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Abstract

This thesis investigates the sensitivity in the dynamic response when simulating the pantograph-
catenary interaction due to time step and cut-off frequency. In addition, the contact formulation
stated in standard EN50318 is addressed.

Catenary systems involve major investments, thus reducing wear and damage of the contact wire
and the pantograph is crucial. This thesis considers previous work on the subject, which argues
that when studying wear, higher frequencies than stated in the standards for simulations of the
catenary system, are of interest.

This thesis suggest a minimum sampling frequency that should be used when simulating the
catenary, if the response with higher frequencies are of interest.

The simulations ability to detect elasticity variations along the span, and the wave propagation
are addressed.

The simulations were performed using a numerical model derived by Petter Naavik, and the
results were analysed using Python and Matlab. Important output with regards to wear is
presented, and used to evaluate the results.



Contents

1 Introduction 4

2 Description of the Catenary System 5

2.1 The Catenary System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 The Pantograph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 The Droppers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 The Equation of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Solving the Contact Problem using FEM 22

3.1 Nonlinear Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 The Contact Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Solution Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Frequency Domain Analysis 25

4.1 The Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Simulations in Abaqus 29

5.1 Line Geometry and Design Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 Numerical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2.1 Pantograph Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.3 Simulation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3.1 Changes in Numerical Model . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3.2 The Contact Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3.3 System characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Sampling Frequency Results 41

1



6.1 Contact force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.1.1 Time Domain Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.1.2 Frequency Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.1.3 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.1.4 Filtered According to Standards . . . . . . . . . . . . . . . . . . . . . . . 52

6.1.5 Maximum Positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.1.6 Minimum Positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2 Contact wire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.2.1 Acceleration at maximum points . . . . . . . . . . . . . . . . . . . . . . . 59

6.2.2 Acceleration at minimum points . . . . . . . . . . . . . . . . . . . . . . . 62

6.3 Dropper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.3.1 Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.3.2 Deflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.4 Cut-Off Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.5 Computational cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7 The contact formulation Results 81

7.1 Time Domain Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.2 Frequency Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.3 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8 Conclusion 85

A Appendix 88

A.1 Maximum Contact Force Location . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.2 Fokstua Wire 21 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.3 Data Analysis Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.4 Penalty Results with Time Step According to EN50318 . . . . . . . . . . . . . . 107

2





1 Introduction

The railway catenary system is a system of connected wires that supplies electrical power to
trains. With modernizing of the railway infrastructure and increasing train speeds, minimizing
wear of the contact wire is crucial, as it represents substantial investments.

In light of this, it is important to improve the understanding of wear caused by arcing and
excessively high contact forces on the contact wire. These are effects that is often related to
elasticity variations along the catenary system, and the wave propagation in the contact wire.
To aid this, virtual testing methods that gives accurate descriptions of the railway catenary
system are invaluable.

In the literature it is suggested that frequencies up to 100 Hz are important when simulating
wear in a catenary section. This is significantly higher than 20 Hz, which is the frequency that
the simulation models are validated for according to standards.

This project aims to suggest a minimum requirement of the sampling frequency, when the fre-
quency range of interest is increased, by attaining the following objectives:

How an increase in sampling frequency (i.e. decrease in time step) influences the simulations
ability to...

1. produce correct contact forces: Looking at the time series and statistical values of the
contact force.

2. detect elasticity variations along the span: Looking at where the maximum and minimum
contact forces appear in the span

3. describe the dynamic response of the catenary : Looking at the acceleration of the dropper
and contact wire of critical points in the span.

How filtering affect the dynamic response...

I by increasing Cut-off frequency : Looking at time series and statistical data of filtered contact
forces

II filtering according to standard : Looking at the time response of the contact force.

In addition, a study of the contact formulation stated in EN50318, by using the suggested
minimum sampling frequency will be performed.

Chapter 2 presents the most important system characteristics. This is to gain an understanding of
the different components of the system, and the difficulties with simulations of these components.
Chapter 3 outlines the challenges when solving a contact problem with finite element method.
Chapter 4 states some important theory on analysis in the frequency domain. Chapter 5 outline
the simulation method used in this thesis. Finally the results from the simulations are presented
in Chapter 6 and Chapter 7.
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2 Description of the Catenary System

The railway catenary system is a wire system that supplies electrical power to trains. The
pantograph is mounted to the top of the train, and is in continuous contact with the contact
wire. With the increasing train speed, maintaining this contact becomes more challenging.

Catenary systems have been under constant development since 1881, to accommodate the de-
mand for higher train speeds. The first electrical railway in Norway where built in 1908.

In this section the railway contact line system will be described. Firstly the catenary components,
excluding the droppers. Secondly, the pantograph and finally the droppers.

2.1 The Catenary System

Figure 1: The catenary system, and the train [8]
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Figure 2: Catenary system [7]

The section between two supporting poles is defined as the span. The catenary is divided into
multiple spans. For cost reasons the span length should be long as possible. As shown later in
section 2.4, there are dynamic criteria for the system that limit the maximum span lengths. The
most common span lengths are from 40 m to 60 m, depending on the catenary system’s design.

The main purpose of the contact wire is to supply uninterrupted electrical energy to the train,
through continuous contact with the pantograph. It is a pre-tensioned copper wire. It is a pre-
tensioned copper wire, the cross section is shown in Figure 3. The two notches in the contact
wire are for the clamps that connect the contact wire to the dropper, in that way keeping the
contact surface free of discontinuities.

Figure 3: Contact wire cross section [8]

The poles holds the system by connection to the messenger wire by the brackets. The messenger
wire contributes to a more uniformly distributed elasticity in the catenary system. It is coupled to
the contact wire through the droppers. The messenger wire is pre-tensioned. This is important
for the stiffness of the system, and is an important design parameter. The tension forces in
the contact wire and messenger wire are illustrated in Figure 4. The choice of tension forces
will be discussed in Chapter 2.4. Figure 5 shows how the contact wire and messenger wire are
pre-tensioned.
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Figure 4: Tension forces in the contact wire and the messenger wire with weights, Tmw [7]

For cost reasons the contact wire and messenger wire cross section should be kept to a minimum
[16]. However, other factors must be considered when choosing the cross section. This will be
be discussed in chapter 2.4.

Figure 5: Pre-tensioning of the contact wire and the messenger wire [8]

The stitch wire, see Figure 2, produces a spring effect that results in a better match between
the elasticity at the support and at the middle of the span. They are tensioned in such a way
that elasticity variations along the span are reduced. The stitch wires also contribute to a more
uniform contact wire height, which is of importance for maintaining the contact. Including stitch
wires in a catenary section allows for longer span lengths [16].

The catenary system is arranged in such a way that it has an initial sag, which is called pre
sag. The assumption is, that since the elasticity at the middle of the span is higher than at the
support, the pantograph will lift the contact wire higher there. By lowering the contact wire at
the middle of the span the point of contact between the contact wire and the pantograph will
become more uniform.

Figure 6: Contact line seen from above
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The contact between the contact wire and the pantograph causes wear on both components. In
order to reduce the wear of the on the pantograph, the contact wire is arranged in such a way
that the point of contact on the pantograph varies. Seen from the top, the contact wire is forms
a zig-zag shape.
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2.2 The Pantograph

The pantograph components are shown in figure 7. The arm lets the pantograph head move
in a vertical direction, with respect to the main frame. The main frame is mounted on the
insulators on the train roof. The drive is a device that keeps the pantograph height constant.
The collector strips are the component in direct contact with the contact wire, and are connected
to the pantograph head.

Since the collector strip is in direct contact with the contact wire, this is the pantograph compo-
nent that experiences the most wear. The contact wire is placed in a zig-zag formation, in that
way changing the contact point on the collector strip, the aim is that the wear of the collector
strip is evenly disturbed. The collector strip are an easily replaceable part of the pantograph [?
].

The force exerted on the contact wire by the pantograph is called the contact force, Fc. This is
a vertical force that is the sum of all forces at the point of contact[10]. The contact force has
both a static, dynamic and a aerodynamic component [16]

Fc = Fstatic + Faerodynamic + Fdynamic (1)

The aerodynamic component is a result of the air flow around the pantograph components[10],
it is estimated by the manufacturer of the pantograph, see equation 2. The dynamic force
component is a result of the dynamic properties of the contact line, the pantograph, the track
geometry and the trains speed and running behavior [16].
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Figure 7: Pantograph [16]

For the WBL88, the sum of aerodynamic and static component is given by

Fstatic + Faerodynamic = 55 + 0.0068v2 (2)

where v is the train speed.

There are several different methods used to describe the pantograph in simulations. A panto-
graph model is defined as a mathematical model that describes the dynamic characteristics of
a pantograph [10]. The most used method is a lumped-mass-model also referred to as a mass-
spring-damper-model. A multy-body-model is also used.
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In Figure 8 a lumped mass model of a pantograph is shown. As seen, the pantograph is divided
into three rigid masses, connected by springs and dampers. All the parameters in figure 8 have
to be found experimentally. The lumped mass model in 8 describe the pantograph with three
degrees of freedom, the three masses represent the lower arm, upper arm, and the pantograph
head. Some use a lumped mass model with only two degrees of freedom, i.e. a pantograph model
with two rigid bodies.

Figure 8: Lumped mass model [16]

In a multi-body model, dynamic constraints between the masses are introduced.

Figure 9: Analytical pantograph model [16]

The pantograph is of great importance for the energy transmission in the system. Article [4]
studies how the contact depends on the pantograph components, simulations of the system are
done using a combination of a multi-body model and a lumped-mass-model.

The most important pantograph model components, see Figure 8, are varied in the range +/−
10%. Maximum, minimum, mean, standard deviation and statistical minimum of the contact
force is measured to see how it is affected by the change of the parameter. All of the parameters
in figure 8 are varied. The simulations are done at three different train speeds; 200 km/h, 250
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km/h and 300 km/h. Changing the different parameters only affect the max/min contact force
value, while the average force is more or less constant. The mean, the standard deviation and the
statistical minimum are nearly non-sensitive to the variation. This simulation results is filtered
using a low pass filter, with a cut-off frequency of 20 Hz (according to standard EN50318). With
a higher cut off frequency the variations could be larger.
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2.3 The Droppers

Figure 10: Catenary system [7]

As described earlier the dropper is a wire that connects the contact wire to the messenger wire
and the stitch wire. The messenger wire contributes to a more uniform elasticity of the system,
and a constant system height. Both properties are important for the interaction between the
contact wire and the pantograph. The spacing between the droppers, together with the tensile
force in the contact wire, decide the sag between the droppers, this should be kept to a minimum
[16].

The dropper introduces a nonlinearity in the system, in the sense that it has no resistance to
compressive forces. Hence, when the dropper is under compression it no longer connects the
contact wire to the messenger wire. This cause a rapid changes in the stiffness of the system
when the pantograph passes a dropper.

