
MICROPROCESSORS AND MICROSYSTEMS XX (20XX) XX-XX 1

Worst-case Performance Analysis of SDF-based

Parameterized Dataflow
Mladen Skelin, Marc Geilen, Francky Catthoor and Sverre Hendseth

Abstract—Dynamic dataflow models of computation (MoCs)
have been introduced to provide designers with sufficient expres-
sive power to capture increasing levels of dynamism in present-
day streaming applications. Among dynamic dataflow MoCs,
parameterized dataflow MoCs hold an important place. This is
due to the fact that they allow for a compact representation of
fine-grained data-dependent dynamics inherent to many present-
day streaming applications.

However, these models have been primarily analyzed for func-
tional behavior and correctness, while the (parametric) analysis
of their temporal behavior has attracted less attention.

In this work, we (in a parametric fashion) analyze worst-case
performance metrics (throughput and latency) of an important
class of parameterized dataflow MoCs based on synchronous
dataflow (SDF). We refer to such models as SDF-based pa-
rameterized dataflow (SDF-PDF). We show that parametric
analysis in many cases allows to derive tighter conservative
worst-case throughput and latency guarantees than the existing
(nonparametric) techniques that rely on the creation of “worst-
case SDF abstractions” of original parameterized specifications.
Furthermore, we discuss how by using parametric analysis we
can help address the scalability issues of enumerative analysis
techniques.

To achieve this, we first introduce the Max-plus algebraic
semantics of SDF-PDF. Thereafter, we model run-time adaptation
of parameters using the theory of Max-plus automata. Finally,
we show how to derive the worst-case performance metrics from
the resulting Max-plus automaton structure.

We evaluate our approach on a representative case study from
the multimedia domain.

Index Terms—parameterized dataflow, synchronous dataflow,
SDF-based parameterized dataflow, Max-plus algebra, worst-case
performance.

I. INTRODUCTION

DATAFLOW models of computation (MoCs) have proven

their value in modeling of streaming applications.

Dataflow MoCs are instantiated as dataflow graphs. In such

graphs, nodes are called actors while edges are called chan-

nels. Actors represent computational kernels, while channels

capture the flow of streams of data values between actors.

These data values are called tokens. The essential property

of dataflow is that of an actor firing. Simply put, actor firing

Manuscript received December 26, 2015; revised October 26, 2016; ac-
cepted December 7, 2016. This work was partly supported by ITEA 3 project
14014 ASSUME.

M. Skelin was with the Norwegian University of Science and Technology,
7491 Trondheim, Norway. He is now with the Eindhoven University of
Technology, 5600 MB Eindhoven, The Netherlands (e-mail: m.skelin@tue.nl).

M. Geilen is with the Eindhoven University of Technology, 5600 MB
Eindhoven, The Netherlands.

F. Catthoor is with IMEC vzw, 3001 Leuven, Belgium.
S. Hendseth is with the the Norwegian University of Science and Technol-

ogy, 7491 Trondheim, Norway.

denotes the execution of an actor. Actor firing is an atomic

action during which the actor consumes a certain number of

tokens from input channels through its input ports, executes

some behavior and produces a certain number of tokens at

its output ports that are put on its output channels [1]. These

token production and consumption numbers are called actor

port rates. Actors fire according to a set of firing rules which

specify what and how many tokens must be available at input

ports for the firing to be enabled. In presence of feedback

loops, actors in the loop would never become enabled because

they depend on each other for tokens. This would lead the

graph to a deadlock. Therefore, initial tokens must be placed

on feedback channels. In timed dataflow under consideration

in this paper, actor firing takes a finite amount of time called

the actor firing delay. Furthermore, port rates are viewed as

part of the actor type signature along with the type of the

tokens [2][3]. Port rates can be used to define a graph iteration,

or a set of actor firings that has no net-effect on the token

distribution of the graph.

Dataflow MoCs have been traditionally divided into two

classes: static dataflow MoCs [4] and dynamic dataflow

MoCs [5].

Static dataflow MoCs are in wide use due to their pre-

dictability, strong formal properties and amenability to pow-

erful optimization techniques [5].

Most well-known representatives of static dataflow are

synchronous dataflow (SDF) [6] and cyclo-static dataflow

(CSDF) [7]. In SDF, actor type signatures are fixed and known

at compile-time. In CSDF, actor type signatures can vary

between actor firings as long as the variation complies to a

certain type of a periodic pattern.

Static dataflow MoCs owe their “nice” properties to their

restricted semantics. This restricted semantics, however, makes

them an inadequate tool choice for capturing the dynamic

behavior inherent to present-day streaming applications. The

need for expressive power beyond that offered by static

dataflow MoCs brings us to the class of dataflow MoCs we

call dynamic dataflow MoCs. Dynamic dataflow MoCs can be

viewed as dataflow formalisms in which actor type signatures

(port rates) and actor firing delays for timed models vary in

ways not entirely predictable at compile-time [5].

In relation to the concept used to represent the dataflow

dynamics, the work of [5] defines two subclasses of dynamic

dataflow MoCs. First subclass refers to dataflow MoCs that

are developed around an interacting combination of finite-

state machines (FSM) and dataflow graphs. Models such as

FSM-based scenario-aware dataflow (FSM-SADF) [8] and

heterochronous dataflow (HDF) [2] are well-known examples

MICROPROCESSORS AND MICROSYSTEMS XX (20XX) XX-XX 2

of such FSM/dataflow hybrids where an FSM is used to

decouple control from concurrency.

In HDF, each FSM state is mode-refined by a submodel,

where each refinement has different actor port rates. In FSM-

SADF, each FSM state is associated with an SDF model of

a scenario the state corresponds to. This has the effect that

across FSM-SADF iterations actors operate in different modes

or scenarios. In different scenarios, actors have different firing

delays and port rates.

In the second subclass, a member of which we focus in

this paper, dataflow dynamics are represented by alternative

means. This is advantageous for the users of design tools

that are accustomed to working in the dataflow domain and

for which the FSM integration may represent an experimental

concept [9].

Examples of such models are Boolean dataflow (BDF) [10],

dynamic dataflow (DDF) [10] and parameterized dataflow [5].

In this paper, we are interested in parameterized dataflow

as a meta-modeling technique that integrates parameters and

run-time adaptation of parameters into a certain class of

dataflow MoCs we refer to as base models [5]. This way, using

parameters, one is able to express fine-grained data-dependent

dynamics of present-day streaming applications in a compact

way. In particular, we are interested in parameterized dataflow

MoCs where SDF serves as the base model. Such models are

of special importance, as SDF is considered the most stable

and mature dataflow MoC.

Examples are parameterized SDF (PSDF) [9], schedulable

parametric dataflow (SPDF) [11], Boolean parametric dataflow

(BPDF) [12] and variable rate dataflow (VRDF) [13].

We refer to such models, obtained by parameterization of

SDF (in terms of rates and actor firing delays in the timed

dataflow context) as SDF-based parameterized dataflow (SDF-

PDF). Although such models have been parametrically ana-

lyzed for functional behavior and correctness, the parametric

analysis of their temporal behavior, in particular analysis of

their performance metrics such as throughput and latency, has

received far less attention. However, there are remedies to

this. In certain cases it is possible to create a “worst-case

SDF abstraction” of the original parameterized specification

that can be subjected to standard SDF performance analysis

techniques [14][15]. The information needed to construct

such “worst-case SDF abstraction” would include the upper

endpoints of parameterized actor firing delays assuming that

these are initially box constrained. The validity of such an ab-

straction follows from the monotonicity property of SDF [16]

that SDF-PDF inherits.

However, using upper endpoints of firing delay parameters

will often incur significant amounts of pessimism. E.g., if ac-

tors are implemented in software their firing delays correspond

to worst-case execution times (WCETs) of associated software

modules. It is often the case that these WCETs depend on

the module inputs in very complex ways. Paper [17] lists a

few examples of applications where WCETs are expressed as

polynomial functions of application inputs. Therefore, taking

the upper endpoints of default parameter intervals and not

considering these dependencies will most definitely incur a

significant amount of pessimism which results in a decrease

of the optimization margin a designer has at hers/his disposal.

The case of graphs containing parameterized rates is even

more complicated, as these necessarily do not influence the

temporal behavior of the model in a monotonic way. In

particular, a increase in rate value can lead to a decrease

in the duration of graph iteration. Things get even worse if

these rates show functional dependence on characteristics of

the input signal.

A solution to this problem is enumeration, where one would

consider all possible parameter value combinations. However,

the run-time of enumerative analysis will in many cases

in practice be prohibitive due to large spans of values the

parameters can attain (compactness issues).

The aforementioned justifies the need for novel worst-case

parametric performance analysis techniques that by operating

directly on graph parameters remove the need for the touchy

construction process of “worst-case SDF abstractions” of

original parameterized specifications. Furthermore, we require

that the parametric analysis can account for complex parameter

inter-dependencies, and so avoid the pessimism the analysis

based on “worst-case SDF abstraction” suffers from because it

disregards these inter-dependencies and considers only the up-

per parameter interval endpoints. Finally, by working directly

with parameters we remove the need for successive analysis

of all parameter value combinations and so we help address

the scalability problems the enumerative analysis is prone to.

In this work we present such a worst-case performance

analysis framework for SDF-PDF specifications in consider-

ation of certain technical constraints we impose on the input

graph structures. Within the framework, we consider self-timed

execution of SDF-PDF structures. Self-timed execution is a

schedule where every actor fires as soon as possible. The

self-timed execution is of special importance as it defines the

tightest bound that can be given on the temporal behavior of

the system captured by an SDF/SDF-PDF model [16]. We

base our approach on the Max-plus algebraic [18] semantics

of self-timed execution of SDF that SDF-PDF inherits. We

model parameter reconfigurations using the theory of Max-

plus automata [19] by exploiting the Max-plus semantic equiv-

alence of SDF-PDF parameter reconfigurations and scenario

transitions in FSM-SADF. By subjecting the derived Max-plus

automaton structure to appropriate analysis, we are able to

derive the relevant worst-case throughput and latency metrics

for SDF-PDF.

The remainder of this paper is structured as follows. In Sec-

tion II we illustrate the importance of parameterized dataflow

MoCs for modeling applications exposing fine-grained data-

dependent dynamics and we outline the performance analy-

sis challenges for such specifications. Section III discusses

the related work. Section IV presents preliminary concepts.

Section V formally defines SDF-PDF followed by Section VI

that develops its Max-plus semantics. Section VII formally

defines the performance metrics of interest and Section VIII

presents techniques for computation of those metrics. Sec-

tion IX demonstrates the application of our techniques on

a realistic-case study from the multimedia domain. Finally,

Section X concludes.

MICROPROCESSORS AND MICROSYSTEMS XX (20XX) XX-XX 3

(a) C specification.

(b) Dataflow specification.

Fig. 1. Motivational example.

II. MOTIVATIONAL EXAMPLE

Parameterized dataflow MoCs are important because they

by means of dynamic parameters allow for a compact rep-

resentation of streaming applications exposing fine-grained

data-dependent dynamics. Furthermore, they define precise

semantics for parameter reconfiguration across application

activations.

A motivational example of an application that illustrates

the importance of parameterized dataflow as a modeling and

analysis concept is shown in Fig. 1. The C specification of

the example application is shown in Fig. 1a. The application

consists of two nested loops with bounds g and h. The

loop bound values are input data-dependent as computed

in the rx_data module. The actual implementation of the

rx_data module is assumed to involve complex input data

processing. The derived bounds are assumed to depend on

some characteristics of the input signal. Assume that bound

g can be assigned with a value originating from the interval

[0,m/2] while h can be assigned with a value from [0, n/2].
It this case, the application will attain as many behaviors as

there are integer points in the rational 2-polytope Pm,n given

by the set of constraints {0 ≤ m/2, 0 ≤ n/2}. With m = 2001
and n = 4500 the specification of Fig. 1a abstracts 2, 252, 126
application behaviors (to see how this number was obtained

we refer the interested reader to [20]). Therefore, we can

say that the application exposes fine-grained data-dependent

dynamics. The data-dependent behavior of the application

can be compactly expressed (as a single entity) using the

parameterized dataflow structure of Fig. 1b where loop bounds

are captured by parameterized graph rates (actor firing delays

are implied). This way we avoid the need for enumeration

of Pm,n that would result in 2, 252, 126 nonparameterized

dataflow structures accounting for all (g, h) combinations.

Furthermore, unlike the C specification that favors a sequen-

tial implementation, the (parameterized) dataflow specification

reveals the application parallelism and encourages a parallel

implementation. Assuming now that each module is mapped

to a separate processing element the worst-case performance

analysis for the motivational example is difficult due to several

reasons.

First, the application is dynamic, i.e. in every activation the

values of loop bounds g and h differ from those in the previous

activation.

Second, the consecutive activations of the application will

be pipelined, i.e. they may be active at the same time.

Third, consecutive activations are inter-dependent as a mod-

ule in the current activation cannot commence execution before

all executions of the same module of the previous activation

have completed because they share the same processing ele-

ment.

III. RELATED WORK

We begin by providing more insight into the class of param-

eterized dataflow MoC based on SDF whose main members

were listed in Section I.

We start with PSDF [9]. PSDF introduces parameters in the

definition of an SDF actor that control its functionality and/or

its dataflow behavior. PSDF concept enables hierarchical in-

tegration where PSDF graphs can be abstracted into actors in

higher PSDF levels. It is of vital importance, that the interface

dataflow of a hierarchical actor remains unchanged throughout

any iteration of its hierarchical parent actor. This way, one

maintains a level of predictability and permits efficient quasi-

static scheduling at least for a class of PSDF specifications

that satisfy certain technical constraints regarding the number

of initial tokens placed on feedback channels.

SPDF [11] is a MoC closely related to PSDF. SPDF

explicitly defines requirements that a parameterized dataflow

specification must satisfy so that questions about deadlock

freedom, boundedness and schedulability can be answered at

compile-time. In contrast to SPDF, PSDF employs run-time

mechanisms that check the consistency and bounded memory

consistency of a specification.

BPDF [12] is a syntactical extension of SPDF developed

to elegantly treat cases where actor port rates may be 0.

This is achieved by the introduction of conditional channels

annotated with Boolean expression. Depending on the value

the expression attains at run-time, channel is to be activated

or deactivated. Deactivation infers that no consumption or

production can take place at that channel.

VRDF [13] facilities for frequent changes of actor port

rates by means of parameterization. In particular, actor rates

MICROPROCESSORS AND MICROSYSTEMS XX (20XX) XX-XX 4

may vary arbitrarily and are not necessarily constant over a

complete iteration.

As originally proposed, all these models, except VRDF are

untimed and consequently not accompanied by any kind of

temporal analysis. Paper [13] discusses the temporal aspects of

VRDF. However, it is of limited scope as the analysis methods

are restricted to (conservative) buffer sizing under throughput

constraints.

Some results exist, though, on parametric throughput anal-

ysis of SDF. In particular, the authors of [21] add the notion

of parameterized actor firing delays to SDF. Consequently,

via state-space analysis embedded in a divide and conquer

algorithm, one can obtain expressions for the throughput of

the graph expressed as functions of parameters. However, the

parametric analysis is limited only to actor firing delays, while

the rates are kept constant. The authors of [22] take the story

of [21] further by proposing algorithms to derive buffer sizes

needed by acyclic SDF graphs with parametric rates to attain

their maximal throughput. Here, throughput of an SDFG graph

is also given as a function of graph parameters. However,

the main difference between the work of [21] and [22] and

ours is in the semantics of parameterization. In particular,

the purport of parameterization in [21] and [22] is syntactical

because parameters are static, i.e. once set they do not change.

Therefore, the static nature of SDF is preserved. Nevertheless,

parameterization renders the analysis more complex as seen

in the aforementioned works. In our work, parameterization of

SDF implies dynamic parameters, i.e. parameters whose values

change at run-time. From worst-case performance analysis

point of view this means that the worst-case behavior may

be defined over a cyclic pattern of parameter changes and not

by a single parameter setting.

The work of [23] applies the technique of [21] to FSM-

SADF which is a dynamic dataflow MoC by introducing

parameterized actor firing delays to FSM-SADF. However,

rates are left constant within scenarios and firing delay pa-

rameters are again fixed across scenarios, i.e. they are static.

Furthermore, FSM-SADF implies a reasonably sized set of

application scenarios/modes/behaviors and cannot compactly

capture the fine-grained data-dependent application dynamics.

The most related work to ours is that of [24]. It proposes

a fully parametric worst-case throughput analysis scheme for

SPDF based on Max-plus linear system theory. However, the

Max-plus characterization of SPDF graphs incurs too much

pessimism because in that work each actor needs to wait for all

its dependencies to complete all their firings within an iteration

before it commences firing. This is unnecessarily restricting

and the presentation of [24] can be made significantly tighter

(cf. Section VI) yielding a tighter throughput estimate.

IV. PRELIMINARIES

This section recaps Max-plus algebra and elaborates the

concepts of SDF and FSM-SADF to the very detail. Although

aware that the level of detail involved increases the risk of

boring the reader, we feel a detailed treatment of preliminary

concepts is needed to show the semantic link between SDF-

PDF and FSM-SADF later in Section V. This link enables us

to reformulate the performance analysis results of FSM-SADF

and apply them to SDF-PDF in Section VIII which is the main

result of this paper.

