · · ·

X1 X2 X7 X19 X7 X19X23X30 X23X30 X1 X2 · · ·

X1 X2 X1 X7 X1 X19 X2 X7 X2 X19 X7 X19 · · ·

Fig. 1. Example illustrating the use of (q , 6, 1) and (3, 2, 1) designs.

X1 X2

X3

X5

X4

1

2
3

4

5

7

6

Fig. 2. Example illustrating the use of the heuristic weights.
i.e., tests with high likelihood of not rejecting the independence
hypothesis. At this and the following steps of the conditional
independence testing we do not know in advance which tests we
need to perform (since we are using previous results to reduce the
number of tests performed).

For each edge (X, Y) the set of best candidate variables to in-
clude in the conditioning set S are identified using the weight of
a candidate variable Z . The weight w (Z | (X, Y)) is equal to the sum
of the test scores for (X, Z) and (Y, Z). The idea is to condition on
candidate variables that have a strongest association with both X
and Y .

We create an array of best candidates. This array contains up to
five variables, which are all neighbours of X (or Y) in the current
graph. The main reason for limiting the number of candidate vari-
ables to five is to make sure that the count table fits in memory.
If variables have many states, then the number of candidates is re-
duced as follows. First, the combined state space size of X and Y
is computed. Next, candidate variables are selected until the com-
bined state space size reaches the number of cases in the data set
or all five candidates are selected. The objective is to perform as
many tests where the null hypothesis is not rejected as quickly as
possible. There is a balance between increasing the number of can-
didate variables and the time and space required to perform the
tests. Since the size of the count table increases exponentially with
the number of candidate variables included, there is an upper limit
on the number of candidate variables. The limit of five candidate
variables has been set based on experience with simple tests. This
array is sorted by the sum of the edge weights.

The threads iterate over the sorted edge index array. A thread
performs all tests for a selected edge (with the size of S run-
ning from one to three) from the table of up to seven variables by
marginalising down to the appropriate number of variables. From
the table of counts all possible tests are performed generating sub-
sets using the combinatorial number system [23] as we want to
generate the most promising subsets first.
Example 3 (Candidates) . Assume Fig. 2 shows the graph after
completing the marginal independence tests where the score for
marginal independence is shown above each edge and assume all
other scores are zero.

The edge with the highest score is (X 3 , X 4) and it is the first
edge in the edge index array. For the edge (X 3 , X 4), variable X 2
is the only candidate variable with weight w (X 2 | (X 3 , X 4)) = 3 + 4 .
This means that a table over X 2 , X 3 , X 4 is created. From this table
the three conditional independence tests I (X 2 , X 3 | X 4), I (X 2 , X 4 | X 3),
and I (X 3 , X 4 | X 2) are performed by one thread.

The three tests performed based on edge (X 3 , X 4) may lead to
removal of up to three edges (in the case the null hypothesis is
not rejected for any of the tests). The aim of sorting the edges and
selecting candidate variables based on a score is to remove edges
from the graph as quickly as possible in order to reduce the num-
ber of later tests.

Assuming independence assumptions are rejected for the tests
associated with (X 3 , X 4), (X 4 , X 5), and (X 2 , X 5), we reach edge
(X 2 , X 4) which has two candidates X 3 and X 5 with weights w (X 3 |
(X 2 , X 4)) = 3 + 7 = 10 and w (X 5 | (X 2 , X 4)) = 5 + 6 = 11 . If the num-
ber of candidate variables is limited to one, then only X 5 is con-
sidered producing the count table over X 2 , X 4 , X 5 . Using an upper
limit of five candidates (and assuming their joint state space is less
than the number of cases), the count table over X 2 , X 3 , X 4 , X 5 is
created. From this we can perform a total of seven conditional in-
dependence tests.