This nonlinearity caused by the slacking of the dropper causes problems when simulating the
system. Some authors do not include the slacking of the dropper, some state that is included,
but does not state how as in [2]. In [1] Cho develop and validate a numerical model including the
nonlinear effect of the dropper. Here the dropper is described as a mass spring damper system,
as seen in figure 11.

Figure 11: Dynamic simulation model of the pantograph and the overhead contact lines [1]

With stiffness kd = 10000N/m, and damping cd = 5Ns/m. There are no stitch wires this
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catenary system. The non-linear effect is included in Cho’s model by removing the contribution
of a dropper when it is slackened. This is done by calculating the internal forces in the dropper,
when the internal forces are negative the dropper is under compression, and the effect of that
dropper must be taken out of the global stiffness matrix. The internal forces in all the droppers,
fdrop, need to be checked in every iteration in the simulations. fdrop is calculated as following:

fdrop = f0 + kd(vm − vc) + cd(v̇m − v̇c) (3)

Cho validates the dropper formulation by comparing the forces in a dropper measured in the field
with those measured in the same dropper in the simulation model. The dropper placed closest
to the brackets are chosen, since this undergoes the highest variation of forces (when there are
no stitch wires in the catenary). A sampling frequency of 1000 Hz is used. The result from the
validation is shown in figure 12.

Figure 12: Forces in the dropper used in Chos model

Figure 12 a) show that when the pantograph is approaching the dropper, the forces on that
dropper are gradually reduced. When the pantograph passes, the dropper is slackened for a
short period. When the tension in the dropper return, an impulse is applied to the dropper.
Figure b) show that the simulations are able to include the slacking of the dropper. Even though
the modelling of the dropper in [1] describes the slacking well, this a very time consuming method.
The internal forces in each dropper must be calculated for every iteration.

In [7] the droppers are included in the global stiffness matrix as bar elements. In [7] this is solved
by adding a force equal to the bar compression force to the force vector.
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Figure 13: Forces in the dropper used in [7]

In [7] the results are not compared with measured field values. However, figure 13 shows that
the forces in the droppers are zero when the pantograph hits the dropper. But when comparing
with the measured values in [1], the forces in the dropper should be gradually reduced when the
pantograph is approaching the dropper. At least six iterations were needed in order to find the
right compensation forces to add to the force vector, so this is also an time consuming method.

In Naaviks numerical model, used for simulations in this theses, the slacking of the dropper is
included by pre bending beam elements in the dropper wire, thus making it more effected by
compressive forces. This will described in details chapter 5.2. This is much more time efficient
method.
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2.4 Dynamic characteristics

Theoretical studies of the interaction between the pantograph and the contact line have led to
numerous criteria for the railway catenary system. Some of them will discussed in this section.
All of the equations and figures in this section are taken from [16], and full derivations of the
functions can be found there.

When the pantograph hits the contact wire at high speeds, this results in a vertical displacement
of the contact wire, called the contact wire uplift. If the contact wire uplift is too large, a gap
between the pantograph and the contact wire will occur. This is called a contact loss. It is critical
to keep the contact loss at a minimum, to ensure no interruption in the energy transmission.

The wave propagation speed is the speed of the transverse wave that runs along the contact wire.
The wave is a result of the impulse caused by the contact force exerted by the pantograph. The
wave propagation speed cp is defined as

cp =

√
σcw
ρcw

=

√
Tcw
m′cw

(4)

where σcw is the tensile stress in the contact wire, ρcw is the contact wire density. Tcw is
the tensile force in the contact wire, and m′cw the mass per unit length [kg/m]. As identified
in section ??, when the train speed v approaches the wave propagation speed, the contact wire
uplift goes towards infinity, making contact between the pantograph and contact wire impossible.
The maximum train speed should be less than 70 % of the wave propagation speed according to
standard EN50119 [12]. From Equation 4, high tensile forces and low density would increase the
wave propagation speed.

The transverse wave in the contact wire will partly be reflected by discontinuities in the catenary
system. For instance, the dropper connecting the contact wire to the messenger wire, as shown
in Figure 14
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Figure 14: The reflection of a mechanical wave at a dropper [16]

Figure 14 a) shows the condition just before the wavefront meets the dropper, and Figure 14
b) shows the condition just after the wave has passed the dropper. The figure illustrates that a
wave travelling along the contact wire that passes a dropper, will be reflected to the messenger
wire by the dropper. The result is a wave front travelling in both directions in the messenger
wire. A transmitted wave will travel in the running direction in the contact wire, in addition a
reflected wavefront will travel in the opposite direction of the original wave. The reflection factor
r, for the reflection of a wave passing a dropper is described by

r =
1

1 +
√

Tmwm′
cw

Tcwm′
mw

(5)

where Tmw and m′mw is the tensile force and specific mass in the messenger wire.

When a pantograph is moving towards a wave propagation, the amplitude of the wave can
increase. A simple example is shown in [16] , where a pantograph is travelling along a contact
wire with a discontinuity at point xr, without exerting any forces. At the point x0 the pantograph
suddenly exerts a vertical contact force. This force causes a lift in the contact wire, and a
transverse wave traveling with speed cp. This wave will be reflected by the discontinuity at xr,
and travel back towards the pantograph, where it will be reflected again. This will be repeated
until the pantograph reaches the discontinuity point xr. This is shown in Figure 15
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Figure 15: Amplification of reflected wave [16]

where γ is the amplification coefficient

γ =
r

α
(6)

where r is the reflection factor shown in equation 5, and α is the Doppler factor

α =
cp − v
cp + v

(7)

where cp is the wave propagation speed, and v is the train’s running speed.

Figure 15 shows that when γ > 1 the amplitudes of the wave increase until the pantograph
reaches xr. While if γ < 1 the amplitudes will decrease. In order to achieve constant current
transmission between the contact wire and the messenger wire, the amplification coefficient γ
must be less than or equal to zero. From equation 6 and 7, it can be seen that this leads to
another limitation of the train speed v.

The elasticity of the system is also important for the current transmission. The contact wire
uplift must be kept small, in order to achieve constant contact between the pantograph and the
wire. Thus, the elasticity of the system should be low, and evenly distributed. An approximation
of the elasticity in the middle of a span can be calculated by

e ≈ L

kE × (Tcw + Tmw)
(8)

where kE is a constant dependent on contact line design data, and L is the span length. Equation
9 show that the need for low elasticity limits the maximum span length in a system. For a system
with stitch wires kE = 3.5, and for a system without kE = 4. The degree of elasticity can be
measured by
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u = 100 · emax − emin
emax + emin

% (9)

this value should be lower than 15%

In a railway catenary system the stiffness variations, together with the wave propagation, are
the main source of contact loss between the contact wire ant the pantograph [9]
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2.5 The Equation of Motion

The dynamic interaction between the pantograph and the contact wire is a typical wave prop-
agation problem [1]. In [16] some simplified dynamic equations of the contact between the
pantograph and the contact wire are derived. Two are shown here with the motivation of un-
derstanding which parameters that are important for the contact. Firstly, looking at a contact
wire that is deflected transversely, with no external forces applied. Secondly, a simplified contact
force is exerted on the contact wire.

With assumed negligible stiffness, the contact wire can be viewed as a tensioned string. The
wire is pre-tensioned with stress σ, and has a specific mass γ. Figure 16 show the contact wire
element.

Figure 16: Contact wire element

The contact wire element, with length dx is rotated with an angle α. The element has a cross
section area A, and mass m = dxAρ. Newton’s second law in y-direction gives,

H0sin(α+ dα)−H0sin(α) = may (10)

where ay = ∂2y
∂2t is the acceleration in the y-direction, and H0 = σA. When assuming small

deflections, α ∼ tan(α) = ∂y
∂x , and dα = dx

(
∂2y
∂2x

)
. Combining this with equation 10, and

rearranging the equation results in

∂2y

∂2x
− γ

σ
· ∂

2y

∂2t
= 0 (11)

where σ
γ = c2p, where cp is the wave propagation speed. This is known as the wave equation. The

result of this equation gives the contact wire deflection in the y-direction. The general solution
to the equation is all functions having the format y = f(x± cpt), i.e. a function with a period of
cpt. In conclusion, the movement of the contact wire is highly effected by the wave propagation
speed of the contact wire.
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Figure 17: Contact force exterted by a running pantograph [16]

Now applying a contact force to the contact wire. The contact force is not constant, and is
dependent on numerous parameters, as seen in 2.2. Then again, some important factors of the
contact wire pantograph interaction can be achieved by looking at the constant contact force,
which acts on a time dependent position xt = vt, where v is the train speed. This force can be
described by

Fx = F0 · δ(x− xt) = F0 · δ(x− vt) (12)

where δ(x) is the dirac delta function, where δ(0) = 1 and δ(x 6= 0) = 0. Adding this term to
equation 11 results in the equation

∂2y

∂2t
= c2p

∂2y

∂2x
+
F0

c2p
· δ(x− xt) (13)

The arithmetic will not be shown, but the solution is

y(x, t) =
2F0l

c2pπ
2(c2p − v2)

∞∑
n=1

1

n2
sin

nπx

l

(
sin

nπvt

l
− v

cp
sin

nπcpt

l

)
(14)

Even though this is a simplification of the contact force, the fundamental resonance characteristics
are visualized by the solution of the equation. That is, when the train speed goes towards the
wave propagation speed, v → cp, the contact wire uplift goes towards infinity. Thus, showing
that the wave propagation speed is a physical limit for the energy transmission.
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3 Solving the Contact Problem using FEM

Figure 18: Interaction between a contact wire a the pantograph [7]

The contact between the pantograph and the contact wire determines the quality and reliability
of the energy transmission to the traction unit. This contact depends on the design of the
pantograph and contact line, the location of contact between the contact wire and the pan head,
the horizontal geometry and the speed of the train [8]. This contact causes a nonlinearity in the
system.

In this thesis simulations are done using the Finite Element Software Abaqus. The details of the
FEM method will not be discussed. However, the dynamic equilibrium equation will be shown,
since it is used to describe the contact formulation using FEM.

[M ]D̈ + [C]Ḋ + [K]D = Rext (15)

In this chapter the theory needed to describe the interaction between the pantograph and the
contact wire will be introduced. First describing nonlinearity, then contact in general, lastly
the equation of motion for the contact wire when under influence of the contact force, with the
motivation of showing how the contact is dependent on the contact wire movement.

3.1 Nonlinear Problems

The types of nonlinearity that arise in structural dynamics are divided into material nonlinearity,
geometric nonlinearity and contact nonlinearity. A material nonlinearity is when the material
properties are dependent of the of the state of stress or strain, as for example for plasticity.
In the case of a geometric nonlinearity the deformations in the structure are so large that the
equilibrium equation must be written with respect to the deformed geometry.

Contact nonlinearity are a special type of geometric nonlinearity that arise when structures
interact, and contact forces has to be determined before calculating the structures behavior.
For all three cases the problem becomes nonlinear because the stiffness, and in some cases also
the load, as well becomes a function of displacement or deformation. Thus the principle of
superposition does no longer apply. Hence, equation 15 can not be solved for D right away,

22



because the stiffness K and R is a function of a unknown deformation D. Thus iterations are
needed to find D, and its associated R and K before solving the equilibrium equation.