A. Max-plus algebra

We briefly introduce basic Max-plus algebra notation. De-

fine Rmax = R ∪ {−∞}, where R is the set of real numbers.

Let a ⊕ b = max(a, b) and a ⊗ b = a + b for a, b ∈ Rmax.

For a ∈ Rmax, −∞ ⊕ a = a ⊕ −∞ = a and a ⊗ −∞ =
−∞ ⊗ a = −∞, i.e. −∞ is the zero element of the ⊕
operation. By Max-plus algebra we understand the analogue

of linear algebra developed for the pair of operations (⊕,⊗)
(pronounced “oplus” and “otimes”, respectively) extended to

matrices and vectors and denoted by Rmax = {Rmax,⊕,⊗}.

The set of n-dimensional Max-plus vectors is denoted Rn
max,

while Rn×n
max denotes the set of n× n Max-plus matrices. The

(sup-) sum of matrices A, B ∈ Rn×n
max , denoted by A ⊕ B

is defined by [A ⊕ B]i,j = [A]i,j ⊕ [B]i,j where [A]i,j and

[B]i,j are entries of matrices A and B with indices i and

j. The matrix product A ⊗ B is defined by [A ⊗ B]i,j =
n⊕

k=1

[A]i,k ⊗ [B]k,j . For a vector a = [a1, . . . , an]
T ∈ Rn

max,

||a|| denotes the vector norm, defined as ||a|| =
n⊕

i=1

ai. With

A ∈ Rn×n
max and c ∈ R, we use denotations A ⊗ c or c ⊗ A

for matrix where [A ⊗ c]i,j = [c ⊗ A]i,j = [A]i,j + c. The

⊗ symbol in the exponent indicates a matrix power in Max-

plus algebra. For A ∈ Rn×n
max , A⊗k =

⊗

k

A where k ∈ N>0.

For scalars c ∈ R and α ∈ R, c⊗α = α · c where · stands

for multiplication in “regular algebra”. Furthermore, it is easy

to verify that Max-plus matrix multiplication is linear, i.e.

M⊗(a⊕b) = M⊗a⊕M⊗b and M⊗(c⊗a) = c⊗M⊗a

for all M ∈ Rn×n
max , a,b ∈ Rn

max and c ∈ Rmax. Now, let

M,N ∈ Rn×n
max . We write M � N if [M]i,j ≤ [N]i,j for all

i ∈ {1, . . . , n} and j ∈ {1, . . . , n}. In addition, the matrix

multiplication is monotone, which means that if a � b, then

M ⊗a � M ⊗b. Similarly, if M � N , then M ⊗a � N ⊗a.

B. Dataflow basics

In all dataflow MoCs, actors communicate by sending to-

kens along unidirectional channels with one producer and one

consumer. On a channel, these tokens form token sequences

that we define similarly as the concept of signals is defined

in [25].

Definition 1 (Token sequence). Let V be a set of values and

let T be a set of tags originating from some totally ordered

continuous time domain. Let V and T include special values

⊥ and ∗ which indicate the absence of value and an arbitrary

value, respectively. We define a token sequence as a total

mapping σ : N>0 → V ×T denoted using square brackets and

commas as follows [σ(1), σ(2), . . . , σ(n), . . .] = [σ(n)]∞n=1.

We call the set of all finite and infinite token sequences

Σ where, of course, Σ = 2V×T . We denote the tuple of

N token sequences as σ where N ∈ N>0. The tuple of

token sequences will be denoted using parenthesis, as in

MICROPROCESSORS AND MICROSYSTEMS XX (20XX) XX-XX 5

([σ1(n)]
∞
n=1, [σ2(n)]

∞
n=1, . . . , [σN (n)]∞n=1), an N -tuple with

N sequences of infinite length. The set of all such tuples will

be defined as ΣN . A set of tuples will be denoted using the

usual braces for sets.

Through the concept of firing, actors transform finite or

infinite sequences of input tokens to finite or infinite sequences

of output tokens. A firing of an actor is enabled once its firing

rule is satisfied. Input and output sequences are communicated

through actor input and output ports, while the transformation

between them is given by actor firing function.

We define a dataflow actor as follows.

Definition 2 (Dataflow actor). A dataflow actor A =
(P,Q,R, f) is a tuple, where P is the set of actor input

ports, Q is the set of actor output ports, R ⊂ ΣU is a set

of finite sequences called the firing rules and f : ΣU → ΣV

is a mapping called the firing function, where U = |P | and

V = |Q|.

However, actors in isolation are of little use in modeling of

complex systems. Therefore, we typically consider composi-

tions of dataflow actors, i.e. dataflow graphs. In this work

we focus on compositions of SDF-PDF actors derived by

parameterization of SDF actors to be defined next.

C. Synchronous dataflow

SDF is the most widely used, stable and mature dataflow

MoC. In timed SDF both rates and actor firing delays are fixed

and known at compile-time. SDF is an uninterpreted dataflow

MoC, which means that the actual meaning of the compu-

tations and semantics of data tokens are not relevant [26].

Furthermore, the firing rules of SDF are conjunctive which

implies that all actor input channels must contain sufficient

quantities of input tokens for the firing to be enabled. These

quantities are, of course, given by port rates.

Now, given an SDF actor A = (P,Q,R, f) where P =
{p1, . . . , pU} and Q = {q1, . . . , qV } let function rA : (P ∪
Q) → N>0 return the rate value for a given actor port. Then

the firing rule for A takes the form

R = {([σp1(n)]
rA(p1)
n=1 , . . . , [σpU

(n)]
rA(pU)
n=1)} (1)

where σpi
(n) = (∗,⊥) for all i = 1, . . . , U .

Firing rule of (1) says that in every firing A consumes

rA(p1) input tokens from port p1 and so on until the last input

port pU from which it consumes rA(pU) tokens regardless of

their value (notation ∗). The firing rules do not depend on the

availability times of input tokens, and therefore the notation

⊥ is used.

Values rA(pi) are fixed and known at compile-time and so

are the firing rules. This renders SDF a static dataflow MoC.

In consideration of the firing function of A, as SDF is

an uninterpreted dataflow MoC we abstract from the to-

ken content and consider only the timed part of the firing

function given as the mapping fT : TU → T V such

that fT (n) = (τq1(n), . . . , τqV (n)) where τqi(n) = (πr ◦
σqi)(n) = πr(σqi(n)) and πr is the right projection function.

For τqi(n) = t, from now on, we will use the notation

τ(qi)(n) = t.

(a) Scenario SDFGs.

(b) Scenario FSM.

Fig. 2. Example FSM-SADFG.

For a particular output port qi ∈ Q of actor A with

firing delay d the following equation holds under self-timed

execution [27]

τ(qi)(n) = d+max
pi∈P

τ (pi)

(⌊
n

rA(qi)

⌋

· rA(pi)

)

= d⊗
⊕

pi∈P

τ(pi)

(⌊
n

rA(qi)

⌋

· rA(pi)

)

.
(2)

Equation (2) defines the Max-plus semantics of SDF and

transitively of SDF-PDF that we elaborate later on. In re-

lation to Max-plus algebra, the two fundamental concepts

that determine the self-timed execution of an SDF actor are

synchronization and delay. Synchronization manifests itself

when an actor waits for all input tokens to become available

(max operator). The delay manifests itself through the fact

that the tokens that are the result of an actor firing will be

available after an amount of time following the firing start

time (+ operator). This amount of time is equal to the actor

firing delay.

Of course, (SDF) actors operating in isolation are of limited

use for modeling of complex systems. Therefore, we must con-

sider compositions of (SDF) actors, i.e. SDF graphs (SDFGs)

that we formally define in Definition 3.

Definition 3 (SDFG). An SDFG G = (A, C, d, r, i) is a tuple

where A is the set of actors, C ⊆ A×A is the set of channels,

d : A → R≥0 returns for each actor its associated firing delay,

r : A × C → N>0 returns for each actor port its associated

rate and i : C → N0 returns for each channel its number of

initial tokens.

MICROPROCESSORS AND MICROSYSTEMS XX (20XX) XX-XX 6

Scenario s1 graph of Fig. 2a is an example of an SDFG. Ac-

tors are depicted by rectangles while port rates are annotated

next to channel ends. If the value is omitted, a rate value of 1
is assumed. Actor firing delays are denoted alongside actors

names. Initial tokens are depicted using black dots.

SDFGs can be scheduled at compile-time and thus im-

plemented with minimal run-time overhead. Schedule for an

SDFGs is a loop over a series of actor firings completing

an iteration. The schedule for the running example can be

denoted using the term A1
0A

2
1A

3
2A

3
3A

2
4A

1
5A

1
6 where exponents

represent actor repetition counts. We consider SDFGs that are

consistent and deadlock-free. The graph that is inconsistent

may deadlock or be unbounded. The existence of a repetition

vector implies consistency. The repetition vector of an SDFG

says how many times a particular graph actor needs to be

fired in an valid schedule/iteration. It is computed using the

set of so-called balance equations [6] . We define it as a map

Γ : A → N>0. With the abuse of notation, for the running

example, Γ(A0, A1, A2, A3, A4, A5, A6) = (1, 2, 3, 3, 2, 1, 1).
Nevertheless, consistency does not imply that a valid schedule

exists. If a graph contains cycles, it may deadlock although

consistent. That is why sufficient numbers of initial tokens

must be placed in feedback channels. Checking the deadlock-

freedom of an SDFG is performed by computing an iteration

by abstract execution [6].

D. Max-plus algebra for SDF

Max-plus algebra [18] is used to capture the semantics of

self-timed execution od SDF.

Equation (2) defines the Max-plus algebraic semantics of

an SDF actor. However, we are interested in the Max-plus

semantics of SDF at a graph level. Because SDFGs evolve

in iterations, the beginning and the end time of any SDFG

iteration is fully determined by the availability times of initial

tokens. In the SDF domain, initial tokens represent initial

conditions for execution [28]. If the production timestamps

of initial tokens after the kth graph iteration are collected in

the vector γγγ(k) ∈ R
|I|
max the evolution of an SDFG G is given

by the following recursive Max-plus linear equation

γγγ(k + 1) = MG ⊗ γγγ(k). (3)

In (3), MG ∈ R
|I|×|I|
max is the SDFG Max-plus matrix, I is the

set of initial tokens of the SDFG and γγγ(k) is the timestamp

vector of the kth SDFG iteration. Matrix MG is a square

matrix, which follows from the fact that each initial token

has one entry in γγγ(k + 1) and γγγ(k).
For initial tokens, throughout this article, we use the nota-

tion il where l ∈ {1, . . . , |I|}, so that l specifies the position

of the initial token’s timestamp in the timestamp vector and

notation I is used for the set of graph’s initial tokens.

Matrix MG of (3) can be derived by symbolically executing

one iteration of the corresponding SDFG with the intention

of relating the entries of γγγ(k + 1) = [t′i1 , . . . , t
′
i|I|

] and

γγγ(k) = [ti1 , . . . , ti|I|] where t′il and til are the timestamps

of the corresponding initial tokens after the (k + 1)st and the

kth SDFG iteration embodied into the timestamp vectors of

the (k + 1)st and the kth iteration, respectively.

First, consider the following. It was shown in [16], that the

production timestamp t of any graph token can be represented

as a Max-plus scalar product

t =
⊕

ij∈I

mj ⊗ tij = [m1, . . . ,m|I|]⊗ γγγ(k). (4)

between a vector of suitable constants called the initial token

dependency vector or shortly the dependency vector and the

timestamp vector of the kth iteration. Then, also the entries of

γγγ(k + 1) can be written as linear combinations of entries of

γγγ(k) as follows

t′il =
⊕

ij∈I

ml,j ⊗ tij = [ml,1, . . .ml,|I|]⊗ γγγ(k). (5)

It straightforwardly follows from (3) and (5) that dependency

vectors [ml,1, . . .ml,|I|] define the rows of MG. These vectors

are determined by symbolic execution of one iteration of the

graph as proposed by Algorithm 1 of [16].

The Max-plus matrix of the scenario s1 SDFG of Fig. 2a

is given in (6).

MG =

10 −∞ −∞ −∞ −∞ 10
18 12 −∞ −∞ −∞ 18
16 −∞ 9 −∞ −∞ 16
22 16 14 8 −∞ 22
22 16 14 8 −∞ 22
−∞ −∞ −∞ −∞ 10 −∞

(6)

E. FSM-based scenario-aware dataflow

The concept of synchronous dataflow scenarios [16] extends

the expressive power of SDF by combining streaming data

and finite control into a MoC called FSM-SADF [8]. More

precisely, application behaviors are clustered into a group of

static modes of operation called scenarios each modeled by an

SDFG, while scenario occurrence patterns are constrained by

a nondeterministic FSM. Consequently, an FSM-SADF graph

(FSM-SADFG) evolves in iterations of its scenario SDFGs.

From the perspective of an FSM-SADF actor this means that

an actor, within the execution of an FSM-SADFG it is a part

of, operates in different scenarios. In each scenario actor may

attain a different type signature and a different firing delay.

We formalize this concept as follows.

Let A = (P,Q,R, f) be an FSM-SADF actor where

P = {p1, . . . , pU} and Q = {q1, . . . , qV }. Let SA =
{sA1, . . . , sAZ} be the set of scenarios of A, where Z = |SA|.
Let function rA : (P ∪ Q) × SA → N>0 give the rate value

for a given actor port and a given scenario. Let function

dA : SA → R≥0 return the firing delay of an actor for a given

scenario. Then, the general firing rule of an FSM-SADF actor

is as follows

R = {([σp1(n)]
rA(p1,sAi)
n=1 , . . . , [σpU

(n)]
rA(pU ,sAi)
n=1)Zi=1}, (7)

where σpi
(n) = (∗,⊥) for all i = 1, . . . , U . Unlike an SDF

actor that has only one firing rule (cf. (1)), an FSM-SADF

actor has as many firing rules as there are scenarios (notice

that R of (7) is composed of Z tuples). As inherited from

SDF, in FSM-SADF, tokens are uninterpreted and the firing

rules do not depend on token arrival times.

MICROPROCESSORS AND MICROSYSTEMS XX (20XX) XX-XX 7

Correspondingly, we proceed by defining the timed firing

function of FSM-SADF for an arbitrary qi ∈ Q as follows

τ(qi)(n) =dA(sQ(qi, L))

⊗
⊕

pi∈P

τ(pi)(

L∑

j=1

rA(pi, sQ(qi, j))).
(8)

In (8), sQ : Q × [1, . . . , L] → SA where L ∈ N>0 defines

the scenario sequence that lead to the production of token

σqi(n) = (∗, τ(qi)(n)). Admissible sequences, i.e. scenario

occurrence patterns are given by the scenario FSM. Unlike

SDF actors (cf. (1), (2)), FSM-SADF actors (cf. (7), (8)) across

different firings in different scenarios consume and produce

different numbers of tokens while their firings take different

amounts of time across scenarios. The ways in which rates

and actor firing delays change is not entirely predictable at

compile-time. In particular, in FSM-SADF scenario variations

are nondeterministic. Thus is FSM-SADF a dynamic dataflow

MoC. Note that different scenario sequences will result in

different evaluations of (8) for the same n. Therefore, it would

be mathematically correct to call τ , i.e. τ(qi)(n) a relation

rather than a function. But to simplify the notation and be in

correspondence with the existing dataflow literature [29] we

abuse the notion of a function in this context.

Naturally, FSM-SADF actors are composed into graphs. An

example of an FSM-SADFG is shown in Fig. 2. The graph

has two scenarios: s1 and s2 modeled by two SDFGs. The

difference between the scenarios1 is that scenario s2 SDFG

compared to scenario s1 SDFG misses channels (A1, A2) and

(A2, A4), while the firing delays of actor A2 are different in

different scenarios. The scenario FSM has two states where

each of the states corresponds to one scenario. In the figure,

state φ1 corresponds to s1, while φ2 corresponds to s2.

The scenario FSM defines admissible scenario sequences.

The operational semantics of the model is as follows: every

transition in the scenario FSM schedules the execution of one

iteration of the SDFG that models the scenario corresponding

to the transition’s destination state. From the perspective of

FSM-SADF actors, this means that their execution within

one scenario is governed by one firing rule and one firing

function. In that case, (7) and (8) reduce to (1) and (2), i.e.

within an FSM-SADFG iteration an FSM-SADF actor reduces

to an SDF actor. The dynamic behavior of FSM-SADF is

defined across iterations, while within one the behavior is

static. Furthermore, an FSM-SADF actor where |SA| = 1 is an

SDF actor. Therefore, FSM-SADF generalizes SDF. We give

the formal definition of FSM-SADF as adopted from [30].

First we define the scenario FSM as follows.

Definition 4 (Scenario FSM). Given a set S of scenarios, a

scenario FSM F on S is a tuple F = (Φ, φ0, δ,Ψ), where Φ
is the set of states, φ0 is the initial state, δ ⊆ Φ × Φ is the

transition relation and Ψ : Φ → S is the scenario labeling.

Thereafter, we define FSM-SADF in Definition 5.