The extra heuristics step is responsible for finding a significant
number of the independence relations. In combination, the step
testing for marginal independence and the step performing the
most promising higher-order independence tests based on heuris-
tics usually find by far the highest number of independence re-
lations meaning that higher order tests mainly ensure that no
further independence relations can be found. This also suggests
putting an upper limit on the size of the conditioning set. The tests
performed for each edge are stored.
3.3. Higher order independence testing

Once testing for marginal independence and the testing based
on heuristics are completed, the remaining higher order tests for
each edge are performed (unless independence has been estab-
lished at a previous step). The algorithm iterates over |S| from one
to three stopping when an independence hypothesis I(X, Y ;S) is
not rejected. The threads iterate over the sorted edge index array.
Candidate variables to be included in the conditioning set S are de-
termined as potential neighbours of either X or Y . The list of edges
(the candidate and its potential neighbour X or Y) is sorted as de-
scribed above and all possible subsets are generated again using
the combinatorial number system in order to perform the most
promising tests first, i.e., a heuristic is used to identify the con-
ditional independence test where the independence hypothesis is
least likely to be rejected.

In an iteration, each thread selects an edge and performs all
conditional independence test for |S| = i and writes the results to
the edge index array. There is only synchronization on the edge
index array when a thread decides which edge to test and when

A.L. Madsen et al. / Knowledge-Based Systems 117 (2017) 46–55 51
Table 2
Networks from which data sets used in the experiments are generated.

Data set |X | | E | Total CPT size
Ship-Ship [24] 50 75 130 ,478
Munin1 [25] 189 282 19 ,466
Diabetes [26] 413 602 461 ,069
Munin2 [25] 1003 1244 83 ,920
SACSO [27] 2371 3521 44 ,274

writing to the array as we need to ensure that two threads do not
select the same edge to test and that a thread does not try to read
results from the edge index array when another thread is writing
its results to the array. This synchronization is also performed in
the previous step.
3.4. Horizontal parallel PC

The horizontal parallel PC algorithm is designed for a dis-
tributed memory architecture. The basic idea of the horizontal par-
allel PC algorithm is to divide the data set D into subsets such that
each process manages a proper subset of the cases over all vari-
ables in the data. That is, given a data set D = { c 1 , . . . , c N } and p
processes, the data D is divided into p disjoint subsets D 1 , . . . , D p
of (approximately) equal size such that ⋃

i D i = D.
The structure learning process is controlled by a master pro-

cess m , which is responsible for creating a set of p worker pro-
cesses. The process m performs all steps of the PC algorithm as
described in Section 2.1 , whereas the computation of the required
sufficient statistics to perform the conditional independence test-
ing in Step 1 is divided among the p worker processes. That is,
each time a test for (conditional) independence I(X, Y ; S) is to be
performed the process m asks each process p to compute and re-
turn the marginal count table over X, Y, S computed from the data
set D p . When count tables over subsets of variables are commu-
nicated, all possible tests are performed from these count tables.
That is, if a table over, for instance, X 1 , X 2 , X 3 is communicated,
then all tests for marginal independence and conditional indepen-
dence on a single variable are performed from the table over X 1 ,
X 2 , X 3 .

When data is complete, it is possible to exploit BIB designs
to further improve the efficiency of the testing for marginal in-
dependence. BIB designs are used in the same way as described
in Section 3.1 . That is, when data is complete we use a (q , 6, 1)-
BIB design to speed up the testing for marginal independence. The
benefit is twofold; we reduce the number of times each worker
process has to make a parse over the data and we reduce the num-
ber of times the master process has to communicate with each
worker process. On the other hand, we are in some cases increas-
ing the amount of data transmitted for each communication. We
will evaluate the impact of using BIB designs in horizontal parallel
PC algorithm.

This approach is most naturally used for learning tasks where
the number of cases is large. Thus, the implementation used in the
experimental analysis is based on the use of processes.
4. Results

Random samples of data were generated from the five networks
of different sizes listed in Table 2 . Three data sets are generated
at random for each network with 10 0,0 0 0, 250,0 0 0, and 50 0,0 0 0
cases. All generated data sets used are complete, i.e., there are no
missing values in the data. In cases where data is not complete it is
not possible to use BIB designs to the full extent described above.
Therefore, we consider an example where data is made incomplete
by adding an empty case to the data.

