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Abstract

A previously proposed hydrodynamic load model for time domain simulation of cross-flow vortex-induced
vibrations (VIV) is modified and combined with Morison’s equation. The resulting model includes added
mass, drag and a cross-flow vortex shedding force which is able to synchronize with the cylinder motion
within a specified range of non-dimensional frequencies. It is demonstrated that the hydrodynamic load
model provides a realistic representation of the cross-flow energy transfer and added mass for different
values of the non-dimensional frequency and amplitude. Furthermore, it gives a reasonable approximation
of the experimentally observed drag amplification. The load model is combined with a non-linear finite
element model to predict the cross-flow VIV of a steel catenary riser in two different conditions: VIV due
to a stationary uniform flow and VIV caused by periodic oscillation of the riser top end. In the latter case,
the prescribed motion leads to an oscillating relative flow around the riser, causing an irregular response.
The simulation results are compared to experimental measurements, and it is found that the model provides
highly realistic results in terms of r.m.s. values of strains and frequency content, although some discrepancies
are seen.
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1. Introduction

Elastic cylinders in fluid flow experience structural oscillations caused by vortex shedding, known as
vortex-induced vibrations (VIV) [1]. The classic example is the elastically mounted rigid cylinder in a
steady incoming flow, free to oscillate in the cross-flow direction [2]. In the offshore industry however, one
is typically concerned with VIV of long slender structures such as risers and free spanning pipelines. Here,
the VIV response may consist of several higher modes, in-line and cross-flow oscillations, and a combination
of traveling and standing waves [3]. In addition, the incoming undisturbed flow may vary along the cylinder
span.

To accurately predict riser VIV, two things must be in place. The first is a mathematical model that, given
the hydrodynamic forces acting on the structure, can accurately predict the structural response. Secondly,
one must be able to calculate the hydrodynamic forces along the structure, which will depend on the motion
of the riser. The first part of the problem can be handled using the finite element method (FEM). If non-
linear FEM is utilized, potentially important effects such as large displacements, time-varying geometric
stiffness and changing boundary conditions may also be dealt with. The second part of the problem can be
solved using computational fluid dynamics [4], but the necessary computer resources are large. Therefore,
alternative semi-empirical methods have been developed, such as VIVANA, VIVA and SHEAR7 [5, 6, 7].
These are based on hydrodynamic coefficients measured in experiments, which is combined with a structural
model to predict the VIV response in the frequency domain. Because the analysis is performed in the
frequency domain, these methods require a linear structural model and stationary conditions (i.e. constant
current velocity in time).
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The limitations of the frequency domain methods prohibit realistic modeling of some problems. As an
example, consider a steel catenary riser (SCR) suspended from a floating platform. The top end will be
subjected to wave induced motions, which will cause the riser tension, and hence the geometric stiffness,
to vary with time. Close to the bottom, a segment of the riser will go in and out of contact with the
seabed, causing time-varying boundary conditions. If the wave induced motions are sufficiently large, vortex
shedding will initiate due to the relative oscillatory flow [8]. Hence, the VIV response can be stationary in
some parts (due to current) while in other parts it may be intermittent (due to relative oscillatory flow). In
addition, internal slug flow may also cause riser vibrations [9], which will interact with the VIV response.
To capture all these effects, a non-linear time domain analysis is required.

Several models exist which can be used to simulate VIV in time domain. One such model is the wake-
oscillator, which is based on the assumption that the lift coefficient can be described by a forced Van der
Pol oscillator. This idea was first suggested by Bishop and Hassan [10], and has been modified by many
others since then (see e.g. [11] for a review). Such models have been used in a large number of studies, for
instance to investigate the behavior of flexible structures with geometric nonlinearities [12]. However, it is
difficult to find a consistent set of wake-oscillator parameters suitable for both forced and free vibrations.
[13]. Other time domain models have been developed by Lie [14], Finn et al. [15], Mainçon [16] and Xue et
al. [17].

An alternative semi-empirical model for time domain simulation of VIV has been under development by
Thorsen et al. [18, 19, 20, 21, 22], and the present paper is a continuation of this work. In combination with
a finite element model, it has been shown that the model can be used to predict VIV of elastic cylinders
in various current conditions, including oscillating flow. In these previous studies, the structural model was
linear, and the mean in-line drag force was not included. The purpose of the present paper is to introduce
a non-linear finite element model (including non-linear soil contact) for the structure, and to include the
mean in-line drag forces (and the associated displacements). This should enable highly realistic prediction
of the dynamic response of risers and other slender structures due to ocean currents in combination with
prescribed oscillatory motions and possibly other loads (ocean waves are not considered here). To illustrate
the applicability of the proposed model, it is utilized to simulate the cross-flow VIV of an SCR in two
different conditions. The first is VIV due to a stationary incoming uniform flow. Secondly, VIV caused by
periodic oscillation of the riser top end is considered. The results are compared to experiments.