1We will be using the terms scenario and scenario SDFG interchangeably.

t
i1

i2

i3

i4

i5

i6

0 10 20 30 40 50 60 70 80τ

Scenario s1/ Instance ιG(x
G
1)

Scenario s2/ Instance ιG(x
G
2)

Fig. 3. Execution of FSM-SADFG of Fig. 2 and the execution of SDF-PDFG
of Fig. 4 with XG = {xG

1 , xG
2 }.

Definition 5 (FSM-SADF). FSM-SADF F is a tuple F =
(S, F) where S is the set of scenarios and F is an FSM on

S.

F. Max-plus algebra for FSM-SADF

Because an FSM-SADFG evolves in iterations of its SDF

constituents, i.e. scenario SDFGs, the Max-plus algebraic

semantics of SDF is naturally carried over to FSM-SADF.

In particular, a sequence of scenarios can be associated with

a sequence of timestamp vectors γγγ(0), γγγ(1), . . . where

γγγ(k + 1) = MF(ζF(k + 1))⊗ γγγ(k). (9)

In (9), MF : S → R
|I|×|I|
max , returns the Max-plus matrix of

the scenario SDFG, ζF : N>0 → S returns the scenario of the

(k + 1)st FSM-SADFG iteration. Fig. 3 shows the execution

of the running example FSM-SADFG for scenario sequence

s1, s2, s1, s2, s1. Time is depicted horizontally and the six

tokens of the timestamp vector are depicted vertically so that

lines visualize the timestamp vectors of (9) as they evolve

across scenarios depicted in different colors. Let

s = s1, . . . , sk ∈ L (10)

denote a sequence of scenarios where L ⊆ S∗ defines a

restriction of S∗ determined by the scenario FSM. It had been

shown in [8] that the completion time of (10) can be defined

as follows

A = αααT ⊗ µ(s)⊗ βββ, (11)

where ααα is the final delay, µ : S∗ → R
|I|×|I|
max is the morphism

that associates sequences of scenarios with Max-plus matrices

as follows

µ(s) = MF(sk)⊗ . . .⊗MF(s1) (12)

and βββ is the initial delay. The initial delay βββ specifies the initial

enabling time of initial tokens and typically βββ = 0, while

the final delay ααα serves as a mean to specify the metrics we

are interested in. E.g., if we are interested in the makespan

of a sequence of scenarios, we set ααα = 0. The triple A =
(ααα, µ,βββ) defines a Max-plus automaton [19]. The theory of

Max-plus automata had been used in [8] to analyze worst-case

performance of FSM-SADFG. We leave this matter aside now

and explain it in detail in Section VIII when we reformulate

the FSM-SADF results and apply them to SDF-PDF.

MICROPROCESSORS AND MICROSYSTEMS XX (20XX) XX-XX 8

V. SDF-BASED PARAMETERIZED DATAFLOW

In this section we formally present SDF-PDF as a dynamic

dataflow MoC obtained by applying parameterization to SDF.

We define SDF-PDF as a model that can be used to capture

the existing parameterized dataflow MoCs based on SDF such

as PSDF, SPDF, BPDF and VRDF. This way these models

can be subjected to the performance analysis of SDF-PDF we

define in Section VIII under certain restriction concerning the

input graph structure. We first focus on SDF-PDF actors in

Section V-A, that we compose into SDF-PDF graphs (SDF-

PDFGs) in Section V-B. Thereafter in Section V-C we define

the subset of SDF-PDF we shall use for performance analysis

of systems. Finally, in Section V-D we discuss the semantic

link between our analysis model and FSM-SADF that is a

crucial argument in the definition of the Max-plus algebraic

semantics of SDF-PDF in Section VI.

A. SDF-PDF actors

We start by defining our parameterization scope. With SDF

in mind as an uninterpreted dataflow MoC with conjunctive

firing rules, we consider parameterization of SDF rates and

actor firing delays. As we wish to produce a dynamic dataflow

MoC, we declare our parameters dynamic, i.e. we allow for

parameter values to change at run-time.

We proceed by defining the concept of an SDF-PDF actor

and the semantics of the parameterization employed. Let

A = (P,Q,R, f) be an SDF-PDF actor. Actor port rates

are parameterized using parametric arithmetic expressions. We

let the expression production be governed by an arbitrary

grammar RA defined over a set of symbolic variables PAi

by default constrained to the set of nonnegative integers. As

we will witness soon, parameterization of actor port rates has

repercussions on both the actor firing rules and the actor firing

function. Similarly, we let actor firing delay be parameterized

by parametric expressions generated by an arbitrary grammar

DA defined over a set of symbolic variables PAd by default

constrained to the set of nonnegative real numbers. Parameter-

ization of firing delays will influence the (timed) actor firing

function.

Now, given sets of parameters PAi and PAd let xA denote

a configuration of A that is obtained by assigning values to

all parameters of PAi and PAd. Furthermore, let XA denote

the domain of A that is the set of all configurations of A with

Z = |XA|.
For an actor A, let function rA : (P ∪Q)×XA → N0 given

an actor port and an actor configuration return its rate. It does

so by evaluating the parametric expression of RA valid for that

port at a specific xA ∈ XA. Similarly, let dA : XA → R≥0

given a configuration return the firing delay of an actor. It

does so by evaluating the expression of DA that gives the

parameterized firing delay of A for xA ∈ XA.

With the notations above, the general firing rule of a SDF-

PDF actor A is as follows

R = {([σp1 (n)]
rA(p1,x

A
i)

n=1 , . . . , [σpU
(n)]

rA(pU ,xA
i)

n=1)Zi=1}, (13)

where σpi
(n) = (∗,⊥) for all i = 1, . . . , U . From (13) it

follows that an SDF-PDF actor has as many firing rules as it

has configurations. Configurations may change from one actor

firing to the next which makes SDF-PDF a dynamic dataflow

MoC.

We proceed by defining the firing function of an arbitrary

SDF-PDF actor defined for its arbitrary output port qi ∈ Q as

follows

τ(qi)(n) =dA(xQ(qi, L))

⊗
⊕

pi∈P

τ(pi)(

L∑

j=1

rA(pi, xQ(qi, j))).
(14)

An SDF-PDF actor evolves in firings under different configu-

rations. This means that if configurations differ from one firing

to the next one, so will the actor firing rules differ as well as

the firing delays. Therefore, in consideration of (14) where

we compute the production time of token σqi (n) that equals

to τ(qi)(n) we must consider the configuration sequence that

lead to the production of σqi(n). This sequence is given as a

mapping xQ : Q × [1, . . . , L] → XA where L ∈ N>0. The

sequencing of configurations is arbitrary and therefore it can

be modeled as a nondeterministic choice and the (timed) firing

function of (14) can take many different values at the same n
depending on all possible interleavings of configurations that

can produce output sequences of length n. Therefore, as in

the case of FSM-SADF, it would be mathematically correct

to call (14) a firing relation rather than a function but we

deliberately leave the term function for the reason explained

while discussing the firing function of an FSM-SADF actor.

Given a configuration, SDF-PDF actor acts like a “normal”

SDF actor, i.e. for an XA with a single configuration, it is

trivial to check that (13) and (14) reduce to (1) and (2). This

shows that SDF-PDF generalizes SDF.

B. SDF-PDF graphs

SDF-PDF actors are composed into SDF-PDF graphs (SDF-

PDFGs). From the considerations of the previous section on

SDF-PDF actors and the definition of SDFG (cf. Definition 3),

with a minimal change in notation, it is rather straightforward

to induce a definition for the composition of SDF-PDF actors,

i.e. SDF-PDFG.

Let graph rates be expressed as parametric expressions.

Let the production of these expressions be governed by an

arbitrary grammar R. Similarly, we let actor firing delays be

parameterized by an arbitrary grammar D. Then, an SDF-

PDFG is to be defined as follows.

Definition 6 (SDF-PDFG). An SDF-PDFG is a tuple G =
(A, C,Pi,Pd, r, d, i,XG), where A is the set of actors, C ⊆
A×A the set of channels, Pi is the set of nonnegative integer

parameters, Pd is the set of nonnegative real parameters, r :
A×C → R returns for each port its (possibly symbolic) rate,

d : A → D returns for each actor its associated (possibly

symbolic) firing delay, i : C → N0 returns for each channel

its associated number of initial tokens while XG is the domain

of the graph.

Aside the typical dataflow graph constituents such as actors,

channels, rates, firing delays and initial tokens, Definition 6

introduces the concept of SDF-PDFG domain that extends

MICROPROCESSORS AND MICROSYSTEMS XX (20XX) XX-XX 9

the concept of SDF-PDF actor domain discussed earlier. The

domain XG of an SDF-PDFG G is the set of all configurations

of G. A configuration of an SDF-PDFG is determined by

assigning concrete values to all parameters defined by the sets

Pi and Pd. We denote a configuration of G with xG
i ∈ XG

where i ∈ {1, . . . , |XG|}. Once a configuration is routed

through the grammars R and D and applied to the SDF-

PDFG, an instance of that graph emerges, denoted ιG(x
G
i).

An instance of an SDF-PDFG is nothing but an SDFG.

The SDF-PDF model of Definition 6 offers a high modeling

flexibility as actor port rates and actor firing delays can be

expressed as arbitrary expressions of parameters. Furthermore,

the concept of domain adopted from [9] allows to specify

arbitrary inter-dependencies between parameters involved in

the construction of rate and firing delay expressions. However,

do note at this point that we will not be able to analyze

statically SDF-PDFGs in their full generality. This is explained

in detail in sections to follow.

C. Our analysis model

The key technique to execute an SDF-PDFG as any other

dataflow graph is scheduling. In our performance analysis to

be disclosed soon, we consider self-timed scheduling. Because

SDF-PDF is a dynamic dataflow model, it will be dynamically

scheduled, i.e. at run-time once all parameter values are

known.

However, to give compile-time worst-case performance

guarantees for SDF-PDF programs we need to have a degree of

knowledge how the program is scheduled. Therefore, we revert

to a scheduling concept called quasi-static scheduling, i.e. we

consider only SDF-PDF specifications for which a quasi-static

schedule is available. Quasi-static scheduling is the middle-

ground between static and dynamic scheduling where most

of the schedule is known at compile-time while only some

scheduling decisions are made at run-time [31].

Furthermore, we restrict our attention to consistent/bounded

and deadlock-free SDF-PDF specifications because the ones

that are not are of little practical importance.

However, for programs modeled in the general SDF-PDF

abstraction of Definition 6 it is not decidable (at compile-

time) whether they are consistent/bounded, deadlock-free and

quasi-static schedulable.

To assure consistency/boundedness, deadlock-freedom and

quasi-static schedulability we need to restrict parameterization

patterns. In particular we need to restrict R so that compile-

time guarantees on consistency/boundedness and deadlock-

freedom can be provided and that a quasi-static schedule for

the specification can be computed. Furthermore, we need to

restrict the parameter change intervals so that at all times

all rates in the graph are well-defined. As we are interested

in performance metrics of SDF-PDF, this type of functional

analysis is outside the scope of this paper. Therefore, we revert

to the existing results. To the best of our knowledge, only

SDF-PDF of [11] and its relative BPDF of [12] define precise

criteria under which consistency/boundedness and deadlock-

freedom are decidable at compile-time. The algorithms for

deciding on consistency/boundedness through the derivation of

the repetition vector and generation of the quasi-static schedule

are parametric extensions of SDF algorithms [32]. Therefore,

we take the definition of R from [11] for our analysis model

as follows

R := k | p | R1 · R2. (15)

In (15), k ∈ N>0 and p ∈ Pi with Pi a set of symbolic

variables, i.e. rates are defined as products of positive integers

and/or symbolic variables by default constrained to N>0. Here

we notice that we exclude 0 from the value set of rate parame-

ters while Definition 6 allows it. This is because a rate of 0 in

the context of a channel balance equation of an SDF-PDFG has

an ambiguous meaning. For a balance equation to be satisfied,

if one channel rate is 0 and the other is parametric, either the

parametric rate must be 0 too or the repetition vector entries of

the channel actors must be 0. We go for the former, i.e. if one

rate of the channel is 0, we require that the other rate must be

0 too. We include this in the analysis model, using the notion

of conditional channels borrowed from BPDF. There, every

channel is annotated with a Boolean expression. At run-time,

whether the Boolean expression evaluates to true (tt) or

false (ff) is the channel enabled or disabled, respectively.

Disabled means that no production or consumption will take

place at that channel. In particular, let Pb be a set of Boolean

parameters. Let

B := tt | ff | b | ¬B | B1 ∧ B2 | B1 ∨ B2, (16)

where b ∈ Pb be a grammar defined over Pb. Let λ : C → B
return for a channel its condition. As mentioned, if λ(c)
evaluates to ff, channel c is disabled, which translates to both

its source and destination rate being equal to 0. This way,

dynamic change of graph topology is achieved. Conditional

channels have no bearing on the repetition vector of the

graph, i.e. its entries are obtained by solving the balance

equations using the default rates, that is the ones defined by

R. Consequently, actors fire the designated number of times

regardless of the fact whether they actually produce/consume

tokens or not. Therefore, conditional channels must not be

confused with the notion of conditional execution of e.g.

BDF [10] as they serve as syntactical sugar to account for

the possibility of a rate being equal to 0.

To ensure that all graph rates and channel conditions are

well-defined at all times, we require that all parameters remain

constant within an SDF-PDFG iteration, i.e. reconfigurations

are only allowed in-between iterations. Note that this differs

slightly from [11] where integer parameters can change in-

side iterations, and from [12] where Boolean parameters can

change inside iterations (but not integer parameters). Across

iterations, configurations change arbitrary through reconfigu-

ration, which can be modeled as an nondeterministic choice.

Therefore, SDF-PDF supports nondeterminism unlike (to the

best of our knowledge) any other parameterized dataflow MoC

based on SDF [33].

Fig. 4 shows an example SDF-PDFG.

For the example graph, Pi = {p, q}, Pd = {a1, a2, a3, a4}
and Pb = {b}. Channels (A1, A2) and (A2, A4) are made

conditional using Boolean parameter b. The graph’s quasi-

static schedule takes the form A1
0A

q
1A

p
2A

p
3A

q
4A

1
5A

1
6 and its the

MICROPROCESSORS AND MICROSYSTEMS XX (20XX) XX-XX 10

Fig. 4. Example SDF-PDFG.

repetition vector equals to Γ(A0, A1, A2, A3, A4, A5, A6) =
(1, q, p, p, q, 1, 1).

D. SDF-PDF and FSM-SADF

After having elaborated our SDF-PDF analysis model, the

crucial point being that parameters are allowed to change in-

between graph iterations, we establish a semantic link between

our analysis model and FSM-SADF with the intention of

relating the concepts of reconfiguration in SDF-PDF and

scenario transition in FSM-SADF from the temporal angle.

We start the discussion from the perspective of SDF-PDF

and FSM-SADF actors. If we compare the firing rules and the

firing functions of FSM-SADF actors of (7) and (8) to that

of SDF-PDF actors of (13) and (14) we observe a striking

resemblance. Actually, they are fully correspondent in the

sense that the notion of scenario in FSM-SADF corresponds

to the notion of configuration in SDF-PDF. This follows from

the fact that once the scenario information is accounted for by

an FSM-SADF actor, that actor instantiates to a single SDF

actor. In the context of SDF-PDF, once the configuration is

applied to an SDF-PDF actor, a single SDF actor emerges.

Consider now an SDF-PDF actor and its domain. By

applying each and every domain configuration to the actor,

we will obtain as many SDF actors as is the cardinality of

the actor domain. If we now group all those SDF actors

with different type signatures and firing delays and call them

scenarios, this group forms an FSM-SADF actor. From the

observer’s perspective the original SDF-PDF actor and the

so constructed FSM-SADF actor will temporally (in terms of

their timed firing functions) behave the same.

This informally presented equivalence in temporal behavior

of SDF-PDF and FSM-SADF actors straightforwardly applies

to corresponding actor compositions, i.e. SDF-PDFGs and

FSM-SADFGs.

In particular, SDF-PDF evolves in iterations of its instances,

ιG(x
G
i). Instances are defined by configurations that are

arbitrarily selected (nondeterminism) from one SDF-PDFG

iteration to the other. These instances are nothing but SDFGs.

On the other hand, FSM-SADFG evolves in iterations of

its scenario SDFGs, where scenario occurrence patterns are

given by the scenario FSM. Now, given an SDF-PDFG and

its domain, for each domain configuration an instance SDFG

can be obtained. If we group these instances and call them

scenarios, we have obtained an FSM-SADFG. As the instance

occurrence pattern is arbitrary, so will the newly constructed

FSM-SADFG have a fully connected FSM where each state

corresponds to one scenario and vice-versa (scenario labeling

is a bijection). From the observer’s perspective, in terms of the

timestamp vector sequence γγγ(0), γγγ(1), γγγ(2), . . . of production

times of initial tokens after the kth graph iteration, the two

graphs behave the same for a properly paired instance/scenario

sequence.