The empirical evaluation is performed on a desktop computer
named Odin and a computer cluster named Fyrkat. Odin runs Red
Hat Enterprise Linux 7 with a six-core Intel (TM) i7-5820K 3.3 GHz
processor and has 64 GB RAM. Odin has six physical and twelve
logical cores. Fyrkat is a computer cluster where each worker node
used has two Intel Xeon (TM) X5260 processors and 16 GB RAM. It
has a total of 80 such nodes. This cluster system uses SLURM (Sim-
ple Linux Utility for Resource Management) for resource manage-
ment. Odin is used to evaluate both approaches on shared memory
while Fyrkat is used to evaluate the horizontal parallel PC on dis-
tributed memory. All test programs are implemented using the C
programming language and HUGIN API version 8.3. On Odin par-
allelization is achieved using POSIX threads and on Fyrkat paral-
lelization is achieved using MPI.
4.1. Parallel PC

The parallel PC algorithm is implemented employing a shared
memory multi-core architecture. All data is loaded into the main
shared memory of the computer where the process of the program
is responsible for creating a set of POSIX threads to achieve paral-
lelization. In the experiments, the number of threads used by the
program is in the set {1, 2, 3, 4, 6, 8, 10, 12}, where the case of one
thread is considered the baseline and corresponds to a sequential
program.

The average computation time is calculated over five runs with
the same data set. The computation time is measured as the
elapsed (wall-clock) time of the different steps of the parallel PC
algorithm. We measure the computation time of the entire algo-
rithm in addition to the time for identifying the skeleton (Step 2),
identifying v -structures (Step 3) as well as identifying derived di-
rections (Step 4) and completing the orientation of edges (Step 5)
combined.

Fig. 3 (left) shows the average run time in seconds (left axis)
and speed-up factor (right axis) for Ship-Ship using 50 0,0 0 0 cases.
Notice that the computation time is low for the Ship-Ship net-
work even with one thread meaning that the potential improve-
ment from parallelization is limited as the evaluation shows.
Fig. 3 (right) shows the average run time and speed-up factor for
Munin1 using 250,0 0 0 cases where the speed-up deteriorates for
six or more threads illustrating the principle of diminishing re-
turns. The additional threads add overhead to the process and we
expect that the increase in time cost is due to the synchronization
on the edge index array.

Fig. 4 (left) and (right) show the average run time and speed-
up factor for Diabetes using 250,0 0 0 and 50 0,0 0 0 cases, respec-
tively. The speed-up factor increases smoothly for both 250,0 0 0
and 50 0,0 0 0 cases.

Fig. 5 (left) and (right) show the average run time and speed-
up factor for Munin2 using 250,0 0 0 and 50 0,0 0 0 cases, respec-
tively. For 250,0 0 0 cases there is a smooth improvement in speed-
up whereas for 50 0,0 0 0 cases the speed-up factor drops slightly
using ten or twelve threads.

Fig. 6 (left) and (right) show the average run time and speed-
up factor for SACSO using 250,0 0 0 and 50 0,0 0 0 cases, respectively.
The experiment on SACSO using 50 0,0 0 0 cases is the task with the
highest number of variables and cases considered in the evalua-
tion. This task produces an average speed-up of a factor 6.46 with
average run time dropping from 737 to 114 s. The experiment on
Diabetes using 50 0,0 0 0 cases is the task taking the longest time to
complete. This task produces an average speed-up of a factor 6.36
with average run time dropping from 3084.65 to 484.65 s.

Step 1 of the PC algorithm consists of marginal independence
tests, extra heuristics and higher order conditional independence
tests. Fig. 7 shows the time costs for the marginal independence
tests and extra heuristics.

52 A.L. Madsen et al. / Knowledge-Based Systems 117 (2017) 46–55

 0

 0.5

 1

 1.5

 2

 2.5

 0 2 4 6 8 10 12
 0

 0.5

 1

 1.5

 2

 2.5

Av
era

ge
 ru

n t
im

e i
n s

ec
on

ds

Av
era

ge
 sp

ee
d-u

p f
ac

tor

Number of threads

Time
Speed-up

(a) Ship-Ship 500,000

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 2 4 6 8 10 12
 0

 0.5

 1

 1.5

 2

 2.5

Av
era

ge
 ru

n t
im

e i
n s

ec
on

ds

Av
era

ge
 sp

ee
d-u

p f
ac

tor

Number of threads

Time
Speed-up

(b) Munin1 250,000

Fig. 3. Average run times for Ship-Ship with 50 0,0 0 0 cases and Munin1 250,0 0 0 cases.