The material properties are assumed linear in the catenary system. But there are a geometric
nonlinearity caused by the slacking of the dropper, and a contact nonlinearity caused by the
sliding contact between the contact wire and the pantograph. The geometric nonlinearity will
be discussed here, and the contact problem will be discussed in next section.

As mentioned, the main difficulty with geometric nonlinear problems, is that the equilibrium
equations must be written about the deformed geometry, which is unknown.

As discussed previously when a dropper is under compression, it does no longer connect the
contact wire to the messenger wire. Thus the effect of the dropper is not included in the stiffness
matrix, which therefore becomes a function of the deformation of the dropper. Thus the effect of
that dropper is not included in the stiffness matrix. Thus the stiffness matrix becomes a function
of deformation of the dropper.

Several complications arises with a nonlinear problem. It has proven difficult to find good
mathematical and numerical models that describe the nonlinearity. In addition the nonlinear
equations are difficult to solve, resulting in high computational cost.

3.2 The Contact Problem

Contact is a type of geometrically nonlinear problem that emerge when different structures
interact by contact, separation or sliding along each other with friction. Contact can also be self
contact, where different surfaces in a structure interacts. When this occur, the contact forces,
gained or lost, must be calculated in order to calculate the behavior of the structure[COOK].

The contact between the contact wire and the pantograph is hard sliding contact, with no
penetration in the contact surfaces. The equation for the contact force is derived in Chapter
2.2. Both the pantograph and the catenary are dynamic system that can oscillate independently.
The two components have diverse masses, elasticity, damping coefficients and natural frequency,
which makes the contact complicated [16]

Constraint equations must be included in the 15, for d.o.f. D in order to include the contact.
The constraint equation for contact can be written in the form

[C]D = 0 (16)
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3.3 Solution Methods

Figure 19: The penalty method [13]

There are different ways to impose the constraint equation, see Equation 16. The method
for solving the contact problem will be introduced in this section. In the literature, the most
frequently used methods are the penalty method and the Lagrangian method. The Lagrange
method meets the contact condition exactly, while the penalty method is an approximation of
the contact condition. However, the Lagrange method increase the number of unknowns in
the equilibrium equation shown in Chapter 3. The penalty method gives the same number of
unknowns, but can result in a set of ill-conditioned equations.
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4 Frequency Domain Analysis

This chapter will give a short introduction to the spectral analysis, and some method used later
in the thesis. More information on the spectral analysis can be found in [17]. The theory is based
on the fact that a time signal can be thought of as a superposition of sine waves, thus they have
a spectrum of components. Time signal can then be viewed as a sum of many wave trains with
different frequencies. Studying the frequency domain of a signal gives valuable information, and
can help analysing the signal.

4.1 The Fourier Transform

By Fourier transforming a function F (t) in the time domain, to its corresponding function C(ω),
the response can be analyzed in the frequency domain. The Fourier transform pair is presented
in equation 17

F (t) =
1

2π

∫ ∞
−∞

Ĉ(ω)e+iωtdx (17a)

Ĉ(ω) =

∫ ∞
−∞

F (t)e−iωtdω (17b)

where Ĉ(ω) is the continous fourier transform (CFT) of the fucntion F (t), defined on −∞ <
t < ∞, ω = 2πf is the angular frequency, and i =

√
−1. The plot of Ĉ(ω) against frequency

show the amplitude of the sinus wave, against the frequency of that sinus wave. The Fourier
transform of a function contains the same information as the original function. By putting ω = 0
in equation 17b, it can be seen that the value of Ĉ(0) is the area under the time function [15]

Finding the Fourier transform of the signal is only possible if the function F (t) is fairly simple,
which is most often not the case. Thus the discrete Fourier transform (DFT) is used in stead.
Whit the DFT method, the signal is viewed as a finite number of wave trains.

As seen above the CFT takes a function that is defined on −∞ < t < ∞ and transform it to
the frequency domain. The DFT takes a signal, defined on a finite time T, and represent it by
a finite number of frequencies. Since with the CFT the function is thought of to be defined on
−∞ < t < ∞. With the DFT sees the signal as a periodic function in the time domain with a
period of T. This is the main difference between the DFT and the CFT. It can also be interpreted
in the way that the CFT is the DTF of a signal over an infinite period T. Thus the DFT goes
towards the CFT when the sampling time goes to infinity.

The discretization in the two domains are.

∆T =
T

N
(18a)

∆f =
1

T
(18b)

The DFT of a signal is affected by the sampling frequency fs = 1
∆T . The highest detectable

frequency is half of the sampling frequency. If the sampling frequency is too low, the higher
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frequencies will appear as lower frequencies (its alias). In that sense the DFT is both dependent
on the sampling duration and the sampling frequacy. The half of the sampling frequency is
defined as the Nyquist frequency, fNyqiust = 1

2∆T . The CFT and DFT is a good match only for
frequencies under the Nyquist.

Figure 20: Aliasing [17]

Increasing the sampling frequency, i.e. increasing the Nyquist, increase the correlation between
the CFT and the DFT. Using the DFT of a signal, sets the limits for the frequencies used to
characterize the signal. It can be seen from equation 18b, that the discretization in the frequency
domain is set by the sampling time T.

Figure 21: The effect the sampling time T, and the time step ∆t has on the DFT [17]

An method called the fast Fourier transform FFT, have made it possible to study the DFT
of a signal. Is an very effective method. The FFT is simply a technique for calculating the
DFT. This algorithm have made it possible to study the frequency domain, with relatively low
computational cost.
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4.2 Filtering

In EN 50317 [11] there are stated that the the output from a simulation must be filtered with a
cut-off frequency of 20 Hz. This is discussed, and is assumed to small in many articles. In [9] it
is stated that in order to measure wear, the cut off frequency should be as high as 100 Hz. In [?
] the effect of changing cut-off frequency from 20Hz to 80 Hz is tested. The result show a 11%
increase in the standard deviation, and 36% increase in maximum values and a 19% decrease
in minimum values. This show, that when looking at wear, and other local effect, the cutoff
frequency must be increased.

A filter remove some frequencies in a signal, and in that way creates a smoothing effect. Low-pass
filter, is a type of filter that allow signals below a given frequency to pass and stops signals above
that frequency. The frequency limit is called the cut-off frequency. Chebyshev Types I filter is
used in this thesis [? ].

The Bode-Diagram for a Chebyshev Type I filter is plotted below. The sampling frequency is
set to 1400 Hz, and the cut off frequency to 100 Hz.

Figure 22: Magnitude response [18]
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Figure 23: Phase response [18]
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5 Simulations in Abaqus

In this section the simulation method used in this thesis is described. The simulations are
done using a numerical model derived and validated by Petter Naavik. The simulations uses
design data and field data from Fokstua wire 21, and the pantograph used is WBL88. Some
modifications are done, in order to better investigate the outputs of interest.

Firstly, the design data and line geometry that is the basis of the numerical model will be
presented. Secondly, the numerical model will be described. Lastly, the simulation method that
is the basis for this thesis will be introduced.

5.1 Line Geometry and Design Data

The section studied in this thesis is located along the Dovre rail line, and is called: Fokstua wire
21. It is a Norwegian System 20 C1 catenary section, see Figure 24. There are between four
and six droppers in each span. All of the span lengths, and number of droppers are shown in
Appendix A1.

Figure 24: Standard for System 20 C1 used on Fokstua wire 21 [14]
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Table 1: Key design properties of the catenary section Fokstua wire 21

Section Properties Fokstua Wire 21
Length 1295 m
Constuciton year 2015
Catenary system System 20 C1
Tension force in contact wire, Tcw 13 kN
Tension force in messenger wire, Tmw 13 kN
Cross-sectional area of the contact wire 120 mm2

Cross-sectional area of the messenger wire 70 mm2

Density of wire material 8890 kg/m3

Stitch wire (Yes/No) Yes
Number of spans in contact with the pantograph 28
Wave Propagation speed, cp 435 km/h

The pantograph used is WBL88. A lumped-mass-model was provided by the manufacturer
Schunk Nordiska AB. It is a method of describing a dynamic mechanical system as a series of
discrete concentrated masses, that are connected trough spring and damper elements [10]. The
model is described in Figure 25 and Table 2

Figure 25: The lumped-mass-model for the pantograph WBL88 [8]
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Table 2: WBL88 lumped-mass-model properties

Unit Value
mo1 kg 6.6
m2 kg 19.7
ko1 N/m 4400
∆ m 0.03
co1 Ns/m 75.6
c2 Ns/m 63.5
F2 N 7
Fs N 55
Fa N 0.0068 · v2

Chapter 2.4 state a number of dynamic characteristics for a catenary section. Some are calculated
in Table 3 using the values from Table 1.

Table 3: Dynamic characteristics for Fokstua wire 21

Amplification coefficient, γ 0.9988
Reflection factor, r 0.5670
Doppler factor, α 0.5677

It should be commented that the amplification factor is quite large. From 2.4 it is stated that
this should be less than or equal to 1.
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5.2 Numerical Model

Figure 26: The catenary system in Abaqus, where x is the running direction of the train.

The numerical model used in the simulations was created by Petter N̊avik. The model is validated
using field measurements. The field data were sampled according to standard. That is, with a
sampling frequency of 200 Hz. This will be referred to as fsd. The input is the design data
from Chapter 5.1, and line geometry. A python script generates a model in Abaqus. The exact
line geometry is taken from excel cell arrays, and is used in the python script. All the design
parameters shown in 5.1 is included in the model

In [8] N̊avik highlights that there can be a significant difference between the the design data
and the actual design, the same for the geometry. Thus the model was compared with measured
geometry by using pre-sag and elasticity, which creates accurate results.

The contact wire, messenger wire, stitch wire and the dropper are modelled using three-dimensional
deformable beam elements. An Timoshenko beam element was used in order to ensure a stable
solution. The Euler–Bernoulli beam elements could also be used, with negligible effect on the
simulated results [5]. This is the element type that is often used in simulations of catenary
systems. The element length is 0.05 m.

The contact wire and messenger wire are pre-tensioned and the pre-sag of the catenary is in-
cluded. The catenary section is applied tension and sag prior the dynamic analysis where the
pantograph runs along the section. The Rayleigh damping coefficients estimated by Naavik from
field measurements, are set to α = 0.062 and β = 6.13e−06 [5]. The forces in the stitch wires are
also included model. The tension of the stitch wires has to be obtained individually in order to
achieve the correct forces, this is done by an iterative step.
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Figure 27: Formation of the dropper elements. Pre-bent to include the slacking of the dropper
in the model. The dropper figure is created in Matlab, and the catenary is from Abaqus

Figure 27 illustrate how the slacking of the dropper is included in the model. The dropper is
divided into five beam elements. The beam elements are arranged so that they form a half sine
wave. The assumption is that when the dropper is pre-bent, it is more effected by compressive
type forces.