2. Hydrodynamic load modeling

2.1. Morison’s equation

This paper considers the dynamic response of slender circular structures exposed to currents. In addition,
the structure can have velocities and accelerations induced by other loads or prescribed motions. A strip
theory approach is used, such that the hydrodynamic force on a cylinder cross-section is calculated from
velocities and accelerations at the same cross-section only. The relevant velocity vectors and coordinate
system for computing the hydrodynamic force on a cylinder segment is shown in figure 1. The relative flow
velocity is v = u − ẋ, where u is the incoming flow velocity and ẋ is the velocity of the cylinder cross-
section. The relative flow is not necessarily perpendicular to the cylinder, and v is therefore decomposed
into a tangential component vt and a normal component vn. Similarly, the normal component of the flow
and structure acceleration is denoted u̇n and ẍn respectively. The hydrodynamic drag and inertia forces
(per unit length) on a cylinder cross-section is described using the generalized Morison’s equation:

Fn = CMρ
πD2

4
u̇n − (CM − 1)ρ

πD2

4
ẍn +

1

2
ρDCD|vn|vn. (1)

Here, ρ is the water density and D is the cylinder diameter. CM and CD are the inertia and drag coefficients
in the normal direction, which depend on a number of parameters (see e.g. [23]). Note that equation (1)
only gives forces normal to the cylinder, and any tangential forces are neglected.
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Figure 1: A cylinder segment with local coordinate system and velocity vectors.

2.2. Vortex shedding

A cylinder in a current will be excited by vortex shedding, even if the incoming flow is steady [24]. The
flow separates from the cylinder surface and rolls up into vortices on either side, which for Reynolds numbers
larger than 40 are unstable, causing alternating vortex shedding and the formation of a vortex street. For a
stationary cylinder in a steady flow with velocity U , the vortex shedding frequency is given as fs = StU/D,
where St is the Strouhal number. This depends on the Reynolds number and the cylinder surface roughness,
but in the subcritical Reynolds number range, St is fairly constant and close to 0.2. [25]. The fluctuating
pressure field associated with the vortex shedding causes oscillating forces both in the direction of the flow
(drag) and perpendicular to the flow (lift). In the case of an elastic cylinder, the vortex shedding forces
will cause structural vibrations, which in turn alters the surrounding flow and the hydrodynamic forces. An
important interaction effect is that the vortex shedding frequency may deviate from the Strouhal frequency
(i.e. the frequency for a stationary cylinder), and lock on to the frequency of motion. The synchronization
between the cylinder motion and vortex shedding has been experimentally observed and discussed by several
researchers, for instance Williamson and Roshko [26].

To represent the vortex shedding forces, a simple empirical model is applied. The present model is based
on the work by Thorsen et al. [18, 19, 20, 21, 22], with some modifications. The main reason for modifying
the model is that the drag term in Morison’s equation will cause damping of vibrations. To illustrate this,
consider as an example a cylinder in an incoming steady flow, U . Let the y-axis point in the direction
perpendicular to the flow and assume the cylinder is oscillating in the cross-flow direction with a velocity ẏ,
as shown in figure 2. Taking only the drag term from equation (1) into account, the cross-flow component
of the drag force is:

Fy = −1

2
ρDCD|vn|2 sin θ = −1

2
ρDCD|vn|ẏ

= −1

2
ρDCD

√
U2 + ẏ2ẏ. (2)

ẏ

U

−ẏ

|vn| =
√

U2 + ẏ2

θ

Figure 2: A cylinder in an incoming flow, moving in the cross-flow direction with velocity ẏ.
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It is seen from equation (2) that the cross-flow component of the drag force is always in the direction
opposite of the cross-flow cylinder velocity, and will therefore cause damping of vibrations. The previous
investigations by Thorsen et al. [18, 19, 20, 21, 22] did not include drag forces, and hydrodynamic damping
was introduced by a separate damping model. This damping model is not applicable in the present work,
because damping is already included through the drag term in Morison’s equation. The question is then
if the drag term in Morison’s equation is able to represent damping of vortex-induced vibrations? For the
sake of simplicity, it will be assumed in the following that this is true. Although it is easy to criticize this
assumption, one should remember that it is the net flow of energy between the fluid and structure which is
important. This is determined by the power-in from vortex excitation minus the power-out from damping
(drag in this case). Therefore, the properties of the damping model is not necessarily important, it is only
required that the sum of excitation and damping is correct.

Based on [18], the vortex shedding force on a cylinder strip is expressed as:

Fexc =
1

2
ρDCv|vn|(j3 × vn) cosφexc. (3)

The force given by equation (3) is perpendicular to vn and j3 (see figure 1), which means that Fexc points in
the direction normal to the relative flow velocity. The magnitude of the force is determined by a dimensionless
coefficient, Cv, and the oscillatory behavior is taken into account through the time varying instantaneous
phase φexc. Note that a fluctuating drag force (i.e. an excitation force parallel to vn) is generally also
present. This force will cause in-line vibrations of the cylinder, but these are significantly smaller than the
cross-flow vibrations [27]. In the present research, focus will be on cross-flow vibrations, and the fluctuating
drag is neglected.

As the vortex shedding force oscillates, the phase φexc changes continuously, and goes from 0 to 2π in
one complete cycle. If the frequency of the force was some constant fexc, the rate of change of the phase
angle would be φ̇exc = 2πfexc. This is however not the case, as the frequency is influenced by, and will in
some cases synchronize with the cylinder motion. A synchronization model was presented by Thorsen et
al. [18], where the instantaneous frequency of the excitation force was expressed as a function of the phase
difference between the cylinder cross-flow velocity and the force itself. This type of model is also adopted
here, but for simplicity and flexibility, the non-dimensional frequency curve is now described analytically as:

f̂exc = f̂0 + ∆f̂ sin(φẏrel
− φexc) = f̂0 + ∆f̂ sin θ. (4)

This type of synchronization model is known as the Kuramoto model, which was originally used to study
collective synchronization in large systems of oscillators [28]. In the present context, φẏrel

is the instantaneous
phase of the relative cross-flow velocity of the cylinder (to be defined in section 2.2.1), and θ = φẏrel

− φexc
is the phase difference between the relative cross-flow cylinder velocity and the vortex excitation force.
f̂0 corresponds to the non-dimensional frequency at the center of the synchronization range, while ∆f̂
describes how much the vortex shedding frequency is allowed to deviate from f̂0. This means that the
vortex shedding will synchronize with the cylinder motion for non-dimensional frequencies between f̂0−∆f̂
and f̂0 + ∆f̂ . The present synchronization model is compared to the previously used curve [22] in figure 3.