 0

 500

 1000

 1500

 2000

 2500

 0 2 4 6 8 10 12
 0

 1

 2

 3

 4

 5

 6

 7

Av
era

ge
 ru

n t
im

e i
n s

ec
on

ds

Av
era

ge
 sp

ee
d-u

p f
ac

tor

Number of threads

Time
Speed-up

(a) Diabetes 250,000

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 2 4 6 8 10 12
 0

 1

 2

 3

 4

 5

 6

 7

Av
era

ge
 ru

n t
im

e i
n s

ec
on

ds

Av
era

ge
 sp

ee
d-u

p f
ac

tor

Number of threads

Time
Speed-up

(b) Diabetes 500,000

Fig. 4. Average run times for Diabetes with 250,0 0 0 and 50 0,0 0 0 cases, respectively.

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10 12
 0
 0.5
 1
 1.5
 2
 2.5
 3
 3.5
 4
 4.5

Av
era

ge
 ru

n t
im

e i
n s

ec
on

ds

Av
era

ge
 sp

ee
d-u

p f
ac

tor

Number of threads

Time
Speed-up

(a) Munin2 250,000

 0

 50

 100

 150

 200

 250

 300

 0 2 4 6 8 10 12
 0
 0.5
 1
 1.5
 2
 2.5
 3
 3.5
 4

Av
era

ge
 ru

n t
im

e i
n s

ec
on

ds

Av
era

ge
 sp

ee
d-u

p f
ac

tor

Number of threads

Time
Speed-up

(b) Munin2 500,000

Fig. 5. Average run times for Munin2 with 250,0 0 0 and 50 0,0 0 0 cases, respectively.
Figs. 8 and 9 show the time costs for higher order tests for each

size of the conditioning set. It is clear from Figs. 7–9 that the most
time consuming step is the marginal independence tests where a
large number of edges are excluded from the graph.

Table 3 shows the average time cost of identifying the skeleton
(Step 2), identifying the v -structures (Step 3) and identifying de-
rived directions as well as completing the orientation to obtain a
DAG (Step 4 and Step 5).

It is clear from Table 3 that the costs of Step 2–5 are negligible
compared to the total cost.

Table 3
Average run times in seconds for Steps 2–5.

Data set Skeleton v -structures Orientation
(Step 2) (Step 3) (Step 4 & 5)

Ship-Ship 0 0 0
Munin1 0 .005 0 0 .001
Diabetes 0 .001 0 .004 0 .002
Munin2 0 .006 0 .002 0 .034
SACSO 0 .051 5 .692 0 .502

A.L. Madsen et al. / Knowledge-Based Systems 117 (2017) 46–55 53

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 2 4 6 8 10 12
 0

 1

 2

 3

 4

 5

 6

Av
era

ge
 ru

n t
im

e i
n s

ec
on

ds

Av
era

ge
 sp

ee
d-u

p f
ac

tor

Number of threads

Time
Speed-up

(a) SACSO 250,000

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0 2 4 6 8 10 12
 0

 1

 2

 3

 4

 5

 6

 7

Av
era

ge
 ru

n t
im

e i
n s

ec
on

ds

Av
era

ge
 sp

ee
d-u

p f
ac

tor

Number of threads

Time
Speed-up

(b) SACSO 500,000

Fig. 6. Average run times for SACSO with 250,0 0 0 and 50 0,0 0 0 cases, respectively.