E.g., consider the example SDF-PDFG of Fig. 4. Assume

that the graph has only two configurations, namely xG
1 =

{b = tt, p = 3, q = 2, a1 = 5, a2 = 4, a3 = 4, a4 = 4}
and xG

2 = {b = ff, p = 3, q = 2, a1 = 5, a2 = 4, a3 =
4, a4 = 4}. If we evaluate these configurations we obtain two

SDFG instances of the original SDF-PDFG, namely ιG(x
G
1)

and ιG(x
G
2). These in turn correspond to scenario s1 and s2

SDFGs of the FSM-SADFG of Fig. 2a. As the FSM-SADFG

of Fig. 2a has a fully connected FSM, with the correspondence

xG
1 ≡ s1 and xG

2 ≡ s2, any configuration/instance sequence

of the SDF-PDFG has an “equivalent” FSM-SADF scenario

sequence. The completion times of these sequences expressed

by means of γγγ(k) are captured by contours of Fig. 3 for the

instance/scenario sequence xG
1 ≡ s1, x

G
2 ≡ s2, x

G
1 ≡ s1, x

G
2 ≡

s2, x
G
1 ≡ s1.

VI. MAX-PLUS ALGEBRA FOR SDF-PDF

After having formally defined our SDF-PDF analysis model

in the previous section, we proceed by defining the Max-plus

algebra-based tools needed to capture its temporal behavior.

This is a crucial milestone on the path towards our final goal,

i.e. the performance analysis for SDF-PDF.

A. Max-plus algebraic semantics of SDF-PDF

With regard to the Max-plus algebraic semantics of FSM-

SADF of (9) and the semantic link of SDF-PDF and FSM-

SADF explained in the previous section, the evolution of an

SDF-PDFG G can be given as a recursive Max-plus linear

equation relating the timestamps vectors γγγ(k + 1) and γγγ(k)
of initial tokens after the (k + 1)st and the kth SDF-PDFG

iteration, respectively, as follows

γγγ(k + 1) = MG(ζG(k + 1))⊗ γγγ(k). (17)

In (17), MG : XG → R
|I|×|I|
max denotes a mapping that for

each xG ∈ XG returns the associated Max-plus matrix of

the instance SDFG, i.e. MιG(xG). Mapping ζG : N>0 → XG

returns the configuration that determines the instance ιG(x
G)

that is executed as the (k + 1)st iteration of the SDF-PDFG.

Therefore, the temporal behavior of an SDF-PDFG can be

fully described by a set of Max-plus instance matrices. The

number of such matrices equals to the cardinality of XG, i.e.

|XG|. However, |XG| is typically very large and proportional

to the cardinality of the product set of parameter ranges. This

renders the generation of this set via enumeration of XG often

infeasible in a reasonable amount of time or even impossible

if the firing delays are defined in R≥0.

Instead of enumeration, with the overall goal of compacting

the representation while retaining relevant information, we

advocate for the characterization of temporal behavior of SDF-

PDF models using a set of parameterized Max-plus matrices,

i.e. matrices whose entries will be parameterized expressions

MICROPROCESSORS AND MICROSYSTEMS XX (20XX) XX-XX 11

in Pi and Pd (Pb will be handled separately). In the light of

the aforementioned, the evolution of an SDF-PDFG can be

described via

γγγ(k + 1) = (Mpar
G (ζG(k + 1))) (ζG(k + 1))

︸ ︷︷ ︸

MG(ζG(k+1))

⊗γγγ(k). (18)

In (18), Mpar
G (xG) denotes a mapping that for each xG ∈ XG

returns the associated parameterized Max-plus matrix that

when evaluated for that xG ((·)(xG) notation) is nothing but

the Max-plus matrix of the instance SDFG, i.e. MG(ζG(k +
1)) = MιG(xG) when ζG(k+1) = xG. By using parameterized

matrices, one does not need to perform an enumeration of XG.

The difficulty is moved, however, to determining the mapping

Mpar
G defining the collection of parameterized matrices as

constituents of its codomain. It is a collection (and not a

single parameterized matrix) because in a parametric (general)

setting, the partitioning of XG occurs naturally due to the max
operator in Max-plus.

Because SDF is the base model of SDF-PDF, the timestamp

t of any token produced within the (k + 1)st SDF-PDFG

iteration can be written as a Max-plus scalar product

t =
⊕

ij∈I

mpar
j ⊗ tij = [mpar

1 , . . . ,mpar
|I|]⊗ γγγ(k), (19)

where tij are the timestamps of initial tokens after the kth

graph iteration and mpar
j are now parametric expressions.

Therefore, the timestamps of initial tokens at the end of the

(k+1)st iteration embedded in γγγ(k+1) can be computed as

follows

t′il =
⊕

ij∈I

mpar
l,j ⊗ tij = [mpar

l,1 , . . . ,m
par
l,|I|]⊗ γγγ(k). (20)

In this case, dependency vectors [mpar
l,1 , . . . ,m

par
l,|I|] where l =

1, . . . , |I| will form the rows of a parameterized Max-plus

SDF-PDFG matrix that represents an element of the codomain

of mapping Mpar
G . Thus, the challenge lies in determining

expressions of type (20). In the remainder of this section we

show how to do this for a type of graphs that in addition to

being consistent, deadlock free and quasi-static schedulable

satisfy the following two requirements.

Requirement 1. For all SDF-PDFG channels c ∈ C such that

src(c) 6= dst(c) and i(c) > 0, i(c) > r(dst(c), c) · Γ(dst(c))
must hold, i.e. if c has initial tokens, there must be enough

of them for actor dst(c) to complete all its firings within the

iteration. Functions src : C → A and dst : C → A return for

each channel its source and destination actor, respectively.

With this requirement, we limit our attention to feed-

forward structures where initial tokens in graph channels

(other than self-edges) are not reproduced more than once

within an iteration. This way, in cyclic graphs, within one

iteration, feedback loops can be broken resulting in acyclic

specifications from the perspective of a single iteration. Across

multiple iterations, the cyclicity is effectively restored. Fortu-

nately a large number of streaming applications fall under this

requirement that is typically enforced in literature to enable

effective quasi-static scheduling [34][11][9]. In the context of

(a) Actor with auto-
concurrency bounded to
n.

(b) Latency-rate abstraction of the actor above.

Fig. 5. Latency-rate abstraction

our Max-plus analysis we impose this requirement as it is

not clear how to deal with schedule loops of length greater

than one [32] with parametric repetition counts. Note that

this requirement limits our ability to model certain types of

resource constraints that incur circular dependencies in the

graph. A good example are channel buffer sizes that we

encode by means of back-pressure. In that case, the assumption

we must work with is that of buffer-space overallocation.

This means that we assume that enough buffer space for the

application is allocated so that the performance is not affected.

Requirement 2. For all SDF-PDFG channels c ∈ C such

that src(c) = dst(c), i(c) = 1 must hold.

This requirement disables the bounding of auto-

concurrency. Auto-concurrency of actors can be bounded by

inserting a particular number of tokens on their self-edges.

With Requirement 2 we allow either full auto-concurrency

for an actor or no auto-concurrency at all. This is because,

during the process of determining Mpar
G with regard to (19)

wish to avoid situations where tokens produced by the actor

depend on different self-edge tokens from one actor firing to

the next. This requirement is not restrictive in practice as any

such actor in the graph can be replaced by its latency-rate

abstraction [35] that conservatively captures its temporal

behavior. Fig. 5b shows an abstraction of an actor with auto-

concurrency bounded to n displayed in Fig. 5a. Note that

the collection i1, . . . , in of Fig. 5a is collapsed into a single

token i1,...,n of Fig. 5b. Actor A itself is expanded into two

actors A1 and A2 with firing delays a and a
n

, respectively. We

believe the same principle could be straightforwardly applied

to cyclic graph substructures with channels not compliant to

Requirement 1 using the notion of local iterations [11]. The

“problematic” subgraphs would then be replaced by their

latency-rate abstractions. The procedure could be recursively

repeated in a bottom-up fashion in line with different levels

of substructure nesting. This is, however, a subject of future

work.

B. Max-plus model of SDF-PDF execution

1) The basics: To determine Mpar
G , as with SDF [16],

we need to compute one iteration of the considered SDF-

MICROPROCESSORS AND MICROSYSTEMS XX (20XX) XX-XX 12

PDFG, i.e. the production times of restored initial tokens after

one iteration of the graph expressed via the scalar product

of (20). Recall that within an iteration, graph parameters do

not change, i.e. they are static and an SDF-PDF actor can be

treated as an SDF actor.

With SDF it is straightforward to keep track of timestamps

of tokens produced by actor firings on channels within a simple

FIFO container. This is due the fact the channel quantities are

finite and known. Each FIFO element stores the dependency

vector of the token it refers to (cf. (4)). With parameterized

rates, the situation is more subtle. The channel quantities

will still be finite but unknown as they are determined by

parameters. Therefore, it would become cumbersome to define

such a FIFO structure. Instead, we capture the production

times and ordering of tokens using the mapping τ(Aj , n)

that returns the timestamp vector (∈ R
|I|
max) of the token

produced by the nth firing of actor Aj ∈ A. Note that

n ∈ Z, where nonpositive firing indices are reserved for the

initial tokens themselves. As initial tokens represent the initial

conditions for the execution of the graph, they are therefore

assumed to be produced by some past actor firing. We give

the following definition of τ as follows from the Max-plus

algebraic semantics of self-timed execution of SDF (cf. (2))

that SDF-PDF inherits (cf. (14)):

τ (Aj, n) =
⊕

Ai|(Ai,Aj)∈C

ε((Ai, Aj)) (21a)

⊗ τ

(

Ai,

⌈
n · r(Aj , (Ai, Aj))− i((Ai, Aj))

r(Ai, (Ai, Aj))

⌉)

(21b)

⊗ d(Aj). (21c)

Equation (21) encodes the Max-plus semantics of self-

timed execution of an SDF-PDF actor within an iteration of

the superordinate SDF-PDFG. Synchronization is expressed

via (21b) where an actor waits for the last required input

token needed to perform the nth firing. The timestamps of

these tokens are determined using the firing indices of their

producing actors where the number of initial tokens on the

considered channel must be taken into account. After all input

tokens are in place, the firing commences and finishes after

an amount of time equal to the firing delay of that actor.

This is the delay part of Max-plus and is expressed via (21c).

However, in the presence of conditional channels, some input

channels are disabled and therefore do not influence the

production times of output tokens. This concept of conditional

channels is accounted for in the Max-plus semantics of an

SDF-PDF actor by (21a), where ε : C → {0,−∞} is defined

as follows

ε(c) =

{

0 if λ(c) = tt

−∞ if λ(c) = ff
(22)

for all c ∈ C.

2) Computation of the actor response: We show now how

to compute τ(·, n) for an actor within an SDF-PDFG iteration.

Equation (21) reveals that in computing the response of an

actor, different inputs (channels) can be treated in isolation.

Ultimately, particular contributions need to be superposed.

Fig. 6. SDF-PDFG channel.

This corresponds to the Max-plus superposition principle [18].

We first show how to apply (21) to one input channel.

Consider a general SDF-PDF channel structure of Fig. 6.

Channel (X,Y) is defined with parameterized rates p and

q, actors X and Y and their parameterized firing delays x
and y, respectively, while the number of initial tokens on the

channel equals to ι. By default, it is enabled, i.e. the implied

channel condition always evaluates to tt. We compute the

output of actor Y using (21). We only treat the case when

in the figure, ι = 0. The case where ι > 0 is trivial due

to Requirement 1. More precisely, within one iteration of the

graph, actor’s demand for input tokens on that channel will

always refer to one of those ι initial tokens, i.e. no firings of

X within the iteration need to be considered. For actor Y with

ι = 0, (21) transforms into

τ(Y, n) =

(

τ (Y, n− 1)⊕ τ

(

X,

⌈
n · q

p

⌉))

⊗ y. (23)

We treat (23) using backward substitution. Backward substitu-

tion is a well-known method for solving recurrence equations

and it works exactly as the name implies. In particular, starting

from the equation itself, we work backwards substituting the

values of the recurrence for previous ones.
If we unfold (23) for k times and substitute it back, we

obtain

τ (Y,n) = τ (Y,n−k)⊗y
⊗k

⊕

k⊕

i=1

τ

(

X,

⌈
(n− i+ 1) · q

p

⌉)

⊗y
⊗i

.

(24)
We obtain the base case when k = n from (24) as follows

τ (Y,n) = τ (Y, 0)⊗ y
⊗n

⊕

n⊕

i=1

τ

(

X,

⌈
(n− i+ 1) · q

p

⌉)

⊗ y
⊗i

︸ ︷︷ ︸

conv(τ(X,

⌈
n·q
p

⌉
),h(Y,n))

.

(25)

In the second term of the Max-plus summation of (25) we

recognize the Max-plus convolution of the input token times-

tamp sequence and the impulse response of actor Y , denoted

h(Y, n) where h : N>0 → Rmax is the timestamp sequence

belonging to tokens produced by the actor in response to the

impulse input token timestamp sequence

u(n) =

{

0 if n = 1

−∞ otherwise
, for all n ∈ N>0. (26)

For a complete presentation we refer to [36]. When the actor

has a self-edge with one initial token, its impulse response

takes the form

h(Y, n) = y⊗n , for all n ∈ N>0. (27)

MICROPROCESSORS AND MICROSYSTEMS XX (20XX) XX-XX 13

An actor without a self-edge, on the other hand, can be

interpreted as an actor with a self-edge with an infinite stock

of initial tokens all available at t = −∞.

Therefore, using (21) for the structure of Fig. 6 with ι = 0
and while assuming that there is an infinite stock of initial

tokens hosted by self-edge (Y, Y) the following equation

holds:

τ(Y, n) =

(

τ(Y, n−m)⊕ τ

(

X,

⌈
n · q

p

⌉))

⊗ y, (28)

where m → ∞ (to account for an infinite stock of initial

tokens). In this case, with m → ∞, for all n ∈ N>0, τ(Y, n−
m) = −∞. Therefore, (28) reduces to

τ(Y, n) = τ

(

X,

⌈
n · q

p

⌉)

⊗ y. (29)

We now take a breath to recap. In particular, equations (25)

and (29) reveal how to compute the response of an actor

contributed by one input dependency (channel). When an actor

does not have a self-edge (stateless actor) it only delays the

input tokens as follows straightforwardly from (29). In case

an actor has a self-edge (state), a convolution of its impulse

response and the input token sequence needs to be considered

as given by (25). For completeness, we formally define the

concept of Max-plus convolution.

Definition 7. Let ς1(n) and ς2(n) be two sequences in Rmax,

i.e. ς1,2 : N>0 → Rmax. The convolution of the two, denoted

conv(σ1, σ2) is defined as

conv(ς1, ς2)(n) =
n⊕

i=1

ς1(n− i+ 1)⊗ ς2(i). (30)

The convolutional form of (25) due to its recursiveness

stands in our way of determining the response of an actor

as an explicit function of n. Therefore, we must express the

convolutional part as an explicit function of n.

This is a difficult task in a parametric setting. This is

due to the fact that any system defined in (3) is eventually

periodic [37]. In SDF and transitively SDF-PDF this means

that the responses of actors will be eventually periodic se-

quences [37] as long as the inputs are eventually periodic

sequences themselves.

We say that a sequence ς : N>0 → Rmax is eventually

periodic with period c and ratio π if there exists an integer t
such that

∀n ≥ t : ς(n+ c) = ς(n)⊗ π⊗c, (31)

where the concept of eventual periodicity naturally extends to

vectors.

Therefore, the convolution of (25) will itself be eventually

periodic. To have the convolutional term in (25) expressed as

explicit function of n we now simplify the analysis into an

entirely linear pattern.

In particular, in the following proposition, we show how to

conservatively bound the convolution of (25) using a linear

sequence (and eventually periodic sequence where c = 1) that

attains the ratio of the original eventually periodic sequence.

Proposition 1. Let ς1(n) and ς2(n) be two sequences in Rmax

such that ς1(n) = δ1 ⊗ π1
⊗⌈r·n⌉ and ς2(n) = π2

⊗n, where
n ∈ N>0, r ∈ Q≥0 and δ1, π1, π2 ∈ Rmax. Then, the following
inequality holds:

conv(ς1, ς2)(n) <

{

δ1 ⊗ π1
⊗(1+r) ⊗ π2

⊗n if π2 ≥ r · π1

δ1 ⊗ π2 ⊗ π1
⊗(1+r·n) if π2 ≤ r · π1

(32)

The estimate is exact in the ratio part. Therefore, for n →
∞, the relative estimation error will move towards 0.

Because impulse responses of actors with self-edges are

linear themselves, the result of Proposition 1 allows us to

conservatively bound the response of an arbitrary actor Ak

of an SDF-PDFG compliant to Requirements 1 and 2 within

an iteration using a delay-ratio (δ, π) abstraction as follows

τ̂ (Ak, n) =
⊕

ij

(δk,j ⊗ πk,j
⊗n)⊗ tij

= [(δk,1 ⊗ πk,1
⊗n), . . . , (δk,|I| ⊗ πk,|I|

⊗n)]⊗ γγγ(k).
(33)

A delay-ratio (δ, π) abstraction defines the dependency vector

entries as linear functions of n, i.e. the actor firing index.

Given a dependency vector entry that represents the minimal

temporal distance of some arbitrary token and an initial token,

its ratio will be determined by the scaled (via rate ratios) firing

delay of the slowest actor in the path defined by the producing

actors of the two tokens.

In case of an actor with multiple input channels, ultimately,

the contributions of different input channels need to be su-

perposed. Across corresponding dependency vector entries

of different contribution, the following proposition defines a

conservative bound for the corresponding output dependency

vector entry.