The parameters in the model is taken as f̂0 = 0.18 and ∆f̂ = 0.08, as these values give approximately the
same synchronization range as the previously used curve, i.e. from f̂ = 0.10 to f̂ = 0.26. The previously
used curve was obtained from excitation coefficient data and has been validated through comparison with
several experiments [18, 19, 20, 21, 22]. However, the new model introduced here gives more flexibility,

as the parameters f̂0 and ∆f̂ can be easily changed. Although constant values are used in this paper, it
is expected that these may vary with the Reynolds number and cylinder roughness, and this flexibility is
therefore desired. The new new synchronization model is expected to provide similar results as the previously
used curve, because it captures the main features, such as maximum frequency when θ = π/2 and minimum
frequency when θ = −π/2.

When the non-dimensional excitation frequency is found, the rate of change of φexc is computed as:

φ̇exc = 2πfexc =
2π|vn|
D

f̂exc. (5)
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The idea behind the synchronization model is that the phase difference φẏrel
− φexc gives information about

who is ”leading” the oscillation. For example, if the phase difference is positive, the cylinder velocity is
ahead, which means the excitation force must increase its frequency to catch up.
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Figure 3: Non-dimensional frequency of the excitation force as a function of the phase difference between the relative cross-flow
cylinder velocity and the vortex excitation force. The present analytical model is shown together with the previously used
curve [22].

2.2.1. Computing the phase of the relative cross-flow cylinder velocity

The instantaneous phase of the relative cross-flow velocity of the cylinder strip appears in equation (4),
and must be computed for every time step of the simulation (and for every cylinder strip/element in the
model). The relative cross-flow cylinder velocity is defined as:

ẏrel = ẋ · n, (6)

where n is a unit vector normal to vn, which is found as

n =
j3 × vn

|vn|
. (7)

Similarly, the relative cross-flow cylinder acceleration is found as

ÿrel = ẍ · n. (8)

ẏrel/σẏrel

−ÿrel/σÿrel

φẏrel

Figure 4: The phase diagram illustrates how the instantaneous phase of the relative cross-flow velocity is found.

The phase of ẏrel is calculated using the phase portrait concept [18]. This can be visualized by plotting the
normalized relative cross-flow velocity on a horizontal axis and the normalized relative cross-flow acceleration
with a negative sign on a vertical axis, as shown in figure 4. The velocities/accelerations are normalized by
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their respective root mean square (r.m.s.) values. For generality, the r.m.s. is allowed to vary with time
and is hence calculated over a finite interval backwards in time. Let nm be the number of time steps in the
interval, such that Tm = (nm − 1)∆t is the length of the interval. Then, the r.m.s. of ẏrel at time ti may be
found from the following expression:

σẏrel
(ti) =

√√√√ 1

nm

i∑

j=i−nm+1

(ẏrel(tj))2, (9)

Because computing the sum in equation (9) every time step would be time consuming, a more efficient
approximate method is used. By splitting the sum in two parts, the r.m.s. can be written as:

σẏrel
(ti) =

√√√√ 1

nm

i−1∑

j=i−nm+1

(ẏrel(tj))2 +
1

nm
(ẏrel(ti))2. (10)

By introducing the approximation

i−1∑

j=i−nm+1

(ẏrel(tj))
2 ≈ (nm − 1)(σẏrel

(ti−1))2, (11)

the new r.m.s. value can be calculated from the previous, in combination with the new relative velocity:

σẏrel
(ti) ≈

√
nm − 1

nm
(σẏrel

(ti−1))2 +
1

nm
(ẏrel(ti))2. (12)

To verify that the approximate expression (12) provides satisfactory accuracy, a test is performed where
the time varying r.m.s. of a given time series are compared to the exact result (i.e. calculated by performing
the sum over all the data points in the time interval). The results are shown in figure 5. The time series is
taken from a simulation with the present model. It is seen that the curves calculated using the approximate
expression follow the exact results closely, and it is concluded that the approximate expression provides
sufficient accuracy for the present application, which is to normalize the phase diagram (see figure 4).
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Figure 5: Comparison between the exact and approximate expression for the moving r.m.s. of a time series. In this example,
nm = 500.

2.3. Total hydrodynamic force

To summarize the above, the total hydrodynamic force per unit length on a cylinder section is given as
the sum of equation (1) and (3):

F = CMρ
πD2

4
u̇n − (CM − 1)ρ

πD2

4
ẍn +

1

2
ρDCD|vn|vn +

1

2
ρDCv|vn|(j3 × vn) cosφexc. (13)
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The above equation is referred to as ”the hydrodynamic force model”. The first term is the force due
to water particle acceleration, the second term is the added mass force resulting from cylinder acceleration,
the third term is drag and the last is due to vortex shedding.