The pre-tensioning and the pre-sagging of the catenary is the first step of the simulations. In
the next step the pantograph is lifted with force Fs +Fa. The final step is a dynamic step where
the pantograph run along the catenary section. The Hilbert Hughes Taylor Method, which is an
implicit integration scheme, is used in the dynamic step. The Newton Method is used for the
nonlinear equilibrium equation.

The model uses beam-to-beam contact, that allows for separation after contact occur. The
contact is defined as hard contact, meaning that there is no penetration in the contact surfaces.
The beam to beam contact is an generalisation of the surface to surface contact, that allows for
using beam element as contact surfaces [13]. The constraint enforcement method is the Penalty
method, see Chapter 3.3. And the stiffness factor K, is set to default. The default stiffness
factor uses the stiffness of the underlying elements, and tries to find a balance between too low
penalty stiffness, which as mentioned will result in large penetrations, and too large penalty
stiffness, which can result in ill-conditioning. The interaction surfaces are the contact wire and
the collector heads.
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5.2.1 Pantograph Model

Figure 28: The catenary system and the pantograph in Abaqus, x is the running direction of the
train

The lumped-mass-model described in Chapter 5.1 do not include the fact that there are two
collector strips, which is the contact surface of the pantograph. N̊avik includes this in his model
by dividing the top mass in Figure 25. Which leads to a more accurate description of the
pantograph movement. The modified pantograph model is described in Figure 29.

Figure 29: Improved lumped-Mass-modell [8]

The parameters in this model is derived from the original model described in Table 2 and Figure
25. Where m1 = mo1/4, m1 = M1/4, c1 = co1/4, and k1 = ko1/4.
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Figure 30: The DOFs in the modified pantograph model [8]

Two coordinate systems are used to describe the movement of the train. GCSYS describe the
position and rotation of the base of the train, the local coordinates system LCSYS ensure that
the pantograph displacements are only along the normal axis. The fact that the front collector
strip experience higher contact forces than the rear one is not included in the model.
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5.3 Simulation Method

EN50318 [10] define a Simulation method as: Any numerical method that uses a fixed set of
input parameters to describe a system to calculate a set of output values representative of the
dynamic behavior of this system.

The simulation method in this theses uses the numerical model derived by Naavik described in
the previous chapter. In order to run multiple simulations the analysis area is reduces. Thus, the
simulations in this thesis is done over two spans in the Fokstua wire 21 section already described.
The alterations in the numerical model is done using Python. The simulations are preformed in
Abaqus. Matlab and Python is used to analyse the results from the simulations

Firstly, the changes done in the numerical model will be described. Secondly, the effect of
reducing the contact area on the computational costs are addressed.

Two separate studies are done in the thesis. First multiple simulations with different sampling
frequency, studying how the response is affected by the sampling frequency. Secondly, the contact
formulation is studied, by changing the penalty stiffness.

5.3.1 Changes in Numerical Model

The analytical area is reduced to span 6 and 7,see Figure 86, in the catenary section Fokstua
wire 21. Tabel 4 show the span informaiton.

Table 4: WBL88 lumped-mass-model properties

Span number Length [m] Number of Droppers Stitch Wire (Yes/No)
6 45,65 5 Yes
7 44,88 5 Yes

In the simulations the pantograph runs along the catenary section with constant train speed v =
120 km/h. Since the output for span number 6 and 7 are of interest the simulation start in the
middle of span 5, and end at the middle of span 8. Ensuring that the output of the simulations
are realistic, i.e. are not affected by responses from when the pantograph first connects to the
contact wire.

The contact forces are the focus of this thesis. The contact force is measured in the intersection
between the contact wire and the pantographs collector heads, and is the sum of all points of
contact. The train speed is constant, thus the sampling frequency alone decide how often the
contact force is measured along the span. With fsd the contact force is measured every 0.167 m.

In the rest of the thesis, span 6 and 7 will be refereed to as span 1 and 2. Figure 31 show
illustrate the two spans, and the notation used in this thesis. Drba refers to Drb in span number
a.
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Figure 31: The two spans studied in the simulations, including the notation used. The model is derived
in Matlab, and the length between the droppers and the brackets are correct. However, the section
height is not scaled

According to EN50318 [10] the simulations must be able to calculate the variation of the contact
forces, the wire movements and the pantograph movements when the pantograph passes along
the overhead contact line model. These outputs should be filtered to exclude the frequencies
outside the frequency range of interest.
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5.3.2 The Contact Formulation

The simulation time is highly effected by the contact formulation. Before starting the analysis,
the effect of reducing the contact area in the contact inclusion where studied. Looking at how
the simulation time is effected by the contact area, by running simulations over two spans and
increasing the contact surface in each simulation.

As seen the contact area is defined by two contact pairs. The first is the whole contact wire and
the first pan head, and the second is the whole contact wire(28 span) and the second pan head.
The simulations where done over two spans, and the contact area where increased from 5 to 20
spans.

Figure 32: Computational time versus contact area

It can be seen from Figure 32 that the computational time is highly effected by the contact area.
It is nearly linear and the slope k can be approximated to k = 9971−5958

13−5 = 501.63 s
span = 8.36 min

span ,
noted that this is for a simulation over two spans. Running the whole section, this whould be
very important.

The simulations performed in this thesis, is done over two spans, so the computational time is
kept relative low, approximately three hours. However, numerous simulations were performed.
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5.3.3 System characteristics

The elasticity and the eigenfrequencies up to 40Hz of the catenary will be displayed in this
section. The results will not be discussed in detail, but is used in the Result section.

The eigenfrequencies up to 40 Hz were calculated in Abaqus.

Figure 33: Eigenfrequencies in the system, Gn is the normalized general mass Gn
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The elasticity were calculated by Naavik in [8].

Figure 34: Elasticity in the section Fokstua Wire 21, [8].
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6 Sampling Frequency Results

The contact force, together with the standard deviation or percentage of arcing and the contact
wire uplift, can define the current collection quality of the system [16] Arcing occurs when the
forces approach zero, or there is a loss of contact. Arcing will too some degree maintain electrical
transmission, but will increase the wear of the contact wire. If the air gap is too wide, energy
transmission is interrupted, i.e. loss of power to the train. As stated earlier, change in elasticity
and the wave propagation is the most common cause for contact loss.

The wear of the contact wire is crucial. In addition arcing, excessively high contact forces also
contribute to wear of the contact wire. This because the high forces can lead to the contact wire
being lifted too high, and this would lead to unacceptable wear [16].

It is important that the model is able to show the effect of the passing of the droppers, and
the brackets. The model should also be able to show the effect of the wave propagation. The
movement of the contact wire highly depends on the wave propagation speed, as shown in the
chapter 2.4

In [? ] Naavik look at the effect of changing the cut off frequency from 20 Hz to 80 Hz, this has a
considerable effect on the extremal values of the contact force. In [9] argues that when studying
the wear the catenary system frequencies up to 100 Hz are important. This is the maximum
frequency simulations done with fsd are able to detect.
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6.1 Contact force

Figure 35: The catenary and the pantograph. The figure is taken from the numerical model in Abaqus

In this section, several analysis are done n order to see if a simulation with a given sampling
frequency are able to measure the effect stated above. Firstly, the time domain plot of the
contact force. This shows much information about the behavior of the system. It is the most
suitable way to look at the dynamic behavior of the components in the system, and the interaction
between them according to [16]. Secondly, the frequency content of the contact forces is examined.
Identify which frequencies are important for the contact, and what should be filtered out. Thirdly,
a some statistical data of the contact force are illustrated. Lastly, critical points for the contact
forces in the span are located.

6.1.1 Time Domain Analysis

In this section the contact force in the time domain is plotted for the whole analytical area,
and critical areas in the span are identified, the studied more closely. The contact forces where
computed with sampling frequencies from 20 Hz to 1400 Hz, with a step of 20 Hz. The contact
force time response from five simulations are presented in this section. The selected simulations
are done with fs = 20, 200, 600, 1000,and 1400 Hz. fs = 200 Hz is the sampling frequencies
stated as a minimum in standard EN 50318, and will be referred to as fsd. The result derived
with fs = 20 Hz is included, even though this is critically lower than fsd. This is to demonstrate
that the result computed with fs = 20 Hz, differ from the result computed with higher fs and
filtered at 20 Hz. Figure 36 show where the pantograph is located in the span for a given time.
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Figure 36: Pantograph position along the span at time tp, v is the train speed. The figure derived in
Matlab, and is not scaled

The elasticity of the catenary system is plotted in Figure 34, the tendency of the elasticity for
span span in the catenary is shown in 37. The sudden drop in the elasticity by Dr2 and Dr4,
suggest that the highest contact forces will be measured there. The section around the stitch
wire have almost uniform elasticity, thus smaller variation in the contact force would be expected
there. The maximum elasticity in the span is measured at the middle of the sections between
Dr2 and Dr3, and Dr3 and Dr4, there the lowest contact forces are expected to occur.

Figure 37: Elasticity variations along a span in the Catenary system. The elasticity distributions is
taken from Figure 34. The grey lines illustrate where the stitch wires are connected to the messenger
wire

The contact wire from figure 36 are included in the time domain plots of the contact force. For
the sake of illustrating where the pantograph is located along the span at a given time, making
it easier to identify critical locations in the span.
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Figure 38: Contact forces in the analytical section

As expected the simulated contact forces are highly affected by the sampling frequency. The
results from simulations with fs = 20 Hz, are limited to the mean contact forces, and most of
the dynamic effects are not included. The results measured with fsd, show the most important
dynamic effects in the span such as passing of the droppers.

It is apparent from Figure 38 that the largest contact force is measured at Dr4 in the simulation
with fs = 1400 Hz, this can be expected from the elasticity plot. For the simulations with
fs = 200, 600 and 1000 Hz there are no clear maximum position for contact forces. However, there
are large contact forces measured by both Dr2 and Dr4, also expected from Figure 38. For the
simulations with fs = 20Hz Figure 38 show that contact forces measured at Dr4, correspond with
the contact forces measured in the section between Dr2 and Dr3. This suggest that simulation
done with fs = 20Hz are not able to fully detect the elasticity variations along the span. All the
simulations identify the smallest contact force at the section between Dr3 and Dr4

As stated the maximum forces is expected to occur by Dr2 and Dr4 in each span. However,
an increase in the contact forces should be identified by all the droppers. As seen in Figure 38,
there is an increase in the contact forces near all the droppers. However, the magnitude of the
response is larger when fs increase.

Figure 39: Critical positions in the span with regard to larger contact force.s
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Figure 40: Contact forces measured at a) Dr14 and b) Dr24. The time period shown is 0.1 seconds

The sections where the maximum and minimum forces are located are studied closer, and are
highlighted in Figure 39. As stated, the maximum contact forces are located by Dr4 in each
span for fs = 1400 Hz. The minimum contact forces are located between Dr3 and Dr4 for all
the simulations.