Proposition 2. Let Ω = {ς1(1), . . . , ςN (n)} be a set of

sequences in Rmax such that ςi(n) = δi ⊗ πi
⊗n. Let δ =

max(δ1, . . . , δN) and π = max(π1, . . . , πN) and let Σ(n) =
N⊕

i=1

ςi(n). Then, Σ(n) attains the following conservative bound

for all n ∈ N>0

Σ̂(n) = δ ⊗ π⊗n. (34)

The result of (34) defines a linear sequence that attains

the ratio of the slowest input sequence and the delay of the

most delayed sequence. We use a conservative estimate to

avoid the complexity of the computation of n at which the

sequence with the maximum ratio starts to dominate. Such

considerations would significantly degrade the performance

of the parameterized matrix generation algorithm we present

in the sections to come. Instead, by using (34) we have a

conservative bound for all n. In this case too, when n → ∞,

the relative estimation error moves towards 0 because the

estimate is exact in the ratio part.

By using (25) and (29) in conjunction with Proposition 1

and Proposition 2 we can compute the response of any graph

actor within an iteration expressed in the form of (33) that we

use to render Mpar
G . We show how to do this in on an example

in the section to come.

MICROPROCESSORS AND MICROSYSTEMS XX (20XX) XX-XX 14

Fig. 7. Example SDF-PDFG.

C. Example

We exemplify the parameterized matrix generation process

using the SDF-PDF specification of Fig. 7. This is an artificial

but an illustrative example that covers the relevant cases in

actor response computation elaborated prior to this section.

Note that we discuss the application of our techniques to a

realistic case study later on in Section IX.

Here, for the running example, we will compute the re-

sponses of graph actors within a single iteration using its

quasi-static schedule that is given as AqCDBp. The timestamp

vector of the kth SDF-PDFG iteration is specified as

γγγ(k) = [ti1 , ti2 , ti3]
T . (35)

Furthermore, every entry of γγγ(k) can be written in terms

of (21) (by associating it with the corresponding producing

actor) and onward as the Max-plus scalar product of (19).

ti1 = τ(A, 0) = [0,−∞.−∞]⊗ γγγ(k),

ti2 = τ(B, 0) = [−∞, 0,−∞]⊗ γγγ(k),

ti3 = τ(D, 0) = [−∞,−∞, 0]⊗ γγγ(k).

(36)

According to the quasi-static schedule of the specification,

actor A will start firing first. In has only one dependency,

namely its self-edge. To compute its response we use (25)

where we disregard the right-hand term in the sum because

the actor has no input dependencies other than the self-edge.

By doing so, we obtain:

τ(A, n) = τ(A, 0)⊗ a⊗n

= [a⊗n,−∞,−∞]⊗ γγγ(k).
(37)

The successful completion of q firings of actor A is followed

by a singe firing of actor C (within an iteration). Notice that

actor C has an input channel hosting one initial token. Due

to Requirement 1, this channel must host a sufficient number

of initial tokens to fire actor C as many times it is scheduled

to fire within an iteration. We use (21) to calculate the time

at which actor C completes its first (and single) firing within

the iteration by accounting for all its input dependencies as

follows:

τ(C, 1) = (τ(A, q) ⊕ τ(D, 0))⊗ c. (38)

Using (37) and (36), the equation above expands to:

τ(C, 1) =
(
[a⊗q,−∞,−∞]⊕ [−∞,−∞, 0]

)
⊗ γγγ(k)⊗ c

= [c⊗ a⊗q,−∞, c]⊗ γγγ(k).
(39)

The firing of actor C enables one firing of actor D that

completes exactly at:

τ(D, 1) = τ(C, 1) ⊗ 1 =

= [1⊗ c⊗ a⊗q,−∞, 1⊗ c]⊗ γγγ(k).
(40)

Finally, actor B can perform its firings within the iteration.

It has input dependencies, realized in channels c1 = (A,B),
c2 = (C,B) and in self-edge c3 = (C,C). To compute its

response we apply the Max-plus superposition principle that

allows us to consider one external input dependency at a time.

The self-edge dependency is considered internal to the actor

as it defines the actor state. Therefore, it is always included in

the computation of the actor response for a particular external

input dependency. In particular, we compute the response of

actor B as follows

τ(B, n) = τc1(B, n)⊕ τc2(B, n), (41)

where τc1(B, n) and τc2(B, n) stand for responses of B
contributed by dependencies realized in channels c1 and c2,

respectively.

First we calculate τc1(B, n) as follows:

τc1(B, n) =

(

τ(B, n − 1)⊕ τ

(

A,

⌈
n · q

p

⌉))

⊗ b. (42)

The equation above has the same structure as that of (23) and

via (25) can be formulated as follows

τc1(B, n) = [conv(a⊗⌈ q
p
·n⌉, b⊗n), b⊗n,−∞]⊗ γγγ(k). (43)

Every entry of the dependency vector of the equation above

involving a convolution needs to be treated by Proposition 1

that gives rise to two cases that split the original parameter

space (the graph domain) into two exclusive parts. In (43)

there is only one entry involving a convolution. According to

Proposition 1, the calculation continues in the two parameter

subspaces defined respectively by the inequalities p · b ≥ q · a
and p · b ≤ q · a. In our exercise we proceed by considering

the split of the parameter space defined by

C1 ≡ p · b ≥ q · a. (44)

With (32) and (44), (43) transforms into

τ̂c1(B, n) = [a⊗(1+ q
p
) ⊗ b⊗n, b⊗n,−∞]⊗ γγγ(k), (45)

where τ̂c1(B, n) denotes a conservative estimate of τc1(B, n).
We can now proceed with the calculation of the response of

B as contributed by channel c2 = (C,B). According to (21),

the following equation holds:

τc2(B, n) =

(

τ(B, n − 1)⊕ τ

(

C,

⌈
n

p

⌉))

⊗ b. (46)

Within an iteration B fires p times, i.e. n ∈ [1, . . . , p]. As

we are only interested in responses of actors within a single

iteration, (46) transforms into:

τc2(B, n) = (τ(B, n − 1)⊕ τ(C, 1)) ⊗ b. (47)

MICROPROCESSORS AND MICROSYSTEMS XX (20XX) XX-XX 15

If we now substitute (39) into (47), and apply backward

substitution to get rid of the recursive term, we obtain:

τc2(B, n) = [c⊗ a⊗q ⊗ b⊗n, b⊗n, c⊗ b⊗n]⊗ γγγ(k). (48)

We now need to take a look back at (41). If we substitute (45)

and (48) into (41), we obtain:

τ̂ (B, n) = [a⊗(1+ q
p
)⊗b⊗n⊕c⊗a⊗q⊗b⊗n, b⊗n, c⊗b⊗n]⊗γγγ(k).

(49)

To get rid of the ⊕ in the first entry of the dependency vector

of (49), we apply Proposition 2. More precisely, we define the

following delay-ratio abstractions as follows: δ1 = a⊗(1+ q
p
),

π1 = b, δ2 = c ⊗ a⊗q and π2 = b. As the ratio pairs are

equal, we only need to consider the delay pairs. By doing so,

Proposition 2 enforces a split of the parameter space based

on two inequalities: δ1 ≥ δ2 and δ1 ≤ δ2. In the exercise, we

proceed with the first option defined by

C2 ≡ (1 +
q

p
) · a ≥ c+ q · a. (50)

Thanks to the inequality (50),the ⊕ in the first entry of (49)

disappears, so (49) transforms into

τ̂(B, n) = [a⊗(1+ q
p
) ⊗ b⊗n, b⊗n, c⊗ b⊗n]⊗ γγγ(k). (51)

Note that, in general, Proposition 2 involves a procedure where

corresponding entries of dependency vectors of responses per

contributing channels are all represented as delay-ratio pairs.

At that point, Proposition 2, per each dependency vector entry,

defines maximally four splits in the parameter space. The four

splits in the current dependency vector entry are carried over

to the consideration of the next dependency vector entry.

The calculation of (51) completes the iteration for our

exercise. What remains to be done is to determine the en-

tries of γγγ(k + 1) = [t′i1 , t
′
i2
, t′i3]

T from the calculated actor

responses and compose the corresponding dependency vectors

row-by-row into a matrix. These entries are determined from

evaluations of responses of initial token producing actors at

the iteration boundary, i.e. for values of n that equal to their

repetition vector entries because, for those values of n, initial

tokens are restored. For the example graph, with

t′i1 = τ(A, q) t′i2 = τ̂(B, p) t′i3 = τ(D, 1) (52)

we obtain the parameterized matrix of (53)

M̂par
G (xG) =

a1
⊗q −∞ −∞

a⊗(1+ q
p
) ⊗ b⊗p b⊗p c⊗ b⊗p

1⊗ c⊗ a⊗q −∞ 1⊗ c

 (53)

where xG ∈ XG∩(p·b ≥ q ·a)∩((1+ q
p
)·a ≥ c+q ·a), i.e. xG

belongs to the part of the original graph domain refined by the

set of constraints of (44) and (50). Furthermore, there exists a

finite number of such partitions XG =
⋃n

i=1 XGi that we call

natural SDF-PDFG subdomains. Each subdomain XGi ⊆ XG

defines one parameterized matrix. Collected, matrices form the

codomain of Mpar
G . Fig. 8 illustrates the partitioning of the

parameter space (domain) XG for the running example. Note

that the example graph of Fig. 7 did not include any Boolean

parameters to simplify presentation. They are easily taken into

account in the presented analysis in a way that evaluations of

Fig. 8. Exploration tree.

associated channel conditions to either tt or ff represents

nothing but splits in the parameter space.

The matrix of (53) is defined by the path determined by

the black nodes of the exploration tree. Note that the matrix

of (53) is a conservative estimate of Mpar
G (xG), thus denoted

M̂par
G (xG).
At this point it is opportune to discuss the semantics of

an entry of the parameterized SDF-PDFG matrix that is same

as the semantics of the entry of an Max-plus SDFG matrix.

In particular, [Mpar
G (xG)]m,n represents the minimal time

distance between token im of the (k+1)st SDF-PDFG iteration

and token in of the kth SDF-PDFG iteration. The parametric

representation of the matrix entries gives clear insight into the

structure of the graph and temporal relationships of actors in

the graph. Basically, [Mpar
G (xG)]m,n defines the latency of the

slowest path in the graph connecting two initial tokens. This

path is determined by the delay that all actors along the path

contribute to and by the ratio of the slowest actor in the path.

E.g. if we consider [M̂par
G (xG)]2,1 as obtained from (51), we

see that actor B is the bottleneck of the path from i1 to i2,

i.e. it has the maximum ratio (or in the light of conventional

linear system theory it has the lowest cutoff frequency). On

the other hand, such relationships cannot be studied from a

concrete Max-plus matrix.

D. Algorithm for deriving Mpar
G

Algorithm 1 specifies the previously described procedure

for deriving the mapping Mpar
G .

It is defined by a recursive function ExploreGraph that

explores the tree-like structures like that of Fig. 8 in a depth

first search manner. The inputs to the function are G the SDF-

PDFG itself with all associated meta-data like the quasi-static

schedule of the structure, T the set of dependency vectors

of all graph channels, curr_actor the structure containing

all required meta-data for the actor being currently evaluated,

curr_actor_ndx the index of the currently processed

actor in the quasi-static schedule, curr_in_chan_ndx

the index of the currently processed input of the currently

processed actor, curr_init_tok_dep_ndx the index of

the currently processed entry of the dependency vector ei-

ther within a Max-plus convolution or Max-plus superposi-

tion context, curr_init_tok_dep_delay_ndx the in-

dex of the currently set maximum delay among all the de-

lays observed for the currently processed dependency vec-

tor entry, curr_init_tok_dep_ratio_ndx the index

MICROPROCESSORS AND MICROSYSTEMS XX (20XX) XX-XX 16

ALGORITHM 1: Calculate Mpar
G

1 Function ExploreGraph(G, T, curr_actor, curr_actor_ndx, curr_in_chan_ndx, curr_init_tok_dep_ndx, curr_init_tok_dep_delay_ndx, curr_init_tok_dep_ratio_ndx,

in_contr_comput_completed, constraints, ref res)

2 if ((Feasible(constraints) == false) or (Satisfiable(constraints) == false)) then /* check feasibility and satisfiability of constraints encountered so far */

3 return;

4 end if

5 if curr_actor == null then /* pick the next actor from the Qss we have finished with the previous one */

6 curr_actor = G.Qss[curr_actor_ndx];

7 end if

8 if (curr_actor) then /* process actor, by first considering input contributions */

9 if (curr_input_chan = curr_actor[curr_in_chan_ndx]) then

10 if (IsConditional(curr_input_chan, constraints)) then

11 expression = GetExpression(curr_input_chan);

/* Consider both options, i.e. expression = tt and expression = ff */

12 ExploreGraph(G, T, curr_actor, curr_actor_ndx, curr_in_chan_ndx, 0, 0, 0, false, constraints+(expression = tt), res);

13 ExploreGraph(G, T, curr_actor, curr_actor_ndx, curr_in_chan_ndx, 0, 0, 0, false, constraints+(expression = ff), res);

14 else

15 if (IsEnabled(curr_input_chan) and curr_input_chan[curr_init_tok_dep_ndx]) then

16 options = compute_output(T[curr_in_chan_ndx][curr_init_tok_dep_ndx], curr_actor.impulse_response);

17 i = 0;

18 while (i < options.num_options) do

19 curr_actor.contributions[curr_in_chan_ndx][curr_init_tok_dep_ndx] = options[i].solution;

20 ExploreGraph(G, T, curr_actor, curr_actor_ndx, curr_in_chan_ndx, curr_init_tok_dep_ndx + 1, 0, 0, false, constraints +

options[i].constraint, res);

21 i++;

22 end while

23 else

/* completed one input contribution, go to the next */

24 ExploreGraph(G, T, curr_actor, curr_actor_ndx, curr_in_chan_ndx + 1, 0, 0, 0, false, constraints, res);

25 end if

26 end if

27 else

/* completed all contributions, proceed with Max-Plus superposition of contributions by combining all delay and ratio relationships over all initial

token dependencies */

28 if (in_contr_completed == false) then

29 curr_init_tok_dep_ndx = 0;

30 curr_actor.dp = sort_delays_and_ratios(curr_actor.contributions);

31 end if

32 if (curr_actor.dp[curr_init_tok_dep_ndx]) then

33 if (curr_delay = curr_actor.dp[curr_init_tok_dep_ndx].delays[curr_init_tok_dep_delay_ndx]) then

34 if (curr_ratio = curr_actor.dp[curr_init_tok_dep_ndx].ratios[curr_init_tok_dep_ratio_ndx]) then

35 T[curr_actor_output_chan_ndx_all][curr_init_tok_dep_ndx].delay = curr_delay.value;

36 T[curr_actor_output_chan_ndx_all][curr_init_tok_dep_ndx].ratio = curr_ratio.value;

/* next ratio for current delay */

37 ExploreGraph(G, T, curr_actor, curr_actor_ndx, 0, curr_init_tok_dep_ndx, curr_init_tok_dep_delay_ndx, curr_init_tok_dep_ratio_ndx + 1,

true, constraints + options[i].constraint);

38 else

/* next delay */

39 ExploreGraph(G, T, curr_actor_ndx, 0, 0, curr_init_tok_dep_ndx, 0, curr_init_tok_dep_delay_ndx + 1, true, constraints, res);

40 end if

41 else

/* next initial token dependency */

42 ExploreGraph(G, T, curr_actor, curr_actor_ndx, 0, curr_init_tok_dep_ndx + 1, 0, 0, true, constraints, res);

43 end if

44 else

/* done with this actor, do the next one */

45 ExploreGraph(G, T, null, curr_actor_ndx + 1, 0, 0, 0, 0, false, constraints, res);

46 end if

47 end if

48 else

/* no more actors in the qss, this is a leaf node - build the matrix associated with a set of constraints */

49 res += process(G,T,constraints);

50 end if

51 return;

52 end

of the currently set maximum ratio among all the ratios

observed for the currently processed dependency vector en-

try, in_contr_comput_completed the flag denoting

whether or not all input channel contributions have been

considered for the currently processed actor, constraints

the set of constraints defining the parameter space partition of

the current exploration path and res (passed by reference)

the result set containing parameterized matrices governing

the behavior of the SDF-PDFG in a partition of the initial

domain defined by all the constraints encountered along the

exploration path.

In the function, actors are processed as ordered in the

quasi-static schedule (cf. Line 6). Once the last actor has

been processed, the dependency vectors are composed into the

related parameterized matrix and along with the constraints

encountered added to the result set (cf. Line 49). Recall

here how the matrix of (53) was composed using the actor

responses of (52).

In the processing of a particular actor the contributions

stemming from all its input channels are processed one by

one (cf. Line 9). If the channel is conditional, i.e. annotated

by a Boolean expression (cf. Line 10) we need to continue

the search recursively in two exclusive parts of the domain.

One is defined by the case when the considered Boolean

expression evaluates to tt (cf. Line 12) and the other when

the expression evaluates to ff (cf. Line 13). Note that in the

next invocation of the function, this conditional channel is

no longer conditional, i.e. the Boolean condition has been

replaced by a concrete Boolean value, i.e. tt and/or ff.