3. Testing the hydrodynamic force model

3.1. Introduction

As the proposed hydrodynamic force model is semi-empirical, it is important to test its predictive capa-
bilities. To accurately predict VIV, it is necessary to have a good description of the energy transfer (between
the fluid and the oscillating cylinder) and the added mass variations. The mean drag force is also of interest
due to its role in determining the static deflection and tension in a slender structure such as a riser. It
should be kept in mind that the goal of this research has been to develop a model which is as simple as
possible, but still able to include the most important effects. A simple model is easier to use in practical
engineering calculations, and is also easier to understand. Although it is certainly desirable to include every
physical effect, it is recognized that reaching such a goal would probably require a very complex model.
Because of this, it is assumed here that the hydrodynamic coefficients CM , CD and Cv (ref. equation (13))
can be considered constant when the Reynolds number is constant. In other words, the coefficients do not
depend on e.g. the VIV frequency or amplitude. This is in contrast to the previous work by Thorsen et al.
[18, 19, 20, 21, 22], where Cv was a function of y0/D (but not frequency). However, the Reynolds number
dependency must be accounted for, which is discussed in section 5. In the following, some basic examples
are used to demonstrate that the model provides reasonable results compared to experimental observations,
and also how the choice of Cv influences the results.

3.2. Energy transfer

The energy transfer between the fluid and structure during VIV is important to the response amplitude.
A useful dimensionless measure of the cross-flow energy transfer is the lift coefficient in phase with the
cylinder velocity, defined as:

Cy,v = lim
T→∞

2

T

∫ T

0

Cy(t) cos(ωt)dt, (14)

where Cy(t) = Fy/(0.5ρDU
2) is the (total) lift coefficient. Here it has been assumed that the cross-flow

displacement of the cylinder is y = y0 sin(ωt). If there is no in-line motion and the incoming flow velocity is
U , the cross-flow hydrodynamic force is according to the present model:

Fy =
1

2
ρDCv

√
U2 + ẏ2U cosφexc −

1

2
ρDCD

√
U2 + ẏ2ẏ − (CM − 1)ρ

πD2

4
ÿ. (15)

To investigate the performance of the model, simulations have been performed, where a rigid cylinder
is oscillated in the cross-flow direction with different y0/D and f̂ = fD/U = ωD/(2πU). The resulting lift
coefficient in phase with cylinder velocity is shown in figure 6. For these simulations, CD = Cv = 1.2 and
CM = 2. Note however that the inertia force is always out of phase with ẏ, and does not contribute to Cy,v.

It is seen that for small amplitudes, Cy,v is positive between approximately f̂ = 0.1 and f̂ = 0.26. In the

present model, the range of positive excitation is determined by the parameters f̂0 and ∆f̂ (ref. equation
(4)). When the amplitude increases, so does the energy loss due to drag, and Cy,v drops. The excitation zone
extends up to a maximum of y0/D ≈ 0.8. Above this level, Cy,v is negative, which means that vibrations
will be damped. To demonstrate how the choice of Cv affects the results, the above simulations are repeated
with Cv = 1.0 and Cv = 1.4. The zero excitation curve (i.e. Cy,v = 0) for the different realizations are
shown and compared to the experimental results by Gopalkrishnan [29] in figure 7. Clearly, an increase in
Cv causes the positive excitation region to extend upwards to higher amplitude. However, the frequency
range for synchronization remains unchanged. It is seen that the present model predicts a single connected
excitation region, while Gopalkrishnan found two separate regions. Merging the two regions into one can
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be considered an approximation, but previous research have shown that a single excitation region may in
fact be more accurate for flexible beams [30]. It is also noted that the upper and lower boundaries of the
excitation region, in terms of dimensionless frequency, do not match perfectly with Gopalkrishnan’s results.
A better agreement could have been obtained by changing the parameters f̂0 and ∆f̂ in the synchronization
model. However, there are uncertainties related to the width of the excitation region (other experiments
typically show slightly different results), and therefore it seems unnecessary to strive for perfect agreement
with a single experiment.
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Figure 6: Lift coefficient in phase with cylinder velocity predicted by the model, using CD = Cv = 1.2.
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Figure 7: The curve corresponding to zero energy transfer, i.e. Cy,v = 0, calculated using Cv = 1.0 (the smallest region),
Cv = 1.2 (the intermediate region) and Cv = 1.4 (the largest region). The thick curve is from experiments by Gopalkrishnan
[29].

3.3. Added mass

The added mass is a measure of the hydrodynamic force component in phase with the acceleration of the
cylinder. The added mass is especially important in VIV, as experiments have shown that the VIV response
occurs at a true natural frequency when the added mass is taken into account [31]. This means that the
oscillation frequency can be calculated if the added mass is known, and this fact is utilized in other VIV
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prediction tools such as VIVANA [5]. Solving for the unknown vibration frequency is however not straight

forward because the added mass depends on both y0/D and f̂ . Using the present method, this problem is
circumvented because the response is computed directly in the time domain, without any prior knowledge
of the vibration frequency. With reference to equation (13), there are two terms contributing to the total
added mass: the added mass term from Morison’s equation, and the vortex shedding force. The latter may
be partially in phase with the cylinder acceleration (the actual phase difference will be determined by the
synchronization model, ref. equation (4)), and will influence the total added mass. The added mass is
usually expressed as a dimensionless coefficient Ca = Ma/(0.25ρπD2), where Ma is the total added mass of
the cylinder. When the time series of the force and acceleration are known (from experiment or simulation),
the added mass coefficient may be found as:

Ca = − 8

ρπD2ω4y20
lim

T→∞

1

T

∫ T

0

Fy(t)ÿ(t)dt. (16)