Figure 40 show that the contact forces increase when the pantograph is approaching Dr4 in both
spans, this is probably caused by the decrease in elasticity by that dropper. When the pantograph
passes the dropper there is a sudden drop in the contact forces down to approximately Fstatic =
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55 N, that is caused by the slacking of the dropper, see Chapter 2.2 and ??. When the tension
in the dropper return there is a rapid increase in the contact forces. The four simulations done
with fs ≥ 200 Hz are able to include the effect of the slacking of the dropper. However, the
magnitude of the contact forces differ. The largest difference are observed prior the passage of
the dropper.

An important thing to observe from Figure 40, is that the contact forces measured with fs = 600
Hz and fs = 1000 Hz are closely related after the pantograph has passed the dropper. Whereas,
the contact forces measured before the passage of the dropper differ a lot. There are high
frequency variations in the measured contact forces from the simulations with fs = 1400 and
1000 Hz, that the simulations with fsd and fs = 600 Hz are not able to detect. After the
passage of the dropper, the contact forces measured with fs = 1400 varies with frequencies of
approximately 600 Hz. The cause of these frequencies can be oscillation in the dropper after the
pantograph has passed. The behavior of the dropper will be evaluated in Chapter 6.3.

The plot over the analytical area in Figure 38 demonstrated that even simulations with fs as
low as 20 Hz are able represent the trend of the catenary movement. However, the simulations
are not able to calculate the extremal values of the contact force correctly. This becomes more
evident when considering the data in Figure 40. The local maximum for the contact forces when
fs = 20 occur 0.03 seconds after the pantograph has passed the dropper. Since the train speed
v = 120/3.6m/s this is 1 m after the passing of the dropper. When fs = 20Hz the contact
force is only measured every ∆l = v

fs
= 1.67m along the contact wire, the chance is that it not

affected by the passage of the dropper. For comparison, with fs = 1400 Hz, the contact force is
measured every 2.38 cm.

The peaks contact forces with fs = 1400 Hz, that is not detected by the other simulations, can be
caused by the small uplift in the contact wire caused by the wave propagation. The transverse
wave uses approximately 1

12000s to pass a element in the contact wire, i.e. the element pass
frequency for the wave propagation is 12000Hz. Sampling with a higher frequency will increase
the probability of the contact force being affected by this uplift. In addition, how close to the
dropper the pantograph hits the contact wire affects the contact force. Again, higher sampling
frequencies increase the the probability of contact forces being measured when the pantograph
is directly under the dropper.

Figure 41: Critical positions in the span with regard to small contact forces

In figure ?? the contact forces from the section between Dr1
3 and Dr1

4 are plotted. This is the
section with highest elasticities, maximum elasticity is located approximately half way between
the two droppers.
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Figure 42: Contact forces measured at in the section between Dr13 and Dr14

Low contact forces are observed in this section when fs = 1400 Hz, and the plot suggests
that contact force varies with a frequency between 120 Hz to 140 Hz. This illustrates that the
minimum contact forces are impacted by higher frequencies. The contact forces measured with
fs = 1000 Hz are able to match the extremal values for fs = 1400 Hz. However for fs = 600 Hz
the difference is larger. However, results with fs = 600 Hz matches the results with fs = 1000 Hz
in many sections. The difference in the result larger by Dr4 than Dr3. Another important result
is that the simulations with fsd, show no increase in the contact forces prior Dr1

3. Suggesting
that the simulations don’t not include the effect of the drop in elasticity at that point.

The maximum contact forces increase with the increase of fs, as expected. The simulations with
fs ≥ fsd are able to detect the largest elasticity variations along the span and the passing of the
dropper. However, the magnitude of the contact force increase with the increase in fs. In the
section with the lowest contact forces the simulations with fsd are seemingly not sufficient.

47



6.1.2 Frequency Content

In this section the frequency content of contact forces are identified. The method used is the
power spectral density (PSD) of the contact force estimated by the fast Fourier transform (FFT).
The FFT is described in chapter 4.1. The small time period in the simulations in this thesis,
T = 2.7159 s, leads to a course discretization in the frequency domain, ∆f = 1

T = 0.3682Hz.
The eigenfrequencies of the catenary system, displayed in Figure 33, show that there are many
closely related eigenfrequencies.

Figure 43: The FFT spectrum of the contact force, in the frequency range a) 0-10 Hz and b) 10-100
Hz. The PSD from fsd = 200 Hz are highlighted in red.
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This, together with the course discretization in the frequency domain makes it difficult to iden-
tify distinct eigenfrequencies that the catenary sections is most effected by. However, valuable
information about simulations can be gained by analysing the PSD of the contact forces. Firstly,
the frequency content up to 10 Hz will be studied. Secondly, frequency content up to 100 Hz.
Lastly, the frequency content up to 200 Hz. The motivation is to identify those frequencies that
are important for the contact formulation, and how the sampling frequency affects the frequency
content of the simulated results.

Figure 43 a) demonstrates that the frequency content for the contact forces simulated with
fs ≥ fsd are nearly identical for frequencies under 10 Hz . This demonstrates that if the frequency
range of interest is under 10 Hz, there is no reason to increase fs. However, looking at Figure 43
b) there are frequencies with higher powers that the results from simulations with fs ≤ 200Hz
do not show. The peak at 11.03 Hz can be recognize from the eigenfrequencies plotted in Figure
33

Figure 44: The FFT spectrum of the contact force, in the frequency range a) 0-10 Hz and b) 10-100
Hz.

Figure 44 demonstrates that frequencies over 100 Hz influence the contact forces sampled with
fs ≥ 600Hz. It is not easy to detect the origin of these frequencies. The effect of filtering the
sampled data with at cut-off frequency 100 Hz, and 140 Hz will be presented in Chapter 6.4, ad
help identify the origin of these frequencies.

To summarise, the frequency content of the contact force measured with frequencies from 200
Hz, to 1400 are approximately the same up to 20 Hz. This is the cut-off frequency that should
be used according to standards.

It was shown in the previous section, in area with low contact forces, that there are oscillations
with frequencies from 120 Hz to 140 Hz that the contact force is affected by. It is also clear from
figure 44 that there are frequencies over 100 Hz that are important for the contact.
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6.1.3 Statistical Analysis

In this section some statistical values for the contact force are calculated. The mean, minimum,
maximum and the standard deviation of the sampled contact force is presented. This is values
that are important when classifying the quality of the interaction between the contact wire and
the pantograph. The maximum and minimum values are, as stated earlier, important for the
measurement for contact wire wear, contact loss and arching.

Figure 45: Statistical values of the contact force. a) mean value, b) standard deviation, c) minimum
and d) maximum

As seen in Figure 45 a) the mean value of the contact force is nearly independent of the sampling
frequency. The outline of this was already seen in the plotted times series of the contact force
in chapter 6.1.1. However, other the statistical values highly depend on the sampling frequency.
Figure 45 a) show that the sampled data with fs = 20Hz produce a good approximation of
the mean response. However, when looking at the other values it is evident that the error is
substantial.

The standard deviation of the contact force is used to classify the interaction between the contact
wire and the pantograph. Small standard deviation of the contact force results in a smoother
interaction between the contact wire and the pantograph. From figure 45 it is clear that the
standard deviation increases approximately linear with the sampling frequencies. The standard
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deviation of the sampled data increase with over 100 % when fs increase from 20 to 1400 Hz,
and approximately 60 % when fs increase from 200 to 1400 Hz. The standard deviation of the
field data in [? ] are measured to 15 N. It should be stated, that these values are measured
with higher train speed than used in the simulations in this thesis. The standard deviation of
the sampled data are greater than or equal to 15 N, when fs ≥ 400Hz

Both the maximum and minimum values of the sampled data, increase and decrease respectively
with the increase in fd, as expected. The minimum of the contact force sampled with fs ≥ 600
decrease linearly. The maximum of the sampled data does not show the same linear effect.
However, when fs ≥ 600 the changes in the maximum of the sampled data are small. The
maximum contact force measured with fs = 600Hz is 78.38% of the maximum contact force
measured with fs = 1400Hz. The largest contact forces are sampled with fs = 1320Hz, and
there are a decrease maximum of the sampled data with higher fs. The maximum and minimum
contact forces, and their locations along the span will be discussed in further detail in 6.1.5 and
6.1.6 respectively.
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6.1.4 Filtered According to Standards

The contact forces studied so far are not filtered. Chapter 6.1.2 show that there are many
frequencies over 20 Hz that influences the contact force. In this section the effect of filtering the
results according to the standards (with cut-off frequency 20 Hz) will be discussed, and plots of
the filtered time series will be presented. The statistical data for the filtered contact forces will
presented in 6.4.

Figure 46: Contact force filtered with a cut off frequecny of 20 Hz

. The method used for filtering is the Chebyshev Type I filter which is described fully in chapter
4.2. The result demonstrate that the measured data are nearly independent of the sampling
frequency, if it is filtered at 20 Hz. Some differences in the extremal values can be observed.

The filtered data show contact forces in the range of 34.93N to 92.84 N, compared to the unfiltered
data where the range is 3.52N to 185.5N for the contact forces measured with fs = 1400N . The
location of the maximum of the measured contact forces also differ. For the unfiltered case the
maximum values are measured by Dr4 in each span, when fs = 1400N , while in the filtered
case the maximum values measured between Dr2 and Dr3. The filtered response include the
discontinuity effect of the dropper. However, the effect of the slacking of the dropper is not
observed.

Another important result that can be interpreted from the plot in Figure 46, is that there is a
difference between the contact forces measured with fs = 20Hz, and those measured with fs
and filtered down to 20 Hz. Both the extremal values, and the location of the extremal values
rapidly change when the data is filtered at 20 Hz. The location of the extremal values will be
studied in detail in chapter 6.1.5 and chapter 6.1.6.
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6.1.5 Maximum Positions

The location of the maximum values in the span is important indications to help identify critical
areas. As presented in the chapters 6.1.1, 6.1.4 and 6.1.3 the maximum contact forces and their
location is highly dependent on fs. Studying the location of the maximum contact forces can
help identify if the simulations are able to detect the elasticity variations and discontinuities in
the catenary section.

Figure 47: Maximum contact forces for fs ∈ [20Hz, 1400Hz]

From studying the graph a nearly linear increase of the contact forces is observed up fs =
280 Hz. For sampling frequencies above 280 Hz the variations does not follow a clear pattern.
Between 280 Hz and 600 Hz the variations in maximum contact forces are large. For fs ≥ 600
Hz, the variations are smoother. The maximum contact force from all the simulations are 219
N, and is measured with a sampling frequency of 1320 Hz. When increasing fs over 1320 Hz,
the maximum contact force decrease. With fs = 1400 Hz the maximum contact force is 185 N,
which is approximately the same value as with fs = 700 Hz.
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Figure 48: Contact forces for fs ∈ [20Hz, 1400Hz], with maximum position

In Figure 48 the time series of the contact forces for all (70) simulations are plotted, and positions
where the maximum values occur are highlighted. There are five positions in the span where the
maximum forces occur, by the Dr2 and Dr4 in each span (as expected), and in the area between
the Dr2 and Dr3. This is for the simulations with fs = 20, 40 and 60 Hz, this is also the area
maximum contact forces occur when filtering according to standards, i.e. filtering the data with
a cut-off frequency of 20 Hz. This was shown in Figure 6.1.4.