Of course, with regard to previous assumptions made on the

values of Boolean expressions, the current assumption may

conflict with those. Therefore, a satisfiability check is required

at the very beginning of the function (cf. Line 2). If it fails,

this branch of exploration is left altogether.

If the satisfiability check does not fail and the channels

is deemed enabled (cf. Line 15), we continue by considering

particular dependency vector entries of that channel. This may

incur as many Max-plus convolutions as there are entries in the

input dependency vector. As a convolution (cf. Line 16) incurs

splitting of the parameter space, the search is recursively con-

tinued for each splitting option (cf. Line 20) while proceeding

with the next dependency vector entry (note the increment

of curr_init_tok_dep_ndx in the recursive call). Note

that there are maximally two options per dependency vector

MICROPROCESSORS AND MICROSYSTEMS XX (20XX) XX-XX 17

entry. Of course, newly added constraints should not conflict

with the previous ones, i.e. their feasibility needs to be verified

(cf. Line 2). If the combination is not feasible this branch of

exploration is left all together (cf. Line 3). Once all entries

of the dependency vector of one input channel have been

processed, the algorithm continues with the next input channel

(cf. Line 24). In the example of Section VI-C we considered

a convolution while computing the response of actors B.

Once the contributions of all inputs have been computed,

the algorithm performs the bounding of delay-ratio pairs over

all corresponding entries of dependency vectors of different

contributions according to Proposition 2. This is marked by

resetting curr_init_tok_dep_ndx (cf. Line 29) if the

flag in_contr_comput_completed is set to false (cf.

Line 28) to denote that the actor had not yet been treated

by Proposition 2. Note that in later recursive calls, the flag

in_contr_comput_completed will be set to true (cf.

Lines 37, 39 and 42). All combinations are considered, i.e.

for each dependency vector entry (cf. Line 32) a different

pivot delay (cf. Line 35) and a pivot ratio (cf. Line (36))

are set and the search is continued for the next ratio that is

to be deemed maximum (cf. Line 37). Once all ratios have

been exhausted (cf. Line 34), we proceed with the next pivot

delay (cf. Line 39). Once all delays have been exhausted, we

proceed with the next dependency vector entry (cf. Line 42).

In the context of Section VI-C, the procedure described was

applied to actor B (cf. (41)). Note that after every recursive

call the feasibility is verified with the newly added constraint.

The search is aborted in the current branch if the feasibility

check fails (cf. Line 3). Once ending with the current actor,

we proceed to the next one (cf. Line 45) until the quasi-static

schedule has been entirely processed and the matrix added to

the solution set (cf. Line 49).

The algorithm has exponential time complexity in the worst-

case in terms of number of actors, dependencies among them

(channels), parameters and the number of initial tokens. It

is also computationally intense in the sense that checking

feasibility and satisfiability in Line 2 involves the use of

constraint satisfaction and SAT solvers, respectively. However,

practical applications may be expected to have only a few

critical parameters while the graph structures can expose

sparsity in the sense that there will be no dependencies

between many initial tokens in the graph. Even if there

are dependencies, many feasibility/satisfiability problems in

Line 2 will typically be re-encountered and need not to be

solved again. Furthermore, the definitions of the domains may

be such that many exploration paths will be pruned out due

to infeasibility. Therefore, it is reasonable to assume that the

worst-case in terms of complexity will rarely be realized.

All this could make the computational effort of Algorithm 1

reasonable and render it applicable to graphs counting up to a

few dozen actors and initial tokens while decorated by a few

critical parameters.

The set of matrices obtained via Algorithm 1 when evalu-

ated for a corresponding xG ∈ XG are actually conservative

estimates of the corresponding Max-plus instance matrices.

This is due to the conservativity entailed by Propositions 1

and 2. Mathematically speaking,
(

M̂par
G (xG)

)

(xG) �
(
Mpar

G (xG)
)
(xG) (54)

for all xG ∈ XG, where
(
Mpar

G (xG)
)
(xG) = MιG(xG). The

approximation of (54) per matrix entry only incurs an added

element of delay while the ratio of the sequence used to obtain

the actual matrix value is exact and captures the slowest actor

in the path between two tokens (cf. Propositions 1 and 2).

In relation to that, it is interesting to notice that the relative

estimation error (per matrix entry) moves towards 0 with

growing entry values of the graph repetition vector. This is

due to the delay-ratio abstraction we use. In particular, the

larger the number of firings of an actor is within an iteration,

the “ratio” part of the abstraction will quantitatively contribute

more to the actor firing completion times. In practice, in

many cases, repetition vector entries will typically be strictly

increasing functions of parameters. Therefore, a growth in

values of parameters will manifest itself as a growth in values

of repetition vector entries.

We use the following example to illustrate this. In par-

ticular, we consider an arbitrary entry of the left and right-

hand side matrices of (54) for the graph of Fig. 7 with the

repetition vector Γ(A,B,C,D) = [q, p, 1, 1,]. Let xG =
{p = 1, q = 20, a = 5, b = 100, c = 1}. In this case,
[(
Mpar

G (xG)
)
(xG)

]

2,1
= 205, while [MιG(xG)]2,1 = 201.

For growing values of repetition vector entries, i.e. for grow-

ing values of p and q, the ratio component becomes more

dominant and the relative error shrinks and for {p, q} → ∞
it reaches 0. E.g, with xG = {p = 301, q = 199, a =
5, b = 100, c = 1},

[(
Mpar

G (xG)
)
(xG)

]

2,1
= 31096, while

[MιG(xG)]4,1 = 31096. Actually, in the later case we have

the exact result because for this configuration, (50) no longer

holds which takes us to a subdomain where the parameterized

matrix does not introduce an estimation error at all. However,

this is only the case for this example, and not for the general

case where we only may expect a relative error shrinkage and

not an exact result.

VII. PROBLEM DEFINITION

In this section we define the performance metrics of interest,

i.e. worst-case throughput and worst-case latency.

A. Worst-case throughput

We define throughput of an SDF-PDFG in terms of numbers

of iterations per time-unit, which is in accordance with the

definition of throughput used for SDF [14] and FSM-SADF [8]

and the practical consideration that an iteration typically

represents a coherent set of calculations, e.g. decoding a video

frame.

An SDF-PDFG evolves in iterations of its nondeterministi-

cally sequenced instances. Therefore, a particular execution

of an SDF-PDFG can be associated with a sequence of

Max-plus timestamp vectors γγγ(k) = γγγ(0), γγγ(1), γγγ(2), . . . The

completion time of the kth SDF-PDFG iteration is given by the

norm of γγγ(k), i.e. ||γγγ(k)||. Therefore, inspired by [8] we can

define the worst-case throughput of an SDF-PDFG as follows.

MICROPROCESSORS AND MICROSYSTEMS XX (20XX) XX-XX 18

Definition 8 (Worst-case throughput). Worst-case throughput

of an SDF-PDFG G is defined as the largest value ThG ∈ R

such that for every possible instance sequence and its asso-

ciated Max-plus timestamp vector sequence γγγ(k), for every

ǫ ∈ R such that ǫ > 0, there is some K ∈ N>0 s.t. for all

L ∈ N>0, L > K , L
||γγγ(L)|| > ThG − ǫ.

Simply put, Definition 8 says that the throughput is the

worst-case long-run average of completed iterations per time-

unit. However, such a long-run average does not necessarily

exist for all instance/configuration sequences. Instead it may

bounce between superior and inferior limiting bounds [16][30]

and therefore the need for a somewhat cumbersome formula-

tion of Definition 8.

B. Worst-case latency

Similarly as proposed by [8][38] for FSM-SADF, we define

the worst-case latency of an SDF-PDFG G relative to a period

that equals to its worst-case throughput ThG as follows.

Definition 9 (Worst-case latency). Worst-case latency of an

SDF-PDFG G relative to its worst-case throughput ThG is

defined as the smallest vector LG such that for every possible

instance sequence and its associated Max-plus timestamp

vector sequence γγγ(k), for every k ≥ 0, γγγ(k) ≤ k
ThG

+ LG.

Simply put, LG is a vector that shows when at the latest

a particular SDF-PDFG iteration with index k can possibly

finish with respect to the reference point of time k
ThG

.

VIII. PERFORMANCE ANALYSIS FOR SDF-PDF

A. Introductory remarks

The problem of worst-case performance analysis for SDF-

PDFG is challenging due to four reasons: 1) SDF-PDFG

actors execute in parallel within a graph iteration; 2) SDF-

PDFG iterations overlap, i.e. they are pipelined (in Fig. 3,

at t = τ two instances are concurrently active); 3) SDF-

PDFG iterations are inter-dependent, i.e. synchronized by

the availability of the initial tokens; and 4) SDF-PDFG is

a dynamic dataflow structure, i.e. properties of consecutive

iterations may drastically differ (cf. Fig. 3).

The definitions for worst-case throughput and latency for

an SDF-PDFG (cf. Definition 8 and 9) reveal that we need

to consider the completion times of iterations. An SDF-PDFG

evolves in iterations of its instances defined by configurations.

Therefore, using the semantic link between SDF-PDF and

FSM-SADF explained in Section V-D and the definition of the

completion time (11) of a sequence of FSM-SADF scenarios

of (10) we can define the completion time of a sequence of

configurations

xG = xG
1 , . . . , x

G
k ∈ X∗

G (55)

of an SDF-PDFG as follows

A = αααT ⊗ µ(xG)⊗ βββ, (56)

where ααα is the final delay, µ : X∗
G → R

|I|×|I|
max is the morphism

that associates sequences of configurations with Max-plus

matrices as follows

µ(xG) = MG(x
G
k)⊗ . . .⊗MG(x

G
1) (57)

and βββ is the initial delay. The structure A = (ααα, µ,βββ) defines

the Max-plus automaton tuple of an SDF-PDFG G. Note

that in (55), xG ∈ X∗
G which means that configurations are

sequenced nondeterministically/arbitrarily.

B. Worst-case throughput

The Max-plus automaton structure of (56) with the mor-

phism µ of (57) fully captures the temporal behavior of a given

SDF-PDFG. We use this structure to study the performance

of SDF-PDF in a similar fashion it has been used to study

the performance of FSM-SADF [8][30][39]. In particular, we

focus on the results obtained for an FSM-SADFG with a fully

connected FSM. This is because, as discussed in Section V-D,

in the worst-case, the temporal behavior of an SDF-PDFG in

terms of vectors γγγ(k) is equal to that of an FSM-SADFG

obtained by calling all SDF-PDFG configurations/instances

scenarios and allowing an arbitrary occurrence pattern between

them. An arbitrary scenario occurrence pattern in terms of

FSM-SADF is defined by using a fully connected FSM where

the scenario labeling function is a bijection.

Let G be an SDF-PDFG. Define the worst-case evaluation

Max-plus matrix Mw−c
G of SDF-PDFG G as follows

Mw−c
G =

⊕

xG
i ∈XG

MG(x
G
i). (58)

Furthermore, let M ∈ Rn×n
max be a Max-plus matrix. The com-

munication graph of M ∈ Rn×n
max , denoted G(M) = (N , E),

is a graph with the set of nodes given by N = {1, . . . , n}
where a pair (i, j) ∈ E ⊆ N × N is an edge of the graph if

[M]j,i 6= −∞ and [M]j,i is the weight of that edge.

In analogy to the results obtained for FSM-SADFGs with

fully connected FSMs (cf. Proposition 5.2 of [8] that directly

follows from Theorem 2 of [19]), the worst-case throughput

of SDF-PDFG G corresponds to the inverse of the maximum

cycle mean (MCM) [40] of the communication graph of

Mw−c
G . Formally,

1

ThG

= max
c

∑

e∈c w(e)
∑

e∈c 1
, (59)

where max is taken over all circuits c of G(Mw−c
G) and the

sums are taken over all edges e of c. Map w : E → R returns

the edge weight.

The intuitive explanation is as follows. The weights of the

edges correspond to the entries of Mw−c
G and represent the

minimal timing distances between tokens across consecutive

iterations. As we consider executions composed of arbitrary

large number of iterations, all such distances must reside

within the cycles of the communication graph. Therefore, the

inverse of the MCM of the communication graph equals to the

worst-case throughput.

The problem now lies in determining Mw−c
G of (58). Enu-

meration of XG imposes itself as a solution to the problem.

However, as we already stated in Section VI-A enumeration

of XG may not be feasible in practice for large XG. Even

with relatively small domains, if the repetition vector entries

of instances are relatively large, the generation of all MιG(xG)

will take a significant amount of time as the instance needs to

MICROPROCESSORS AND MICROSYSTEMS XX (20XX) XX-XX 19

be simulated, i.e. every actor’s firing needs to be symbolically

performed. Actually, the experimental results of [8] show

that the time needed to produce MιG(xG) scales “more than

linearly” with growing repetition vector entries.
However, the enumeration problem can be avoided by using

the set of parameterized SDF-PDFG matrices as obtained by
Algorithm 1. In that case, the problem of (58) transforms into

M
w−c
G �

⊕

Mpar∈cod(M̂
par
G

)
⊕

xG∈XG s.t. M̂par(xG)=Mpar

(Mpar)(xG)

︸ ︷︷ ︸

Mopt

. (60)

In (60), cod(M̂par
G) denotes the codomain of the mapping

M̂par
G . Simply put, cod(M̂par

G) is the set of parameterized

matrices obtained by executing Algorithm 1. Notation {xG ∈
dom(M̂par

G) s.t. M̂par
G (xG) = Mpar} captures the set of

configurations the for which M̂par
G (xG) is valid. Note that

the right hand side of (60) defines a conservative estimate of

Mw−c
G , denoted M̂w−c

G , due to (54) and so (but not neces-

sarily) the ThG obtained using (60) may be a conservative

estimate of the actual value, denoted ŤhG. Nevertheless, for

growing repetition vector entries of the graph, for reasons

disclosed in Section VI-A, the relative estimation error moves

towards 0.
In (60), matrix Mopt as a concrete matrix can be obtained

by solving a series of optimization problems as follows:

foreach (i, j) s.t. [Mpar]ij 6= −∞ do

maximize
xG

[Mpar(xG)]i,j

subject to x
G
∈ XG s.t. M̂

par
G (xG) = M

par
.

(61)

The type of optimization problems encountered in (61) de-

pends on the formulations of R and D in the definition of

our analysis model as well as on the specification of the SDF-

PDFG domain. In the definition of R we were constrained by

notions of boundedness, deadlock-freedom and schedulability.

If only rates were subject to parameterization, in the context

of (61) we would be facing rational function of polynomials.

These problems can be converted to polynomial programming

problems [41] and efficiently solved using the techniques

of [42]. When it comes to the definition of D, no restrictions

regarding the functional behavior of SDF-PDF exist. However,

technical restrictions exist regarding the availability of opti-

mization techniques needed to give global solutions to (61).

To stay in the scope of polynomial programming, we limit D
to polynomial functions of parameters or more formally

D := k | d | D1 · D2 | D1 +D2 (62)

where d ∈ Pd and k ∈ R≥0. Polynomials are a sound choice

as approximation theory is centered on them, i.e. various

complex functions can be approximated by polynomials of

high degree [43]. When it comes to the definition of the XG

that with the definitions of R and D determines the type of

the optimization problems we encounter, it is the designer’s

responsibility to specify the domain in a way that a global

solver for the problem of (61) exists.

Fig. 9. Communication graph of Max-plus matrix of (64).

We exemplify using the SDF-PDFG of Fig. 4. Assume that

its domain is given by

XG =(b = tt) ∩ (p · a1 ≥ q · a1) ∩ (p · a3 ≤ q · a1)

∩ (q · a4 ≤ p · a2) ∩ (a4 ≤ a1) ∩ (q · a4 ≤ p · a3)

∩
{
p = w1 · w2, w1 + w2 = 2 · x1 − x2,

p ∈ [1, 10], q ∈ [1, 10], w1 ∈ [1, 3], w2 ∈ [1, 4],

x1 ∈ [1, 3], x2 ∈ [1, 5], a1 ∈ [1, 7], a2 = 4,

a3 ∈ [1, 5], a4 = 4
}

(63)

Equation (63) is a very illustrative example of a domain

specification because it shows how graph parameters (rates

and actor firing delays) may exhibit arbitrary nonlinear inter-

dependencies and dependencies on parameters not present in

the graph itself in a nested fashion. E.g. parameterized rate p
nonlinearly depends on parameters w1 and w2 which in turn

depend on parameters x1 and x2. The domain (63) in addition

defines a default parameter interval for each parameter, e.g

p ∈ [1, 10]. After running (61), we obtain the worst-case

evaluation matrix specified by (64).

M̂w−c
G =

24 −∞ −∞ −∞ −∞ 24
34.5 24 −∞ −∞ −∞ 34.5
34 −∞ 24 −∞ −∞ 34
42.5 32 32 24 −∞ 42.5
42.5 32 32 24 −∞ 42.5
−∞ −∞ −∞ −∞ 0 −∞

(64)

The communication graph of M̂w−c
G is shown in Fig. 9. In

the graphical representation of G(M̂w−c
G), rather than using

numerical values {1, . . . , n, . . . , |I|} for node designators, we

use the names of the initial tokens the numerical values refer

to, e.g. value n corresponds to in. The critical cycle of the

graph is marked with bold edges. The MCM of the graph is
1
2 · (42.5+ 10) = 26.25, and therefore ŤhG = 1

26.25 iterations

per time-unit, i.e. 1
26.25 is a conservative estimate or an exact

MICROPROCESSORS AND MICROSYSTEMS XX (20XX) XX-XX 20

value if the critical cycle is defined by a self-edge of the

communication graph. As mentioned, if it is a conservative

estimate, the relative error will shrink with growing values of

graph’s repetition vector entries.