The added mass predicted by the present model was found by simulating a rigid cylinder with a prescribed
cross-flow oscillation, using different y0/D and f̂ , and the results are shown in figure 8. It is seen that
the model predicts positive added mass for non-dimensional frequencies higher than 0.15 approximately,
while for lower frequencies, the added mass is negative. This is in agreement with the observations made
by Gopalkrishnan [29]. However, the model predicts large negative values of added mass when both the
frequency and amplitude is low, and this is not seen in experiments. This discrepancy may be unimportant,
because the resulting added mass force is small when the frequency and amplitude is small. To investigate
this further, the model is used to simulate the cross-flow VIV of a spring mounted cylinder, which means
solving the 1-DOF dynamic equilibrium equation:

mÿ + cẏ + ky = Fy(t), (17)

where m is the cylinder (structural) mass per unit length, c is the structural damping and k is the spring
stiffness. The mass ratio is set to m/(0.25ρπD2) = 1.66 and the damping ratio (in air) to 0.1 %, which is
the same as in the free vibration experiment performed by Vikestad [31]. A number of simulations are run,
with increasing reduced velocity, Ur = U/(f0D), where f0 is the natural frequency of the cylinder in still
water. For each simulation, the transient is removed before the total added mass coefficient are computed
according to equation (16). The results are shown and compared to Vikestad’s in figure 9. It is seen that the
model predicts the total added mass coefficient with high accuracy for Ur > 5.5. Cross-flow VIV is known
to initiate around Ur = 4, reaching the maximum vibration amplitude when 6 < Ur < 8 approximately,
depending on the mass ratio of the cylinder. Hence, the model predicts the correct added mass over the
most important range of reduced velocities, i.e. where the vibrations are expected to be largest. The results
are less accurate for Ur < 5, but in this region the vibration amplitude is relatively small.
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Figure 8: Added mass coefficient predicted by the model, using CD = Cv = 1.2 and CM = 2.
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model, using CD = Cv = 1.2 and CM = 2, while the squares are from the experiments by Vikestad [31].
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3.4. Amplitude and phase of lift coefficient

The preceding sections focused on the lift coefficient components in phase with the cylinder velocity and
acceleration. However, the lift coefficient may also be expressed in terms of its total magnitude and a phase
angle. This approach was used by Carberry et al. [32] , who expressed the total lift force as:

Fy =
1

2
ρDU2CL sin(2πft+ φlift). (18)

The cross-flow displacement was taken as y = y0 sin(2πft), such that φlift is the phase angle between the
cross-flow displacement of the cylinder and the lift force component at the frequency of oscillation. Carberry
et al. presents how the phase angle and total lift coefficient varies with the oscillation frequency at a constant
y0/D = 0.5, and compares their result to those of Sarpkaya [33], Gopalkrishnan [29], Mercier [34] and Staubli
[35]. The purpose here is to investigate how the present hydrodynamic load model predicts the total lift
coefficient and phase angle compared to all these experiments. To do this, simulation of forced cross-flow
vibration is performed as previously. The initial transient is removed, and the lift coefficient in phase with
the cylinder velocity is calculated according to equation (14). Similarly, the component in phase with the
cylinder displacement is found as:

Cy,d = lim
T→∞

2

T

∫ T

0

Cy(t) sin(ωt)dt. (19)

The total lift coefficient is then found as CL =
√
C2

y,v + C2
y,d and the phase angle is found from tanφlift =

Cy,v/Cy,d. The results are plotted and compared to the mentioned experiments in figure 10 and 11, where
the frequency of vibration has been normalized by the Strouhal frequency. From figure 10, it is seen that
there is a transition in the phase angle as the oscillation frequency approaches the Strouhal frequency. When
the oscillation frequency is low, φlift is approximately 225◦, and for high frequencies the phase angle is close
to zero. Looking at the experimental results, the change in phase angle happens quite suddenly around
f/fs = 0.8, while the model predicts a smoother transition, beginning around f/fs = 0.6. Moving on to
figure 11, the magnitude of the lift coefficient is small for the lower frequencies. This is because the vortex
shedding force is not synchronized with the cylinder motion. In addition, the cross-flow component of the
drag force is small. As the frequency is increased towards fs, synchronization causes CL to rise. When the
frequency is increased further, the drag and added mass forces increase, causing very high values of CL.
Taking the scatter in the experimental results into account, the present model gives a good approximation
of how the phase angle and the total lift coefficient changes as the oscillation frequency is varied around the
Strouhal frequency.

3.5. Mean drag

For a cylinder oscillating with a cross-flow motion y = y0 sinωt, the force per unit length in the flow
direction may generally be expressed as Fx = F̄x + F̃x, where F̄x is the mean and F̃x is the fluctuating drag.
The magnitude of the mean drag is usually given as a dimensionless mean drag coefficient, defined as:

C̄D =
F̄x

0.5ρDU2
. (20)

According to the present model, the in-line component of the hydrodynamic force is in this situation (from
equation (13)):

Fx =
1

2
ρDCD

√
U2 + ẏ2U +

1

2
ρDCv

√
U2 + ẏ2ẏ cosφexc. (21)

The first term in the above equation is the in-line component of the drag force in Morison’s equation, and it
is seen that this term increases with the cross-flow velocity. The second term is due to the vortex shedding
force, which is also seen to increase with the cross-flow velocity. However, the mean value of the second term
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Figure 10: Phase angle between the total lift force and the cross-flow cylinder displacement as a function of frequency at
y0/D = 0.5. The solid line is predicted by the model using CD = Cv = 1.2 and CM = 2, while the symbols represent the
experiments by Sarpkaya [33], Gopalkrishnan [29], Mercier [34], Staubli [35] and Carberry et al. [32]. The experimental data
was taken from [32].

will be zero if cosφexc is uncorrelated with ẏ. In other words, the vortex shedding force only contributes to
the mean drag if it is synchronized with the cylinder velocity.