Figure 49: Maximum contact force positions for fs ∈ [20Hz, 1400Hz]
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For the simulations with fS = 200 - 260 Hz maximum values appear by Dr2
2. For fs ≥ 80 Hz,

the maximum contact forces appear in the four areas that are most expected according to the
elasticity in the span. 61.2 % of the maximum positions are by Dr1

4 , 24.3% by Dr2
4, 7.1% by is

by Dr2
2, and 2.9 is by Dr1

2. Only 4.3 % of the maximum values appear in the area between Dr2
2.

and Dr3
2. The majority of the maximum contact forces are measured by Dr1

4, not Dr2
4, this can

be caused by the contact forces not having completely stabilized at this point of the simulation.

To summarize, the maximum contact forces appear by Dr2 and Dr4 in each span, when the
simulations are done with fs > 80Hz. Which is expected from the elasticity plot in the system,
see Figure 37.
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6.1.6 Minimum Positions

Identifying the minimum contact forces are related to the argued importance of simulating con-
tact loss and arching in a representative manner. Figure 50 show the minimum contact forces
against frequency.

Figure 50: Maximum contact forces for fs ∈ [20Hz, 1400Hz]

It is clear that the minimum contact forces are decreasing with increasing fs Compared to the
maximum forces plotted in Figure 47, the forces decrease in a more linear fashion, the exception is
for fs between 340 Hz and 500 Hz. Minium contact forces measured with fs =1400 Hz is 11.43%
of the minimum measured with fsd. For sampling frequencies over 820 N, the minimum contact
forces is under 10 N. Compared to the aerodynamic component exerted by the pantograph, which
is 55 N, the contact forces are minor. In these simulations the the train speed is 120 km/h, and
with an increase in this speed, contact loss could occur in the section. This need to be detected
by the simulations. The location of the minimum contact forces along the span are plotted in
figure 51
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Figure 51: Contact forces for fs ∈ [20Hz, 1400Hz]

The minimum contact forces are scattered in a more extensive manner in the span, than the
maximum contact forces. Most of the minimum forces are located between Dr2

3 and Dr2
4. As

seen elasticity plot in Figure 37, this is the section with higher elasticity. There some located in
the section between Dr1

3 and Dr1
4. The minimum contact forces near Dr1

3 and Dr2
2, are located

where there is a drop in the elasticity. However, this are may be caused by the slacking of
the droppers, and the oscillations in the contact wire, when the pantograph is approaching the
dropper. The location of the minimum forces along the span, are plotted against the sampling
frequency in figure 52.

Figure 52: Minimum contact force positions for fs ∈ [20Hz, 1400Hz]
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The drop in the in the minimum contact forces in figure 50 between 340 Hz and 500 Hz are
located after approximately 0.65 s in the simulations. That is around Dr1

3, and can be caused by
the variations in the elasticity, or because the simulations has not stabilized yet. The majority
of the minimum contact forces are located in the area between Dr2

3 and Dr2
4 as already seen in

51. 57.1 % of the minimum contact forces are located in that section. While 18.6 % are located
by Dr2

2, 11.4% are located between Dr1
3 and Dr1

4, and 12.9% are located by Dr1
3.

For sampling frequencies above 1260 Hz, the minimum contact forces stabilize at that position,
and the change in the minimum contact forces are small. From approximately 5N at 1260 Hz to
4N at 1400 Hz. After 600 Hz, the minimum contact forces are located at three different sections.
In the area between Dr3 and Dr4 in each span, and by Dr2

2. It would be expected that there are
small contact forces located around Dr3 and Dr4, when looking at the elasticity plot. However,
major changes in elasticity can be observed aroundDr2

2.

As argued in Chapter 2.4, in a catenary system the main reason for contact loss are stiffness
variation, together with wave propagation.

Figure 53: Critical nodes for maximum and minimum contact forces

Figure 53 summarize this Section and 6.1.5. Seven points are highlighted in the span that are
critical with regard to maximum and minimum forces. Thus, these are critical points when
studying wear and contact loss in a system, and are therefore of utmost importance to simulate
correctly.
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6.2 Contact wire

The following chapters will focus on the behavior of contact wire and the droppers in the critical
points located in 6.1.5 and 6.1.6. The acceleration of the points are the main focus. The
acceleration of the contact wire are closely connected to the dynamic component of the contact
force, so studying this can give valuable information. In this section sampling frequencies of 200
Hz, 600 Hz, 1000 Hz and 1400 Hz will be studied. The time domain plot will be calculated,
togeteher with the frequency content in form of a FFT estimate of the power spectral density.

6.2.1 Acceleration at maximum points

Figure 54: Points where maximum contact forces occur in the span

The point located by Dr1
4, Figure 55 a), is the point where 7.1% of the maximum contact forces

occur for the different sampling frequencies. The dotted line represent the time the mid-point
of the pantograph passes the contact wire point. For the case of fs = 1000Hz and fs = 1400Hz
there are oscillations that increase in amplitude when the pantograph is approaching the contact
wire point. After this there is a sudden drop, that is related to the slacking of the dropper, then
the tension return and there is an impulse. Figure 54 illustrate that for fs = 600Hz, 1000Hz and
1400Hz the response is more or less the same after the pantograph has passed. For fs = 200Hz
the response only follow the mean and that there are more resemblance after the pantograph
passes, than prior. Looking at the FFT plot, the frequency content is the same for all fs up
to approximately 15 Hz. The case of fs = 600Hz has the approximately the same frequency
content up to 60 Hz.
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Figure 55: Critical points in the span
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Looking at point Dr2
4, Figure 55 b), where 61.2 % of the forces contact forces where located, the

same effects can be seen here as for Dr1
4, . The resemblance is better after the pantograph has

passed.

Figure 56: Critical points in the span

Looking at the contact wire point by Dr2
2, where 24.3% of the maximum contact forces are

located. The same oscillations with the increase in amplitude can be observed. Nonetheless, the
simulations with fs = 600Hz better resemblance to the higher frequencies at this point. After
the passage of the pantograph, the maximum values for fsd are approximately the same as for
higher fs. However, prior the difference in the response is significant.
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6.2.2 Acceleration at minimum points

Figure 57: Critical points in the span

Figure 57 shows the critical points in the section, with regards to minimum contact forces. While
four discrete points where the main location for the maximum forces, the minimum forces are
located at some distinct areas between the droppers. In the area between the third and fourth
dropper at each span, the minimum contact force points are located. Firstly, the point where
the contact wire node is connected to a dropper (x = 252.04m) will be investigated. Secondly
the points in section Dr3 and Dr4, (x = 257.95 and x = 301.81) will be studied. Lastly, the
point located near Dr1

2 ((x = 286, 67m) will be discussed.

Figure 58: Critical points in the span

12.9% of the minimum contact forces measured by Dr1
3. At this section, many of the major effects
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that occurred at the points of maximum contact force, discussed in 6.2.1, can be observed. There
are oscillations in the wire when the pantograph is approaching the dropper. The clear peaks
before and after the pantograph has passed the point is not present in this plot. It can be seen
from 38, that there are a clear decrease in the contact forces for all four sampling frequencies
when the pantograph is passing that dropper, and the forces are approximately 55 N. Looks like
the dropper damps the motion, does not observe any slacking of the dropper. The behavior of
this dropper will be discussed in chapter ??. The FFT show resemblance to the FFT for the
Dr1

4, which is the neighbor dropper, put the power is less.

Figure 59: Critical points in the span

18.6 % of the minimum contact forces are located byDr2
2, the acceleration oscillates with high am-

plitudes, seemingly and the frequency does seemingly increase when the pantograph is approach-
ing the point. The movement of the contact wire are similar for simulations with fs ≥ 600Hz
when the pantograph is further away from the point. During the passage there are larger differ-
ences. Then simulations with fs = 600Hz produces results more similar with fs = 200. After
the pantograph has passed the results are approximately the same in all the simulations.
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Figure 60: Critical points in the span
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11.4% of the minimum contact forces are located between Dr1
3 and Dr1

4, Figure 60 a). The same
effect of the increase in the amplitudes when the pantograph is approaching are present, but
the amplitudes are higher long before the passage. The frequency content are high. A peak for
100 Hz, for fs = 1400Hz. The oscillations are damped after the dropper has passed. 38 show
that the mean contact forces are low, under 50 N in this area. There might be a small period of
slacking that is detected for fs = 1400 and 1000Hz. Nothing is measured for the fs = 200Hz
and 600Hz.

57 % of the minimum contact forces are located in the section between Dr2
3 and Dr2

4, Figure
60 b). The error between the simulations results for fs ≥ 600Hz are smaller here than in for
x = 257.95Hz, between Dr1

3 and Dr1
4. This is further away from the simulation start point,

Which can be the cause better resemblance. There is a clearer increase in the amplitude of the
oscillations when the pantograph is approaching the point, for fs ≥ 600Hz, and there is a sudden
drop after the pantograph has passed. Amplification of reflected waves. When the pantograph
is moving towards an transverse wave, the amplitude of the wave can increase!
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6.3 Dropper

In this section the the droppers connected to the critical points in the contact wire identified
in chapter ?? will be analysed. How the dropper affects the movement of the contact wire is
evaluated, furthermore if the passage of a pantograph results in slacking of the dropper. Both y
and z direction are analyzed. The movement of the dropper in the z direction is important to
study considering the slacking of the dropper, due to the fact that slacking of the dropper leads
to deflection in the in-plane direction. The mid-point of the dropper is evaluated. Firstly the
acceleration will studied, then the deflection.

Figure 61: Droppers connected to critical points in the contact wire.

6.3.1 Acceleration

The acceleration of the mid-point of the outlined droppers are presented in this section. Firstly,
the dropper exposed to lower contact forces is evaluated. Secondly, the droppers exposed to high
contact forces are analysed. The time response and the frequency content are presented in the
same plot. The results are from simulations with fs = 200Hz, 600Hz, 1000Hz and 1400Hz.

Figure 62 shows the acceleration in Dr1
3 from the simulations done with different sampling fre-

quencies. The forces exerted on this dropper are close to the static component of the pantograph,
Fstatic = 55N . The results from the simulations with fsd differ from the results with fs ≥ 600Hz,
for accelerations both in z and y directions.