The same specification can be analyzed for worst-case

throughput by constructing a worst-case SDF abstraction of the

parameterized specification by using parameter upper bounds

for rates and firing delays and enabling all conditional chan-

nels. This is possible in this example (but not in the general

case) because the parametric repetition vector entries of the

specification are strictly increasing functions of parameters. It

is worthwhile mentioning that in many practical cases where

repetition vector entries are fractional functions of parameters,

they can be normalized [12] and so be rendered strictly

increasing functions of parameters.

By using upper bound of parameters in the running example

we obtain the throughput value of ŤhG = 1
70 time-units per

iteration which is clearly a significant overapproximation of

the result obtained using our approach although our result is

a conservative estimate itself. This is because in this case,

the “worst-case” SDF abstraction cannot take into account the

complex parameter interdependencies of (63).

C. Worst-case latency

From Definition 9 it follows that determining the worst-case

latency equals to finding the smallest LG such that γγγ(k) ≤
LG + k

ThG
. Therefore,

LG =
⊕

k

(γγγ(k)−
k

ThG

). (65)

It follows from (65) that given ThG we are interested in

the maximum value γγγ(k) can attain for all possible instance

sequences. As follows from the Max-plus algebraic semantics

of SDF-PDFG defined by (56) and (57) and the monotonicity

of SDF-PDFG, γγγ(k) can be conservatively bounded using the

worst-case evaluation vector γγγw−c(k) as follows

γγγ(k) � γγγw−c(k). (66)

In (66),

γγγw−c(k) = Mw−c
G ⊗ γγγw−c(k − 1) (67)

for all k > 0 where γγγw−c(0) stores the initial availability

timestamps of the graph’s initial tokens. Equation (67) can be

re-written to an explicit form as follows

γγγw−c(k) = Mw−c
G

⊗k
⊗ γγγw−c(0). (68)

Therefore, the worst-case latency computation problem for

SDF-PDF of (65) transforms into

LG �
⊕

k

(γγγw−c(k)−
k

ThG

). (69)

for the given enabling vector γγγw−c(0). Typically, γγγw−c(0) =
0. The right hand side expression of (69) now represents a

conservative bound on LG that we want to determine, denoted

L̂G.

At first glance, this bound seems hard to compute because

we need to consider all γγγw−c(k) vectors up to an arbitrary

large k as we consider finite SDF-PDFG executions of ar-

bitrary length (as in streaming applications). However, the

sequence γγγw−c(k) as defined by (67) and (68) has a very

nice property. In particular, it follows from the Max-plus

spectral theory [44][18] that the sequence of vectors given

by γγγ(k + 1) = M ⊗ γγγ(k) where M ∈ Rn×n
max for k ≥ t where

t ∈ N>0 will show a periodic behavior of type

γγγ(k + c) = γγγ(k)⊗ c⊗ ηηη. (70)

In (70), ηηη ∈ Rm
max is the cycle-time vector of M that is

computed from the MCMs of the maximal strongly connected

subgraphs of the communication graph of M . The value of c
can be computed from the cyclicities of the maximal strongly

connected subgraphs of M . The MCM of the communication

graph of M will equal to the maximum among cycle-time

vector entries. For more details we refer to [45] and [44].

Therefore, the periodicity property of (70) allows us to

solve the problem of (69) by only determining the first t+ c
timestamp vectors of (67), i.e. for k = 1, . . . , t + c. This is

because for the values of k beyond t + c, the growth rate

of γγγw−c(k) cannot be faster than determined by the cycle-

time vector and consequently the inverse of ŤhG that is the

maximum among all cycle time vector entries and will not

lead to a larger L̂G.

We compute L̂G for the running example SDF-PDFG with

M̂w−c
G of (64), γγγw−c(0) = [0, 0, 0, 0, 0, 0]T and 1

ŤhG
= 26.25

time-units per iteration. For M̂w−c
G , ηηη = [26.25]T , c = 2 and

t = 2 and therefore

L̂G ≤
⊕{

[0, 0, 0, 0]T , [24, 34.5, 34, 42.5, 42.5, 10]T − 26.25,

[48, 58.5, 58, 66.5, 66.5, 52.5]T − 52.5,

[76.5, 87, 86.5, 95, 95, 76.5]T − 78.75
}

= [0, 8.25, 7.75, 16.25, 16.25, 0]T .

IX. CASE STUDY

In this section, we demonstrate the application of our anal-

ysis techniques to a realistic case study from the multimedia

domain. In particular, we consider the case of a VC-1 video

decoder used in a region of interest (ROI) coding scheme. We

show how graph parameters can exhibit complex dependencies

on the decoder’s input signal parameters. Furthermore, we

demonstrate that in presence of such complex parameter

dependencies, using the “worst-case SDFG” constructed from

parameter interval endpoints in the worst-case throughput

analysis will lead to a very pessimistic end result. With

regard to that result, we show that our technique can give a

significantly tighter but still a conservative estimate. We also

discuss how using our technique one can in many situations

address the scalability issues of enumerative analysis.

ROI coding [46] is a feature of modern video codecs that

allows to independently store and transmit a video in a variety

of regions of interest. This feature is useful for achieving

higher error resilience as errors cannot cross ROI boundaries

or for saving bandwidth as a ROI can be coded with more

bits to obtain a much higher quality than that of the non-ROI

which is coded with fewer bits. Typical way of representing

ROIs in a video picture is by the use of a rectangular region

MICROPROCESSORS AND MICROSYSTEMS XX (20XX) XX-XX 21

that corresponds to a picture slice. Slice on the other hand is

a group of macroblocks. We exemplify using the picture from

the Foreman sequence shown in Fig. 10b. In the sequence

the region of interest is the foreman’s face represented by the

rectangular “ROI slice”, while the background is represented

by the “Background slice”.

The VC-1 decoder shown in Fig. 10a adopted from [47]

is used to decode only ROI slices, i.e. the foreman’s face.

The decoder has two main pipelines: the intra pipeline (actors

MBB , INTRA and IQUIT) and the inter pipeline (actor

MC). VLD performs variable-length decoding, actor SMB

splits slices into macroblocks, actor LOOP implements the

deblocking filter, while actor OUTPUT stores the decoded

slice into the output frame buffer. One iteration of the SDF-

PDFG of Fig. 10a corresponds to the decoding of one picture

slice. Boolean expressions defined over Boolean parameters x
and y are used to adjust the topology of the graph according

to the types of blocks subject to processing. In particular, we

differentiate between three types of blocks: 1) intra-coded only

(x∧¬y); 2) inter-coded only (¬x∧ y); and 3) both intra- and

inter-coded (x ∧ y).

We assume the ROI (foreman’s face) can be abstracted into

an ellipse of known characteristics, i.e. of known circumfer-

ence o and eccentricity ǫ where ξM and ξm are the major and

minor axis of the ellipse, respectively. The ellipse abstraction

is a natural representation for a face where eccentricity can be

thought of as a characteristic of a particular face (some faces

are more oval than others) while the circumference models the

distance of the face from the capturing device. The bounding

rectangle of the ellipse defines the actual slice to be decoded.

These considerations lead to the definition of XG as follows

XG =
{
p = (2 · ξM · 2 · ξm)/(16 · 16), p ∈ [1, P], (71a)

q ∈ [1, 16] (71b)

p′ ≥ µ · P, p+ p′ ≤ P (71c)

o2 = 4 · π2(ξ2M + ξ2m), o ≥ O (71d)

ǫ2 · ξ2M = ξ2M − ξ2m, ǫ = E, 2 · ξM ≤ w, (71e)

2 · ξm ≤ h (71f)

a = aref , b = bref , c = cref , d = dref , (71g)

e = eref , f = fref , g = qref , h = href

}
. (71h)

The number of macroblocks p within the slice is given

by the area of the ellipse’s bounding rectangle (cf. (71a)).

Note that the size of a macroblock is 16 × 16 pixels. De-

pending on resolution, the picture/frame consists of maximally

P macroblocks (cf. (71a)). The number of blocks within a

macroblock q is constrained by (71b). It is known that o is

always greater than a certain predefined constant O (cf. (71d)),

i.e. O defines the maximum distance from the face to the

camera. Furthermore, ǫ is equal to a constant E and the

ellipse is entirely contained inside the picture/frame (cf. (71e)

and (71f)). Within a picture, it is assumed that the background

always occupies the portion µ of the picture/frame comprising

p′ macroblocks (cf. (71c)). Referent actor execution times

(cf. (71g) and (71h)) were taken from [47] and are expressed

in cycles of the STMicroelectronics STxP70 processor.

From the case study we see the modeling flexibility the

SDF-PDF offers. In particular, it allows to express fine-grained

data dependent behavior using parameters. The values param-

eters may attain at run-time can depend on the characteristics

of the input data (the input signal). In the case study, this is

the relative displacement of the tracked object (face) and the

camera and the ovality of the face.

In the exercise, we assume SDTV input format with signal

type 480i 16:9 and resolution 720x480 pixels. Thus, w = 720,

h = 240 and P = 1620. Furthermore, O = 700, E = 0.6
and µ = 30. For these values using our performance analysis

technique presented in Section VIII we obtain a conservative

throughput estimate of 1.74727 · 10−7 slices per referent

processor cycle. By using SDF in an upper endpoint manner

(taking the maximum default values for all parameters) we

obtain the guaranteed throughput value of 1.05699 · 10−7

slices per cycle. This is possible because the parametric repe-

tition vector entries of the specification are strictly increasing

functions of parameters [47]. Both values are conservative

approximations of the actual value but our technique tightens

the SDF result by 39.65 percent. This is because the latter

analysis cannot take into account complex parameter inter-

dependencies.

In cases where there exist no such inter-dependencies and

the worst-case behavior of the graph can indeed be defined by

using default upper bound values of parameters, our technique

will most likely introduce unnecessary overhead both in time

and the result and it is wiser to use the “worst-case SDF”

type of analysis. Hence, it is up to the designer to choose the

technique most suitable for the problem at hand.

The case study also indicates that our technique helps

addressing the scalability issues of enumerative analysis for

applications with vast domains. In particular, imagine the case

where one cannot use the “worst-case SDF” type of analysis

because it is not clear which values of parameters define the

worst-case behavior of the graph. Then, one can resort to

exact enumerative analysis. However, for types of applications

resembling to our case study, the exact enumerative analysis

is hardly practicable (it will take hours) because the analysis

time of only a single configuration of the VC-1 decoder SDF-

PDFG with a repetition vector whose entries attain large values

can take up to 80s on an Intel Core i5-750 CPU running

at 2.67GHz with 8GB main memory. On the other hand,

our analysis was manually completed (with the help of an

industrial optimization tool) within few hours. This shows the

benefits of parametric analysis that we expect to fully utilize

when our technique is fully automatized. In particular, by

using symbolic (parametric) analysis we avoid the need for

successive analysis of all configurations the run-time of which

may be prohibitive, but the price we pay is in accuracy of the

analysis. If we need the tightest performance estimates, we

will of course have to resort to enumerative analysis.

All aforementioned speaks in favor of our technique as a

valuable method that complements the exiting ones and can be

very helpful in providing early performance estimates to the

designer of dynamic systems exposing fine-grained dynamic

behavior. Still, given the computational intensiveness of the

technique both in terms of Algorithm 1 and (61), our approach

MICROPROCESSORS AND MICROSYSTEMS XX (20XX) XX-XX 22

(a) VC-1 decoder captured in SDF-PDF. (b) ROI coding.

Fig. 10. Case study.

is primarily intended for deriving early performance estimates

for graphs counting up to a few dozen actors and initial tokens

while involving a few critical parameters.

X. DISCUSSION AND CONCLUSION

In this paper we considered the worst-case performance

analysis problem for dynamic streaming applications that can

be captured using SDF-PDF where application/design-space

parameters typically expose complex interdependencies and

can attain values from large or even infinite domains. We

believe that our technique is a valuable addition to the existing

techniques for performance analysis of dynamic streaming

applications of this type for several reasons.

First, so far, the problem was coarsely treated using

the existing SDF techniques that typically incur too pes-

simistic over-approximations when parameters expose arbi-

trary inter-dependencies. Using the VC-1 decoder case study,

we have shown that in cases where parameters expose inter-

dependencies, our techniques is able to produce significantly

tighter but still conservative performance estimates.

Second, compared to enumerative analysis techniques of

application graph’s with huge domains, the VC-1 decoder

case study indicates that our technique will for applications of

similar characteristics typically perform better at the cost of

analysis accuracy. Still, given the computational intensiveness

of our technique, to perform a comprehensive scalability

analysis, it needs to be fully automated which is a subject

of future work.

Furthermore, for our technique to be applicable, input

specifications must satisfy certain requirements that restrict

modeling of some types of resource constraints. Finding ways

to alleviate these restrictions is a subject of future work too.

XI. ACKNOWLEDGMENT

This work was partly supported by ITEA 3 project 14014

ASSUME.

REFERENCES

[1] R. Zurawski, Embedded systems handbook. CRC Press, 2005.

[2] A. Girault, B. Lee, and E. Lee, “Hierarchical finite state machines with
multiple concurrency models,” Computer-Aided Design of Integrated

Circuits and Systems, IEEE Transactions on, vol. 18, no. 6, pp. 742–760,
Jun 1999.

[3] A. Jantsch, Modeling embedded systems and SoCs: concurrency and

time in models of computation. Morgan Kaufmann, 2004.

[4] S. Ha and H. Oh, “Decidable dataflow models for signal processing:
Synchronous dataflow and its extensions,” in Handbook of Signal

Processing Systems, S. S. Bhattacharyya, E. F. Deprettere, R. Leupers,
and J. Takala, Eds. Springer New York, 2013, pp. 1083–1109.

[5] S. S. Bhattacharyya, E. F. Deprettere, and B. D. Theelen, “Dynamic
dataflow graphs,” in Handbook of Signal Processing Systems, S. S. Bhat-
tacharyya, E. F. Deprettere, R. Leupers, and J. Takala, Eds. Springer
New York, 2013, pp. 905–944.

[6] E. Lee and D. Messerschmitt, “Synchronous data flow,” Proceedings of
the IEEE, vol. 75, no. 9, pp. 1235–1245, Sept 1987.

[7] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete, “Cycle-static
dataflow,” Signal Processing, IEEE Transactions on, vol. 44, no. 2, pp.
397–408, Feb 1996.

[8] M. Geilen and S. Stuijk, “Worst-case performance analysis of
synchronous dataflow scenarios,” in Proceedings of the Eighth

IEEE/ACM/IFIP International Conference on Hardware/Software Code-

sign and System Synthesis, ser. CODES/ISSS ’10. New York, NY, USA:
ACM, 2010, pp. 125–134.

[9] B. Bhattacharya and S. Bhattacharyya, “Parameterized dataflow model-
ing for DSP systems,” Signal Processing, IEEE Transactions on, vol. 49,
no. 10, pp. 2408–2421, Oct 2001.

[10] J. Buck and E. Lee, “Scheduling dynamic dataflow graphs with bounded
memory using the token flow model,” in Acoustics, Speech, and Signal

Processing, 1993. ICASSP-93., 1993 IEEE International Conference on,
vol. 1, April 1993, pp. 429–432 vol.1.

[11] P. Fradet, A. Girault, and P. Poplavko, “SPDF: A schedulable parametric
data-flow MoC,” in Proceedings of the Conference on Design, Automa-

tion and Test in Europe, ser. DATE ’12. San Jose, CA, USA: EDA
Consortium, 2012, pp. 769–774.

[12] V. Bebelis, P. Fradet, A. Girault, and B. Lavigueur, “BPDF: A statically
analyzable dataflow model with integer and boolean parameters,” in
Embedded Software (EMSOFT), 2013 Proceedings of the International

Conference on, Sept 2013, pp. 1–10.

[13] M. Wiggers, M. Bekooij, and G. Smit, “Buffer capacity computation
for throughput constrained streaming applications with data-dependent
inter-task communication,” in Real-Time and Embedded Technology and
Applications Symposium, 2008. RTAS ’08. IEEE, April 2008, pp. 183–
194.

[14] A. Ghamarian, M. Geilen, S. Stuijk, T. Basten, A. Moonen, M. Bekooij,
B. Theelen, and M. Mousavi, “Throughput analysis of synchronous data
flow graphs,” in Application of Concurrency to System Design, 2006.

ACSD 2006. Sixth International Conference on, June 2006, pp. 25–36.

[15] A. Ghamarian, S. Stuijk, T. Basten, M. Geilen, and B. Theelen, “Latency
minimization for synchronous data flow graphs,” in Digital System De-
sign Architectures, Methods and Tools, 2007. DSD 2007. 10th Euromicro

Conference on, Aug 2007, pp. 189–196.

[16] M. Geilen, “Synchronous dataflow scenarios,” ACM Trans. Embed.

Comput. Syst., vol. 10, no. 2, pp. 16:1–16:31, Jan. 2011.