The mean drag coefficient predicted by the present model was found by simulating a rigid cylinder with
a prescribed cross-flow oscillation, using different y0/D and f̂ , and the results are shown in figure 12. In
this example, CD = Cv = 1.2. This value of CD agrees with that of a stationary cylinder at Re ≈ 10 000.
With reference to figure 12, it is seen that the mean drag is essentially equal to 1.2 for small amplitudes
and/or frequencies. This is because the cylinder velocity is small compared to the incoming flow, which

means that C̄D → CD, according to equation (21). When y0/D or f̂ is increased, so does the mean drag,

and for cases where both y0/D and f̂ are large, C̄D can reach very high values. This behavior is also
seen in experiments, and figure 13 shows a comparison between the simulated results and experimental
observations by Gopalkrishnan [29] for y0/D = 0.75. The comparison illustrates that the model only gives
an approximation of how the mean drag varies, and the discrepancies indicate that better agreement could
have been found by changing the model parameters.

3.6. Summary

Some of the most important points illustrated above is summarized as follows:

i) The energy transferred to the vibrating cylinder (quantified through the lift coefficient in phase with the
cylinder velocity) depends on CD and Cv. The drag coefficient determines the damping, which increases
together with the vibration amplitude and frequency. With reference to figure 6, the drag force has an
impact on Cy,v for all values of y0/D and f̂ . The vortex shedding force on the other hand, only affects
Cy,v in the region where the vortex shedding is synchronized with the cylinder motion. Increasing Cv

extends the positive excitation region to higher amplitudes. For an elastically mounted rigid cylinder,
stable oscillations occur when Cy,v = 0 (neglecting structural damping). This means that if the model
is to predict the correct free vibration amplitude, Cv should be chosen so that Cy,v = 0 at the correct
y0/D.
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Figure 11: Total lift coefficient amplitude as a function of frequency at y0/D = 0.5. The solid line is predicted by the model
using CD = Cv = 1.2 and CM = 2, while the symbols represent the experiments by Sarpkaya [33], Gopalkrishnan [29], Mercier
[34], Staubli [35] and Carberry et al. [32]. The experimental data was taken from [32].

ii) The total added mass coefficient predicted by the model is a result of the added mass term in Morison’s
equation and the vortex shedding force. The first term gives a constant contribution equal to Ca =
CM − 1, while the latter will vary depending on the phase difference between the vortex shedding force
and the cylinder acceleration.

iii) The mean drag coefficient C̄D depends on both CD and Cv. When the cylinder is stationary, C̄D = CD,
and CD should be chosen accordingly. When the cylinder vibrates, two effects contribute to increasing
the mean drag. Firstly, the average relative velocity increases. Secondly, the vortex shedding force
has a component in the direction of the flow which will have a non-zero mean value when the vortex
shedding is synchronized with the cylinder motion.

iv) Although this has not been considered here, the parameters f̂0 and ∆f̂ in equation 4 can be changed,
thereby altering the synchronization range of the vortex shedding force.
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Figure 13: Mean drag coefficient for y0/D = 0.75. The solid line are predicted by the model using CD = Cv = 1.2, while the
crosses are from experiments by Gopalkrishnan [29].

4. Structure modeling and dynamic analysis

The hydrodynamic force model has been implemented into the finite element software Simla [36], which
is a tool developed for pipe-laying analyses including very large deformations, non-linear material behavior
and contact. 2-node 3 dimensional beam elements are used, with 3 translational and 3 rotational degrees of
freedom at each node. The beam element is based on classical theory for slender beams, assuming planes
normal to the neutral axis to remain plane, as well as neglecting shear deformations due to lateral loads and
lateral contraction due to axial elongation. In addition, the strains are assumed to be small. A corotational
formulation is used to account for large displacements and rotations. Based on the principle of virtual
work on incremental form, the element stiffness matrix contains contributions from geometric and material
stiffness. The geometric contribution is the influence of axial force on the lateral stiffness of the beam. The
nonlinear dynamic analysis in Simla is based on the incremental equation of motion, which is solved in time
domain using the HHT-α method [37].
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5. Results

5.1. Case 1: SCR in uniform current

Wang et al. [8] performed model tests to study VIV on steel catenary risers (SCRs). In these experiments,
the top end of a truncated SCR model was suspended from a towing carriage, while the lower end was resting
on an fake seabed made of aluminium. The riser was terminated in both ends with universal couplings,
which were moment-free and torsion restricted. Strain sensors were installed at 25 equidistant points to
measure the dynamic response. Important physical properties of the model riser are given in table 1. The
experimental campaign consisted of two parts: Uniform current VIV and heave induced VIV. Uniform
current was obtained by moving the top end and the seabed with a constant speed (on tracks).

Table 1: Properties of the riser model [8].