The acceleration in z direction will be discussed first. Simulations with fs ≥ 600Hz show
oscillations in the dropper that the simulations with fsd do not detect. The FFT plot show
that the frequency content is the same up to 20 Hz. However, for frequencies over 20 Hz the
difference between the results from simulation fsd and the results from fs ≥ 600Hz are enormous.
Considering the results for fs ≥ 600Hz, both the time domain and the frequency domain plot
show that the result with fs = 600Hz provide results that close to the results with fs = 1400Hz.
The acceleration increases when the pantograph is approaching the dropper, and decreases under
the passage of the pantograph. There is no slacking of the dropper since the contact forces are
too low. In the z direction, the results are nearly identical for the simulations with fs ≥ 600Hz,
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both in the time ans frequency domain. The results from fsd show that the acceleration in z
direction increases with time after the pantograph has passed.

Figure 62: Acceleration of the mid point of Dr1
3, located at x = 252.04 in the span. a) shows

the y component and b) the y component

Figure 63 shows the result from the simulation for Dr1
4 and Dr2

4. These droppers experience the
highest contact forces, and the results show that the force is high enough to generate a slacking
of the dropper. The result from all the simulations are able to show the effect of the slacking
on the dropper. However, the size of the response vary. The results from the simulations with
fs = 600Hz and fs = 1000Hz are nearly identical. The FFT plot show that the frequency
content is the same for the results up to 20 Hz, the same as observed for Dr1

3. The frequency
content is higher for Dr2

4 than for Dr1
4.
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Figure 63: Acceleration of the mid point of Dr1
4 and Dr2

4, located at x = 261.45 and x = 306.52
in the span. a) shows the result for Dr1

4 and b) for Dr2
468



Figure 64: Acceleration of mid point of Dr2
2, located at x = 288.08 in the span. a) shows the y

component and b) the y component

It can be seen from the results for Dr2
2 show that the simulation with fsd the acceleration

produced with higher fs. The resemblance is higher prior the passage of the pantograph than
after. The oscillations in the dropper when the pantograph is approaching the dropper is not
detected by the simulations with fsd. However, the simulations produce equal accelerations after
the passage of the pantograph. The difference in the result from the simulations for Dr2

2, are
small compared to the result for Dr1

4 and Dr2
4.

To summarize, the frequency content for the results in the y direction from simulations with
fsd are equal to the other results up to 20 Hz. However, the results from the simulations with
higher fs suggest that there are frequencies over 20 Hz that are important for the response of
the system, according to EN50318. The variations in acceleration is greater in the dropper that
experiences lower contact forces, than in the dropper where the pantograph exerts high forces.
The simulations with fsd, are able to produce results that follow the trend of the movement of
the dropper in the dropper with high forces. In the dropper that experience a contact force equal
to Fs, the results from simulation with fsd are not able to produce results that agree with the
movement of the dropper from the simulations with fs ≥ 600Hz. The acceleration simulated
with fs = 600Hz compare well with results with higher frequencies.
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6.3.2 Deflection

In this section the deflection of the dropper in z and y direction is suited. Firstly, the deflection
of dropper that experiences lowest contact forces, Dr1

3. Secondly, the deflection of the dropper
experiences that experiences highest forces , Dr1

4 and Dr2
4, are examined. Lastly, the deflection

of Dr22, that also is exposed to high contact forces. The motivation for studying the deflection of
the dropper, is to show how the dropper movement is effected by the passing of the pantograph.
Furthermore, decide whether the dropper is effected by the uplift of the contact wire in the
section around the dropper.

Figure 65: Deflection of the mid point of Dr13, located at x = 252.04m along the catenary section. a)
deflection in y direction, and b) deflection in z direction

Figure 65 a) illustrates that the dropper is lifted in y direction when the pantograph is passing the
dropper. The maximum uplift of the dropper appear during the passage. Smaller increase in the
uplift appear after the pantograph has passed, this is probably caused by the wave propagation
in the wire. A larger uplift in the dropper occur after approximately 2.4 s in the simulations,
which can be caused by the high contact wire uplift further down in the the span. The dropper
oscillated in the z direction with a constant frequency, which can be recognized from 6.3.1 as one
of the eigenfrequencies of the system. Figure 65 illustrate that the deflection is nearly identical
in the simulations with different fs.
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Figure 66: Deflection of the mid point of a) Dr14 and b) Dr24, located at x = 261.45m and x = 306.52m
along the catenary section

Figure 66 show that the maximum uplift of Dr1
4 and Dr2

4, appear before the pantograph has
passed the dropper. This is caused by the high contact wire uplift at the mid point between Dr3

and Dr4 in each span, where elasticity of the catenary system is highest. The passage of the
pantograph only cause a small uplift in the dropper. The deflection of the dropper in z direction
is affected by the movement of the wire, prior to the passage of the pantograph. The response
in the z direction Dr1

4 and Dr2
4 are more dependent on fs, then the response for Dr2

2. The
simulations with fsd do not show as high response in z direction as the simulations done with
fs > fsd.
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Figure 67: Deflection of the mid point of Dr22, located at x = 288.08 m along the catenary section. a)
deflection in y direction, and b) deflection in z direction

From figure 67 it is observed that the highest uplift of the midpoint is when the pantograph is
passing the Dr2

2. The simulations with fsd produces responses in the z direction that correspond
more with the results from the other simulations, at this dropper than at Dr4 in each span.

The high contact forces measured at Dr4 and Dr2 in both of the spans, is related to the sudden
decrease in the elasticity in the catenary. Looking at the deflection of the dropper Dr4 in each
span, it can be observed that the highest uplift in the dropper appear prior the passage of the
pantograph. This uplift appear at the point when the pantograph interacts with the contact
wire where the maximum elasticity of the span is located. Thus, the deflection of the contact
wire is decreasing when the pantograph is passing the dropper. The difference in the simulated
response in z direction is higher in the dropper that experience larger contact forces.

72



6.4 Cut-Off Frequency

In this section the effects of filtering the result (with cut-off frequencies 80 Hz to 200 Hz) from
the simulations will be demonstrated. Firstly, the effect of phase delay of the Chebyshev filter
will be illustrated, and how it is compensated for. Secondly, the statistical values of the filtered
response will be reviewed. Lastly, the filtered time response of the sampled contact forces will
be plotted with two different cut off frequencies.

Figure 68: Contact force measured with sampling frequency of 1400 Hz, filtered with a Low Pass
Chebyshev filter with Cut-Off frequency 120 Hz. a) the whole simulation section, b) the section around
Dr14

Figure 68 point to the fact that filtered response is delayed, this is compensated for by using the
built in Matlab function filtfilt, [18]. The small peaks in the contact force is filtered out, causing
an approximated decrease of 15N in the maximum contact force in Figure 68 b).
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It is valuable to investigate how the filtering of the response is affecting statistical values. The
same statistical values as in Chapter 6.1.3 will be calculated. Starting with the mean contact
force.

Figure 69: The mean value of the filtered and unfiltered contact forces

Figure 70: The standard deviation of the filtered and unfiltered contact forces

Figure 69 show that the mean value of the contact forces are not effected by the filtering frequency.
This illustrate again, that if the mean response of the system is of interest, that simulations with
sampling frequency as low as 20 Hz are able to produce an acceptable results.

The standard deviation of the contact force is highly dependent on which fs used in the simula-
tions. The unfiltered standard deviation of the calculated contact force increase approximately
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linear with the increase in fs. By looking at the data filtered with 80 Hz first. Some changes
in the standard deviation can be observed up to fs = 600 Hz. However, the standard deviation
of the sampled contact force from simulations with fs > 600 Hz is constant when the cut off
frequency is 80 Hz. This can also be observed for cut off frequencies up to 120 Hz. In other
words, when filtering the response with cut-off frequencies from 80 Hz to 120 Hz, there point of
using fs over 600 Hz. When the cut off frequency is over 120 Hz, the standard deviation of the
sampled data increase with fs.

Figure 71: The maximum value of the filtered and unfiltered contact force

The maximum contact force is highly dependent of the sampling frequency. When the sampled
data is filtered in the range 80 Hz to 200 Hz, it highly impacts the maximum contact force. When
simulating with fs > 600 Hz the contact forces from the simulations with the is more constant
or less, and the maximum for these simulations are approximately 160 N. Thus, with regards to
maximum contact forces, there is little to gain in accuracy by increase fs above 600 Hz if the da
is filtered in from 80 to 200 Hz. When filtering the data with cut-off frequency between 80 Hz
and 90 Hz, the effect of increasing fs in the simulation is almost gone.
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Figure 72: The minimum value of the filtered and unfiltered contact forces

For the data filtered with a cut off frequency under 120 Hz, the minimum is nearly constant
when the data is sampled with fd > 1000 Hz. Figure 72 suggests that the minimum contact force
converges to roughly 23 N, when the cut-off frequency is under 120N. For cut-off frequencies over
120 Hz, the minimum contact force continue to decrease with the increase in sampling frequency.

To summarize, standard deviation,the maximum, and the minimum contact force simulated with
fd is highly dependent on the cut-off frequency. When filtering the data with a cut-off frequency
at 80 Hz, increasing the sampling frequency over 600 Hz will not effect statistical values of the
result. For the maximum and the standard deviation of the contact force, there is no difference
when fd > 400 Hz for the data filtered at 80 Hz. The cut-off frequency must be 120 Hz for the
data to be noticeably effected by an increase of the sampling frequency. The effect of filtering
with fs = 80 Hz is extensively discussed by Naavik. ’ Based on findings in the statistical data
discussed in this section and the frequency content from the result from the simulations, it is
interesting to review data filtered at 100 Hz and 140 Hz. By investigating filtered time series of
the contact forces with a cut-off frequency at both 100 Hz and 140 Hz, the effects that is filtered
out using 100 Hz can be identified, by comparing with the result using 140 Hz.

In the rest of this section the filtered time series of the contact forces will be presented. The
contact force is filtered with cut-off frequency 100 Hz, and 140 Hz. Try to identified the the effect
of the response that is filtered out with 100 Hz, that is included when filtered at 140 Hz. The
time series of the contact force sampled with fd = 200 Hz, 600 Hz, 1000 Hz, and 1400 Hz will
be studied. For simulations with fsd, a cut-off frequency of 140 Hz is too high (above Nyquist).
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Figure 73: Contact force filtered with cut-off frequency a) 100 Hz, and b) 140 Hz. The response is
plotted for the total analytical area.

The first thing to observe from 73 is that the magnitude of the contact force is smaller when the
cut-off frequency is 100 Hz. Off course, the overall response is smother when the data is filtered
at 100 Hz. For the contact forces sampled by Dr2

2, high variations can be observed when the
cut-off frequency is increased to 140 Hz. These variations are evident when observing the contact
force at critical locations in the span.
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Figure 74: Contact force filtered with cut-off frequency a) 100 Hz, and b) 140 Hz. Plotted for the
section around Dr14 at x = 261.45 m , and Dr24 at x = 306.52 m

In Figure 74 the contact forces sampled around Dr1
4 and Dr2

4 are illustrated. The figure demon-
strates that the difference in the response increase when the sampling frequency increase. When
the cut-off frequency is 100 Hz, the difference in the simulated result are negligible if fs ≥ 600
Hz.