 0

 100

 200

 300

 400

 500

 600

 700

 0 2 4 6 8 10 12
 0

 1

 2

 3

 4

 5

 6

 7

Av
era

ge
 ru

n t
im

e i
n s

ec
on

ds

Av
era

ge
 sp

ee
d-u

p f
ac

tor

Number of threads

Time
Speed-up

(a) SACSO 500,000, marginal

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12
 0
 0.5
 1
 1.5
 2
 2.5
 3
 3.5
 4
 4.5

Av
era

ge
 ru

n t
im

e i
n s

ec
on

ds

Av
era

ge
 sp

ee
d-u

p f
ac

tor

Number of threads

Time
Speed-up

(b) SACSO 500,000, extra heuristics

Fig. 7. Average run times for SACSO with 50 0,0 0 0 cases for marginal independence testing and extra heuristics, respectively.

Fig. 8. Average run times for SACSO with 50 0,0 0 0 cases for higher order tests using |S| = 1 and |S| = 2 , respectively.
4.2. Horizontal parallel PC

The horizontal parallel PC algorithm is implemented employ-
ing a distributed memory multi-processor architecture. The imple-
mentation is based on MPI where a master process is responsible
for performing all steps of the PC algorithm using a set of worker
processes to compute sufficient statistics for subsets of the data in
parallel. The communication between the master and worker pro-
cesses is performed using MPI. In the experimental evaluation of
the horizontal parallel PC algorithm, we will consider the effect of
using (q , 6, 1)-BIB designs to improve performance. BIB designs can
only be used for the set of variables with complete data. Thus, in
order to evaluate the impact of BIB designs on performance, we
add a single empty case to each data set considered in the evalua-

tion. Incomplete data is handled at the level of each independence
test I(X, Y ; S) where a configuration over X, Y and S with a miss-
ing value is ignored. Since data is made incomplete by adding a
single empty case, we are in practice using the same data in the
evaluation (just without exploiting the fact that data is complete).

The average computation time is calculated over five runs with
the same data set. The computation time is measured as the
elapsed (wall-clock) time of the entire program.

Fig. 10 shows the average run times of the horizontal parallel
PC algorithm as a function of the number of worker threads for
SACSO with 50 0,0 0 0 cases of complete and incomplete data run-
ning on Fyrkat, respectively. As expected, the average run time for
the complete case is significantly lower than for the incomplete
case. The difference between having complete and incomplete data

54 A.L. Madsen et al. / Knowledge-Based Systems 117 (2017) 46–55

Fig. 9. Average run times for SACSO with 50 0,0 0 0 cases for higher order tests using
|S| = 3 .
is twofold. First, in the incomplete data case there is no use of
BIB designs in the marginal independence test. Second, no extra
heuristic tests are performed involving variables with incomplete
data. The difference between Fig. 10 (a) and (b) shows that these
two optimizations produce a speed-up factor of more than two for
the horizontal parallel PC algorithm.

Fig. 11 shows the average run times of horizontal parallel PC for
SACSO with 50 0,0 0 0 cases of complete and incomplete data run-
ning on Odin, respectively. In comparison, Fig. 6 (right) shows the
average run time of the parallel PC algorithm for the same network
and data set.

Recall that Figs. 10 and 11 show the average time cost as a func-
tion of the number of worker processes (in addition to the master
process). In the case of one worker process, this process still has to
communicate the count tables to the master process (running on a
different com puter). This is the reason that there is a difference in
time performance between parallel PC and horizontal PC for the
value one.

Recall that Odin is a shared memory computer with a single
CPU (six physical cores and 12 logical cores) whereas Fyrkat is a
computer cluster with distributed memory. The significant differ-
ence in the average run time for the same task is probably due to
different CPU performance.
5. Discussion

This paper considers parallel Bayesian network structure learn-
ing from data using a variant of the PC algorithm. Two approaches
to parallelization have been considered in the paper. One approach
is designed for a multi-core shared memory architecture whereas
the other approach is designed for a computer cluster with dis-

tributed memory. The first approach is based on the use of threads
with all data cases stored in shared memory.

The PC algorithm consists of five main steps where the focus of
this paper has been on performing the independence tests in par-
allel as the results in Section 4 clearly demonstrate that the total
time cost of Steps 2–5 are negligible compared to the time cost of
Step 1.

Step 1 of the PC algorithm consists, as presented in this paper,
of three steps. In the first step the tests for marginal independence
are performed. Parallelization of this step in both approaches is
based on the use of difference sets and families where the tests
to be performed are known in advance as all pairs are to be tested
for marginal independence. In the second step a set of the most
promising higher order tests are performed whereas in the third
step tests for conditional independence are performed using con-
ditioning sets of size one, two and three, respectively.