Riser length 23.71 m
Depth 9 m

Horizontal length 21.0425 m
Outer diameter 0.024 m

Mass per length (dry) 0.69 kg/m
Bending stiffness (EI) 10.5 Nm2

Tensile stiffness (EA) 6.66 · 105 N

The experimental campaign contained cases with current velocities ranging from 0.1 to 0.5 m/s. However,
due to the restricted track length, the test duration was relatively short for the high velocity cases. With
this in mind, a case with a current velocity of 0.2 m/s is chosen for the present comparison. The current
direction is in the riser plane, as indicated in figure 14, which means that the VIV motion is mainly out of
the riser plane (i.e. the cross-flow direction). As previously stated, this study focuses on the prediction of
cross-flow VIV, and for this reason only the cross-flow strains are analyzed. Figure 15 shows the dynamic
part of the measured cross-flow strain from the experiment by Wang et al. [8]. Note that the strain sensors
were mounted at a diameter D = 19.5 mm, and the measured values have been adjusted to show the strain
at the outer surface (D = 24 mm). The initial transient has been removed, and the data in figure 15 is
from the time window with fully developed VIV. Waves are seen traveling towards the bottom end (which
is located at x = 0), and the vibration pattern is relatively stationary, although some irregularities are seen.
It is also quite clear that a single frequency dominates.

Prescribed top motion

(case 2)

Incoming current (case 1)

x

z

Figure 14: Finite element model in the static configuration.
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Figure 15: From experiment by Wang et al. [8] (constant uniform flow): Dynamic cross-flow strain along the riser as a function
of time.

A finite element model of the SCR is established using the previously described software, Simla. The
SCR is discretized into 500 beam elements (a convergence test was performed by doubling the number
of elements). An initial static analysis is performed, including weight, buoyancy and a prescribed top-end
displacement in the x-direction to obtain the desired static configuration. The FE model after the completion
of the static analysis is seen in figure 14. Seabed contact is modeled using nonlinear springs with a vertical
stiffness of 1 (kN/m)/m in compression. This is very stiff compared to the SCR, and represents a nearly rigid
surface. The seabed spring stiffness in tension is zero, which means the SCR is allowed to lift freely from
the seabed. When a node of the SCR is in contact with the seabed, it will also experience friction forces in
the axial and lateral directions, which will restrain the riser from sliding until the friction force exceeds the
vertical contact force multiplied by a friction coefficient. In the analysis, the seabed-riser friction coefficient
is set to 0.2. The exact number is not known, but 0.2 is a reasonable value for plastic and aluminium in
water. For the dynamic analysis, a time step of 0.005 s is applied, which was found to be sufficient (i.e.
reducing the time step gave no change in the results).

The hydrodynamic forces are calculated according to the described model (equation (13)). The Reynolds
number for the case considered here is approximately 3 000, based on the maximum normal flow velocity.
Swithenbank et al. [38] have shown that the VIV response amplitude for flexible cylinders depends on the
Reynolds number, and this must be kept in mind when choosing a value for Cv. As stated in section 3, a
suitable strategy would be to choose Cv such that the maximum amplitude of the positive excitation zone
(i.e. the region where Cy,v is positive) is correct, compared to experiments. For Re = 10 000, the maximum
y0/D which gives positive excitation is approximately 0.85, according to Gopalkrishnan [29]. Based on [38],
the maximum amplitude at Re = 3 000 is reduced to 60% compared to Re = 10 000. Assuming that
the maximum response amplitude for a flexible cylinder is linearly related to the maximum y0/D of the
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Figure 16: From simulation (constant uniform flow): Dynamic cross-flow strain along the riser as a function of time.

positive excitation zone, it follows that the positive excitation zone extends up to y0/D = 0.85 ·0.6 ≈ 0.5 for
Re = 3 000. This corresponds to Cv = 0.7 (found by plotting figure 6 using different values for Cv), which
is used in the subsequent simulations. The drag and inertia coefficients are set to CD = 1.2 and CM = 2,
meaning that the drag coefficient is assumed to be independent of the angle of attack. Experiments have
shown [39] that this is a good approximation for angles larger than 5 degrees. This means that, for the
present SCR in uniform flow, the independence principle is violated close to the bottom. This is however
only a small part of the riser, and is therefore not expected to cause significant errors.

The dynamic cross-flow strain from the simulation is shown in figure 16. Compared to the experimental
results, the same type of traveling waves are seen. 7 distinctive peaks are seen along the riser span, while
in the experimental results, there are only 6 peaks. This indicates that the predicted mode of vibration is
one number higher than in the experiment, which may be caused by a mismatch in the added mass. This
is however a small error, and some uncertainty in the predicted mode must be expected. Furthermore,
the predicted vibration pattern is more regular than in the experiment, which is also unsurprising, due to
the simplifications embedded in the model. The magnitude of the predicted strains are compared to the
experimental results in figure 17, in terms of the r.m.s. of the dynamic cross-flow strain along the riser.
The agreement along the riser span is reasonable, although some discrepancies are seen. The maximum
r.m.s. of strain predicted by the model is 99.6 % of the experimentally observed value. However, the point
of maximum strain in the simulation is not the same as in the experiment. The power spectrum of the
strain signals from the experiment and simulation are shown and compared in figure 18. It is seen that
the dominating frequencies are almost exactly the same, although the predicted spectrum is slightly more
narrow-banded. The secondary frequency peak in the experimental data may be a result of variations in
amplitude and frequency, as the response at any given point along the SCR is not perfectly sinusoidal (see
figure 15).
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Figure 17: Comparison between predicted (solid line) and measured (squares) r.m.s. of dynamic cross-flow strain along the
riser (constant uniform flow).
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Figure 18: Frequency spectrum of dynamic cross-flow strain from simulation and experiment (constant uniform flow) 8.25
meters from the lower end.
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5.2. Case 2: Heave induced VIV of SCR

Wang et al. [8] used the same experimental set up to study heave induced VIV, caused by a forced
oscillating movement of the upper end of the riser, as indicated in figure 14. The SCR model was oscillating
in still water, and the relative velocity between the riser and the surrounding water caused vortex shedding
and VIV. The cross-flow strains measured in the test are shown in figure 19 together with the x (horizontal)
and z (vertical) displacement of the top point. Note that the strain signal has been band-pass filtered
to remove high-frequency noise and the low-frequency component associated with the heave motion. The
top-end motion is approximately sinusoidal with a period of 5.96 s. Compared to the constant current case,
the VIV response appears more irregular, which is expected due to the relative oscillating flow. Although
the spatial resolution is limited, it is possible to see how the touch-down point of the SCR (located close to
x = 0) is moving as the lower end of the riser lifts up and falls down towards the bottom repeatedly.