When the cut-off frequency is increased to 140 Hz, the difference in the contact force from
fs = 600 Hz and fs >600 Hz increases. However, the maximum contact force is the section same
for all fs.
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Figure 75: Contact force filtered with cut-off frequency a) 100 Hz, and b) 140 Hz. Plotted for the
section between Dr13 Dr14

In figure 75 the contact force measured in sections with lowest contact forces are displayed. Also
for this section it can be concluded that, when the results are filtered with 100 Hz, the benefits
of increasing fs are negligible. However when it is filtered with 140 Hz, the difference in the
results from the simulations with fs ≥ 600Hz is obvious.

In conclusion, when filtering the data at 100 Hz, as suggested in by Collina [9], the benefits
of increasing the sampling frequency above 600 Hz is negligible. However, when increasing the
frequency range of interest to 140 Hz the effect of increasing the sampling frequency is substantial.
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6.5 Computational cost

The aim for this section is to see how the increase in sampling frequency effect the computational
cost.

Figure 76: The simulation time for the simulaitons

The wall-clock time for the for the simulation done with a sampling frequency of 200 Hz is only
19.95% of the the wall-clock time for the simulation done with a sampling frequency of 1400
Hz. The increase in computational time is approximately linear, with the increase in sampling
frequency.

The simulations are done with some time apart, and the irregularities are probably from small
changes in the output written to the odb file in Abaqus. The number of output variables were
the same.

The wall-clock time for 600 Hz can be estimated by the middle value of the sum of the wall-clock
time for 580 Hz and 620 Hz. With this estimation the time is 40.95% of the simulation time for
1400 Hz.
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7 The contact formulation Results

The numerical model derived by Naavik, uses a contact formulation that calculate penalty stiff-
ness factor in each iteration. Making the contact as close to hard contact as possible. In standard
EN50318 [10] it is stated that the penalty factor should be at least 50000 N/m. The motivation
for this section is to observe the difference in the system response when changing the penalty
stiffness, K, to 50000 N/m. Then, see if an increase in K, will produce similar response as for
the default K.

From the Chapter ?? it was suggested that if frequencies under 100 Hz is of interest, there is no
need for simulations with fs > 600Hz. Thus, these results are from simulations with fs = 600Hz.
The time response, frequency content and the statistical values of the contact force will be used
to compare the response from different K. K = 50000 N/m will be referred to as Ks

7.1 Time Domain Analysis

Figure 77: Time Domain Plot for linear penalty method

In figure 77, the contact force time domain is plotted for the analytical area for simulations done
with K = Ksd to K = 13 Ksd. As stated, Ksd 50000 N is penalty stiffness that is stated as a
minimum in EN50318. The result show that if the K ≤ 2Ksd, the response of the simulations is
not affected by the stiffness variations along the span or the passing of discontinuities, i.e. passing
of droppers and brackets. When K > 2K, the response is affected by the most important things
along the span. However, when the magnitude is small. The statistical values of the contact
force will be discussed in section 8.
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7.2 Frequency Content
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The frequency content of the contact force of the time series illustrated by the FFT spectrum.
The frequency content can be recognized from Chapter 6.1.2. For K ≥ 5K the frequency content
is the same up to 6 Hz. The distinction from the simulations done with default K increase with
frequency. The contact forces the frequency content up to approximately 15 Hz is approximate
the same for contact forces measured with K = 13Ksd and K = Default. Suggesting that
measuring with K = 13Ksd is the same as filtering the result from simulations with default K
with a cut-off filter of 15 Hz. Which, it was shown in Chapter ?? did not produce sufficient
accurate result.
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7.3 Statistical Analysis

Figure 78: Statistical analysis of the contact force

Figure 78 indicates that the statistical values converge to a value after K = 500000 N/m, that is
10Ksd. Compared to the statistical values of the filtered data in Chapter 6.4, it is clear that the
differ a lot. Seemingly, the values converges towards the statistical values from simulations with
fs ≤ 80Hz. The magnitude of the statistical values are small compared with those measured
with default K.
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8 Conclusion

This project was carried out to evaluate the dynamic response of the catenary dependency on
sampling frequency. When investigating the wear of the catenary system, it is argued that a
frequency range up to 100 Hz is needed, which is significantly higher than the recommended 20
Hz, stated in standard EN50318. Whether the simulations were able to detect elasticity variations
along the span was studied, because of the impact this has on both contact loss and wear. In
addition whether the simulations were able to detect the discontinuities and the nonlinearity the
dropper introduce to the catenary section was studied.

The conclusion will address each objective individually:

How an increase in sampling frequency (i.e. decrease in time step) influences the simulations
ability to...

1. produce correct contact forces: The minimum contact force values was more effected by
the sampling frequency than the maximum contact forces. Suggesting that the sampling
frequency effects the variations of the contact force in the sections with low contact forces
than the sections with higher. By addressing the maximum values, can be stated that 600
Hz is enough, while for the minimum continue to decrease.

2. detect elasticity variations along the span: Is was observed that simulations with sam-
pling frequencies above 80 Hz was able to detect maximum contact forces at the locations
expected from the elasticity variations along the span.

3. describe the dynamic response of the catenary : The results suggests that the movement of
the catenary is less affected by the sampling frequency after the pantograph has passed
the point than prior. There were observed oscillations in the contact wire and the dropper
with high frequencies pre-passage that simulations with fsd did not detect. Which may
imply that the simulations with fsd will no be able to detect the full effect of the wave
propagation prior the passage of the pantograph.

How filtering affect the dynamic response...

I by increasing Cut-off frequency): It becomes clear from the filtered statistical data, that if
frequency up to 100 is of interest no need to increase the sampling frequency of 600 Hz.
However if frequency above at 140 the effect if increasing is clear.

II filtering according to standard : Filtering the data at 20 Hz, the maximum values occur in
sections that is not expected. Seemingly not able detect the elasticity variations along the
span. No change in the time response for different sampling frequencies when filtering the
data at 20 Hz..

Based on the result presented in this thesis, a sampling frequency of 600 Hz can be recommended,
if frequencies less then or equal to 100 Hz is of interest.

From the the simulations performed with the recommend frequency, it was evident from the
results that a penalty stiffness factor of 50000 N/m is to small to produce correct dynamic
response.
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A Appendix

A.1 Maximum Contact Force Location

Figure 79: Position of the contact force maximum for fs ∈ [20Hz, 200Hz]

Figure 80: Position of the contact force maximum for fs ∈ [220Hz, 400Hz]
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Figure 81: Position of the contact force maximum for fs ∈ [420Hz, 600Hz]

Figure 82: Position of the contact force maximum for fs ∈ [620Hz, 800Hz]

89



Figure 83: Position of the contact force maximum for fs ∈ [820Hz, 1000Hz]

Figure 84: Position of the contact force maximum for fs ∈ [1020Hz, 1200Hz]
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Figure 85: Position of the contact force maximum for fs ∈ [1220Hz, 1400Hz]
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A.2 Fokstua Wire 21 Geometry

Figure 86: Span lengths and number of droppers for Fokstua wire 21
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A.3 Data Analysis Script
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A.4 Penalty Results with Time Step According to EN50318
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color_map = colormap(parula); 

delta = mod(size(color_map,1),length(Files)); 

color_map = color_map(1:(size(color_map,1)-delta),:); 

delta2 = (size(color_map,1)/(length(Files))); 

for i = 1:length(Files) 

    color_long(length(Files)+1-i,:) = color_map(((i-1)*delta2)+1,:); 

end

CF_mid = zeros(length(Files)-1,2); 

CF_max = zeros(length(Files)-1,2); 

CF_min = zeros(length(Files)-1,2); 

for ii=1:length(Files) 

    FileId = fopen(char(Files(ii))); 

    Cell = textscan(FileId,'%f'); 

    Vector = cell2mat(Cell); 

if ii  == length(Files) 

        K = 'DEFAULT'; 

elseif ii == 1 

        K = str2num(Files{ii}(Read_from:(Read_to-1))); 

        time = Vector(1:2:length(Vector)); 

else

        K = str2num(Files{ii}(Read_from:(Read_to))); 

end

if ii  == length(Files) && kk ==2 

        CF_default_delta = Contact_force-Vector(2:2:length(Vector)); 

end

    Contact_force = Vector(2:2:length(Vector)); 

if ii<length(Files) 

        CF_mid(ii,2) = K; 

        CF_max(ii,2) = K; 

        CF_min(ii,2) = K; 

        CF_mid(ii,1) = (sum(Contact_force))/length(Contact_force); 

        CF_max(ii,1) = max(Contact_force); 

        CF_min(ii,1) = min(Contact_force); 

end

    figure(1+teller) 

    plot(time,Contact_force,'Color',color_long(ii,:),'LineWidth',1.1,'DisplayName',st

rcat('K = ',num2str(K))); 

    title(Description) 

    ylabel('Contact Force [N]') 

    xlabel('Time [s]') 

    hold on

end

legend('show') 

hold off

CF_mid_def =ones(length(Files)-1,1)*(sum(Contact_force))/length(Contact_force); 

CF_max_def =ones(length(Files)-1,1)* max(Contact_force); 



CF_min_def =ones(length(Files)-1,1)* min(Contact_force); 

color = colormap(parula(4)); 

%brighten(color,-0.9)

figure(2) 

h(teller2)= plot(CF_mid(:,2),CF_mid(:,1),'Color',color(kk,:),'LineWidth',1.2,'Display

Name',Description); 

hold on

h(teller2+1)=plot(CF_mid(:,2),CF_mid_def,'Color', color((5-kk),:),'LineStyle', '--','

LineWidth',1.1,'DisplayName',strcat(Description,' Default K')); 

title('Mean Contact force') 

ylabel('Contact Force [N]') 

xlabel('Contact Stiffness, K [N/m]') 

figure(3) 

h(teller2+2)=plot(CF_max(:,2),CF_max(:,1),'Color',color(kk,:),'LineWidth',1.2,'Displa

yName',Description); 

hold on

h(teller2+3)=plot(CF_max(:,2),CF_max_def,'Color', color((5-kk),:),'LineStyle', '--','

LineWidth',1.1,'DisplayName',strcat(Description,' Default K')); 

title('Maximum contact force') 

ylabel('Contact Force [N]') 

xlabel('Contact Stiffness, K [N/m]') 

figure(4) 

h(teller2+4)= plot(CF_min(:,2),CF_min(:,1),'Color',color(kk,:),'LineWidth',1.2,'Displ

ayName',Description); 

hold on

h(teller2+5)= plot(CF_min(:,2),CF_min_def,'Color', color((5-kk),:),'LineStyle', '--',

'LineWidth',1.1,'DisplayName',strcat(Description,' Default K')); 

title('Minimum contact force') 

ylabel('Contact Force [N]') 

xlabel('Contact Stiffness, K [N/m]') 

teller = teller + 4; 

teller2 = teller2+6; 

end

for i = [1,3,5] % 3 plots

legend([h(i),h(i+1),h(i+6),h(i+7)]) 

end

fclose('all') 

%figure(6)

%plot(time,CF_default_delta)

ans = 

     0 
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