In the statistical tests for marginal independence, BIB designs
are used on the subset of variables with complete data. BIB designs
on the form (q , 6, 1) are used to produce counts tables over six
variables. If variables have many states and there are only a few
cases, then this table may be larger than the number of cases in
the original data set. Therefore, the approach requires a minimum
number of cases.

The edge index array is the central bottleneck of the approach
as it is the only element that requires synchronization. There is no
need for synchronization during the marginal independence test-
ing. Synchronization is limited to selecting which edge to test and
to determine which remaining tests need to be performed. There
is no synchronization related to the counting. The counting usually
being the most time consuming element of testing for conditional
pairwise independence.

The horizontal parallel PC approach is based on distributing a
subset of the data over all variables to a set of worker processes.
This approach is embarrassingly parallel. Each process holds a dis-
tinct subset of the data cases over all variables and it is responsible
for computing partial counts over this subset each time the master
process needs to perform a test. When the horizontal parallel PC
approach exploits the use of BIB designs (over variables with com-
plete data), the tables communicated may become large. We have
used a limit on the count tables equal to the number of cases in
the original data set.

The results of the empirical evaluation show a significant time
performance improvement over the pure sequential method for
both approaches. For most cases considered there is a point where
using additional threads or processes does not improve perfor-
mance illustrating the principle of diminishing returns. In a few
cases, where the number of variables is low, the number of cases is
low, or both, increasing the number of threads used may increase

 0

 500

 1000

 1500

 2000

 2500

 0 2 4 6 8 10
 0
 1
 2
 3
 4
 5
 6
 7
 8

Av
era

ge
 ru

n t
im

e i
n s

ec
on

ds

Av
era

ge
 sp

ee
d-u

p f
ac

tor

SACSO 500k cases, 2371 variables

Time
Scale-up

(a) SACSO 500,000, Fyrkat, complete

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

 0 2 4 6 8 10
 0
 1
 2
 3
 4
 5
 6
 7
 8

Av
era

ge
 ru

n t
im

e i
n s

ec
on

ds

Av
era

ge
 sp

ee
d-u

p f
ac

tor

SACSO 500k cases, 2371 variables (incomplete)

Time
Scale-up

(b) SACSO 500,000, Fyrkat, incomplete

Fig. 10. Average run times for SACSO with 50 0,0 0 0 on Fyrkat using complete and incomplete data, respectively, as a function of the number of worker processes.

A.L. Madsen et al. / Knowledge-Based Systems 117 (2017) 46–55 55

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 2 4 6 8 10
 0
 0.5
 1
 1.5
 2
 2.5
 3
 3.5
 4
 4.5

Av
era

ge
 ru

n t
im

e i
n s

ec
on

ds

Av
era

ge
 sp

ee
d-u

p f
ac

tor

SACSO 500k cases, 2371 variables

Time
Scale-up

(a) SACSO 500,000, Odin, complete

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 2 4 6 8 10
 0
 0.5
 1
 1.5
 2
 2.5
 3
 3.5
 4
 4.5

Av
era

ge
 ru

n t
im

e i
n s

ec
on

ds

Av
era

ge
 sp

ee
d-u

p f
ac

tor

SACSO 500k cases, 2371 variables (incomplete)

Time
Scale-up

(b) SACSO 500,000, Odin, incomplete

Fig. 11. Average run times for SACSO with 50 0,0 0 0 on Odin using complete and incomplete data, respectively, as a function of the number of worker processes.
time costs. Notice that on SACSO with complete data, the thread-
based version is faster and offers a better speed-up factor than the
process-based approach.

The PC algorithm is known to be sensitive to the order in which
the conditional independence tests are performed. This means that
the number of threads used by the algorithm may impact the re-
sult as the order of tests is not invariant under the number of
threads used. This is a topic of future research.