MICROPROCESSORS AND MICROSYSTEMS XX (20XX) XX-XX 23

[17] S. Altmeyer, C. Humbert, B. Lisper, and R. Wilhelm, “Parametric
timing analysis for complex architectures,” in Embedded and Real-Time
Computing Systems and Applications, 2008. RTCSA ’08. 14th IEEE

International Conference on, Aug 2008, pp. 367–376.

[18] F. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat, “Synchronization
and linearity: an algebra for discrete event systems,” 2001.

[19] S. Gaubert, “Performance evaluation of (max,+) automata,” Automatic

Control, IEEE Transactions on, vol. 40, no. 12, pp. 2014–2025, Dec
1995.

[20] P. Clauss and V. Loechner, “Parametric analysis of polyhedral iteration
spaces,” Journal of VLSI signal processing systems for signal, image
and video technology, vol. 19, no. 2, pp. 179–194, 1998.

[21] A. H. Ghamarian, M. C. W. Geilen, T. Basten, and S. Stuijk, “Parametric
throughput analysis of synchronous data flow graphs,” in Proceedings of

the Conference on Design, Automation and Test in Europe, ser. DATE
’08. New York, NY, USA: ACM, 2008, pp. 116–121.

[22] A. Bouakaz, P. Fradet, and A. Girault, “Symbolic buffer sizing for
throughput-optimal scheduling of dataflow graphs,” in 2016 IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS),
April 2016, pp. 1–10.

[23] M. Damavandpeyma, S. Stuijk, M. Geilen, T. Basten, and H. Corporaal,
“Parametric throughput analysis of scenario-aware dataflow graphs,” in
Computer Design (ICCD), 2012 IEEE 30th International Conference
on, Sept 2012, pp. 219–226.

[24] M. Skelin, M. Geilen, F. Catthoor, and S. Hendseth, “Worst-case
throughput analysis for parametric rate and parametric actor execution
time scenario-aware dataflow graphs,” in Proceedings 1st International

Workshop on Synthesis of Continuous Parameters, SynCoP 2014, Greno-
ble, France, 6th April 2014., 2014, pp. 65–79.

[25] E. Lee and A. Sangiovanni-Vincentelli, “A framework for comparing
models of computation,” Computer-Aided Design of Integrated Circuits

and Systems, IEEE Transactions on, vol. 17, no. 12, pp. 1217–1229,
Dec 1998.

[26] K. Kavi, B. Buckles, and U. N. Bhat, “A formal definition of data flow
graph models,” Computers, IEEE Transactions on, vol. C-35, no. 11,
pp. 940–948, Nov 1986.

[27] M. Geilen, S. Tripakis, and M. Wiggers, “The earlier the better: A theory
of timed actor interfaces,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2010-130, Oct 2010.

[28] C. Ptolemaeus, Ed., System Design, Modeling, and Simulation using

Ptolemy II. Ptolemy.org, 2014.

[29] E. A. Lee, “A denotational semantics for dataflow with firing,” in Mem-

orandum UCB/ERL M97/3, Electronics Research Labaratory, Berkeley,

CA 94720, 1997.

[30] F. Siyoum, M. Geilen, O. Moreira, and H. Corporaal, “Worst-case
throughput analysis of real-time dynamic streaming applications,” in
Proceedings of the Eighth IEEE/ACM/IFIP International Conference on

Hardware/Software Codesign and System Synthesis, ser. CODES+ISSS
’12. New York, NY, USA: ACM, 2012, pp. 463–472.

[31] M. Sgroi, L. Lavagno, Y. Watanabe, and A. Sangiovanni-Vincentelli,
“Synthesis of embedded software using free-choice petri nets,” in Design
Automation Conference, 1999. Proceedings. 36th, 1999, pp. 805–810.

[32] S. S. Battacharyya, E. A. Lee, and P. K. Murthy, Software Synthesis from

Dataflow Graphs. Norwell, MA, USA: Kluwer Academic Publishers,
1996.

[33] K. Desnos, M. Pelcat, J.-F. Nezan, S. Bhattacharyya, and S. Aridhi,
“PiMM: Parameterized and interfaced dataflow meta-model for mpsocs
runtime reconfiguration,” in Embedded Computer Systems: Architec-
tures, Modeling, and Simulation (SAMOS XIII), 2013 International

Conference on, July 2013, pp. 41–48.

[34] B. Bhattacharya and S. Bhattacharyya, “Quasi-static scheduling of
reconfigurable dataflow graphs for DSP systems.” in IEEE International

Workshop on Rapid System Prototyping. IEEE Computer Society, 2000,
pp. 84–89.

[35] M. H. Wiggers, M. J. G. Bekooij, and G. J. M. Smit, “Modelling
run-time arbitration by latency-rate servers in dataflow graphs,” in
Proceedingsof the 10th International Workshop on Software &Amp;

Compilers for Embedded Systems, ser. SCOPES ’07. New York, NY,
USA: ACM, 2007, pp. 11–22.

[36] S. Gaubert, P. Butkovic, and R. Cuninghame-Green, “Minimal (max,+)
realization of convex sequences,” SIAM Journal on Control and Opti-

mization, vol. 36, no. 1, pp. 137–147, 1998.

[37] B. Charron-Bost, M. Függer, and T. Nowak, Transience Bounds for

Distributed Algorithms. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 77–90.

[38] S. Stuijk, M. Geilen, B. Theelen, and T. Basten, “Scenario-aware
dataflow: Modeling, analysis and implementation of dynamic applica-
tions,” in Embedded Computer Systems (SAMOS), 2011 International

Conference on, July 2011, pp. 404–411.
[39] F. Siyoum, M. Geilen, and H. Corporaal, “End-to-end latency analysis

of dataflow scenarios mapped onto shared heterogeneous resources,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 35, no. 4, pp. 535–548, April 2016.
[40] A. Dasdan and R. Gupta, “Faster maximum and minimum mean cycle

algorithms for system-performance analysis,” Computer-Aided Design of

Integrated Circuits and Systems, IEEE Transactions on, vol. 17, no. 10,
pp. 889–899, Oct 1998.

[41] F. Bugarin, D. Henrion, and J.-B. Lasserre, “Minimizing the sum of
many rational functions,” arXiv preprint arXiv:1102.4954, 2011.

[42] H. Sherali and C. Tuncbilek, “A global optimization algorithm for
polynomial programming problems using a reformulation-linearization
technique,” Journal of Global Optimization, vol. 2, no. 1, pp. 101–112,
1992.

[43] M. J. D. Powell, Approximation theory and methods. Cambridge
university press, 1981.

[44] B. Heidergott, G. J. Olsder, and J. Van Der Woude, Max Plus at Work:

Modeling and Analysis of Synchronized Systems: A Course on Max-Plus

Algebra and Its Applications. Princeton University Press, 2006.
[45] J. Cochet-Terrasson, G. Cohen, S. Gaubert, M. McGettrick, and J.-

P. Quadrat, “Numerical computation of spectral elements in max-plus
algebra,” in Proc. IFAC Conf. on Syst. Structure and Control, 1998.

[46] D. Grois and O. Hadar, “Recent advances in region-of-interest coding,”
Recent Advances on Video Coding, pp. 49–76, 2011.

[47] V. Bebelis, P. Fradet, and A. Girault, “A framework to schedule para-
metric dataflow applications on many-core platforms,” in Proceedings of

the 2014 SIGPLAN/SIGBED Conference on Languages, Compilers and
Tools for Embedded Systems, ser. LCTES ’14. New York, NY, USA:
ACM, 2014, pp. 125–134.

Mladen Skelin received the M.Eng. degree from
the Faculty of Electrical Engineering and Com-
puting, University of Zagreb, Zagreb, Croatia, and
the Ph.D. degree from the Norwegian University
of Science and Technology, Trondheim, Norway
and KU Leuven, Leuven, Belgium. He is a post-
doctoral researcher with the Department of Electrical
Engineering, Eindhoven University of Technology,
Eindhoven, The Netherlands. His current research
interests include model-based design and analysis of
embedded systems with a special focus on dataflow

models of computation.

Marc Geilen is an assistant professor in the De-
partment of Electrical Engineering at Eindhoven
University of Technology. He holds an MSc and
a PhD from Eindhoven University of Technology.
His research interests include formal models of com-
putation, multiprocessor systems-on-chip, networked
embedded systems and cyber-physical systems, and
multi-objective optimization and trade-off analysis.
He is a member of IEEE. He has served on various
TPCs and on organizing committees for several
conferences including DATE as a topic chair. He

co-supervised 6 PhD students.

Francky Catthoor received the engineering de-
gree and a PhD in electrical engineering from the
Katholieke Universiteit Leuven, Belgium in 1982
and 1987 respectively. Between 1987 and 2000, he
has headed several research domains in the area
of high-level and system synthesis techniques and
architectural methodologies, including related appli-
cation and deep submicron technology aspects, and
smart photo-voltaic modules, all at IMEC, Heverlee,
Belgium. Currently he is an imec fellow. He is part-
time full professor at the EE department of the

K.U.Leuven. In 1986 he received the Young Scientist Award from the Marconi
International Fellowship Council. He has been associate editor for several
IEEE and ACM journals, like Trans. on VLSI Systems, Trans. on Multi-
media, and ACM TODAES. He was the program chair of several conferences
including ISSS97 and SIPS01. He has been elected an IEEE fellow in 2005.

MICROPROCESSORS AND MICROSYSTEMS XX (20XX) XX-XX 24

Sverre Hendseth serves as an associate professor
in the Department of Engineering Cybernetics at the
Norwegian University of Science and Technology.
He received his Siv.Ing. (MSc) and Dr.Ing. (PhD) de-
gree in engineering cybernetics from the Norwegian
Institute of Technology (NTH) in 1987 and 1995,
respectively. His research interests include real-time
systems and embedded software.

APPENDIX A

DERIVING THE SDFG MAX-PLUS MATRIX OF (6)

The Max-plus matrix of the scenario s1 SDFG of Fig. 2a is

given in (6). We show how to derive it via symbolic execution

of one iteration of the SDFG.

The example SDFG has six initial tokens. We represent the

timestamp vector of the kth graph iteration as

γγγ(k) = [ti1 , ti2 , ti3 , ti4 , ti5 , ti6]
T . (72)

Similarly, the timestamp vector of the (k + 1)st iteration is

represented as

γγγ(k + 1) = [t′i1 , t
′
i2
, t′i3 , t

′
i4
, t′i5 , t

′
i6
]T . (73)

The iteration schedule of the graph is given as follows:

A1
1A

2
2A

3
3A

3
4A

2
5A

1
6.

According to the iteration schedule actor A0 fires first.

In order to fire, A0 must consume token i6 the timestamp

of which is expressed using the following Max-plus scalar

product

ti6 = [−∞,−∞,−∞,−∞,−∞, 0]⊗ γγγ(k). (74)

Therefore, according to the Max-plus semantics of SDF of (2),

the tokens produced by its firing are determined by the

timestamp vector

ti6 ⊗ 0 = [−∞,−∞,−∞,−∞,−∞, 0]⊗ γγγ(k). (75)

Thereafter, actor A1 fires two times. In a firing A1 consumes

one token from channel (A0, A1) and the tokens from its self-

edge. The timestamp of i1 is expressed as

ti1 = [0,−∞,−∞,−∞,−∞,−∞]⊗ γγγ(k). (76)

The timestamps of tokens of channel (A0, A1) are given

by (75). By consuming i1 and one token from channel

(A0, A1), the first firing of A1 produces three tokens deter-

mined by the timestamp vector

([0,−∞,−∞,−∞,−∞,−∞]⊗ γγγ(k)

⊕ [−∞,−∞,−∞,−∞,−∞, 0]⊗ γγγ(k))⊗ 5

= [5,−∞,−∞,−∞,−∞, 5]⊗ γγγ(k).

(77)

Similarly, the second firing consumes the self-edge token

and the remaining token from (A0, A1) whose timestamp is

given by (75). However, now the self-edge token carries the

timestamp of (77) as it was produced in the first firing of

A1. Therefore, the three tokens produced by A1 carry the

timestamp

([5,−∞,−∞,−∞,−∞, 5]⊗ γγγ(k)

⊕ [−∞,−∞,−∞,−∞,−∞, 0])⊗ 5

= [10,−∞,−∞,−∞,−∞, 10]⊗ γγγ(k)

(78)

The second firing of A1 restores i1 because this is also the

last firing of A1 within the iteration. Therefore,

t′i1 = [10,−∞,−∞,−∞,−∞, 10]⊗ γγγ(k). (79)

By continuing the symbolic execution until the completion of

the iteration we will obtain the new timestamps of remaining

initial tokens. By collecting the corresponding dependency

vectors, we obtain MG of (6).

APPENDIX B

PROOF OF PROPOSITION 1

Proof. We prove this by induction using the argument

x ≤ ⌈x⌉ < x+ 1. (80)

First, we consider the case where π2 ≥ r · π1. We prove the

induction base case, i.e. when n = 1. By substituting ς1(n) =
δ1 ⊗ π1

⊗⌈r·n⌉ and ς2(n) = π2
⊗n into (30), we obtain

conv(ς1, ς2)(n) = δ1 ⊗
n⊕

i=1

π1
⊗⌈r·(n−i+1)⌉ ⊗ π2

⊗i. (81)

For n = 1, (81) reduces to

conv(ς1, ς2)(1) = δ1 ⊗ π1
⊗⌈r⌉ ⊗ π2. (82)

By combining (80) and (82) we obtain the following inequality

conv (ς1, ς2)(1) = δ1⊗π1
⊗⌈r⌉⊗π2 < δ1⊗π1

⊗(1+r)⊗π2 (83)

that proves the base case. We continue with the induction step,

i.e. evaluate (81) for (n + 1) with the induction hypothesis

of (32) where π2 ≥ r · π1. We obtain

conv(ς1, ς2)(n+ 1) = δ1 ⊗
n+1⊕

i=1

π1
⊗⌈r·(n−i+2))⌉ ⊗ π2

⊗i

= δ1 ⊗
n⊕

i=1

π1
⊗⌈r·(n−i+1)⌉ ⊗ π2

⊗i

⊕ δ1 ⊗ π1
⊗⌈r⌉ ⊗ π2

⊗(n+1)

= conv(ς1, ς2)(n)

⊕ δ1 ⊗ π1
⊗⌈r⌉ ⊗ π2

⊗(n+1).
(84)

By substituting the induction hypothesis into (84) we obtain

the following inequality

conv(ς1, ς2)(n+ 1) < δ1 ⊗ π1
⊗(1+r) ⊗ π2

⊗n

⊕ δ1 ⊗ π1
⊗⌈r⌉ ⊗ π2

⊗(n+1).
(85)

If we use (80) to get rid of the ceiling in (85), we obtain

conv(ς1, ς2)(n+ 1) < δ1 ⊗ π1
⊗(1+r) ⊗ π2

⊗n

⊕ δ1 ⊗ π1
⊗(1+r) ⊗ π2

⊗(n+1)

conv(ς1, ς2)(n+ 1) < δ1 ⊗ π1
⊗(1+r) ⊗ π2

⊗(n+1).

(86)

Inequality (86) shows that the induction hypothesis holds for

(n + 1) too which completes the proof for the case where

π2 ≥ r · π1.

Now we consider the case where π2 ≤ r · π1. The base

case is simple and equal to that of (82). We proceed with

MICROPROCESSORS AND MICROSYSTEMS XX (20XX) XX-XX 25

the induction step. By substituting the induction hypothesis

into (84) we obtain the following inequality

conv (ς1, ς2)(n+ 1) < δ1 ⊗ π2 ⊗ π1
⊗(1+r·n)

⊕ δ1 ⊗ π1
⊗⌈r⌉ ⊗ π2

⊗(n+1).
(87)

If we get rid of the ceiling function and rearrange, we obtain

conv(ς1, ς2)(n+ 1) < δ1 ⊗ π2 ⊗ (π1
⊗(1+r·n)

⊕ π1
⊗(1+r) ⊗ π2

⊗n

︸ ︷︷ ︸

π1
⊗(r·n)

). (88)

Because we are considering the case where π2 ≤ r · π1, we

can replace inside the bracket the term π2 with r · π1 (cf.

underbrace of (88)) so that the (88) still holds. We obtain

conv(ς1, ς2)(n+ 1) < δ1 ⊗ π2 ⊗ (π1
⊗(1+r·n)

⊕ π1
⊗(1+r) ⊗ π1

⊗(r·n))

conv(ς1, ς2)(n+ 1) < δ1 ⊗ π2 ⊗ (π1
⊗(1+r·n)

⊕ π1
⊗(1+r·(n+1))).

(89)

If follows from (89) that

conv(ς1, ς2)(n+ 1) < δ1 ⊗ π2 ⊗ (π1
⊗(1+r·(n+1))), (90)

which completes the proof.

APPENDIX C

PROOF OF PROPOSITION 2

Proof. By taking π for the growth rate (ratio) of the conser-

vative estimate and 0 for the initial delay, the conservative

estimate will eventually (for some n0 ∈ N>0) compensate

for the initial delay difference of particular sequences, i.e. the

sequence with the maximum ratio will dominate. By taking δ
for the delay of the estimate, the estimate will dominate for

all n ∈ N>0.