The r.m.s. of the in-plane velocity (i.e. the relative flow velocity causing VIV) along the riser according
to the simulation model is shown in figure 20. When the flow velocity varies both in time and space, there
is no unique Reynolds number, which can make it difficult to choose a single value for Cv. However, the
maximum of the r.m.s. of the in-plane velocity may be a reasonable choice for a characteristic velocity.
From figure 20, this is found to be 0.16 m/s, which means the Reynolds number is approximately 4 000.
This is slightly larger than in the preceding case, and based on [38], the maximum response is expected to
be around 70 % of the value at Re = 10 000. Following the same way of thinking as for the previous case,
this means that Cv = 0.8 approximately, and this value is adopted in the simulations. As in the previous
case, CD = 1.2 and CM = 2. Apart from the boundary conditions at the top, the structural model is also
the same as before.

The cross-flow bending strains found from the simulation are shown in figure 21, together with the x
(horizontal) and z (vertical) displacement of the top end node. The prescribed motion of the top node
is exactly the same as measured in the experiment. The predicted vibration pattern looks qualitatively
similar to the experimental results, and consists of irregular traveling waves. It is seen that the peak close
to the touch-down point moves back and forth due to the variation in bottom contact. The predicted r.m.s.
of the cross-flow strains are compared to the experiment in figure 22, and the comparison shows that the
magnitude of the strain is somewhat over-predicted for the lower part and under-predicted for the upper
half. Compared to the experiment, the maximum r.m.s. of strain predicted by the model is 6 % too high. To
get a better understanding of the frequency content in the response, the measured and predicted cross-flow
strain at a point 8.25 meters from the lower end are shown in figure 23 and 24 together with a wavelet plot
of the strain signals. The wavelet plot shows the frequency content as a function of time, and from figure
23 it is seen that the dominating frequency in the experiment is close to 1 Hz. Less pronounced frequencies
are seen at all times, both below and above the dominating ones. It is also noted that the amplitude in the
experiment is relatively small at t = 30 s, but increases around t = 36 s for some unknown reason. The
amplitude of the predicted strain shown in figure 24 is more stable. The predicted dominating frequency is
also close to 1 Hz, and other frequency components are present at lower and higher frequencies, as in the
experiment.
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Figure 19: From experiment by Wang et al. [8] (heave induced VIV): Dynamic cross-flow strain along the riser as a function
of time. The top figure shows the x (red) and z (blue) displacement of the riser’s upper end. Note that the strain signal has
been band-pass filtered to remove high-frequency noise and the low-frequency component associated with the heave motion.
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Figure 20: R.m.s. of riser in-plane velocity (calculated).
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Figure 21: From simulation (heave induced VIV): Dynamic cross-flow strain along the riser as a function of time. The top
figure shows the x (red) and z (blue) displacement of the riser’s upper end.
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Figure 22: Comparison between predicted (solid line) and measured (squares) r.m.s. of dynamic cross-flow strain along the
riser (heave induced VIV).
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Figure 23: From experiment by Wang et al. [8] (heave induced VIV): The top figure shows the dynamic cross-flow strain 8.25
meters from the lower end. The bottom figure shows the wavelet contour plot of the strain signal.
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Figure 24: From simulation (heave induced VIV): The top figure shows the dynamic cross-flow strain 8.25 meters from the
lower end. The bottom figure shows the wavelet contour plot of the strain signal.
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6. Conclusions

A method for time domain analysis of cross-flow VIV of slender structures exposed to currents and
prescribed motions has been presented, which is able to account for non-linear structural effects such as
large displacements and time varying contact conditions. The hydrodynamic loading is computed based
on Morison’s equation and a semi-empirical formulation of the cross-flow vortex shedding force [18]. It is
shown that the model provides a realistic description of the cross-flow energy transfer and added mass as
well as the experimentally observed drag amplification, using constant hydrodynamic coefficients. Next, the
combined hydrodynamic and structural model is applied to simulate VIV of the model scale SCR tested
by Wang et al. [8]. Two different conditions are considered, namely uniform stationary current and heave
induced VIV. In the first case, the response is almost stationary with a single dominating frequency. Both
the magnitude and the frequency content of the dynamic cross-flow strain is accurately predicted by the
model. In the second case, the relative fluid velocity is oscillating, due to the sinusoidal motion prescribed
at the top end of the riser. This causes an irregular response pattern with multiple frequencies and varying
amplitudes. Similar behavior is seen in the simulation and the experiment, and the dominating frequency
and the r.m.s. of strain is quite accurately captured. This indicates that the present hydrodynamic load
model provides a good approximation of the relevant loads, which makes it possible to simulate riser VIV
with a high degree of realism, when combined with a non-linear finite element program.
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