There is some variance in the run time measured. This should
also be expected as the evaluation is performed on systems serving
other users, i.e., the experiments have not been performed on an
isolated system.
6. Conclusions

In this paper, we have considered two different approaches to
parallelization of Bayesian network structure learning using the PC
algorithm. The horizontal approach is embarrassingly parallel and
shows that a significant speed-up is possible both on a shared
memory system and a cluster system using processes. The other
approach based on the use of BIB designs for marginal indepen-
dence testing shows a significant speed-up on shared memory sys-
tems using threads. This makes it possible to take advantage of
multi-core and multi-processor systems to improve time efficiency
of structure learning.
Acknowledgments

This work was performed as part of the AMIDST project.
AMIDST has received funding from the European Union’s Sev-
enth Framework Programme for research, technological develop-
ment and demonstration under grant agreement no 619209. This
paper is an extended version of [28] .
References

[1] J. Pearl , Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference, Series in Representation and Reasoning, Morgan Kaufmann, 1988 .

[2] R. Cowell , A. Dawid , S. Lauritzen , D. Spiegelhalter , Probabilistic Networks and
Expert Systems, Springer, 1999 .

[3] F.V. Jensen , T.D. Nielsen , Bayesian Networks and Decision Graphs, 2nd ed.,
Springer, 2007 .

[4] D. Koller , N. Friedman , Probabilistic Graphical Models — Principles and Tech-
niques, MITPress, 2009 .

[5] U.B. Kjærulff, A.L. Madsen , Bayesian Networks and Influence Diagrams: A Guide
to Construction and Analysis, 2nd ed., Springer, 2013 .

[6] P. Spirtes , C. Glymour , R. Scheines , Causation, Prediction, and Search, Adaptive
Computation and Machine Learning, second ed., MIT Press, 20 0 0 .

[7] Q. Fang, K. Yue, X. Fu, H. Wu, W. Liu, A MapReduce-based method for learning
bayesian network from massive data, in: Web Technologies and Applications,
in: Lecture Notes in Computer Science, vol. 7808, Springer, 2013, pp. 697–708,
doi: 10.1007/978- 3- 642- 37401- 2 _ 68 .

[8] C.-T. Chu , S. Kim , Y.-A. Lin , Y. Yu , G. Bradski , A. Ng , K. Olukotun , Map-Reduce
for machine learning on multicore, in: NIPS, 2006, pp. 281–288 .

[9] M. Scutari , Learning Bayesian networks with the bnlearn R package, J. Stat.
Software 35 (3) (2010) 1–22 .

[10] A. Basak , I. Brinster , X. Ma , O. Mengshoel , Accelerating Bayesian network
parameter learning using Hadoop and MapReduce, in: Proceedings of the
1st International Workshop on Big Data, Streams and Heterogeneous Source
Mining: Algorithms, Systems, Programming Models and Applications, 2012,
pp. 101–108 .

[11] M. Kalisch , P. Buhlmann , Estimating high-dimensional directed acyclic graphs
with the PC-algorithm, J. Mach. Learn. Res. 8 (2008) 613–636 .

[12] M. de Jongh , Algorithms for constraint-based learning of Bayesian network
structures with large numbers of variables (Ph.D. thesis), University of Pitts-
burgh, 2014 .

[13] O. Nikolova , S. Aluru , Parallel discovery of direct causal relations and Markov
boundaries with applications to gene networks, in: Parallel Processing (ICPP),
2011 International Conference IEEE, 2011, pp. 512–521 .

[14] W. Chen , L. Zong , W. Huang , G. Ou , Y. Wang , D. Yang , An empirical study
of massively parallel Bayesian networks learning for sentiment extraction
from unstructured text, in: Web Technologies and Applications, Springer, 2011,
pp. 424–435 .

[15] J. Arias, J. Gamez, J. Puerta, Learning distributed discrete Bayesian network
classifiers under MapReduce with Apache spark, Knowledge Based Syst. (2016),
doi: 10.1016/j.knosys.2016.06.013 . Available online 22 June 2016

[16] A.L. Madsen , F. Jensen , A. Salmeron , M. Karlsen , H. Langseth , T.D. Nielsen , A
new method for vertical parallelisation of TAN learning based on balanced in-
complete block designs, in: Proceedings of PGM, 2014, pp. 302–317 .

[17] D. Stinson , Combinatorial Designs — Constructions and Analysis, Springer,
2003 .

[18] T.M. Forum , MPI: A Message Passing Interface, in: Supercomputing ‘93, Port-
land, OR, 1993, pp. 878–883 .

[19] R. Fisher , An examination of the different possible solutions of a problem in
incomplete blocks, Ann. Eug. 10 (1940) 52–75 .

[20] D. Corneil , R. Mathon , Algorithmic techniques for the generation and analysis
of strongly regular graphs and other combinatorial configurations, Ann. Dis-
crete Math. 2 (1978) 1–32 .

[21] K. Takeuchi , A table of difference sets generating balanced incomplete block
designs, Rev. Int. Stat. Inst. 30 (3) (1962) 361–366 .

[22] A.L. Madsen , M. Lang , U.B. Kjærulff, F. Jensen , The Hugin tool for learning
Bayesian networks, in: Proceedings of ECSQARU, 2003, pp. 549–605 .

[23] D.E. Knuth , The Art of Computer Programming, 4, Fascicle 3, Addison-Wesley,
2005 .

[24] A. Papanikolaou , Presents Modern Risk-Based Methods and Applications to
Ship Design, Operation, and Regulations, Springer, 2009 .

[25] S. Andreassen , F.V. Jensen , S.K. Andersen , B. Falck , U. Kjærulff, M. Woldbye ,
A .R. Sørensen , A . Rosenfalck , F. Jensen , MUNIN — an expert EMG assistant,
Computer-Aided Electromyography and Expert Systems, Elsevier Science, 1989 .

[26] S. Andreassen , R. Hovorka , J. Benn , K.G. Olesen , E.R. Carson , A model-based
approach to insulin adjustment, in: Proceedings of the Third Conference on
Artificial Intelligence in Medicine, 1991, pp. 239–248 .

[27] F.V. Jensen , C. Skaanning , U. Kjærulff, The SACSO system for troubleshooting of
printing systems, in: In Proceedings of the Seventh Scandinavian Conference
on Artificial Intelligence, IOS Press, 2001, pp. 67–79 .

[28] A.L. Madsen , F. Jensen , A. Salmeron , H. Langseth , T.D. Nielsen , Parallelization
of the PC algorithm, in: The XVI Conference of the Spanish Association for
Artificial Intelligence, 2015, pp. 14–24 .

http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0001
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0001
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0002
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0002
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0002
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0002
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0002
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0003
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0003
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0003
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0004
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0004
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0004
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0005
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0005
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0005
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0006
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0006
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0006
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0006
http://dx.doi.org/10.1007/978-3-642-37401-2_68
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0008
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0008
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0008
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0008
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0008
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0008
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0008
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0008
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0009
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0009
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0010
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0010
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0010
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0010
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0010
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0011
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0011
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0011
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0012
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0012
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0013
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0013
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0013
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0014
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0014
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0014
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0014
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0014
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0014
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0014
http://dx.doi.org/10.1016/j.knosys.2016.06.013
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0016
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0016
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0016
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0016
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0016
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0016
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0016
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0017
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0017
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref1017
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref1017
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0018
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0018
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0019
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0019
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0019
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0020
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0020
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0021
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0021
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0021
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0021
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0021
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0022
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0022
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0023
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0023
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0024
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0024
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0024
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0024
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0024
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0024
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0024
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0024
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0024
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0024
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0025
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0025
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0025
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0025
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0025
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0025
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0026
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0026
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0026
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0026
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0027
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0027
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0027
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0027
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0027
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0027

	A parallel algorithm for Bayesian network structure learning from large data sets
	1 Introduction
	2 Material and methods
	2.1 PC algorithm
	2.2 Balanced incomplete block designs

	3 Theory
	3.1 Test for marginal independence
	3.2 Extra heuristics
	3.3 Higher order independence testing
	3.4 Horizontal parallel PC

	4 Results
	4.1 Parallel PC
	4.2 Horizontal parallel PC

	5 Discussion
	6 Conclusions
	 Acknowledgments
	 References

